PPCISelLowering.cpp revision 0e55f0678cf3b40aa6e6d6139419254e568d7227
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PPCISelLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCISelLowering.h" 15#include "PPCMachineFunctionInfo.h" 16#include "PPCPredicates.h" 17#include "PPCTargetMachine.h" 18#include "PPCPerfectShuffle.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/VectorExtras.h" 21#include "llvm/CodeGen/CallingConvLower.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineInstrBuilder.h" 25#include "llvm/CodeGen/MachineRegisterInfo.h" 26#include "llvm/CodeGen/PseudoSourceValue.h" 27#include "llvm/CodeGen/SelectionDAG.h" 28#include "llvm/CallingConv.h" 29#include "llvm/Constants.h" 30#include "llvm/Function.h" 31#include "llvm/Intrinsics.h" 32#include "llvm/ParameterAttributes.h" 33#include "llvm/Support/MathExtras.h" 34#include "llvm/Target/TargetOptions.h" 35#include "llvm/Support/CommandLine.h" 36using namespace llvm; 37 38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 39cl::desc("enable preincrement load/store generation on PPC (experimental)"), 40 cl::Hidden); 41 42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 43 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) { 44 45 setPow2DivIsCheap(); 46 47 // Use _setjmp/_longjmp instead of setjmp/longjmp. 48 setUseUnderscoreSetJmp(true); 49 setUseUnderscoreLongJmp(true); 50 51 // Set up the register classes. 52 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 53 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 54 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 55 56 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 57 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); 58 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); 59 60 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 61 62 // PowerPC has pre-inc load and store's. 63 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 64 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 65 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 66 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 67 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 68 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 69 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 70 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 71 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 72 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 73 74 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg) 75 setConvertAction(MVT::ppcf128, MVT::f64, Expand); 76 setConvertAction(MVT::ppcf128, MVT::f32, Expand); 77 // This is used in the ppcf128->int sequence. Note it has different semantics 78 // from FP_ROUND: that rounds to nearest, this rounds to zero. 79 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 80 81 // PowerPC has no SREM/UREM instructions 82 setOperationAction(ISD::SREM, MVT::i32, Expand); 83 setOperationAction(ISD::UREM, MVT::i32, Expand); 84 setOperationAction(ISD::SREM, MVT::i64, Expand); 85 setOperationAction(ISD::UREM, MVT::i64, Expand); 86 87 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 88 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 89 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 90 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 91 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 92 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 93 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 94 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 95 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 96 97 // We don't support sin/cos/sqrt/fmod/pow 98 setOperationAction(ISD::FSIN , MVT::f64, Expand); 99 setOperationAction(ISD::FCOS , MVT::f64, Expand); 100 setOperationAction(ISD::FREM , MVT::f64, Expand); 101 setOperationAction(ISD::FPOW , MVT::f64, Expand); 102 setOperationAction(ISD::FSIN , MVT::f32, Expand); 103 setOperationAction(ISD::FCOS , MVT::f32, Expand); 104 setOperationAction(ISD::FREM , MVT::f32, Expand); 105 setOperationAction(ISD::FPOW , MVT::f32, Expand); 106 107 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 108 109 // If we're enabling GP optimizations, use hardware square root 110 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 111 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 112 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 113 } 114 115 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 116 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 117 118 // PowerPC does not have BSWAP, CTPOP or CTTZ 119 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 120 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 121 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 122 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 123 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 124 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 125 126 // PowerPC does not have ROTR 127 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 128 129 // PowerPC does not have Select 130 setOperationAction(ISD::SELECT, MVT::i32, Expand); 131 setOperationAction(ISD::SELECT, MVT::i64, Expand); 132 setOperationAction(ISD::SELECT, MVT::f32, Expand); 133 setOperationAction(ISD::SELECT, MVT::f64, Expand); 134 135 // PowerPC wants to turn select_cc of FP into fsel when possible. 136 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 137 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 138 139 // PowerPC wants to optimize integer setcc a bit 140 setOperationAction(ISD::SETCC, MVT::i32, Custom); 141 142 // PowerPC does not have BRCOND which requires SetCC 143 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 144 145 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 146 147 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 148 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 149 150 // PowerPC does not have [U|S]INT_TO_FP 151 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 152 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 153 154 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); 155 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); 156 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); 157 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); 158 159 // We cannot sextinreg(i1). Expand to shifts. 160 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 161 162 // Support label based line numbers. 163 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); 164 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); 165 166 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 167 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 168 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 169 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 170 171 172 // We want to legalize GlobalAddress and ConstantPool nodes into the 173 // appropriate instructions to materialize the address. 174 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 175 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 176 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 177 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 178 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 179 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 180 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 181 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 182 183 // RET must be custom lowered, to meet ABI requirements. 184 setOperationAction(ISD::RET , MVT::Other, Custom); 185 186 // TRAP is legal. 187 setOperationAction(ISD::TRAP, MVT::Other, Legal); 188 189 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 190 setOperationAction(ISD::VASTART , MVT::Other, Custom); 191 192 // VAARG is custom lowered with ELF 32 ABI 193 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI()) 194 setOperationAction(ISD::VAARG, MVT::Other, Custom); 195 else 196 setOperationAction(ISD::VAARG, MVT::Other, Expand); 197 198 // Use the default implementation. 199 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 200 setOperationAction(ISD::VAEND , MVT::Other, Expand); 201 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 202 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 203 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 204 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 205 206 // We want to custom lower some of our intrinsics. 207 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 208 209 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 210 // They also have instructions for converting between i64 and fp. 211 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 212 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 213 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 214 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 215 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 216 217 // FIXME: disable this lowered code. This generates 64-bit register values, 218 // and we don't model the fact that the top part is clobbered by calls. We 219 // need to flag these together so that the value isn't live across a call. 220 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 221 222 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT 223 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); 224 } else { 225 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 226 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 227 } 228 229 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 230 // 64-bit PowerPC implementations can support i64 types directly 231 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 232 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 233 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 234 // 64-bit PowerPC wants to expand i128 shifts itself. 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 238 } else { 239 // 32-bit PowerPC wants to expand i64 shifts itself. 240 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 241 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 242 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 243 } 244 245 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 246 // First set operation action for all vector types to expand. Then we 247 // will selectively turn on ones that can be effectively codegen'd. 248 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 249 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 250 MVT VT = (MVT::SimpleValueType)i; 251 252 // add/sub are legal for all supported vector VT's. 253 setOperationAction(ISD::ADD , VT, Legal); 254 setOperationAction(ISD::SUB , VT, Legal); 255 256 // We promote all shuffles to v16i8. 257 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 258 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 259 260 // We promote all non-typed operations to v4i32. 261 setOperationAction(ISD::AND , VT, Promote); 262 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 263 setOperationAction(ISD::OR , VT, Promote); 264 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 265 setOperationAction(ISD::XOR , VT, Promote); 266 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 267 setOperationAction(ISD::LOAD , VT, Promote); 268 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 269 setOperationAction(ISD::SELECT, VT, Promote); 270 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 271 setOperationAction(ISD::STORE, VT, Promote); 272 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 273 274 // No other operations are legal. 275 setOperationAction(ISD::MUL , VT, Expand); 276 setOperationAction(ISD::SDIV, VT, Expand); 277 setOperationAction(ISD::SREM, VT, Expand); 278 setOperationAction(ISD::UDIV, VT, Expand); 279 setOperationAction(ISD::UREM, VT, Expand); 280 setOperationAction(ISD::FDIV, VT, Expand); 281 setOperationAction(ISD::FNEG, VT, Expand); 282 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 283 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 284 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 285 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 286 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 287 setOperationAction(ISD::UDIVREM, VT, Expand); 288 setOperationAction(ISD::SDIVREM, VT, Expand); 289 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 290 setOperationAction(ISD::FPOW, VT, Expand); 291 setOperationAction(ISD::CTPOP, VT, Expand); 292 setOperationAction(ISD::CTLZ, VT, Expand); 293 setOperationAction(ISD::CTTZ, VT, Expand); 294 } 295 296 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 297 // with merges, splats, etc. 298 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 299 300 setOperationAction(ISD::AND , MVT::v4i32, Legal); 301 setOperationAction(ISD::OR , MVT::v4i32, Legal); 302 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 303 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 304 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 305 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 306 307 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 308 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 309 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 310 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 311 312 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 313 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 314 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 315 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 316 317 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 318 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 319 320 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 321 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 322 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 323 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 324 } 325 326 setShiftAmountType(MVT::i32); 327 setSetCCResultContents(ZeroOrOneSetCCResult); 328 329 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 330 setStackPointerRegisterToSaveRestore(PPC::X1); 331 setExceptionPointerRegister(PPC::X3); 332 setExceptionSelectorRegister(PPC::X4); 333 } else { 334 setStackPointerRegisterToSaveRestore(PPC::R1); 335 setExceptionPointerRegister(PPC::R3); 336 setExceptionSelectorRegister(PPC::R4); 337 } 338 339 // We have target-specific dag combine patterns for the following nodes: 340 setTargetDAGCombine(ISD::SINT_TO_FP); 341 setTargetDAGCombine(ISD::STORE); 342 setTargetDAGCombine(ISD::BR_CC); 343 setTargetDAGCombine(ISD::BSWAP); 344 345 // Darwin long double math library functions have $LDBL128 appended. 346 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 347 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 348 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 349 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 350 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 351 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 352 } 353 354 computeRegisterProperties(); 355} 356 357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 358/// function arguments in the caller parameter area. 359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { 360 TargetMachine &TM = getTargetMachine(); 361 // Darwin passes everything on 4 byte boundary. 362 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 363 return 4; 364 // FIXME Elf TBD 365 return 4; 366} 367 368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 369 switch (Opcode) { 370 default: return 0; 371 case PPCISD::FSEL: return "PPCISD::FSEL"; 372 case PPCISD::FCFID: return "PPCISD::FCFID"; 373 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 374 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 375 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 376 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 377 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 378 case PPCISD::VPERM: return "PPCISD::VPERM"; 379 case PPCISD::Hi: return "PPCISD::Hi"; 380 case PPCISD::Lo: return "PPCISD::Lo"; 381 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 382 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 383 case PPCISD::SRL: return "PPCISD::SRL"; 384 case PPCISD::SRA: return "PPCISD::SRA"; 385 case PPCISD::SHL: return "PPCISD::SHL"; 386 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 387 case PPCISD::STD_32: return "PPCISD::STD_32"; 388 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF"; 389 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho"; 390 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 391 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho"; 392 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF"; 393 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 394 case PPCISD::MFCR: return "PPCISD::MFCR"; 395 case PPCISD::VCMP: return "PPCISD::VCMP"; 396 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 397 case PPCISD::LBRX: return "PPCISD::LBRX"; 398 case PPCISD::STBRX: return "PPCISD::STBRX"; 399 case PPCISD::LARX: return "PPCISD::LARX"; 400 case PPCISD::STCX: return "PPCISD::STCX"; 401 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 402 case PPCISD::MFFS: return "PPCISD::MFFS"; 403 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 404 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 405 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 406 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 407 case PPCISD::TAILCALL: return "PPCISD::TAILCALL"; 408 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 409 } 410} 411 412 413MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const { 414 return MVT::i32; 415} 416 417 418//===----------------------------------------------------------------------===// 419// Node matching predicates, for use by the tblgen matching code. 420//===----------------------------------------------------------------------===// 421 422/// isFloatingPointZero - Return true if this is 0.0 or -0.0. 423static bool isFloatingPointZero(SDValue Op) { 424 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 425 return CFP->getValueAPF().isZero(); 426 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 427 // Maybe this has already been legalized into the constant pool? 428 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 429 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 430 return CFP->getValueAPF().isZero(); 431 } 432 return false; 433} 434 435/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 436/// true if Op is undef or if it matches the specified value. 437static bool isConstantOrUndef(SDValue Op, unsigned Val) { 438 return Op.getOpcode() == ISD::UNDEF || 439 cast<ConstantSDNode>(Op)->getValue() == Val; 440} 441 442/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 443/// VPKUHUM instruction. 444bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { 445 if (!isUnary) { 446 for (unsigned i = 0; i != 16; ++i) 447 if (!isConstantOrUndef(N->getOperand(i), i*2+1)) 448 return false; 449 } else { 450 for (unsigned i = 0; i != 8; ++i) 451 if (!isConstantOrUndef(N->getOperand(i), i*2+1) || 452 !isConstantOrUndef(N->getOperand(i+8), i*2+1)) 453 return false; 454 } 455 return true; 456} 457 458/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 459/// VPKUWUM instruction. 460bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { 461 if (!isUnary) { 462 for (unsigned i = 0; i != 16; i += 2) 463 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || 464 !isConstantOrUndef(N->getOperand(i+1), i*2+3)) 465 return false; 466 } else { 467 for (unsigned i = 0; i != 8; i += 2) 468 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || 469 !isConstantOrUndef(N->getOperand(i+1), i*2+3) || 470 !isConstantOrUndef(N->getOperand(i+8), i*2+2) || 471 !isConstantOrUndef(N->getOperand(i+9), i*2+3)) 472 return false; 473 } 474 return true; 475} 476 477/// isVMerge - Common function, used to match vmrg* shuffles. 478/// 479static bool isVMerge(SDNode *N, unsigned UnitSize, 480 unsigned LHSStart, unsigned RHSStart) { 481 assert(N->getOpcode() == ISD::BUILD_VECTOR && 482 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); 483 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 484 "Unsupported merge size!"); 485 486 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 487 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 488 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), 489 LHSStart+j+i*UnitSize) || 490 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), 491 RHSStart+j+i*UnitSize)) 492 return false; 493 } 494 return true; 495} 496 497/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 498/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 499bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { 500 if (!isUnary) 501 return isVMerge(N, UnitSize, 8, 24); 502 return isVMerge(N, UnitSize, 8, 8); 503} 504 505/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 506/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 507bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { 508 if (!isUnary) 509 return isVMerge(N, UnitSize, 0, 16); 510 return isVMerge(N, UnitSize, 0, 0); 511} 512 513 514/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 515/// amount, otherwise return -1. 516int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 517 assert(N->getOpcode() == ISD::BUILD_VECTOR && 518 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); 519 // Find the first non-undef value in the shuffle mask. 520 unsigned i; 521 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) 522 /*search*/; 523 524 if (i == 16) return -1; // all undef. 525 526 // Otherwise, check to see if the rest of the elements are consequtively 527 // numbered from this value. 528 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); 529 if (ShiftAmt < i) return -1; 530 ShiftAmt -= i; 531 532 if (!isUnary) { 533 // Check the rest of the elements to see if they are consequtive. 534 for (++i; i != 16; ++i) 535 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) 536 return -1; 537 } else { 538 // Check the rest of the elements to see if they are consequtive. 539 for (++i; i != 16; ++i) 540 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) 541 return -1; 542 } 543 544 return ShiftAmt; 545} 546 547/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 548/// specifies a splat of a single element that is suitable for input to 549/// VSPLTB/VSPLTH/VSPLTW. 550bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { 551 assert(N->getOpcode() == ISD::BUILD_VECTOR && 552 N->getNumOperands() == 16 && 553 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 554 555 // This is a splat operation if each element of the permute is the same, and 556 // if the value doesn't reference the second vector. 