PPCISelLowering.cpp revision 209a4099f96f0dfd340fab4ffaf2c2d8fc15aad6
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no SREM/UREM instructions
82  setOperationAction(ISD::SREM, MVT::i32, Expand);
83  setOperationAction(ISD::UREM, MVT::i32, Expand);
84  setOperationAction(ISD::SREM, MVT::i64, Expand);
85  setOperationAction(ISD::UREM, MVT::i64, Expand);
86
87  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
88  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
90  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
92  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
94  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
95  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
96
97  // We don't support sin/cos/sqrt/fmod/pow
98  setOperationAction(ISD::FSIN , MVT::f64, Expand);
99  setOperationAction(ISD::FCOS , MVT::f64, Expand);
100  setOperationAction(ISD::FREM , MVT::f64, Expand);
101  setOperationAction(ISD::FPOW , MVT::f64, Expand);
102  setOperationAction(ISD::FLOG , MVT::f64, Expand);
103  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
104  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
105  setOperationAction(ISD::FEXP  ,MVT::f64, Expand);
106  setOperationAction(ISD::FEXP2 ,MVT::f64, Expand);
107  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109  setOperationAction(ISD::FREM , MVT::f32, Expand);
110  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111  setOperationAction(ISD::FLOG , MVT::f32, Expand);
112  setOperationAction(ISD::FLOG2 ,MVT::f32, Expand);
113  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
114  setOperationAction(ISD::FEXP  ,MVT::f32, Expand);
115  setOperationAction(ISD::FEXP2 ,MVT::f32, Expand);
116
117  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
118
119  // If we're enabling GP optimizations, use hardware square root
120  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
121    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
122    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
123  }
124
125  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
126  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
127
128  // PowerPC does not have BSWAP, CTPOP or CTTZ
129  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
130  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
131  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
132  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
133  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
134  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
135
136  // PowerPC does not have ROTR
137  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
138  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
139
140  // PowerPC does not have Select
141  setOperationAction(ISD::SELECT, MVT::i32, Expand);
142  setOperationAction(ISD::SELECT, MVT::i64, Expand);
143  setOperationAction(ISD::SELECT, MVT::f32, Expand);
144  setOperationAction(ISD::SELECT, MVT::f64, Expand);
145
146  // PowerPC wants to turn select_cc of FP into fsel when possible.
147  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
148  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
149
150  // PowerPC wants to optimize integer setcc a bit
151  setOperationAction(ISD::SETCC, MVT::i32, Custom);
152
153  // PowerPC does not have BRCOND which requires SetCC
154  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155
156  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
157
158  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
159  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
160
161  // PowerPC does not have [U|S]INT_TO_FP
162  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
163  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
164
165  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
166  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
167  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
168  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
169
170  // We cannot sextinreg(i1).  Expand to shifts.
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
172
173  // Support label based line numbers.
174  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
175  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
176
177  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
178  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
179  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
180  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
181
182
183  // We want to legalize GlobalAddress and ConstantPool nodes into the
184  // appropriate instructions to materialize the address.
185  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
186  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
187  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
188  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
189  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
190  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
191  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
192  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
193
194  // RET must be custom lowered, to meet ABI requirements.
195  setOperationAction(ISD::RET               , MVT::Other, Custom);
196
197  // TRAP is legal.
198  setOperationAction(ISD::TRAP, MVT::Other, Legal);
199
200  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
201  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
202
203  // VAARG is custom lowered with ELF 32 ABI
204  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
205    setOperationAction(ISD::VAARG, MVT::Other, Custom);
206  else
207    setOperationAction(ISD::VAARG, MVT::Other, Expand);
208
209  // Use the default implementation.
210  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
211  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
212  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
213  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
214  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
215  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
216
217  // We want to custom lower some of our intrinsics.
218  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
219
220  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
221    // They also have instructions for converting between i64 and fp.
222    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
223    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
224    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
225    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
226    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
227
228    // FIXME: disable this lowered code.  This generates 64-bit register values,
229    // and we don't model the fact that the top part is clobbered by calls.  We
230    // need to flag these together so that the value isn't live across a call.
231    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
232
233    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
234    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
235  } else {
236    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
237    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
238  }
239
240  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
241    // 64-bit PowerPC implementations can support i64 types directly
242    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
243    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
244    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
245    // 64-bit PowerPC wants to expand i128 shifts itself.
246    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
247    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
248    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
249  } else {
250    // 32-bit PowerPC wants to expand i64 shifts itself.
251    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
252    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
253    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
254  }
255
256  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
257    // First set operation action for all vector types to expand. Then we
258    // will selectively turn on ones that can be effectively codegen'd.
259    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
260         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
261      MVT VT = (MVT::SimpleValueType)i;
262
263      // add/sub are legal for all supported vector VT's.
264      setOperationAction(ISD::ADD , VT, Legal);
265      setOperationAction(ISD::SUB , VT, Legal);
266
267      // We promote all shuffles to v16i8.
268      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
269      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
270
271      // We promote all non-typed operations to v4i32.
272      setOperationAction(ISD::AND   , VT, Promote);
273      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
274      setOperationAction(ISD::OR    , VT, Promote);
275      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
276      setOperationAction(ISD::XOR   , VT, Promote);
277      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
278      setOperationAction(ISD::LOAD  , VT, Promote);
279      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
280      setOperationAction(ISD::SELECT, VT, Promote);
281      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
282      setOperationAction(ISD::STORE, VT, Promote);
283      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
284
285      // No other operations are legal.
286      setOperationAction(ISD::MUL , VT, Expand);
287      setOperationAction(ISD::SDIV, VT, Expand);
288      setOperationAction(ISD::SREM, VT, Expand);
289      setOperationAction(ISD::UDIV, VT, Expand);
290      setOperationAction(ISD::UREM, VT, Expand);
291      setOperationAction(ISD::FDIV, VT, Expand);
292      setOperationAction(ISD::FNEG, VT, Expand);
293      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
294      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
295      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
296      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
297      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
298      setOperationAction(ISD::UDIVREM, VT, Expand);
299      setOperationAction(ISD::SDIVREM, VT, Expand);
300      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
301      setOperationAction(ISD::FPOW, VT, Expand);
302      setOperationAction(ISD::CTPOP, VT, Expand);
303      setOperationAction(ISD::CTLZ, VT, Expand);
304      setOperationAction(ISD::CTTZ, VT, Expand);
305    }
306
307    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
308    // with merges, splats, etc.
309    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
310
311    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
312    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
313    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
314    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
315    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
316    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
317
318    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
319    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
320    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
321    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
322
323    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
324    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
325    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
326    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
327
328    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
329    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
330
331    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
332    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
333    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
334    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
335  }
336
337  setShiftAmountType(MVT::i32);
338  setSetCCResultContents(ZeroOrOneSetCCResult);
339
340  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
341    setStackPointerRegisterToSaveRestore(PPC::X1);
342    setExceptionPointerRegister(PPC::X3);
343    setExceptionSelectorRegister(PPC::X4);
344  } else {
345    setStackPointerRegisterToSaveRestore(PPC::R1);
346    setExceptionPointerRegister(PPC::R3);
347    setExceptionSelectorRegister(PPC::R4);
348  }
349
350  // We have target-specific dag combine patterns for the following nodes:
351  setTargetDAGCombine(ISD::SINT_TO_FP);
352  setTargetDAGCombine(ISD::STORE);
353  setTargetDAGCombine(ISD::BR_CC);
354  setTargetDAGCombine(ISD::BSWAP);
355
356  // Darwin long double math library functions have $LDBL128 appended.
357  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
358    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
359    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
360    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
361    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
362    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
363    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
364    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
365    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
366    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
367    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
368  }
369
370  computeRegisterProperties();
371}
372
373/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
374/// function arguments in the caller parameter area.
375unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
376  TargetMachine &TM = getTargetMachine();
377  // Darwin passes everything on 4 byte boundary.
378  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
379    return 4;
380  // FIXME Elf TBD
381  return 4;
382}
383
384const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
385  switch (Opcode) {
386  default: return 0;
387  case PPCISD::FSEL:            return "PPCISD::FSEL";
388  case PPCISD::FCFID:           return "PPCISD::FCFID";
389  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
390  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
391  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
392  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
393  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
394  case PPCISD::VPERM:           return "PPCISD::VPERM";
395  case PPCISD::Hi:              return "PPCISD::Hi";
396  case PPCISD::Lo:              return "PPCISD::Lo";
397  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
398  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
399  case PPCISD::SRL:             return "PPCISD::SRL";
400  case PPCISD::SRA:             return "PPCISD::SRA";
401  case PPCISD::SHL:             return "PPCISD::SHL";
402  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
403  case PPCISD::STD_32:          return "PPCISD::STD_32";
404  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
405  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
406  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
407  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
408  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
409  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
410  case PPCISD::MFCR:            return "PPCISD::MFCR";
411  case PPCISD::VCMP:            return "PPCISD::VCMP";
412  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
413  case PPCISD::LBRX:            return "PPCISD::LBRX";
414  case PPCISD::STBRX:           return "PPCISD::STBRX";
415  case PPCISD::LARX:            return "PPCISD::LARX";
416  case PPCISD::STCX:            return "PPCISD::STCX";
417  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
418  case PPCISD::MFFS:            return "PPCISD::MFFS";
419  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
420  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
421  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
422  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
423  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
424  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
425  }
426}
427
428
429MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
430  return MVT::i32;
431}
432
433
434//===----------------------------------------------------------------------===//
435// Node matching predicates, for use by the tblgen matching code.
436//===----------------------------------------------------------------------===//
437
438/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
439static bool isFloatingPointZero(SDValue Op) {
440  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
441    return CFP->getValueAPF().isZero();
442  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
443    // Maybe this has already been legalized into the constant pool?
444    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
445      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
446        return CFP->getValueAPF().isZero();
447  }
448  return false;
449}
450
451/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
452/// true if Op is undef or if it matches the specified value.
453static bool isConstantOrUndef(SDValue Op, unsigned Val) {
454  return Op.getOpcode() == ISD::UNDEF ||
455         cast<ConstantSDNode>(Op)->getValue() == Val;
456}
457
458/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
459/// VPKUHUM instruction.
460bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
461  if (!isUnary) {
462    for (unsigned i = 0; i != 16; ++i)
463      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
464        return false;
465  } else {
466    for (unsigned i = 0; i != 8; ++i)
467      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
468          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
469        return false;
470  }
471  return true;
472}
473
474/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
475/// VPKUWUM instruction.
476bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
477  if (!isUnary) {
478    for (unsigned i = 0; i != 16; i += 2)
479      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
480          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
481        return false;
482  } else {
483    for (unsigned i = 0; i != 8; i += 2)
484      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
485          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
486          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
487          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
488        return false;
489  }
490  return true;
491}
492
493/// isVMerge - Common function, used to match vmrg* shuffles.
494///
495static bool isVMerge(SDNode *N, unsigned UnitSize,
496                     unsigned LHSStart, unsigned RHSStart) {
497  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
498         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
499  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
500         "Unsupported merge size!");
501
502  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
503    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
504      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
505                             LHSStart+j+i*UnitSize) ||
506          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
507                             RHSStart+j+i*UnitSize))
508        return false;
509    }
510      return true;
511}
512
513/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
514/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
515bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
516  if (!isUnary)
517    return isVMerge(N, UnitSize, 8, 24);
518  return isVMerge(N, UnitSize, 8, 8);
519}
520
521/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
522/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
523bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
524  if (!isUnary)
525    return isVMerge(N, UnitSize, 0, 16);
526  return isVMerge(N, UnitSize, 0, 0);
527}
528
529
530/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
531/// amount, otherwise return -1.
532int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
533  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
534         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
535  // Find the first non-undef value in the shuffle mask.
536  unsigned i;
537  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
538    /*search*/;
539
540  if (i == 16) return -1;  // all undef.
541
542  // Otherwise, check to see if the rest of the elements are consequtively
543  // numbered from this value.
544  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
545  if (ShiftAmt < i) return -1;
546  ShiftAmt -= i;
547
548  if (!isUnary) {
549    // Check the rest of the elements to see if they are consequtive.
550    for (++i; i != 16; ++i)
551      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
552        return -1;
553  } else {
554    // Check the rest of the elements to see if they are consequtive.
555    for (++i; i != 16; ++i)
556      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
557        return -1;
558  }
559
560  return ShiftAmt;
561}
562
563/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
564/// specifies a splat of a single element that is suitable for input to
565/// VSPLTB/VSPLTH/VSPLTW.
566bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
567  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
568         N->getNumOperands() == 16 &&
569         (EltSize == 1 || EltSize == 2 || EltSize == 4));
570
571  // This is a splat operation if each element of the permute is the same, and
572  // if the value doesn't reference the second vector.
573  unsigned ElementBase = 0;
574  SDValue Elt = N->getOperand(0);
575  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
576    ElementBase = EltV->getValue();
577  else
578    return false;   // FIXME: Handle UNDEF elements too!
579
580  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
581    return false;
582
583  // Check that they are consequtive.
584  for (unsigned i = 1; i != EltSize; ++i) {
585    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
586        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
587      return false;
588  }
589
590  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
591  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
592    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
593    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
594           "Invalid VECTOR_SHUFFLE mask!");
595    for (unsigned j = 0; j != EltSize; ++j)
596      if (N->getOperand(i+j) != N->getOperand(j))
597        return false;
598  }
599
600  return true;
601}
602
603/// isAllNegativeZeroVector - Returns true if all elements of build_vector
604/// are -0.0.
605bool PPC::isAllNegativeZeroVector(SDNode *N) {
606  assert(N->getOpcode() == ISD::BUILD_VECTOR);
607  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
608    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
609      return CFP->getValueAPF().isNegZero();
610  return false;
611}
612
613/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
614/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
615unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
616  assert(isSplatShuffleMask(N, EltSize));
617  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
618}
619
620/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
621/// by using a vspltis[bhw] instruction of the specified element size, return
622/// the constant being splatted.  The ByteSize field indicates the number of
623/// bytes of each element [124] -> [bhw].
624SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
625  SDValue OpVal(0, 0);
626
627  // If ByteSize of the splat is bigger than the element size of the
628  // build_vector, then we have a case where we are checking for a splat where
629  // multiple elements of the buildvector are folded together into a single
630  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
631  unsigned EltSize = 16/N->getNumOperands();
632  if (EltSize < ByteSize) {
633    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
634    SDValue UniquedVals[4];
635    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
636
637    // See if all of the elements in the buildvector agree across.
638    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
639      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
640      // If the element isn't a constant, bail fully out.
641      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
642
643
644      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
645        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
646      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
647        return SDValue();  // no match.
648    }
649
650    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
651    // either constant or undef values that are identical for each chunk.  See
652    // if these chunks can form into a larger vspltis*.
653
654    // Check to see if all of the leading entries are either 0 or -1.  If
655    // neither, then this won't fit into the immediate field.
656    bool LeadingZero = true;
657    bool LeadingOnes = true;
658    for (unsigned i = 0; i != Multiple-1; ++i) {
659      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
660
661      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
662      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
663    }
664    // Finally, check the least significant entry.
665    if (LeadingZero) {
666      if (UniquedVals[Multiple-1].getNode() == 0)
667        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
668      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
669      if (Val < 16)
670        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
671    }
672    if (LeadingOnes) {
673      if (UniquedVals[Multiple-1].getNode() == 0)
674        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
675      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
676      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
677        return DAG.getTargetConstant(Val, MVT::i32);
678    }
679
680    return SDValue();
681  }
682
683  // Check to see if this buildvec has a single non-undef value in its elements.
684  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
685    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
686    if (OpVal.getNode() == 0)
687      OpVal = N->getOperand(i);
688    else if (OpVal != N->getOperand(i))
689      return SDValue();
690  }
691
692  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
693
694  unsigned ValSizeInBytes = 0;
695  uint64_t Value = 0;
696  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
697    Value = CN->getValue();
698    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
699  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
700    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
701    Value = FloatToBits(CN->getValueAPF().convertToFloat());
702    ValSizeInBytes = 4;
703  }
704
705  // If the splat value is larger than the element value, then we can never do
706  // this splat.  The only case that we could fit the replicated bits into our
707  // immediate field for would be zero, and we prefer to use vxor for it.
708  if (ValSizeInBytes < ByteSize) return SDValue();
709
710  // If the element value is larger than the splat value, cut it in half and
711  // check to see if the two halves are equal.  Continue doing this until we
712  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
713  while (ValSizeInBytes > ByteSize) {
714    ValSizeInBytes >>= 1;
715
716    // If the top half equals the bottom half, we're still ok.
717    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
718         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
719      return SDValue();
720  }
721
722  // Properly sign extend the value.
723  int ShAmt = (4-ByteSize)*8;
724  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
725
726  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
727  if (MaskVal == 0) return SDValue();
728
729  // Finally, if this value fits in a 5 bit sext field, return it
730  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
731    return DAG.getTargetConstant(MaskVal, MVT::i32);
732  return SDValue();
733}
734
735//===----------------------------------------------------------------------===//
736//  Addressing Mode Selection
737//===----------------------------------------------------------------------===//
738
739/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
740/// or 64-bit immediate, and if the value can be accurately represented as a
741/// sign extension from a 16-bit value.  If so, this returns true and the
742/// immediate.
