PPCISelLowering.cpp revision 558692fd0a31d4d3ae4fd09a3a02f80da2e44e5c
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PPCISelLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCISelLowering.h" 15#include "PPCMachineFunctionInfo.h" 16#include "PPCPerfectShuffle.h" 17#include "PPCPredicates.h" 18#include "PPCTargetMachine.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/VectorExtras.h" 21#include "llvm/CodeGen/CallingConvLower.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineInstrBuilder.h" 25#include "llvm/CodeGen/MachineRegisterInfo.h" 26#include "llvm/CodeGen/PseudoSourceValue.h" 27#include "llvm/CodeGen/SelectionDAG.h" 28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29#include "llvm/CallingConv.h" 30#include "llvm/Constants.h" 31#include "llvm/Function.h" 32#include "llvm/Intrinsics.h" 33#include "llvm/Support/MathExtras.h" 34#include "llvm/Target/TargetOptions.h" 35#include "llvm/Support/CommandLine.h" 36#include "llvm/Support/ErrorHandling.h" 37#include "llvm/Support/raw_ostream.h" 38#include "llvm/DerivedTypes.h" 39using namespace llvm; 40 41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 42 CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, 44 CCState &State); 45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 46 MVT &LocVT, 47 CCValAssign::LocInfo &LocInfo, 48 ISD::ArgFlagsTy &ArgFlags, 49 CCState &State); 50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 51 MVT &LocVT, 52 CCValAssign::LocInfo &LocInfo, 53 ISD::ArgFlagsTy &ArgFlags, 54 CCState &State); 55 56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 57cl::desc("enable preincrement load/store generation on PPC (experimental)"), 58 cl::Hidden); 59 60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65} 66 67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 70 setPow2DivIsCheap(); 71 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 82 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 83 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 84 85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 88 89 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 90 91 // PowerPC has pre-inc load and store's. 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 102 103 // This is used in the ppcf128->int sequence. Note it has different semantics 104 // from FP_ROUND: that rounds to nearest, this rounds to zero. 105 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 106 107 // PowerPC has no SREM/UREM instructions 108 setOperationAction(ISD::SREM, MVT::i32, Expand); 109 setOperationAction(ISD::UREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i64, Expand); 111 setOperationAction(ISD::UREM, MVT::i64, Expand); 112 113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 118 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 119 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 120 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 121 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 122 123 // We don't support sin/cos/sqrt/fmod/pow 124 setOperationAction(ISD::FSIN , MVT::f64, Expand); 125 setOperationAction(ISD::FCOS , MVT::f64, Expand); 126 setOperationAction(ISD::FREM , MVT::f64, Expand); 127 setOperationAction(ISD::FPOW , MVT::f64, Expand); 128 setOperationAction(ISD::FSIN , MVT::f32, Expand); 129 setOperationAction(ISD::FCOS , MVT::f32, Expand); 130 setOperationAction(ISD::FREM , MVT::f32, Expand); 131 setOperationAction(ISD::FPOW , MVT::f32, Expand); 132 133 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 134 135 // If we're enabling GP optimizations, use hardware square root 136 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 137 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 138 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 139 } 140 141 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 142 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 143 144 // PowerPC does not have BSWAP, CTPOP or CTTZ 145 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 146 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 147 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 148 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 149 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 150 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 151 152 // PowerPC does not have ROTR 153 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 154 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 155 156 // PowerPC does not have Select 157 setOperationAction(ISD::SELECT, MVT::i32, Expand); 158 setOperationAction(ISD::SELECT, MVT::i64, Expand); 159 setOperationAction(ISD::SELECT, MVT::f32, Expand); 160 setOperationAction(ISD::SELECT, MVT::f64, Expand); 161 162 // PowerPC wants to turn select_cc of FP into fsel when possible. 163 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 164 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 165 166 // PowerPC wants to optimize integer setcc a bit 167 setOperationAction(ISD::SETCC, MVT::i32, Custom); 168 169 // PowerPC does not have BRCOND which requires SetCC 170 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 174 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 175 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 176 177 // PowerPC does not have [U|S]INT_TO_FP 178 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 179 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 180 181 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 182 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 183 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 184 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 185 186 // We cannot sextinreg(i1). Expand to shifts. 