PPCISelLowering.cpp revision 1e61e69d401045c54b15815f15a0fdb3ca56a9b5
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
182  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
183  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
184  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setShiftAmountType(MVT::i32);
366  setBooleanContents(ZeroOrOneBooleanContent);
367
368  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369    setStackPointerRegisterToSaveRestore(PPC::X1);
370    setExceptionPointerRegister(PPC::X3);
371    setExceptionSelectorRegister(PPC::X4);
372  } else {
373    setStackPointerRegisterToSaveRestore(PPC::R1);
374    setExceptionPointerRegister(PPC::R3);
375    setExceptionSelectorRegister(PPC::R4);
376  }
377
378  // We have target-specific dag combine patterns for the following nodes:
379  setTargetDAGCombine(ISD::SINT_TO_FP);
380  setTargetDAGCombine(ISD::STORE);
381  setTargetDAGCombine(ISD::BR_CC);
382  setTargetDAGCombine(ISD::BSWAP);
383
384  // Darwin long double math library functions have $LDBL128 appended.
385  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396  }
397
398  computeRegisterProperties();
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.
403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404  const TargetMachine &TM = getTargetMachine();
405  // Darwin passes everything on 4 byte boundary.
406  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407    return 4;
408  // FIXME SVR4 TBD
409  return 4;
410}
411
412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413  switch (Opcode) {
414  default: return 0;
415  case PPCISD::FSEL:            return "PPCISD::FSEL";
416  case PPCISD::FCFID:           return "PPCISD::FCFID";
417  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
418  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
419  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
420  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
421  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
422  case PPCISD::VPERM:           return "PPCISD::VPERM";
423  case PPCISD::Hi:              return "PPCISD::Hi";
424  case PPCISD::Lo:              return "PPCISD::Lo";
425  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
426  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
427  case PPCISD::LOAD:            return "PPCISD::LOAD";
428  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
429  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
430  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
431  case PPCISD::SRL:             return "PPCISD::SRL";
432  case PPCISD::SRA:             return "PPCISD::SRA";
433  case PPCISD::SHL:             return "PPCISD::SHL";
434  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
435  case PPCISD::STD_32:          return "PPCISD::STD_32";
436  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
437  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
438  case PPCISD::NOP:             return "PPCISD::NOP";
439  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
440  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
441  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
442  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
443  case PPCISD::MFCR:            return "PPCISD::MFCR";
444  case PPCISD::VCMP:            return "PPCISD::VCMP";
445  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
446  case PPCISD::LBRX:            return "PPCISD::LBRX";
447  case PPCISD::STBRX:           return "PPCISD::STBRX";
448  case PPCISD::LARX:            return "PPCISD::LARX";
449  case PPCISD::STCX:            return "PPCISD::STCX";
450  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
451  case PPCISD::MFFS:            return "PPCISD::MFFS";
452  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
453  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
454  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
455  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
456  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
457  }
458}
459
460MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
461  return MVT::i32;
462}
463
464/// getFunctionAlignment - Return the Log2 alignment of this function.
465unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
466  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
467    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
468  else
469    return 2;
470}
471
472//===----------------------------------------------------------------------===//
473// Node matching predicates, for use by the tblgen matching code.
474//===----------------------------------------------------------------------===//
475
476/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477static bool isFloatingPointZero(SDValue Op) {
478  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
479    return CFP->getValueAPF().isZero();
480  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
481    // Maybe this has already been legalized into the constant pool?
482    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
483      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
484        return CFP->getValueAPF().isZero();
485  }
486  return false;
487}
488
489/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
490/// true if Op is undef or if it matches the specified value.
491static bool isConstantOrUndef(int Op, int Val) {
492  return Op < 0 || Op == Val;
493}
494
495/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496/// VPKUHUM instruction.
497bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
498  if (!isUnary) {
499    for (unsigned i = 0; i != 16; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
501        return false;
502  } else {
503    for (unsigned i = 0; i != 8; ++i)
504      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
505          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
506        return false;
507  }
508  return true;
509}
510
511/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512/// VPKUWUM instruction.
513bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
514  if (!isUnary) {
515    for (unsigned i = 0; i != 16; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
518        return false;
519  } else {
520    for (unsigned i = 0; i != 8; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
523          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
524          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
525        return false;
526  }
527  return true;
528}
529
530/// isVMerge - Common function, used to match vmrg* shuffles.
531///
532static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
533                     unsigned LHSStart, unsigned RHSStart) {
534  assert(N->getValueType(0) == MVT::v16i8 &&
535         "PPC only supports shuffles by bytes!");
536  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
537         "Unsupported merge size!");
538
539  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
540    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
541      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
542                             LHSStart+j+i*UnitSize) ||
543          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
544                             RHSStart+j+i*UnitSize))
545        return false;
546    }
547  return true;
548}
549
550/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
553                             bool isUnary) {
554  if (!isUnary)
555    return isVMerge(N, UnitSize, 8, 24);
556  return isVMerge(N, UnitSize, 8, 8);
557}
558
559/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
562                             bool isUnary) {
563  if (!isUnary)
564    return isVMerge(N, UnitSize, 0, 16);
565  return isVMerge(N, UnitSize, 0, 0);
566}
567
568
569/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570/// amount, otherwise return -1.
571int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
572  assert(N->getValueType(0) == MVT::v16i8 &&
573         "PPC only supports shuffles by bytes!");
574
575  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
576
577  // Find the first non-undef value in the shuffle mask.
578  unsigned i;
579  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
580    /*search*/;
581
582  if (i == 16) return -1;  // all undef.
583
584  // Otherwise, check to see if the rest of the elements are consecutively
585  // numbered from this value.
586  unsigned ShiftAmt = SVOp->getMaskElt(i);
587  if (ShiftAmt < i) return -1;
588  ShiftAmt -= i;
589
590  if (!isUnary) {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
594        return -1;
595  } else {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
599        return -1;
600  }
601  return ShiftAmt;
602}
603
604/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605/// specifies a splat of a single element that is suitable for input to
606/// VSPLTB/VSPLTH/VSPLTW.
607bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
608  assert(N->getValueType(0) == MVT::v16i8 &&
609         (EltSize == 1 || EltSize == 2 || EltSize == 4));
610
611  // This is a splat operation if each element of the permute is the same, and
612  // if the value doesn't reference the second vector.
613  unsigned ElementBase = N->getMaskElt(0);
614
615  // FIXME: Handle UNDEF elements too!
616  if (ElementBase >= 16)
617    return false;
618
619  // Check that the indices are consecutive, in the case of a multi-byte element
620  // splatted with a v16i8 mask.
621  for (unsigned i = 1; i != EltSize; ++i)
622    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
623      return false;
624
625  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
626    if (N->getMaskElt(i) < 0) continue;
627    for (unsigned j = 0; j != EltSize; ++j)
628      if (N->getMaskElt(i+j) != N->getMaskElt(j))
629        return false;
630  }
631  return true;
632}
633
634/// isAllNegativeZeroVector - Returns true if all elements of build_vector
635/// are -0.0.
636bool PPC::isAllNegativeZeroVector(SDNode *N) {
637  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
638
639  APInt APVal, APUndef;
640  unsigned BitSize;
641  bool HasAnyUndefs;
642
643  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
644    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
645      return CFP->getValueAPF().isNegZero();
646
647  return false;
648}
649
650/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
653  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
654  assert(isSplatShuffleMask(SVOp, EltSize));
655  return SVOp->getMaskElt(0) / EltSize;
656}
657
658/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659/// by using a vspltis[bhw] instruction of the specified element size, return
660/// the constant being splatted.  The ByteSize field indicates the number of
661/// bytes of each element [124] -> [bhw].
662SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
663  SDValue OpVal(0, 0);
664
665  // If ByteSize of the splat is bigger than the element size of the
666  // build_vector, then we have a case where we are checking for a splat where
667  // multiple elements of the buildvector are folded together into a single
668  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669  unsigned EltSize = 16/N->getNumOperands();
670  if (EltSize < ByteSize) {
671    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
672    SDValue UniquedVals[4];
673    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
674
675    // See if all of the elements in the buildvector agree across.
676    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678      // If the element isn't a constant, bail fully out.
679      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
680
681
682      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
683        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
684      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
685        return SDValue();  // no match.
686    }
687
688    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689    // either constant or undef values that are identical for each chunk.  See
690    // if these chunks can form into a larger vspltis*.
691
692    // Check to see if all of the leading entries are either 0 or -1.  If
693    // neither, then this won't fit into the immediate field.
694    bool LeadingZero = true;
695    bool LeadingOnes = true;
696    for (unsigned i = 0; i != Multiple-1; ++i) {
697      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
698
699      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
700      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
701    }
702    // Finally, check the least significant entry.
703    if (LeadingZero) {
704      if (UniquedVals[Multiple-1].getNode() == 0)
705        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
706      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
707      if (Val < 16)
708        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
709    }
710    if (LeadingOnes) {
711      if (UniquedVals[Multiple-1].getNode() == 0)
712        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
713      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
714      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
715        return DAG.getTargetConstant(Val, MVT::i32);
716    }
717
718    return SDValue();
719  }
720
721  // Check to see if this buildvec has a single non-undef value in its elements.
722  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
723    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
724    if (OpVal.getNode() == 0)
725      OpVal = N->getOperand(i);
726    else if (OpVal != N->getOperand(i))
727      return SDValue();
728  }
729
730  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
731
732  unsigned ValSizeInBytes = EltSize;
733  uint64_t Value = 0;
734  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
735    Value = CN->getZExtValue();
736  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
737    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
738    Value = FloatToBits(CN->getValueAPF().convertToFloat());
739  }
740
741  // If the splat value is larger than the element value, then we can never do
742  // this splat.  The only case that we could fit the replicated bits into our
743  // immediate field for would be zero, and we prefer to use vxor for it.
744  if (ValSizeInBytes < ByteSize) return SDValue();
745
746  // If the element value is larger than the splat value, cut it in half and
747  // check to see if the two halves are equal.  Continue doing this until we
748  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
749  while (ValSizeInBytes > ByteSize) {
750    ValSizeInBytes >>= 1;
751
752    // If the top half equals the bottom half, we're still ok.
753    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
754         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
755      return SDValue();
756  }
757
758  // Properly sign extend the value.
759  int ShAmt = (4-ByteSize)*8;
760  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
761
762  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763  if (MaskVal == 0) return SDValue();
764
765  // Finally, if this value fits in a 5 bit sext field, return it
766  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
767    return DAG.getTargetConstant(MaskVal, MVT::i32);
768  return SDValue();
769}
770
771//===----------------------------------------------------------------------===//
772//  Addressing Mode Selection
773//===----------------------------------------------------------------------===//
774
775/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776/// or 64-bit immediate, and if the value can be accurately represented as a
777/// sign extension from a 16-bit value.  If so, this returns true and the
778/// immediate.
779static bool isIntS16Immediate(SDNode *N, short &Imm) {
780  if (N->getOpcode() != ISD::Constant)
781    return false;
782
783  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
784  if (N->getValueType(0) == MVT::i32)
785    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
786  else
787    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
788}
789static bool isIntS16Immediate(SDValue Op, short &Imm) {
790  return isIntS16Immediate(Op.getNode(), Imm);
791}
792
793
794/// SelectAddressRegReg - Given the specified addressed, check to see if it
795/// can be represented as an indexed [r+r] operation.  Returns false if it
796/// can be more efficiently represented with [r+imm].
797bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
798                                            SDValue &Index,
799                                            SelectionDAG &DAG) const {
800  short imm = 0;
801  if (N.getOpcode() == ISD::ADD) {
802    if (isIntS16Immediate(N.getOperand(1), imm))
803      return false;    // r+i
804    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
805      return false;    // r+i
806
807    Base = N.getOperand(0);
808    Index = N.getOperand(1);
809    return true;
810  } else if (N.getOpcode() == ISD::OR) {
811    if (isIntS16Immediate(N.getOperand(1), imm))
812      return false;    // r+i can fold it if we can.
813
814    // If this is an or of disjoint bitfields, we can codegen this as an add
815    // (for better address arithmetic) if the LHS and RHS of the OR are provably
816    // disjoint.
817    APInt LHSKnownZero, LHSKnownOne;
818    APInt RHSKnownZero, RHSKnownOne;
819    DAG.ComputeMaskedBits(N.getOperand(0),
820                          APInt::getAllOnesValue(N.getOperand(0)
821                            .getValueSizeInBits()),
822                          LHSKnownZero, LHSKnownOne);
823
824    if (LHSKnownZero.getBoolValue()) {
825      DAG.ComputeMaskedBits(N.getOperand(1),
826                            APInt::getAllOnesValue(N.getOperand(1)
827                              .getValueSizeInBits()),
828                            RHSKnownZero, RHSKnownOne);
829      // If all of the bits are known zero on the LHS or RHS, the add won't
830      // carry.
831      if (~(LHSKnownZero | RHSKnownZero) == 0) {
832        Base = N.getOperand(0);
833        Index = N.getOperand(1);
834        return true;
835      }
836    }
837  }
838
839  return false;
840}
841
842/// Returns true if the address N can be represented by a base register plus
843/// a signed 16-bit displacement [r+imm], and if it is not better
844/// represented as reg+reg.
845bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
846                                            SDValue &Base,
847                                            SelectionDAG &DAG) const {
848  // FIXME dl should come from parent load or store, not from address
849  DebugLoc dl = N.getDebugLoc();
850  // If this can be more profitably realized as r+r, fail.
851  if (SelectAddressRegReg(N, Disp, Base, DAG))
852    return false;
853
854  if (N.getOpcode() == ISD::ADD) {
855    short imm = 0;
856    if (isIntS16Immediate(N.getOperand(1), imm)) {
857      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
858      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
859        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860      } else {
861        Base = N.getOperand(0);
862      }
863      return true; // [r+i]
864    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
865      // Match LOAD (ADD (X, Lo(G))).
866     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
867             && "Cannot handle constant offsets yet!");
868      Disp = N.getOperand(1).getOperand(0);  // The global address.
869      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
870             Disp.getOpcode() == ISD::TargetConstantPool ||
871             Disp.getOpcode() == ISD::TargetJumpTable);
872      Base = N.getOperand(0);
873      return true;  // [&g+r]
874    }
875  } else if (N.getOpcode() == ISD::OR) {
876    short imm = 0;
877    if (isIntS16Immediate(N.getOperand(1), imm)) {
878      // If this is an or of disjoint bitfields, we can codegen this as an add
879      // (for better address arithmetic) if the LHS and RHS of the OR are
880      // provably disjoint.
881      APInt LHSKnownZero, LHSKnownOne;
882      DAG.ComputeMaskedBits(N.getOperand(0),
883                            APInt::getAllOnesValue(N.getOperand(0)
884                                                   .getValueSizeInBits()),
885                            LHSKnownZero, LHSKnownOne);
886
887      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
888        // If all of the bits are known zero on the LHS or RHS, the add won't
889        // carry.
890        Base = N.getOperand(0);
891        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
892        return true;
893      }
894    }
895  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
896    // Loading from a constant address.
897
898    // If this address fits entirely in a 16-bit sext immediate field, codegen
899    // this as "d, 0"
900    short Imm;
901    if (isIntS16Immediate(CN, Imm)) {
902      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
903      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
904      return true;
905    }
906
907    // Handle 32-bit sext immediates with LIS + addr mode.
908    if (CN->getValueType(0) == MVT::i32 ||
909        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
910      int Addr = (int)CN->getZExtValue();
911
912      // Otherwise, break this down into an LIS + disp.
913      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
914
915      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
916      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
917      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
918      return true;
919    }
920  }
921
922  Disp = DAG.getTargetConstant(0, getPointerTy());
923  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925  else
926    Base = N;
927  return true;      // [r+0]
928}
929
930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931/// represented as an indexed [r+r] operation.
932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
933                                                SDValue &Index,
934                                                SelectionDAG &DAG) const {
935  // Check to see if we can easily represent this as an [r+r] address.  This
936  // will fail if it thinks that the address is more profitably represented as
937  // reg+imm, e.g. where imm = 0.
938  if (SelectAddressRegReg(N, Base, Index, DAG))
939    return true;
940
941  // If the operand is an addition, always emit this as [r+r], since this is
942  // better (for code size, and execution, as the memop does the add for free)
943  // than emitting an explicit add.
944  if (N.getOpcode() == ISD::ADD) {
945    Base = N.getOperand(0);
946    Index = N.getOperand(1);
947    return true;
948  }
949
950  // Otherwise, do it the hard way, using R0 as the base register.
951  Base = DAG.getRegister(PPC::R0, N.getValueType());
952  Index = N;
953  return true;
954}
955
956/// SelectAddressRegImmShift - Returns true if the address N can be
957/// represented by a base register plus a signed 14-bit displacement
958/// [r+imm*4].  Suitable for use by STD and friends.
959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                 SDValue &Base,
961                                                 SelectionDAG &DAG) const {
962  // FIXME dl should come from the parent load or store, not the address
963  DebugLoc dl = N.getDebugLoc();
964  // If this can be more profitably realized as r+r, fail.
965  if (SelectAddressRegReg(N, Disp, Base, DAG))
966    return false;
967
968  if (N.getOpcode() == ISD::ADD) {
969    short imm = 0;
970    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974      } else {
975        Base = N.getOperand(0);
976      }
977      return true; // [r+i]
978    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979      // Match LOAD (ADD (X, Lo(G))).
980     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981             && "Cannot handle constant offsets yet!");
982      Disp = N.getOperand(1).getOperand(0);  // The global address.
983      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984             Disp.getOpcode() == ISD::TargetConstantPool ||
985             Disp.getOpcode() == ISD::TargetJumpTable);
986      Base = N.getOperand(0);
987      return true;  // [&g+r]
988    }
989  } else if (N.getOpcode() == ISD::OR) {
990    short imm = 0;
991    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992      // If this is an or of disjoint bitfields, we can codegen this as an add
993      // (for better address arithmetic) if the LHS and RHS of the OR are
994      // provably disjoint.
995      APInt LHSKnownZero, LHSKnownOne;
996      DAG.ComputeMaskedBits(N.getOperand(0),
997                            APInt::getAllOnesValue(N.getOperand(0)
998                                                   .getValueSizeInBits()),
999                            LHSKnownZero, LHSKnownOne);
1000      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001        // If all of the bits are known zero on the LHS or RHS, the add won't
1002        // carry.
1003        Base = N.getOperand(0);
1004        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005        return true;
1006      }
1007    }
1008  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009    // Loading from a constant address.  Verify low two bits are clear.
1010    if ((CN->getZExtValue() & 3) == 0) {
1011      // If this address fits entirely in a 14-bit sext immediate field, codegen
1012      // this as "d, 0"
1013      short Imm;
1014      if (isIntS16Immediate(CN, Imm)) {
1015        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1017        return true;
1018      }
1019
1020      // Fold the low-part of 32-bit absolute addresses into addr mode.
1021      if (CN->getValueType(0) == MVT::i32 ||
1022          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1023        int Addr = (int)CN->getZExtValue();
1024
1025        // Otherwise, break this down into an LIS + disp.
1026        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1027        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1028        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1029        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1030        return true;
1031      }
1032    }
1033  }
1034
1035  Disp = DAG.getTargetConstant(0, getPointerTy());
1036  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1037    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1038  else
1039    Base = N;
1040  return true;      // [r+0]
1041}
1042
1043
1044/// getPreIndexedAddressParts - returns true by value, base pointer and
1045/// offset pointer and addressing mode by reference if the node's address
1046/// can be legally represented as pre-indexed load / store address.