557 unsigned ElementBase = 0; 558 SDValue Elt = N->getOperand(0); 559 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) 560 ElementBase = EltV->getValue(); 561 else 562 return false; // FIXME: Handle UNDEF elements too! 563 564 if (cast<ConstantSDNode>(Elt)->getValue() >= 16) 565 return false; 566 567 // Check that they are consequtive. 568 for (unsigned i = 1; i != EltSize; ++i) { 569 if (!isa<ConstantSDNode>(N->getOperand(i)) || 570 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) 571 return false; 572 } 573 574 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); 575 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 576 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 577 assert(isa<ConstantSDNode>(N->getOperand(i)) && 578 "Invalid VECTOR_SHUFFLE mask!"); 579 for (unsigned j = 0; j != EltSize; ++j) 580 if (N->getOperand(i+j) != N->getOperand(j)) 581 return false; 582 } 583 584 return true; 585} 586 587/// isAllNegativeZeroVector - Returns true if all elements of build_vector 588/// are -0.0. 589bool PPC::isAllNegativeZeroVector(SDNode *N) { 590 assert(N->getOpcode() == ISD::BUILD_VECTOR); 591 if (PPC::isSplatShuffleMask(N, N->getNumOperands())) 592 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N)) 593 return CFP->getValueAPF().isNegZero(); 594 return false; 595} 596 597/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 598/// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 599unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 600 assert(isSplatShuffleMask(N, EltSize)); 601 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; 602} 603 604/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 605/// by using a vspltis[bhw] instruction of the specified element size, return 606/// the constant being splatted. The ByteSize field indicates the number of 607/// bytes of each element [124] -> [bhw]. 608SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 609 SDValue OpVal(0, 0); 610 611 // If ByteSize of the splat is bigger than the element size of the 612 // build_vector, then we have a case where we are checking for a splat where 613 // multiple elements of the buildvector are folded together into a single 614 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 615 unsigned EltSize = 16/N->getNumOperands(); 616 if (EltSize < ByteSize) { 617 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 618 SDValue UniquedVals[4]; 619 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 620 621 // See if all of the elements in the buildvector agree across. 622 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 623 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 624 // If the element isn't a constant, bail fully out. 625 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 626 627 628 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 629 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 630 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 631 return SDValue(); // no match. 632 } 633 634 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 635 // either constant or undef values that are identical for each chunk. See 636 // if these chunks can form into a larger vspltis*. 637 638 // Check to see if all of the leading entries are either 0 or -1. If 639 // neither, then this won't fit into the immediate field. 640 bool LeadingZero = true; 641 bool LeadingOnes = true; 642 for (unsigned i = 0; i != Multiple-1; ++i) { 643 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 644 645 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 646 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 647 } 648 // Finally, check the least significant entry. 649 if (LeadingZero) { 650 if (UniquedVals[Multiple-1].getNode() == 0) 651 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 652 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue(); 653 if (Val < 16) 654 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 655 } 656 if (LeadingOnes) { 657 if (UniquedVals[Multiple-1].getNode() == 0) 658 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 659 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended(); 660 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 661 return DAG.getTargetConstant(Val, MVT::i32); 662 } 663 664 return SDValue(); 665 } 666 667 // Check to see if this buildvec has a single non-undef value in its elements. 668 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 669 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 670 if (OpVal.getNode() == 0) 671 OpVal = N->getOperand(i); 672 else if (OpVal != N->getOperand(i)) 673 return SDValue(); 674 } 675 676 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 677 678 unsigned ValSizeInBytes = 0; 679 uint64_t Value = 0; 680 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 681 Value = CN->getValue(); 682 ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8; 683 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 684 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 685 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 686 ValSizeInBytes = 4; 687 } 688 689 // If the splat value is larger than the element value, then we can never do 690 // this splat. The only case that we could fit the replicated bits into our 691 // immediate field for would be zero, and we prefer to use vxor for it. 692 if (ValSizeInBytes < ByteSize) return SDValue(); 693 694 // If the element value is larger than the splat value, cut it in half and 695 // check to see if the two halves are equal. Continue doing this until we 696 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 697 while (ValSizeInBytes > ByteSize) { 698 ValSizeInBytes >>= 1; 699 700 // If the top half equals the bottom half, we're still ok. 701 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 702 (Value & ((1 << (8*ValSizeInBytes))-1))) 703 return SDValue(); 704 } 705 706 // Properly sign extend the value. 707 int ShAmt = (4-ByteSize)*8; 708 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 709 710 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 711 if (MaskVal == 0) return SDValue(); 712 713 // Finally, if this value fits in a 5 bit sext field, return it 714 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 715 return DAG.getTargetConstant(MaskVal, MVT::i32); 716 return SDValue(); 717} 718 719//===----------------------------------------------------------------------===// 720// Addressing Mode Selection 721//===----------------------------------------------------------------------===// 722 723/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 724/// or 64-bit immediate, and if the value can be accurately represented as a 725/// sign extension from a 16-bit value. If so, this returns true and the 726/// immediate. 727static bool isIntS16Immediate(SDNode *N, short &Imm) { 728 if (N->getOpcode() != ISD::Constant) 729 return false; 730 731 Imm = (short)cast<ConstantSDNode>(N)->getValue(); 732 if (N->getValueType(0) == MVT::i32) 733 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue(); 734 else 735 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue(); 736} 737static bool isIntS16Immediate(SDValue Op, short &Imm) { 738 return isIntS16Immediate(Op.getNode(), Imm); 739} 740 741 742/// SelectAddressRegReg - Given the specified addressed, check to see if it 743/// can be represented as an indexed [r+r] operation. Returns false if it 744/// can be more efficiently represented with [r+imm]. 745bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 746 SDValue &Index, 747 SelectionDAG &DAG) { 748 short imm = 0; 749 if (N.getOpcode() == ISD::ADD) { 750 if (isIntS16Immediate(N.getOperand(1), imm)) 751 return false; // r+i 752 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 753 return false; // r+i 754 755 Base = N.getOperand(0); 756 Index = N.getOperand(1); 757 return true; 758 } else if (N.getOpcode() == ISD::OR) { 759 if (isIntS16Immediate(N.getOperand(1), imm)) 760 return false; // r+i can fold it if we can. 761 762 // If this is an or of disjoint bitfields, we can codegen this as an add 763 // (for better address arithmetic) if the LHS and RHS of the OR are provably 764 // disjoint. 765 APInt LHSKnownZero, LHSKnownOne; 766 APInt RHSKnownZero, RHSKnownOne; 767 DAG.ComputeMaskedBits(N.getOperand(0), 768 APInt::getAllOnesValue(N.getOperand(0) 769 .getValueSizeInBits()), 770 LHSKnownZero, LHSKnownOne); 771 772 if (LHSKnownZero.getBoolValue()) { 773 DAG.ComputeMaskedBits(N.getOperand(1), 774 APInt::getAllOnesValue(N.getOperand(1) 775 .getValueSizeInBits()), 776 RHSKnownZero, RHSKnownOne); 777 // If all of the bits are known zero on the LHS or RHS, the add won't 778 // carry. 779 if (~(LHSKnownZero | RHSKnownZero) == 0) { 780 Base = N.getOperand(0); 781 Index = N.getOperand(1); 782 return true; 783 } 784 } 785 } 786 787 return false; 788} 789 790/// Returns true if the address N can be represented by a base register plus 791/// a signed 16-bit displacement [r+imm], and if it is not better 792/// represented as reg+reg. 793bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 794 SDValue &Base, SelectionDAG &DAG){ 795 // If this can be more profitably realized as r+r, fail. 796 if (SelectAddressRegReg(N, Disp, Base, DAG)) 797 return false; 798 799 if (N.getOpcode() == ISD::ADD) { 800 short imm = 0; 801 if (isIntS16Immediate(N.getOperand(1), imm)) { 802 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 803 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 804 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 805 } else { 806 Base = N.getOperand(0); 807 } 808 return true; // [r+i] 809 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 810 // Match LOAD (ADD (X, Lo(G))). 811 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() 812 && "Cannot handle constant offsets yet!"); 813 Disp = N.getOperand(1).getOperand(0); // The global address. 814 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 815 Disp.getOpcode() == ISD::TargetConstantPool || 816 Disp.getOpcode() == ISD::TargetJumpTable); 817 Base = N.getOperand(0); 818 return true; // [&g+r] 819 } 820 } else if (N.getOpcode() == ISD::OR) { 821 short imm = 0; 822 if (isIntS16Immediate(N.getOperand(1), imm)) { 823 // If this is an or of disjoint bitfields, we can codegen this as an add 824 // (for better address arithmetic) if the LHS and RHS of the OR are 825 // provably disjoint. 826 APInt LHSKnownZero, LHSKnownOne; 827 DAG.ComputeMaskedBits(N.getOperand(0), 828 APInt::getAllOnesValue(N.getOperand(0) 829 .getValueSizeInBits()), 830 LHSKnownZero, LHSKnownOne); 831 832 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 833 // If all of the bits are known zero on the LHS or RHS, the add won't 834 // carry. 835 Base = N.getOperand(0); 836 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 837 return true; 838 } 839 } 840 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 841 // Loading from a constant address. 842 843 // If this address fits entirely in a 16-bit sext immediate field, codegen 844 // this as "d, 0" 845 short Imm; 846 if (isIntS16Immediate(CN, Imm)) { 847 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 848 Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); 849 return true; 850 } 851 852 // Handle 32-bit sext immediates with LIS + addr mode. 853 if (CN->getValueType(0) == MVT::i32 || 854 (int64_t)CN->getValue() == (int)CN->getValue()) { 855 int Addr = (int)CN->getValue(); 856 857 // Otherwise, break this down into an LIS + disp. 858 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 859 860 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 861 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 862 Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); 863 return true; 864 } 865 } 866 867 Disp = DAG.getTargetConstant(0, getPointerTy()); 868 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 869 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 870 else 871 Base = N; 872 return true; // [r+0] 873} 874 875/// SelectAddressRegRegOnly - Given the specified addressed, force it to be 876/// represented as an indexed [r+r] operation. 877bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 878 SDValue &Index, 879 SelectionDAG &DAG) { 880 // Check to see if we can easily represent this as an [r+r] address. This 881 // will fail if it thinks that the address is more profitably represented as 882 // reg+imm, e.g. where imm = 0. 883 if (SelectAddressRegReg(N, Base, Index, DAG)) 884 return true; 885 886 // If the operand is an addition, always emit this as [r+r], since this is 887 // better (for code size, and execution, as the memop does the add for free) 888 // than emitting an explicit add. 889 if (N.getOpcode() == ISD::ADD) { 890 Base = N.getOperand(0); 891 Index = N.getOperand(1); 892 return true; 893 } 894 895 // Otherwise, do it the hard way, using R0 as the base register. 896 Base = DAG.getRegister(PPC::R0, N.getValueType()); 897 Index = N; 898 return true; 899} 900 901/// SelectAddressRegImmShift - Returns true if the address N can be 902/// represented by a base register plus a signed 14-bit displacement 903/// [r+imm*4]. Suitable for use by STD and friends. 904bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 905 SDValue &Base, 906 SelectionDAG &DAG) { 907 // If this can be more profitably realized as r+r, fail. 908 if (SelectAddressRegReg(N, Disp, Base, DAG)) 909 return false; 910 911 if (N.getOpcode() == ISD::ADD) { 912 short imm = 0; 913 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 914 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 915 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 916 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 917 } else { 918 Base = N.getOperand(0); 919 } 920 return true; // [r+i] 921 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 922 // Match LOAD (ADD (X, Lo(G))). 923 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() 924 && "Cannot handle constant offsets yet!"); 925 Disp = N.getOperand(1).getOperand(0); // The global address. 926 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 927 Disp.getOpcode() == ISD::TargetConstantPool || 928 Disp.getOpcode() == ISD::TargetJumpTable); 929 Base = N.getOperand(0); 930 return true; // [&g+r] 931 } 932 } else if (N.getOpcode() == ISD::OR) { 933 short imm = 0; 934 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 935 // If this is an or of disjoint bitfields, we can codegen this as an add 936 // (for better address arithmetic) if the LHS and RHS of the OR are 937 // provably disjoint. 938 APInt LHSKnownZero, LHSKnownOne; 939 DAG.ComputeMaskedBits(N.getOperand(0), 940 APInt::getAllOnesValue(N.getOperand(0) 941 .getValueSizeInBits()), 942 LHSKnownZero, LHSKnownOne); 943 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 944 // If all of the bits are known zero on the LHS or RHS, the add won't 945 // carry. 946 Base = N.getOperand(0); 947 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 948 return true; 949 } 950 } 951 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 952 // Loading from a constant address. Verify low two bits are clear. 953 if ((CN->getValue() & 3) == 0) { 954 // If this address fits entirely in a 14-bit sext immediate field, codegen 955 // this as "d, 0" 956 short Imm; 957 if (isIntS16Immediate(CN, Imm)) { 958 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 959 Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); 960 return true; 961 } 962 963 // Fold the low-part of 32-bit absolute addresses into addr mode. 964 if (CN->getValueType(0) == MVT::i32 || 965 (int64_t)CN->getValue() == (int)CN->getValue()) { 966 int Addr = (int)CN->getValue(); 967 968 // Otherwise, break this down into an LIS + disp. 969 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 970 971 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 972 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 973 Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); 974 return true; 975 } 976 } 977 } 978 979 Disp = DAG.getTargetConstant(0, getPointerTy()); 980 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 981 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 982 else 983 Base = N; 984 return true; // [r+0] 985} 986 987 988/// getPreIndexedAddressParts - returns true by value, base pointer and 989/// offset pointer and addressing mode by reference if the node's address 990/// can be legally represented as pre-indexed load / store address. 991bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 992 SDValue &Offset, 993 ISD::MemIndexedMode &AM, 994 SelectionDAG &DAG) { 995 // Disabled by default for now. 996 if (!EnablePPCPreinc) return false; 997 998 SDValue Ptr; 999 MVT VT; 1000 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1001 Ptr = LD->getBasePtr(); 1002 VT = LD->getMemoryVT(); 1003 1004 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1005 ST = ST; 1006 Ptr = ST->getBasePtr(); 1007 VT = ST->getMemoryVT(); 1008 } else 1009 return false; 1010 1011 // PowerPC doesn't have preinc load/store instructions for vectors. 1012 if (VT.isVector()) 1013 return false; 1014 1015 // TODO: Check reg+reg first. 1016 1017 // LDU/STU use reg+imm*4, others use reg+imm. 1018 if (VT != MVT::i64) { 1019 // reg + imm 1020 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1021 return false; 1022 } else { 1023 // reg + imm * 4. 1024 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1025 return false; 1026 } 1027 1028 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1029 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1030 // sext i32 to i64 when addr mode is r+i. 1031 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1032 LD->getExtensionType() == ISD::SEXTLOAD && 1033 isa<ConstantSDNode>(Offset)) 1034 return false; 1035 } 1036 1037 AM = ISD::PRE_INC; 1038 return true; 1039} 1040 1041//===----------------------------------------------------------------------===// 1042// LowerOperation implementation 1043//===----------------------------------------------------------------------===// 1044 1045SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1046 SelectionDAG &DAG) { 1047 MVT PtrVT = Op.getValueType(); 1048 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1049 Constant *C = CP->getConstVal(); 1050 SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); 1051 SDValue Zero = DAG.getConstant(0, PtrVT); 1052 1053 const TargetMachine &TM = DAG.getTarget(); 1054 1055 SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); 1056 SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); 1057 1058 // If this is a non-darwin platform, we don't support non-static relo models 1059 // yet. 1060 if (TM.getRelocationModel() == Reloc::Static || 1061 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 1062 // Generate non-pic code that has direct accesses to the constant pool. 1063 // The address of the global is just (hi(&g)+lo(&g)). 1064 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1065 } 1066 1067 if (TM.getRelocationModel() == Reloc::PIC_) { 1068 // With PIC, the first instruction is actually "GR+hi(&G)". 1069 Hi = DAG.getNode(ISD::ADD, PtrVT, 1070 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); 1071 } 1072 1073 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1074 return Lo; 1075} 1076 1077SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { 1078 MVT PtrVT = Op.getValueType(); 1079 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1080 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1081 SDValue Zero = DAG.getConstant(0, PtrVT); 1082 1083 const TargetMachine &TM = DAG.getTarget(); 1084 1085 SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); 1086 SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); 1087 1088 // If this is a non-darwin platform, we don't support non-static relo models 1089 // yet. 1090 if (TM.getRelocationModel() == Reloc::Static || 1091 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 1092 // Generate non-pic code that has direct accesses to the constant pool. 1093 // The address of the global is just (hi(&g)+lo(&g)). 1094 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1095 } 1096 1097 if (TM.getRelocationModel() == Reloc::PIC_) { 1098 // With PIC, the first instruction is actually "GR+hi(&G)". 1099 Hi = DAG.getNode(ISD::ADD, PtrVT, 1100 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); 1101 } 1102 1103 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1104 return Lo; 1105} 1106 1107SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1108 SelectionDAG &DAG) { 1109 assert(0 && "TLS not implemented for PPC."); 1110 return SDValue(); // Not reached 1111} 1112 1113SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1114 SelectionDAG &DAG) { 1115 MVT PtrVT = Op.getValueType(); 1116 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1117 GlobalValue *GV = GSDN->getGlobal(); 1118 SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); 1119 // If it's a debug information descriptor, don't mess with it. 1120 if (DAG.isVerifiedDebugInfoDesc(Op)) 1121 return GA; 1122 SDValue Zero = DAG.getConstant(0, PtrVT); 1123 1124 const TargetMachine &TM = DAG.getTarget(); 1125 1126 SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); 1127 SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); 1128 1129 // If this is a non-darwin platform, we don't support non-static relo models 1130 // yet. 1131 if (TM.getRelocationModel() == Reloc::Static || 1132 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 1133 // Generate non-pic code that has direct accesses to globals. 1134 // The address of the global is just (hi(&g)+lo(&g)). 1135 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1136 } 1137 1138 if (TM.getRelocationModel() == Reloc::PIC_) { 1139 // With PIC, the first instruction is actually "GR+hi(&G)". 1140 Hi = DAG.getNode(ISD::ADD, PtrVT, 1141 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); 1142 } 1143 1144 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 1145 1146 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV)) 1147 return Lo; 1148 1149 // If the global is weak or external, we have to go through the lazy 1150 // resolution stub. 1151 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0); 1152} 1153 1154SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { 1155 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1156 1157 // If we're comparing for equality to zero, expose the fact that this is 1158 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1159 // fold the new nodes. 