743static bool isIntS16Immediate(SDNode *N, short &Imm) {
744  if (N->getOpcode() != ISD::Constant)
745    return false;
746
747  Imm = (short)cast<ConstantSDNode>(N)->getValue();
748  if (N->getValueType(0) == MVT::i32)
749    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
750  else
751    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
752}
753static bool isIntS16Immediate(SDValue Op, short &Imm) {
754  return isIntS16Immediate(Op.getNode(), Imm);
755}
756
757
758/// SelectAddressRegReg - Given the specified addressed, check to see if it
759/// can be represented as an indexed [r+r] operation.  Returns false if it
760/// can be more efficiently represented with [r+imm].
761bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
762                                            SDValue &Index,
763                                            SelectionDAG &DAG) {
764  short imm = 0;
765  if (N.getOpcode() == ISD::ADD) {
766    if (isIntS16Immediate(N.getOperand(1), imm))
767      return false;    // r+i
768    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
769      return false;    // r+i
770
771    Base = N.getOperand(0);
772    Index = N.getOperand(1);
773    return true;
774  } else if (N.getOpcode() == ISD::OR) {
775    if (isIntS16Immediate(N.getOperand(1), imm))
776      return false;    // r+i can fold it if we can.
777
778    // If this is an or of disjoint bitfields, we can codegen this as an add
779    // (for better address arithmetic) if the LHS and RHS of the OR are provably
780    // disjoint.
781    APInt LHSKnownZero, LHSKnownOne;
782    APInt RHSKnownZero, RHSKnownOne;
783    DAG.ComputeMaskedBits(N.getOperand(0),
784                          APInt::getAllOnesValue(N.getOperand(0)
785                            .getValueSizeInBits()),
786                          LHSKnownZero, LHSKnownOne);
787
788    if (LHSKnownZero.getBoolValue()) {
789      DAG.ComputeMaskedBits(N.getOperand(1),
790                            APInt::getAllOnesValue(N.getOperand(1)
791                              .getValueSizeInBits()),
792                            RHSKnownZero, RHSKnownOne);
793      // If all of the bits are known zero on the LHS or RHS, the add won't
794      // carry.
795      if (~(LHSKnownZero | RHSKnownZero) == 0) {
796        Base = N.getOperand(0);
797        Index = N.getOperand(1);
798        return true;
799      }
800    }
801  }
802
803  return false;
804}
805
806/// Returns true if the address N can be represented by a base register plus
807/// a signed 16-bit displacement [r+imm], and if it is not better
808/// represented as reg+reg.
809bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
810                                            SDValue &Base, SelectionDAG &DAG){
811  // If this can be more profitably realized as r+r, fail.
812  if (SelectAddressRegReg(N, Disp, Base, DAG))
813    return false;
814
815  if (N.getOpcode() == ISD::ADD) {
816    short imm = 0;
817    if (isIntS16Immediate(N.getOperand(1), imm)) {
818      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
819      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
820        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
821      } else {
822        Base = N.getOperand(0);
823      }
824      return true; // [r+i]
825    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
826      // Match LOAD (ADD (X, Lo(G))).
827      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
828             && "Cannot handle constant offsets yet!");
829      Disp = N.getOperand(1).getOperand(0);  // The global address.
830      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
831             Disp.getOpcode() == ISD::TargetConstantPool ||
832             Disp.getOpcode() == ISD::TargetJumpTable);
833      Base = N.getOperand(0);
834      return true;  // [&g+r]
835    }
836  } else if (N.getOpcode() == ISD::OR) {
837    short imm = 0;
838    if (isIntS16Immediate(N.getOperand(1), imm)) {
839      // If this is an or of disjoint bitfields, we can codegen this as an add
840      // (for better address arithmetic) if the LHS and RHS of the OR are
841      // provably disjoint.
842      APInt LHSKnownZero, LHSKnownOne;
843      DAG.ComputeMaskedBits(N.getOperand(0),
844                            APInt::getAllOnesValue(N.getOperand(0)
845                                                   .getValueSizeInBits()),
846                            LHSKnownZero, LHSKnownOne);
847
848      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
849        // If all of the bits are known zero on the LHS or RHS, the add won't
850        // carry.
851        Base = N.getOperand(0);
852        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853        return true;
854      }
855    }
856  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
857    // Loading from a constant address.
858
859    // If this address fits entirely in a 16-bit sext immediate field, codegen
860    // this as "d, 0"
861    short Imm;
862    if (isIntS16Immediate(CN, Imm)) {
863      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
864      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
865      return true;
866    }
867
868    // Handle 32-bit sext immediates with LIS + addr mode.
869    if (CN->getValueType(0) == MVT::i32 ||
870        (int64_t)CN->getValue() == (int)CN->getValue()) {
871      int Addr = (int)CN->getValue();
872
873      // Otherwise, break this down into an LIS + disp.
874      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
875
876      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
877      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
878      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
879      return true;
880    }
881  }
882
883  Disp = DAG.getTargetConstant(0, getPointerTy());
884  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
885    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
886  else
887    Base = N;
888  return true;      // [r+0]
889}
890
891/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
892/// represented as an indexed [r+r] operation.
893bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
894                                                SDValue &Index,
895                                                SelectionDAG &DAG) {
896  // Check to see if we can easily represent this as an [r+r] address.  This
897  // will fail if it thinks that the address is more profitably represented as
898  // reg+imm, e.g. where imm = 0.
899  if (SelectAddressRegReg(N, Base, Index, DAG))
900    return true;
901
902  // If the operand is an addition, always emit this as [r+r], since this is
903  // better (for code size, and execution, as the memop does the add for free)
904  // than emitting an explicit add.
905  if (N.getOpcode() == ISD::ADD) {
906    Base = N.getOperand(0);
907    Index = N.getOperand(1);
908    return true;
909  }
910
911  // Otherwise, do it the hard way, using R0 as the base register.
912  Base = DAG.getRegister(PPC::R0, N.getValueType());
913  Index = N;
914  return true;
915}
916
917/// SelectAddressRegImmShift - Returns true if the address N can be
918/// represented by a base register plus a signed 14-bit displacement
919/// [r+imm*4].  Suitable for use by STD and friends.
920bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
921                                                 SDValue &Base,
922                                                 SelectionDAG &DAG) {
923  // If this can be more profitably realized as r+r, fail.
924  if (SelectAddressRegReg(N, Disp, Base, DAG))
925    return false;
926
927  if (N.getOpcode() == ISD::ADD) {
928    short imm = 0;
929    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
931      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
932        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
933      } else {
934        Base = N.getOperand(0);
935      }
936      return true; // [r+i]
937    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
938      // Match LOAD (ADD (X, Lo(G))).
939      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
940             && "Cannot handle constant offsets yet!");
941      Disp = N.getOperand(1).getOperand(0);  // The global address.
942      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
943             Disp.getOpcode() == ISD::TargetConstantPool ||
944             Disp.getOpcode() == ISD::TargetJumpTable);
945      Base = N.getOperand(0);
946      return true;  // [&g+r]
947    }
948  } else if (N.getOpcode() == ISD::OR) {
949    short imm = 0;
950    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
951      // If this is an or of disjoint bitfields, we can codegen this as an add
952      // (for better address arithmetic) if the LHS and RHS of the OR are
953      // provably disjoint.
954      APInt LHSKnownZero, LHSKnownOne;
955      DAG.ComputeMaskedBits(N.getOperand(0),
956                            APInt::getAllOnesValue(N.getOperand(0)
957                                                   .getValueSizeInBits()),
958                            LHSKnownZero, LHSKnownOne);
959      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
960        // If all of the bits are known zero on the LHS or RHS, the add won't
961        // carry.
962        Base = N.getOperand(0);
963        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
964        return true;
965      }
966    }
967  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
968    // Loading from a constant address.  Verify low two bits are clear.
969    if ((CN->getValue() & 3) == 0) {
970      // If this address fits entirely in a 14-bit sext immediate field, codegen
971      // this as "d, 0"
972      short Imm;
973      if (isIntS16Immediate(CN, Imm)) {
974        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
975        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
976        return true;
977      }
978
979      // Fold the low-part of 32-bit absolute addresses into addr mode.
980      if (CN->getValueType(0) == MVT::i32 ||
981          (int64_t)CN->getValue() == (int)CN->getValue()) {
982        int Addr = (int)CN->getValue();
983
984        // Otherwise, break this down into an LIS + disp.
985        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
986
987        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
988        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
989        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
990        return true;
991      }
992    }
993  }
994
995  Disp = DAG.getTargetConstant(0, getPointerTy());
996  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
997    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
998  else
999    Base = N;
1000  return true;      // [r+0]
1001}
1002
1003
1004/// getPreIndexedAddressParts - returns true by value, base pointer and
1005/// offset pointer and addressing mode by reference if the node's address
1006/// can be legally represented as pre-indexed load / store address.
1007bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1008                                                  SDValue &Offset,
1009                                                  ISD::MemIndexedMode &AM,
1010                                                  SelectionDAG &DAG) {
1011  // Disabled by default for now.
1012  if (!EnablePPCPreinc) return false;
1013
1014  SDValue Ptr;
1015  MVT VT;
1016  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1017    Ptr = LD->getBasePtr();
1018    VT = LD->getMemoryVT();
1019
1020  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1021    ST = ST;
1022    Ptr = ST->getBasePtr();
1023    VT  = ST->getMemoryVT();
1024  } else
1025    return false;
1026
1027  // PowerPC doesn't have preinc load/store instructions for vectors.
1028  if (VT.isVector())
1029    return false;
1030
1031  // TODO: Check reg+reg first.
1032
1033  // LDU/STU use reg+imm*4, others use reg+imm.
1034  if (VT != MVT::i64) {
1035    // reg + imm
1036    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1037      return false;
1038  } else {
1039    // reg + imm * 4.
1040    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1041      return false;
1042  }
1043
1044  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1045    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1046    // sext i32 to i64 when addr mode is r+i.
1047    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1048        LD->getExtensionType() == ISD::SEXTLOAD &&
1049        isa<ConstantSDNode>(Offset))
1050      return false;
1051  }
1052
1053  AM = ISD::PRE_INC;
1054  return true;
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//  LowerOperation implementation
1059//===----------------------------------------------------------------------===//
1060
1061SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1062                                             SelectionDAG &DAG) {
1063  MVT PtrVT = Op.getValueType();
1064  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1065  Constant *C = CP->getConstVal();
1066  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1067  SDValue Zero = DAG.getConstant(0, PtrVT);
1068
1069  const TargetMachine &TM = DAG.getTarget();
1070
1071  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1072  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1073
1074  // If this is a non-darwin platform, we don't support non-static relo models
1075  // yet.
1076  if (TM.getRelocationModel() == Reloc::Static ||
1077      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1078    // Generate non-pic code that has direct accesses to the constant pool.
1079    // The address of the global is just (hi(&g)+lo(&g)).
1080    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1081  }
1082
1083  if (TM.getRelocationModel() == Reloc::PIC_) {
1084    // With PIC, the first instruction is actually "GR+hi(&G)".
1085    Hi = DAG.getNode(ISD::ADD, PtrVT,
1086                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1087  }
1088
1089  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1090  return Lo;
1091}
1092
1093SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1094  MVT PtrVT = Op.getValueType();
1095  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1096  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1097  SDValue Zero = DAG.getConstant(0, PtrVT);
1098
1099  const TargetMachine &TM = DAG.getTarget();
1100
1101  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1102  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1103
1104  // If this is a non-darwin platform, we don't support non-static relo models
1105  // yet.
1106  if (TM.getRelocationModel() == Reloc::Static ||
1107      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1108    // Generate non-pic code that has direct accesses to the constant pool.
1109    // The address of the global is just (hi(&g)+lo(&g)).
1110    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1111  }
1112
1113  if (TM.getRelocationModel() == Reloc::PIC_) {
1114    // With PIC, the first instruction is actually "GR+hi(&G)".
1115    Hi = DAG.getNode(ISD::ADD, PtrVT,
1116                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1117  }
1118
1119  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1120  return Lo;
1121}
1122
1123SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1124                                                   SelectionDAG &DAG) {
1125  assert(0 && "TLS not implemented for PPC.");
1126  return SDValue(); // Not reached
1127}
1128
1129SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1130                                                SelectionDAG &DAG) {
1131  MVT PtrVT = Op.getValueType();
1132  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1133  GlobalValue *GV = GSDN->getGlobal();
1134  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1135  // If it's a debug information descriptor, don't mess with it.
1136  if (DAG.isVerifiedDebugInfoDesc(Op))
1137    return GA;
1138  SDValue Zero = DAG.getConstant(0, PtrVT);
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to globals.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1158  }
1159
1160  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1161
1162  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1163    return Lo;
1164
1165  // If the global is weak or external, we have to go through the lazy
1166  // resolution stub.
1167  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1168}
1169
1170SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1171  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1172
1173  // If we're comparing for equality to zero, expose the fact that this is
1174  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1175  // fold the new nodes.
1176  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1177    if (C->isNullValue() && CC == ISD::SETEQ) {
1178      MVT VT = Op.getOperand(0).getValueType();
1179      SDValue Zext = Op.getOperand(0);
1180      if (VT.bitsLT(MVT::i32)) {
1181        VT = MVT::i32;
1182        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1183      }
1184      unsigned Log2b = Log2_32(VT.getSizeInBits());
1185      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1186      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1187                                  DAG.getConstant(Log2b, MVT::i32));
1188      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1189    }
1190    // Leave comparisons against 0 and -1 alone for now, since they're usually
1191    // optimized.  FIXME: revisit this when we can custom lower all setcc
1192    // optimizations.
1193    if (C->isAllOnesValue() || C->isNullValue())
1194      return SDValue();
1195  }
1196
1197  // If we have an integer seteq/setne, turn it into a compare against zero
1198  // by xor'ing the rhs with the lhs, which is faster than setting a
1199  // condition register, reading it back out, and masking the correct bit.  The
1200  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1201  // the result to other bit-twiddling opportunities.
1202  MVT LHSVT = Op.getOperand(0).getValueType();
1203  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1204    MVT VT = Op.getValueType();
1205    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1206                                Op.getOperand(1));
1207    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1208  }
1209  return SDValue();
1210}
1211
1212SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1213                              int VarArgsFrameIndex,
1214                              int VarArgsStackOffset,
1215                              unsigned VarArgsNumGPR,
1216                              unsigned VarArgsNumFPR,
1217                              const PPCSubtarget &Subtarget) {
1218
1219  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1220  return SDValue(); // Not reached
1221}
1222
1223SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1224                              int VarArgsFrameIndex,
1225                              int VarArgsStackOffset,
1226                              unsigned VarArgsNumGPR,
1227                              unsigned VarArgsNumFPR,
1228                              const PPCSubtarget &Subtarget) {
1229
1230  if (Subtarget.isMachoABI()) {
1231    // vastart just stores the address of the VarArgsFrameIndex slot into the
1232    // memory location argument.
1233    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1234    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1235    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1236    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1237  }
1238
1239  // For ELF 32 ABI we follow the layout of the va_list struct.
1240  // We suppose the given va_list is already allocated.
1241  //
1242  // typedef struct {
1243  //  char gpr;     /* index into the array of 8 GPRs
1244  //                 * stored in the register save area
1245  //                 * gpr=0 corresponds to r3,
1246  //                 * gpr=1 to r4, etc.
1247  //                 */
1248  //  char fpr;     /* index into the array of 8 FPRs
1249  //                 * stored in the register save area
1250  //                 * fpr=0 corresponds to f1,
1251  //                 * fpr=1 to f2, etc.
1252  //                 */
1253  //  char *overflow_arg_area;
1254  //                /* location on stack that holds
1255  //                 * the next overflow argument
1256  //                 */
1257  //  char *reg_save_area;
1258  //               /* where r3:r10 and f1:f8 (if saved)
1259  //                * are stored
1260  //                */
1261  // } va_list[1];
1262
1263
1264  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1265  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1266
1267
1268  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1269
1270  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1271  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1272
1273  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1274  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1275
1276  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1277  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1278
1279  uint64_t FPROffset = 1;
1280  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1281
1282  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1283
1284  // Store first byte : number of int regs
1285  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1286                                      Op.getOperand(1), SV, 0);
1287  uint64_t nextOffset = FPROffset;
1288  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1289                                  ConstFPROffset);
1290
1291  // Store second byte : number of float regs
1292  SDValue secondStore =
1293    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1294  nextOffset += StackOffset;
1295  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1296
1297  // Store second word : arguments given on stack
1298  SDValue thirdStore =
1299    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1300  nextOffset += FrameOffset;
1301  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1302
1303  // Store third word : arguments given in registers
1304  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1305
1306}
1307
1308#include "PPCGenCallingConv.inc"
1309
1310/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1311/// depending on which subtarget is selected.