1047bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1048                                                  SDValue &Offset,
1049                                                  ISD::MemIndexedMode &AM,
1050                                                  SelectionDAG &DAG) const {
1051  // Disabled by default for now.
1052  if (!EnablePPCPreinc) return false;
1053
1054  SDValue Ptr;
1055  EVT VT;
1056  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1057    Ptr = LD->getBasePtr();
1058    VT = LD->getMemoryVT();
1059
1060  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1061    ST = ST;
1062    Ptr = ST->getBasePtr();
1063    VT  = ST->getMemoryVT();
1064  } else
1065    return false;
1066
1067  // PowerPC doesn't have preinc load/store instructions for vectors.
1068  if (VT.isVector())
1069    return false;
1070
1071  // TODO: Check reg+reg first.
1072
1073  // LDU/STU use reg+imm*4, others use reg+imm.
1074  if (VT != MVT::i64) {
1075    // reg + imm
1076    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077      return false;
1078  } else {
1079    // reg + imm * 4.
1080    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081      return false;
1082  }
1083
1084  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086    // sext i32 to i64 when addr mode is r+i.
1087    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088        LD->getExtensionType() == ISD::SEXTLOAD &&
1089        isa<ConstantSDNode>(Offset))
1090      return false;
1091  }
1092
1093  AM = ISD::PRE_INC;
1094  return true;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  LowerOperation implementation
1099//===----------------------------------------------------------------------===//
1100
1101/// GetLabelAccessInfo - Return true if we should reference labels using a
1102/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1103static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1104                               unsigned &LoOpFlags) {
1105  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1106  // non-darwin platform.  We don't support PIC on other platforms yet.
1107  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1108               TM.getSubtarget<PPCSubtarget>().isDarwin();
1109
1110  HiOpFlags = isPIC ? PPCII::MO_HA16_PIC : PPCII::MO_HA16;
1111  LoOpFlags = isPIC ? PPCII::MO_LO16_PIC : PPCII::MO_LO16;
1112  return isPIC;
1113}
1114
1115static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1116                             SelectionDAG &DAG) {
1117  EVT PtrVT = HiPart.getValueType();
1118  SDValue Zero = DAG.getConstant(0, PtrVT);
1119  DebugLoc DL = HiPart.getDebugLoc();
1120
1121  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1122  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1123
1124  // With PIC, the first instruction is actually "GR+hi(&G)".
1125  if (isPIC)
1126    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1127                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1128
1129  // Generate non-pic code that has direct accesses to the constant pool.
1130  // The address of the global is just (hi(&g)+lo(&g)).
1131  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1132}
1133
1134SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1135                                             SelectionDAG &DAG) const {
1136  EVT PtrVT = Op.getValueType();
1137  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1138  const Constant *C = CP->getConstVal();
1139
1140  unsigned MOHiFlag, MOLoFlag;
1141  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1142  SDValue CPIHi =
1143    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1144  SDValue CPILo =
1145    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1146  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1147}
1148
1149SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1150  EVT PtrVT = Op.getValueType();
1151  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1152
1153  unsigned MOHiFlag, MOLoFlag;
1154  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1155  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1156  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1157  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1158}
1159
1160SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1161                                             SelectionDAG &DAG) const {
1162  EVT PtrVT = Op.getValueType();
1163  DebugLoc DL = Op.getDebugLoc();
1164
1165  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1166
1167  unsigned MOHiFlag, MOLoFlag;
1168  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1169  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1170  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1171  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1172}
1173
1174SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1175                                              SelectionDAG &DAG) const {
1176  EVT PtrVT = Op.getValueType();
1177  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1178  DebugLoc DL = GSDN->getDebugLoc();
1179  const GlobalValue *GV = GSDN->getGlobal();
1180
1181  const TargetMachine &TM = DAG.getTarget();
1182
1183  // 64-bit SVR4 ABI code is always position-independent.
1184  // The actual address of the GlobalValue is stored in the TOC.
1185  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1186    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1187    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1188                       DAG.getRegister(PPC::X2, MVT::i64));
1189  }
1190
1191  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1192
1193
1194  SDValue Zero = DAG.getConstant(0, PtrVT);
1195  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, GA, Zero);
1196  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, GA, Zero);
1197
1198  // If this is a non-darwin platform, we don't support non-static relo models
1199  // yet.
1200  if (TM.getRelocationModel() == Reloc::Static ||
1201      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1202    // Generate non-pic code that has direct accesses to globals.
1203    // The address of the global is just (hi(&g)+lo(&g)).
1204    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1205  }
1206
1207  if (TM.getRelocationModel() == Reloc::PIC_) {
1208    // With PIC, the first instruction is actually "GR+hi(&G)".
1209    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1210                     DAG.getNode(PPCISD::GlobalBaseReg,
1211                                 DebugLoc(), PtrVT), Hi);
1212  }
1213
1214  Lo = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1215
1216  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1217    return Lo;
1218
1219  // If the global is weak or external, we have to go through the lazy
1220  // resolution stub.
1221  return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Lo, MachinePointerInfo(),
1222                     false, false, 0);
1223}
1224
1225SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1226  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1227  DebugLoc dl = Op.getDebugLoc();
1228
1229  // If we're comparing for equality to zero, expose the fact that this is
1230  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1231  // fold the new nodes.
1232  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1233    if (C->isNullValue() && CC == ISD::SETEQ) {
1234      EVT VT = Op.getOperand(0).getValueType();
1235      SDValue Zext = Op.getOperand(0);
1236      if (VT.bitsLT(MVT::i32)) {
1237        VT = MVT::i32;
1238        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1239      }
1240      unsigned Log2b = Log2_32(VT.getSizeInBits());
1241      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1242      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1243                                DAG.getConstant(Log2b, MVT::i32));
1244      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1245    }
1246    // Leave comparisons against 0 and -1 alone for now, since they're usually
1247    // optimized.  FIXME: revisit this when we can custom lower all setcc
1248    // optimizations.
1249    if (C->isAllOnesValue() || C->isNullValue())
1250      return SDValue();
1251  }
1252
1253  // If we have an integer seteq/setne, turn it into a compare against zero
1254  // by xor'ing the rhs with the lhs, which is faster than setting a
1255  // condition register, reading it back out, and masking the correct bit.  The
1256  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1257  // the result to other bit-twiddling opportunities.
1258  EVT LHSVT = Op.getOperand(0).getValueType();
1259  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1260    EVT VT = Op.getValueType();
1261    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1262                                Op.getOperand(1));
1263    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1264  }
1265  return SDValue();
1266}
1267
1268SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1269                                      const PPCSubtarget &Subtarget) const {
1270
1271  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1272  return SDValue(); // Not reached
1273}
1274
1275SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1276                                           SelectionDAG &DAG) const {
1277  SDValue Chain = Op.getOperand(0);
1278  SDValue Trmp = Op.getOperand(1); // trampoline
1279  SDValue FPtr = Op.getOperand(2); // nested function
1280  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1281  DebugLoc dl = Op.getDebugLoc();
1282
1283  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1284  bool isPPC64 = (PtrVT == MVT::i64);
1285  const Type *IntPtrTy =
1286    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1287                                                             *DAG.getContext());
1288
1289  TargetLowering::ArgListTy Args;
1290  TargetLowering::ArgListEntry Entry;
1291
1292  Entry.Ty = IntPtrTy;
1293  Entry.Node = Trmp; Args.push_back(Entry);
1294
1295  // TrampSize == (isPPC64 ? 48 : 40);
1296  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1297                               isPPC64 ? MVT::i64 : MVT::i32);
1298  Args.push_back(Entry);
1299
1300  Entry.Node = FPtr; Args.push_back(Entry);
1301  Entry.Node = Nest; Args.push_back(Entry);
1302
1303  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1304  std::pair<SDValue, SDValue> CallResult =
1305    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1306                false, false, false, false, 0, CallingConv::C, false,
1307                /*isReturnValueUsed=*/true,
1308                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1309                Args, DAG, dl);
1310
1311  SDValue Ops[] =
1312    { CallResult.first, CallResult.second };
1313
1314  return DAG.getMergeValues(Ops, 2, dl);
1315}
1316
1317SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1318                                        const PPCSubtarget &Subtarget) const {
1319  MachineFunction &MF = DAG.getMachineFunction();
1320  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1321
1322  DebugLoc dl = Op.getDebugLoc();
1323
1324  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1325    // vastart just stores the address of the VarArgsFrameIndex slot into the
1326    // memory location argument.
1327    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1328    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1329    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1330    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1331                        MachinePointerInfo(SV),
1332                        false, false, 0);
1333  }
1334
1335  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1336  // We suppose the given va_list is already allocated.
1337  //
1338  // typedef struct {
1339  //  char gpr;     /* index into the array of 8 GPRs
1340  //                 * stored in the register save area
1341  //                 * gpr=0 corresponds to r3,
1342  //                 * gpr=1 to r4, etc.
1343  //                 */
1344  //  char fpr;     /* index into the array of 8 FPRs
1345  //                 * stored in the register save area
1346  //                 * fpr=0 corresponds to f1,
1347  //                 * fpr=1 to f2, etc.
1348  //                 */
1349  //  char *overflow_arg_area;
1350  //                /* location on stack that holds
1351  //                 * the next overflow argument
1352  //                 */
1353  //  char *reg_save_area;
1354  //               /* where r3:r10 and f1:f8 (if saved)
1355  //                * are stored
1356  //                */
1357  // } va_list[1];
1358
1359
1360  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1361  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1362
1363
1364  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1365
1366  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1367                                            PtrVT);
1368  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1369                                 PtrVT);
1370
1371  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1372  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1373
1374  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1375  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1376
1377  uint64_t FPROffset = 1;
1378  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1379
1380  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1381
1382  // Store first byte : number of int regs
1383  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1384                                         Op.getOperand(1),
1385                                         MachinePointerInfo(SV),
1386                                         MVT::i8, false, false, 0);
1387  uint64_t nextOffset = FPROffset;
1388  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1389                                  ConstFPROffset);
1390
1391  // Store second byte : number of float regs
1392  SDValue secondStore =
1393    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1394                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1395                      false, false, 0);
1396  nextOffset += StackOffset;
1397  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1398
1399  // Store second word : arguments given on stack
1400  SDValue thirdStore =
1401    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1402                 MachinePointerInfo(SV, nextOffset),
1403                 false, false, 0);
1404  nextOffset += FrameOffset;
1405  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1406
1407  // Store third word : arguments given in registers
1408  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1409                      MachinePointerInfo(SV, nextOffset),
1410                      false, false, 0);
1411
1412}
1413
1414#include "PPCGenCallingConv.inc"
1415
1416static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1417                                     CCValAssign::LocInfo &LocInfo,
1418                                     ISD::ArgFlagsTy &ArgFlags,
1419                                     CCState &State) {
1420  return true;
1421}
1422
1423static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1424                                            MVT &LocVT,
1425                                            CCValAssign::LocInfo &LocInfo,
1426                                            ISD::ArgFlagsTy &ArgFlags,
1427                                            CCState &State) {
1428  static const unsigned ArgRegs[] = {
1429    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1430    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1431  };
1432  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1433
1434  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1435
1436  // Skip one register if the first unallocated register has an even register
1437  // number and there are still argument registers available which have not been
1438  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1439  // need to skip a register if RegNum is odd.
1440  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1441    State.AllocateReg(ArgRegs[RegNum]);
1442  }
1443
1444  // Always return false here, as this function only makes sure that the first
1445  // unallocated register has an odd register number and does not actually
1446  // allocate a register for the current argument.
1447  return false;
1448}
1449
1450static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1451                                              MVT &LocVT,
1452                                              CCValAssign::LocInfo &LocInfo,
1453                                              ISD::ArgFlagsTy &ArgFlags,
1454                                              CCState &State) {
1455  static const unsigned ArgRegs[] = {
1456    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1457    PPC::F8
1458  };
1459
1460  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1461
1462  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1463
1464  // If there is only one Floating-point register left we need to put both f64
1465  // values of a split ppc_fp128 value on the stack.
1466  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1467    State.AllocateReg(ArgRegs[RegNum]);
1468  }
1469
1470  // Always return false here, as this function only makes sure that the two f64
1471  // values a ppc_fp128 value is split into are both passed in registers or both
1472  // passed on the stack and does not actually allocate a register for the
1473  // current argument.
1474  return false;
1475}
1476
1477/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1478/// on Darwin.
1479static const unsigned *GetFPR() {
1480  static const unsigned FPR[] = {
1481    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1482    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1483  };
1484
1485  return FPR;
1486}
1487
1488/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1489/// the stack.
1490static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1491                                       unsigned PtrByteSize) {
1492  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1493  if (Flags.isByVal())
1494    ArgSize = Flags.getByValSize();
1495  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1496
1497  return ArgSize;
1498}
1499
1500SDValue
1501PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1502                                        CallingConv::ID CallConv, bool isVarArg,
1503                                        const SmallVectorImpl<ISD::InputArg>
1504                                          &Ins,
1505                                        DebugLoc dl, SelectionDAG &DAG,
1506                                        SmallVectorImpl<SDValue> &InVals)
1507                                          const {
1508  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1509    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1510                                     dl, DAG, InVals);
1511  } else {
1512    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1513                                       dl, DAG, InVals);
1514  }
1515}
1516
1517SDValue
1518PPCTargetLowering::LowerFormalArguments_SVR4(
1519                                      SDValue Chain,
1520                                      CallingConv::ID CallConv, bool isVarArg,
1521                                      const SmallVectorImpl<ISD::InputArg>
1522                                        &Ins,
1523                                      DebugLoc dl, SelectionDAG &DAG,
1524                                      SmallVectorImpl<SDValue> &InVals) const {
1525
1526  // 32-bit SVR4 ABI Stack Frame Layout:
1527  //              +-----------------------------------+
1528  //        +-->  |            Back chain             |
1529  //        |     +-----------------------------------+
1530  //        |     | Floating-point register save area |
1531  //        |     +-----------------------------------+
1532  //        |     |    General register save area     |
1533  //        |     +-----------------------------------+
1534  //        |     |          CR save word             |
1535  //        |     +-----------------------------------+
1536  //        |     |         VRSAVE save word          |
1537  //        |     +-----------------------------------+
1538  //        |     |         Alignment padding         |
1539  //        |     +-----------------------------------+
1540  //        |     |     Vector register save area     |
1541  //        |     +-----------------------------------+
1542  //        |     |       Local variable space        |
1543  //        |     +-----------------------------------+
1544  //        |     |        Parameter list area        |
1545  //        |     +-----------------------------------+
1546  //        |     |           LR save word            |
1547  //        |     +-----------------------------------+
1548  // SP-->  +---  |            Back chain             |
1549  //              +-----------------------------------+
1550  //
1551  // Specifications:
1552  //   System V Application Binary Interface PowerPC Processor Supplement
1553  //   AltiVec Technology Programming Interface Manual
1554
1555  MachineFunction &MF = DAG.getMachineFunction();
1556  MachineFrameInfo *MFI = MF.getFrameInfo();
1557  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1558
1559  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1560  // Potential tail calls could cause overwriting of argument stack slots.
1561  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1562  unsigned PtrByteSize = 4;
1563
1564  // Assign locations to all of the incoming arguments.
1565  SmallVector<CCValAssign, 16> ArgLocs;
1566  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1567                 *DAG.getContext());
1568
1569  // Reserve space for the linkage area on the stack.
1570  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1571
1572  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1573
1574  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1575    CCValAssign &VA = ArgLocs[i];
1576
1577    // Arguments stored in registers.
1578    if (VA.isRegLoc()) {
1579      TargetRegisterClass *RC;
1580      EVT ValVT = VA.getValVT();
1581
1582      switch (ValVT.getSimpleVT().SimpleTy) {
1583        default:
1584          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1585        case MVT::i32:
1586          RC = PPC::GPRCRegisterClass;
1587          break;
1588        case MVT::f32:
1589          RC = PPC::F4RCRegisterClass;
1590          break;
1591        case MVT::f64:
1592          RC = PPC::F8RCRegisterClass;
1593          break;
1594        case MVT::v16i8:
1595        case MVT::v8i16:
1596        case MVT::v4i32:
1597        case MVT::v4f32:
1598          RC = PPC::VRRCRegisterClass;
1599          break;
1600      }
1601
1602      // Transform the arguments stored in physical registers into virtual ones.
1603      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1604      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1605
1606      InVals.push_back(ArgValue);
1607    } else {
1608      // Argument stored in memory.
1609      assert(VA.isMemLoc());
1610
1611      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1612      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1613                                      isImmutable);
1614
1615      // Create load nodes to retrieve arguments from the stack.
1616      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1617      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1618                                   MachinePointerInfo(),
1619                                   false, false, 0));
1620    }
1621  }
1622
1623  // Assign locations to all of the incoming aggregate by value arguments.
1624  // Aggregates passed by value are stored in the local variable space of the
1625  // caller's stack frame, right above the parameter list area.
1626  SmallVector<CCValAssign, 16> ByValArgLocs;
1627  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1628                      ByValArgLocs, *DAG.getContext());
1629
1630  // Reserve stack space for the allocations in CCInfo.
1631  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1632
1633  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1634
1635  // Area that is at least reserved in the caller of this function.
1636  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1637
1638  // Set the size that is at least reserved in caller of this function.  Tail
1639  // call optimized function's reserved stack space needs to be aligned so that
1640  // taking the difference between two stack areas will result in an aligned
1641  // stack.
1642  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1643
1644  MinReservedArea =
1645    std::max(MinReservedArea,
1646             PPCFrameInfo::getMinCallFrameSize(false, false));
1647
1648  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1649    getStackAlignment();
1650  unsigned AlignMask = TargetAlign-1;
1651  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1652
1653  FI->setMinReservedArea(MinReservedArea);
1654
1655  SmallVector<SDValue, 8> MemOps;
1656
1657  // If the function takes variable number of arguments, make a frame index for
1658  // the start of the first vararg value... for expansion of llvm.va_start.
1659  if (isVarArg) {
1660    static const unsigned GPArgRegs[] = {
1661      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1662      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1663    };
1664    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1665
1666    static const unsigned FPArgRegs[] = {
1667      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1668      PPC::F8
1669    };
1670    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1671
1672    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1673                                                          NumGPArgRegs));
1674    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1675                                                          NumFPArgRegs));
1676
1677    // Make room for NumGPArgRegs and NumFPArgRegs.
1678    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1679                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1680
1681    FuncInfo->setVarArgsStackOffset(
1682      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1683                             CCInfo.getNextStackOffset(), true));
1684
1685    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1686    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1687
1688    // The fixed integer arguments of a variadic function are stored to the
1689    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1690    // the result of va_next.
1691    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1692      // Get an existing live-in vreg, or add a new one.
1693      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1694      if (!VReg)
1695        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1696
1697      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1698      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1699                                   MachinePointerInfo(), false, false, 0);
1700      MemOps.push_back(Store);
1701      // Increment the address by four for the next argument to store
1702      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1703      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1704    }
1705
1706    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1707    // is set.
1708    // The double arguments are stored to the VarArgsFrameIndex
1709    // on the stack.
1710    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1711      // Get an existing live-in vreg, or add a new one.