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 189 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 190 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 192 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 193 194 195 // We want to legalize GlobalAddress and ConstantPool nodes into the 196 // appropriate instructions to materialize the address. 197 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 198 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 199 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 200 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 201 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 202 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 203 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 204 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 205 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 206 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 207 208 // TRAP is legal. 209 setOperationAction(ISD::TRAP, MVT::Other, Legal); 210 211 // TRAMPOLINE is custom lowered. 212 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 213 214 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 215 setOperationAction(ISD::VASTART , MVT::Other, Custom); 216 217 // VAARG is custom lowered with the 32-bit SVR4 ABI. 218 if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 219 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) 220 setOperationAction(ISD::VAARG, MVT::Other, Custom); 221 else 222 setOperationAction(ISD::VAARG, MVT::Other, Expand); 223 224 // Use the default implementation. 225 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 226 setOperationAction(ISD::VAEND , MVT::Other, Expand); 227 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 228 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 229 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 230 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 231 232 // We want to custom lower some of our intrinsics. 233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 234 235 // Comparisons that require checking two conditions. 236 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 237 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 238 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 239 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 240 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 241 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 242 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 243 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 244 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 245 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 246 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 247 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 248 249 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 250 // They also have instructions for converting between i64 and fp. 251 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 252 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 253 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 254 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 255 // This is just the low 32 bits of a (signed) fp->i64 conversion. 256 // We cannot do this with Promote because i64 is not a legal type. 257 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 258 259 // FIXME: disable this lowered code. This generates 64-bit register values, 260 // and we don't model the fact that the top part is clobbered by calls. We 261 // need to flag these together so that the value isn't live across a call. 262 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 263 } else { 264 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 265 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 266 } 267 268 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 269 // 64-bit PowerPC implementations can support i64 types directly 270 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 271 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 273 // 64-bit PowerPC wants to expand i128 shifts itself. 274 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 275 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 276 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 277 } else { 278 // 32-bit PowerPC wants to expand i64 shifts itself. 279 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 280 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 281 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 282 } 283 284 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 285 // First set operation action for all vector types to expand. Then we 286 // will selectively turn on ones that can be effectively codegen'd. 287 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 288 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 289 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 290 291 // add/sub are legal for all supported vector VT's. 292 setOperationAction(ISD::ADD , VT, Legal); 293 setOperationAction(ISD::SUB , VT, Legal); 294 295 // We promote all shuffles to v16i8. 