1312static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1313  if (Subtarget.isMachoABI()) {
1314    static const unsigned FPR[] = {
1315      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1316      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1317    };
1318    return FPR;
1319  }
1320
1321
1322  static const unsigned FPR[] = {
1323    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1324    PPC::F8
1325  };
1326  return FPR;
1327}
1328
1329/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1330/// the stack.
1331static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
1332                                       bool isVarArg, unsigned PtrByteSize) {
1333  MVT ArgVT = Arg.getValueType();
1334  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1335  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1336  if (Flags.isByVal())
1337    ArgSize = Flags.getByValSize();
1338  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1339
1340  return ArgSize;
1341}
1342
1343SDValue
1344PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1345                                         SelectionDAG &DAG,
1346                                         int &VarArgsFrameIndex,
1347                                         int &VarArgsStackOffset,
1348                                         unsigned &VarArgsNumGPR,
1349                                         unsigned &VarArgsNumFPR,
1350                                         const PPCSubtarget &Subtarget) {
1351  // TODO: add description of PPC stack frame format, or at least some docs.
1352  //
1353  MachineFunction &MF = DAG.getMachineFunction();
1354  MachineFrameInfo *MFI = MF.getFrameInfo();
1355  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1356  SmallVector<SDValue, 8> ArgValues;
1357  SDValue Root = Op.getOperand(0);
1358  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1359
1360  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1361  bool isPPC64 = PtrVT == MVT::i64;
1362  bool isMachoABI = Subtarget.isMachoABI();
1363  bool isELF32_ABI = Subtarget.isELF32_ABI();
1364  // Potential tail calls could cause overwriting of argument stack slots.
1365  unsigned CC = MF.getFunction()->getCallingConv();
1366  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1367  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1368
1369  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1370  // Area that is at least reserved in caller of this function.
1371  unsigned MinReservedArea = ArgOffset;
1372
1373  static const unsigned GPR_32[] = {           // 32-bit registers.
1374    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1375    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1376  };
1377  static const unsigned GPR_64[] = {           // 64-bit registers.
1378    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1379    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1380  };
1381
1382  static const unsigned *FPR = GetFPR(Subtarget);
1383
1384  static const unsigned VR[] = {
1385    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1386    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1387  };
1388
1389  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1390  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1391  const unsigned Num_VR_Regs  = array_lengthof( VR);
1392
1393  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1394
1395  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1396
1397  // In 32-bit non-varargs functions, the stack space for vectors is after the
1398  // stack space for non-vectors.  We do not use this space unless we have
1399  // too many vectors to fit in registers, something that only occurs in
1400  // constructed examples:), but we have to walk the arglist to figure
1401  // that out...for the pathological case, compute VecArgOffset as the
1402  // start of the vector parameter area.  Computing VecArgOffset is the
1403  // entire point of the following loop.
1404  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1405  // to handle Elf here.
1406  unsigned VecArgOffset = ArgOffset;
1407  if (!isVarArg && !isPPC64) {
1408    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1409         ++ArgNo) {
1410      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1411      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1412      ISD::ArgFlagsTy Flags =
1413        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1414
1415      if (Flags.isByVal()) {
1416        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1417        ObjSize = Flags.getByValSize();
1418        unsigned ArgSize =
1419                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1420        VecArgOffset += ArgSize;
1421        continue;
1422      }
1423
1424      switch(ObjectVT.getSimpleVT()) {
1425      default: assert(0 && "Unhandled argument type!");
1426      case MVT::i32:
1427      case MVT::f32:
1428        VecArgOffset += isPPC64 ? 8 : 4;
1429        break;
1430      case MVT::i64:  // PPC64
1431      case MVT::f64:
1432        VecArgOffset += 8;
1433        break;
1434      case MVT::v4f32:
1435      case MVT::v4i32:
1436      case MVT::v8i16:
1437      case MVT::v16i8:
1438        // Nothing to do, we're only looking at Nonvector args here.
1439        break;
1440      }
1441    }
1442  }
1443  // We've found where the vector parameter area in memory is.  Skip the
1444  // first 12 parameters; these don't use that memory.
1445  VecArgOffset = ((VecArgOffset+15)/16)*16;
1446  VecArgOffset += 12*16;
1447
1448  // Add DAG nodes to load the arguments or copy them out of registers.  On
1449  // entry to a function on PPC, the arguments start after the linkage area,
1450  // although the first ones are often in registers.
1451  //
1452  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1453  // represented with two words (long long or double) must be copied to an
1454  // even GPR_idx value or to an even ArgOffset value.
1455
1456  SmallVector<SDValue, 8> MemOps;
1457  unsigned nAltivecParamsAtEnd = 0;
1458  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1459       ArgNo != e; ++ArgNo) {
1460    SDValue ArgVal;
1461    bool needsLoad = false;
1462    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1463    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1464    unsigned ArgSize = ObjSize;
1465    ISD::ArgFlagsTy Flags =
1466      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1467    // See if next argument requires stack alignment in ELF
1468    bool Align = Flags.isSplit();
1469
1470    unsigned CurArgOffset = ArgOffset;
1471
1472    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1473    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1474        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1475      if (isVarArg || isPPC64) {
1476        MinReservedArea = ((MinReservedArea+15)/16)*16;
1477        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1478                                                  Op.getOperand(ArgNo+3),
1479                                                  isVarArg,
1480                                                  PtrByteSize);
1481      } else  nAltivecParamsAtEnd++;
1482    } else
1483      // Calculate min reserved area.
1484      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1485                                                Op.getOperand(ArgNo+3),
1486                                                isVarArg,
1487                                                PtrByteSize);
1488
1489    // FIXME alignment for ELF may not be right
1490    // FIXME the codegen can be much improved in some cases.
1491    // We do not have to keep everything in memory.
1492    if (Flags.isByVal()) {
1493      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1494      ObjSize = Flags.getByValSize();
1495      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1496      // Double word align in ELF
1497      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1498      // Objects of size 1 and 2 are right justified, everything else is
1499      // left justified.  This means the memory address is adjusted forwards.
1500      if (ObjSize==1 || ObjSize==2) {
1501        CurArgOffset = CurArgOffset + (4 - ObjSize);
1502      }
1503      // The value of the object is its address.
1504      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1505      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1506      ArgValues.push_back(FIN);
1507      if (ObjSize==1 || ObjSize==2) {
1508        if (GPR_idx != Num_GPR_Regs) {
1509          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1510          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1511          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1512          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1513                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1514          MemOps.push_back(Store);
1515          ++GPR_idx;
1516          if (isMachoABI) ArgOffset += PtrByteSize;
1517        } else {
1518          ArgOffset += PtrByteSize;
1519        }
1520        continue;
1521      }
1522      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1523        // Store whatever pieces of the object are in registers
1524        // to memory.  ArgVal will be address of the beginning of
1525        // the object.
1526        if (GPR_idx != Num_GPR_Regs) {
1527          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1528          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1529          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1530          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1531          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1532          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1533          MemOps.push_back(Store);
1534          ++GPR_idx;
1535          if (isMachoABI) ArgOffset += PtrByteSize;
1536        } else {
1537          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1538          break;
1539        }
1540      }
1541      continue;
1542    }
1543
1544    switch (ObjectVT.getSimpleVT()) {
1545    default: assert(0 && "Unhandled argument type!");
1546    case MVT::i32:
1547      if (!isPPC64) {
1548        // Double word align in ELF
1549        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1550
1551        if (GPR_idx != Num_GPR_Regs) {
1552          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1553          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1554          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1555          ++GPR_idx;
1556        } else {
1557          needsLoad = true;
1558          ArgSize = PtrByteSize;
1559        }
1560        // Stack align in ELF
1561        if (needsLoad && Align && isELF32_ABI)
1562          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1563        // All int arguments reserve stack space in Macho ABI.
1564        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1565        break;
1566      }
1567      // FALLTHROUGH
1568    case MVT::i64:  // PPC64
1569      if (GPR_idx != Num_GPR_Regs) {
1570        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1571        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1572        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1573
1574        if (ObjectVT == MVT::i32) {
1575          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1576          // value to MVT::i64 and then truncate to the correct register size.
1577          if (Flags.isSExt())
1578            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1579                                 DAG.getValueType(ObjectVT));
1580          else if (Flags.isZExt())
1581            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1582                                 DAG.getValueType(ObjectVT));
1583
1584          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1585        }
1586
1587        ++GPR_idx;
1588      } else {
1589        needsLoad = true;
1590        ArgSize = PtrByteSize;
1591      }
1592      // All int arguments reserve stack space in Macho ABI.
1593      if (isMachoABI || needsLoad) ArgOffset += 8;
1594      break;
1595
1596    case MVT::f32:
1597    case MVT::f64:
1598      // Every 4 bytes of argument space consumes one of the GPRs available for
1599      // argument passing.
1600      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1601        ++GPR_idx;
1602        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1603          ++GPR_idx;
1604      }
1605      if (FPR_idx != Num_FPR_Regs) {
1606        unsigned VReg;
1607        if (ObjectVT == MVT::f32)
1608          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1609        else
1610          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1611        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1612        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1613        ++FPR_idx;
1614      } else {
1615        needsLoad = true;
1616      }
1617
1618      // Stack align in ELF
1619      if (needsLoad && Align && isELF32_ABI)
1620        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1621      // All FP arguments reserve stack space in Macho ABI.
1622      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1623      break;
1624    case MVT::v4f32:
1625    case MVT::v4i32:
1626    case MVT::v8i16:
1627    case MVT::v16i8:
1628      // Note that vector arguments in registers don't reserve stack space,
1629      // except in varargs functions.
1630      if (VR_idx != Num_VR_Regs) {
1631        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1632        RegInfo.addLiveIn(VR[VR_idx], VReg);
1633        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1634        if (isVarArg) {
1635          while ((ArgOffset % 16) != 0) {
1636            ArgOffset += PtrByteSize;
1637            if (GPR_idx != Num_GPR_Regs)
1638              GPR_idx++;
1639          }
1640          ArgOffset += 16;
1641          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1642        }
1643        ++VR_idx;
1644      } else {
1645        if (!isVarArg && !isPPC64) {
1646          // Vectors go after all the nonvectors.
1647          CurArgOffset = VecArgOffset;
1648          VecArgOffset += 16;
1649        } else {
1650          // Vectors are aligned.
1651          ArgOffset = ((ArgOffset+15)/16)*16;
1652          CurArgOffset = ArgOffset;
1653          ArgOffset += 16;
1654        }
1655        needsLoad = true;
1656      }
1657      break;
1658    }
1659
1660    // We need to load the argument to a virtual register if we determined above
1661    // that we ran out of physical registers of the appropriate type.
1662    if (needsLoad) {
1663      int FI = MFI->CreateFixedObject(ObjSize,
1664                                      CurArgOffset + (ArgSize - ObjSize),
1665                                      isImmutable);
1666      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1667      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1668    }
1669
1670    ArgValues.push_back(ArgVal);
1671  }
1672
1673  // Set the size that is at least reserved in caller of this function.  Tail
1674  // call optimized function's reserved stack space needs to be aligned so that
1675  // taking the difference between two stack areas will result in an aligned
1676  // stack.
1677  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1678  // Add the Altivec parameters at the end, if needed.
1679  if (nAltivecParamsAtEnd) {
1680    MinReservedArea = ((MinReservedArea+15)/16)*16;
1681    MinReservedArea += 16*nAltivecParamsAtEnd;
1682  }
1683  MinReservedArea =
1684    std::max(MinReservedArea,
1685             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1686  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1687    getStackAlignment();
1688  unsigned AlignMask = TargetAlign-1;
1689  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1690  FI->setMinReservedArea(MinReservedArea);
1691
1692  // If the function takes variable number of arguments, make a frame index for
1693  // the start of the first vararg value... for expansion of llvm.va_start.
1694  if (isVarArg) {
1695
1696    int depth;
1697    if (isELF32_ABI) {
1698      VarArgsNumGPR = GPR_idx;
1699      VarArgsNumFPR = FPR_idx;
1700
1701      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1702      // pointer.
1703      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1704                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1705                PtrVT.getSizeInBits()/8);
1706
1707      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1708                                                  ArgOffset);
1709
1710    }
1711    else
1712      depth = ArgOffset;
1713
1714    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1715                                               depth);
1716    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1717
1718    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1719    // stored to the VarArgsFrameIndex on the stack.
1720    if (isELF32_ABI) {
1721      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1722        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1723        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1724        MemOps.push_back(Store);
1725        // Increment the address by four for the next argument to store
1726        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1727        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1728      }
1729    }
1730
1731    // If this function is vararg, store any remaining integer argument regs
1732    // to their spots on the stack so that they may be loaded by deferencing the
1733    // result of va_next.
1734    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1735      unsigned VReg;
1736      if (isPPC64)
1737        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1738      else
1739        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1740
1741      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1742      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1743      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1744      MemOps.push_back(Store);
1745      // Increment the address by four for the next argument to store
1746      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1747      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1748    }
1749
1750    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1751    // on the stack.
1752    if (isELF32_ABI) {
1753      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1754        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1755        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1756        MemOps.push_back(Store);
1757        // Increment the address by eight for the next argument to store
1758        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1759                                           PtrVT);
1760        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1761      }
1762
1763      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1764        unsigned VReg;
1765        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1766
1767        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1768        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1769        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1770        MemOps.push_back(Store);
1771        // Increment the address by eight for the next argument to store
1772        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1773                                           PtrVT);
1774        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1775      }
1776    }
1777  }
1778
1779  if (!MemOps.empty())
1780    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1781
1782  ArgValues.push_back(Root);
1783
1784  // Return the new list of results.
1785  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1786                            ArgValues.size());
1787}
1788
1789/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1790/// linkage area.
1791static unsigned
1792CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1793                                     bool isPPC64,
1794                                     bool isMachoABI,
1795                                     bool isVarArg,
1796                                     unsigned CC,
1797                                     SDValue Call,
1798                                     unsigned &nAltivecParamsAtEnd) {
1799  // Count how many bytes are to be pushed on the stack, including the linkage
1800  // area, and parameter passing area.  We start with 24/48 bytes, which is
1801  // prereserved space for [SP][CR][LR][3 x unused].
1802  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1803  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1804  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1805
1806  // Add up all the space actually used.
1807  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1808  // they all go in registers, but we must reserve stack space for them for
1809  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1810  // assigned stack space in order, with padding so Altivec parameters are
1811  // 16-byte aligned.
1812  nAltivecParamsAtEnd = 0;
1813  for (unsigned i = 0; i != NumOps; ++i) {
1814    SDValue Arg = Call.getOperand(5+2*i);
1815    SDValue Flag = Call.getOperand(5+2*i+1);
1816    MVT ArgVT = Arg.getValueType();
1817    // Varargs Altivec parameters are padded to a 16 byte boundary.
1818    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1819        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1820      if (!isVarArg && !isPPC64) {
1821        // Non-varargs Altivec parameters go after all the non-Altivec
1822        // parameters; handle those later so we know how much padding we need.
1823        nAltivecParamsAtEnd++;
1824        continue;
1825      }
1826      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1827      NumBytes = ((NumBytes+15)/16)*16;
1828    }
1829    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1830  }
1831
1832   // Allow for Altivec parameters at the end, if needed.
1833  if (nAltivecParamsAtEnd) {
1834    NumBytes = ((NumBytes+15)/16)*16;
1835    NumBytes += 16*nAltivecParamsAtEnd;
1836  }
1837
1838  // The prolog code of the callee may store up to 8 GPR argument registers to
1839  // the stack, allowing va_start to index over them in memory if its varargs.
1840  // Because we cannot tell if this is needed on the caller side, we have to
1841  // conservatively assume that it is needed.  As such, make sure we have at
1842  // least enough stack space for the caller to store the 8 GPRs.
1843  NumBytes = std::max(NumBytes,
1844                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1845
1846  // Tail call needs the stack to be aligned.
1847  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1848    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1849      getStackAlignment();
1850    unsigned AlignMask = TargetAlign-1;
1851    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1852  }
1853
1854  return NumBytes;
1855}
1856
1857/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1858/// adjusted to accomodate the arguments for the tailcall.
1859static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1860                                   unsigned ParamSize) {
1861
1862  if (!IsTailCall) return 0;
1863
1864  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1865  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1866  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1867  // Remember only if the new adjustement is bigger.
1868  if (SPDiff < FI->getTailCallSPDelta())
1869    FI->setTailCallSPDelta(SPDiff);
1870
1871  return SPDiff;
1872}
1873
1874/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1875/// following the call is a return. A function is eligible if caller/callee
1876/// calling conventions match, currently only fastcc supports tail calls, and
1877/// the function CALL is immediatly followed by a RET.
1878bool
1879PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1880                                                     SDValue Ret,
1881                                                     SelectionDAG& DAG) const {
1882  // Variable argument functions are not supported.