1712      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1713      if (!VReg)
1714        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1715
1716      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1717      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1718                                   MachinePointerInfo(), false, false, 0);
1719      MemOps.push_back(Store);
1720      // Increment the address by eight for the next argument to store
1721      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1722                                         PtrVT);
1723      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1724    }
1725  }
1726
1727  if (!MemOps.empty())
1728    Chain = DAG.getNode(ISD::TokenFactor, dl,
1729                        MVT::Other, &MemOps[0], MemOps.size());
1730
1731  return Chain;
1732}
1733
1734SDValue
1735PPCTargetLowering::LowerFormalArguments_Darwin(
1736                                      SDValue Chain,
1737                                      CallingConv::ID CallConv, bool isVarArg,
1738                                      const SmallVectorImpl<ISD::InputArg>
1739                                        &Ins,
1740                                      DebugLoc dl, SelectionDAG &DAG,
1741                                      SmallVectorImpl<SDValue> &InVals) const {
1742  // TODO: add description of PPC stack frame format, or at least some docs.
1743  //
1744  MachineFunction &MF = DAG.getMachineFunction();
1745  MachineFrameInfo *MFI = MF.getFrameInfo();
1746  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1747
1748  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1749  bool isPPC64 = PtrVT == MVT::i64;
1750  // Potential tail calls could cause overwriting of argument stack slots.
1751  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1752  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1753
1754  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1755  // Area that is at least reserved in caller of this function.
1756  unsigned MinReservedArea = ArgOffset;
1757
1758  static const unsigned GPR_32[] = {           // 32-bit registers.
1759    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1760    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1761  };
1762  static const unsigned GPR_64[] = {           // 64-bit registers.
1763    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1764    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1765  };
1766
1767  static const unsigned *FPR = GetFPR();
1768
1769  static const unsigned VR[] = {
1770    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1771    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1772  };
1773
1774  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1775  const unsigned Num_FPR_Regs = 13;
1776  const unsigned Num_VR_Regs  = array_lengthof( VR);
1777
1778  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1779
1780  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1781
1782  // In 32-bit non-varargs functions, the stack space for vectors is after the
1783  // stack space for non-vectors.  We do not use this space unless we have
1784  // too many vectors to fit in registers, something that only occurs in
1785  // constructed examples:), but we have to walk the arglist to figure
1786  // that out...for the pathological case, compute VecArgOffset as the
1787  // start of the vector parameter area.  Computing VecArgOffset is the
1788  // entire point of the following loop.
1789  unsigned VecArgOffset = ArgOffset;
1790  if (!isVarArg && !isPPC64) {
1791    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1792         ++ArgNo) {
1793      EVT ObjectVT = Ins[ArgNo].VT;
1794      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1795      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1796
1797      if (Flags.isByVal()) {
1798        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1799        ObjSize = Flags.getByValSize();
1800        unsigned ArgSize =
1801                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1802        VecArgOffset += ArgSize;
1803        continue;
1804      }
1805
1806      switch(ObjectVT.getSimpleVT().SimpleTy) {
1807      default: llvm_unreachable("Unhandled argument type!");
1808      case MVT::i32:
1809      case MVT::f32:
1810        VecArgOffset += isPPC64 ? 8 : 4;
1811        break;
1812      case MVT::i64:  // PPC64
1813      case MVT::f64:
1814        VecArgOffset += 8;
1815        break;
1816      case MVT::v4f32:
1817      case MVT::v4i32:
1818      case MVT::v8i16:
1819      case MVT::v16i8:
1820        // Nothing to do, we're only looking at Nonvector args here.
1821        break;
1822      }
1823    }
1824  }
1825  // We've found where the vector parameter area in memory is.  Skip the
1826  // first 12 parameters; these don't use that memory.
1827  VecArgOffset = ((VecArgOffset+15)/16)*16;
1828  VecArgOffset += 12*16;
1829
1830  // Add DAG nodes to load the arguments or copy them out of registers.  On
1831  // entry to a function on PPC, the arguments start after the linkage area,
1832  // although the first ones are often in registers.
1833
1834  SmallVector<SDValue, 8> MemOps;
1835  unsigned nAltivecParamsAtEnd = 0;
1836  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1837    SDValue ArgVal;
1838    bool needsLoad = false;
1839    EVT ObjectVT = Ins[ArgNo].VT;
1840    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1841    unsigned ArgSize = ObjSize;
1842    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1843
1844    unsigned CurArgOffset = ArgOffset;
1845
1846    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1847    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1848        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1849      if (isVarArg || isPPC64) {
1850        MinReservedArea = ((MinReservedArea+15)/16)*16;
1851        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1852                                                  Flags,
1853                                                  PtrByteSize);
1854      } else  nAltivecParamsAtEnd++;
1855    } else
1856      // Calculate min reserved area.
1857      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1858                                                Flags,
1859                                                PtrByteSize);
1860
1861    // FIXME the codegen can be much improved in some cases.
1862    // We do not have to keep everything in memory.
1863    if (Flags.isByVal()) {
1864      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1865      ObjSize = Flags.getByValSize();
1866      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1867      // Objects of size 1 and 2 are right justified, everything else is
1868      // left justified.  This means the memory address is adjusted forwards.
1869      if (ObjSize==1 || ObjSize==2) {
1870        CurArgOffset = CurArgOffset + (4 - ObjSize);
1871      }
1872      // The value of the object is its address.
1873      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1874      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1875      InVals.push_back(FIN);
1876      if (ObjSize==1 || ObjSize==2) {
1877        if (GPR_idx != Num_GPR_Regs) {
1878          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1879          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1880          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1881                                            MachinePointerInfo(),
1882                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1883                                            false, false, 0);
1884          MemOps.push_back(Store);
1885          ++GPR_idx;
1886        }
1887
1888        ArgOffset += PtrByteSize;
1889
1890        continue;
1891      }
1892      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1893        // Store whatever pieces of the object are in registers
1894        // to memory.  ArgVal will be address of the beginning of
1895        // the object.
1896        if (GPR_idx != Num_GPR_Regs) {
1897          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1898          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1899          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1900          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1901          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1902                                       MachinePointerInfo(),
1903                                       false, false, 0);
1904          MemOps.push_back(Store);
1905          ++GPR_idx;
1906          ArgOffset += PtrByteSize;
1907        } else {
1908          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1909          break;
1910        }
1911      }
1912      continue;
1913    }
1914
1915    switch (ObjectVT.getSimpleVT().SimpleTy) {
1916    default: llvm_unreachable("Unhandled argument type!");
1917    case MVT::i32:
1918      if (!isPPC64) {
1919        if (GPR_idx != Num_GPR_Regs) {
1920          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1921          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1922          ++GPR_idx;
1923        } else {
1924          needsLoad = true;
1925          ArgSize = PtrByteSize;
1926        }
1927        // All int arguments reserve stack space in the Darwin ABI.
1928        ArgOffset += PtrByteSize;
1929        break;
1930      }
1931      // FALLTHROUGH
1932    case MVT::i64:  // PPC64
1933      if (GPR_idx != Num_GPR_Regs) {
1934        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1935        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1936
1937        if (ObjectVT == MVT::i32) {
1938          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1939          // value to MVT::i64 and then truncate to the correct register size.
1940          if (Flags.isSExt())
1941            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1942                                 DAG.getValueType(ObjectVT));
1943          else if (Flags.isZExt())
1944            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1945                                 DAG.getValueType(ObjectVT));
1946
1947          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1948        }
1949
1950        ++GPR_idx;
1951      } else {
1952        needsLoad = true;
1953        ArgSize = PtrByteSize;
1954      }
1955      // All int arguments reserve stack space in the Darwin ABI.
1956      ArgOffset += 8;
1957      break;
1958
1959    case MVT::f32:
1960    case MVT::f64:
1961      // Every 4 bytes of argument space consumes one of the GPRs available for
1962      // argument passing.
1963      if (GPR_idx != Num_GPR_Regs) {
1964        ++GPR_idx;
1965        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1966          ++GPR_idx;
1967      }
1968      if (FPR_idx != Num_FPR_Regs) {
1969        unsigned VReg;
1970
1971        if (ObjectVT == MVT::f32)
1972          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1973        else
1974          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1975
1976        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1977        ++FPR_idx;
1978      } else {
1979        needsLoad = true;
1980      }
1981
1982      // All FP arguments reserve stack space in the Darwin ABI.
1983      ArgOffset += isPPC64 ? 8 : ObjSize;
1984      break;
1985    case MVT::v4f32:
1986    case MVT::v4i32:
1987    case MVT::v8i16:
1988    case MVT::v16i8:
1989      // Note that vector arguments in registers don't reserve stack space,
1990      // except in varargs functions.
1991      if (VR_idx != Num_VR_Regs) {
1992        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1993        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1994        if (isVarArg) {
1995          while ((ArgOffset % 16) != 0) {
1996            ArgOffset += PtrByteSize;
1997            if (GPR_idx != Num_GPR_Regs)
1998              GPR_idx++;
1999          }
2000          ArgOffset += 16;
2001          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2002        }
2003        ++VR_idx;
2004      } else {
2005        if (!isVarArg && !isPPC64) {
2006          // Vectors go after all the nonvectors.
2007          CurArgOffset = VecArgOffset;
2008          VecArgOffset += 16;
2009        } else {
2010          // Vectors are aligned.
2011          ArgOffset = ((ArgOffset+15)/16)*16;
2012          CurArgOffset = ArgOffset;
2013          ArgOffset += 16;
2014        }
2015        needsLoad = true;
2016      }
2017      break;
2018    }
2019
2020    // We need to load the argument to a virtual register if we determined above
2021    // that we ran out of physical registers of the appropriate type.
2022    if (needsLoad) {
2023      int FI = MFI->CreateFixedObject(ObjSize,
2024                                      CurArgOffset + (ArgSize - ObjSize),
2025                                      isImmutable);
2026      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2027      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2028                           false, false, 0);
2029    }
2030
2031    InVals.push_back(ArgVal);
2032  }
2033
2034  // Set the size that is at least reserved in caller of this function.  Tail
2035  // call optimized function's reserved stack space needs to be aligned so that
2036  // taking the difference between two stack areas will result in an aligned
2037  // stack.
2038  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2039  // Add the Altivec parameters at the end, if needed.
2040  if (nAltivecParamsAtEnd) {
2041    MinReservedArea = ((MinReservedArea+15)/16)*16;
2042    MinReservedArea += 16*nAltivecParamsAtEnd;
2043  }
2044  MinReservedArea =
2045    std::max(MinReservedArea,
2046             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2047  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2048    getStackAlignment();
2049  unsigned AlignMask = TargetAlign-1;
2050  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2051  FI->setMinReservedArea(MinReservedArea);
2052
2053  // If the function takes variable number of arguments, make a frame index for
2054  // the start of the first vararg value... for expansion of llvm.va_start.
2055  if (isVarArg) {
2056    int Depth = ArgOffset;
2057
2058    FuncInfo->setVarArgsFrameIndex(
2059      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2060                             Depth, true));
2061    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2062
2063    // If this function is vararg, store any remaining integer argument regs
2064    // to their spots on the stack so that they may be loaded by deferencing the
2065    // result of va_next.
2066    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2067      unsigned VReg;
2068
2069      if (isPPC64)
2070        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2071      else
2072        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2073
2074      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2075      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2076                                   MachinePointerInfo(), false, false, 0);
2077      MemOps.push_back(Store);
2078      // Increment the address by four for the next argument to store
2079      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2080      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2081    }
2082  }
2083
2084  if (!MemOps.empty())
2085    Chain = DAG.getNode(ISD::TokenFactor, dl,
2086                        MVT::Other, &MemOps[0], MemOps.size());
2087
2088  return Chain;
2089}
2090
2091/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2092/// linkage area for the Darwin ABI.
2093static unsigned
2094CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2095                                     bool isPPC64,
2096                                     bool isVarArg,
2097                                     unsigned CC,
2098                                     const SmallVectorImpl<ISD::OutputArg>
2099                                       &Outs,
2100                                     const SmallVectorImpl<SDValue> &OutVals,
2101                                     unsigned &nAltivecParamsAtEnd) {
2102  // Count how many bytes are to be pushed on the stack, including the linkage
2103  // area, and parameter passing area.  We start with 24/48 bytes, which is
2104  // prereserved space for [SP][CR][LR][3 x unused].
2105  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2106  unsigned NumOps = Outs.size();
2107  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2108
2109  // Add up all the space actually used.
2110  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2111  // they all go in registers, but we must reserve stack space for them for
2112  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2113  // assigned stack space in order, with padding so Altivec parameters are
2114  // 16-byte aligned.
2115  nAltivecParamsAtEnd = 0;
2116  for (unsigned i = 0; i != NumOps; ++i) {
2117    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2118    EVT ArgVT = Outs[i].VT;
2119    // Varargs Altivec parameters are padded to a 16 byte boundary.
2120    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2121        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2122      if (!isVarArg && !isPPC64) {
2123        // Non-varargs Altivec parameters go after all the non-Altivec
2124        // parameters; handle those later so we know how much padding we need.
2125        nAltivecParamsAtEnd++;
2126        continue;
2127      }
2128      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2129      NumBytes = ((NumBytes+15)/16)*16;
2130    }
2131    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2132  }
2133
2134   // Allow for Altivec parameters at the end, if needed.
2135  if (nAltivecParamsAtEnd) {
2136    NumBytes = ((NumBytes+15)/16)*16;
2137    NumBytes += 16*nAltivecParamsAtEnd;
2138  }
2139
2140  // The prolog code of the callee may store up to 8 GPR argument registers to
2141  // the stack, allowing va_start to index over them in memory if its varargs.
2142  // Because we cannot tell if this is needed on the caller side, we have to
2143  // conservatively assume that it is needed.  As such, make sure we have at
2144  // least enough stack space for the caller to store the 8 GPRs.
2145  NumBytes = std::max(NumBytes,
2146                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2147
2148  // Tail call needs the stack to be aligned.
2149  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2150    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2151      getStackAlignment();
2152    unsigned AlignMask = TargetAlign-1;
2153    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2154  }
2155
2156  return NumBytes;
2157}
2158
2159/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2160/// adjusted to accomodate the arguments for the tailcall.
2161static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2162                                   unsigned ParamSize) {
2163
2164  if (!isTailCall) return 0;
2165
2166  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2167  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2168  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2169  // Remember only if the new adjustement is bigger.
2170  if (SPDiff < FI->getTailCallSPDelta())
2171    FI->setTailCallSPDelta(SPDiff);
2172
2173  return SPDiff;
2174}
2175
2176/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2177/// for tail call optimization. Targets which want to do tail call
2178/// optimization should implement this function.
2179bool
2180PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2181                                                     CallingConv::ID CalleeCC,
2182                                                     bool isVarArg,
2183                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2184                                                     SelectionDAG& DAG) const {
2185  if (!GuaranteedTailCallOpt)
2186    return false;
2187
2188  // Variable argument functions are not supported.
2189  if (isVarArg)
2190    return false;
2191
2192  MachineFunction &MF = DAG.getMachineFunction();
2193  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2194  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2195    // Functions containing by val parameters are not supported.
2196    for (unsigned i = 0; i != Ins.size(); i++) {
2197       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2198       if (Flags.isByVal()) return false;
2199    }
2200
2201    // Non PIC/GOT  tail calls are supported.
2202    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2203      return true;
2204
2205    // At the moment we can only do local tail calls (in same module, hidden
2206    // or protected) if we are generating PIC.
2207    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2208      return G->getGlobal()->hasHiddenVisibility()
2209          || G->getGlobal()->hasProtectedVisibility();
2210  }
2211
2212  return false;
2213}
2214
2215/// isCallCompatibleAddress - Return the immediate to use if the specified
2216/// 32-bit value is representable in the immediate field of a BxA instruction.
2217static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2218  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2219  if (!C) return 0;
2220
2221  int Addr = C->getZExtValue();
2222  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2223      (Addr << 6 >> 6) != Addr)
2224    return 0;  // Top 6 bits have to be sext of immediate.
2225
2226  return DAG.getConstant((int)C->getZExtValue() >> 2,
2227                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2228}
2229
2230namespace {
2231
2232struct TailCallArgumentInfo {
2233  SDValue Arg;
2234  SDValue FrameIdxOp;
2235  int       FrameIdx;
2236
2237  TailCallArgumentInfo() : FrameIdx(0) {}
2238};
2239
2240}
2241
2242/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2243static void
2244StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2245                                           SDValue Chain,
2246                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2247                   SmallVector<SDValue, 8> &MemOpChains,
2248                   DebugLoc dl) {
2249  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2250    SDValue Arg = TailCallArgs[i].Arg;
2251    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2252    int FI = TailCallArgs[i].FrameIdx;
2253    // Store relative to framepointer.
2254    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2255                                       MachinePointerInfo::getFixedStack(FI),
2256                                       false, false, 0));
2257  }
2258}
2259
2260/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2261/// the appropriate stack slot for the tail call optimized function call.
2262static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2263                                               MachineFunction &MF,
2264                                               SDValue Chain,
2265                                               SDValue OldRetAddr,
2266                                               SDValue OldFP,
2267                                               int SPDiff,
2268                                               bool isPPC64,
2269                                               bool isDarwinABI,
2270                                               DebugLoc dl) {
2271  if (SPDiff) {
2272    // Calculate the new stack slot for the return address.
2273    int SlotSize = isPPC64 ? 8 : 4;
2274    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2275                                                                   isDarwinABI);
2276    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2277                                                          NewRetAddrLoc, true);
2278    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2279    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2280    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2281                         MachinePointerInfo::getFixedStack(NewRetAddr),
2282                         false, false, 0);
2283
2284    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2285    // slot as the FP is never overwritten.
2286    if (isDarwinABI) {
2287      int NewFPLoc =
2288        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2289      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2290                                                          true);
2291      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2292      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2293                           MachinePointerInfo::getFixedStack(NewFPIdx),
2294                           false, false, 0);
2295    }
2296  }
2297  return Chain;
2298}
2299
2300/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2301/// the position of the argument.
2302static void
2303CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2304                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2305                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2306  int Offset = ArgOffset + SPDiff;
2307  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2308  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2309  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2310  SDValue FIN = DAG.getFrameIndex(FI, VT);
2311  TailCallArgumentInfo Info;
2312  Info.Arg = Arg;
2313  Info.FrameIdxOp = FIN;
2314  Info.FrameIdx = FI;
2315  TailCallArguments.push_back(Info);
2316}
2317
2318/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2319/// stack slot. Returns the chain as result and the loaded frame pointers in
2320/// LROpOut/FPOpout. Used when tail calling.
2321SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2322                                                        int SPDiff,
2323                                                        SDValue Chain,
2324                                                        SDValue &LROpOut,
2325                                                        SDValue &FPOpOut,
2326                                                        bool isDarwinABI,
2327                                                        DebugLoc dl) const {
2328  if (SPDiff) {
2329    // Load the LR and FP stack slot for later adjusting.
2330    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2331    LROpOut = getReturnAddrFrameIndex(DAG);
2332    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2333                          false, false, 0);
2334    Chain = SDValue(LROpOut.getNode(), 1);
2335
2336    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2337    // slot as the FP is never overwritten.
2338    if (isDarwinABI) {
2339      FPOpOut = getFramePointerFrameIndex(DAG);
2340      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2341                            false, false, 0);
2342      Chain = SDValue(FPOpOut.getNode(), 1);
2343    }
2344  }
2345  return Chain;
2346}
2347
2348/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2349/// by "Src" to address "Dst" of size "Size".  Alignment information is
2350/// specified by the specific parameter attribute. The copy will be passed as
2351/// a byval function parameter.