296 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 297 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 298 299 // We promote all non-typed operations to v4i32. 300 setOperationAction(ISD::AND , VT, Promote); 301 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 302 setOperationAction(ISD::OR , VT, Promote); 303 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 304 setOperationAction(ISD::XOR , VT, Promote); 305 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 306 setOperationAction(ISD::LOAD , VT, Promote); 307 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 308 setOperationAction(ISD::SELECT, VT, Promote); 309 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 310 setOperationAction(ISD::STORE, VT, Promote); 311 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 312 313 // No other operations are legal. 314 setOperationAction(ISD::MUL , VT, Expand); 315 setOperationAction(ISD::SDIV, VT, Expand); 316 setOperationAction(ISD::SREM, VT, Expand); 317 setOperationAction(ISD::UDIV, VT, Expand); 318 setOperationAction(ISD::UREM, VT, Expand); 319 setOperationAction(ISD::FDIV, VT, Expand); 320 setOperationAction(ISD::FNEG, VT, Expand); 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 322 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 323 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 324 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 325 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 326 setOperationAction(ISD::UDIVREM, VT, Expand); 327 setOperationAction(ISD::SDIVREM, VT, Expand); 328 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 329 setOperationAction(ISD::FPOW, VT, Expand); 330 setOperationAction(ISD::CTPOP, VT, Expand); 331 setOperationAction(ISD::CTLZ, VT, Expand); 332 setOperationAction(ISD::CTTZ, VT, Expand); 333 } 334 335 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 336 // with merges, splats, etc. 337 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 338 339 setOperationAction(ISD::AND , MVT::v4i32, Legal); 340 setOperationAction(ISD::OR , MVT::v4i32, Legal); 341 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 342 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 343 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 344 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 345 346 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 347 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 348 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 349 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 350 351 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 352 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 353 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 354 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 355 356 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 357 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 358 359 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 360 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 361 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 362 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 363 } 364 365 setBooleanContents(ZeroOrOneBooleanContent); 366 367 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 368 setStackPointerRegisterToSaveRestore(PPC::X1); 369 setExceptionPointerRegister(PPC::X3); 370 setExceptionSelectorRegister(PPC::X4); 371 } else { 372 setStackPointerRegisterToSaveRestore(PPC::R1); 373 setExceptionPointerRegister(PPC::R3); 374 setExceptionSelectorRegister(PPC::R4); 375 } 376 377 // We have target-specific dag combine patterns for the following nodes: 378 setTargetDAGCombine(ISD::SINT_TO_FP); 379 setTargetDAGCombine(ISD::STORE); 380 setTargetDAGCombine(ISD::BR_CC); 381 setTargetDAGCombine(ISD::BSWAP); 382 383 // Darwin long double math library functions have $LDBL128 appended. 384 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 385 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 386 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 387 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 388 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 389 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 390 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 391 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 392 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 393 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 394 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 395 } 396 397 computeRegisterProperties(); 398} 399 400/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 401/// function arguments in the caller parameter area. 402unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { 403 const TargetMachine &TM = getTargetMachine(); 404 // Darwin passes everything on 4 byte boundary. 