1160 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1161 if (C->isNullValue() && CC == ISD::SETEQ) { 1162 MVT VT = Op.getOperand(0).getValueType(); 1163 SDValue Zext = Op.getOperand(0); 1164 if (VT.bitsLT(MVT::i32)) { 1165 VT = MVT::i32; 1166 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); 1167 } 1168 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1169 SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext); 1170 SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz, 1171 DAG.getConstant(Log2b, MVT::i32)); 1172 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); 1173 } 1174 // Leave comparisons against 0 and -1 alone for now, since they're usually 1175 // optimized. FIXME: revisit this when we can custom lower all setcc 1176 // optimizations. 1177 if (C->isAllOnesValue() || C->isNullValue()) 1178 return SDValue(); 1179 } 1180 1181 // If we have an integer seteq/setne, turn it into a compare against zero 1182 // by xor'ing the rhs with the lhs, which is faster than setting a 1183 // condition register, reading it back out, and masking the correct bit. The 1184 // normal approach here uses sub to do this instead of xor. Using xor exposes 1185 // the result to other bit-twiddling opportunities. 1186 MVT LHSVT = Op.getOperand(0).getValueType(); 1187 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1188 MVT VT = Op.getValueType(); 1189 SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), 1190 Op.getOperand(1)); 1191 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); 1192 } 1193 return SDValue(); 1194} 1195 1196SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1197 int VarArgsFrameIndex, 1198 int VarArgsStackOffset, 1199 unsigned VarArgsNumGPR, 1200 unsigned VarArgsNumFPR, 1201 const PPCSubtarget &Subtarget) { 1202 1203 assert(0 && "VAARG in ELF32 ABI not implemented yet!"); 1204 return SDValue(); // Not reached 1205} 1206 1207SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1208 int VarArgsFrameIndex, 1209 int VarArgsStackOffset, 1210 unsigned VarArgsNumGPR, 1211 unsigned VarArgsNumFPR, 1212 const PPCSubtarget &Subtarget) { 1213 1214 if (Subtarget.isMachoABI()) { 1215 // vastart just stores the address of the VarArgsFrameIndex slot into the 1216 // memory location argument. 1217 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1218 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); 1219 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1220 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0); 1221 } 1222 1223 // For ELF 32 ABI we follow the layout of the va_list struct. 1224 // We suppose the given va_list is already allocated. 1225 // 1226 // typedef struct { 1227 // char gpr; /* index into the array of 8 GPRs 1228 // * stored in the register save area 1229 // * gpr=0 corresponds to r3, 1230 // * gpr=1 to r4, etc. 1231 // */ 1232 // char fpr; /* index into the array of 8 FPRs 1233 // * stored in the register save area 1234 // * fpr=0 corresponds to f1, 1235 // * fpr=1 to f2, etc. 1236 // */ 1237 // char *overflow_arg_area; 1238 // /* location on stack that holds 1239 // * the next overflow argument 1240 // */ 1241 // char *reg_save_area; 1242 // /* where r3:r10 and f1:f8 (if saved) 1243 // * are stored 1244 // */ 1245 // } va_list[1]; 1246 1247 1248 SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8); 1249 SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8); 1250 1251 1252 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1253 1254 SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT); 1255 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); 1256 1257 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1258 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1259 1260 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1261 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1262 1263 uint64_t FPROffset = 1; 1264 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1265 1266 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1267 1268 // Store first byte : number of int regs 1269 SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR, 1270 Op.getOperand(1), SV, 0); 1271 uint64_t nextOffset = FPROffset; 1272 SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1), 1273 ConstFPROffset); 1274 1275 // Store second byte : number of float regs 1276 SDValue secondStore = 1277 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset); 1278 nextOffset += StackOffset; 1279 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset); 1280 1281 // Store second word : arguments given on stack 1282 SDValue thirdStore = 1283 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset); 1284 nextOffset += FrameOffset; 1285 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset); 1286 1287 // Store third word : arguments given in registers 1288 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset); 1289 1290} 1291 1292#include "PPCGenCallingConv.inc" 1293 1294/// GetFPR - Get the set of FP registers that should be allocated for arguments, 1295/// depending on which subtarget is selected. 1296static const unsigned *GetFPR(const PPCSubtarget &Subtarget) { 1297 if (Subtarget.isMachoABI()) { 1298 static const unsigned FPR[] = { 1299 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1300 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1301 }; 1302 return FPR; 1303 } 1304 1305 1306 static const unsigned FPR[] = { 1307 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1308 PPC::F8 1309 }; 1310 return FPR; 1311} 1312 1313/// CalculateStackSlotSize - Calculates the size reserved for this argument on 1314/// the stack. 1315static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag, 1316 bool isVarArg, unsigned PtrByteSize) { 1317 MVT ArgVT = Arg.getValueType(); 1318 ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags(); 1319 unsigned ArgSize =ArgVT.getSizeInBits()/8; 1320 if (Flags.isByVal()) 1321 ArgSize = Flags.getByValSize(); 1322 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1323 1324 return ArgSize; 1325} 1326 1327SDValue 1328PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, 1329 SelectionDAG &DAG, 1330 int &VarArgsFrameIndex, 1331 int &VarArgsStackOffset, 1332 unsigned &VarArgsNumGPR, 1333 unsigned &VarArgsNumFPR, 1334 const PPCSubtarget &Subtarget) { 1335 // TODO: add description of PPC stack frame format, or at least some docs. 1336 // 1337 MachineFunction &MF = DAG.getMachineFunction(); 1338 MachineFrameInfo *MFI = MF.getFrameInfo(); 1339 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1340 SmallVector<SDValue, 8> ArgValues; 1341 SDValue Root = Op.getOperand(0); 1342 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1343 1344 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1345 bool isPPC64 = PtrVT == MVT::i64; 1346 bool isMachoABI = Subtarget.isMachoABI(); 1347 bool isELF32_ABI = Subtarget.isELF32_ABI(); 1348 // Potential tail calls could cause overwriting of argument stack slots. 1349 unsigned CC = MF.getFunction()->getCallingConv(); 1350 bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast)); 1351 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1352 1353 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); 1354 // Area that is at least reserved in caller of this function. 1355 unsigned MinReservedArea = ArgOffset; 1356 1357 static const unsigned GPR_32[] = { // 32-bit registers. 1358 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1359 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1360 }; 1361 static const unsigned GPR_64[] = { // 64-bit registers. 1362 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1363 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1364 }; 1365 1366 static const unsigned *FPR = GetFPR(Subtarget); 1367 1368 static const unsigned VR[] = { 1369 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1370 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1371 }; 1372 1373 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1374 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8; 1375 const unsigned Num_VR_Regs = array_lengthof( VR); 1376 1377 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1378 1379 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1380 1381 // In 32-bit non-varargs functions, the stack space for vectors is after the 1382 // stack space for non-vectors. We do not use this space unless we have 1383 // too many vectors to fit in registers, something that only occurs in 1384 // constructed examples:), but we have to walk the arglist to figure 1385 // that out...for the pathological case, compute VecArgOffset as the 1386 // start of the vector parameter area. Computing VecArgOffset is the 1387 // entire point of the following loop. 1388 // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying 1389 // to handle Elf here. 1390 unsigned VecArgOffset = ArgOffset; 1391 if (!isVarArg && !isPPC64) { 1392 for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e; 1393 ++ArgNo) { 1394 MVT ObjectVT = Op.getValue(ArgNo).getValueType(); 1395 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1396 ISD::ArgFlagsTy Flags = 1397 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags(); 1398 1399 if (Flags.isByVal()) { 1400 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1401 ObjSize = Flags.getByValSize(); 1402 unsigned ArgSize = 1403 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1404 VecArgOffset += ArgSize; 1405 continue; 1406 } 1407 1408 switch(ObjectVT.getSimpleVT()) { 1409 default: assert(0 && "Unhandled argument type!"); 1410 case MVT::i32: 1411 case MVT::f32: 1412 VecArgOffset += isPPC64 ? 8 : 4; 1413 break; 1414 case MVT::i64: // PPC64 1415 case MVT::f64: 1416 VecArgOffset += 8; 1417 break; 1418 case MVT::v4f32: 1419 case MVT::v4i32: 1420 case MVT::v8i16: 1421 case MVT::v16i8: 1422 // Nothing to do, we're only looking at Nonvector args here. 1423 break; 1424 } 1425 } 1426 } 1427 // We've found where the vector parameter area in memory is. Skip the 1428 // first 12 parameters; these don't use that memory. 1429 VecArgOffset = ((VecArgOffset+15)/16)*16; 1430 VecArgOffset += 12*16; 1431 1432 // Add DAG nodes to load the arguments or copy them out of registers. On 1433 // entry to a function on PPC, the arguments start after the linkage area, 1434 // although the first ones are often in registers. 1435 // 1436 // In the ELF 32 ABI, GPRs and stack are double word align: an argument 1437 // represented with two words (long long or double) must be copied to an 1438 // even GPR_idx value or to an even ArgOffset value. 1439 1440 SmallVector<SDValue, 8> MemOps; 1441 unsigned nAltivecParamsAtEnd = 0; 1442 for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e; ++ArgNo) { 1443 SDValue ArgVal; 1444 bool needsLoad = false; 1445 MVT ObjectVT = Op.getValue(ArgNo).getValueType(); 1446 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1447 unsigned ArgSize = ObjSize; 1448 ISD::ArgFlagsTy Flags = 1449 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags(); 1450 // See if next argument requires stack alignment in ELF 1451 bool Align = Flags.isSplit(); 1452 1453 unsigned CurArgOffset = ArgOffset; 1454 1455 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1456 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1457 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1458 if (isVarArg || isPPC64) { 1459 MinReservedArea = ((MinReservedArea+15)/16)*16; 1460 MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo), 1461 Op.getOperand(ArgNo+3), 1462 isVarArg, 1463 PtrByteSize); 1464 } else nAltivecParamsAtEnd++; 1465 } else 1466 // Calculate min reserved area. 1467 MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo), 1468 Op.getOperand(ArgNo+3), 1469 isVarArg, 1470 PtrByteSize); 1471 1472 // FIXME alignment for ELF may not be right 1473 // FIXME the codegen can be much improved in some cases. 1474 // We do not have to keep everything in memory. 1475 if (Flags.isByVal()) { 1476 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1477 ObjSize = Flags.getByValSize(); 1478 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1479 // Double word align in ELF 1480 if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2); 1481 // Objects of size 1 and 2 are right justified, everything else is 1482 // left justified. This means the memory address is adjusted forwards. 1483 if (ObjSize==1 || ObjSize==2) { 1484 CurArgOffset = CurArgOffset + (4 - ObjSize); 1485 } 1486 // The value of the object is its address. 1487 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset); 1488 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1489 ArgValues.push_back(FIN); 1490 if (ObjSize==1 || ObjSize==2) { 1491 if (GPR_idx != Num_GPR_Regs) { 1492 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 1493 RegInfo.addLiveIn(GPR[GPR_idx], VReg); 1494 SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT); 1495 SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN, 1496 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 ); 1497 MemOps.push_back(Store); 1498 ++GPR_idx; 1499 if (isMachoABI) ArgOffset += PtrByteSize; 1500 } else { 1501 ArgOffset += PtrByteSize; 1502 } 1503 continue; 1504 } 1505 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 1506 // Store whatever pieces of the object are in registers 1507 // to memory. ArgVal will be address of the beginning of 1508 // the object. 1509 if (GPR_idx != Num_GPR_Regs) { 1510 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 1511 RegInfo.addLiveIn(GPR[GPR_idx], VReg); 1512 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset); 1513 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1514 SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT); 1515 SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); 1516 MemOps.push_back(Store); 1517 ++GPR_idx; 1518 if (isMachoABI) ArgOffset += PtrByteSize; 1519 } else { 1520 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 1521 break; 1522 } 1523 } 1524 continue; 1525 } 1526 1527 switch (ObjectVT.getSimpleVT()) { 1528 default: assert(0 && "Unhandled argument type!"); 1529 case MVT::i32: 1530 if (!isPPC64) { 1531 // Double word align in ELF 1532 if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2); 1533 1534 if (GPR_idx != Num_GPR_Regs) { 1535 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 1536 RegInfo.addLiveIn(GPR[GPR_idx], VReg); 1537 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); 1538 ++GPR_idx; 1539 } else { 1540 needsLoad = true; 1541 ArgSize = PtrByteSize; 1542 } 1543 // Stack align in ELF 1544 if (needsLoad && Align && isELF32_ABI) 1545 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; 1546 // All int arguments reserve stack space in Macho ABI. 1547 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize; 1548 break; 1549 } 1550 // FALLTHROUGH 1551 case MVT::i64: // PPC64 1552 if (GPR_idx != Num_GPR_Regs) { 1553 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 1554 RegInfo.addLiveIn(GPR[GPR_idx], VReg); 1555 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); 1556 1557 if (ObjectVT == MVT::i32) { 1558 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 1559 // value to MVT::i64 and then truncate to the correct register size. 1560 if (Flags.isSExt()) 1561 ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal, 1562 DAG.getValueType(ObjectVT)); 1563 else if (Flags.isZExt()) 1564 ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal, 1565 DAG.getValueType(ObjectVT)); 1566 1567 ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal); 1568 } 1569 1570 ++GPR_idx; 1571 } else { 1572 needsLoad = true; 1573 ArgSize = PtrByteSize; 1574 } 1575 // All int arguments reserve stack space in Macho ABI. 1576 if (isMachoABI || needsLoad) ArgOffset += 8; 1577 break; 1578 1579 case MVT::f32: 1580 case MVT::f64: 1581 // Every 4 bytes of argument space consumes one of the GPRs available for 1582 // argument passing. 1583 if (GPR_idx != Num_GPR_Regs && isMachoABI) { 1584 ++GPR_idx; 1585 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 1586 ++GPR_idx; 1587 } 1588 if (FPR_idx != Num_FPR_Regs) { 1589 unsigned VReg; 1590 if (ObjectVT == MVT::f32) 1591 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass); 1592 else 1593 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 1594 RegInfo.addLiveIn(FPR[FPR_idx], VReg); 1595 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); 1596 ++FPR_idx; 1597 } else { 1598 needsLoad = true; 1599 } 1600 1601 // Stack align in ELF 1602 if (needsLoad && Align && isELF32_ABI) 1603 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; 1604 // All FP arguments reserve stack space in Macho ABI. 1605 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize; 1606 break; 1607 case MVT::v4f32: 1608 case MVT::v4i32: 1609 case MVT::v8i16: 1610 case MVT::v16i8: 1611 // Note that vector arguments in registers don't reserve stack space, 1612 // except in varargs functions. 1613 if (VR_idx != Num_VR_Regs) { 1614 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass); 1615 RegInfo.addLiveIn(VR[VR_idx], VReg); 1616 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); 1617 if (isVarArg) { 1618 while ((ArgOffset % 16) != 0) { 1619 ArgOffset += PtrByteSize; 1620 if (GPR_idx != Num_GPR_Regs) 1621 GPR_idx++; 1622 } 1623 ArgOffset += 16; 1624 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); 1625 } 1626 ++VR_idx; 1627 } else { 1628 if (!isVarArg && !isPPC64) { 1629 // Vectors go after all the nonvectors. 1630 CurArgOffset = VecArgOffset; 1631 VecArgOffset += 16; 1632 } else { 1633 // Vectors are aligned. 1634 ArgOffset = ((ArgOffset+15)/16)*16; 1635 CurArgOffset = ArgOffset; 1636 ArgOffset += 16; 1637 } 1638 needsLoad = true; 1639 } 1640 break; 1641 } 1642 1643 // We need to load the argument to a virtual register if we determined above 1644 // that we ran out of physical registers of the appropriate type. 1645 if (needsLoad) { 1646 int FI = MFI->CreateFixedObject(ObjSize, 1647 CurArgOffset + (ArgSize - ObjSize), 1648 isImmutable); 1649 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1650 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); 1651 } 1652 1653 ArgValues.push_back(ArgVal); 1654 } 1655 1656 // Set the size that is at least reserved in caller of this function. Tail 1657 // call optimized function's reserved stack space needs to be aligned so that 1658 // taking the difference between two stack areas will result in an aligned 1659 // stack. 1660 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1661 // Add the Altivec parameters at the end, if needed. 1662 if (nAltivecParamsAtEnd) { 1663 MinReservedArea = ((MinReservedArea+15)/16)*16; 1664 MinReservedArea += 16*nAltivecParamsAtEnd; 1665 } 1666 MinReservedArea = 1667 std::max(MinReservedArea, 1668 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI)); 1669 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> 1670 getStackAlignment(); 1671 unsigned AlignMask = TargetAlign-1; 1672 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1673 FI->setMinReservedArea(MinReservedArea); 1674 1675 // If the function takes variable number of arguments, make a frame index for 1676 // the start of the first vararg value... for expansion of llvm.va_start. 1677 if (isVarArg) { 1678 1679 int depth; 1680 if (isELF32_ABI) { 1681 VarArgsNumGPR = GPR_idx; 1682 VarArgsNumFPR = FPR_idx; 1683 1684 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame 1685 // pointer. 1686 depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 + 1687 Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 + 1688 PtrVT.getSizeInBits()/8); 1689 1690 VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1691 ArgOffset); 1692 1693 } 1694 else 1695 depth = ArgOffset; 1696 1697 VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1698 depth); 1699 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); 1700 1701 // In ELF 32 ABI, the fixed integer arguments of a variadic function are 1702 // stored to the VarArgsFrameIndex on the stack. 1703 if (isELF32_ABI) { 1704 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) { 1705 SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT); 1706 SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0); 1707 MemOps.push_back(Store); 1708 // Increment the address by four for the next argument to store 1709 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1710 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); 1711 } 1712 } 1713 1714 // If this function is vararg, store any remaining integer argument regs 1715 // to their spots on the stack so that they may be loaded by deferencing the 1716 // result of va_next. 1717 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 1718 unsigned VReg; 1719 if (isPPC64) 1720 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 1721 else 1722 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 1723 1724 RegInfo.addLiveIn(GPR[GPR_idx], VReg); 1725 SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT); 1726 SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); 1727 MemOps.push_back(Store); 1728 // Increment the address by four for the next argument to store 1729 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1730 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); 1731 } 1732 1733 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex 1734 // on the stack. 1735 if (isELF32_ABI) { 1736 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) { 1737 SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64); 1738 SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0); 1739 MemOps.push_back(Store); 1740 // Increment the address by eight for the next argument to store 1741 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, 1742 PtrVT); 1743 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); 1744 } 1745 1746 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) { 1747 unsigned VReg; 1748 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 1749 1750 RegInfo.addLiveIn(FPR[FPR_idx], VReg); 1751 SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64); 1752 SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); 1753 MemOps.push_back(Store); 1754 // Increment the address by eight for the next argument to store 1755 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, 1756 PtrVT); 1757 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); 1758 } 1759 } 1760 } 1761 1762 if (!MemOps.empty()) 1763 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); 1764 1765 ArgValues.push_back(Root); 1766 1767 // Return the new list of results. 1768 return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0], 1769 ArgValues.size()); 1770} 1771 1772/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 1773/// linkage area. 1774static unsigned 1775CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 1776 bool isPPC64, 1777 bool isMachoABI, 1778 bool isVarArg, 1779 unsigned CC, 1780 SDValue Call, 1781 unsigned &nAltivecParamsAtEnd) { 1782 // Count how many bytes are to be pushed on the stack, including the linkage 1783 // area, and parameter passing area. We start with 24/48 bytes, which is 1784 // prereserved space for [SP][CR][LR][3 x unused]. 