2352/// Sometimes what we are copying is the end of a larger object, the part that
2353/// does not fit in registers.
2354static SDValue
2355CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2356                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2357                          DebugLoc dl) {
2358  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2359  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2360                       false, false, MachinePointerInfo(0),
2361                       MachinePointerInfo(0));
2362}
2363
2364/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2365/// tail calls.
2366static void
2367LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2368                 SDValue Arg, SDValue PtrOff, int SPDiff,
2369                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2370                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2371                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2372                 DebugLoc dl) {
2373  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2374  if (!isTailCall) {
2375    if (isVector) {
2376      SDValue StackPtr;
2377      if (isPPC64)
2378        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2379      else
2380        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2381      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2382                           DAG.getConstant(ArgOffset, PtrVT));
2383    }
2384    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2385                                       MachinePointerInfo(), false, false, 0));
2386  // Calculate and remember argument location.
2387  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2388                                  TailCallArguments);
2389}
2390
2391static
2392void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2393                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2394                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2395                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2396  MachineFunction &MF = DAG.getMachineFunction();
2397
2398  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2399  // might overwrite each other in case of tail call optimization.
2400  SmallVector<SDValue, 8> MemOpChains2;
2401  // Do not flag preceeding copytoreg stuff together with the following stuff.
2402  InFlag = SDValue();
2403  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2404                                    MemOpChains2, dl);
2405  if (!MemOpChains2.empty())
2406    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2407                        &MemOpChains2[0], MemOpChains2.size());
2408
2409  // Store the return address to the appropriate stack slot.
2410  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2411                                        isPPC64, isDarwinABI, dl);
2412
2413  // Emit callseq_end just before tailcall node.
2414  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2415                             DAG.getIntPtrConstant(0, true), InFlag);
2416  InFlag = Chain.getValue(1);
2417}
2418
2419static
2420unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2421                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2422                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2423                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2424                     const PPCSubtarget &PPCSubTarget) {
2425
2426  bool isPPC64 = PPCSubTarget.isPPC64();
2427  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2428
2429  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2430  NodeTys.push_back(MVT::Other);   // Returns a chain
2431  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2432
2433  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2434
2435  bool needIndirectCall = true;
2436  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2437    // If this is an absolute destination address, use the munged value.
2438    Callee = SDValue(Dest, 0);
2439    needIndirectCall = false;
2440  }
2441
2442  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2443    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2444    // Use indirect calls for ALL functions calls in JIT mode, since the
2445    // far-call stubs may be outside relocation limits for a BL instruction.
2446    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2447      unsigned OpFlags = 0;
2448      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2449          PPCSubTarget.getDarwinVers() < 9 &&
2450          (G->getGlobal()->isDeclaration() ||
2451           G->getGlobal()->isWeakForLinker())) {
2452        // PC-relative references to external symbols should go through $stub,
2453        // unless we're building with the leopard linker or later, which
2454        // automatically synthesizes these stubs.
2455        OpFlags = PPCII::MO_DARWIN_STUB;
2456      }
2457
2458      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2459      // every direct call is) turn it into a TargetGlobalAddress /
2460      // TargetExternalSymbol node so that legalize doesn't hack it.
2461      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2462                                          Callee.getValueType(),
2463                                          0, OpFlags);
2464      needIndirectCall = false;
2465    }
2466  }
2467
2468  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2472        PPCSubTarget.getDarwinVers() < 9) {
2473      // PC-relative references to external symbols should go through $stub,
2474      // unless we're building with the leopard linker or later, which
2475      // automatically synthesizes these stubs.
2476      OpFlags = PPCII::MO_DARWIN_STUB;
2477    }
2478
2479    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2480                                         OpFlags);
2481    needIndirectCall = false;
2482  }
2483
2484  if (needIndirectCall) {
2485    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2486    // to do the call, we can't use PPCISD::CALL.
2487    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2488
2489    if (isSVR4ABI && isPPC64) {
2490      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2491      // entry point, but to the function descriptor (the function entry point
2492      // address is part of the function descriptor though).
2493      // The function descriptor is a three doubleword structure with the
2494      // following fields: function entry point, TOC base address and
2495      // environment pointer.
2496      // Thus for a call through a function pointer, the following actions need
2497      // to be performed:
2498      //   1. Save the TOC of the caller in the TOC save area of its stack
2499      //      frame (this is done in LowerCall_Darwin()).
2500      //   2. Load the address of the function entry point from the function
2501      //      descriptor.
2502      //   3. Load the TOC of the callee from the function descriptor into r2.
2503      //   4. Load the environment pointer from the function descriptor into
2504      //      r11.
2505      //   5. Branch to the function entry point address.
2506      //   6. On return of the callee, the TOC of the caller needs to be
2507      //      restored (this is done in FinishCall()).
2508      //
2509      // All those operations are flagged together to ensure that no other
2510      // operations can be scheduled in between. E.g. without flagging the
2511      // operations together, a TOC access in the caller could be scheduled
2512      // between the load of the callee TOC and the branch to the callee, which
2513      // results in the TOC access going through the TOC of the callee instead
2514      // of going through the TOC of the caller, which leads to incorrect code.
2515
2516      // Load the address of the function entry point from the function
2517      // descriptor.
2518      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2519      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2520                                        InFlag.getNode() ? 3 : 2);
2521      Chain = LoadFuncPtr.getValue(1);
2522      InFlag = LoadFuncPtr.getValue(2);
2523
2524      // Load environment pointer into r11.
2525      // Offset of the environment pointer within the function descriptor.
2526      SDValue PtrOff = DAG.getIntPtrConstant(16);
2527
2528      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2529      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2530                                       InFlag);
2531      Chain = LoadEnvPtr.getValue(1);
2532      InFlag = LoadEnvPtr.getValue(2);
2533
2534      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2535                                        InFlag);
2536      Chain = EnvVal.getValue(0);
2537      InFlag = EnvVal.getValue(1);
2538
2539      // Load TOC of the callee into r2. We are using a target-specific load
2540      // with r2 hard coded, because the result of a target-independent load
2541      // would never go directly into r2, since r2 is a reserved register (which
2542      // prevents the register allocator from allocating it), resulting in an
2543      // additional register being allocated and an unnecessary move instruction
2544      // being generated.
2545      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2546      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2547                                       Callee, InFlag);
2548      Chain = LoadTOCPtr.getValue(0);
2549      InFlag = LoadTOCPtr.getValue(1);
2550
2551      MTCTROps[0] = Chain;
2552      MTCTROps[1] = LoadFuncPtr;
2553      MTCTROps[2] = InFlag;
2554    }
2555
2556    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2557                        2 + (InFlag.getNode() != 0));
2558    InFlag = Chain.getValue(1);
2559
2560    NodeTys.clear();
2561    NodeTys.push_back(MVT::Other);
2562    NodeTys.push_back(MVT::Flag);
2563    Ops.push_back(Chain);
2564    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2565    Callee.setNode(0);
2566    // Add CTR register as callee so a bctr can be emitted later.
2567    if (isTailCall)
2568      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2569  }
2570
2571  // If this is a direct call, pass the chain and the callee.
2572  if (Callee.getNode()) {
2573    Ops.push_back(Chain);
2574    Ops.push_back(Callee);
2575  }
2576  // If this is a tail call add stack pointer delta.
2577  if (isTailCall)
2578    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2579
2580  // Add argument registers to the end of the list so that they are known live
2581  // into the call.
2582  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2583    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2584                                  RegsToPass[i].second.getValueType()));
2585
2586  return CallOpc;
2587}
2588
2589SDValue
2590PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2591                                   CallingConv::ID CallConv, bool isVarArg,
2592                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2593                                   DebugLoc dl, SelectionDAG &DAG,
2594                                   SmallVectorImpl<SDValue> &InVals) const {
2595
2596  SmallVector<CCValAssign, 16> RVLocs;
2597  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2598                    RVLocs, *DAG.getContext());
2599  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2600
2601  // Copy all of the result registers out of their specified physreg.
2602  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2603    CCValAssign &VA = RVLocs[i];
2604    EVT VT = VA.getValVT();
2605    assert(VA.isRegLoc() && "Can only return in registers!");
2606    Chain = DAG.getCopyFromReg(Chain, dl,
2607                               VA.getLocReg(), VT, InFlag).getValue(1);
2608    InVals.push_back(Chain.getValue(0));
2609    InFlag = Chain.getValue(2);
2610  }
2611
2612  return Chain;
2613}
2614
2615SDValue
2616PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2617                              bool isTailCall, bool isVarArg,
2618                              SelectionDAG &DAG,
2619                              SmallVector<std::pair<unsigned, SDValue>, 8>
2620                                &RegsToPass,
2621                              SDValue InFlag, SDValue Chain,
2622                              SDValue &Callee,
2623                              int SPDiff, unsigned NumBytes,
2624                              const SmallVectorImpl<ISD::InputArg> &Ins,
2625                              SmallVectorImpl<SDValue> &InVals) const {
2626  std::vector<EVT> NodeTys;
2627  SmallVector<SDValue, 8> Ops;
2628  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2629                                 isTailCall, RegsToPass, Ops, NodeTys,
2630                                 PPCSubTarget);
2631
2632  // When performing tail call optimization the callee pops its arguments off
2633  // the stack. Account for this here so these bytes can be pushed back on in
2634  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2635  int BytesCalleePops =
2636    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2637
2638  if (InFlag.getNode())
2639    Ops.push_back(InFlag);
2640
2641  // Emit tail call.
2642  if (isTailCall) {
2643    // If this is the first return lowered for this function, add the regs
2644    // to the liveout set for the function.
2645    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2646      SmallVector<CCValAssign, 16> RVLocs;
2647      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2648                     *DAG.getContext());
2649      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2650      for (unsigned i = 0; i != RVLocs.size(); ++i)
2651        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2652    }
2653
2654    assert(((Callee.getOpcode() == ISD::Register &&
2655             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2656            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2657            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2658            isa<ConstantSDNode>(Callee)) &&
2659    "Expecting an global address, external symbol, absolute value or register");
2660
2661    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2662  }
2663
2664  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2665  InFlag = Chain.getValue(1);
2666
2667  // Add a NOP immediately after the branch instruction when using the 64-bit
2668  // SVR4 ABI. At link time, if caller and callee are in a different module and
2669  // thus have a different TOC, the call will be replaced with a call to a stub
2670  // function which saves the current TOC, loads the TOC of the callee and
2671  // branches to the callee. The NOP will be replaced with a load instruction
2672  // which restores the TOC of the caller from the TOC save slot of the current
2673  // stack frame. If caller and callee belong to the same module (and have the
2674  // same TOC), the NOP will remain unchanged.
2675  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2676    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2677    if (CallOpc == PPCISD::BCTRL_SVR4) {
2678      // This is a call through a function pointer.
2679      // Restore the caller TOC from the save area into R2.
2680      // See PrepareCall() for more information about calls through function
2681      // pointers in the 64-bit SVR4 ABI.
2682      // We are using a target-specific load with r2 hard coded, because the
2683      // result of a target-independent load would never go directly into r2,
2684      // since r2 is a reserved register (which prevents the register allocator
2685      // from allocating it), resulting in an additional register being
2686      // allocated and an unnecessary move instruction being generated.
2687      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2688      InFlag = Chain.getValue(1);
2689    } else {
2690      // Otherwise insert NOP.
2691      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2692    }
2693  }
2694
2695  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2696                             DAG.getIntPtrConstant(BytesCalleePops, true),
2697                             InFlag);
2698  if (!Ins.empty())
2699    InFlag = Chain.getValue(1);
2700
2701  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2702                         Ins, dl, DAG, InVals);
2703}
2704
2705SDValue
2706PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2707                             CallingConv::ID CallConv, bool isVarArg,
2708                             bool &isTailCall,
2709                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2710                             const SmallVectorImpl<SDValue> &OutVals,
2711                             const SmallVectorImpl<ISD::InputArg> &Ins,
2712                             DebugLoc dl, SelectionDAG &DAG,
2713                             SmallVectorImpl<SDValue> &InVals) const {
2714  if (isTailCall)
2715    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2716                                                   Ins, DAG);
2717
2718  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2719    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2720                          isTailCall, Outs, OutVals, Ins,
2721                          dl, DAG, InVals);
2722
2723  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2724                          isTailCall, Outs, OutVals, Ins,
2725                          dl, DAG, InVals);
2726}
2727
2728SDValue
2729PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2730                                  CallingConv::ID CallConv, bool isVarArg,
2731                                  bool isTailCall,
2732                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2733                                  const SmallVectorImpl<SDValue> &OutVals,
2734                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2735                                  DebugLoc dl, SelectionDAG &DAG,
2736                                  SmallVectorImpl<SDValue> &InVals) const {
2737  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2738  // of the 32-bit SVR4 ABI stack frame layout.
2739
2740  assert((CallConv == CallingConv::C ||
2741          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2742
2743  unsigned PtrByteSize = 4;
2744
2745  MachineFunction &MF = DAG.getMachineFunction();
2746
2747  // Mark this function as potentially containing a function that contains a
2748  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2749  // and restoring the callers stack pointer in this functions epilog. This is
2750  // done because by tail calling the called function might overwrite the value
2751  // in this function's (MF) stack pointer stack slot 0(SP).
2752  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2753    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2754
2755  // Count how many bytes are to be pushed on the stack, including the linkage
2756  // area, parameter list area and the part of the local variable space which
2757  // contains copies of aggregates which are passed by value.
2758
2759  // Assign locations to all of the outgoing arguments.
2760  SmallVector<CCValAssign, 16> ArgLocs;
2761  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2762                 ArgLocs, *DAG.getContext());
2763
2764  // Reserve space for the linkage area on the stack.
2765  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2766
2767  if (isVarArg) {
2768    // Handle fixed and variable vector arguments differently.
2769    // Fixed vector arguments go into registers as long as registers are
2770    // available. Variable vector arguments always go into memory.
2771    unsigned NumArgs = Outs.size();
2772
2773    for (unsigned i = 0; i != NumArgs; ++i) {
2774      MVT ArgVT = Outs[i].VT;
2775      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2776      bool Result;
2777
2778      if (Outs[i].IsFixed) {
2779        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2780                             CCInfo);
2781      } else {
2782        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2783                                    ArgFlags, CCInfo);
2784      }
2785
2786      if (Result) {
2787#ifndef NDEBUG
2788        errs() << "Call operand #" << i << " has unhandled type "
2789             << EVT(ArgVT).getEVTString() << "\n";
2790#endif
2791        llvm_unreachable(0);
2792      }
2793    }
2794  } else {
2795    // All arguments are treated the same.
2796    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2797  }
2798
2799  // Assign locations to all of the outgoing aggregate by value arguments.
2800  SmallVector<CCValAssign, 16> ByValArgLocs;
2801  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2802                      *DAG.getContext());
2803
2804  // Reserve stack space for the allocations in CCInfo.
2805  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2806
2807  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2808
2809  // Size of the linkage area, parameter list area and the part of the local
2810  // space variable where copies of aggregates which are passed by value are
2811  // stored.
2812  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2813
2814  // Calculate by how many bytes the stack has to be adjusted in case of tail
2815  // call optimization.
2816  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2817
2818  // Adjust the stack pointer for the new arguments...
2819  // These operations are automatically eliminated by the prolog/epilog pass
2820  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2821  SDValue CallSeqStart = Chain;
2822
2823  // Load the return address and frame pointer so it can be moved somewhere else
2824  // later.
2825  SDValue LROp, FPOp;
2826  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2827                                       dl);
2828
2829  // Set up a copy of the stack pointer for use loading and storing any
2830  // arguments that may not fit in the registers available for argument
2831  // passing.
2832  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2833
2834  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2835  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2836  SmallVector<SDValue, 8> MemOpChains;
2837
2838  // Walk the register/memloc assignments, inserting copies/loads.
2839  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2840       i != e;
2841       ++i) {
2842    CCValAssign &VA = ArgLocs[i];
2843    SDValue Arg = OutVals[i];
2844    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2845
2846    if (Flags.isByVal()) {
2847      // Argument is an aggregate which is passed by value, thus we need to
2848      // create a copy of it in the local variable space of the current stack
2849      // frame (which is the stack frame of the caller) and pass the address of
2850      // this copy to the callee.
2851      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2852      CCValAssign &ByValVA = ByValArgLocs[j++];
2853      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2854
2855      // Memory reserved in the local variable space of the callers stack frame.
2856      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2857
2858      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2859      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2860
2861      // Create a copy of the argument in the local area of the current
2862      // stack frame.
2863      SDValue MemcpyCall =
2864        CreateCopyOfByValArgument(Arg, PtrOff,
2865                                  CallSeqStart.getNode()->getOperand(0),
2866                                  Flags, DAG, dl);
2867
2868      // This must go outside the CALLSEQ_START..END.
2869      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2870                           CallSeqStart.getNode()->getOperand(1));
2871      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2872                             NewCallSeqStart.getNode());
2873      Chain = CallSeqStart = NewCallSeqStart;
2874
2875      // Pass the address of the aggregate copy on the stack either in a
2876      // physical register or in the parameter list area of the current stack
2877      // frame to the callee.
2878      Arg = PtrOff;
2879    }
2880
2881    if (VA.isRegLoc()) {
2882      // Put argument in a physical register.
2883      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2884    } else {
2885      // Put argument in the parameter list area of the current stack frame.
2886      assert(VA.isMemLoc());
2887      unsigned LocMemOffset = VA.getLocMemOffset();
2888
2889      if (!isTailCall) {
2890        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2891        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2892
2893        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2894                                           MachinePointerInfo(),
2895                                           false, false, 0));
2896      } else {
2897        // Calculate and remember argument location.
2898        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2899                                 TailCallArguments);
2900      }
2901    }
2902  }
2903
2904  if (!MemOpChains.empty())
2905    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2906                        &MemOpChains[0], MemOpChains.size());
2907
2908  // Build a sequence of copy-to-reg nodes chained together with token chain
2909  // and flag operands which copy the outgoing args into the appropriate regs.
2910  SDValue InFlag;
2911  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2912    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2913                             RegsToPass[i].second, InFlag);
2914    InFlag = Chain.getValue(1);
2915  }
2916
2917  // Set CR6 to true if this is a vararg call.
2918  if (isVarArg) {
2919    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2920    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2921    InFlag = Chain.getValue(1);
2922  }
2923
2924  if (isTailCall)
2925    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2926                    false, TailCallArguments);
2927
2928  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2929                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2930                    Ins, InVals);
2931}
2932
2933SDValue
2934PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2935                                    CallingConv::ID CallConv, bool isVarArg,
2936                                    bool isTailCall,
2937                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2938                                    const SmallVectorImpl<SDValue> &OutVals,
2939                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2940                                    DebugLoc dl, SelectionDAG &DAG,
2941                                    SmallVectorImpl<SDValue> &InVals) const {
2942
2943  unsigned NumOps  = Outs.size();
2944
2945  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2946  bool isPPC64 = PtrVT == MVT::i64;
2947  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2948
2949  MachineFunction &MF = DAG.getMachineFunction();
2950
2951  // Mark this function as potentially containing a function that contains a
2952  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2953  // and restoring the callers stack pointer in this functions epilog. This is
2954  // done because by tail calling the called function might overwrite the value
2955  // in this function's (MF) stack pointer stack slot 0(SP).