405 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 406 return 4; 407 // FIXME SVR4 TBD 408 return 4; 409} 410 411const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 412 switch (Opcode) { 413 default: return 0; 414 case PPCISD::FSEL: return "PPCISD::FSEL"; 415 case PPCISD::FCFID: return "PPCISD::FCFID"; 416 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 417 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 418 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 419 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 420 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 421 case PPCISD::VPERM: return "PPCISD::VPERM"; 422 case PPCISD::Hi: return "PPCISD::Hi"; 423 case PPCISD::Lo: return "PPCISD::Lo"; 424 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 425 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 426 case PPCISD::LOAD: return "PPCISD::LOAD"; 427 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 428 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 429 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 430 case PPCISD::SRL: return "PPCISD::SRL"; 431 case PPCISD::SRA: return "PPCISD::SRA"; 432 case PPCISD::SHL: return "PPCISD::SHL"; 433 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 434 case PPCISD::STD_32: return "PPCISD::STD_32"; 435 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 436 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 437 case PPCISD::NOP: return "PPCISD::NOP"; 438 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 439 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 440 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 441 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 442 case PPCISD::MFCR: return "PPCISD::MFCR"; 443 case PPCISD::VCMP: return "PPCISD::VCMP"; 444 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 445 case PPCISD::LBRX: return "PPCISD::LBRX"; 446 case PPCISD::STBRX: return "PPCISD::STBRX"; 447 case PPCISD::LARX: return "PPCISD::LARX"; 448 case PPCISD::STCX: return "PPCISD::STCX"; 449 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 450 case PPCISD::MFFS: return "PPCISD::MFFS"; 451 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 452 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 453 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 454 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 455 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 456 } 457} 458 459MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { 460 return MVT::i32; 461} 462 463/// getFunctionAlignment - Return the Log2 alignment of this function. 464unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const { 465 if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) 466 return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4; 467 else 468 return 2; 469} 470 471//===----------------------------------------------------------------------===// 472// Node matching predicates, for use by the tblgen matching code. 473//===----------------------------------------------------------------------===// 474 475/// isFloatingPointZero - Return true if this is 0.0 or -0.0. 476static bool isFloatingPointZero(SDValue Op) { 477 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 478 return CFP->getValueAPF().isZero(); 479 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 480 // Maybe this has already been legalized into the constant pool? 481 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 482 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 483 return CFP->getValueAPF().isZero(); 484 } 485 return false; 486} 487 488/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 489/// true if Op is undef or if it matches the specified value. 490static bool isConstantOrUndef(int Op, int Val) { 491 return Op < 0 || Op == Val; 492} 493 494/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 495/// VPKUHUM instruction. 496bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 497 if (!isUnary) { 498 for (unsigned i = 0; i != 16; ++i) 499 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 500 return false; 501 } else { 502 for (unsigned i = 0; i != 8; ++i) 503 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 504 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 505 return false; 506 } 507 return true; 508} 509 510/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 511/// VPKUWUM instruction. 512bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 513 if (!isUnary) { 514 for (unsigned i = 0; i != 16; i += 2) 515 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 516 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 517 return false; 518 } else { 519 for (unsigned i = 0; i != 8; i += 2) 520 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 521 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 522 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 523 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 524 return false; 525 } 526 return true; 527} 528 529/// isVMerge - Common function, used to match vmrg* shuffles. 530/// 531static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 532 unsigned LHSStart, unsigned RHSStart) { 533 assert(N->getValueType(0) == MVT::v16i8 && 534 "PPC only supports shuffles by bytes!"); 535 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 536 "Unsupported merge size!"); 537 538 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 539 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 540 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 541 LHSStart+j+i*UnitSize) || 542 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 543 RHSStart+j+i*UnitSize)) 544 return false; 545 } 546 return true; 547} 548 549/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 550/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 551bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 552 bool isUnary) { 553 if (!isUnary) 554 return isVMerge(N, UnitSize, 8, 24); 555 return isVMerge(N, UnitSize, 8, 8); 556} 557 558/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 559/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 560bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 561 bool isUnary) { 562 if (!isUnary) 563 return isVMerge(N, UnitSize, 0, 16); 564 return isVMerge(N, UnitSize, 0, 0); 565} 566 567 568/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 569/// amount, otherwise return -1. 