1883  if (!PerformTailCallOpt ||
1884      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1885
1886  if (CheckTailCallReturnConstraints(Call, Ret)) {
1887    MachineFunction &MF = DAG.getMachineFunction();
1888    unsigned CallerCC = MF.getFunction()->getCallingConv();
1889    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1890    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1891      // Functions containing by val parameters are not supported.
1892      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1893         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1894           ->getArgFlags();
1895         if (Flags.isByVal()) return false;
1896      }
1897
1898      SDValue Callee = Call.getOperand(4);
1899      // Non PIC/GOT  tail calls are supported.
1900      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1901        return true;
1902
1903      // At the moment we can only do local tail calls (in same module, hidden
1904      // or protected) if we are generating PIC.
1905      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1906        return G->getGlobal()->hasHiddenVisibility()
1907            || G->getGlobal()->hasProtectedVisibility();
1908    }
1909  }
1910
1911  return false;
1912}
1913
1914/// isCallCompatibleAddress - Return the immediate to use if the specified
1915/// 32-bit value is representable in the immediate field of a BxA instruction.
1916static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1917  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1918  if (!C) return 0;
1919
1920  int Addr = C->getValue();
1921  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1922      (Addr << 6 >> 6) != Addr)
1923    return 0;  // Top 6 bits have to be sext of immediate.
1924
1925  return DAG.getConstant((int)C->getValue() >> 2,
1926                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1927}
1928
1929namespace {
1930
1931struct TailCallArgumentInfo {
1932  SDValue Arg;
1933  SDValue FrameIdxOp;
1934  int       FrameIdx;
1935
1936  TailCallArgumentInfo() : FrameIdx(0) {}
1937};
1938
1939}
1940
1941/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1942static void
1943StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1944                                           SDValue Chain,
1945                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1946                   SmallVector<SDValue, 8> &MemOpChains) {
1947  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1948    SDValue Arg = TailCallArgs[i].Arg;
1949    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1950    int FI = TailCallArgs[i].FrameIdx;
1951    // Store relative to framepointer.
1952    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1953                                       PseudoSourceValue::getFixedStack(FI),
1954                                       0));
1955  }
1956}
1957
1958/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1959/// the appropriate stack slot for the tail call optimized function call.
1960static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1961                                               MachineFunction &MF,
1962                                               SDValue Chain,
1963                                               SDValue OldRetAddr,
1964                                               SDValue OldFP,
1965                                               int SPDiff,
1966                                               bool isPPC64,
1967                                               bool isMachoABI) {
1968  if (SPDiff) {
1969    // Calculate the new stack slot for the return address.
1970    int SlotSize = isPPC64 ? 8 : 4;
1971    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1972                                                                   isMachoABI);
1973    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1974                                                          NewRetAddrLoc);
1975    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1976                                                                    isMachoABI);
1977    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1978
1979    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1980    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1981    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1982                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1983    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1984    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1985                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1986  }
1987  return Chain;
1988}
1989
1990/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1991/// the position of the argument.
1992static void
1993CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1994                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1995                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1996  int Offset = ArgOffset + SPDiff;
1997  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1998  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1999  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2000  SDValue FIN = DAG.getFrameIndex(FI, VT);
2001  TailCallArgumentInfo Info;
2002  Info.Arg = Arg;
2003  Info.FrameIdxOp = FIN;
2004  Info.FrameIdx = FI;
2005  TailCallArguments.push_back(Info);
2006}
2007
2008/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2009/// stack slot. Returns the chain as result and the loaded frame pointers in
2010/// LROpOut/FPOpout. Used when tail calling.
2011SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2012                                                          int SPDiff,
2013                                                          SDValue Chain,
2014                                                          SDValue &LROpOut,
2015                                                          SDValue &FPOpOut) {
2016  if (SPDiff) {
2017    // Load the LR and FP stack slot for later adjusting.
2018    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2019    LROpOut = getReturnAddrFrameIndex(DAG);
2020    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2021    Chain = SDValue(LROpOut.getNode(), 1);
2022    FPOpOut = getFramePointerFrameIndex(DAG);
2023    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2024    Chain = SDValue(FPOpOut.getNode(), 1);
2025  }
2026  return Chain;
2027}
2028
2029/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2030/// by "Src" to address "Dst" of size "Size".  Alignment information is
2031/// specified by the specific parameter attribute. The copy will be passed as
2032/// a byval function parameter.
2033/// Sometimes what we are copying is the end of a larger object, the part that
2034/// does not fit in registers.
2035static SDValue
2036CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2037                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2038                          unsigned Size) {
2039  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2040  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2041                       NULL, 0, NULL, 0);
2042}
2043
2044/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2045/// tail calls.
2046static void
2047LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2048                 SDValue Arg, SDValue PtrOff, int SPDiff,
2049                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2050                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2051                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2052  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2053  if (!isTailCall) {
2054    if (isVector) {
2055      SDValue StackPtr;
2056      if (isPPC64)
2057        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2058      else
2059        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2060      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2061                           DAG.getConstant(ArgOffset, PtrVT));
2062    }
2063    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2064  // Calculate and remember argument location.
2065  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2066                                  TailCallArguments);
2067}
2068
2069SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2070                                       const PPCSubtarget &Subtarget,
2071                                       TargetMachine &TM) {
2072  SDValue Chain  = Op.getOperand(0);
2073  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2074  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2075  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2076                     CC == CallingConv::Fast && PerformTailCallOpt;
2077  SDValue Callee = Op.getOperand(4);
2078  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2079
2080  bool isMachoABI = Subtarget.isMachoABI();
2081  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2082
2083  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2084  bool isPPC64 = PtrVT == MVT::i64;
2085  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2086
2087  MachineFunction &MF = DAG.getMachineFunction();
2088
2089  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2090  // SelectExpr to use to put the arguments in the appropriate registers.
2091  std::vector<SDValue> args_to_use;
2092
2093  // Mark this function as potentially containing a function that contains a
2094  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2095  // and restoring the callers stack pointer in this functions epilog. This is
2096  // done because by tail calling the called function might overwrite the value
2097  // in this function's (MF) stack pointer stack slot 0(SP).
2098  if (PerformTailCallOpt && CC==CallingConv::Fast)
2099    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2100
2101  unsigned nAltivecParamsAtEnd = 0;
2102
2103  // Count how many bytes are to be pushed on the stack, including the linkage
2104  // area, and parameter passing area.  We start with 24/48 bytes, which is
2105  // prereserved space for [SP][CR][LR][3 x unused].
2106  unsigned NumBytes =
2107    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2108                                         Op, nAltivecParamsAtEnd);
2109
2110  // Calculate by how many bytes the stack has to be adjusted in case of tail
2111  // call optimization.
2112  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2113
2114  // Adjust the stack pointer for the new arguments...
2115  // These operations are automatically eliminated by the prolog/epilog pass
2116  Chain = DAG.getCALLSEQ_START(Chain,
2117                               DAG.getConstant(NumBytes, PtrVT));
2118  SDValue CallSeqStart = Chain;
2119
2120  // Load the return address and frame pointer so it can be move somewhere else
2121  // later.
2122  SDValue LROp, FPOp;
2123  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2124
2125  // Set up a copy of the stack pointer for use loading and storing any
2126  // arguments that may not fit in the registers available for argument
2127  // passing.
2128  SDValue StackPtr;
2129  if (isPPC64)
2130    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2131  else
2132    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2133
2134  // Figure out which arguments are going to go in registers, and which in
2135  // memory.  Also, if this is a vararg function, floating point operations
2136  // must be stored to our stack, and loaded into integer regs as well, if
2137  // any integer regs are available for argument passing.
2138  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2139  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2140
2141  static const unsigned GPR_32[] = {           // 32-bit registers.
2142    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2143    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2144  };
2145  static const unsigned GPR_64[] = {           // 64-bit registers.
2146    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2147    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2148  };
2149  static const unsigned *FPR = GetFPR(Subtarget);
2150
2151  static const unsigned VR[] = {
2152    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2153    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2154  };
2155  const unsigned NumGPRs = array_lengthof(GPR_32);
2156  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2157  const unsigned NumVRs  = array_lengthof( VR);
2158
2159  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2160
2161  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2162  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2163
2164  SmallVector<SDValue, 8> MemOpChains;
2165  for (unsigned i = 0; i != NumOps; ++i) {
2166    bool inMem = false;
2167    SDValue Arg = Op.getOperand(5+2*i);
2168    ISD::ArgFlagsTy Flags =
2169      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2170    // See if next argument requires stack alignment in ELF
2171    bool Align = Flags.isSplit();
2172
2173    // PtrOff will be used to store the current argument to the stack if a
2174    // register cannot be found for it.
2175    SDValue PtrOff;
2176
2177    // Stack align in ELF 32
2178    if (isELF32_ABI && Align)
2179      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2180                               StackPtr.getValueType());
2181    else
2182      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2183
2184    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2185
2186    // On PPC64, promote integers to 64-bit values.
2187    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2188      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2189      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2190      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2191    }
2192
2193    // FIXME Elf untested, what are alignment rules?
2194    // FIXME memcpy is used way more than necessary.  Correctness first.
2195    if (Flags.isByVal()) {
2196      unsigned Size = Flags.getByValSize();
2197      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2198      if (Size==1 || Size==2) {
2199        // Very small objects are passed right-justified.
2200        // Everything else is passed left-justified.
2201        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2202        if (GPR_idx != NumGPRs) {
2203          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2204                                          NULL, 0, VT);
2205          MemOpChains.push_back(Load.getValue(1));
2206          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2207          if (isMachoABI)
2208            ArgOffset += PtrByteSize;
2209        } else {
2210          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2211          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2212          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2213                                CallSeqStart.getNode()->getOperand(0),
2214                                Flags, DAG, Size);
2215          // This must go outside the CALLSEQ_START..END.
2216          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2217                               CallSeqStart.getNode()->getOperand(1));
2218          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2219                                 NewCallSeqStart.getNode());
2220          Chain = CallSeqStart = NewCallSeqStart;
2221          ArgOffset += PtrByteSize;
2222        }
2223        continue;
2224      }
2225      // Copy entire object into memory.  There are cases where gcc-generated
2226      // code assumes it is there, even if it could be put entirely into
2227      // registers.  (This is not what the doc says.)
2228      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2229                            CallSeqStart.getNode()->getOperand(0),
2230                            Flags, DAG, Size);
2231      // This must go outside the CALLSEQ_START..END.
2232      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2233                           CallSeqStart.getNode()->getOperand(1));
2234      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2235      Chain = CallSeqStart = NewCallSeqStart;
2236      // And copy the pieces of it that fit into registers.
2237      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2238        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2239        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2240        if (GPR_idx != NumGPRs) {
2241          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2242          MemOpChains.push_back(Load.getValue(1));
2243          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2244          if (isMachoABI)
2245            ArgOffset += PtrByteSize;
2246        } else {
2247          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2248          break;
2249        }
2250      }
2251      continue;
2252    }
2253
2254    switch (Arg.getValueType().getSimpleVT()) {
2255    default: assert(0 && "Unexpected ValueType for argument!");
2256    case MVT::i32:
2257    case MVT::i64:
2258      // Double word align in ELF
2259      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2260      if (GPR_idx != NumGPRs) {
2261        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2262      } else {
2263        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2264                         isPPC64, isTailCall, false, MemOpChains,
2265                         TailCallArguments);
2266        inMem = true;
2267      }
2268      if (inMem || isMachoABI) {
2269        // Stack align in ELF
2270        if (isELF32_ABI && Align)
2271          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2272
2273        ArgOffset += PtrByteSize;
2274      }
2275      break;
2276    case MVT::f32:
2277    case MVT::f64:
2278      if (FPR_idx != NumFPRs) {
2279        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2280
2281        if (isVarArg) {
2282          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2283          MemOpChains.push_back(Store);
2284
2285          // Float varargs are always shadowed in available integer registers
2286          if (GPR_idx != NumGPRs) {
2287            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2288            MemOpChains.push_back(Load.getValue(1));
2289            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2290                                                                Load));
2291          }
2292          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2293            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2294            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2295            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2296            MemOpChains.push_back(Load.getValue(1));
2297            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2298                                                                Load));
2299          }
2300        } else {
2301          // If we have any FPRs remaining, we may also have GPRs remaining.
2302          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2303          // GPRs.
2304          if (isMachoABI) {
2305            if (GPR_idx != NumGPRs)
2306              ++GPR_idx;
2307            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2308                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2309              ++GPR_idx;
2310          }
2311        }
2312      } else {
2313        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2314                         isPPC64, isTailCall, false, MemOpChains,
2315                         TailCallArguments);
2316        inMem = true;
2317      }
2318      if (inMem || isMachoABI) {
2319        // Stack align in ELF
2320        if (isELF32_ABI && Align)
2321          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2322        if (isPPC64)
2323          ArgOffset += 8;
2324        else
2325          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2326      }
2327      break;
2328    case MVT::v4f32:
2329    case MVT::v4i32:
2330    case MVT::v8i16:
2331    case MVT::v16i8:
2332      if (isVarArg) {
2333        // These go aligned on the stack, or in the corresponding R registers
2334        // when within range.  The Darwin PPC ABI doc claims they also go in
2335        // V registers; in fact gcc does this only for arguments that are
2336        // prototyped, not for those that match the ...  We do it for all
2337        // arguments, seems to work.
2338        while (ArgOffset % 16 !=0) {
2339          ArgOffset += PtrByteSize;
2340          if (GPR_idx != NumGPRs)
2341            GPR_idx++;
2342        }
2343        // We could elide this store in the case where the object fits
2344        // entirely in R registers.  Maybe later.
2345        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2346                            DAG.getConstant(ArgOffset, PtrVT));
2347        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2348        MemOpChains.push_back(Store);
2349        if (VR_idx != NumVRs) {
2350          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2351          MemOpChains.push_back(Load.getValue(1));
2352          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2353        }
2354        ArgOffset += 16;
2355        for (unsigned i=0; i<16; i+=PtrByteSize) {
2356          if (GPR_idx == NumGPRs)
2357            break;
2358          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2359                                  DAG.getConstant(i, PtrVT));
2360          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2361          MemOpChains.push_back(Load.getValue(1));
2362          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2363        }
2364        break;
2365      }
2366
2367      // Non-varargs Altivec params generally go in registers, but have
2368      // stack space allocated at the end.
2369      if (VR_idx != NumVRs) {
2370        // Doesn't have GPR space allocated.
2371        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2372      } else if (nAltivecParamsAtEnd==0) {
2373        // We are emitting Altivec params in order.
2374        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2375                         isPPC64, isTailCall, true, MemOpChains,
2376                         TailCallArguments);
2377        ArgOffset += 16;
2378      }
2379      break;
2380    }
2381  }
2382  // If all Altivec parameters fit in registers, as they usually do,
2383  // they get stack space following the non-Altivec parameters.  We
2384  // don't track this here because nobody below needs it.
2385  // If there are more Altivec parameters than fit in registers emit
2386  // the stores here.
2387  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2388    unsigned j = 0;
2389    // Offset is aligned; skip 1st 12 params which go in V registers.
2390    ArgOffset = ((ArgOffset+15)/16)*16;
2391    ArgOffset += 12*16;
2392    for (unsigned i = 0; i != NumOps; ++i) {
2393      SDValue Arg = Op.getOperand(5+2*i);
2394      MVT ArgType = Arg.getValueType();
2395      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2396          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2397        if (++j > NumVRs) {
2398          SDValue PtrOff;
2399          // We are emitting Altivec params in order.
2400          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2401                           isPPC64, isTailCall, true, MemOpChains,
2402                           TailCallArguments);
2403          ArgOffset += 16;
2404        }
2405      }
2406    }
2407  }
2408
2409  if (!MemOpChains.empty())
2410    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2411                        &MemOpChains[0], MemOpChains.size());
2412
2413  // Build a sequence of copy-to-reg nodes chained together with token chain
2414  // and flag operands which copy the outgoing args into the appropriate regs.
2415  SDValue InFlag;
2416  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2417    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2418                             InFlag);
2419    InFlag = Chain.getValue(1);
2420  }
2421
2422  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2423  if (isVarArg && isELF32_ABI) {
2424    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2425    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2426    InFlag = Chain.getValue(1);
2427  }
2428
2429  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2430  // might overwrite each other in case of tail call optimization.
2431  if (isTailCall) {
2432    SmallVector<SDValue, 8> MemOpChains2;
2433    // Do not flag preceeding copytoreg stuff together with the following stuff.
2434    InFlag = SDValue();
2435    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2436                                      MemOpChains2);
2437    if (!MemOpChains2.empty())
2438      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2439                          &MemOpChains2[0], MemOpChains2.size());
2440
2441    // Store the return address to the appropriate stack slot.
2442    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2443                                          isPPC64, isMachoABI);
2444  }
2445
2446  // Emit callseq_end just before tailcall node.