2956  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2957    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2958
2959  unsigned nAltivecParamsAtEnd = 0;
2960
2961  // Count how many bytes are to be pushed on the stack, including the linkage
2962  // area, and parameter passing area.  We start with 24/48 bytes, which is
2963  // prereserved space for [SP][CR][LR][3 x unused].
2964  unsigned NumBytes =
2965    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2966                                         Outs, OutVals,
2967                                         nAltivecParamsAtEnd);
2968
2969  // Calculate by how many bytes the stack has to be adjusted in case of tail
2970  // call optimization.
2971  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2972
2973  // To protect arguments on the stack from being clobbered in a tail call,
2974  // force all the loads to happen before doing any other lowering.
2975  if (isTailCall)
2976    Chain = DAG.getStackArgumentTokenFactor(Chain);
2977
2978  // Adjust the stack pointer for the new arguments...
2979  // These operations are automatically eliminated by the prolog/epilog pass
2980  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2981  SDValue CallSeqStart = Chain;
2982
2983  // Load the return address and frame pointer so it can be move somewhere else
2984  // later.
2985  SDValue LROp, FPOp;
2986  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2987                                       dl);
2988
2989  // Set up a copy of the stack pointer for use loading and storing any
2990  // arguments that may not fit in the registers available for argument
2991  // passing.
2992  SDValue StackPtr;
2993  if (isPPC64)
2994    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2995  else
2996    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2997
2998  // Figure out which arguments are going to go in registers, and which in
2999  // memory.  Also, if this is a vararg function, floating point operations
3000  // must be stored to our stack, and loaded into integer regs as well, if
3001  // any integer regs are available for argument passing.
3002  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3003  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3004
3005  static const unsigned GPR_32[] = {           // 32-bit registers.
3006    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3007    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3008  };
3009  static const unsigned GPR_64[] = {           // 64-bit registers.
3010    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3011    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3012  };
3013  static const unsigned *FPR = GetFPR();
3014
3015  static const unsigned VR[] = {
3016    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3017    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3018  };
3019  const unsigned NumGPRs = array_lengthof(GPR_32);
3020  const unsigned NumFPRs = 13;
3021  const unsigned NumVRs  = array_lengthof(VR);
3022
3023  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3024
3025  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3026  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3027
3028  SmallVector<SDValue, 8> MemOpChains;
3029  for (unsigned i = 0; i != NumOps; ++i) {
3030    SDValue Arg = OutVals[i];
3031    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3032
3033    // PtrOff will be used to store the current argument to the stack if a
3034    // register cannot be found for it.
3035    SDValue PtrOff;
3036
3037    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3038
3039    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3040
3041    // On PPC64, promote integers to 64-bit values.
3042    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3043      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3044      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3045      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3046    }
3047
3048    // FIXME memcpy is used way more than necessary.  Correctness first.
3049    if (Flags.isByVal()) {
3050      unsigned Size = Flags.getByValSize();
3051      if (Size==1 || Size==2) {
3052        // Very small objects are passed right-justified.
3053        // Everything else is passed left-justified.
3054        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3055        if (GPR_idx != NumGPRs) {
3056          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg,
3057                                        MachinePointerInfo(), VT,
3058                                        false, false, 0);
3059          MemOpChains.push_back(Load.getValue(1));
3060          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3061
3062          ArgOffset += PtrByteSize;
3063        } else {
3064          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3065          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3066          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3067                                CallSeqStart.getNode()->getOperand(0),
3068                                Flags, DAG, dl);
3069          // This must go outside the CALLSEQ_START..END.
3070          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3071                               CallSeqStart.getNode()->getOperand(1));
3072          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3073                                 NewCallSeqStart.getNode());
3074          Chain = CallSeqStart = NewCallSeqStart;
3075          ArgOffset += PtrByteSize;
3076        }
3077        continue;
3078      }
3079      // Copy entire object into memory.  There are cases where gcc-generated
3080      // code assumes it is there, even if it could be put entirely into
3081      // registers.  (This is not what the doc says.)
3082      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3083                            CallSeqStart.getNode()->getOperand(0),
3084                            Flags, DAG, dl);
3085      // This must go outside the CALLSEQ_START..END.
3086      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3087                           CallSeqStart.getNode()->getOperand(1));
3088      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3089      Chain = CallSeqStart = NewCallSeqStart;
3090      // And copy the pieces of it that fit into registers.
3091      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3092        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3093        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3094        if (GPR_idx != NumGPRs) {
3095          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3096                                     MachinePointerInfo(),
3097                                     false, false, 0);
3098          MemOpChains.push_back(Load.getValue(1));
3099          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3100          ArgOffset += PtrByteSize;
3101        } else {
3102          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3103          break;
3104        }
3105      }
3106      continue;
3107    }
3108
3109    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3110    default: llvm_unreachable("Unexpected ValueType for argument!");
3111    case MVT::i32:
3112    case MVT::i64:
3113      if (GPR_idx != NumGPRs) {
3114        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3115      } else {
3116        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3117                         isPPC64, isTailCall, false, MemOpChains,
3118                         TailCallArguments, dl);
3119      }
3120      ArgOffset += PtrByteSize;
3121      break;
3122    case MVT::f32:
3123    case MVT::f64:
3124      if (FPR_idx != NumFPRs) {
3125        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3126
3127        if (isVarArg) {
3128          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3129                                       MachinePointerInfo(), false, false, 0);
3130          MemOpChains.push_back(Store);
3131
3132          // Float varargs are always shadowed in available integer registers
3133          if (GPR_idx != NumGPRs) {
3134            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3135                                       MachinePointerInfo(), false, false, 0);
3136            MemOpChains.push_back(Load.getValue(1));
3137            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3138          }
3139          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3140            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3141            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3142            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3143                                       MachinePointerInfo(),
3144                                       false, false, 0);
3145            MemOpChains.push_back(Load.getValue(1));
3146            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3147          }
3148        } else {
3149          // If we have any FPRs remaining, we may also have GPRs remaining.
3150          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3151          // GPRs.
3152          if (GPR_idx != NumGPRs)
3153            ++GPR_idx;
3154          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3155              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3156            ++GPR_idx;
3157        }
3158      } else {
3159        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3160                         isPPC64, isTailCall, false, MemOpChains,
3161                         TailCallArguments, dl);
3162      }
3163      if (isPPC64)
3164        ArgOffset += 8;
3165      else
3166        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3167      break;
3168    case MVT::v4f32:
3169    case MVT::v4i32:
3170    case MVT::v8i16:
3171    case MVT::v16i8:
3172      if (isVarArg) {
3173        // These go aligned on the stack, or in the corresponding R registers
3174        // when within range.  The Darwin PPC ABI doc claims they also go in
3175        // V registers; in fact gcc does this only for arguments that are
3176        // prototyped, not for those that match the ...  We do it for all
3177        // arguments, seems to work.
3178        while (ArgOffset % 16 !=0) {
3179          ArgOffset += PtrByteSize;
3180          if (GPR_idx != NumGPRs)
3181            GPR_idx++;
3182        }
3183        // We could elide this store in the case where the object fits
3184        // entirely in R registers.  Maybe later.
3185        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3186                            DAG.getConstant(ArgOffset, PtrVT));
3187        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3188                                     MachinePointerInfo(), false, false, 0);
3189        MemOpChains.push_back(Store);
3190        if (VR_idx != NumVRs) {
3191          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3192                                     MachinePointerInfo(),
3193                                     false, false, 0);
3194          MemOpChains.push_back(Load.getValue(1));
3195          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3196        }
3197        ArgOffset += 16;
3198        for (unsigned i=0; i<16; i+=PtrByteSize) {
3199          if (GPR_idx == NumGPRs)
3200            break;
3201          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3202                                  DAG.getConstant(i, PtrVT));
3203          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3204                                     false, false, 0);
3205          MemOpChains.push_back(Load.getValue(1));
3206          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3207        }
3208        break;
3209      }
3210
3211      // Non-varargs Altivec params generally go in registers, but have
3212      // stack space allocated at the end.
3213      if (VR_idx != NumVRs) {
3214        // Doesn't have GPR space allocated.
3215        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3216      } else if (nAltivecParamsAtEnd==0) {
3217        // We are emitting Altivec params in order.
3218        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3219                         isPPC64, isTailCall, true, MemOpChains,
3220                         TailCallArguments, dl);
3221        ArgOffset += 16;
3222      }
3223      break;
3224    }
3225  }
3226  // If all Altivec parameters fit in registers, as they usually do,
3227  // they get stack space following the non-Altivec parameters.  We
3228  // don't track this here because nobody below needs it.
3229  // If there are more Altivec parameters than fit in registers emit
3230  // the stores here.
3231  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3232    unsigned j = 0;
3233    // Offset is aligned; skip 1st 12 params which go in V registers.
3234    ArgOffset = ((ArgOffset+15)/16)*16;
3235    ArgOffset += 12*16;
3236    for (unsigned i = 0; i != NumOps; ++i) {
3237      SDValue Arg = OutVals[i];
3238      EVT ArgType = Outs[i].VT;
3239      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3240          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3241        if (++j > NumVRs) {
3242          SDValue PtrOff;
3243          // We are emitting Altivec params in order.
3244          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3245                           isPPC64, isTailCall, true, MemOpChains,
3246                           TailCallArguments, dl);
3247          ArgOffset += 16;
3248        }
3249      }
3250    }
3251  }
3252
3253  if (!MemOpChains.empty())
3254    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3255                        &MemOpChains[0], MemOpChains.size());
3256
3257  // Check if this is an indirect call (MTCTR/BCTRL).
3258  // See PrepareCall() for more information about calls through function
3259  // pointers in the 64-bit SVR4 ABI.
3260  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3261      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3262      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3263      !isBLACompatibleAddress(Callee, DAG)) {
3264    // Load r2 into a virtual register and store it to the TOC save area.
3265    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3266    // TOC save area offset.
3267    SDValue PtrOff = DAG.getIntPtrConstant(40);
3268    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3269    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3270                         false, false, 0);
3271  }
3272
3273  // On Darwin, R12 must contain the address of an indirect callee.  This does
3274  // not mean the MTCTR instruction must use R12; it's easier to model this as
3275  // an extra parameter, so do that.
3276  if (!isTailCall &&
3277      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3278      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3279      !isBLACompatibleAddress(Callee, DAG))
3280    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3281                                                   PPC::R12), Callee));
3282
3283  // Build a sequence of copy-to-reg nodes chained together with token chain
3284  // and flag operands which copy the outgoing args into the appropriate regs.
3285  SDValue InFlag;
3286  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3287    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3288                             RegsToPass[i].second, InFlag);
3289    InFlag = Chain.getValue(1);
3290  }
3291
3292  if (isTailCall)
3293    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3294                    FPOp, true, TailCallArguments);
3295
3296  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3297                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3298                    Ins, InVals);
3299}
3300
3301SDValue
3302PPCTargetLowering::LowerReturn(SDValue Chain,
3303                               CallingConv::ID CallConv, bool isVarArg,
3304                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3305                               const SmallVectorImpl<SDValue> &OutVals,
3306                               DebugLoc dl, SelectionDAG &DAG) const {
3307
3308  SmallVector<CCValAssign, 16> RVLocs;
3309  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3310                 RVLocs, *DAG.getContext());
3311  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3312
3313  // If this is the first return lowered for this function, add the regs to the
3314  // liveout set for the function.
3315  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3316    for (unsigned i = 0; i != RVLocs.size(); ++i)
3317      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3318  }
3319
3320  SDValue Flag;
3321
3322  // Copy the result values into the output registers.
3323  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3324    CCValAssign &VA = RVLocs[i];
3325    assert(VA.isRegLoc() && "Can only return in registers!");
3326    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3327                             OutVals[i], Flag);
3328    Flag = Chain.getValue(1);
3329  }
3330
3331  if (Flag.getNode())
3332    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3333  else
3334    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3335}
3336
3337SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3338                                   const PPCSubtarget &Subtarget) const {
3339  // When we pop the dynamic allocation we need to restore the SP link.
3340  DebugLoc dl = Op.getDebugLoc();
3341
3342  // Get the corect type for pointers.
3343  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3344
3345  // Construct the stack pointer operand.
3346  bool isPPC64 = Subtarget.isPPC64();
3347  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3348  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3349
3350  // Get the operands for the STACKRESTORE.
3351  SDValue Chain = Op.getOperand(0);
3352  SDValue SaveSP = Op.getOperand(1);
3353
3354  // Load the old link SP.
3355  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3356                                   MachinePointerInfo(),
3357                                   false, false, 0);
3358
3359  // Restore the stack pointer.
3360  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3361
3362  // Store the old link SP.
3363  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3364                      false, false, 0);
3365}
3366
3367
3368
3369SDValue
3370PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3371  MachineFunction &MF = DAG.getMachineFunction();
3372  bool isPPC64 = PPCSubTarget.isPPC64();
3373  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3374  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3375
3376  // Get current frame pointer save index.  The users of this index will be
3377  // primarily DYNALLOC instructions.
3378  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3379  int RASI = FI->getReturnAddrSaveIndex();
3380
3381  // If the frame pointer save index hasn't been defined yet.
3382  if (!RASI) {
3383    // Find out what the fix offset of the frame pointer save area.
3384    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3385    // Allocate the frame index for frame pointer save area.
3386    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3387    // Save the result.
3388    FI->setReturnAddrSaveIndex(RASI);
3389  }
3390  return DAG.getFrameIndex(RASI, PtrVT);
3391}
3392
3393SDValue
3394PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3395  MachineFunction &MF = DAG.getMachineFunction();
3396  bool isPPC64 = PPCSubTarget.isPPC64();
3397  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3398  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3399
3400  // Get current frame pointer save index.  The users of this index will be
3401  // primarily DYNALLOC instructions.
3402  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3403  int FPSI = FI->getFramePointerSaveIndex();
3404
3405  // If the frame pointer save index hasn't been defined yet.
3406  if (!FPSI) {
3407    // Find out what the fix offset of the frame pointer save area.
3408    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3409                                                           isDarwinABI);
3410
3411    // Allocate the frame index for frame pointer save area.
3412    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3413    // Save the result.
3414    FI->setFramePointerSaveIndex(FPSI);
3415  }
3416  return DAG.getFrameIndex(FPSI, PtrVT);
3417}
3418
3419SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3420                                         SelectionDAG &DAG,
3421                                         const PPCSubtarget &Subtarget) const {
3422  // Get the inputs.
3423  SDValue Chain = Op.getOperand(0);
3424  SDValue Size  = Op.getOperand(1);
3425  DebugLoc dl = Op.getDebugLoc();
3426
3427  // Get the corect type for pointers.
3428  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3429  // Negate the size.
3430  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3431                                  DAG.getConstant(0, PtrVT), Size);
3432  // Construct a node for the frame pointer save index.
3433  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3434  // Build a DYNALLOC node.
3435  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3436  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3437  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3438}
3439
3440/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3441/// possible.
3442SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3443  // Not FP? Not a fsel.
3444  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3445      !Op.getOperand(2).getValueType().isFloatingPoint())
3446    return Op;
3447
3448  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3449
3450  // Cannot handle SETEQ/SETNE.
3451  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3452
3453  EVT ResVT = Op.getValueType();
3454  EVT CmpVT = Op.getOperand(0).getValueType();
3455  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3456  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3457  DebugLoc dl = Op.getDebugLoc();
3458
3459  // If the RHS of the comparison is a 0.0, we don't need to do the
3460  // subtraction at all.
3461  if (isFloatingPointZero(RHS))
3462    switch (CC) {
3463    default: break;       // SETUO etc aren't handled by fsel.
3464    case ISD::SETULT:
3465    case ISD::SETLT:
3466      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3467    case ISD::SETOGE:
3468    case ISD::SETGE:
3469      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3470        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3471      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3472    case ISD::SETUGT:
3473    case ISD::SETGT:
3474      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3475    case ISD::SETOLE:
3476    case ISD::SETLE:
3477      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3478        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3479      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3480                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3481    }
3482
3483  SDValue Cmp;
3484  switch (CC) {
3485  default: break;       // SETUO etc aren't handled by fsel.
3486  case ISD::SETULT:
3487  case ISD::SETLT:
3488    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3489    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3490      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3491      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3492  case ISD::SETOGE:
3493  case ISD::SETGE:
3494    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3495    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3496      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3497      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3498  case ISD::SETUGT:
3499  case ISD::SETGT:
3500    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3501    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3502      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3503      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3504  case ISD::SETOLE:
3505  case ISD::SETLE:
3506    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3507    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3508      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3509      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3510  }
3511  return Op;
3512}
3513
3514// FIXME: Split this code up when LegalizeDAGTypes lands.
3515SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3516                                           DebugLoc dl) const {
3517  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3518  SDValue Src = Op.getOperand(0);
3519  if (Src.getValueType() == MVT::f32)
3520    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3521
3522  SDValue Tmp;
3523  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3524  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3525  case MVT::i32:
3526    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3527                                                         PPCISD::FCTIDZ,
3528                      dl, MVT::f64, Src);
3529    break;
3530  case MVT::i64:
3531    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3532    break;
3533  }
3534
3535  // Convert the FP value to an int value through memory.
3536  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3537
3538  // Emit a store to the stack slot.
3539  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3540                               MachinePointerInfo(), false, false, 0);
3541
3542  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3543  // add in a bias.
3544  if (Op.getValueType() == MVT::i32)
3545    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3546                        DAG.getConstant(4, FIPtr.getValueType()));
3547  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3548                     false, false, 0);
3549}
3550
3551SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3552                                           SelectionDAG &DAG) const {
3553  DebugLoc dl = Op.getDebugLoc();
3554  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3555  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3556    return SDValue();
3557
3558  if (Op.getOperand(0).getValueType() == MVT::i64) {
3559    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3560                               MVT::f64, Op.getOperand(0));
3561    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3562    if (Op.getValueType() == MVT::f32)
3563      FP = DAG.getNode(ISD::FP_ROUND, dl,
3564                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3565    return FP;
3566  }
3567
3568  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3569         "Unhandled SINT_TO_FP type in custom expander!");
3570  // Since we only generate this in 64-bit mode, we can take advantage of
3571  // 64-bit registers.  In particular, sign extend the input value into the
3572  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3573  // then lfd it and fcfid it.
3574  MachineFunction &MF = DAG.getMachineFunction();
3575  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3576  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3577  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3578  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3579
3580  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3581                                Op.getOperand(0));
3582
3583  // STD the extended value into the stack slot.
3584  MachineMemOperand *MMO =
3585    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3586                            MachineMemOperand::MOStore, 8, 8);
3587  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3588  SDValue Store =
3589    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3590                            Ops, 4, MVT::i64, MMO);
3591  // Load the value as a double.
3592  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3593                           false, false, 0);
3594
3595  // FCFID it and return it.
3596  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3597  if (Op.getValueType() == MVT::f32)
3598    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3599  return FP;
3600}
3601
3602SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3603                                            SelectionDAG &DAG) const {
3604  DebugLoc dl = Op.getDebugLoc();
3605  /*
3606   The rounding mode is in bits 30:31 of FPSR, and has the following
3607   settings:
3608     00 Round to nearest
3609     01 Round to 0
3610     10 Round to +inf
3611     11 Round to -inf
3612
3613  FLT_ROUNDS, on the other hand, expects the following:
3614    -1 Undefined
3615     0 Round to 0
3616     1 Round to nearest
3617     2 Round to +inf
3618     3 Round to -inf
3619
3620  To perform the conversion, we do:
3621    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3622  */
3623
3624  MachineFunction &MF = DAG.getMachineFunction();
3625  EVT VT = Op.getValueType();
3626  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3627  std::vector<EVT> NodeTys;
3628  SDValue MFFSreg, InFlag;
3629
3630  // Save FP Control Word to register
3631  NodeTys.push_back(MVT::f64);    // return register
3632  NodeTys.push_back(MVT::Flag);   // unused in this context
3633  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3634
3635  // Save FP register to stack slot
3636  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3637  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3638  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3639                               StackSlot, MachinePointerInfo(), false, false,0);
3640
3641  // Load FP Control Word from low 32 bits of stack slot.