570int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 571 assert(N->getValueType(0) == MVT::v16i8 && 572 "PPC only supports shuffles by bytes!"); 573 574 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 575 576 // Find the first non-undef value in the shuffle mask. 577 unsigned i; 578 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 579 /*search*/; 580 581 if (i == 16) return -1; // all undef. 582 583 // Otherwise, check to see if the rest of the elements are consecutively 584 // numbered from this value. 585 unsigned ShiftAmt = SVOp->getMaskElt(i); 586 if (ShiftAmt < i) return -1; 587 ShiftAmt -= i; 588 589 if (!isUnary) { 590 // Check the rest of the elements to see if they are consecutive. 591 for (++i; i != 16; ++i) 592 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 593 return -1; 594 } else { 595 // Check the rest of the elements to see if they are consecutive. 596 for (++i; i != 16; ++i) 597 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 598 return -1; 599 } 600 return ShiftAmt; 601} 602 603/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 604/// specifies a splat of a single element that is suitable for input to 605/// VSPLTB/VSPLTH/VSPLTW. 606bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 607 assert(N->getValueType(0) == MVT::v16i8 && 608 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 609 610 // This is a splat operation if each element of the permute is the same, and 611 // if the value doesn't reference the second vector. 612 unsigned ElementBase = N->getMaskElt(0); 613 614 // FIXME: Handle UNDEF elements too! 615 if (ElementBase >= 16) 616 return false; 617 618 // Check that the indices are consecutive, in the case of a multi-byte element 619 // splatted with a v16i8 mask. 620 for (unsigned i = 1; i != EltSize; ++i) 621 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 622 return false; 623 624 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 625 if (N->getMaskElt(i) < 0) continue; 626 for (unsigned j = 0; j != EltSize; ++j) 627 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 628 return false; 629 } 630 return true; 631} 632 633/// isAllNegativeZeroVector - Returns true if all elements of build_vector 634/// are -0.0. 635bool PPC::isAllNegativeZeroVector(SDNode *N) { 636 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 637 638 APInt APVal, APUndef; 639 unsigned BitSize; 640 bool HasAnyUndefs; 641 642 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 643 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 644 return CFP->getValueAPF().isNegZero(); 645 646 return false; 647} 648 649/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 650/// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 651unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 652 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 653 assert(isSplatShuffleMask(SVOp, EltSize)); 654 return SVOp->getMaskElt(0) / EltSize; 655} 656 657/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 658/// by using a vspltis[bhw] instruction of the specified element size, return 659/// the constant being splatted. The ByteSize field indicates the number of 660/// bytes of each element [124] -> [bhw]. 661SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 662 SDValue OpVal(0, 0); 663 664 // If ByteSize of the splat is bigger than the element size of the 665 // build_vector, then we have a case where we are checking for a splat where 666 // multiple elements of the buildvector are folded together into a single 667 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 668 unsigned EltSize = 16/N->getNumOperands(); 669 if (EltSize < ByteSize) { 670 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 671 SDValue UniquedVals[4]; 672 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 673 674 // See if all of the elements in the buildvector agree across. 675 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 676 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 677 // If the element isn't a constant, bail fully out. 678 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 679 680 681 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 682 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 683 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 684 return SDValue(); // no match. 685 } 686 687 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 688 // either constant or undef values that are identical for each chunk. See 689 // if these chunks can form into a larger vspltis*. 690 691 // Check to see if all of the leading entries are either 0 or -1. If 692 // neither, then this won't fit into the immediate field. 693 bool LeadingZero = true; 694 bool LeadingOnes = true; 695 for (unsigned i = 0; i != Multiple-1; ++i) { 696 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 697 698 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 699 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 700 } 701 // Finally, check the least significant entry. 