1785 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); 1786 unsigned NumOps = (Call.getNumOperands() - 5) / 2; 1787 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1788 1789 // Add up all the space actually used. 1790 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 1791 // they all go in registers, but we must reserve stack space for them for 1792 // possible use by the caller. In varargs or 64-bit calls, parameters are 1793 // assigned stack space in order, with padding so Altivec parameters are 1794 // 16-byte aligned. 1795 nAltivecParamsAtEnd = 0; 1796 for (unsigned i = 0; i != NumOps; ++i) { 1797 SDValue Arg = Call.getOperand(5+2*i); 1798 SDValue Flag = Call.getOperand(5+2*i+1); 1799 MVT ArgVT = Arg.getValueType(); 1800 // Varargs Altivec parameters are padded to a 16 byte boundary. 1801 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 1802 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 1803 if (!isVarArg && !isPPC64) { 1804 // Non-varargs Altivec parameters go after all the non-Altivec 1805 // parameters; handle those later so we know how much padding we need. 1806 nAltivecParamsAtEnd++; 1807 continue; 1808 } 1809 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 1810 NumBytes = ((NumBytes+15)/16)*16; 1811 } 1812 NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize); 1813 } 1814 1815 // Allow for Altivec parameters at the end, if needed. 1816 if (nAltivecParamsAtEnd) { 1817 NumBytes = ((NumBytes+15)/16)*16; 1818 NumBytes += 16*nAltivecParamsAtEnd; 1819 } 1820 1821 // The prolog code of the callee may store up to 8 GPR argument registers to 1822 // the stack, allowing va_start to index over them in memory if its varargs. 1823 // Because we cannot tell if this is needed on the caller side, we have to 1824 // conservatively assume that it is needed. As such, make sure we have at 1825 // least enough stack space for the caller to store the 8 GPRs. 1826 NumBytes = std::max(NumBytes, 1827 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI)); 1828 1829 // Tail call needs the stack to be aligned. 1830 if (CC==CallingConv::Fast && PerformTailCallOpt) { 1831 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> 1832 getStackAlignment(); 1833 unsigned AlignMask = TargetAlign-1; 1834 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 1835 } 1836 1837 return NumBytes; 1838} 1839 1840/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 1841/// adjusted to accomodate the arguments for the tailcall. 1842static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall, 1843 unsigned ParamSize) { 1844 1845 if (!IsTailCall) return 0; 1846 1847 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 1848 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 1849 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 1850 // Remember only if the new adjustement is bigger. 1851 if (SPDiff < FI->getTailCallSPDelta()) 1852 FI->setTailCallSPDelta(SPDiff); 1853 1854 return SPDiff; 1855} 1856 1857/// IsEligibleForTailCallElimination - Check to see whether the next instruction 1858/// following the call is a return. A function is eligible if caller/callee 1859/// calling conventions match, currently only fastcc supports tail calls, and 1860/// the function CALL is immediatly followed by a RET. 1861bool 1862PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call, 1863 SDValue Ret, 1864 SelectionDAG& DAG) const { 1865 // Variable argument functions are not supported. 1866 if (!PerformTailCallOpt || 1867 cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false; 1868 1869 if (CheckTailCallReturnConstraints(Call, Ret)) { 1870 MachineFunction &MF = DAG.getMachineFunction(); 1871 unsigned CallerCC = MF.getFunction()->getCallingConv(); 1872 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue(); 1873 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 1874 // Functions containing by val parameters are not supported. 1875 for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) { 1876 ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1)) 1877 ->getArgFlags(); 1878 if (Flags.isByVal()) return false; 1879 } 1880 1881 SDValue Callee = Call.getOperand(4); 1882 // Non PIC/GOT tail calls are supported. 1883 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 1884 return true; 1885 1886 // At the moment we can only do local tail calls (in same module, hidden 1887 // or protected) if we are generating PIC. 1888 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1889 return G->getGlobal()->hasHiddenVisibility() 1890 || G->getGlobal()->hasProtectedVisibility(); 1891 } 1892 } 1893 1894 return false; 1895} 1896 1897/// isCallCompatibleAddress - Return the immediate to use if the specified 1898/// 32-bit value is representable in the immediate field of a BxA instruction. 1899static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 1900 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 1901 if (!C) return 0; 1902 1903 int Addr = C->getValue(); 1904 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 1905 (Addr << 6 >> 6) != Addr) 1906 return 0; // Top 6 bits have to be sext of immediate. 1907 1908 return DAG.getConstant((int)C->getValue() >> 2, 1909 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 1910} 1911 1912namespace { 1913 1914struct TailCallArgumentInfo { 1915 SDValue Arg; 1916 SDValue FrameIdxOp; 1917 int FrameIdx; 1918 1919 TailCallArgumentInfo() : FrameIdx(0) {} 1920}; 1921 1922} 1923 1924/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 1925static void 1926StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 1927 SDValue Chain, 1928 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 1929 SmallVector<SDValue, 8> &MemOpChains) { 1930 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 1931 SDValue Arg = TailCallArgs[i].Arg; 1932 SDValue FIN = TailCallArgs[i].FrameIdxOp; 1933 int FI = TailCallArgs[i].FrameIdx; 1934 // Store relative to framepointer. 1935 MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN, 1936 PseudoSourceValue::getFixedStack(FI), 1937 0)); 1938 } 1939} 1940 1941/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 1942/// the appropriate stack slot for the tail call optimized function call. 1943static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 1944 MachineFunction &MF, 1945 SDValue Chain, 1946 SDValue OldRetAddr, 1947 SDValue OldFP, 1948 int SPDiff, 1949 bool isPPC64, 1950 bool isMachoABI) { 1951 if (SPDiff) { 1952 // Calculate the new stack slot for the return address. 1953 int SlotSize = isPPC64 ? 8 : 4; 1954 int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64, 1955 isMachoABI); 1956 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 1957 NewRetAddrLoc); 1958 int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, 1959 isMachoABI); 1960 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc); 1961 1962 MVT VT = isPPC64 ? MVT::i64 : MVT::i32; 1963 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 1964 Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx, 1965 PseudoSourceValue::getFixedStack(NewRetAddr), 0); 1966 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 1967 Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx, 1968 PseudoSourceValue::getFixedStack(NewFPIdx), 0); 1969 } 1970 return Chain; 1971} 1972 1973/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 1974/// the position of the argument. 1975static void 1976CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 1977 SDValue Arg, int SPDiff, unsigned ArgOffset, 1978 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 1979 int Offset = ArgOffset + SPDiff; 1980 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 1981 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); 1982 MVT VT = isPPC64 ? MVT::i64 : MVT::i32; 1983 SDValue FIN = DAG.getFrameIndex(FI, VT); 1984 TailCallArgumentInfo Info; 1985 Info.Arg = Arg; 1986 Info.FrameIdxOp = FIN; 1987 Info.FrameIdx = FI; 1988 TailCallArguments.push_back(Info); 1989} 1990 1991/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 1992/// stack slot. Returns the chain as result and the loaded frame pointers in 1993/// LROpOut/FPOpout. Used when tail calling. 1994SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 1995 int SPDiff, 1996 SDValue Chain, 1997 SDValue &LROpOut, 1998 SDValue &FPOpOut) { 1999 if (SPDiff) { 2000 // Load the LR and FP stack slot for later adjusting. 2001 MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2002 LROpOut = getReturnAddrFrameIndex(DAG); 2003 LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0); 2004 Chain = SDValue(LROpOut.getNode(), 1); 2005 FPOpOut = getFramePointerFrameIndex(DAG); 2006 FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0); 2007 Chain = SDValue(FPOpOut.getNode(), 1); 2008 } 2009 return Chain; 2010} 2011 2012/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2013/// by "Src" to address "Dst" of size "Size". Alignment information is 2014/// specified by the specific parameter attribute. The copy will be passed as 2015/// a byval function parameter. 2016/// Sometimes what we are copying is the end of a larger object, the part that 2017/// does not fit in registers. 2018static SDValue 2019CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2020 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2021 unsigned Size) { 2022 SDValue SizeNode = DAG.getConstant(Size, MVT::i32); 2023 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false, 2024 NULL, 0, NULL, 0); 2025} 2026 2027/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2028/// tail calls. 2029static void 2030LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2031 SDValue Arg, SDValue PtrOff, int SPDiff, 2032 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2033 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2034 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2035 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2036 if (!isTailCall) { 2037 if (isVector) { 2038 SDValue StackPtr; 2039 if (isPPC64) 2040 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2041 else 2042 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2043 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, 2044 DAG.getConstant(ArgOffset, PtrVT)); 2045 } 2046 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); 2047 // Calculate and remember argument location. 2048 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2049 TailCallArguments); 2050} 2051 2052SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG, 2053 const PPCSubtarget &Subtarget, 2054 TargetMachine &TM) { 2055 SDValue Chain = Op.getOperand(0); 2056 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 2057 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 2058 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 && 2059 CC == CallingConv::Fast && PerformTailCallOpt; 2060 SDValue Callee = Op.getOperand(4); 2061 unsigned NumOps = (Op.getNumOperands() - 5) / 2; 2062 2063 bool isMachoABI = Subtarget.isMachoABI(); 2064 bool isELF32_ABI = Subtarget.isELF32_ABI(); 2065 2066 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2067 bool isPPC64 = PtrVT == MVT::i64; 2068 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2069 2070 MachineFunction &MF = DAG.getMachineFunction(); 2071 2072 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in 2073 // SelectExpr to use to put the arguments in the appropriate registers. 2074 std::vector<SDValue> args_to_use; 2075 2076 // Mark this function as potentially containing a function that contains a 2077 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2078 // and restoring the callers stack pointer in this functions epilog. This is 2079 // done because by tail calling the called function might overwrite the value 2080 // in this function's (MF) stack pointer stack slot 0(SP). 2081 if (PerformTailCallOpt && CC==CallingConv::Fast) 2082 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2083 2084 unsigned nAltivecParamsAtEnd = 0; 2085 2086 // Count how many bytes are to be pushed on the stack, including the linkage 2087 // area, and parameter passing area. We start with 24/48 bytes, which is 2088 // prereserved space for [SP][CR][LR][3 x unused]. 2089 unsigned NumBytes = 2090 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC, 2091 Op, nAltivecParamsAtEnd); 2092 2093 // Calculate by how many bytes the stack has to be adjusted in case of tail 2094 // call optimization. 2095 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2096 2097 // Adjust the stack pointer for the new arguments... 2098 // These operations are automatically eliminated by the prolog/epilog pass 2099 Chain = DAG.getCALLSEQ_START(Chain, 2100 DAG.getConstant(NumBytes, PtrVT)); 2101 SDValue CallSeqStart = Chain; 2102 2103 // Load the return address and frame pointer so it can be move somewhere else 2104 // later. 2105 SDValue LROp, FPOp; 2106 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp); 2107 2108 // Set up a copy of the stack pointer for use loading and storing any 2109 // arguments that may not fit in the registers available for argument 2110 // passing. 2111 SDValue StackPtr; 2112 if (isPPC64) 2113 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2114 else 2115 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2116 2117 // Figure out which arguments are going to go in registers, and which in 2118 // memory. Also, if this is a vararg function, floating point operations 2119 // must be stored to our stack, and loaded into integer regs as well, if 2120 // any integer regs are available for argument passing. 2121 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); 2122 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 2123 2124 static const unsigned GPR_32[] = { // 32-bit registers. 2125 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2126 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2127 }; 2128 static const unsigned GPR_64[] = { // 64-bit registers. 2129 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 2130 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 2131 }; 2132 static const unsigned *FPR = GetFPR(Subtarget); 2133 2134 static const unsigned VR[] = { 2135 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 2136 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 2137 }; 2138 const unsigned NumGPRs = array_lengthof(GPR_32); 2139 const unsigned NumFPRs = isMachoABI ? 13 : 8; 2140 const unsigned NumVRs = array_lengthof( VR); 2141 2142 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 2143 2144 std::vector<std::pair<unsigned, SDValue> > RegsToPass; 2145 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2146 2147 SmallVector<SDValue, 8> MemOpChains; 2148 for (unsigned i = 0; i != NumOps; ++i) { 2149 bool inMem = false; 2150 SDValue Arg = Op.getOperand(5+2*i); 2151 ISD::ArgFlagsTy Flags = 2152 cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags(); 2153 // See if next argument requires stack alignment in ELF 2154 bool Align = Flags.isSplit(); 2155 2156 // PtrOff will be used to store the current argument to the stack if a 2157 // register cannot be found for it. 2158 SDValue PtrOff; 2159 2160 // Stack align in ELF 32 2161 if (isELF32_ABI && Align) 2162 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize, 2163 StackPtr.getValueType()); 2164 else 2165 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 2166 2167 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); 2168 2169 // On PPC64, promote integers to 64-bit values. 2170 if (isPPC64 && Arg.getValueType() == MVT::i32) { 2171 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 2172 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2173 Arg = DAG.getNode(ExtOp, MVT::i64, Arg); 2174 } 2175 2176 // FIXME Elf untested, what are alignment rules? 2177 // FIXME memcpy is used way more than necessary. Correctness first. 2178 if (Flags.isByVal()) { 2179 unsigned Size = Flags.getByValSize(); 2180 if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2); 2181 if (Size==1 || Size==2) { 2182 // Very small objects are passed right-justified. 2183 // Everything else is passed left-justified. 2184 MVT VT = (Size==1) ? MVT::i8 : MVT::i16; 2185 if (GPR_idx != NumGPRs) { 2186 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg, 2187 NULL, 0, VT); 2188 MemOpChains.push_back(Load.getValue(1)); 2189 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 2190 if (isMachoABI) 2191 ArgOffset += PtrByteSize; 2192 } else { 2193 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 2194 SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const); 2195 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 2196 CallSeqStart.getNode()->getOperand(0), 2197 Flags, DAG, Size); 2198 // This must go outside the CALLSEQ_START..END. 2199 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2200 CallSeqStart.getNode()->getOperand(1)); 2201 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 2202 Chain = CallSeqStart = NewCallSeqStart; 2203 ArgOffset += PtrByteSize; 2204 } 2205 continue; 2206 } 2207 // Copy entire object into memory. There are cases where gcc-generated 2208 // code assumes it is there, even if it could be put entirely into 2209 // registers. (This is not what the doc says.) 2210 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 2211 CallSeqStart.getNode()->getOperand(0), 2212 Flags, DAG, Size); 2213 // This must go outside the CALLSEQ_START..END. 2214 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2215 CallSeqStart.getNode()->getOperand(1)); 2216 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 2217 Chain = CallSeqStart = NewCallSeqStart; 2218 // And copy the pieces of it that fit into registers. 2219 for (unsigned j=0; j<Size; j+=PtrByteSize) { 2220 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 2221 SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const); 2222 if (GPR_idx != NumGPRs) { 2223 SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0); 2224 MemOpChains.push_back(Load.getValue(1)); 2225 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 2226 if (isMachoABI) 2227 ArgOffset += PtrByteSize; 2228 } else { 2229 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 2230 break; 2231 } 2232 } 2233 continue; 2234 } 2235 2236 switch (Arg.getValueType().getSimpleVT()) { 2237 default: assert(0 && "Unexpected ValueType for argument!"); 2238 case MVT::i32: 2239 case MVT::i64: 2240 // Double word align in ELF 2241 if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2); 2242 if (GPR_idx != NumGPRs) { 2243 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 2244 } else { 2245 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 2246 isPPC64, isTailCall, false, MemOpChains, 2247 TailCallArguments); 2248 inMem = true; 2249 } 2250 if (inMem || isMachoABI) { 2251 // Stack align in ELF 2252 if (isELF32_ABI && Align) 2253 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; 2254 2255 ArgOffset += PtrByteSize; 2256 } 2257 break; 2258 case MVT::f32: 2259 case MVT::f64: 2260 if (FPR_idx != NumFPRs) { 2261 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 2262 2263 if (isVarArg) { 2264 SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); 2265 MemOpChains.push_back(Store); 2266 2267 // Float varargs are always shadowed in available integer registers 2268 if (GPR_idx != NumGPRs) { 2269 SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); 2270 MemOpChains.push_back(Load.getValue(1)); 2271 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], 2272 Load)); 2273 } 2274 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 2275 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 2276 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour); 2277 SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); 2278 MemOpChains.push_back(Load.getValue(1)); 2279 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], 2280 Load)); 2281 } 2282 } else { 2283 // If we have any FPRs remaining, we may also have GPRs remaining. 2284 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 2285 // GPRs. 2286 if (isMachoABI) { 2287 if (GPR_idx != NumGPRs) 2288 ++GPR_idx; 2289 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 2290 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 2291 ++GPR_idx; 2292 } 2293 } 2294 } else { 2295 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 2296 isPPC64, isTailCall, false, MemOpChains, 2297 TailCallArguments); 2298 inMem = true; 2299 } 2300 if (inMem || isMachoABI) { 2301 // Stack align in ELF 2302 if (isELF32_ABI && Align) 2303 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; 2304 if (isPPC64) 2305 ArgOffset += 8; 2306 else 2307 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 2308 } 2309 break; 2310 case MVT::v4f32: 2311 case MVT::v4i32: 2312 case MVT::v8i16: 2313 case MVT::v16i8: 2314 if (isVarArg) { 2315 // These go aligned on the stack, or in the corresponding R registers 2316 // when within range. The Darwin PPC ABI doc claims they also go in 2317 // V registers; in fact gcc does this only for arguments that are 2318 // prototyped, not for those that match the ... We do it for all 2319 // arguments, seems to work. 2320 while (ArgOffset % 16 !=0) { 2321 ArgOffset += PtrByteSize; 2322 if (GPR_idx != NumGPRs) 2323 GPR_idx++; 2324 } 2325 // We could elide this store in the case where the object fits 2326 // entirely in R registers. Maybe later. 2327 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, 2328 DAG.getConstant(ArgOffset, PtrVT)); 2329 SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); 2330 MemOpChains.push_back(Store); 2331 if (VR_idx != NumVRs) { 2332 SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0); 2333 MemOpChains.push_back(Load.getValue(1)); 2334 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 2335 } 2336 ArgOffset += 16; 2337 for (unsigned i=0; i<16; i+=PtrByteSize) { 2338 if (GPR_idx == NumGPRs) 2339 break; 2340 SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff, 2341 DAG.getConstant(i, PtrVT)); 2342 SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0); 2343 MemOpChains.push_back(Load.getValue(1)); 2344 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 2345 } 2346 break; 2347 } 2348 2349 // Non-varargs Altivec params generally go in registers, but have 2350 // stack space allocated at the end. 2351 if (VR_idx != NumVRs) { 2352 // Doesn't have GPR space allocated. 2353 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 2354 } else if (nAltivecParamsAtEnd==0) { 2355 // We are emitting Altivec params in order. 