3642  SDValue Four = DAG.getConstant(4, PtrVT);
3643  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3644  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3645                            false, false, 0);
3646
3647  // Transform as necessary
3648  SDValue CWD1 =
3649    DAG.getNode(ISD::AND, dl, MVT::i32,
3650                CWD, DAG.getConstant(3, MVT::i32));
3651  SDValue CWD2 =
3652    DAG.getNode(ISD::SRL, dl, MVT::i32,
3653                DAG.getNode(ISD::AND, dl, MVT::i32,
3654                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3655                                        CWD, DAG.getConstant(3, MVT::i32)),
3656                            DAG.getConstant(3, MVT::i32)),
3657                DAG.getConstant(1, MVT::i32));
3658
3659  SDValue RetVal =
3660    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3661
3662  return DAG.getNode((VT.getSizeInBits() < 16 ?
3663                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3664}
3665
3666SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3667  EVT VT = Op.getValueType();
3668  unsigned BitWidth = VT.getSizeInBits();
3669  DebugLoc dl = Op.getDebugLoc();
3670  assert(Op.getNumOperands() == 3 &&
3671         VT == Op.getOperand(1).getValueType() &&
3672         "Unexpected SHL!");
3673
3674  // Expand into a bunch of logical ops.  Note that these ops
3675  // depend on the PPC behavior for oversized shift amounts.
3676  SDValue Lo = Op.getOperand(0);
3677  SDValue Hi = Op.getOperand(1);
3678  SDValue Amt = Op.getOperand(2);
3679  EVT AmtVT = Amt.getValueType();
3680
3681  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3682                             DAG.getConstant(BitWidth, AmtVT), Amt);
3683  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3684  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3685  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3686  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3687                             DAG.getConstant(-BitWidth, AmtVT));
3688  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3689  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3690  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3691  SDValue OutOps[] = { OutLo, OutHi };
3692  return DAG.getMergeValues(OutOps, 2, dl);
3693}
3694
3695SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3696  EVT VT = Op.getValueType();
3697  DebugLoc dl = Op.getDebugLoc();
3698  unsigned BitWidth = VT.getSizeInBits();
3699  assert(Op.getNumOperands() == 3 &&
3700         VT == Op.getOperand(1).getValueType() &&
3701         "Unexpected SRL!");
3702
3703  // Expand into a bunch of logical ops.  Note that these ops
3704  // depend on the PPC behavior for oversized shift amounts.
3705  SDValue Lo = Op.getOperand(0);
3706  SDValue Hi = Op.getOperand(1);
3707  SDValue Amt = Op.getOperand(2);
3708  EVT AmtVT = Amt.getValueType();
3709
3710  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3711                             DAG.getConstant(BitWidth, AmtVT), Amt);
3712  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3713  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3714  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3715  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3716                             DAG.getConstant(-BitWidth, AmtVT));
3717  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3718  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3719  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3720  SDValue OutOps[] = { OutLo, OutHi };
3721  return DAG.getMergeValues(OutOps, 2, dl);
3722}
3723
3724SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3725  DebugLoc dl = Op.getDebugLoc();
3726  EVT VT = Op.getValueType();
3727  unsigned BitWidth = VT.getSizeInBits();
3728  assert(Op.getNumOperands() == 3 &&
3729         VT == Op.getOperand(1).getValueType() &&
3730         "Unexpected SRA!");
3731
3732  // Expand into a bunch of logical ops, followed by a select_cc.
3733  SDValue Lo = Op.getOperand(0);
3734  SDValue Hi = Op.getOperand(1);
3735  SDValue Amt = Op.getOperand(2);
3736  EVT AmtVT = Amt.getValueType();
3737
3738  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3739                             DAG.getConstant(BitWidth, AmtVT), Amt);
3740  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3741  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3742  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3743  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3744                             DAG.getConstant(-BitWidth, AmtVT));
3745  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3746  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3747  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3748                                  Tmp4, Tmp6, ISD::SETLE);
3749  SDValue OutOps[] = { OutLo, OutHi };
3750  return DAG.getMergeValues(OutOps, 2, dl);
3751}
3752
3753//===----------------------------------------------------------------------===//
3754// Vector related lowering.
3755//
3756
3757/// BuildSplatI - Build a canonical splati of Val with an element size of
3758/// SplatSize.  Cast the result to VT.
3759static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3760                             SelectionDAG &DAG, DebugLoc dl) {
3761  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3762
3763  static const EVT VTys[] = { // canonical VT to use for each size.
3764    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3765  };
3766
3767  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3768
3769  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3770  if (Val == -1)
3771    SplatSize = 1;
3772
3773  EVT CanonicalVT = VTys[SplatSize-1];
3774
3775  // Build a canonical splat for this value.
3776  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3777  SmallVector<SDValue, 8> Ops;
3778  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3779  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3780                              &Ops[0], Ops.size());
3781  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3782}
3783
3784/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3785/// specified intrinsic ID.
3786static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3787                                SelectionDAG &DAG, DebugLoc dl,
3788                                EVT DestVT = MVT::Other) {
3789  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3790  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3791                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3792}
3793
3794/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3795/// specified intrinsic ID.
3796static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3797                                SDValue Op2, SelectionDAG &DAG,
3798                                DebugLoc dl, EVT DestVT = MVT::Other) {
3799  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3800  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3801                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3802}
3803
3804
3805/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3806/// amount.  The result has the specified value type.
3807static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3808                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3809  // Force LHS/RHS to be the right type.
3810  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3811  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3812
3813  int Ops[16];
3814  for (unsigned i = 0; i != 16; ++i)
3815    Ops[i] = i + Amt;
3816  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3817  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3818}
3819
3820// If this is a case we can't handle, return null and let the default
3821// expansion code take care of it.  If we CAN select this case, and if it
3822// selects to a single instruction, return Op.  Otherwise, if we can codegen
3823// this case more efficiently than a constant pool load, lower it to the
3824// sequence of ops that should be used.
3825SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3826                                             SelectionDAG &DAG) const {
3827  DebugLoc dl = Op.getDebugLoc();
3828  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3829  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3830
3831  // Check if this is a splat of a constant value.
3832  APInt APSplatBits, APSplatUndef;
3833  unsigned SplatBitSize;
3834  bool HasAnyUndefs;
3835  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3836                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3837    return SDValue();
3838
3839  unsigned SplatBits = APSplatBits.getZExtValue();
3840  unsigned SplatUndef = APSplatUndef.getZExtValue();
3841  unsigned SplatSize = SplatBitSize / 8;
3842
3843  // First, handle single instruction cases.
3844
3845  // All zeros?
3846  if (SplatBits == 0) {
3847    // Canonicalize all zero vectors to be v4i32.
3848    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3849      SDValue Z = DAG.getConstant(0, MVT::i32);
3850      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3851      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3852    }
3853    return Op;
3854  }
3855
3856  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3857  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3858                    (32-SplatBitSize));
3859  if (SextVal >= -16 && SextVal <= 15)
3860    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3861
3862
3863  // Two instruction sequences.
3864
3865  // If this value is in the range [-32,30] and is even, use:
3866  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3867  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3868    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3869    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3870    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3871  }
3872
3873  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3874  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3875  // for fneg/fabs.
3876  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3877    // Make -1 and vspltisw -1:
3878    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3879
3880    // Make the VSLW intrinsic, computing 0x8000_0000.
3881    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3882                                   OnesV, DAG, dl);
3883
3884    // xor by OnesV to invert it.
3885    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3886    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3887  }
3888
3889  // Check to see if this is a wide variety of vsplti*, binop self cases.
3890  static const signed char SplatCsts[] = {
3891    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3892    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3893  };
3894
3895  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3896    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3897    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3898    int i = SplatCsts[idx];
3899
3900    // Figure out what shift amount will be used by altivec if shifted by i in
3901    // this splat size.
3902    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3903
3904    // vsplti + shl self.
3905    if (SextVal == (i << (int)TypeShiftAmt)) {
3906      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3907      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3908        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3909        Intrinsic::ppc_altivec_vslw
3910      };
3911      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3912      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3913    }
3914
3915    // vsplti + srl self.
3916    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3917      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3918      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3919        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3920        Intrinsic::ppc_altivec_vsrw
3921      };
3922      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3923      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3924    }
3925
3926    // vsplti + sra self.
3927    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3928      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3929      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3930        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3931        Intrinsic::ppc_altivec_vsraw
3932      };
3933      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3934      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3935    }
3936
3937    // vsplti + rol self.
3938    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3939                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3940      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3941      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3942        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3943        Intrinsic::ppc_altivec_vrlw
3944      };
3945      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3946      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3947    }
3948
3949    // t = vsplti c, result = vsldoi t, t, 1
3950    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3951      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3952      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3953    }
3954    // t = vsplti c, result = vsldoi t, t, 2
3955    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3956      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3957      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3958    }
3959    // t = vsplti c, result = vsldoi t, t, 3
3960    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3961      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3962      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3963    }
3964  }
3965
3966  // Three instruction sequences.
3967
3968  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3969  if (SextVal >= 0 && SextVal <= 31) {
3970    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3971    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3972    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3973    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3974  }
3975  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3976  if (SextVal >= -31 && SextVal <= 0) {
3977    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3978    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3979    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3980    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3981  }
3982
3983  return SDValue();
3984}
3985
3986/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3987/// the specified operations to build the shuffle.
3988static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3989                                      SDValue RHS, SelectionDAG &DAG,
3990                                      DebugLoc dl) {
3991  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3992  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3993  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3994
3995  enum {
3996    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3997    OP_VMRGHW,
3998    OP_VMRGLW,
3999    OP_VSPLTISW0,
4000    OP_VSPLTISW1,
4001    OP_VSPLTISW2,
4002    OP_VSPLTISW3,
4003    OP_VSLDOI4,
4004    OP_VSLDOI8,
4005    OP_VSLDOI12
4006  };
4007
4008  if (OpNum == OP_COPY) {
4009    if (LHSID == (1*9+2)*9+3) return LHS;
4010    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4011    return RHS;
4012  }
4013
4014  SDValue OpLHS, OpRHS;
4015  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4016  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4017
4018  int ShufIdxs[16];
4019  switch (OpNum) {
4020  default: llvm_unreachable("Unknown i32 permute!");
4021  case OP_VMRGHW:
4022    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4023    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4024    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4025    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4026    break;
4027  case OP_VMRGLW:
4028    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4029    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4030    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4031    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4032    break;
4033  case OP_VSPLTISW0:
4034    for (unsigned i = 0; i != 16; ++i)
4035      ShufIdxs[i] = (i&3)+0;
4036    break;
4037  case OP_VSPLTISW1:
4038    for (unsigned i = 0; i != 16; ++i)
4039      ShufIdxs[i] = (i&3)+4;
4040    break;
4041  case OP_VSPLTISW2:
4042    for (unsigned i = 0; i != 16; ++i)
4043      ShufIdxs[i] = (i&3)+8;
4044    break;
4045  case OP_VSPLTISW3:
4046    for (unsigned i = 0; i != 16; ++i)
4047      ShufIdxs[i] = (i&3)+12;
4048    break;
4049  case OP_VSLDOI4:
4050    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4051  case OP_VSLDOI8:
4052    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4053  case OP_VSLDOI12:
4054    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4055  }
4056  EVT VT = OpLHS.getValueType();
4057  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4058  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4059  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4060  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4061}
4062
4063/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4064/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4065/// return the code it can be lowered into.  Worst case, it can always be
4066/// lowered into a vperm.
4067SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4068                                               SelectionDAG &DAG) const {
4069  DebugLoc dl = Op.getDebugLoc();
4070  SDValue V1 = Op.getOperand(0);
4071  SDValue V2 = Op.getOperand(1);
4072  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4073  EVT VT = Op.getValueType();
4074
4075  // Cases that are handled by instructions that take permute immediates
4076  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4077  // selected by the instruction selector.
4078  if (V2.getOpcode() == ISD::UNDEF) {
4079    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4080        PPC::isSplatShuffleMask(SVOp, 2) ||
4081        PPC::isSplatShuffleMask(SVOp, 4) ||
4082        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4083        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4084        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4085        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4086        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4087        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4088        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4089        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4090        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4091      return Op;
4092    }
4093  }
4094
4095  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4096  // and produce a fixed permutation.  If any of these match, do not lower to
4097  // VPERM.
4098  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4099      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4100      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4101      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4102      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4103      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4104      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4105      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4106      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4107    return Op;
4108
4109  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4110  // perfect shuffle table to emit an optimal matching sequence.
4111  SmallVector<int, 16> PermMask;
4112  SVOp->getMask(PermMask);
4113
4114  unsigned PFIndexes[4];
4115  bool isFourElementShuffle = true;
4116  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4117    unsigned EltNo = 8;   // Start out undef.
4118    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4119      if (PermMask[i*4+j] < 0)
4120        continue;   // Undef, ignore it.
4121
4122      unsigned ByteSource = PermMask[i*4+j];
4123      if ((ByteSource & 3) != j) {
4124        isFourElementShuffle = false;
4125        break;
4126      }
4127
4128      if (EltNo == 8) {
4129        EltNo = ByteSource/4;
4130      } else if (EltNo != ByteSource/4) {
4131        isFourElementShuffle = false;
4132        break;
4133      }
4134    }
4135    PFIndexes[i] = EltNo;
4136  }
4137
4138  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4139  // perfect shuffle vector to determine if it is cost effective to do this as
4140  // discrete instructions, or whether we should use a vperm.
4141  if (isFourElementShuffle) {
4142    // Compute the index in the perfect shuffle table.
4143    unsigned PFTableIndex =
4144      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4145
4146    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4147    unsigned Cost  = (PFEntry >> 30);
4148
4149    // Determining when to avoid vperm is tricky.  Many things affect the cost
4150    // of vperm, particularly how many times the perm mask needs to be computed.
4151    // For example, if the perm mask can be hoisted out of a loop or is already
4152    // used (perhaps because there are multiple permutes with the same shuffle
4153    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4154    // the loop requires an extra register.
4155    //
4156    // As a compromise, we only emit discrete instructions if the shuffle can be
4157    // generated in 3 or fewer operations.  When we have loop information
4158    // available, if this block is within a loop, we should avoid using vperm
4159    // for 3-operation perms and use a constant pool load instead.
4160    if (Cost < 3)
4161      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4162  }
4163
4164  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4165  // vector that will get spilled to the constant pool.
4166  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4167
4168  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4169  // that it is in input element units, not in bytes.  Convert now.
4170  EVT EltVT = V1.getValueType().getVectorElementType();
4171  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4172
4173  SmallVector<SDValue, 16> ResultMask;
4174  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4175    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4176
4177    for (unsigned j = 0; j != BytesPerElement; ++j)
4178      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4179                                           MVT::i32));
4180  }
4181
4182  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4183                                    &ResultMask[0], ResultMask.size());
4184  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4185}
4186
4187/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4188/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4189/// information about the intrinsic.
4190static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4191                                  bool &isDot) {
4192  unsigned IntrinsicID =
4193    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4194  CompareOpc = -1;
4195  isDot = false;
4196  switch (IntrinsicID) {
4197  default: return false;
4198    // Comparison predicates.
4199  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4200  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4201  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4202  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4203  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4204  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4207  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4208  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4209  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4210  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4211  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4212
4213    // Normal Comparisons.
4214  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4215  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4216  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4217  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4218  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4219  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4222  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4223  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4224  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4225  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4226  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4227  }
4228  return true;
4229}
4230
4231/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4232/// lower, do it, otherwise return null.
4233SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4234                                                   SelectionDAG &DAG) const {
4235  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4236  // opcode number of the comparison.
4237  DebugLoc dl = Op.getDebugLoc();
4238  int CompareOpc;
4239  bool isDot;
4240  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4241    return SDValue();    // Don't custom lower most intrinsics.
4242
4243  // If this is a non-dot comparison, make the VCMP node and we are done.
4244  if (!isDot) {
4245    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4246                              Op.getOperand(1), Op.getOperand(2),
4247                              DAG.getConstant(CompareOpc, MVT::i32));
4248    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4249  }
4250
4251  // Create the PPCISD altivec 'dot' comparison node.
4252  SDValue Ops[] = {
4253    Op.getOperand(2),  // LHS
4254    Op.getOperand(3),  // RHS
4255    DAG.getConstant(CompareOpc, MVT::i32)
4256  };
4257  std::vector<EVT> VTs;
4258  VTs.push_back(Op.getOperand(2).getValueType());
4259  VTs.push_back(MVT::Flag);
4260  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4261
4262  // Now that we have the comparison, emit a copy from the CR to a GPR.
4263  // This is flagged to the above dot comparison.
4264  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4265                                DAG.getRegister(PPC::CR6, MVT::i32),
4266                                CompNode.getValue(1));
4267
4268  // Unpack the result based on how the target uses it.
4269  unsigned BitNo;   // Bit # of CR6.
4270  bool InvertBit;   // Invert result?
4271  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4272  default:  // Can't happen, don't crash on invalid number though.
4273  case 0:   // Return the value of the EQ bit of CR6.
4274    BitNo = 0; InvertBit = false;
4275    break;
4276  case 1:   // Return the inverted value of the EQ bit of CR6.
4277    BitNo = 0; InvertBit = true;
4278    break;
4279  case 2:   // Return the value of the LT bit of CR6.
4280    BitNo = 2; InvertBit = false;
4281    break;
4282  case 3:   // Return the inverted value of the LT bit of CR6.
4283    BitNo = 2; InvertBit = true;
4284    break;
4285  }
4286
4287  // Shift the bit into the low position.
4288  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4289                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4290  // Isolate the bit.
4291  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4292                      DAG.getConstant(1, MVT::i32));
4293
4294  // If we are supposed to, toggle the bit.
4295  if (InvertBit)
4296    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4297                        DAG.getConstant(1, MVT::i32));
4298  return Flags;
4299}
4300
4301SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4302                                                   SelectionDAG &DAG) const {
4303  DebugLoc dl = Op.getDebugLoc();
4304  // Create a stack slot that is 16-byte aligned.
4305  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4306  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4307  EVT PtrVT = getPointerTy();
4308  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4309
4310  // Store the input value into Value#0 of the stack slot.
4311  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4312                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4313                               false, false, 0);
4314  // Load it out.
4315  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4316                     false, false, 0);
4317}
4318
4319SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4320  DebugLoc dl = Op.getDebugLoc();
4321  if (Op.getValueType() == MVT::v4i32) {
4322    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4323
4324    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4325    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4326
4327    SDValue RHSSwap =   // = vrlw RHS, 16
4328      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4329
4330    // Shrinkify inputs to v8i16.
4331    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4332    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4333    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4334
4335    // Low parts multiplied together, generating 32-bit results (we ignore the
4336    // top parts).
4337    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4338                                        LHS, RHS, DAG, dl, MVT::v4i32);
4339
4340    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4341                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4342    // Shift the high parts up 16 bits.