702 if (LeadingZero) { 703 if (UniquedVals[Multiple-1].getNode() == 0) 704 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 705 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 706 if (Val < 16) 707 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 708 } 709 if (LeadingOnes) { 710 if (UniquedVals[Multiple-1].getNode() == 0) 711 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 712 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 713 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 714 return DAG.getTargetConstant(Val, MVT::i32); 715 } 716 717 return SDValue(); 718 } 719 720 // Check to see if this buildvec has a single non-undef value in its elements. 721 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 722 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 723 if (OpVal.getNode() == 0) 724 OpVal = N->getOperand(i); 725 else if (OpVal != N->getOperand(i)) 726 return SDValue(); 727 } 728 729 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 730 731 unsigned ValSizeInBytes = EltSize; 732 uint64_t Value = 0; 733 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 734 Value = CN->getZExtValue(); 735 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 736 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 737 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 738 } 739 740 // If the splat value is larger than the element value, then we can never do 741 // this splat. The only case that we could fit the replicated bits into our 742 // immediate field for would be zero, and we prefer to use vxor for it. 743 if (ValSizeInBytes < ByteSize) return SDValue(); 744 745 // If the element value is larger than the splat value, cut it in half and 746 // check to see if the two halves are equal. Continue doing this until we 747 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 748 while (ValSizeInBytes > ByteSize) { 749 ValSizeInBytes >>= 1; 750 751 // If the top half equals the bottom half, we're still ok. 752 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 753 (Value & ((1 << (8*ValSizeInBytes))-1))) 754 return SDValue(); 755 } 756 757 // Properly sign extend the value. 758 int ShAmt = (4-ByteSize)*8; 759 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 760 761 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 762 if (MaskVal == 0) return SDValue(); 763 764 // Finally, if this value fits in a 5 bit sext field, return it 765 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 766 return DAG.getTargetConstant(MaskVal, MVT::i32); 767 return SDValue(); 768} 769 770//===----------------------------------------------------------------------===// 771// Addressing Mode Selection 772//===----------------------------------------------------------------------===// 773 774/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 775/// or 64-bit immediate, and if the value can be accurately represented as a 776/// sign extension from a 16-bit value. If so, this returns true and the 777/// immediate. 778static bool isIntS16Immediate(SDNode *N, short &Imm) { 779 if (N->getOpcode() != ISD::Constant) 780 return false; 781 782 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 783 if (N->getValueType(0) == MVT::i32) 784 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 785 else 786 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 787} 788static bool isIntS16Immediate(SDValue Op, short &Imm) { 789 return isIntS16Immediate(Op.getNode(), Imm); 790} 791 792 793/// SelectAddressRegReg - Given the specified addressed, check to see if it 794/// can be represented as an indexed [r+r] operation. Returns false if it 795/// can be more efficiently represented with [r+imm]. 796bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 797 SDValue &Index, 798 SelectionDAG &DAG) const { 799 short imm = 0; 800 if (N.getOpcode() == ISD::ADD) { 801 if (isIntS16Immediate(N.getOperand(1), imm)) 802 return false; // r+i 803 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 804 return false; // r+i 805 806 Base = N.getOperand(0); 807 Index = N.getOperand(1); 808 return true; 809 } else if (N.getOpcode() == ISD::OR) { 810 if (isIntS16Immediate(N.getOperand(1), imm)) 811 return false; // r+i can fold it if we can. 812 813 // If this is an or of disjoint bitfields, we can codegen this as an add 814 // (for better address arithmetic) if the LHS and RHS of the OR are provably 815 // disjoint. 816 APInt LHSKnownZero, LHSKnownOne; 817 APInt RHSKnownZero, RHSKnownOne; 818 DAG.ComputeMaskedBits(N.getOperand(0), 819 APInt::getAllOnesValue(N.getOperand(0) 820 .getValueSizeInBits()), 821 LHSKnownZero, LHSKnownOne); 822 823 if (LHSKnownZero.getBoolValue()) { 824 DAG.ComputeMaskedBits(N.getOperand(1), 825 APInt::getAllOnesValue(N.getOperand(1) 826 .getValueSizeInBits()), 827 RHSKnownZero, RHSKnownOne); 828 // If all of the bits are known zero on the LHS or RHS, the add won't 829 // carry. 830 if (~(LHSKnownZero | RHSKnownZero) == 0) { 831 Base = N.getOperand(0); 832 Index = N.getOperand(1); 833 return true; 834 } 835 } 836 } 837 838 return false; 839} 840 841/// Returns true if the address N can be represented by a base register plus 842/// a signed 16-bit displacement [r+imm], and if it is not better 843/// represented as reg+reg. 844bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 845 SDValue &Base, 846 SelectionDAG &DAG) const { 847 // FIXME dl should come from parent load or store, not from address 848 DebugLoc dl = N.getDebugLoc(); 849 // If this can be more profitably realized as r+r, fail. 850 if (SelectAddressRegReg(N, Disp, Base, DAG)) 851 return false; 852 853 if (N.getOpcode() == ISD::ADD) { 854 short imm = 0; 855 if (isIntS16Immediate(N.getOperand(1), imm)) { 856 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 857 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 858 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 859 } else { 860 Base = N.getOperand(0); 861 } 862 return true; // [r+i] 863 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 864 // Match LOAD (ADD (X, Lo(G))). 