2356 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 2357 isPPC64, isTailCall, true, MemOpChains, 2358 TailCallArguments); 2359 ArgOffset += 16; 2360 } 2361 break; 2362 } 2363 } 2364 // If all Altivec parameters fit in registers, as they usually do, 2365 // they get stack space following the non-Altivec parameters. We 2366 // don't track this here because nobody below needs it. 2367 // If there are more Altivec parameters than fit in registers emit 2368 // the stores here. 2369 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 2370 unsigned j = 0; 2371 // Offset is aligned; skip 1st 12 params which go in V registers. 2372 ArgOffset = ((ArgOffset+15)/16)*16; 2373 ArgOffset += 12*16; 2374 for (unsigned i = 0; i != NumOps; ++i) { 2375 SDValue Arg = Op.getOperand(5+2*i); 2376 MVT ArgType = Arg.getValueType(); 2377 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 2378 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 2379 if (++j > NumVRs) { 2380 SDValue PtrOff; 2381 // We are emitting Altivec params in order. 2382 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 2383 isPPC64, isTailCall, true, MemOpChains, 2384 TailCallArguments); 2385 ArgOffset += 16; 2386 } 2387 } 2388 } 2389 } 2390 2391 if (!MemOpChains.empty()) 2392 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 2393 &MemOpChains[0], MemOpChains.size()); 2394 2395 // Build a sequence of copy-to-reg nodes chained together with token chain 2396 // and flag operands which copy the outgoing args into the appropriate regs. 2397 SDValue InFlag; 2398 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2399 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 2400 InFlag); 2401 InFlag = Chain.getValue(1); 2402 } 2403 2404 // With the ELF 32 ABI, set CR6 to true if this is a vararg call. 2405 if (isVarArg && isELF32_ABI) { 2406 SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0); 2407 Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag); 2408 InFlag = Chain.getValue(1); 2409 } 2410 2411 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2412 // might overwrite each other in case of tail call optimization. 2413 if (isTailCall) { 2414 SmallVector<SDValue, 8> MemOpChains2; 2415 // Do not flag preceeding copytoreg stuff together with the following stuff. 2416 InFlag = SDValue(); 2417 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2418 MemOpChains2); 2419 if (!MemOpChains2.empty()) 2420 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 2421 &MemOpChains2[0], MemOpChains2.size()); 2422 2423 // Store the return address to the appropriate stack slot. 2424 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2425 isPPC64, isMachoABI); 2426 } 2427 2428 // Emit callseq_end just before tailcall node. 2429 if (isTailCall) { 2430 SmallVector<SDValue, 8> CallSeqOps; 2431 SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 2432 CallSeqOps.push_back(Chain); 2433 CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes)); 2434 CallSeqOps.push_back(DAG.getIntPtrConstant(0)); 2435 if (InFlag.getNode()) 2436 CallSeqOps.push_back(InFlag); 2437 Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0], 2438 CallSeqOps.size()); 2439 InFlag = Chain.getValue(1); 2440 } 2441 2442 std::vector<MVT> NodeTys; 2443 NodeTys.push_back(MVT::Other); // Returns a chain 2444 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. 2445 2446 SmallVector<SDValue, 8> Ops; 2447 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF; 2448 2449 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 2450 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 2451 // node so that legalize doesn't hack it. 2452 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2453 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); 2454 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 2455 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); 2456 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 2457 // If this is an absolute destination address, use the munged value. 2458 Callee = SDValue(Dest, 0); 2459 else { 2460 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2461 // to do the call, we can't use PPCISD::CALL. 2462 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2463 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.getNode()!=0)); 2464 InFlag = Chain.getValue(1); 2465 2466 // Copy the callee address into R12/X12 on darwin. 2467 if (isMachoABI) { 2468 unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12; 2469 Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag); 2470 InFlag = Chain.getValue(1); 2471 } 2472 2473 NodeTys.clear(); 2474 NodeTys.push_back(MVT::Other); 2475 NodeTys.push_back(MVT::Flag); 2476 Ops.push_back(Chain); 2477 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF; 2478 Callee.setNode(0); 2479 // Add CTR register as callee so a bctr can be emitted later. 2480 if (isTailCall) 2481 Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy())); 2482 } 2483 2484 // If this is a direct call, pass the chain and the callee. 2485 if (Callee.getNode()) { 2486 Ops.push_back(Chain); 2487 Ops.push_back(Callee); 2488 } 2489 // If this is a tail call add stack pointer delta. 2490 if (isTailCall) 2491 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2492 2493 // Add argument registers to the end of the list so that they are known live 2494 // into the call. 2495 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2496 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2497 RegsToPass[i].second.getValueType())); 2498 2499 // When performing tail call optimization the callee pops its arguments off 2500 // the stack. Account for this here so these bytes can be pushed back on in 2501 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2502 int BytesCalleePops = 2503 (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0; 2504 2505 if (InFlag.getNode()) 2506 Ops.push_back(InFlag); 2507 2508 // Emit tail call. 2509 if (isTailCall) { 2510 assert(InFlag.getNode() && 2511 "Flag must be set. Depend on flag being set in LowerRET"); 2512 Chain = DAG.getNode(PPCISD::TAILCALL, 2513 Op.getNode()->getVTList(), &Ops[0], Ops.size()); 2514 return SDValue(Chain.getNode(), Op.getResNo()); 2515 } 2516 2517 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); 2518 InFlag = Chain.getValue(1); 2519 2520 Chain = DAG.getCALLSEQ_END(Chain, 2521 DAG.getConstant(NumBytes, PtrVT), 2522 DAG.getConstant(BytesCalleePops, PtrVT), 2523 InFlag); 2524 if (Op.getNode()->getValueType(0) != MVT::Other) 2525 InFlag = Chain.getValue(1); 2526 2527 SmallVector<SDValue, 16> ResultVals; 2528 SmallVector<CCValAssign, 16> RVLocs; 2529 unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv(); 2530 CCState CCInfo(CallerCC, isVarArg, TM, RVLocs); 2531 CCInfo.AnalyzeCallResult(Op.getNode(), RetCC_PPC); 2532 2533 // Copy all of the result registers out of their specified physreg. 2534 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2535 CCValAssign &VA = RVLocs[i]; 2536 MVT VT = VA.getValVT(); 2537 assert(VA.isRegLoc() && "Can only return in registers!"); 2538 Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1); 2539 ResultVals.push_back(Chain.getValue(0)); 2540 InFlag = Chain.getValue(2); 2541 } 2542 2543 // If the function returns void, just return the chain. 2544 if (RVLocs.empty()) 2545 return Chain; 2546 2547 // Otherwise, merge everything together with a MERGE_VALUES node. 2548 ResultVals.push_back(Chain); 2549 SDValue Res = DAG.getMergeValues(Op.getNode()->getVTList(), &ResultVals[0], 2550 ResultVals.size()); 2551 return Res.getValue(Op.getResNo()); 2552} 2553 2554SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG, 2555 TargetMachine &TM) { 2556 SmallVector<CCValAssign, 16> RVLocs; 2557 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); 2558 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 2559 CCState CCInfo(CC, isVarArg, TM, RVLocs); 2560 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC); 2561 2562 // If this is the first return lowered for this function, add the regs to the 2563 // liveout set for the function. 2564 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2565 for (unsigned i = 0; i != RVLocs.size(); ++i) 2566 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2567 } 2568 2569 SDValue Chain = Op.getOperand(0); 2570 2571 Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL); 2572 if (Chain.getOpcode() == PPCISD::TAILCALL) { 2573 SDValue TailCall = Chain; 2574 SDValue TargetAddress = TailCall.getOperand(1); 2575 SDValue StackAdjustment = TailCall.getOperand(2); 2576 2577 assert(((TargetAddress.getOpcode() == ISD::Register && 2578 cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) || 2579 TargetAddress.getOpcode() == ISD::TargetExternalSymbol || 2580 TargetAddress.getOpcode() == ISD::TargetGlobalAddress || 2581 isa<ConstantSDNode>(TargetAddress)) && 2582 "Expecting an global address, external symbol, absolute value or register"); 2583 2584 assert(StackAdjustment.getOpcode() == ISD::Constant && 2585 "Expecting a const value"); 2586 2587 SmallVector<SDValue,8> Operands; 2588 Operands.push_back(Chain.getOperand(0)); 2589 Operands.push_back(TargetAddress); 2590 Operands.push_back(StackAdjustment); 2591 // Copy registers used by the call. Last operand is a flag so it is not 2592 // copied. 2593 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { 2594 Operands.push_back(Chain.getOperand(i)); 2595 } 2596 return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0], 2597 Operands.size()); 2598 } 2599 2600 SDValue Flag; 2601 2602 // Copy the result values into the output registers. 2603 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2604 CCValAssign &VA = RVLocs[i]; 2605 assert(VA.isRegLoc() && "Can only return in registers!"); 2606 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); 2607 Flag = Chain.getValue(1); 2608 } 2609 2610 if (Flag.getNode()) 2611 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag); 2612 else 2613 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain); 2614} 2615 2616SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 2617 const PPCSubtarget &Subtarget) { 2618 // When we pop the dynamic allocation we need to restore the SP link. 2619 2620 // Get the corect type for pointers. 2621 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2622 2623 // Construct the stack pointer operand. 2624 bool IsPPC64 = Subtarget.isPPC64(); 2625 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; 2626 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 2627 2628 // Get the operands for the STACKRESTORE. 2629 SDValue Chain = Op.getOperand(0); 2630 SDValue SaveSP = Op.getOperand(1); 2631 2632 // Load the old link SP. 2633 SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0); 2634 2635 // Restore the stack pointer. 2636 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP); 2637 2638 // Store the old link SP. 2639 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0); 2640} 2641 2642 2643 2644SDValue 2645PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 2646 MachineFunction &MF = DAG.getMachineFunction(); 2647 bool IsPPC64 = PPCSubTarget.isPPC64(); 2648 bool isMachoABI = PPCSubTarget.isMachoABI(); 2649 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2650 2651 // Get current frame pointer save index. The users of this index will be 2652 // primarily DYNALLOC instructions. 2653 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2654 int RASI = FI->getReturnAddrSaveIndex(); 2655 2656 // If the frame pointer save index hasn't been defined yet. 2657 if (!RASI) { 2658 // Find out what the fix offset of the frame pointer save area. 2659 int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI); 2660 // Allocate the frame index for frame pointer save area. 2661 RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset); 2662 // Save the result. 2663 FI->setReturnAddrSaveIndex(RASI); 2664 } 2665 return DAG.getFrameIndex(RASI, PtrVT); 2666} 2667 2668SDValue 2669PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 2670 MachineFunction &MF = DAG.getMachineFunction(); 2671 bool IsPPC64 = PPCSubTarget.isPPC64(); 2672 bool isMachoABI = PPCSubTarget.isMachoABI(); 2673 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2674 2675 // Get current frame pointer save index. The users of this index will be 2676 // primarily DYNALLOC instructions. 2677 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2678 int FPSI = FI->getFramePointerSaveIndex(); 2679 2680 // If the frame pointer save index hasn't been defined yet. 2681 if (!FPSI) { 2682 // Find out what the fix offset of the frame pointer save area. 2683 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI); 2684 2685 // Allocate the frame index for frame pointer save area. 2686 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); 2687 // Save the result. 2688 FI->setFramePointerSaveIndex(FPSI); 2689 } 2690 return DAG.getFrameIndex(FPSI, PtrVT); 2691} 2692 2693SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 2694 SelectionDAG &DAG, 2695 const PPCSubtarget &Subtarget) { 2696 // Get the inputs. 2697 SDValue Chain = Op.getOperand(0); 2698 SDValue Size = Op.getOperand(1); 2699 2700 // Get the corect type for pointers. 2701 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2702 // Negate the size. 2703 SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT, 2704 DAG.getConstant(0, PtrVT), Size); 2705 // Construct a node for the frame pointer save index. 2706 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 2707 // Build a DYNALLOC node. 2708 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 2709 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 2710 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3); 2711} 2712 2713/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 2714/// possible. 2715SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) { 2716 // Not FP? Not a fsel. 2717 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 2718 !Op.getOperand(2).getValueType().isFloatingPoint()) 2719 return SDValue(); 2720 2721 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2722 2723 // Cannot handle SETEQ/SETNE. 2724 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue(); 2725 2726 MVT ResVT = Op.getValueType(); 2727 MVT CmpVT = Op.getOperand(0).getValueType(); 2728 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 2729 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 2730 2731 // If the RHS of the comparison is a 0.0, we don't need to do the 2732 // subtraction at all. 2733 if (isFloatingPointZero(RHS)) 2734 switch (CC) { 2735 default: break; // SETUO etc aren't handled by fsel. 2736 case ISD::SETULT: 2737 case ISD::SETLT: 2738 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 2739 case ISD::SETOGE: 2740 case ISD::SETGE: 2741 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 2742 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); 2743 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); 2744 case ISD::SETUGT: 2745 case ISD::SETGT: 2746 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 2747 case ISD::SETOLE: 2748 case ISD::SETLE: 2749 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 2750 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); 2751 return DAG.getNode(PPCISD::FSEL, ResVT, 2752 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); 2753 } 2754 2755 SDValue Cmp; 2756 switch (CC) { 2757 default: break; // SETUO etc aren't handled by fsel. 2758 case ISD::SETULT: 2759 case ISD::SETLT: 2760 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); 2761 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 2762 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 2763 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); 2764 case ISD::SETOGE: 2765 case ISD::SETGE: 2766 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); 2767 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 2768 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 2769 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); 2770 case ISD::SETUGT: 2771 case ISD::SETGT: 2772 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); 2773 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 2774 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 2775 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); 2776 case ISD::SETOLE: 2777 case ISD::SETLE: 2778 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); 2779 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 2780 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 2781 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); 2782 } 2783 return SDValue(); 2784} 2785 2786// FIXME: Split this code up when LegalizeDAGTypes lands. 2787SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 2788 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 2789 SDValue Src = Op.getOperand(0); 2790 if (Src.getValueType() == MVT::f32) 2791 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); 2792 2793 SDValue Tmp; 2794 switch (Op.getValueType().getSimpleVT()) { 2795 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); 2796 case MVT::i32: 2797 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); 2798 break; 2799 case MVT::i64: 2800 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); 2801 break; 2802 } 2803 2804 // Convert the FP value to an int value through memory. 2805 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 2806 2807 // Emit a store to the stack slot. 2808 SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0); 2809 2810 // Result is a load from the stack slot. If loading 4 bytes, make sure to 2811 // add in a bias. 2812 if (Op.getValueType() == MVT::i32) 2813 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, 2814 DAG.getConstant(4, FIPtr.getValueType())); 2815 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0); 2816} 2817 2818SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op, 2819 SelectionDAG &DAG) { 2820 assert(Op.getValueType() == MVT::ppcf128); 2821 SDNode *Node = Op.getNode(); 2822 assert(Node->getOperand(0).getValueType() == MVT::ppcf128); 2823 assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR); 2824 SDValue Lo = Node->getOperand(0).getNode()->getOperand(0); 2825 SDValue Hi = Node->getOperand(0).getNode()->getOperand(1); 2826 2827 // This sequence changes FPSCR to do round-to-zero, adds the two halves 2828 // of the long double, and puts FPSCR back the way it was. We do not 2829 // actually model FPSCR. 2830 std::vector<MVT> NodeTys; 2831 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 2832 2833 NodeTys.push_back(MVT::f64); // Return register 2834 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns 2835 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); 2836 MFFSreg = Result.getValue(0); 2837 InFlag = Result.getValue(1); 2838 2839 NodeTys.clear(); 2840 NodeTys.push_back(MVT::Flag); // Returns a flag 2841 Ops[0] = DAG.getConstant(31, MVT::i32); 2842 Ops[1] = InFlag; 2843 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2); 2844 InFlag = Result.getValue(0); 2845 2846 NodeTys.clear(); 2847 NodeTys.push_back(MVT::Flag); // Returns a flag 2848 Ops[0] = DAG.getConstant(30, MVT::i32); 2849 Ops[1] = InFlag; 2850 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2); 2851 InFlag = Result.getValue(0); 2852 2853 NodeTys.clear(); 2854 NodeTys.push_back(MVT::f64); // result of add 2855 NodeTys.push_back(MVT::Flag); // Returns a flag 2856 Ops[0] = Lo; 2857 Ops[1] = Hi; 2858 Ops[2] = InFlag; 2859 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3); 2860 FPreg = Result.getValue(0); 2861 InFlag = Result.getValue(1); 2862 2863 NodeTys.clear(); 2864 NodeTys.push_back(MVT::f64); 2865 Ops[0] = DAG.getConstant(1, MVT::i32); 2866 Ops[1] = MFFSreg; 2867 Ops[2] = FPreg; 2868 Ops[3] = InFlag; 2869 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4); 2870 FPreg = Result.getValue(0); 2871 2872 // We know the low half is about to be thrown away, so just use something 2873 // convenient. 2874 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg); 2875} 2876 2877SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 2878 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 2879 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 2880 return SDValue(); 2881 2882 if (Op.getOperand(0).getValueType() == MVT::i64) { 2883 SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); 2884 SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); 2885 if (Op.getValueType() == MVT::f32) 2886 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); 2887 return FP; 2888 } 2889 2890 assert(Op.getOperand(0).getValueType() == MVT::i32 && 2891 "Unhandled SINT_TO_FP type in custom expander!"); 2892 // Since we only generate this in 64-bit mode, we can take advantage of 2893 // 64-bit registers. In particular, sign extend the input value into the 2894 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 2895 // then lfd it and fcfid it. 2896 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 2897 int FrameIdx = FrameInfo->CreateStackObject(8, 8); 2898 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2899 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 2900 2901 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, 2902 Op.getOperand(0)); 2903 2904 // STD the extended value into the stack slot. 2905 MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx), 2906 MachineMemOperand::MOStore, 0, 8, 8); 2907 SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other, 2908 DAG.getEntryNode(), Ext64, FIdx, 2909 DAG.getMemOperand(MO)); 2910 // Load the value as a double. 2911 SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0); 2912 2913 // FCFID it and return it. 2914 SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); 2915 if (Op.getValueType() == MVT::f32) 2916 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); 2917 return FP; 2918} 2919 2920SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { 2921 /* 2922 The rounding mode is in bits 30:31 of FPSR, and has the following 2923 settings: 2924 00 Round to nearest 2925 01 Round to 0 2926 10 Round to +inf 2927 11 Round to -inf 2928 2929 FLT_ROUNDS, on the other hand, expects the following: 2930 -1 Undefined 2931 0 Round to 0 2932 1 Round to nearest 2933 2 Round to +inf 2934 3 Round to -inf 2935 2936 To perform the conversion, we do: 2937 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 2938 */ 2939 2940 MachineFunction &MF = DAG.getMachineFunction(); 2941 MVT VT = Op.getValueType(); 2942 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2943 std::vector<MVT> NodeTys; 2944 SDValue MFFSreg, InFlag; 2945 2946 // Save FP Control Word to register 2947 NodeTys.push_back(MVT::f64); // return register 2948 NodeTys.push_back(MVT::Flag); // unused in this context 2949 SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); 2950 2951 // Save FP register to stack slot 2952 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); 2953 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 2954 SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain, 2955 StackSlot, NULL, 0); 2956 2957 // Load FP Control Word from low 32 bits of stack slot. 2958 SDValue Four = DAG.getConstant(4, PtrVT); 2959 SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four); 2960 SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0); 2961 2962 // Transform as necessary 2963 SDValue CWD1 = 2964 DAG.getNode(ISD::AND, MVT::i32, 2965 CWD, DAG.getConstant(3, MVT::i32)); 2966 SDValue CWD2 = 2967 DAG.getNode(ISD::SRL, MVT::i32, 2968 DAG.getNode(ISD::AND, MVT::i32, 2969 DAG.getNode(ISD::XOR, MVT::i32, 2970 CWD, DAG.getConstant(3, MVT::i32)), 2971 DAG.getConstant(3, MVT::i32)), 2972 DAG.getConstant(1, MVT::i8)); 2973 2974 SDValue RetVal = 2975 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2); 2976 2977 return DAG.getNode((VT.getSizeInBits() < 16 ? 