4343    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4344                              Neg16, DAG, dl);
4345    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4346  } else if (Op.getValueType() == MVT::v8i16) {
4347    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4348
4349    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4350
4351    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4352                            LHS, RHS, Zero, DAG, dl);
4353  } else if (Op.getValueType() == MVT::v16i8) {
4354    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4355
4356    // Multiply the even 8-bit parts, producing 16-bit sums.
4357    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4358                                           LHS, RHS, DAG, dl, MVT::v8i16);
4359    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4360
4361    // Multiply the odd 8-bit parts, producing 16-bit sums.
4362    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4363                                          LHS, RHS, DAG, dl, MVT::v8i16);
4364    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4365
4366    // Merge the results together.
4367    int Ops[16];
4368    for (unsigned i = 0; i != 8; ++i) {
4369      Ops[i*2  ] = 2*i+1;
4370      Ops[i*2+1] = 2*i+1+16;
4371    }
4372    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4373  } else {
4374    llvm_unreachable("Unknown mul to lower!");
4375  }
4376}
4377
4378/// LowerOperation - Provide custom lowering hooks for some operations.
4379///
4380SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4381  switch (Op.getOpcode()) {
4382  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4383  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4384  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4385  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4386  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4387  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4388  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4389  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4390  case ISD::VASTART:
4391    return LowerVASTART(Op, DAG, PPCSubTarget);
4392
4393  case ISD::VAARG:
4394    return LowerVAARG(Op, DAG, PPCSubTarget);
4395
4396  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4397  case ISD::DYNAMIC_STACKALLOC:
4398    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4399
4400  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4401  case ISD::FP_TO_UINT:
4402  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4403                                                       Op.getDebugLoc());
4404  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4405  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4406
4407  // Lower 64-bit shifts.
4408  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4409  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4410  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4411
4412  // Vector-related lowering.
4413  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4414  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4415  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4416  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4417  case ISD::MUL:                return LowerMUL(Op, DAG);
4418
4419  // Frame & Return address.
4420  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4421  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4422  }
4423  return SDValue();
4424}
4425
4426void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4427                                           SmallVectorImpl<SDValue>&Results,
4428                                           SelectionDAG &DAG) const {
4429  DebugLoc dl = N->getDebugLoc();
4430  switch (N->getOpcode()) {
4431  default:
4432    assert(false && "Do not know how to custom type legalize this operation!");
4433    return;
4434  case ISD::FP_ROUND_INREG: {
4435    assert(N->getValueType(0) == MVT::ppcf128);
4436    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4437    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4438                             MVT::f64, N->getOperand(0),
4439                             DAG.getIntPtrConstant(0));
4440    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4441                             MVT::f64, N->getOperand(0),
4442                             DAG.getIntPtrConstant(1));
4443
4444    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4445    // of the long double, and puts FPSCR back the way it was.  We do not
4446    // actually model FPSCR.
4447    std::vector<EVT> NodeTys;
4448    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4449
4450    NodeTys.push_back(MVT::f64);   // Return register
4451    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4452    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4453    MFFSreg = Result.getValue(0);
4454    InFlag = Result.getValue(1);
4455
4456    NodeTys.clear();
4457    NodeTys.push_back(MVT::Flag);   // Returns a flag
4458    Ops[0] = DAG.getConstant(31, MVT::i32);
4459    Ops[1] = InFlag;
4460    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4461    InFlag = Result.getValue(0);
4462
4463    NodeTys.clear();
4464    NodeTys.push_back(MVT::Flag);   // Returns a flag
4465    Ops[0] = DAG.getConstant(30, MVT::i32);
4466    Ops[1] = InFlag;
4467    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4468    InFlag = Result.getValue(0);
4469
4470    NodeTys.clear();
4471    NodeTys.push_back(MVT::f64);    // result of add
4472    NodeTys.push_back(MVT::Flag);   // Returns a flag
4473    Ops[0] = Lo;
4474    Ops[1] = Hi;
4475    Ops[2] = InFlag;
4476    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4477    FPreg = Result.getValue(0);
4478    InFlag = Result.getValue(1);
4479
4480    NodeTys.clear();
4481    NodeTys.push_back(MVT::f64);
4482    Ops[0] = DAG.getConstant(1, MVT::i32);
4483    Ops[1] = MFFSreg;
4484    Ops[2] = FPreg;
4485    Ops[3] = InFlag;
4486    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4487    FPreg = Result.getValue(0);
4488
4489    // We know the low half is about to be thrown away, so just use something
4490    // convenient.
4491    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4492                                FPreg, FPreg));
4493    return;
4494  }
4495  case ISD::FP_TO_SINT:
4496    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4497    return;
4498  }
4499}
4500
4501
4502//===----------------------------------------------------------------------===//
4503//  Other Lowering Code
4504//===----------------------------------------------------------------------===//
4505
4506MachineBasicBlock *
4507PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4508                                    bool is64bit, unsigned BinOpcode) const {
4509  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4510  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4511
4512  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4513  MachineFunction *F = BB->getParent();
4514  MachineFunction::iterator It = BB;
4515  ++It;
4516
4517  unsigned dest = MI->getOperand(0).getReg();
4518  unsigned ptrA = MI->getOperand(1).getReg();
4519  unsigned ptrB = MI->getOperand(2).getReg();
4520  unsigned incr = MI->getOperand(3).getReg();
4521  DebugLoc dl = MI->getDebugLoc();
4522
4523  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4524  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4525  F->insert(It, loopMBB);
4526  F->insert(It, exitMBB);
4527  exitMBB->splice(exitMBB->begin(), BB,
4528                  llvm::next(MachineBasicBlock::iterator(MI)),
4529                  BB->end());
4530  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4531
4532  MachineRegisterInfo &RegInfo = F->getRegInfo();
4533  unsigned TmpReg = (!BinOpcode) ? incr :
4534    RegInfo.createVirtualRegister(
4535       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4536                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4537
4538  //  thisMBB:
4539  //   ...
4540  //   fallthrough --> loopMBB
4541  BB->addSuccessor(loopMBB);
4542
4543  //  loopMBB:
4544  //   l[wd]arx dest, ptr
4545  //   add r0, dest, incr
4546  //   st[wd]cx. r0, ptr
4547  //   bne- loopMBB
4548  //   fallthrough --> exitMBB
4549  BB = loopMBB;
4550  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4551    .addReg(ptrA).addReg(ptrB);
4552  if (BinOpcode)
4553    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4554  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4555    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4556  BuildMI(BB, dl, TII->get(PPC::BCC))
4557    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4558  BB->addSuccessor(loopMBB);
4559  BB->addSuccessor(exitMBB);
4560
4561  //  exitMBB:
4562  //   ...
4563  BB = exitMBB;
4564  return BB;
4565}
4566
4567MachineBasicBlock *
4568PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4569                                            MachineBasicBlock *BB,
4570                                            bool is8bit,    // operation
4571                                            unsigned BinOpcode) const {
4572  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4573  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4574  // In 64 bit mode we have to use 64 bits for addresses, even though the
4575  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4576  // registers without caring whether they're 32 or 64, but here we're
4577  // doing actual arithmetic on the addresses.
4578  bool is64bit = PPCSubTarget.isPPC64();
4579
4580  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4581  MachineFunction *F = BB->getParent();
4582  MachineFunction::iterator It = BB;
4583  ++It;
4584
4585  unsigned dest = MI->getOperand(0).getReg();
4586  unsigned ptrA = MI->getOperand(1).getReg();
4587  unsigned ptrB = MI->getOperand(2).getReg();
4588  unsigned incr = MI->getOperand(3).getReg();
4589  DebugLoc dl = MI->getDebugLoc();
4590
4591  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4592  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4593  F->insert(It, loopMBB);
4594  F->insert(It, exitMBB);
4595  exitMBB->splice(exitMBB->begin(), BB,
4596                  llvm::next(MachineBasicBlock::iterator(MI)),
4597                  BB->end());
4598  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4599
4600  MachineRegisterInfo &RegInfo = F->getRegInfo();
4601  const TargetRegisterClass *RC =
4602    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4603              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4604  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4605  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4606  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4607  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4608  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4609  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4610  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4611  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4612  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4613  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4614  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4615  unsigned Ptr1Reg;
4616  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4617
4618  //  thisMBB:
4619  //   ...
4620  //   fallthrough --> loopMBB
4621  BB->addSuccessor(loopMBB);
4622
4623  // The 4-byte load must be aligned, while a char or short may be
4624  // anywhere in the word.  Hence all this nasty bookkeeping code.
4625  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4626  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4627  //   xori shift, shift1, 24 [16]
4628  //   rlwinm ptr, ptr1, 0, 0, 29
4629  //   slw incr2, incr, shift
4630  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4631  //   slw mask, mask2, shift
4632  //  loopMBB:
4633  //   lwarx tmpDest, ptr
4634  //   add tmp, tmpDest, incr2
4635  //   andc tmp2, tmpDest, mask
4636  //   and tmp3, tmp, mask
4637  //   or tmp4, tmp3, tmp2
4638  //   stwcx. tmp4, ptr
4639  //   bne- loopMBB
4640  //   fallthrough --> exitMBB
4641  //   srw dest, tmpDest, shift
4642
4643  if (ptrA!=PPC::R0) {
4644    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4645    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4646      .addReg(ptrA).addReg(ptrB);
4647  } else {
4648    Ptr1Reg = ptrB;
4649  }
4650  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4651      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4652  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4653      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4654  if (is64bit)
4655    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4656      .addReg(Ptr1Reg).addImm(0).addImm(61);
4657  else
4658    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4659      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4660  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4661      .addReg(incr).addReg(ShiftReg);
4662  if (is8bit)
4663    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4664  else {
4665    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4666    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4667  }
4668  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4669      .addReg(Mask2Reg).addReg(ShiftReg);
4670
4671  BB = loopMBB;
4672  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4673    .addReg(PPC::R0).addReg(PtrReg);
4674  if (BinOpcode)
4675    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4676      .addReg(Incr2Reg).addReg(TmpDestReg);
4677  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4678    .addReg(TmpDestReg).addReg(MaskReg);
4679  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4680    .addReg(TmpReg).addReg(MaskReg);
4681  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4682    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4683  BuildMI(BB, dl, TII->get(PPC::STWCX))
4684    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4685  BuildMI(BB, dl, TII->get(PPC::BCC))
4686    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4687  BB->addSuccessor(loopMBB);
4688  BB->addSuccessor(exitMBB);
4689
4690  //  exitMBB:
4691  //   ...
4692  BB = exitMBB;
4693  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4694  return BB;
4695}
4696
4697MachineBasicBlock *
4698PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4699                                               MachineBasicBlock *BB) const {
4700  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4701
4702  // To "insert" these instructions we actually have to insert their
4703  // control-flow patterns.
4704  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4705  MachineFunction::iterator It = BB;
4706  ++It;
4707
4708  MachineFunction *F = BB->getParent();
4709
4710  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4711      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4712      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4713      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4714      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4715
4716    // The incoming instruction knows the destination vreg to set, the
4717    // condition code register to branch on, the true/false values to
4718    // select between, and a branch opcode to use.
4719
4720    //  thisMBB:
4721    //  ...
4722    //   TrueVal = ...
4723    //   cmpTY ccX, r1, r2
4724    //   bCC copy1MBB
4725    //   fallthrough --> copy0MBB
4726    MachineBasicBlock *thisMBB = BB;
4727    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4728    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4729    unsigned SelectPred = MI->getOperand(4).getImm();
4730    DebugLoc dl = MI->getDebugLoc();
4731    F->insert(It, copy0MBB);
4732    F->insert(It, sinkMBB);
4733
4734    // Transfer the remainder of BB and its successor edges to sinkMBB.
4735    sinkMBB->splice(sinkMBB->begin(), BB,
4736                    llvm::next(MachineBasicBlock::iterator(MI)),
4737                    BB->end());
4738    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4739
4740    // Next, add the true and fallthrough blocks as its successors.
4741    BB->addSuccessor(copy0MBB);
4742    BB->addSuccessor(sinkMBB);
4743
4744    BuildMI(BB, dl, TII->get(PPC::BCC))
4745      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4746
4747    //  copy0MBB:
4748    //   %FalseValue = ...
4749    //   # fallthrough to sinkMBB
4750    BB = copy0MBB;
4751
4752    // Update machine-CFG edges
4753    BB->addSuccessor(sinkMBB);
4754
4755    //  sinkMBB:
4756    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4757    //  ...
4758    BB = sinkMBB;
4759    BuildMI(*BB, BB->begin(), dl,
4760            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4761      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4762      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4763  }
4764  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4765    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4766  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4767    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4768  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4769    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4770  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4771    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4772
4773  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4774    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4775  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4776    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4777  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4778    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4779  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4780    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4781
4782  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4783    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4784  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4785    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4786  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4787    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4788  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4789    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4790
4791  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4792    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4793  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4794    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4795  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4796    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4797  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4798    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4799
4800  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4801    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4802  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4803    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4804  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4805    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4806  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4807    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4808
4809  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4810    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4811  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4812    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4813  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4814    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4815  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4816    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4817
4818  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4819    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4820  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4821    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4822  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4823    BB = EmitAtomicBinary(MI, BB, false, 0);
4824  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4825    BB = EmitAtomicBinary(MI, BB, true, 0);
4826
4827  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4828           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4829    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4830
4831    unsigned dest   = MI->getOperand(0).getReg();
4832    unsigned ptrA   = MI->getOperand(1).getReg();
4833    unsigned ptrB   = MI->getOperand(2).getReg();
4834    unsigned oldval = MI->getOperand(3).getReg();
4835    unsigned newval = MI->getOperand(4).getReg();
4836    DebugLoc dl     = MI->getDebugLoc();
4837
4838    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4839    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4840    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4841    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4842    F->insert(It, loop1MBB);
4843    F->insert(It, loop2MBB);
4844    F->insert(It, midMBB);
4845    F->insert(It, exitMBB);
4846    exitMBB->splice(exitMBB->begin(), BB,
4847                    llvm::next(MachineBasicBlock::iterator(MI)),
4848                    BB->end());
4849    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4850
4851    //  thisMBB:
4852    //   ...
4853    //   fallthrough --> loopMBB
4854    BB->addSuccessor(loop1MBB);
4855
4856    // loop1MBB:
4857    //   l[wd]arx dest, ptr
4858    //   cmp[wd] dest, oldval
4859    //   bne- midMBB
4860    // loop2MBB:
4861    //   st[wd]cx. newval, ptr
4862    //   bne- loopMBB
4863    //   b exitBB
4864    // midMBB:
4865    //   st[wd]cx. dest, ptr
4866    // exitBB:
4867    BB = loop1MBB;
4868    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4869      .addReg(ptrA).addReg(ptrB);
4870    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4871      .addReg(oldval).addReg(dest);
4872    BuildMI(BB, dl, TII->get(PPC::BCC))
4873      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4874    BB->addSuccessor(loop2MBB);
4875    BB->addSuccessor(midMBB);
4876
4877    BB = loop2MBB;
4878    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4879      .addReg(newval).addReg(ptrA).addReg(ptrB);
4880    BuildMI(BB, dl, TII->get(PPC::BCC))
4881      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4882    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4883    BB->addSuccessor(loop1MBB);
4884    BB->addSuccessor(exitMBB);
4885
4886    BB = midMBB;
4887    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4888      .addReg(dest).addReg(ptrA).addReg(ptrB);
4889    BB->addSuccessor(exitMBB);
4890
4891    //  exitMBB:
4892    //   ...
4893    BB = exitMBB;
4894  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4895             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4896    // We must use 64-bit registers for addresses when targeting 64-bit,
4897    // since we're actually doing arithmetic on them.  Other registers
4898    // can be 32-bit.
4899    bool is64bit = PPCSubTarget.isPPC64();
4900    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4901
4902    unsigned dest   = MI->getOperand(0).getReg();
4903    unsigned ptrA   = MI->getOperand(1).getReg();
4904    unsigned ptrB   = MI->getOperand(2).getReg();
4905    unsigned oldval = MI->getOperand(3).getReg();
4906    unsigned newval = MI->getOperand(4).getReg();
4907    DebugLoc dl     = MI->getDebugLoc();
4908
4909    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4910    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4911    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4912    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4913    F->insert(It, loop1MBB);
4914    F->insert(It, loop2MBB);
4915    F->insert(It, midMBB);
4916    F->insert(It, exitMBB);
4917    exitMBB->splice(exitMBB->begin(), BB,
4918                    llvm::next(MachineBasicBlock::iterator(MI)),
4919                    BB->end());
4920    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4921
4922    MachineRegisterInfo &RegInfo = F->getRegInfo();
4923    const TargetRegisterClass *RC =
4924      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4925                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4926    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4927    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4928    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4929    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4930    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4931    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4932    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4933    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4934    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4935    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4936    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4937    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4938    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4939    unsigned Ptr1Reg;
4940    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4941    //  thisMBB:
4942    //   ...
4943    //   fallthrough --> loopMBB
4944    BB->addSuccessor(loop1MBB);
4945
4946    // The 4-byte load must be aligned, while a char or short may be
4947    // anywhere in the word.  Hence all this nasty bookkeeping code.
4948    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4949    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4950    //   xori shift, shift1, 24 [16]
4951    //   rlwinm ptr, ptr1, 0, 0, 29
4952    //   slw newval2, newval, shift
4953    //   slw oldval2, oldval,shift
4954    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4955    //   slw mask, mask2, shift
4956    //   and newval3, newval2, mask
4957    //   and oldval3, oldval2, mask
4958    // loop1MBB:
4959    //   lwarx tmpDest, ptr
4960    //   and tmp, tmpDest, mask
4961    //   cmpw tmp, oldval3
4962    //   bne- midMBB
4963    // loop2MBB:
4964    //   andc tmp2, tmpDest, mask
4965    //   or tmp4, tmp2, newval3
4966    //   stwcx. tmp4, ptr
4967    //   bne- loop1MBB
4968    //   b exitBB
4969    // midMBB:
4970    //   stwcx. tmpDest, ptr
4971    // exitBB:
4972    //   srw dest, tmpDest, shift
4973    if (ptrA!=PPC::R0) {
4974      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4975      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4976        .addReg(ptrA).addReg(ptrB);
4977    } else {
4978      Ptr1Reg = ptrB;
4979    }
4980    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4981        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4982    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4983        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4984    if (is64bit)
4985      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4986        .addReg(Ptr1Reg).addImm(0).addImm(61);
4987    else
4988      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4989        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4990    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4991        .addReg(newval).addReg(ShiftReg);
4992    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4993        .addReg(oldval).addReg(ShiftReg);
4994    if (is8bit)
4995      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4996    else {
4997      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4998      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4999        .addReg(Mask3Reg).addImm(65535);
5000    }
5001    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5002        .addReg(Mask2Reg).addReg(ShiftReg);
5003    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5004        .addReg(NewVal2Reg).addReg(MaskReg);
5005    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5006        .addReg(OldVal2Reg).addReg(MaskReg);
5007
5008    BB = loop1MBB;
5009    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5010        .addReg(PPC::R0).addReg(PtrReg);
5011    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5012        .addReg(TmpDestReg).addReg(MaskReg);
5013    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5014        .addReg(TmpReg).addReg(OldVal3Reg);
5015    BuildMI(BB, dl, TII->get(PPC::BCC))
5016        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5017    BB->addSuccessor(loop2MBB);
5018    BB->addSuccessor(midMBB);
5019
5020    BB = loop2MBB;
5021    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5022        .addReg(TmpDestReg).addReg(MaskReg);
5023    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5024        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5025    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5026        .addReg(PPC::R0).addReg(PtrReg);
5027    BuildMI(BB, dl, TII->get(PPC::BCC))
5028      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5029    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5030    BB->addSuccessor(loop1MBB);
5031    BB->addSuccessor(exitMBB);
5032
5033    BB = midMBB;
5034    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5035      .addReg(PPC::R0).addReg(PtrReg);
5036    BB->addSuccessor(exitMBB);
5037
5038    //  exitMBB:
5039    //   ...