865 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 866 && "Cannot handle constant offsets yet!"); 867 Disp = N.getOperand(1).getOperand(0); // The global address. 868 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 869 Disp.getOpcode() == ISD::TargetConstantPool || 870 Disp.getOpcode() == ISD::TargetJumpTable); 871 Base = N.getOperand(0); 872 return true; // [&g+r] 873 } 874 } else if (N.getOpcode() == ISD::OR) { 875 short imm = 0; 876 if (isIntS16Immediate(N.getOperand(1), imm)) { 877 // If this is an or of disjoint bitfields, we can codegen this as an add 878 // (for better address arithmetic) if the LHS and RHS of the OR are 879 // provably disjoint. 880 APInt LHSKnownZero, LHSKnownOne; 881 DAG.ComputeMaskedBits(N.getOperand(0), 882 APInt::getAllOnesValue(N.getOperand(0) 883 .getValueSizeInBits()), 884 LHSKnownZero, LHSKnownOne); 885 886 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 887 // If all of the bits are known zero on the LHS or RHS, the add won't 888 // carry. 889 Base = N.getOperand(0); 890 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 891 return true; 892 } 893 } 894 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 895 // Loading from a constant address. 896 897 // If this address fits entirely in a 16-bit sext immediate field, codegen 898 // this as "d, 0" 899 short Imm; 900 if (isIntS16Immediate(CN, Imm)) { 901 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 902 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 903 CN->getValueType(0)); 904 return true; 905 } 906 907 // Handle 32-bit sext immediates with LIS + addr mode. 908 if (CN->getValueType(0) == MVT::i32 || 909 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 910 int Addr = (int)CN->getZExtValue(); 911 912 // Otherwise, break this down into an LIS + disp. 913 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 914 915 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 916 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 917 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 918 return true; 919 } 920 } 921 922 Disp = DAG.getTargetConstant(0, getPointerTy()); 923 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 924 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 925 else 926 Base = N; 927 return true; // [r+0] 928} 929 930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be 931/// represented as an indexed [r+r] operation. 932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 933 SDValue &Index, 934 SelectionDAG &DAG) const { 935 // Check to see if we can easily represent this as an [r+r] address. This 936 // will fail if it thinks that the address is more profitably represented as 937 // reg+imm, e.g. where imm = 0. 938 if (SelectAddressRegReg(N, Base, Index, DAG)) 939 return true; 940 941 // If the operand is an addition, always emit this as [r+r], since this is 942 // better (for code size, and execution, as the memop does the add for free) 943 // than emitting an explicit add. 944 if (N.getOpcode() == ISD::ADD) { 945 Base = N.getOperand(0); 946 Index = N.getOperand(1); 947 return true; 948 } 949 950 // Otherwise, do it the hard way, using R0 as the base register. 951 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 952 N.getValueType()); 953 Index = N; 954 return true; 955} 956 957/// SelectAddressRegImmShift - Returns true if the address N can be 958/// represented by a base register plus a signed 14-bit displacement 959/// [r+imm*4]. Suitable for use by STD and friends. 960bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 961 SDValue &Base, 962 SelectionDAG &DAG) const { 963 // FIXME dl should come from the parent load or store, not the address 964 DebugLoc dl = N.getDebugLoc(); 965 // If this can be more profitably realized as r+r, fail. 966 if (SelectAddressRegReg(N, Disp, Base, DAG)) 967 return false; 968 969 if (N.getOpcode() == ISD::ADD) { 970 short imm = 0; 971 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 972 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 973 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 974 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 975 } else { 976 Base = N.getOperand(0); 977 } 978 return true; // [r+i] 979 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 980 // Match LOAD (ADD (X, Lo(G))). 981 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 982 && "Cannot handle constant offsets yet!"); 983 Disp = N.getOperand(1).getOperand(0); // The global address. 984 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 985 Disp.getOpcode() == ISD::TargetConstantPool || 986 Disp.getOpcode() == ISD::TargetJumpTable); 987 Base = N.getOperand(0); 988 return true; // [&g+r] 989 } 990 } else if (N.getOpcode() == ISD::OR) { 991 short imm = 0; 992 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 993 // If this is an or of disjoint bitfields, we can codegen this as an add 994 // (for better address arithmetic) if the LHS and RHS of the OR are 995 // provably disjoint. 