2978 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); 2979} 2980 2981SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) { 2982 MVT VT = Op.getValueType(); 2983 unsigned BitWidth = VT.getSizeInBits(); 2984 assert(Op.getNumOperands() == 3 && 2985 VT == Op.getOperand(1).getValueType() && 2986 "Unexpected SHL!"); 2987 2988 // Expand into a bunch of logical ops. Note that these ops 2989 // depend on the PPC behavior for oversized shift amounts. 2990 SDValue Lo = Op.getOperand(0); 2991 SDValue Hi = Op.getOperand(1); 2992 SDValue Amt = Op.getOperand(2); 2993 MVT AmtVT = Amt.getValueType(); 2994 2995 SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT, 2996 DAG.getConstant(BitWidth, AmtVT), Amt); 2997 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt); 2998 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1); 2999 SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); 3000 SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, 3001 DAG.getConstant(-BitWidth, AmtVT)); 3002 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5); 3003 SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); 3004 SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt); 3005 SDValue OutOps[] = { OutLo, OutHi }; 3006 return DAG.getMergeValues(OutOps, 2); 3007} 3008 3009SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) { 3010 MVT VT = Op.getValueType(); 3011 unsigned BitWidth = VT.getSizeInBits(); 3012 assert(Op.getNumOperands() == 3 && 3013 VT == Op.getOperand(1).getValueType() && 3014 "Unexpected SRL!"); 3015 3016 // Expand into a bunch of logical ops. Note that these ops 3017 // depend on the PPC behavior for oversized shift amounts. 3018 SDValue Lo = Op.getOperand(0); 3019 SDValue Hi = Op.getOperand(1); 3020 SDValue Amt = Op.getOperand(2); 3021 MVT AmtVT = Amt.getValueType(); 3022 3023 SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT, 3024 DAG.getConstant(BitWidth, AmtVT), Amt); 3025 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); 3026 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); 3027 SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); 3028 SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, 3029 DAG.getConstant(-BitWidth, AmtVT)); 3030 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5); 3031 SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); 3032 SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt); 3033 SDValue OutOps[] = { OutLo, OutHi }; 3034 return DAG.getMergeValues(OutOps, 2); 3035} 3036 3037SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) { 3038 MVT VT = Op.getValueType(); 3039 unsigned BitWidth = VT.getSizeInBits(); 3040 assert(Op.getNumOperands() == 3 && 3041 VT == Op.getOperand(1).getValueType() && 3042 "Unexpected SRA!"); 3043 3044 // Expand into a bunch of logical ops, followed by a select_cc. 3045 SDValue Lo = Op.getOperand(0); 3046 SDValue Hi = Op.getOperand(1); 3047 SDValue Amt = Op.getOperand(2); 3048 MVT AmtVT = Amt.getValueType(); 3049 3050 SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT, 3051 DAG.getConstant(BitWidth, AmtVT), Amt); 3052 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); 3053 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); 3054 SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); 3055 SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, 3056 DAG.getConstant(-BitWidth, AmtVT)); 3057 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5); 3058 SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt); 3059 SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT), 3060 Tmp4, Tmp6, ISD::SETLE); 3061 SDValue OutOps[] = { OutLo, OutHi }; 3062 return DAG.getMergeValues(OutOps, 2); 3063} 3064 3065//===----------------------------------------------------------------------===// 3066// Vector related lowering. 3067// 3068 3069// If this is a vector of constants or undefs, get the bits. A bit in 3070// UndefBits is set if the corresponding element of the vector is an 3071// ISD::UNDEF value. For undefs, the corresponding VectorBits values are 3072// zero. Return true if this is not an array of constants, false if it is. 3073// 3074static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], 3075 uint64_t UndefBits[2]) { 3076 // Start with zero'd results. 3077 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; 3078 3079 unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits(); 3080 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 3081 SDValue OpVal = BV->getOperand(i); 3082 3083 unsigned PartNo = i >= e/2; // In the upper 128 bits? 3084 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t. 3085 3086 uint64_t EltBits = 0; 3087 if (OpVal.getOpcode() == ISD::UNDEF) { 3088 uint64_t EltUndefBits = ~0U >> (32-EltBitSize); 3089 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); 3090 continue; 3091 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 3092 EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); 3093 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 3094 assert(CN->getValueType(0) == MVT::f32 && 3095 "Only one legal FP vector type!"); 3096 EltBits = FloatToBits(CN->getValueAPF().convertToFloat()); 3097 } else { 3098 // Nonconstant element. 3099 return true; 3100 } 3101 3102 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); 3103 } 3104 3105 //printf("%llx %llx %llx %llx\n", 3106 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); 3107 return false; 3108} 3109 3110// If this is a splat (repetition) of a value across the whole vector, return 3111// the smallest size that splats it. For example, "0x01010101010101..." is a 3112// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and 3113// SplatSize = 1 byte. 3114static bool isConstantSplat(const uint64_t Bits128[2], 3115 const uint64_t Undef128[2], 3116 unsigned &SplatBits, unsigned &SplatUndef, 3117 unsigned &SplatSize) { 3118 3119 // Don't let undefs prevent splats from matching. See if the top 64-bits are 3120 // the same as the lower 64-bits, ignoring undefs. 3121 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) 3122 return false; // Can't be a splat if two pieces don't match. 3123 3124 uint64_t Bits64 = Bits128[0] | Bits128[1]; 3125 uint64_t Undef64 = Undef128[0] & Undef128[1]; 3126 3127 // Check that the top 32-bits are the same as the lower 32-bits, ignoring 3128 // undefs. 3129 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) 3130 return false; // Can't be a splat if two pieces don't match. 3131 3132 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32); 3133 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); 3134 3135 // If the top 16-bits are different than the lower 16-bits, ignoring 3136 // undefs, we have an i32 splat. 3137 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { 3138 SplatBits = Bits32; 3139 SplatUndef = Undef32; 3140 SplatSize = 4; 3141 return true; 3142 } 3143 3144 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16); 3145 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); 3146 3147 // If the top 8-bits are different than the lower 8-bits, ignoring 3148 // undefs, we have an i16 splat. 3149 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { 3150 SplatBits = Bits16; 3151 SplatUndef = Undef16; 3152 SplatSize = 2; 3153 return true; 3154 } 3155 3156 // Otherwise, we have an 8-bit splat. 3157 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8); 3158 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); 3159 SplatSize = 1; 3160 return true; 3161} 3162 3163/// BuildSplatI - Build a canonical splati of Val with an element size of 3164/// SplatSize. Cast the result to VT. 3165static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT, 3166 SelectionDAG &DAG) { 3167 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3168 3169 static const MVT VTys[] = { // canonical VT to use for each size. 3170 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3171 }; 3172 3173 MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3174 3175 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3176 if (Val == -1) 3177 SplatSize = 1; 3178 3179 MVT CanonicalVT = VTys[SplatSize-1]; 3180 3181 // Build a canonical splat for this value. 3182 SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType()); 3183 SmallVector<SDValue, 8> Ops; 3184 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3185 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, 3186 &Ops[0], Ops.size()); 3187 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res); 3188} 3189 3190/// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3191/// specified intrinsic ID. 3192static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3193 SelectionDAG &DAG, 3194 MVT DestVT = MVT::Other) { 3195 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3196 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, 3197 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3198} 3199 3200/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3201/// specified intrinsic ID. 3202static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3203 SDValue Op2, SelectionDAG &DAG, 3204 MVT DestVT = MVT::Other) { 3205 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3206 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, 3207 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3208} 3209 3210 3211/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3212/// amount. The result has the specified value type. 3213static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3214 MVT VT, SelectionDAG &DAG) { 3215 // Force LHS/RHS to be the right type. 3216 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); 3217 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); 3218 3219 SDValue Ops[16]; 3220 for (unsigned i = 0; i != 16; ++i) 3221 Ops[i] = DAG.getConstant(i+Amt, MVT::i8); 3222 SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, 3223 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16)); 3224 return DAG.getNode(ISD::BIT_CONVERT, VT, T); 3225} 3226 3227// If this is a case we can't handle, return null and let the default 3228// expansion code take care of it. If we CAN select this case, and if it 3229// selects to a single instruction, return Op. Otherwise, if we can codegen 3230// this case more efficiently than a constant pool load, lower it to the 3231// sequence of ops that should be used. 3232SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3233 SelectionDAG &DAG) { 3234 // If this is a vector of constants or undefs, get the bits. A bit in 3235 // UndefBits is set if the corresponding element of the vector is an 3236 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are 3237 // zero. 3238 uint64_t VectorBits[2]; 3239 uint64_t UndefBits[2]; 3240 if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits)) 3241 return SDValue(); // Not a constant vector. 3242 3243 // If this is a splat (repetition) of a value across the whole vector, return 3244 // the smallest size that splats it. For example, "0x01010101010101..." is a 3245 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and 3246 // SplatSize = 1 byte. 3247 unsigned SplatBits, SplatUndef, SplatSize; 3248 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ 3249 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; 3250 3251 // First, handle single instruction cases. 3252 3253 // All zeros? 3254 if (SplatBits == 0) { 3255 // Canonicalize all zero vectors to be v4i32. 3256 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3257 SDValue Z = DAG.getConstant(0, MVT::i32); 3258 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); 3259 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); 3260 } 3261 return Op; 3262 } 3263 3264 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 3265 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); 3266 if (SextVal >= -16 && SextVal <= 15) 3267 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); 3268 3269 3270 // Two instruction sequences. 3271 3272 // If this value is in the range [-32,30] and is even, use: 3273 // tmp = VSPLTI[bhw], result = add tmp, tmp 3274 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 3275 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG); 3276 Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res); 3277 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3278 } 3279 3280 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 3281 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 3282 // for fneg/fabs. 3283 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 3284 // Make -1 and vspltisw -1: 3285 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); 3286 3287 // Make the VSLW intrinsic, computing 0x8000_0000. 3288 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 3289 OnesV, DAG); 3290 3291 // xor by OnesV to invert it. 3292 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); 3293 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3294 } 3295 3296 // Check to see if this is a wide variety of vsplti*, binop self cases. 3297 unsigned SplatBitSize = SplatSize*8; 3298 static const signed char SplatCsts[] = { 3299 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 3300 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 3301 }; 3302 3303 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 3304 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 3305 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 3306 int i = SplatCsts[idx]; 3307 3308 // Figure out what shift amount will be used by altivec if shifted by i in 3309 // this splat size. 3310 unsigned TypeShiftAmt = i & (SplatBitSize-1); 3311 3312 // vsplti + shl self. 3313 if (SextVal == (i << (int)TypeShiftAmt)) { 3314 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); 3315 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3316 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 3317 Intrinsic::ppc_altivec_vslw 3318 }; 3319 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); 3320 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3321 } 3322 3323 // vsplti + srl self. 3324 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3325 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); 3326 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3327 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 3328 Intrinsic::ppc_altivec_vsrw 3329 }; 3330 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); 3331 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3332 } 3333 3334 // vsplti + sra self. 3335 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3336 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); 3337 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3338 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 3339 Intrinsic::ppc_altivec_vsraw 3340 }; 3341 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); 3342 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3343 } 3344 3345 // vsplti + rol self. 3346 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 3347 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 3348 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); 3349 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3350 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 3351 Intrinsic::ppc_altivec_vrlw 3352 }; 3353 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); 3354 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 3355 } 3356 3357 // t = vsplti c, result = vsldoi t, t, 1 3358 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { 3359 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 3360 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); 3361 } 3362 // t = vsplti c, result = vsldoi t, t, 2 3363 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { 3364 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 3365 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); 3366 } 3367 // t = vsplti c, result = vsldoi t, t, 3 3368 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { 3369 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 3370 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); 3371 } 3372 } 3373 3374 // Three instruction sequences. 3375 3376 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 3377 if (SextVal >= 0 && SextVal <= 31) { 3378 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG); 3379 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); 3380 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS); 3381 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); 3382 } 3383 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 3384 if (SextVal >= -31 && SextVal <= 0) { 3385 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG); 3386 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); 3387 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS); 3388 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); 3389 } 3390 } 3391 3392 return SDValue(); 3393} 3394 3395/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 3396/// the specified operations to build the shuffle. 3397static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 3398 SDValue RHS, SelectionDAG &DAG) { 3399 unsigned OpNum = (PFEntry >> 26) & 0x0F; 3400 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 3401 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 3402 3403 enum { 3404 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 3405 OP_VMRGHW, 3406 OP_VMRGLW, 3407 OP_VSPLTISW0, 3408 OP_VSPLTISW1, 3409 OP_VSPLTISW2, 3410 OP_VSPLTISW3, 3411 OP_VSLDOI4, 3412 OP_VSLDOI8, 3413 OP_VSLDOI12 3414 }; 3415 3416 if (OpNum == OP_COPY) { 3417 if (LHSID == (1*9+2)*9+3) return LHS; 3418 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 3419 return RHS; 3420 } 3421 3422 SDValue OpLHS, OpRHS; 3423 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); 3424 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); 3425 3426 unsigned ShufIdxs[16]; 3427 switch (OpNum) { 3428 default: assert(0 && "Unknown i32 permute!"); 3429 case OP_VMRGHW: 3430 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 3431 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 3432 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 3433 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 3434 break; 3435 case OP_VMRGLW: 3436 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 3437 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 3438 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 3439 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 3440 break; 3441 case OP_VSPLTISW0: 3442 for (unsigned i = 0; i != 16; ++i) 3443 ShufIdxs[i] = (i&3)+0; 3444 break; 3445 case OP_VSPLTISW1: 3446 for (unsigned i = 0; i != 16; ++i) 3447 ShufIdxs[i] = (i&3)+4; 3448 break; 3449 case OP_VSPLTISW2: 3450 for (unsigned i = 0; i != 16; ++i) 3451 ShufIdxs[i] = (i&3)+8; 3452 break; 3453 case OP_VSPLTISW3: 3454 for (unsigned i = 0; i != 16; ++i) 3455 ShufIdxs[i] = (i&3)+12; 3456 break; 3457 case OP_VSLDOI4: 3458 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); 3459 case OP_VSLDOI8: 3460 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); 3461 case OP_VSLDOI12: 3462 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); 3463 } 3464 SDValue Ops[16]; 3465 for (unsigned i = 0; i != 16; ++i) 3466 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8); 3467 3468 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, 3469 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); 3470} 3471 3472/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 3473/// is a shuffle we can handle in a single instruction, return it. Otherwise, 3474/// return the code it can be lowered into. Worst case, it can always be 3475/// lowered into a vperm. 3476SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 3477 SelectionDAG &DAG) { 3478 SDValue V1 = Op.getOperand(0); 3479 SDValue V2 = Op.getOperand(1); 3480 SDValue PermMask = Op.getOperand(2); 3481 3482 // Cases that are handled by instructions that take permute immediates 3483 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 3484 // selected by the instruction selector. 3485 if (V2.getOpcode() == ISD::UNDEF) { 3486 if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) || 3487 PPC::isSplatShuffleMask(PermMask.getNode(), 2) || 3488 PPC::isSplatShuffleMask(PermMask.getNode(), 4) || 3489 PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) || 3490 PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) || 3491 PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 || 3492 PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) || 3493 PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) || 3494 PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) || 3495 PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) || 3496 PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) || 3497 PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) { 3498 return Op; 3499 } 3500 } 3501 3502 // Altivec has a variety of "shuffle immediates" that take two vector inputs 3503 // and produce a fixed permutation. If any of these match, do not lower to 3504 // VPERM. 3505 if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) || 3506 PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) || 3507 PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 || 3508 PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) || 3509 PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) || 3510 PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) || 3511 PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) || 3512 PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) || 3513 PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false)) 3514 return Op; 3515 3516 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 3517 // perfect shuffle table to emit an optimal matching sequence. 3518 unsigned PFIndexes[4]; 3519 bool isFourElementShuffle = true; 3520 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 3521 unsigned EltNo = 8; // Start out undef. 