2447  if (isTailCall) {
2448    SmallVector<SDValue, 8> CallSeqOps;
2449    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2450    CallSeqOps.push_back(Chain);
2451    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2452    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2453    if (InFlag.getNode())
2454      CallSeqOps.push_back(InFlag);
2455    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2456                        CallSeqOps.size());
2457    InFlag = Chain.getValue(1);
2458  }
2459
2460  std::vector<MVT> NodeTys;
2461  NodeTys.push_back(MVT::Other);   // Returns a chain
2462  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2463
2464  SmallVector<SDValue, 8> Ops;
2465  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2466
2467  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2468  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2469  // node so that legalize doesn't hack it.
2470  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2471    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2472  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2473    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2474  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2475    // If this is an absolute destination address, use the munged value.
2476    Callee = SDValue(Dest, 0);
2477  else {
2478    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2479    // to do the call, we can't use PPCISD::CALL.
2480    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2481    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
2482                        2 + (InFlag.getNode() != 0));
2483    InFlag = Chain.getValue(1);
2484
2485    // Copy the callee address into R12/X12 on darwin.
2486    if (isMachoABI) {
2487      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2488      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2489      InFlag = Chain.getValue(1);
2490    }
2491
2492    NodeTys.clear();
2493    NodeTys.push_back(MVT::Other);
2494    NodeTys.push_back(MVT::Flag);
2495    Ops.push_back(Chain);
2496    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2497    Callee.setNode(0);
2498    // Add CTR register as callee so a bctr can be emitted later.
2499    if (isTailCall)
2500      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2501  }
2502
2503  // If this is a direct call, pass the chain and the callee.
2504  if (Callee.getNode()) {
2505    Ops.push_back(Chain);
2506    Ops.push_back(Callee);
2507  }
2508  // If this is a tail call add stack pointer delta.
2509  if (isTailCall)
2510    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2511
2512  // Add argument registers to the end of the list so that they are known live
2513  // into the call.
2514  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2515    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2516                                  RegsToPass[i].second.getValueType()));
2517
2518  // When performing tail call optimization the callee pops its arguments off
2519  // the stack. Account for this here so these bytes can be pushed back on in
2520  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2521  int BytesCalleePops =
2522    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2523
2524  if (InFlag.getNode())
2525    Ops.push_back(InFlag);
2526
2527  // Emit tail call.
2528  if (isTailCall) {
2529    assert(InFlag.getNode() &&
2530           "Flag must be set. Depend on flag being set in LowerRET");
2531    Chain = DAG.getNode(PPCISD::TAILCALL,
2532                        Op.getNode()->getVTList(), &Ops[0], Ops.size());
2533    return SDValue(Chain.getNode(), Op.getResNo());
2534  }
2535
2536  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2537  InFlag = Chain.getValue(1);
2538
2539  Chain = DAG.getCALLSEQ_END(Chain,
2540                             DAG.getConstant(NumBytes, PtrVT),
2541                             DAG.getConstant(BytesCalleePops, PtrVT),
2542                             InFlag);
2543  if (Op.getNode()->getValueType(0) != MVT::Other)
2544    InFlag = Chain.getValue(1);
2545
2546  SmallVector<SDValue, 16> ResultVals;
2547  SmallVector<CCValAssign, 16> RVLocs;
2548  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2549  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2550  CCInfo.AnalyzeCallResult(Op.getNode(), RetCC_PPC);
2551
2552  // Copy all of the result registers out of their specified physreg.
2553  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2554    CCValAssign &VA = RVLocs[i];
2555    MVT VT = VA.getValVT();
2556    assert(VA.isRegLoc() && "Can only return in registers!");
2557    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2558    ResultVals.push_back(Chain.getValue(0));
2559    InFlag = Chain.getValue(2);
2560  }
2561
2562  // If the function returns void, just return the chain.
2563  if (RVLocs.empty())
2564    return Chain;
2565
2566  // Otherwise, merge everything together with a MERGE_VALUES node.
2567  ResultVals.push_back(Chain);
2568  SDValue Res = DAG.getMergeValues(Op.getNode()->getVTList(), &ResultVals[0],
2569                                     ResultVals.size());
2570  return Res.getValue(Op.getResNo());
2571}
2572
2573SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2574                                      TargetMachine &TM) {
2575  SmallVector<CCValAssign, 16> RVLocs;
2576  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2577  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2578  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2579  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2580
2581  // If this is the first return lowered for this function, add the regs to the
2582  // liveout set for the function.
2583  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2584    for (unsigned i = 0; i != RVLocs.size(); ++i)
2585      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2586  }
2587
2588  SDValue Chain = Op.getOperand(0);
2589
2590  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2591  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2592    SDValue TailCall = Chain;
2593    SDValue TargetAddress = TailCall.getOperand(1);
2594    SDValue StackAdjustment = TailCall.getOperand(2);
2595
2596    assert(((TargetAddress.getOpcode() == ISD::Register &&
2597             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2598            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2599            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2600            isa<ConstantSDNode>(TargetAddress)) &&
2601    "Expecting an global address, external symbol, absolute value or register");
2602
2603    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2604           "Expecting a const value");
2605
2606    SmallVector<SDValue,8> Operands;
2607    Operands.push_back(Chain.getOperand(0));
2608    Operands.push_back(TargetAddress);
2609    Operands.push_back(StackAdjustment);
2610    // Copy registers used by the call. Last operand is a flag so it is not
2611    // copied.
2612    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2613      Operands.push_back(Chain.getOperand(i));
2614    }
2615    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2616                       Operands.size());
2617  }
2618
2619  SDValue Flag;
2620
2621  // Copy the result values into the output registers.
2622  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2623    CCValAssign &VA = RVLocs[i];
2624    assert(VA.isRegLoc() && "Can only return in registers!");
2625    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2626    Flag = Chain.getValue(1);
2627  }
2628
2629  if (Flag.getNode())
2630    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2631  else
2632    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2633}
2634
2635SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2636                                   const PPCSubtarget &Subtarget) {
2637  // When we pop the dynamic allocation we need to restore the SP link.
2638
2639  // Get the corect type for pointers.
2640  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2641
2642  // Construct the stack pointer operand.
2643  bool IsPPC64 = Subtarget.isPPC64();
2644  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2645  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2646
2647  // Get the operands for the STACKRESTORE.
2648  SDValue Chain = Op.getOperand(0);
2649  SDValue SaveSP = Op.getOperand(1);
2650
2651  // Load the old link SP.
2652  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2653
2654  // Restore the stack pointer.
2655  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2656
2657  // Store the old link SP.
2658  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2659}
2660
2661
2662
2663SDValue
2664PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2665  MachineFunction &MF = DAG.getMachineFunction();
2666  bool IsPPC64 = PPCSubTarget.isPPC64();
2667  bool isMachoABI = PPCSubTarget.isMachoABI();
2668  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2669
2670  // Get current frame pointer save index.  The users of this index will be
2671  // primarily DYNALLOC instructions.
2672  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2673  int RASI = FI->getReturnAddrSaveIndex();
2674
2675  // If the frame pointer save index hasn't been defined yet.
2676  if (!RASI) {
2677    // Find out what the fix offset of the frame pointer save area.
2678    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2679    // Allocate the frame index for frame pointer save area.
2680    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2681    // Save the result.
2682    FI->setReturnAddrSaveIndex(RASI);
2683  }
2684  return DAG.getFrameIndex(RASI, PtrVT);
2685}
2686
2687SDValue
2688PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2689  MachineFunction &MF = DAG.getMachineFunction();
2690  bool IsPPC64 = PPCSubTarget.isPPC64();
2691  bool isMachoABI = PPCSubTarget.isMachoABI();
2692  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2693
2694  // Get current frame pointer save index.  The users of this index will be
2695  // primarily DYNALLOC instructions.
2696  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2697  int FPSI = FI->getFramePointerSaveIndex();
2698
2699  // If the frame pointer save index hasn't been defined yet.
2700  if (!FPSI) {
2701    // Find out what the fix offset of the frame pointer save area.
2702    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2703
2704    // Allocate the frame index for frame pointer save area.
2705    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2706    // Save the result.
2707    FI->setFramePointerSaveIndex(FPSI);
2708  }
2709  return DAG.getFrameIndex(FPSI, PtrVT);
2710}
2711
2712SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2713                                         SelectionDAG &DAG,
2714                                         const PPCSubtarget &Subtarget) {
2715  // Get the inputs.
2716  SDValue Chain = Op.getOperand(0);
2717  SDValue Size  = Op.getOperand(1);
2718
2719  // Get the corect type for pointers.
2720  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2721  // Negate the size.
2722  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2723                                  DAG.getConstant(0, PtrVT), Size);
2724  // Construct a node for the frame pointer save index.
2725  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2726  // Build a DYNALLOC node.
2727  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2728  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2729  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2730}
2731
2732/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2733/// possible.
2734SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2735  // Not FP? Not a fsel.
2736  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2737      !Op.getOperand(2).getValueType().isFloatingPoint())
2738    return SDValue();
2739
2740  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2741
2742  // Cannot handle SETEQ/SETNE.
2743  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2744
2745  MVT ResVT = Op.getValueType();
2746  MVT CmpVT = Op.getOperand(0).getValueType();
2747  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2748  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2749
2750  // If the RHS of the comparison is a 0.0, we don't need to do the
2751  // subtraction at all.
2752  if (isFloatingPointZero(RHS))
2753    switch (CC) {
2754    default: break;       // SETUO etc aren't handled by fsel.
2755    case ISD::SETULT:
2756    case ISD::SETLT:
2757      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2758    case ISD::SETOGE:
2759    case ISD::SETGE:
2760      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2761        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2762      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2763    case ISD::SETUGT:
2764    case ISD::SETGT:
2765      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2766    case ISD::SETOLE:
2767    case ISD::SETLE:
2768      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2769        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2770      return DAG.getNode(PPCISD::FSEL, ResVT,
2771                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2772    }
2773
2774  SDValue Cmp;
2775  switch (CC) {
2776  default: break;       // SETUO etc aren't handled by fsel.
2777  case ISD::SETULT:
2778  case ISD::SETLT:
2779    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2780    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2781      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2782      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2783  case ISD::SETOGE:
2784  case ISD::SETGE:
2785    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2786    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2787      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2788      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2789  case ISD::SETUGT:
2790  case ISD::SETGT:
2791    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2792    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2793      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2794      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2795  case ISD::SETOLE:
2796  case ISD::SETLE:
2797    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2798    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2799      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2800      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2801  }
2802  return SDValue();
2803}
2804
2805// FIXME: Split this code up when LegalizeDAGTypes lands.
2806SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2807  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2808  SDValue Src = Op.getOperand(0);
2809  if (Src.getValueType() == MVT::f32)
2810    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2811
2812  SDValue Tmp;
2813  switch (Op.getValueType().getSimpleVT()) {
2814  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2815  case MVT::i32:
2816    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2817    break;
2818  case MVT::i64:
2819    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2820    break;
2821  }
2822
2823  // Convert the FP value to an int value through memory.
2824  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2825
2826  // Emit a store to the stack slot.
2827  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2828
2829  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2830  // add in a bias.
2831  if (Op.getValueType() == MVT::i32)
2832    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2833                        DAG.getConstant(4, FIPtr.getValueType()));
2834  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2835}
2836
2837SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2838                                                 SelectionDAG &DAG) {
2839  assert(Op.getValueType() == MVT::ppcf128);
2840  SDNode *Node = Op.getNode();
2841  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2842  assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR);
2843  SDValue Lo = Node->getOperand(0).getNode()->getOperand(0);
2844  SDValue Hi = Node->getOperand(0).getNode()->getOperand(1);
2845
2846  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2847  // of the long double, and puts FPSCR back the way it was.  We do not
2848  // actually model FPSCR.
2849  std::vector<MVT> NodeTys;
2850  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2851
2852  NodeTys.push_back(MVT::f64);   // Return register
2853  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2854  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2855  MFFSreg = Result.getValue(0);
2856  InFlag = Result.getValue(1);
2857
2858  NodeTys.clear();
2859  NodeTys.push_back(MVT::Flag);   // Returns a flag
2860  Ops[0] = DAG.getConstant(31, MVT::i32);
2861  Ops[1] = InFlag;
2862  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2863  InFlag = Result.getValue(0);
2864
2865  NodeTys.clear();
2866  NodeTys.push_back(MVT::Flag);   // Returns a flag
2867  Ops[0] = DAG.getConstant(30, MVT::i32);
2868  Ops[1] = InFlag;
2869  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2870  InFlag = Result.getValue(0);
2871
2872  NodeTys.clear();
2873  NodeTys.push_back(MVT::f64);    // result of add
2874  NodeTys.push_back(MVT::Flag);   // Returns a flag
2875  Ops[0] = Lo;
2876  Ops[1] = Hi;
2877  Ops[2] = InFlag;
2878  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2879  FPreg = Result.getValue(0);
2880  InFlag = Result.getValue(1);
2881
2882  NodeTys.clear();
2883  NodeTys.push_back(MVT::f64);
2884  Ops[0] = DAG.getConstant(1, MVT::i32);
2885  Ops[1] = MFFSreg;
2886  Ops[2] = FPreg;
2887  Ops[3] = InFlag;
2888  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2889  FPreg = Result.getValue(0);
2890
2891  // We know the low half is about to be thrown away, so just use something
2892  // convenient.
2893  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2894}
2895
2896SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2897  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2898  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2899    return SDValue();
2900
2901  if (Op.getOperand(0).getValueType() == MVT::i64) {
2902    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2903    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2904    if (Op.getValueType() == MVT::f32)
2905      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2906    return FP;
2907  }
2908
2909  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2910         "Unhandled SINT_TO_FP type in custom expander!");
2911  // Since we only generate this in 64-bit mode, we can take advantage of
2912  // 64-bit registers.  In particular, sign extend the input value into the
2913  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2914  // then lfd it and fcfid it.
2915  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2916  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2917  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2918  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2919
2920  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2921                                Op.getOperand(0));
2922
2923  // STD the extended value into the stack slot.
2924  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2925                       MachineMemOperand::MOStore, 0, 8, 8);
2926  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2927                                DAG.getEntryNode(), Ext64, FIdx,
2928                                DAG.getMemOperand(MO));
2929  // Load the value as a double.
2930  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2931
2932  // FCFID it and return it.
2933  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2934  if (Op.getValueType() == MVT::f32)
2935    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2936  return FP;
2937}
2938
2939SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2940  /*
2941   The rounding mode is in bits 30:31 of FPSR, and has the following
2942   settings:
2943     00 Round to nearest
2944     01 Round to 0
2945     10 Round to +inf
2946     11 Round to -inf
2947
2948  FLT_ROUNDS, on the other hand, expects the following:
2949    -1 Undefined
2950     0 Round to 0
2951     1 Round to nearest
2952     2 Round to +inf
2953     3 Round to -inf
2954
2955  To perform the conversion, we do:
2956    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2957  */
2958
2959  MachineFunction &MF = DAG.getMachineFunction();
2960  MVT VT = Op.getValueType();
2961  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2962  std::vector<MVT> NodeTys;
2963  SDValue MFFSreg, InFlag;
2964
2965  // Save FP Control Word to register
2966  NodeTys.push_back(MVT::f64);    // return register
2967  NodeTys.push_back(MVT::Flag);   // unused in this context
2968  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2969
2970  // Save FP register to stack slot
2971  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2972  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2973  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
2974                                 StackSlot, NULL, 0);
2975
2976  // Load FP Control Word from low 32 bits of stack slot.
2977  SDValue Four = DAG.getConstant(4, PtrVT);
2978  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2979  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2980
2981  // Transform as necessary
2982  SDValue CWD1 =
2983    DAG.getNode(ISD::AND, MVT::i32,
2984                CWD, DAG.getConstant(3, MVT::i32));
2985  SDValue CWD2 =
2986    DAG.getNode(ISD::SRL, MVT::i32,
2987                DAG.getNode(ISD::AND, MVT::i32,
2988                            DAG.getNode(ISD::XOR, MVT::i32,
2989                                        CWD, DAG.getConstant(3, MVT::i32)),
2990                            DAG.getConstant(3, MVT::i32)),
2991                DAG.getConstant(1, MVT::i8));
2992
2993  SDValue RetVal =
2994    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2995
2996  return DAG.getNode((VT.getSizeInBits() < 16 ?
2997                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2998}
2999
3000SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3001  MVT VT = Op.getValueType();
3002  unsigned BitWidth = VT.getSizeInBits();
3003  assert(Op.getNumOperands() == 3 &&
3004         VT == Op.getOperand(1).getValueType() &&
3005         "Unexpected SHL!");
3006
3007  // Expand into a bunch of logical ops.  Note that these ops
3008  // depend on the PPC behavior for oversized shift amounts.
3009  SDValue Lo = Op.getOperand(0);
3010  SDValue Hi = Op.getOperand(1);
3011  SDValue Amt = Op.getOperand(2);
3012  MVT AmtVT = Amt.getValueType();
3013
3014  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3015                               DAG.getConstant(BitWidth, AmtVT), Amt);
3016  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3017  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3018  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3019  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3020                               DAG.getConstant(-BitWidth, AmtVT));
3021  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3022  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3023  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3024  SDValue OutOps[] = { OutLo, OutHi };
3025  return DAG.getMergeValues(OutOps, 2);
3026}
3027
3028SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3029  MVT VT = Op.getValueType();
3030  unsigned BitWidth = VT.getSizeInBits();
3031  assert(Op.getNumOperands() == 3 &&
3032         VT == Op.getOperand(1).getValueType() &&
3033         "Unexpected SRL!");
3034
3035  // Expand into a bunch of logical ops.  Note that these ops
3036  // depend on the PPC behavior for oversized shift amounts.