5040    BB = exitMBB;
5041    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5042  } else {
5043    llvm_unreachable("Unexpected instr type to insert");
5044  }
5045
5046  MI->eraseFromParent();   // The pseudo instruction is gone now.
5047  return BB;
5048}
5049
5050//===----------------------------------------------------------------------===//
5051// Target Optimization Hooks
5052//===----------------------------------------------------------------------===//
5053
5054SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5055                                             DAGCombinerInfo &DCI) const {
5056  const TargetMachine &TM = getTargetMachine();
5057  SelectionDAG &DAG = DCI.DAG;
5058  DebugLoc dl = N->getDebugLoc();
5059  switch (N->getOpcode()) {
5060  default: break;
5061  case PPCISD::SHL:
5062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5063      if (C->isNullValue())   // 0 << V -> 0.
5064        return N->getOperand(0);
5065    }
5066    break;
5067  case PPCISD::SRL:
5068    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5069      if (C->isNullValue())   // 0 >>u V -> 0.
5070        return N->getOperand(0);
5071    }
5072    break;
5073  case PPCISD::SRA:
5074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5075      if (C->isNullValue() ||   //  0 >>s V -> 0.
5076          C->isAllOnesValue())    // -1 >>s V -> -1.
5077        return N->getOperand(0);
5078    }
5079    break;
5080
5081  case ISD::SINT_TO_FP:
5082    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5083      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5084        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5085        // We allow the src/dst to be either f32/f64, but the intermediate
5086        // type must be i64.
5087        if (N->getOperand(0).getValueType() == MVT::i64 &&
5088            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5089          SDValue Val = N->getOperand(0).getOperand(0);
5090          if (Val.getValueType() == MVT::f32) {
5091            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5092            DCI.AddToWorklist(Val.getNode());
5093          }
5094
5095          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5096          DCI.AddToWorklist(Val.getNode());
5097          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5098          DCI.AddToWorklist(Val.getNode());
5099          if (N->getValueType(0) == MVT::f32) {
5100            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5101                              DAG.getIntPtrConstant(0));
5102            DCI.AddToWorklist(Val.getNode());
5103          }
5104          return Val;
5105        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5106          // If the intermediate type is i32, we can avoid the load/store here
5107          // too.
5108        }
5109      }
5110    }
5111    break;
5112  case ISD::STORE:
5113    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5114    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5115        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5116        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5117        N->getOperand(1).getValueType() == MVT::i32 &&
5118        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5119      SDValue Val = N->getOperand(1).getOperand(0);
5120      if (Val.getValueType() == MVT::f32) {
5121        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5122        DCI.AddToWorklist(Val.getNode());
5123      }
5124      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5125      DCI.AddToWorklist(Val.getNode());
5126
5127      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5128                        N->getOperand(2), N->getOperand(3));
5129      DCI.AddToWorklist(Val.getNode());
5130      return Val;
5131    }
5132
5133    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5134    if (cast<StoreSDNode>(N)->isUnindexed() &&
5135        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5136        N->getOperand(1).getNode()->hasOneUse() &&
5137        (N->getOperand(1).getValueType() == MVT::i32 ||
5138         N->getOperand(1).getValueType() == MVT::i16)) {
5139      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5140      // Do an any-extend to 32-bits if this is a half-word input.
5141      if (BSwapOp.getValueType() == MVT::i16)
5142        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5143
5144      SDValue Ops[] = {
5145        N->getOperand(0), BSwapOp, N->getOperand(2),
5146        DAG.getValueType(N->getOperand(1).getValueType())
5147      };
5148      return
5149        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5150                                Ops, array_lengthof(Ops),
5151                                cast<StoreSDNode>(N)->getMemoryVT(),
5152                                cast<StoreSDNode>(N)->getMemOperand());
5153    }
5154    break;
5155  case ISD::BSWAP:
5156    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5157    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5158        N->getOperand(0).hasOneUse() &&
5159        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5160      SDValue Load = N->getOperand(0);
5161      LoadSDNode *LD = cast<LoadSDNode>(Load);
5162      // Create the byte-swapping load.
5163      SDValue Ops[] = {
5164        LD->getChain(),    // Chain
5165        LD->getBasePtr(),  // Ptr
5166        DAG.getValueType(N->getValueType(0)) // VT
5167      };
5168      SDValue BSLoad =
5169        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5170                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5171                                LD->getMemoryVT(), LD->getMemOperand());
5172
5173      // If this is an i16 load, insert the truncate.
5174      SDValue ResVal = BSLoad;
5175      if (N->getValueType(0) == MVT::i16)
5176        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5177
5178      // First, combine the bswap away.  This makes the value produced by the
5179      // load dead.
5180      DCI.CombineTo(N, ResVal);
5181
5182      // Next, combine the load away, we give it a bogus result value but a real
5183      // chain result.  The result value is dead because the bswap is dead.
5184      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5185
5186      // Return N so it doesn't get rechecked!
5187      return SDValue(N, 0);
5188    }
5189
5190    break;
5191  case PPCISD::VCMP: {
5192    // If a VCMPo node already exists with exactly the same operands as this
5193    // node, use its result instead of this node (VCMPo computes both a CR6 and
5194    // a normal output).
5195    //
5196    if (!N->getOperand(0).hasOneUse() &&
5197        !N->getOperand(1).hasOneUse() &&
5198        !N->getOperand(2).hasOneUse()) {
5199
5200      // Scan all of the users of the LHS, looking for VCMPo's that match.
5201      SDNode *VCMPoNode = 0;
5202
5203      SDNode *LHSN = N->getOperand(0).getNode();
5204      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5205           UI != E; ++UI)
5206        if (UI->getOpcode() == PPCISD::VCMPo &&
5207            UI->getOperand(1) == N->getOperand(1) &&
5208            UI->getOperand(2) == N->getOperand(2) &&
5209            UI->getOperand(0) == N->getOperand(0)) {
5210          VCMPoNode = *UI;
5211          break;
5212        }
5213
5214      // If there is no VCMPo node, or if the flag value has a single use, don't
5215      // transform this.
5216      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5217        break;
5218
5219      // Look at the (necessarily single) use of the flag value.  If it has a
5220      // chain, this transformation is more complex.  Note that multiple things
5221      // could use the value result, which we should ignore.
5222      SDNode *FlagUser = 0;
5223      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5224           FlagUser == 0; ++UI) {
5225        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5226        SDNode *User = *UI;
5227        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5228          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5229            FlagUser = User;
5230            break;
5231          }
5232        }
5233      }
5234
5235      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5236      // give up for right now.
5237      if (FlagUser->getOpcode() == PPCISD::MFCR)
5238        return SDValue(VCMPoNode, 0);
5239    }
5240    break;
5241  }
5242  case ISD::BR_CC: {
5243    // If this is a branch on an altivec predicate comparison, lower this so
5244    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5245    // lowering is done pre-legalize, because the legalizer lowers the predicate
5246    // compare down to code that is difficult to reassemble.
5247    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5248    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5249    int CompareOpc;
5250    bool isDot;
5251
5252    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5253        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5254        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5255      assert(isDot && "Can't compare against a vector result!");
5256
5257      // If this is a comparison against something other than 0/1, then we know
5258      // that the condition is never/always true.
5259      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5260      if (Val != 0 && Val != 1) {
5261        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5262          return N->getOperand(0);
5263        // Always !=, turn it into an unconditional branch.
5264        return DAG.getNode(ISD::BR, dl, MVT::Other,
5265                           N->getOperand(0), N->getOperand(4));
5266      }
5267
5268      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5269
5270      // Create the PPCISD altivec 'dot' comparison node.
5271      std::vector<EVT> VTs;
5272      SDValue Ops[] = {
5273        LHS.getOperand(2),  // LHS of compare
5274        LHS.getOperand(3),  // RHS of compare
5275        DAG.getConstant(CompareOpc, MVT::i32)
5276      };
5277      VTs.push_back(LHS.getOperand(2).getValueType());
5278      VTs.push_back(MVT::Flag);
5279      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5280
5281      // Unpack the result based on how the target uses it.
5282      PPC::Predicate CompOpc;
5283      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5284      default:  // Can't happen, don't crash on invalid number though.
5285      case 0:   // Branch on the value of the EQ bit of CR6.
5286        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5287        break;
5288      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5289        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5290        break;
5291      case 2:   // Branch on the value of the LT bit of CR6.
5292        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5293        break;
5294      case 3:   // Branch on the inverted value of the LT bit of CR6.
5295        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5296        break;
5297      }
5298
5299      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5300                         DAG.getConstant(CompOpc, MVT::i32),
5301                         DAG.getRegister(PPC::CR6, MVT::i32),
5302                         N->getOperand(4), CompNode.getValue(1));
5303    }
5304    break;
5305  }
5306  }
5307
5308  return SDValue();
5309}
5310
5311//===----------------------------------------------------------------------===//
5312// Inline Assembly Support
5313//===----------------------------------------------------------------------===//
5314
5315void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5316                                                       const APInt &Mask,
5317                                                       APInt &KnownZero,
5318                                                       APInt &KnownOne,
5319                                                       const SelectionDAG &DAG,
5320                                                       unsigned Depth) const {
5321  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5322  switch (Op.getOpcode()) {
5323  default: break;
5324  case PPCISD::LBRX: {
5325    // lhbrx is known to have the top bits cleared out.
5326    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5327      KnownZero = 0xFFFF0000;
5328    break;
5329  }
5330  case ISD::INTRINSIC_WO_CHAIN: {
5331    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5332    default: break;
5333    case Intrinsic::ppc_altivec_vcmpbfp_p:
5334    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5335    case Intrinsic::ppc_altivec_vcmpequb_p:
5336    case Intrinsic::ppc_altivec_vcmpequh_p:
5337    case Intrinsic::ppc_altivec_vcmpequw_p:
5338    case Intrinsic::ppc_altivec_vcmpgefp_p:
5339    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5340    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5341    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5342    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5343    case Intrinsic::ppc_altivec_vcmpgtub_p:
5344    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5345    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5346      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5347      break;
5348    }
5349  }
5350  }
5351}
5352
5353
5354/// getConstraintType - Given a constraint, return the type of
5355/// constraint it is for this target.
5356PPCTargetLowering::ConstraintType
5357PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5358  if (Constraint.size() == 1) {
5359    switch (Constraint[0]) {
5360    default: break;
5361    case 'b':
5362    case 'r':
5363    case 'f':
5364    case 'v':
5365    case 'y':
5366      return C_RegisterClass;
5367    }
5368  }
5369  return TargetLowering::getConstraintType(Constraint);
5370}
5371
5372/// Examine constraint type and operand type and determine a weight value.
5373/// This object must already have been set up with the operand type
5374/// and the current alternative constraint selected.
5375TargetLowering::ConstraintWeight
5376PPCTargetLowering::getSingleConstraintMatchWeight(
5377    AsmOperandInfo &info, const char *constraint) const {
5378  ConstraintWeight weight = CW_Invalid;
5379  Value *CallOperandVal = info.CallOperandVal;
5380    // If we don't have a value, we can't do a match,
5381    // but allow it at the lowest weight.
5382  if (CallOperandVal == NULL)
5383    return CW_Default;
5384  const Type *type = CallOperandVal->getType();
5385  // Look at the constraint type.
5386  switch (*constraint) {
5387  default:
5388    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5389    break;
5390  case 'b':
5391    if (type->isIntegerTy())
5392      weight = CW_Register;
5393    break;
5394  case 'f':
5395    if (type->isFloatTy())
5396      weight = CW_Register;
5397    break;
5398  case 'd':
5399    if (type->isDoubleTy())
5400      weight = CW_Register;
5401    break;
5402  case 'v':
5403    if (type->isVectorTy())
5404      weight = CW_Register;
5405    break;
5406  case 'y':
5407    weight = CW_Register;
5408    break;
5409  }
5410  return weight;
5411}
5412
5413std::pair<unsigned, const TargetRegisterClass*>
5414PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5415                                                EVT VT) const {
5416  if (Constraint.size() == 1) {
5417    // GCC RS6000 Constraint Letters
5418    switch (Constraint[0]) {
5419    case 'b':   // R1-R31
5420    case 'r':   // R0-R31
5421      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5422        return std::make_pair(0U, PPC::G8RCRegisterClass);
5423      return std::make_pair(0U, PPC::GPRCRegisterClass);
5424    case 'f':
5425      if (VT == MVT::f32)
5426        return std::make_pair(0U, PPC::F4RCRegisterClass);
5427      else if (VT == MVT::f64)
5428        return std::make_pair(0U, PPC::F8RCRegisterClass);
5429      break;
5430    case 'v':
5431      return std::make_pair(0U, PPC::VRRCRegisterClass);
5432    case 'y':   // crrc
5433      return std::make_pair(0U, PPC::CRRCRegisterClass);
5434    }
5435  }
5436
5437  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5438}
5439
5440
5441/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5442/// vector.  If it is invalid, don't add anything to Ops.
5443void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5444                                                     std::vector<SDValue>&Ops,
5445                                                     SelectionDAG &DAG) const {
5446  SDValue Result(0,0);
5447  switch (Letter) {
5448  default: break;
5449  case 'I':
5450  case 'J':
5451  case 'K':
5452  case 'L':
5453  case 'M':
5454  case 'N':
5455  case 'O':
5456  case 'P': {
5457    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5458    if (!CST) return; // Must be an immediate to match.
5459    unsigned Value = CST->getZExtValue();
5460    switch (Letter) {
5461    default: llvm_unreachable("Unknown constraint letter!");
5462    case 'I':  // "I" is a signed 16-bit constant.
5463      if ((short)Value == (int)Value)
5464        Result = DAG.getTargetConstant(Value, Op.getValueType());
5465      break;
5466    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5467    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5468      if ((short)Value == 0)
5469        Result = DAG.getTargetConstant(Value, Op.getValueType());
5470      break;
5471    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5472      if ((Value >> 16) == 0)
5473        Result = DAG.getTargetConstant(Value, Op.getValueType());
5474      break;
5475    case 'M':  // "M" is a constant that is greater than 31.
5476      if (Value > 31)
5477        Result = DAG.getTargetConstant(Value, Op.getValueType());
5478      break;
5479    case 'N':  // "N" is a positive constant that is an exact power of two.
5480      if ((int)Value > 0 && isPowerOf2_32(Value))
5481        Result = DAG.getTargetConstant(Value, Op.getValueType());
5482      break;
5483    case 'O':  // "O" is the constant zero.
5484      if (Value == 0)
5485        Result = DAG.getTargetConstant(Value, Op.getValueType());
5486      break;
5487    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5488      if ((short)-Value == (int)-Value)
5489        Result = DAG.getTargetConstant(Value, Op.getValueType());
5490      break;
5491    }
5492    break;
5493  }
5494  }
5495
5496  if (Result.getNode()) {
5497    Ops.push_back(Result);
5498    return;
5499  }
5500
5501  // Handle standard constraint letters.
5502  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5503}
5504
5505// isLegalAddressingMode - Return true if the addressing mode represented
5506// by AM is legal for this target, for a load/store of the specified type.
5507bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5508                                              const Type *Ty) const {
5509  // FIXME: PPC does not allow r+i addressing modes for vectors!
5510
5511  // PPC allows a sign-extended 16-bit immediate field.
5512  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5513    return false;
5514
5515  // No global is ever allowed as a base.
5516  if (AM.BaseGV)
5517    return false;
5518
5519  // PPC only support r+r,
5520  switch (AM.Scale) {
5521  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5522    break;
5523  case 1:
5524    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5525      return false;
5526    // Otherwise we have r+r or r+i.
5527    break;
5528  case 2:
5529    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5530      return false;
5531    // Allow 2*r as r+r.
5532    break;
5533  default:
5534    // No other scales are supported.
5535    return false;
5536  }
5537
5538  return true;
5539}
5540
5541/// isLegalAddressImmediate - Return true if the integer value can be used
5542/// as the offset of the target addressing mode for load / store of the
5543/// given type.
5544bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5545  // PPC allows a sign-extended 16-bit immediate field.
5546  return (V > -(1 << 16) && V < (1 << 16)-1);
5547}
5548
5549bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5550  return false;
5551}
5552
5553SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5554                                           SelectionDAG &DAG) const {
5555  MachineFunction &MF = DAG.getMachineFunction();
5556  MachineFrameInfo *MFI = MF.getFrameInfo();
5557  MFI->setReturnAddressIsTaken(true);
5558
5559  DebugLoc dl = Op.getDebugLoc();
5560  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5561
5562  // Make sure the function does not optimize away the store of the RA to
5563  // the stack.
5564  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5565  FuncInfo->setLRStoreRequired();
5566  bool isPPC64 = PPCSubTarget.isPPC64();
5567  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5568
5569  if (Depth > 0) {
5570    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5571    SDValue Offset =
5572
5573      DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI),
5574                      isPPC64? MVT::i64 : MVT::i32);
5575    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5576                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5577                                   FrameAddr, Offset),
5578                       MachinePointerInfo(), false, false, 0);
5579  }
5580
5581  // Just load the return address off the stack.
5582  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5583  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5584                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5585}
5586
5587SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5588                                          SelectionDAG &DAG) const {
5589  DebugLoc dl = Op.getDebugLoc();
5590  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5591
5592  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5593  bool isPPC64 = PtrVT == MVT::i64;
5594
5595  MachineFunction &MF = DAG.getMachineFunction();
5596  MachineFrameInfo *MFI = MF.getFrameInfo();
5597  MFI->setFrameAddressIsTaken(true);
5598  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5599                  MFI->getStackSize() &&
5600                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5601  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5602                                (is31 ? PPC::R31 : PPC::R1);
5603  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5604                                         PtrVT);
5605  while (Depth--)
5606    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5607                            FrameAddr, MachinePointerInfo(), false, false, 0);
5608  return FrameAddr;
5609}
5610
5611bool
5612PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5613  // The PowerPC target isn't yet aware of offsets.
5614  return false;
5615}
5616
5617/// getOptimalMemOpType - Returns the target specific optimal type for load
5618/// and store operations as a result of memset, memcpy, and memmove
5619/// lowering. If DstAlign is zero that means it's safe to destination
5620/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5621/// means there isn't a need to check it against alignment requirement,
5622/// probably because the source does not need to be loaded. If
5623/// 'NonScalarIntSafe' is true, that means it's safe to return a
5624/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5625/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5626/// constant so it does not need to be loaded.
5627/// It returns EVT::Other if the type should be determined using generic
5628/// target-independent logic.
5629EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5630                                           unsigned DstAlign, unsigned SrcAlign,
5631                                           bool NonScalarIntSafe,
5632                                           bool MemcpyStrSrc,
5633                                           MachineFunction &MF) const {
5634  if (this->PPCSubTarget.isPPC64()) {
5635    return MVT::i64;
5636  } else {
5637    return MVT::i32;
5638  }
5639}
5640