3522 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 3523 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) 3524 continue; // Undef, ignore it. 3525 3526 unsigned ByteSource = 3527 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue(); 3528 if ((ByteSource & 3) != j) { 3529 isFourElementShuffle = false; 3530 break; 3531 } 3532 3533 if (EltNo == 8) { 3534 EltNo = ByteSource/4; 3535 } else if (EltNo != ByteSource/4) { 3536 isFourElementShuffle = false; 3537 break; 3538 } 3539 } 3540 PFIndexes[i] = EltNo; 3541 } 3542 3543 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 3544 // perfect shuffle vector to determine if it is cost effective to do this as 3545 // discrete instructions, or whether we should use a vperm. 3546 if (isFourElementShuffle) { 3547 // Compute the index in the perfect shuffle table. 3548 unsigned PFTableIndex = 3549 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 3550 3551 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 3552 unsigned Cost = (PFEntry >> 30); 3553 3554 // Determining when to avoid vperm is tricky. Many things affect the cost 3555 // of vperm, particularly how many times the perm mask needs to be computed. 3556 // For example, if the perm mask can be hoisted out of a loop or is already 3557 // used (perhaps because there are multiple permutes with the same shuffle 3558 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 3559 // the loop requires an extra register. 3560 // 3561 // As a compromise, we only emit discrete instructions if the shuffle can be 3562 // generated in 3 or fewer operations. When we have loop information 3563 // available, if this block is within a loop, we should avoid using vperm 3564 // for 3-operation perms and use a constant pool load instead. 3565 if (Cost < 3) 3566 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); 3567 } 3568 3569 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 3570 // vector that will get spilled to the constant pool. 3571 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 3572 3573 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 3574 // that it is in input element units, not in bytes. Convert now. 3575 MVT EltVT = V1.getValueType().getVectorElementType(); 3576 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 3577 3578 SmallVector<SDValue, 16> ResultMask; 3579 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { 3580 unsigned SrcElt; 3581 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) 3582 SrcElt = 0; 3583 else 3584 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); 3585 3586 for (unsigned j = 0; j != BytesPerElement; ++j) 3587 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 3588 MVT::i8)); 3589 } 3590 3591 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, 3592 &ResultMask[0], ResultMask.size()); 3593 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); 3594} 3595 3596/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 3597/// altivec comparison. If it is, return true and fill in Opc/isDot with 3598/// information about the intrinsic. 3599static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 3600 bool &isDot) { 3601 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue(); 3602 CompareOpc = -1; 3603 isDot = false; 3604 switch (IntrinsicID) { 3605 default: return false; 3606 // Comparison predicates. 3607 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 3608 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 3609 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 3610 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 3611 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 3612 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 3613 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 3614 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 3615 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 3616 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 3617 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 3618 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 3619 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 3620 3621 // Normal Comparisons. 3622 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 3623 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 3624 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 3625 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 3626 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 3627 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 3628 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 3629 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 3630 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 3631 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 3632 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 3633 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 3634 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 3635 } 3636 return true; 3637} 3638 3639/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 3640/// lower, do it, otherwise return null. 3641SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3642 SelectionDAG &DAG) { 3643 // If this is a lowered altivec predicate compare, CompareOpc is set to the 3644 // opcode number of the comparison. 3645 int CompareOpc; 3646 bool isDot; 3647 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 3648 return SDValue(); // Don't custom lower most intrinsics. 3649 3650 // If this is a non-dot comparison, make the VCMP node and we are done. 3651 if (!isDot) { 3652 SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), 3653 Op.getOperand(1), Op.getOperand(2), 3654 DAG.getConstant(CompareOpc, MVT::i32)); 3655 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); 3656 } 3657 3658 // Create the PPCISD altivec 'dot' comparison node. 3659 SDValue Ops[] = { 3660 Op.getOperand(2), // LHS 3661 Op.getOperand(3), // RHS 3662 DAG.getConstant(CompareOpc, MVT::i32) 3663 }; 3664 std::vector<MVT> VTs; 3665 VTs.push_back(Op.getOperand(2).getValueType()); 3666 VTs.push_back(MVT::Flag); 3667 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); 3668 3669 // Now that we have the comparison, emit a copy from the CR to a GPR. 3670 // This is flagged to the above dot comparison. 3671 SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, 3672 DAG.getRegister(PPC::CR6, MVT::i32), 3673 CompNode.getValue(1)); 3674 3675 // Unpack the result based on how the target uses it. 3676 unsigned BitNo; // Bit # of CR6. 3677 bool InvertBit; // Invert result? 3678 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { 3679 default: // Can't happen, don't crash on invalid number though. 3680 case 0: // Return the value of the EQ bit of CR6. 3681 BitNo = 0; InvertBit = false; 3682 break; 3683 case 1: // Return the inverted value of the EQ bit of CR6. 3684 BitNo = 0; InvertBit = true; 3685 break; 3686 case 2: // Return the value of the LT bit of CR6. 3687 BitNo = 2; InvertBit = false; 3688 break; 3689 case 3: // Return the inverted value of the LT bit of CR6. 3690 BitNo = 2; InvertBit = true; 3691 break; 3692 } 3693 3694 // Shift the bit into the low position. 3695 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, 3696 DAG.getConstant(8-(3-BitNo), MVT::i32)); 3697 // Isolate the bit. 3698 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, 3699 DAG.getConstant(1, MVT::i32)); 3700 3701 // If we are supposed to, toggle the bit. 3702 if (InvertBit) 3703 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, 3704 DAG.getConstant(1, MVT::i32)); 3705 return Flags; 3706} 3707 3708SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 3709 SelectionDAG &DAG) { 3710 // Create a stack slot that is 16-byte aligned. 3711 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 3712 int FrameIdx = FrameInfo->CreateStackObject(16, 16); 3713 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3714 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3715 3716 // Store the input value into Value#0 of the stack slot. 3717 SDValue Store = DAG.getStore(DAG.getEntryNode(), 3718 Op.getOperand(0), FIdx, NULL, 0); 3719 // Load it out. 3720 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0); 3721} 3722 3723SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) { 3724 if (Op.getValueType() == MVT::v4i32) { 3725 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3726 3727 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG); 3728 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. 3729 3730 SDValue RHSSwap = // = vrlw RHS, 16 3731 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); 3732 3733 // Shrinkify inputs to v8i16. 3734 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); 3735 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); 3736 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); 3737 3738 // Low parts multiplied together, generating 32-bit results (we ignore the 3739 // top parts). 3740 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 3741 LHS, RHS, DAG, MVT::v4i32); 3742 3743 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 3744 LHS, RHSSwap, Zero, DAG, MVT::v4i32); 3745 // Shift the high parts up 16 bits. 3746 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); 3747 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); 3748 } else if (Op.getValueType() == MVT::v8i16) { 3749 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3750 3751 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); 3752 3753 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 3754 LHS, RHS, Zero, DAG); 3755 } else if (Op.getValueType() == MVT::v16i8) { 3756 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3757 3758 // Multiply the even 8-bit parts, producing 16-bit sums. 3759 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 3760 LHS, RHS, DAG, MVT::v8i16); 3761 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); 3762 3763 // Multiply the odd 8-bit parts, producing 16-bit sums. 3764 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 3765 LHS, RHS, DAG, MVT::v8i16); 3766 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); 3767 3768 // Merge the results together. 3769 SDValue Ops[16]; 3770 for (unsigned i = 0; i != 8; ++i) { 3771 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8); 3772 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8); 3773 } 3774 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, 3775 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); 3776 } else { 3777 assert(0 && "Unknown mul to lower!"); 3778 abort(); 3779 } 3780} 3781 3782/// LowerOperation - Provide custom lowering hooks for some operations. 3783/// 3784SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 3785 switch (Op.getOpcode()) { 3786 default: assert(0 && "Wasn't expecting to be able to lower this!"); 3787 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3788 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3789 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3790 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 3791 case ISD::SETCC: return LowerSETCC(Op, DAG); 3792 case ISD::VASTART: 3793 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, 3794 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); 3795 3796 case ISD::VAARG: 3797 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, 3798 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); 3799 3800 case ISD::FORMAL_ARGUMENTS: 3801 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, 3802 VarArgsStackOffset, VarArgsNumGPR, 3803 VarArgsNumFPR, PPCSubTarget); 3804 3805 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget, 3806 getTargetMachine()); 3807 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine()); 3808 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 3809 case ISD::DYNAMIC_STACKALLOC: 3810 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 3811 3812 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 3813 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 3814 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 3815 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG); 3816 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 3817 3818 // Lower 64-bit shifts. 3819 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 3820 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 3821 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 3822 3823 // Vector-related lowering. 3824 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 3825 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 3826 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3827 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 3828 case ISD::MUL: return LowerMUL(Op, DAG); 3829 3830 // Frame & Return address. 3831 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 3832 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 3833 } 3834 return SDValue(); 3835} 3836 3837SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) { 3838 switch (N->getOpcode()) { 3839 default: assert(0 && "Wasn't expecting to be able to lower this!"); 3840 case ISD::FP_TO_SINT: { 3841 SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG); 3842 // Use MERGE_VALUES to drop the chain result value and get a node with one 3843 // result. This requires turning off getMergeValues simplification, since 3844 // otherwise it will give us Res back. 3845 return DAG.getMergeValues(&Res, 1, false).getNode(); 3846 } 3847 } 3848} 3849 3850 3851//===----------------------------------------------------------------------===// 3852// Other Lowering Code 3853//===----------------------------------------------------------------------===// 3854 3855MachineBasicBlock * 3856PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 3857 bool is64bit, unsigned BinOpcode) { 3858 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 3859 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 3860 3861 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3862 MachineFunction *F = BB->getParent(); 3863 MachineFunction::iterator It = BB; 3864 ++It; 3865 3866 unsigned dest = MI->getOperand(0).getReg(); 3867 unsigned ptrA = MI->getOperand(1).getReg(); 3868 unsigned ptrB = MI->getOperand(2).getReg(); 3869 unsigned incr = MI->getOperand(3).getReg(); 3870 3871 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 3872 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 3873 F->insert(It, loopMBB); 3874 F->insert(It, exitMBB); 3875 exitMBB->transferSuccessors(BB); 3876 3877 MachineRegisterInfo &RegInfo = F->getRegInfo(); 3878 unsigned TmpReg = (!BinOpcode) ? incr : 3879 RegInfo.createVirtualRegister( 3880 is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass : 3881 (const TargetRegisterClass *) &PPC::G8RCRegClass); 3882 3883 // thisMBB: 3884 // ... 3885 // fallthrough --> loopMBB 3886 BB->addSuccessor(loopMBB); 3887 3888 // loopMBB: 3889 // l[wd]arx dest, ptr 3890 // add r0, dest, incr 3891 // st[wd]cx. r0, ptr 3892 // bne- loopMBB 3893 // fallthrough --> exitMBB 3894 BB = loopMBB; 3895 BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 3896 .addReg(ptrA).addReg(ptrB); 3897 if (BinOpcode) 3898 BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 3899 BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 3900 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 3901 BuildMI(BB, TII->get(PPC::BCC)) 3902 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 3903 BB->addSuccessor(loopMBB); 3904 BB->addSuccessor(exitMBB); 3905 3906 // exitMBB: 3907 // ... 3908 BB = exitMBB; 3909 return BB; 3910} 3911 3912MachineBasicBlock * 3913PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 3914 MachineBasicBlock *BB, 3915 bool is8bit, // operation 3916 unsigned BinOpcode) { 3917 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 3918 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 3919 // In 64 bit mode we have to use 64 bits for addresses, even though the 3920 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 3921 // registers without caring whether they're 32 or 64, but here we're 3922 // doing actual arithmetic on the addresses. 3923 bool is64bit = PPCSubTarget.isPPC64(); 3924 3925 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3926 MachineFunction *F = BB->getParent(); 3927 MachineFunction::iterator It = BB; 3928 ++It; 3929 3930 unsigned dest = MI->getOperand(0).getReg(); 3931 unsigned ptrA = MI->getOperand(1).getReg(); 3932 unsigned ptrB = MI->getOperand(2).getReg(); 3933 unsigned incr = MI->getOperand(3).getReg(); 3934 3935 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 3936 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 3937 F->insert(It, loopMBB); 3938 F->insert(It, exitMBB); 3939 exitMBB->transferSuccessors(BB); 3940 3941 MachineRegisterInfo &RegInfo = F->getRegInfo(); 3942 const TargetRegisterClass *RC = 3943 is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass : 3944 (const TargetRegisterClass *) &PPC::G8RCRegClass; 3945 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 3946 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 3947 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 3948 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 3949 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 3950 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 3951 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 3952 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 3953 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 3954 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 3955 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 3956 unsigned Ptr1Reg; 3957 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 3958 3959 // thisMBB: 3960 // ... 3961 // fallthrough --> loopMBB 3962 BB->addSuccessor(loopMBB); 3963 3964 // The 4-byte load must be aligned, while a char or short may be 3965 // anywhere in the word. Hence all this nasty bookkeeping code. 3966 // add ptr1, ptrA, ptrB [copy if ptrA==0] 3967 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 3968 // xor shift, shift1, 24 [16] 3969 // rlwinm ptr, ptr1, 0, 0, 29 3970 // slw incr2, incr, shift 3971 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 3972 // slw mask, mask2, shift 3973 // loopMBB: 3974 // l[wd]arx tmpDest, ptr 3975 // add tmp, tmpDest, incr2 3976 // andc tmp2, tmpDest, mask 3977 // and tmp3, tmp, mask 3978 // or tmp4, tmp3, tmp2 3979 // st[wd]cx. tmp4, ptr 3980 // bne- loopMBB 3981 // fallthrough --> exitMBB 3982 // srw dest, tmpDest, shift 3983 3984 if (ptrA!=PPC::R0) { 3985 Ptr1Reg = RegInfo.createVirtualRegister(RC); 3986 BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 3987 .addReg(ptrA).addReg(ptrB); 3988 } else { 3989 Ptr1Reg = ptrB; 3990 } 3991 BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 3992 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 3993 BuildMI(BB, TII->get(is64bit ? PPC::XOR8 : PPC::XOR), ShiftReg) 3994 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 3995 if (is64bit) 3996 BuildMI(BB, TII->get(PPC::RLDICR), PtrReg) 3997 .addReg(Ptr1Reg).addImm(0).addImm(61); 3998 else 3999 BuildMI(BB, TII->get(PPC::RLWINM), PtrReg) 4000 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4001 BuildMI(BB, TII->get(PPC::SLW), Incr2Reg) 4002 .addReg(incr).addReg(ShiftReg); 4003 if (is8bit) 4004 BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255); 4005 else { 4006 BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0); 4007 BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535); 4008 } 4009 BuildMI(BB, TII->get(PPC::SLW), MaskReg) 4010 .addReg(Mask2Reg).addReg(ShiftReg); 4011 4012 BB = loopMBB; 4013 BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg) 4014 .addReg(PPC::R0).addReg(PtrReg); 4015 if (BinOpcode) 4016 BuildMI(BB, TII->get(BinOpcode), TmpReg) 4017 .addReg(Incr2Reg).addReg(TmpDestReg); 4018 BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4019 .addReg(TmpDestReg).addReg(MaskReg); 4020 BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4021 .addReg(TmpReg).addReg(MaskReg); 4022 BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4023 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4024 BuildMI(BB, TII->get(PPC::STWCX)) 4025 .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg); 4026 BuildMI(BB, TII->get(PPC::BCC)) 4027 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4028 BB->addSuccessor(loopMBB); 4029 BB->addSuccessor(exitMBB); 4030 4031 // exitMBB: 4032 // ... 4033 BB = exitMBB; 4034 BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg); 4035 return BB; 4036} 4037 4038MachineBasicBlock * 4039PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4040 MachineBasicBlock *BB) { 4041 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4042 4043 // To "insert" these instructions we actually have to insert their 4044 // control-flow patterns. 4045 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4046 MachineFunction::iterator It = BB; 4047 ++It; 4048 4049 MachineFunction *F = BB->getParent(); 4050 4051 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4052 MI->getOpcode() == PPC::SELECT_CC_I8 || 4053 MI->getOpcode() == PPC::SELECT_CC_F4 || 4054 MI->getOpcode() == PPC::SELECT_CC_F8 || 4055 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4056 4057 // The incoming instruction knows the destination vreg to set, the 4058 // condition code register to branch on, the true/false values to 4059 // select between, and a branch opcode to use. 4060 4061 // thisMBB: 4062 // ... 4063 // TrueVal = ... 4064 // cmpTY ccX, r1, r2 4065 // bCC copy1MBB 4066 // fallthrough --> copy0MBB 4067 MachineBasicBlock *thisMBB = BB; 4068 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4069 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4070 unsigned SelectPred = MI->getOperand(4).getImm(); 4071 BuildMI(BB, TII->get(PPC::BCC)) 4072 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4073 F->insert(It, copy0MBB); 4074 F->insert(It, sinkMBB); 4075 // Update machine-CFG edges by transferring all successors of the current 4076 // block to the new block which will contain the Phi node for the select. 4077 sinkMBB->transferSuccessors(BB); 4078 // Next, add the true and fallthrough blocks as its successors. 4079 BB->addSuccessor(copy0MBB); 4080 BB->addSuccessor(sinkMBB); 4081 4082 // copy0MBB: 4083 // %FalseValue = ... 4084 // # fallthrough to sinkMBB 4085 BB = copy0MBB; 4086 4087 // Update machine-CFG edges 4088 BB->addSuccessor(sinkMBB); 4089 4090 // sinkMBB: 4091 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4092 // ... 