3037  SDValue Lo = Op.getOperand(0);
3038  SDValue Hi = Op.getOperand(1);
3039  SDValue Amt = Op.getOperand(2);
3040  MVT AmtVT = Amt.getValueType();
3041
3042  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3043                               DAG.getConstant(BitWidth, AmtVT), Amt);
3044  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3045  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3046  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3047  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3048                               DAG.getConstant(-BitWidth, AmtVT));
3049  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3050  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3051  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3052  SDValue OutOps[] = { OutLo, OutHi };
3053  return DAG.getMergeValues(OutOps, 2);
3054}
3055
3056SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3057  MVT VT = Op.getValueType();
3058  unsigned BitWidth = VT.getSizeInBits();
3059  assert(Op.getNumOperands() == 3 &&
3060         VT == Op.getOperand(1).getValueType() &&
3061         "Unexpected SRA!");
3062
3063  // Expand into a bunch of logical ops, followed by a select_cc.
3064  SDValue Lo = Op.getOperand(0);
3065  SDValue Hi = Op.getOperand(1);
3066  SDValue Amt = Op.getOperand(2);
3067  MVT AmtVT = Amt.getValueType();
3068
3069  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3070                               DAG.getConstant(BitWidth, AmtVT), Amt);
3071  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3072  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3073  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3074  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3075                               DAG.getConstant(-BitWidth, AmtVT));
3076  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3077  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3078  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3079                                    Tmp4, Tmp6, ISD::SETLE);
3080  SDValue OutOps[] = { OutLo, OutHi };
3081  return DAG.getMergeValues(OutOps, 2);
3082}
3083
3084//===----------------------------------------------------------------------===//
3085// Vector related lowering.
3086//
3087
3088// If this is a vector of constants or undefs, get the bits.  A bit in
3089// UndefBits is set if the corresponding element of the vector is an
3090// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3091// zero.   Return true if this is not an array of constants, false if it is.
3092//
3093static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3094                                       uint64_t UndefBits[2]) {
3095  // Start with zero'd results.
3096  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3097
3098  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3099  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3100    SDValue OpVal = BV->getOperand(i);
3101
3102    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3103    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3104
3105    uint64_t EltBits = 0;
3106    if (OpVal.getOpcode() == ISD::UNDEF) {
3107      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3108      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3109      continue;
3110    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3111      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3112    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3113      assert(CN->getValueType(0) == MVT::f32 &&
3114             "Only one legal FP vector type!");
3115      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3116    } else {
3117      // Nonconstant element.
3118      return true;
3119    }
3120
3121    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3122  }
3123
3124  //printf("%llx %llx  %llx %llx\n",
3125  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3126  return false;
3127}
3128
3129// If this is a splat (repetition) of a value across the whole vector, return
3130// the smallest size that splats it.  For example, "0x01010101010101..." is a
3131// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3132// SplatSize = 1 byte.
3133static bool isConstantSplat(const uint64_t Bits128[2],
3134                            const uint64_t Undef128[2],
3135                            unsigned &SplatBits, unsigned &SplatUndef,
3136                            unsigned &SplatSize) {
3137
3138  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3139  // the same as the lower 64-bits, ignoring undefs.
3140  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3141    return false;  // Can't be a splat if two pieces don't match.
3142
3143  uint64_t Bits64  = Bits128[0] | Bits128[1];
3144  uint64_t Undef64 = Undef128[0] & Undef128[1];
3145
3146  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3147  // undefs.
3148  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3149    return false;  // Can't be a splat if two pieces don't match.
3150
3151  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3152  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3153
3154  // If the top 16-bits are different than the lower 16-bits, ignoring
3155  // undefs, we have an i32 splat.
3156  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3157    SplatBits = Bits32;
3158    SplatUndef = Undef32;
3159    SplatSize = 4;
3160    return true;
3161  }
3162
3163  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3164  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3165
3166  // If the top 8-bits are different than the lower 8-bits, ignoring
3167  // undefs, we have an i16 splat.
3168  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3169    SplatBits = Bits16;
3170    SplatUndef = Undef16;
3171    SplatSize = 2;
3172    return true;
3173  }
3174
3175  // Otherwise, we have an 8-bit splat.
3176  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3177  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3178  SplatSize = 1;
3179  return true;
3180}
3181
3182/// BuildSplatI - Build a canonical splati of Val with an element size of
3183/// SplatSize.  Cast the result to VT.
3184static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3185                             SelectionDAG &DAG) {
3186  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3187
3188  static const MVT VTys[] = { // canonical VT to use for each size.
3189    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3190  };
3191
3192  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3193
3194  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3195  if (Val == -1)
3196    SplatSize = 1;
3197
3198  MVT CanonicalVT = VTys[SplatSize-1];
3199
3200  // Build a canonical splat for this value.
3201  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3202  SmallVector<SDValue, 8> Ops;
3203  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3204  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3205                              &Ops[0], Ops.size());
3206  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3207}
3208
3209/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3210/// specified intrinsic ID.
3211static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3212                                  SelectionDAG &DAG,
3213                                  MVT DestVT = MVT::Other) {
3214  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3215  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3216                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3217}
3218
3219/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3220/// specified intrinsic ID.
3221static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3222                                  SDValue Op2, SelectionDAG &DAG,
3223                                  MVT DestVT = MVT::Other) {
3224  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3225  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3226                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3227}
3228
3229
3230/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3231/// amount.  The result has the specified value type.
3232static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3233                             MVT VT, SelectionDAG &DAG) {
3234  // Force LHS/RHS to be the right type.
3235  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3236  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3237
3238  SDValue Ops[16];
3239  for (unsigned i = 0; i != 16; ++i)
3240    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3241  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3242                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3243  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3244}
3245
3246// If this is a case we can't handle, return null and let the default
3247// expansion code take care of it.  If we CAN select this case, and if it
3248// selects to a single instruction, return Op.  Otherwise, if we can codegen
3249// this case more efficiently than a constant pool load, lower it to the
3250// sequence of ops that should be used.
3251SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3252                                               SelectionDAG &DAG) {
3253  // If this is a vector of constants or undefs, get the bits.  A bit in
3254  // UndefBits is set if the corresponding element of the vector is an
3255  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3256  // zero.
3257  uint64_t VectorBits[2];
3258  uint64_t UndefBits[2];
3259  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3260    return SDValue();   // Not a constant vector.
3261
3262  // If this is a splat (repetition) of a value across the whole vector, return
3263  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3264  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3265  // SplatSize = 1 byte.
3266  unsigned SplatBits, SplatUndef, SplatSize;
3267  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3268    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3269
3270    // First, handle single instruction cases.
3271
3272    // All zeros?
3273    if (SplatBits == 0) {
3274      // Canonicalize all zero vectors to be v4i32.
3275      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3276        SDValue Z = DAG.getConstant(0, MVT::i32);
3277        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3278        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3279      }
3280      return Op;
3281    }
3282
3283    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3284    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3285    if (SextVal >= -16 && SextVal <= 15)
3286      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3287
3288
3289    // Two instruction sequences.
3290
3291    // If this value is in the range [-32,30] and is even, use:
3292    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3293    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3294      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3295      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3296      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3297    }
3298
3299    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3300    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3301    // for fneg/fabs.
3302    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3303      // Make -1 and vspltisw -1:
3304      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3305
3306      // Make the VSLW intrinsic, computing 0x8000_0000.
3307      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3308                                       OnesV, DAG);
3309
3310      // xor by OnesV to invert it.
3311      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3312      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3313    }
3314
3315    // Check to see if this is a wide variety of vsplti*, binop self cases.
3316    unsigned SplatBitSize = SplatSize*8;
3317    static const signed char SplatCsts[] = {
3318      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3319      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3320    };
3321
3322    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3323      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3324      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3325      int i = SplatCsts[idx];
3326
3327      // Figure out what shift amount will be used by altivec if shifted by i in
3328      // this splat size.
3329      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3330
3331      // vsplti + shl self.
3332      if (SextVal == (i << (int)TypeShiftAmt)) {
3333        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3334        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3335          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3336          Intrinsic::ppc_altivec_vslw
3337        };
3338        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3339        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3340      }
3341
3342      // vsplti + srl self.
3343      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3344        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3345        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3346          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3347          Intrinsic::ppc_altivec_vsrw
3348        };
3349        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3350        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3351      }
3352
3353      // vsplti + sra self.
3354      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3355        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3356        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3357          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3358          Intrinsic::ppc_altivec_vsraw
3359        };
3360        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3361        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3362      }
3363
3364      // vsplti + rol self.
3365      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3366                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3367        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3368        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3369          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3370          Intrinsic::ppc_altivec_vrlw
3371        };
3372        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3373        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3374      }
3375
3376      // t = vsplti c, result = vsldoi t, t, 1
3377      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3378        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3379        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3380      }
3381      // t = vsplti c, result = vsldoi t, t, 2
3382      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3383        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3384        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3385      }
3386      // t = vsplti c, result = vsldoi t, t, 3
3387      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3388        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3389        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3390      }
3391    }
3392
3393    // Three instruction sequences.
3394
3395    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3396    if (SextVal >= 0 && SextVal <= 31) {
3397      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3398      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3399      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3400      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3401    }
3402    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3403    if (SextVal >= -31 && SextVal <= 0) {
3404      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3405      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3406      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3407      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3408    }
3409  }
3410
3411  return SDValue();
3412}
3413
3414/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3415/// the specified operations to build the shuffle.
3416static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3417                                        SDValue RHS, SelectionDAG &DAG) {
3418  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3419  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3420  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3421
3422  enum {
3423    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3424    OP_VMRGHW,
3425    OP_VMRGLW,
3426    OP_VSPLTISW0,
3427    OP_VSPLTISW1,
3428    OP_VSPLTISW2,
3429    OP_VSPLTISW3,
3430    OP_VSLDOI4,
3431    OP_VSLDOI8,
3432    OP_VSLDOI12
3433  };
3434
3435  if (OpNum == OP_COPY) {
3436    if (LHSID == (1*9+2)*9+3) return LHS;
3437    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3438    return RHS;
3439  }
3440
3441  SDValue OpLHS, OpRHS;
3442  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3443  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3444
3445  unsigned ShufIdxs[16];
3446  switch (OpNum) {
3447  default: assert(0 && "Unknown i32 permute!");
3448  case OP_VMRGHW:
3449    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3450    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3451    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3452    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3453    break;
3454  case OP_VMRGLW:
3455    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3456    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3457    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3458    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3459    break;
3460  case OP_VSPLTISW0:
3461    for (unsigned i = 0; i != 16; ++i)
3462      ShufIdxs[i] = (i&3)+0;
3463    break;
3464  case OP_VSPLTISW1:
3465    for (unsigned i = 0; i != 16; ++i)
3466      ShufIdxs[i] = (i&3)+4;
3467    break;
3468  case OP_VSPLTISW2:
3469    for (unsigned i = 0; i != 16; ++i)
3470      ShufIdxs[i] = (i&3)+8;
3471    break;
3472  case OP_VSPLTISW3:
3473    for (unsigned i = 0; i != 16; ++i)
3474      ShufIdxs[i] = (i&3)+12;
3475    break;
3476  case OP_VSLDOI4:
3477    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3478  case OP_VSLDOI8:
3479    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3480  case OP_VSLDOI12:
3481    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3482  }
3483  SDValue Ops[16];
3484  for (unsigned i = 0; i != 16; ++i)
3485    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3486
3487  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3488                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3489}
3490
3491/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3492/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3493/// return the code it can be lowered into.  Worst case, it can always be
3494/// lowered into a vperm.
3495SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3496                                                 SelectionDAG &DAG) {
3497  SDValue V1 = Op.getOperand(0);
3498  SDValue V2 = Op.getOperand(1);
3499  SDValue PermMask = Op.getOperand(2);
3500
3501  // Cases that are handled by instructions that take permute immediates
3502  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3503  // selected by the instruction selector.
3504  if (V2.getOpcode() == ISD::UNDEF) {
3505    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3506        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3507        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3508        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3509        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3510        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3511        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3512        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3513        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3514        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3515        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3516        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3517      return Op;
3518    }
3519  }
3520
3521  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3522  // and produce a fixed permutation.  If any of these match, do not lower to
3523  // VPERM.
3524  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3525      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3526      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3527      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3528      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3529      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3530      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3531      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3532      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3533    return Op;
3534
3535  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3536  // perfect shuffle table to emit an optimal matching sequence.
3537  unsigned PFIndexes[4];
3538  bool isFourElementShuffle = true;
3539  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3540    unsigned EltNo = 8;   // Start out undef.
3541    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3542      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3543        continue;   // Undef, ignore it.
3544
3545      unsigned ByteSource =
3546        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3547      if ((ByteSource & 3) != j) {
3548        isFourElementShuffle = false;
3549        break;
3550      }
3551
3552      if (EltNo == 8) {
3553        EltNo = ByteSource/4;
3554      } else if (EltNo != ByteSource/4) {
3555        isFourElementShuffle = false;
3556        break;
3557      }
3558    }
3559    PFIndexes[i] = EltNo;
3560  }
3561
3562  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3563  // perfect shuffle vector to determine if it is cost effective to do this as
3564  // discrete instructions, or whether we should use a vperm.
3565  if (isFourElementShuffle) {
3566    // Compute the index in the perfect shuffle table.
3567    unsigned PFTableIndex =
3568      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3569
3570    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3571    unsigned Cost  = (PFEntry >> 30);
3572
3573    // Determining when to avoid vperm is tricky.  Many things affect the cost
3574    // of vperm, particularly how many times the perm mask needs to be computed.
3575    // For example, if the perm mask can be hoisted out of a loop or is already
3576    // used (perhaps because there are multiple permutes with the same shuffle
3577    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3578    // the loop requires an extra register.
3579    //
3580    // As a compromise, we only emit discrete instructions if the shuffle can be
3581    // generated in 3 or fewer operations.  When we have loop information
3582    // available, if this block is within a loop, we should avoid using vperm
3583    // for 3-operation perms and use a constant pool load instead.
3584    if (Cost < 3)
3585      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3586  }
3587
3588  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3589  // vector that will get spilled to the constant pool.
3590  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3591
3592  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3593  // that it is in input element units, not in bytes.  Convert now.
3594  MVT EltVT = V1.getValueType().getVectorElementType();
3595  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3596
3597  SmallVector<SDValue, 16> ResultMask;
3598  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3599    unsigned SrcElt;
3600    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3601      SrcElt = 0;
3602    else
3603      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3604
3605    for (unsigned j = 0; j != BytesPerElement; ++j)
3606      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3607                                           MVT::i8));
3608  }
3609
3610  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3611                                    &ResultMask[0], ResultMask.size());
3612  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3613}
3614
3615/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3616/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3617/// information about the intrinsic.
3618static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3619                                  bool &isDot) {
3620  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3621  CompareOpc = -1;
3622  isDot = false;
3623  switch (IntrinsicID) {
3624  default: return false;
3625    // Comparison predicates.
3626  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3627  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3628  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3629  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3630  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3631  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3632  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3633  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3634  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3635  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3636  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3637  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3638  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3639
3640    // Normal Comparisons.
3641  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3642  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3643  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3644  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3645  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3646  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3647  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3648  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3649  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3650  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3651  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3652  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3653  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3654  }
3655  return true;
3656}
3657
3658/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3659/// lower, do it, otherwise return null.
3660SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3661                                                     SelectionDAG &DAG) {
3662  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3663  // opcode number of the comparison.
3664  int CompareOpc;
3665  bool isDot;
3666  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3667    return SDValue();    // Don't custom lower most intrinsics.
3668
3669  // If this is a non-dot comparison, make the VCMP node and we are done.
3670  if (!isDot) {
3671    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3672                                Op.getOperand(1), Op.getOperand(2),
3673                                DAG.getConstant(CompareOpc, MVT::i32));
3674    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3675  }
3676
3677  // Create the PPCISD altivec 'dot' comparison node.
3678  SDValue Ops[] = {
3679    Op.getOperand(2),  // LHS
3680    Op.getOperand(3),  // RHS
3681    DAG.getConstant(CompareOpc, MVT::i32)
3682  };
3683  std::vector<MVT> VTs;
3684  VTs.push_back(Op.getOperand(2).getValueType());
3685  VTs.push_back(MVT::Flag);
3686  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3687
3688  // Now that we have the comparison, emit a copy from the CR to a GPR.
3689  // This is flagged to the above dot comparison.
3690  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3691                                DAG.getRegister(PPC::CR6, MVT::i32),
3692                                CompNode.getValue(1));
3693
3694  // Unpack the result based on how the target uses it.
3695  unsigned BitNo;   // Bit # of CR6.
3696  bool InvertBit;   // Invert result?
3697  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3698  default:  // Can't happen, don't crash on invalid number though.
3699  case 0:   // Return the value of the EQ bit of CR6.
3700    BitNo = 0; InvertBit = false;
3701    break;
3702  case 1:   // Return the inverted value of the EQ bit of CR6.
3703    BitNo = 0; InvertBit = true;
3704    break;
3705  case 2:   // Return the value of the LT bit of CR6.
3706    BitNo = 2; InvertBit = false;
3707    break;
3708  case 3:   // Return the inverted value of the LT bit of CR6.
3709    BitNo = 2; InvertBit = true;
3710    break;
3711  }
3712
3713  // Shift the bit into the low position.
3714  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3715                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3716  // Isolate the bit.
3717  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3718                      DAG.getConstant(1, MVT::i32));
3719
3720  // If we are supposed to, toggle the bit.
3721  if (InvertBit)
3722    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3723                        DAG.getConstant(1, MVT::i32));
3724  return Flags;
3725}
3726
3727SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3728                                                   SelectionDAG &DAG) {
3729  // Create a stack slot that is 16-byte aligned.
3730  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3731  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3732  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3733  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3734
3735  // Store the input value into Value#0 of the stack slot.
3736  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3737                                 Op.getOperand(0), FIdx, NULL, 0);
3738  // Load it out.
3739  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3740}
3741
3742SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3743  if (Op.getValueType() == MVT::v4i32) {
3744    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3745
3746    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3747    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3748
3749    SDValue RHSSwap =   // = vrlw RHS, 16
3750      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3751
3752    // Shrinkify inputs to v8i16.
3753    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3754    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3755    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3756
3757    // Low parts multiplied together, generating 32-bit results (we ignore the
3758    // top parts).
3759    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3760                                        LHS, RHS, DAG, MVT::v4i32);
3761
3762    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3763                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3764    // Shift the high parts up 16 bits.
3765    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3766    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3767  } else if (Op.getValueType() == MVT::v8i16) {
3768    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3769
3770    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3771
3772    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3773                            LHS, RHS, Zero, DAG);
3774  } else if (Op.getValueType() == MVT::v16i8) {
3775    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3776
3777    // Multiply the even 8-bit parts, producing 16-bit sums.
3778    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3779                                           LHS, RHS, DAG, MVT::v8i16);
3780    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3781
3782    // Multiply the odd 8-bit parts, producing 16-bit sums.
3783    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3784                                          LHS, RHS, DAG, MVT::v8i16);
3785    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3786
3787    // Merge the results together.
3788    SDValue Ops[16];
3789    for (unsigned i = 0; i != 8; ++i) {
3790      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3791      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3792    }
3793    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3794                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3795  } else {
3796    assert(0 && "Unknown mul to lower!");
3797    abort();
3798  }
3799}
3800
3801/// LowerOperation - Provide custom lowering hooks for some operations.
3802///
3803SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3804  switch (Op.getOpcode()) {
3805  default: assert(0 && "Wasn't expecting to be able to lower this!");
3806  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3807  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3808  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3809  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3810  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3811  case ISD::VASTART:
3812    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3813                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3814
3815  case ISD::VAARG:
3816    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3817                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3818
3819  case ISD::FORMAL_ARGUMENTS:
3820    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3821                                 VarArgsStackOffset, VarArgsNumGPR,
3822                                 VarArgsNumFPR, PPCSubTarget);
3823
3824  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3825                                                 getTargetMachine());
3826  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3827  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3828  case ISD::DYNAMIC_STACKALLOC:
3829    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3830
3831  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3832  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3833  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3834  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3835  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3836
3837  // Lower 64-bit shifts.
3838  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3839  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3840  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3841
3842  // Vector-related lowering.
3843  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3844  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3845  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3846  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3847  case ISD::MUL:                return LowerMUL(Op, DAG);
3848
3849  // Frame & Return address.
3850  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3851  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3852  }
3853  return SDValue();
3854}
3855
3856SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3857  switch (N->getOpcode()) {
3858  default: assert(0 && "Wasn't expecting to be able to lower this!");
3859  case ISD::FP_TO_SINT: {
3860    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3861    // Use MERGE_VALUES to drop the chain result value and get a node with one
3862    // result.  This requires turning off getMergeValues simplification, since
3863    // otherwise it will give us Res back.
3864    return DAG.getMergeValues(&Res, 1, false).getNode();
3865  }
3866  }
3867}
3868
3869
3870//===----------------------------------------------------------------------===//
3871//  Other Lowering Code
3872//===----------------------------------------------------------------------===//
3873
3874MachineBasicBlock *
3875PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3876                                    bool is64bit, unsigned BinOpcode) {
3877  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3878  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3879
3880  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3881  MachineFunction *F = BB->getParent();
3882  MachineFunction::iterator It = BB;
3883  ++It;
3884
3885  unsigned dest = MI->getOperand(0).getReg();
3886  unsigned ptrA = MI->getOperand(1).getReg();
3887  unsigned ptrB = MI->getOperand(2).getReg();
3888  unsigned incr = MI->getOperand(3).getReg();
3889
3890  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3891  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3892  F->insert(It, loopMBB);
3893  F->insert(It, exitMBB);
3894  exitMBB->transferSuccessors(BB);
3895
3896  MachineRegisterInfo &RegInfo = F->getRegInfo();
3897  unsigned TmpReg = (!BinOpcode) ? incr :
3898    RegInfo.createVirtualRegister(
3899       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3900                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3901
3902  //  thisMBB:
3903  //   ...
3904  //   fallthrough --> loopMBB
3905  BB->addSuccessor(loopMBB);
3906
3907  //  loopMBB:
3908  //   l[wd]arx dest, ptr
3909  //   add r0, dest, incr
3910  //   st[wd]cx. r0, ptr
3911  //   bne- loopMBB
3912  //   fallthrough --> exitMBB
3913  BB = loopMBB;
3914  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3915    .addReg(ptrA).addReg(ptrB);
3916  if (BinOpcode)
3917    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3918  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3919    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3920  BuildMI(BB, TII->get(PPC::BCC))
3921    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3922  BB->addSuccessor(loopMBB);
3923  BB->addSuccessor(exitMBB);
3924
3925  //  exitMBB:
3926  //   ...
3927  BB = exitMBB;
3928  return BB;
3929}
3930
3931MachineBasicBlock *
3932PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3933                                            MachineBasicBlock *BB,
3934                                            bool is8bit,    // operation
3935                                            unsigned BinOpcode) {
3936  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3937  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3938  // In 64 bit mode we have to use 64 bits for addresses, even though the
3939  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3940  // registers without caring whether they're 32 or 64, but here we're
3941  // doing actual arithmetic on the addresses.
3942  bool is64bit = PPCSubTarget.isPPC64();
3943
3944  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3945  MachineFunction *F = BB->getParent();
3946  MachineFunction::iterator It = BB;
3947  ++It;
3948
3949  unsigned dest = MI->getOperand(0).getReg();
3950  unsigned ptrA = MI->getOperand(1).getReg();
3951  unsigned ptrB = MI->getOperand(2).getReg();
3952  unsigned incr = MI->getOperand(3).getReg();
3953
3954  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3955  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3956  F->insert(It, loopMBB);
3957  F->insert(It, exitMBB);
3958  exitMBB->transferSuccessors(BB);
3959
3960  MachineRegisterInfo &RegInfo = F->getRegInfo();
3961  const TargetRegisterClass *RC =
3962    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3963              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3964  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3965  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3966  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3967  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3968  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3969  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3970  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3971  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3972  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3973  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3974  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3975  unsigned Ptr1Reg;
3976  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3977
3978  //  thisMBB:
3979  //   ...
3980  //   fallthrough --> loopMBB
3981  BB->addSuccessor(loopMBB);
3982
3983  // The 4-byte load must be aligned, while a char or short may be
3984  // anywhere in the word.  Hence all this nasty bookkeeping code.
3985  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3986  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3987  //   xori shift, shift1, 24 [16]
3988  //   rlwinm ptr, ptr1, 0, 0, 29
3989  //   slw incr2, incr, shift
3990  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3991  //   slw mask, mask2, shift
3992  //  loopMBB:
3993  //   lwarx tmpDest, ptr
3994  //   add tmp, tmpDest, incr2
3995  //   andc tmp2, tmpDest, mask
3996  //   and tmp3, tmp, mask
3997  //   or tmp4, tmp3, tmp2
3998  //   stwcx. tmp4, ptr
3999  //   bne- loopMBB
4000  //   fallthrough --> exitMBB
4001  //   srw dest, tmpDest, shift
4002
4003  if (ptrA!=PPC::R0) {
4004    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4005    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4006      .addReg(ptrA).addReg(ptrB);
4007  } else {
4008    Ptr1Reg = ptrB;
4009  }
4010  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4011      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4012  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4013      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4014  if (is64bit)
4015    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4016      .addReg(Ptr1Reg).addImm(0).addImm(61);
4017  else
4018    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4019      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4020  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4021      .addReg(incr).addReg(ShiftReg);
4022  if (is8bit)
4023    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4024  else {
4025    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4026    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4027  }
4028  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4029      .addReg(Mask2Reg).addReg(ShiftReg);
4030
4031  BB = loopMBB;
4032  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4033    .addReg(PPC::R0).addReg(PtrReg);
4034  if (BinOpcode)
4035    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4036      .addReg(Incr2Reg).addReg(TmpDestReg);
4037  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4038    .addReg(TmpDestReg).addReg(MaskReg);
4039  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4040    .addReg(TmpReg).addReg(MaskReg);
4041  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4042    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4043  BuildMI(BB, TII->get(PPC::STWCX))
4044    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4045  BuildMI(BB, TII->get(PPC::BCC))
4046    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4047  BB->addSuccessor(loopMBB);
4048  BB->addSuccessor(exitMBB);
4049
4050  //  exitMBB:
4051  //   ...
4052  BB = exitMBB;
4053  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4054  return BB;
4055}
4056
4057MachineBasicBlock *
4058PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4059                                               MachineBasicBlock *BB) {
4060  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4061
4062  // To "insert" these instructions we actually have to insert their
4063  // control-flow patterns.
4064  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4065  MachineFunction::iterator It = BB;
4066  ++It;
4067
4068  MachineFunction *F = BB->getParent();
4069
4070  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4071      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4072      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4073      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4074      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4075
4076    // The incoming instruction knows the destination vreg to set, the
4077    // condition code register to branch on, the true/false values to
4078    // select between, and a branch opcode to use.
4079
4080    //  thisMBB:
4081    //  ...
4082    //   TrueVal = ...
4083    //   cmpTY ccX, r1, r2
4084    //   bCC copy1MBB
4085    //   fallthrough --> copy0MBB
4086    MachineBasicBlock *thisMBB = BB;
4087    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4088    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4089    unsigned SelectPred = MI->getOperand(4).getImm();
4090    BuildMI(BB, TII->get(PPC::BCC))
4091      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4092    F->insert(It, copy0MBB);
4093    F->insert(It, sinkMBB);
4094    // Update machine-CFG edges by transferring all successors of the current
4095    // block to the new block which will contain the Phi node for the select.
4096    sinkMBB->transferSuccessors(BB);
4097    // Next, add the true and fallthrough blocks as its successors.
4098    BB->addSuccessor(copy0MBB);
4099    BB->addSuccessor(sinkMBB);
4100
4101    //  copy0MBB:
4102    //   %FalseValue = ...
4103    //   # fallthrough to sinkMBB
4104    BB = copy0MBB;
4105
4106    // Update machine-CFG edges
4107    BB->addSuccessor(sinkMBB);
4108
4109    //  sinkMBB:
4110    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4111    //  ...
4112    BB = sinkMBB;
4113    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4114      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4115      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4116  }
4117  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4118    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4119  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4120    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4121  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4122    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4123  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4124    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4125
4126  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4127    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4128  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4129    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4130  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4131    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4132  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4133    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4134
4135  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4136    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4137  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4138    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4139  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4140    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4141  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4142    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4143
4144  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4145    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4146  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4147    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4148  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4149    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4150  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4151    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4152
4153  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4154    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4155  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4156    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4157  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4158    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4159  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4160    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4161
4162  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4163    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4164  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4165    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4166  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4167    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4168  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4169    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4170
4171  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4172    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4173  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4174    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4175  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4176    BB = EmitAtomicBinary(MI, BB, false, 0);
4177  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4178    BB = EmitAtomicBinary(MI, BB, true, 0);
4179
4180  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4181           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4182    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4183
4184    unsigned dest   = MI->getOperand(0).getReg();
4185    unsigned ptrA   = MI->getOperand(1).getReg();
4186    unsigned ptrB   = MI->getOperand(2).getReg();
4187    unsigned oldval = MI->getOperand(3).getReg();
4188    unsigned newval = MI->getOperand(4).getReg();
4189
4190    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4191    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4192    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4193    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4194    F->insert(It, loop1MBB);
4195    F->insert(It, loop2MBB);
4196    F->insert(It, midMBB);
4197    F->insert(It, exitMBB);
4198    exitMBB->transferSuccessors(BB);
4199
4200    //  thisMBB:
4201    //   ...
4202    //   fallthrough --> loopMBB
4203    BB->addSuccessor(loop1MBB);
4204
4205    // loop1MBB:
4206    //   l[wd]arx dest, ptr
4207    //   cmp[wd] dest, oldval
4208    //   bne- midMBB
4209    // loop2MBB:
4210    //   st[wd]cx. newval, ptr
4211    //   bne- loopMBB
4212    //   b exitBB
4213    // midMBB:
4214    //   st[wd]cx. dest, ptr
4215    // exitBB:
4216    BB = loop1MBB;
4217    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4218      .addReg(ptrA).addReg(ptrB);
4219    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4220      .addReg(oldval).addReg(dest);
4221    BuildMI(BB, TII->get(PPC::BCC))
4222      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4223    BB->addSuccessor(loop2MBB);
4224    BB->addSuccessor(midMBB);
4225
4226    BB = loop2MBB;
4227    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4228      .addReg(newval).addReg(ptrA).addReg(ptrB);
4229    BuildMI(BB, TII->get(PPC::BCC))
4230      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4231    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4232    BB->addSuccessor(loop1MBB);
4233    BB->addSuccessor(exitMBB);
4234
4235    BB = midMBB;
4236    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4237      .addReg(dest).addReg(ptrA).addReg(ptrB);
4238    BB->addSuccessor(exitMBB);
4239
4240    //  exitMBB:
4241    //   ...
4242    BB = exitMBB;
4243  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4244             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4245    // We must use 64-bit registers for addresses when targeting 64-bit,
4246    // since we're actually doing arithmetic on them.  Other registers
4247    // can be 32-bit.
4248    bool is64bit = PPCSubTarget.isPPC64();
4249    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4250
4251    unsigned dest   = MI->getOperand(0).getReg();
4252    unsigned ptrA   = MI->getOperand(1).getReg();
4253    unsigned ptrB   = MI->getOperand(2).getReg();
4254    unsigned oldval = MI->getOperand(3).getReg();
4255    unsigned newval = MI->getOperand(4).getReg();
4256
4257    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4258    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4259    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4260    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4261    F->insert(It, loop1MBB);
4262    F->insert(It, loop2MBB);
4263    F->insert(It, midMBB);
4264    F->insert(It, exitMBB);
4265    exitMBB->transferSuccessors(BB);
4266
4267    MachineRegisterInfo &RegInfo = F->getRegInfo();
4268    const TargetRegisterClass *RC =
4269      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4270                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4271    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4272    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4273    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4274    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4275    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4276    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4277    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4278    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4279    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4280    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4281    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4282    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4283    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4284    unsigned Ptr1Reg;
4285    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4286    //  thisMBB:
4287    //   ...
4288    //   fallthrough --> loopMBB
4289    BB->addSuccessor(loop1MBB);
4290
4291    // The 4-byte load must be aligned, while a char or short may be
4292    // anywhere in the word.  Hence all this nasty bookkeeping code.