4093 BB = sinkMBB; 4094 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4095 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4096 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4097 } 4098 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4099 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4100 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4101 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4102 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4103 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4104 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4105 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4106 4107 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4108 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4109 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4110 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4111 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4112 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4113 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4114 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4115 4116 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4117 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4118 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4119 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4120 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4121 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4122 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4123 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4124 4125 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4126 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4127 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4128 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4129 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4130 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4131 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4132 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4133 4134 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4135 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 4136 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4137 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 4138 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4139 BB = EmitAtomicBinary(MI, BB, false, PPC::NAND); 4140 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4141 BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8); 4142 4143 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4144 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4145 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4146 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4147 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4148 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4149 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4150 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4151 4152 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4153 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4154 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4155 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4156 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4157 BB = EmitAtomicBinary(MI, BB, false, 0); 4158 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4159 BB = EmitAtomicBinary(MI, BB, true, 0); 4160 4161 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4162 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4163 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4164 4165 unsigned dest = MI->getOperand(0).getReg(); 4166 unsigned ptrA = MI->getOperand(1).getReg(); 4167 unsigned ptrB = MI->getOperand(2).getReg(); 4168 unsigned oldval = MI->getOperand(3).getReg(); 4169 unsigned newval = MI->getOperand(4).getReg(); 4170 4171 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4172 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4173 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4174 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4175 F->insert(It, loop1MBB); 4176 F->insert(It, loop2MBB); 4177 F->insert(It, midMBB); 4178 F->insert(It, exitMBB); 4179 exitMBB->transferSuccessors(BB); 4180 4181 // thisMBB: 4182 // ... 4183 // fallthrough --> loopMBB 4184 BB->addSuccessor(loop1MBB); 4185 4186 // loop1MBB: 4187 // l[wd]arx dest, ptr 4188 // cmp[wd] dest, oldval 4189 // bne- midMBB 4190 // loop2MBB: 4191 // st[wd]cx. newval, ptr 4192 // bne- loopMBB 4193 // b exitBB 4194 // midMBB: 4195 // st[wd]cx. dest, ptr 4196 // exitBB: 4197 BB = loop1MBB; 4198 BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4199 .addReg(ptrA).addReg(ptrB); 4200 BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 4201 .addReg(oldval).addReg(dest); 4202 BuildMI(BB, TII->get(PPC::BCC)) 4203 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 4204 BB->addSuccessor(loop2MBB); 4205 BB->addSuccessor(midMBB); 4206 4207 BB = loop2MBB; 4208 BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4209 .addReg(newval).addReg(ptrA).addReg(ptrB); 4210 BuildMI(BB, TII->get(PPC::BCC)) 4211 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 4212 BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB); 4213 BB->addSuccessor(loop1MBB); 4214 BB->addSuccessor(exitMBB); 4215 4216 BB = midMBB; 4217 BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4218 .addReg(dest).addReg(ptrA).addReg(ptrB); 4219 BB->addSuccessor(exitMBB); 4220 4221 // exitMBB: 4222 // ... 4223 BB = exitMBB; 4224 } 4225 else { 4226 assert(0 && "Unexpected instr type to insert"); 4227 } 4228 4229 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 4230 return BB; 4231} 4232 4233//===----------------------------------------------------------------------===// 4234// Target Optimization Hooks 4235//===----------------------------------------------------------------------===// 4236 4237SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 4238 DAGCombinerInfo &DCI) const { 4239 TargetMachine &TM = getTargetMachine(); 4240 SelectionDAG &DAG = DCI.DAG; 4241 switch (N->getOpcode()) { 4242 default: break; 4243 case PPCISD::SHL: 4244 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 4245 if (C->getValue() == 0) // 0 << V -> 0. 4246 return N->getOperand(0); 4247 } 4248 break; 4249 case PPCISD::SRL: 4250 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 4251 if (C->getValue() == 0) // 0 >>u V -> 0. 4252 return N->getOperand(0); 4253 } 4254 break; 4255 case PPCISD::SRA: 4256 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 4257 if (C->getValue() == 0 || // 0 >>s V -> 0. 4258 C->isAllOnesValue()) // -1 >>s V -> -1. 4259 return N->getOperand(0); 4260 } 4261 break; 4262 4263 case ISD::SINT_TO_FP: 4264 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 4265 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 4266 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 4267 // We allow the src/dst to be either f32/f64, but the intermediate 4268 // type must be i64. 4269 if (N->getOperand(0).getValueType() == MVT::i64 && 4270 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 4271 SDValue Val = N->getOperand(0).getOperand(0); 4272 if (Val.getValueType() == MVT::f32) { 4273 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); 4274 DCI.AddToWorklist(Val.getNode()); 4275 } 4276 4277 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); 4278 DCI.AddToWorklist(Val.getNode()); 4279 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); 4280 DCI.AddToWorklist(Val.getNode()); 4281 if (N->getValueType(0) == MVT::f32) { 4282 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val, 4283 DAG.getIntPtrConstant(0)); 4284 DCI.AddToWorklist(Val.getNode()); 4285 } 4286 return Val; 4287 } else if (N->getOperand(0).getValueType() == MVT::i32) { 4288 // If the intermediate type is i32, we can avoid the load/store here 4289 // too. 4290 } 4291 } 4292 } 4293 break; 4294 case ISD::STORE: 4295 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 4296 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 4297 !cast<StoreSDNode>(N)->isTruncatingStore() && 4298 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 4299 N->getOperand(1).getValueType() == MVT::i32 && 4300 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 4301 SDValue Val = N->getOperand(1).getOperand(0); 4302 if (Val.getValueType() == MVT::f32) { 4303 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); 4304 DCI.AddToWorklist(Val.getNode()); 4305 } 4306 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); 4307 DCI.AddToWorklist(Val.getNode()); 4308 4309 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, 4310 N->getOperand(2), N->getOperand(3)); 4311 DCI.AddToWorklist(Val.getNode()); 4312 return Val; 4313 } 4314 4315 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 4316 if (N->getOperand(1).getOpcode() == ISD::BSWAP && 4317 N->getOperand(1).getNode()->hasOneUse() && 4318 (N->getOperand(1).getValueType() == MVT::i32 || 4319 N->getOperand(1).getValueType() == MVT::i16)) { 4320 SDValue BSwapOp = N->getOperand(1).getOperand(0); 4321 // Do an any-extend to 32-bits if this is a half-word input. 4322 if (BSwapOp.getValueType() == MVT::i16) 4323 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp); 4324 4325 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp, 4326 N->getOperand(2), N->getOperand(3), 4327 DAG.getValueType(N->getOperand(1).getValueType())); 4328 } 4329 break; 4330 case ISD::BSWAP: 4331 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 4332 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 4333 N->getOperand(0).hasOneUse() && 4334 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 4335 SDValue Load = N->getOperand(0); 4336 LoadSDNode *LD = cast<LoadSDNode>(Load); 4337 // Create the byte-swapping load. 4338 std::vector<MVT> VTs; 4339 VTs.push_back(MVT::i32); 4340 VTs.push_back(MVT::Other); 4341 SDValue MO = DAG.getMemOperand(LD->getMemOperand()); 4342 SDValue Ops[] = { 4343 LD->getChain(), // Chain 4344 LD->getBasePtr(), // Ptr 4345 MO, // MemOperand 4346 DAG.getValueType(N->getValueType(0)) // VT 4347 }; 4348 SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4); 4349 4350 // If this is an i16 load, insert the truncate. 4351 SDValue ResVal = BSLoad; 4352 if (N->getValueType(0) == MVT::i16) 4353 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad); 4354 4355 // First, combine the bswap away. This makes the value produced by the 4356 // load dead. 4357 DCI.CombineTo(N, ResVal); 4358 4359 // Next, combine the load away, we give it a bogus result value but a real 4360 // chain result. The result value is dead because the bswap is dead. 4361 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 4362 4363 // Return N so it doesn't get rechecked! 4364 return SDValue(N, 0); 4365 } 4366 4367 break; 4368 case PPCISD::VCMP: { 4369 // If a VCMPo node already exists with exactly the same operands as this 4370 // node, use its result instead of this node (VCMPo computes both a CR6 and 4371 // a normal output). 4372 // 4373 if (!N->getOperand(0).hasOneUse() && 4374 !N->getOperand(1).hasOneUse() && 4375 !N->getOperand(2).hasOneUse()) { 4376 4377 // Scan all of the users of the LHS, looking for VCMPo's that match. 4378 SDNode *VCMPoNode = 0; 4379 4380 SDNode *LHSN = N->getOperand(0).getNode(); 4381 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 4382 UI != E; ++UI) 4383 if (UI->getOpcode() == PPCISD::VCMPo && 4384 UI->getOperand(1) == N->getOperand(1) && 4385 UI->getOperand(2) == N->getOperand(2) && 4386 UI->getOperand(0) == N->getOperand(0)) { 4387 VCMPoNode = *UI; 4388 break; 4389 } 4390 4391 // If there is no VCMPo node, or if the flag value has a single use, don't 4392 // transform this. 4393 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 4394 break; 4395 4396 // Look at the (necessarily single) use of the flag value. If it has a 4397 // chain, this transformation is more complex. Note that multiple things 4398 // could use the value result, which we should ignore. 4399 SDNode *FlagUser = 0; 4400 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 4401 FlagUser == 0; ++UI) { 4402 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 4403 SDNode *User = *UI; 4404 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 4405 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 4406 FlagUser = User; 4407 break; 4408 } 4409 } 4410 } 4411 4412 // If the user is a MFCR instruction, we know this is safe. Otherwise we 4413 // give up for right now. 4414 if (FlagUser->getOpcode() == PPCISD::MFCR) 4415 return SDValue(VCMPoNode, 0); 4416 } 4417 break; 4418 } 4419 case ISD::BR_CC: { 4420 // If this is a branch on an altivec predicate comparison, lower this so 4421 // that we don't have to do a MFCR: instead, branch directly on CR6. This 4422 // lowering is done pre-legalize, because the legalizer lowers the predicate 4423 // compare down to code that is difficult to reassemble. 4424 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4425 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 4426 int CompareOpc; 4427 bool isDot; 4428 4429 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 4430 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 4431 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 4432 assert(isDot && "Can't compare against a vector result!"); 4433 4434 // If this is a comparison against something other than 0/1, then we know 4435 // that the condition is never/always true. 4436 unsigned Val = cast<ConstantSDNode>(RHS)->getValue(); 4437 if (Val != 0 && Val != 1) { 4438 if (CC == ISD::SETEQ) // Cond never true, remove branch. 4439 return N->getOperand(0); 4440 // Always !=, turn it into an unconditional branch. 4441 return DAG.getNode(ISD::BR, MVT::Other, 4442 N->getOperand(0), N->getOperand(4)); 4443 } 4444 4445 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 4446 4447 // Create the PPCISD altivec 'dot' comparison node. 4448 std::vector<MVT> VTs; 4449 SDValue Ops[] = { 4450 LHS.getOperand(2), // LHS of compare 4451 LHS.getOperand(3), // RHS of compare 4452 DAG.getConstant(CompareOpc, MVT::i32) 4453 }; 4454 VTs.push_back(LHS.getOperand(2).getValueType()); 4455 VTs.push_back(MVT::Flag); 4456 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); 4457 4458 // Unpack the result based on how the target uses it. 4459 PPC::Predicate CompOpc; 4460 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) { 4461 default: // Can't happen, don't crash on invalid number though. 4462 case 0: // Branch on the value of the EQ bit of CR6. 4463 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 4464 break; 4465 case 1: // Branch on the inverted value of the EQ bit of CR6. 4466 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 4467 break; 4468 case 2: // Branch on the value of the LT bit of CR6. 4469 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 4470 break; 4471 case 3: // Branch on the inverted value of the LT bit of CR6. 4472 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 4473 break; 4474 } 4475 4476 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), 4477 DAG.getConstant(CompOpc, MVT::i32), 4478 DAG.getRegister(PPC::CR6, MVT::i32), 4479 N->getOperand(4), CompNode.getValue(1)); 4480 } 4481 break; 4482 } 4483 } 4484 4485 return SDValue(); 4486} 4487 4488//===----------------------------------------------------------------------===// 4489// Inline Assembly Support 4490//===----------------------------------------------------------------------===// 4491 4492void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 4493 const APInt &Mask, 4494 APInt &KnownZero, 4495 APInt &KnownOne, 4496 const SelectionDAG &DAG, 4497 unsigned Depth) const { 4498 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 4499 switch (Op.getOpcode()) { 4500 default: break; 4501 case PPCISD::LBRX: { 4502 // lhbrx is known to have the top bits cleared out. 4503 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16) 4504 KnownZero = 0xFFFF0000; 4505 break; 4506 } 4507 case ISD::INTRINSIC_WO_CHAIN: { 4508 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { 4509 default: break; 4510 case Intrinsic::ppc_altivec_vcmpbfp_p: 4511 case Intrinsic::ppc_altivec_vcmpeqfp_p: 4512 case Intrinsic::ppc_altivec_vcmpequb_p: 4513 case Intrinsic::ppc_altivec_vcmpequh_p: 4514 case Intrinsic::ppc_altivec_vcmpequw_p: 4515 case Intrinsic::ppc_altivec_vcmpgefp_p: 4516 case Intrinsic::ppc_altivec_vcmpgtfp_p: 4517 case Intrinsic::ppc_altivec_vcmpgtsb_p: 4518 case Intrinsic::ppc_altivec_vcmpgtsh_p: 4519 case Intrinsic::ppc_altivec_vcmpgtsw_p: 4520 case Intrinsic::ppc_altivec_vcmpgtub_p: 4521 case Intrinsic::ppc_altivec_vcmpgtuh_p: 4522 case Intrinsic::ppc_altivec_vcmpgtuw_p: 4523 KnownZero = ~1U; // All bits but the low one are known to be zero. 4524 break; 4525 } 4526 } 4527 } 4528} 4529 4530 4531/// getConstraintType - Given a constraint, return the type of 4532/// constraint it is for this target. 4533PPCTargetLowering::ConstraintType 4534PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 4535 if (Constraint.size() == 1) { 4536 switch (Constraint[0]) { 4537 default: break; 4538 case 'b': 4539 case 'r': 4540 case 'f': 4541 case 'v': 4542 case 'y': 4543 return C_RegisterClass; 4544 } 4545 } 4546 return TargetLowering::getConstraintType(Constraint); 4547} 4548 4549std::pair<unsigned, const TargetRegisterClass*> 4550PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 4551 MVT VT) const { 4552 if (Constraint.size() == 1) { 4553 // GCC RS6000 Constraint Letters 4554 switch (Constraint[0]) { 4555 case 'b': // R1-R31 4556 case 'r': // R0-R31 4557 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 4558 return std::make_pair(0U, PPC::G8RCRegisterClass); 4559 return std::make_pair(0U, PPC::GPRCRegisterClass); 4560 case 'f': 4561 if (VT == MVT::f32) 4562 return std::make_pair(0U, PPC::F4RCRegisterClass); 4563 else if (VT == MVT::f64) 4564 return std::make_pair(0U, PPC::F8RCRegisterClass); 4565 break; 4566 case 'v': 4567 return std::make_pair(0U, PPC::VRRCRegisterClass); 4568 case 'y': // crrc 4569 return std::make_pair(0U, PPC::CRRCRegisterClass); 4570 } 4571 } 4572 4573 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 4574} 4575 4576 4577/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 4578/// vector. If it is invalid, don't add anything to Ops. 4579void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter, 4580 std::vector<SDValue>&Ops, 4581 SelectionDAG &DAG) const { 4582 SDValue Result(0,0); 4583 switch (Letter) { 4584 default: break; 4585 case 'I': 4586 case 'J': 4587 case 'K': 4588 case 'L': 4589 case 'M': 4590 case 'N': 4591 case 'O': 4592 case 'P': { 4593 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 4594 if (!CST) return; // Must be an immediate to match. 4595 unsigned Value = CST->getValue(); 4596 switch (Letter) { 4597 default: assert(0 && "Unknown constraint letter!"); 4598 case 'I': // "I" is a signed 16-bit constant. 4599 if ((short)Value == (int)Value) 4600 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4601 break; 4602 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 4603 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 4604 if ((short)Value == 0) 4605 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4606 break; 4607 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 4608 if ((Value >> 16) == 0) 4609 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4610 break; 4611 case 'M': // "M" is a constant that is greater than 31. 4612 if (Value > 31) 4613 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4614 break; 4615 case 'N': // "N" is a positive constant that is an exact power of two. 4616 if ((int)Value > 0 && isPowerOf2_32(Value)) 4617 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4618 break; 4619 case 'O': // "O" is the constant zero. 4620 if (Value == 0) 4621 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4622 break; 4623 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 4624 if ((short)-Value == (int)-Value) 4625 Result = DAG.getTargetConstant(Value, Op.getValueType()); 4626 break; 4627 } 4628 break; 4629 } 4630 } 4631 4632 if (Result.getNode()) { 4633 Ops.push_back(Result); 4634 return; 4635 } 4636 4637 // Handle standard constraint letters. 4638 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); 4639} 4640 4641// isLegalAddressingMode - Return true if the addressing mode represented 4642// by AM is legal for this target, for a load/store of the specified type. 4643bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 4644 const Type *Ty) const { 4645 // FIXME: PPC does not allow r+i addressing modes for vectors! 4646 4647 // PPC allows a sign-extended 16-bit immediate field. 4648 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 4649 return false; 4650 4651 // No global is ever allowed as a base. 4652 if (AM.BaseGV) 4653 return false; 4654 4655 // PPC only support r+r, 4656 switch (AM.Scale) { 4657 case 0: // "r+i" or just "i", depending on HasBaseReg. 4658 break; 4659 case 1: 4660 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 4661 return false; 4662 // Otherwise we have r+r or r+i. 4663 break; 4664 case 2: 4665 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 4666 return false; 4667 // Allow 2*r as r+r. 4668 break; 4669 default: 4670 // No other scales are supported. 4671 return false; 4672 } 4673 4674 return true; 4675} 4676 4677/// isLegalAddressImmediate - Return true if the integer value can be used 4678/// as the offset of the target addressing mode for load / store of the 4679/// given type. 4680bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ 4681 // PPC allows a sign-extended 16-bit immediate field. 4682 return (V > -(1 << 16) && V < (1 << 16)-1); 4683} 4684 4685bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 4686 return false; 4687} 4688 4689SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { 4690 // Depths > 0 not supported yet! 4691 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 4692 return SDValue(); 4693 4694 MachineFunction &MF = DAG.getMachineFunction(); 4695 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4696 4697 // Just load the return address off the stack. 4698 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 4699 4700 // Make sure the function really does not optimize away the store of the RA 4701 // to the stack. 4702 FuncInfo->setLRStoreRequired(); 4703 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); 4704} 4705 4706SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { 4707 // Depths > 0 not supported yet! 4708 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 4709 return SDValue(); 4710 4711 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4712 bool isPPC64 = PtrVT == MVT::i64; 4713 4714 MachineFunction &MF = DAG.getMachineFunction(); 4715 MachineFrameInfo *MFI = MF.getFrameInfo(); 4716 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) 4717 && MFI->getStackSize(); 4718 4719 if (isPPC64) 4720 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1, 4721 MVT::i64); 4722 else 4723 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1, 4724 MVT::i32); 4725} 4726