4293    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4294    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4295    //   xori shift, shift1, 24 [16]
4296    //   rlwinm ptr, ptr1, 0, 0, 29
4297    //   slw newval2, newval, shift
4298    //   slw oldval2, oldval,shift
4299    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4300    //   slw mask, mask2, shift
4301    //   and newval3, newval2, mask
4302    //   and oldval3, oldval2, mask
4303    // loop1MBB:
4304    //   lwarx tmpDest, ptr
4305    //   and tmp, tmpDest, mask
4306    //   cmpw tmp, oldval3
4307    //   bne- midMBB
4308    // loop2MBB:
4309    //   andc tmp2, tmpDest, mask
4310    //   or tmp4, tmp2, newval3
4311    //   stwcx. tmp4, ptr
4312    //   bne- loop1MBB
4313    //   b exitBB
4314    // midMBB:
4315    //   stwcx. tmpDest, ptr
4316    // exitBB:
4317    //   srw dest, tmpDest, shift
4318    if (ptrA!=PPC::R0) {
4319      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4320      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4321        .addReg(ptrA).addReg(ptrB);
4322    } else {
4323      Ptr1Reg = ptrB;
4324    }
4325    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4326        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4327    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4328        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4329    if (is64bit)
4330      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4331        .addReg(Ptr1Reg).addImm(0).addImm(61);
4332    else
4333      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4334        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4335    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4336        .addReg(newval).addReg(ShiftReg);
4337    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4338        .addReg(oldval).addReg(ShiftReg);
4339    if (is8bit)
4340      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4341    else {
4342      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4343      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4344    }
4345    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4346        .addReg(Mask2Reg).addReg(ShiftReg);
4347    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4348        .addReg(NewVal2Reg).addReg(MaskReg);
4349    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4350        .addReg(OldVal2Reg).addReg(MaskReg);
4351
4352    BB = loop1MBB;
4353    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4354        .addReg(PPC::R0).addReg(PtrReg);
4355    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4356    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4357        .addReg(TmpReg).addReg(OldVal3Reg);
4358    BuildMI(BB, TII->get(PPC::BCC))
4359        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4360    BB->addSuccessor(loop2MBB);
4361    BB->addSuccessor(midMBB);
4362
4363    BB = loop2MBB;
4364    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4365    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4366    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4367        .addReg(PPC::R0).addReg(PtrReg);
4368    BuildMI(BB, TII->get(PPC::BCC))
4369      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4370    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4371    BB->addSuccessor(loop1MBB);
4372    BB->addSuccessor(exitMBB);
4373
4374    BB = midMBB;
4375    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4376      .addReg(PPC::R0).addReg(PtrReg);
4377    BB->addSuccessor(exitMBB);
4378
4379    //  exitMBB:
4380    //   ...
4381    BB = exitMBB;
4382    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4383  } else {
4384    assert(0 && "Unexpected instr type to insert");
4385  }
4386
4387  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4388  return BB;
4389}
4390
4391//===----------------------------------------------------------------------===//
4392// Target Optimization Hooks
4393//===----------------------------------------------------------------------===//
4394
4395SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4396                                               DAGCombinerInfo &DCI) const {
4397  TargetMachine &TM = getTargetMachine();
4398  SelectionDAG &DAG = DCI.DAG;
4399  switch (N->getOpcode()) {
4400  default: break;
4401  case PPCISD::SHL:
4402    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4403      if (C->getValue() == 0)   // 0 << V -> 0.
4404        return N->getOperand(0);
4405    }
4406    break;
4407  case PPCISD::SRL:
4408    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4409      if (C->getValue() == 0)   // 0 >>u V -> 0.
4410        return N->getOperand(0);
4411    }
4412    break;
4413  case PPCISD::SRA:
4414    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4415      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4416          C->isAllOnesValue())    // -1 >>s V -> -1.
4417        return N->getOperand(0);
4418    }
4419    break;
4420
4421  case ISD::SINT_TO_FP:
4422    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4423      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4424        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4425        // We allow the src/dst to be either f32/f64, but the intermediate
4426        // type must be i64.
4427        if (N->getOperand(0).getValueType() == MVT::i64 &&
4428            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4429          SDValue Val = N->getOperand(0).getOperand(0);
4430          if (Val.getValueType() == MVT::f32) {
4431            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4432            DCI.AddToWorklist(Val.getNode());
4433          }
4434
4435          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4436          DCI.AddToWorklist(Val.getNode());
4437          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4438          DCI.AddToWorklist(Val.getNode());
4439          if (N->getValueType(0) == MVT::f32) {
4440            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4441                              DAG.getIntPtrConstant(0));
4442            DCI.AddToWorklist(Val.getNode());
4443          }
4444          return Val;
4445        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4446          // If the intermediate type is i32, we can avoid the load/store here
4447          // too.
4448        }
4449      }
4450    }
4451    break;
4452  case ISD::STORE:
4453    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4454    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4455        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4456        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4457        N->getOperand(1).getValueType() == MVT::i32 &&
4458        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4459      SDValue Val = N->getOperand(1).getOperand(0);
4460      if (Val.getValueType() == MVT::f32) {
4461        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4462        DCI.AddToWorklist(Val.getNode());
4463      }
4464      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4465      DCI.AddToWorklist(Val.getNode());
4466
4467      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4468                        N->getOperand(2), N->getOperand(3));
4469      DCI.AddToWorklist(Val.getNode());
4470      return Val;
4471    }
4472
4473    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4474    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4475        N->getOperand(1).getNode()->hasOneUse() &&
4476        (N->getOperand(1).getValueType() == MVT::i32 ||
4477         N->getOperand(1).getValueType() == MVT::i16)) {
4478      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4479      // Do an any-extend to 32-bits if this is a half-word input.
4480      if (BSwapOp.getValueType() == MVT::i16)
4481        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4482
4483      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4484                         N->getOperand(2), N->getOperand(3),
4485                         DAG.getValueType(N->getOperand(1).getValueType()));
4486    }
4487    break;
4488  case ISD::BSWAP:
4489    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4490    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4491        N->getOperand(0).hasOneUse() &&
4492        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4493      SDValue Load = N->getOperand(0);
4494      LoadSDNode *LD = cast<LoadSDNode>(Load);
4495      // Create the byte-swapping load.
4496      std::vector<MVT> VTs;
4497      VTs.push_back(MVT::i32);
4498      VTs.push_back(MVT::Other);
4499      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4500      SDValue Ops[] = {
4501        LD->getChain(),    // Chain
4502        LD->getBasePtr(),  // Ptr
4503        MO,                // MemOperand
4504        DAG.getValueType(N->getValueType(0)) // VT
4505      };
4506      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4507
4508      // If this is an i16 load, insert the truncate.
4509      SDValue ResVal = BSLoad;
4510      if (N->getValueType(0) == MVT::i16)
4511        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4512
4513      // First, combine the bswap away.  This makes the value produced by the
4514      // load dead.
4515      DCI.CombineTo(N, ResVal);
4516
4517      // Next, combine the load away, we give it a bogus result value but a real
4518      // chain result.  The result value is dead because the bswap is dead.
4519      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4520
4521      // Return N so it doesn't get rechecked!
4522      return SDValue(N, 0);
4523    }
4524
4525    break;
4526  case PPCISD::VCMP: {
4527    // If a VCMPo node already exists with exactly the same operands as this
4528    // node, use its result instead of this node (VCMPo computes both a CR6 and
4529    // a normal output).
4530    //
4531    if (!N->getOperand(0).hasOneUse() &&
4532        !N->getOperand(1).hasOneUse() &&
4533        !N->getOperand(2).hasOneUse()) {
4534
4535      // Scan all of the users of the LHS, looking for VCMPo's that match.
4536      SDNode *VCMPoNode = 0;
4537
4538      SDNode *LHSN = N->getOperand(0).getNode();
4539      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4540           UI != E; ++UI)
4541        if (UI->getOpcode() == PPCISD::VCMPo &&
4542            UI->getOperand(1) == N->getOperand(1) &&
4543            UI->getOperand(2) == N->getOperand(2) &&
4544            UI->getOperand(0) == N->getOperand(0)) {
4545          VCMPoNode = *UI;
4546          break;
4547        }
4548
4549      // If there is no VCMPo node, or if the flag value has a single use, don't
4550      // transform this.
4551      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4552        break;
4553
4554      // Look at the (necessarily single) use of the flag value.  If it has a
4555      // chain, this transformation is more complex.  Note that multiple things
4556      // could use the value result, which we should ignore.
4557      SDNode *FlagUser = 0;
4558      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4559           FlagUser == 0; ++UI) {
4560        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4561        SDNode *User = *UI;
4562        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4563          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4564            FlagUser = User;
4565            break;
4566          }
4567        }
4568      }
4569
4570      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4571      // give up for right now.
4572      if (FlagUser->getOpcode() == PPCISD::MFCR)
4573        return SDValue(VCMPoNode, 0);
4574    }
4575    break;
4576  }
4577  case ISD::BR_CC: {
4578    // If this is a branch on an altivec predicate comparison, lower this so
4579    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4580    // lowering is done pre-legalize, because the legalizer lowers the predicate
4581    // compare down to code that is difficult to reassemble.
4582    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4583    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4584    int CompareOpc;
4585    bool isDot;
4586
4587    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4588        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4589        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4590      assert(isDot && "Can't compare against a vector result!");
4591
4592      // If this is a comparison against something other than 0/1, then we know
4593      // that the condition is never/always true.
4594      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4595      if (Val != 0 && Val != 1) {
4596        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4597          return N->getOperand(0);
4598        // Always !=, turn it into an unconditional branch.
4599        return DAG.getNode(ISD::BR, MVT::Other,
4600                           N->getOperand(0), N->getOperand(4));
4601      }
4602
4603      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4604
4605      // Create the PPCISD altivec 'dot' comparison node.
4606      std::vector<MVT> VTs;
4607      SDValue Ops[] = {
4608        LHS.getOperand(2),  // LHS of compare
4609        LHS.getOperand(3),  // RHS of compare
4610        DAG.getConstant(CompareOpc, MVT::i32)
4611      };
4612      VTs.push_back(LHS.getOperand(2).getValueType());
4613      VTs.push_back(MVT::Flag);
4614      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4615
4616      // Unpack the result based on how the target uses it.
4617      PPC::Predicate CompOpc;
4618      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4619      default:  // Can't happen, don't crash on invalid number though.
4620      case 0:   // Branch on the value of the EQ bit of CR6.
4621        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4622        break;
4623      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4624        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4625        break;
4626      case 2:   // Branch on the value of the LT bit of CR6.
4627        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4628        break;
4629      case 3:   // Branch on the inverted value of the LT bit of CR6.
4630        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4631        break;
4632      }
4633
4634      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4635                         DAG.getConstant(CompOpc, MVT::i32),
4636                         DAG.getRegister(PPC::CR6, MVT::i32),
4637                         N->getOperand(4), CompNode.getValue(1));
4638    }
4639    break;
4640  }
4641  }
4642
4643  return SDValue();
4644}
4645
4646//===----------------------------------------------------------------------===//
4647// Inline Assembly Support
4648//===----------------------------------------------------------------------===//
4649
4650void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4651                                                       const APInt &Mask,
4652                                                       APInt &KnownZero,
4653                                                       APInt &KnownOne,
4654                                                       const SelectionDAG &DAG,
4655                                                       unsigned Depth) const {
4656  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4657  switch (Op.getOpcode()) {
4658  default: break;
4659  case PPCISD::LBRX: {
4660    // lhbrx is known to have the top bits cleared out.
4661    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4662      KnownZero = 0xFFFF0000;
4663    break;
4664  }
4665  case ISD::INTRINSIC_WO_CHAIN: {
4666    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4667    default: break;
4668    case Intrinsic::ppc_altivec_vcmpbfp_p:
4669    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4670    case Intrinsic::ppc_altivec_vcmpequb_p:
4671    case Intrinsic::ppc_altivec_vcmpequh_p:
4672    case Intrinsic::ppc_altivec_vcmpequw_p:
4673    case Intrinsic::ppc_altivec_vcmpgefp_p:
4674    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4675    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4676    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4677    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4678    case Intrinsic::ppc_altivec_vcmpgtub_p:
4679    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4680    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4681      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4682      break;
4683    }
4684  }
4685  }
4686}
4687
4688
4689/// getConstraintType - Given a constraint, return the type of
4690/// constraint it is for this target.
4691PPCTargetLowering::ConstraintType
4692PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4693  if (Constraint.size() == 1) {
4694    switch (Constraint[0]) {
4695    default: break;
4696    case 'b':
4697    case 'r':
4698    case 'f':
4699    case 'v':
4700    case 'y':
4701      return C_RegisterClass;
4702    }
4703  }
4704  return TargetLowering::getConstraintType(Constraint);
4705}
4706
4707std::pair<unsigned, const TargetRegisterClass*>
4708PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4709                                                MVT VT) const {
4710  if (Constraint.size() == 1) {
4711    // GCC RS6000 Constraint Letters
4712    switch (Constraint[0]) {
4713    case 'b':   // R1-R31
4714    case 'r':   // R0-R31
4715      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4716        return std::make_pair(0U, PPC::G8RCRegisterClass);
4717      return std::make_pair(0U, PPC::GPRCRegisterClass);
4718    case 'f':
4719      if (VT == MVT::f32)
4720        return std::make_pair(0U, PPC::F4RCRegisterClass);
4721      else if (VT == MVT::f64)
4722        return std::make_pair(0U, PPC::F8RCRegisterClass);
4723      break;
4724    case 'v':
4725      return std::make_pair(0U, PPC::VRRCRegisterClass);
4726    case 'y':   // crrc
4727      return std::make_pair(0U, PPC::CRRCRegisterClass);
4728    }
4729  }
4730
4731  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4732}
4733
4734
4735/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4736/// vector.  If it is invalid, don't add anything to Ops.
4737void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4738                                                     std::vector<SDValue>&Ops,
4739                                                     SelectionDAG &DAG) const {
4740  SDValue Result(0,0);
4741  switch (Letter) {
4742  default: break;
4743  case 'I':
4744  case 'J':
4745  case 'K':
4746  case 'L':
4747  case 'M':
4748  case 'N':
4749  case 'O':
4750  case 'P': {
4751    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4752    if (!CST) return; // Must be an immediate to match.
4753    unsigned Value = CST->getValue();
4754    switch (Letter) {
4755    default: assert(0 && "Unknown constraint letter!");
4756    case 'I':  // "I" is a signed 16-bit constant.
4757      if ((short)Value == (int)Value)
4758        Result = DAG.getTargetConstant(Value, Op.getValueType());
4759      break;
4760    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4761    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4762      if ((short)Value == 0)
4763        Result = DAG.getTargetConstant(Value, Op.getValueType());
4764      break;
4765    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4766      if ((Value >> 16) == 0)
4767        Result = DAG.getTargetConstant(Value, Op.getValueType());
4768      break;
4769    case 'M':  // "M" is a constant that is greater than 31.
4770      if (Value > 31)
4771        Result = DAG.getTargetConstant(Value, Op.getValueType());
4772      break;
4773    case 'N':  // "N" is a positive constant that is an exact power of two.
4774      if ((int)Value > 0 && isPowerOf2_32(Value))
4775        Result = DAG.getTargetConstant(Value, Op.getValueType());
4776      break;
4777    case 'O':  // "O" is the constant zero.
4778      if (Value == 0)
4779        Result = DAG.getTargetConstant(Value, Op.getValueType());
4780      break;
4781    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4782      if ((short)-Value == (int)-Value)
4783        Result = DAG.getTargetConstant(Value, Op.getValueType());
4784      break;
4785    }
4786    break;
4787  }
4788  }
4789
4790  if (Result.getNode()) {
4791    Ops.push_back(Result);
4792    return;
4793  }
4794
4795  // Handle standard constraint letters.
4796  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4797}
4798
4799// isLegalAddressingMode - Return true if the addressing mode represented
4800// by AM is legal for this target, for a load/store of the specified type.
4801bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4802                                              const Type *Ty) const {
4803  // FIXME: PPC does not allow r+i addressing modes for vectors!
4804
4805  // PPC allows a sign-extended 16-bit immediate field.
4806  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4807    return false;
4808
4809  // No global is ever allowed as a base.
4810  if (AM.BaseGV)
4811    return false;
4812
4813  // PPC only support r+r,
4814  switch (AM.Scale) {
4815  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4816    break;
4817  case 1:
4818    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4819      return false;
4820    // Otherwise we have r+r or r+i.
4821    break;
4822  case 2:
4823    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4824      return false;
4825    // Allow 2*r as r+r.
4826    break;
4827  default:
4828    // No other scales are supported.
4829    return false;
4830  }
4831
4832  return true;
4833}
4834
4835/// isLegalAddressImmediate - Return true if the integer value can be used
4836/// as the offset of the target addressing mode for load / store of the
4837/// given type.
4838bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4839  // PPC allows a sign-extended 16-bit immediate field.
4840  return (V > -(1 << 16) && V < (1 << 16)-1);
4841}
4842
4843bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4844  return false;
4845}
4846
4847SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4848  // Depths > 0 not supported yet!
4849  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4850    return SDValue();
4851
4852  MachineFunction &MF = DAG.getMachineFunction();
4853  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4854
4855  // Just load the return address off the stack.
4856  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4857
4858  // Make sure the function really does not optimize away the store of the RA
4859  // to the stack.
4860  FuncInfo->setLRStoreRequired();
4861  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4862}
4863
4864SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4865  // Depths > 0 not supported yet!
4866  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4867    return SDValue();
4868
4869  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4870  bool isPPC64 = PtrVT == MVT::i64;
4871
4872  MachineFunction &MF = DAG.getMachineFunction();
4873  MachineFrameInfo *MFI = MF.getFrameInfo();
4874  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4875                  && MFI->getStackSize();
4876
4877  if (isPPC64)
4878    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4879      MVT::i64);
4880  else
4881    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4882      MVT::i32);
4883}
4884