996 APInt LHSKnownZero, LHSKnownOne; 997 DAG.ComputeMaskedBits(N.getOperand(0), 998 APInt::getAllOnesValue(N.getOperand(0) 999 .getValueSizeInBits()), 1000 LHSKnownZero, LHSKnownOne); 1001 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1002 // If all of the bits are known zero on the LHS or RHS, the add won't 1003 // carry. 1004 Base = N.getOperand(0); 1005 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1006 return true; 1007 } 1008 } 1009 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1010 // Loading from a constant address. Verify low two bits are clear. 1011 if ((CN->getZExtValue() & 3) == 0) { 1012 // If this address fits entirely in a 14-bit sext immediate field, codegen 1013 // this as "d, 0" 1014 short Imm; 1015 if (isIntS16Immediate(CN, Imm)) { 1016 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1017 Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); 1018 return true; 1019 } 1020 1021 // Fold the low-part of 32-bit absolute addresses into addr mode. 1022 if (CN->getValueType(0) == MVT::i32 || 1023 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1024 int Addr = (int)CN->getZExtValue(); 1025 1026 // Otherwise, break this down into an LIS + disp. 1027 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1028 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1029 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1030 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1031 return true; 1032 } 1033 } 1034 } 1035 1036 Disp = DAG.getTargetConstant(0, getPointerTy()); 1037 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1038 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1039 else 1040 Base = N; 1041 return true; // [r+0] 1042} 1043 1044 1045/// getPreIndexedAddressParts - returns true by value, base pointer and 1046/// offset pointer and addressing mode by reference if the node's address 1047/// can be legally represented as pre-indexed load / store address. 1048bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1049 SDValue &Offset, 1050 ISD::MemIndexedMode &AM, 1051 SelectionDAG &DAG) const { 1052 // Disabled by default for now. 1053 if (!EnablePPCPreinc) return false; 1054 1055 SDValue Ptr; 1056 EVT VT; 1057 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1058 Ptr = LD->getBasePtr(); 1059 VT = LD->getMemoryVT(); 1060 1061 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1062 Ptr = ST->getBasePtr(); 1063 VT = ST->getMemoryVT(); 1064 } else 1065 return false; 1066 1067 // PowerPC doesn't have preinc load/store instructions for vectors. 1068 if (VT.isVector()) 1069 return false; 1070 1071 // TODO: Check reg+reg first. 1072 1073 // LDU/STU use reg+imm*4, others use reg+imm. 1074 if (VT != MVT::i64) { 1075 // reg + imm 1076 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1077 return false; 1078 } else { 1079 // reg + imm * 4. 1080 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1081 return false; 1082 } 1083 1084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1086 // sext i32 to i64 when addr mode is r+i. 1087 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1088 LD->getExtensionType() == ISD::SEXTLOAD && 1089 isa<ConstantSDNode>(Offset)) 1090 return false; 1091 } 1092 1093 AM = ISD::PRE_INC; 1094 return true; 1095} 1096 1097//===----------------------------------------------------------------------===// 1098// LowerOperation implementation 1099//===----------------------------------------------------------------------===// 1100 1101/// GetLabelAccessInfo - Return true if we should reference labels using a 1102/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1103static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1104 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1105 HiOpFlags = PPCII::MO_HA16; 1106 LoOpFlags = PPCII::MO_LO16; 1107 1108 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1109 // non-darwin platform. We don't support PIC on other platforms yet. 1110 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1111 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1112 if (isPIC) { 1113 HiOpFlags |= PPCII::MO_PIC_FLAG; 1114 LoOpFlags |= PPCII::MO_PIC_FLAG; 1115 } 1116 1117 // If this is a reference to a global value that requires a non-lazy-ptr, make 1118 // sure that instruction lowering adds it. 1119 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1120 HiOpFlags |= PPCII::MO_NLP_FLAG; 1121 LoOpFlags |= PPCII::MO_NLP_FLAG; 1122 1123 if (GV->hasHiddenVisibility()) { 1124 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1125 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1126 } 1127 } 1128 1129 return isPIC; 1130} 1131 1132static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1133 SelectionDAG &DAG) { 1134 EVT PtrVT = HiPart.getValueType(); 1135 SDValue Zero = DAG.getConstant(0, PtrVT); 1136 DebugLoc DL = HiPart.getDebugLoc(); 1137 1138 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1139 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1140 1141 // With PIC, the first instruction is actually "GR+hi(&G)". 1142 if (isPIC) 1143 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1144 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1145 1146 // Generate non-pic code that has direct accesses to the constant pool. 1147 // The address of the global is just (hi(&g)+lo(&g)). 1148 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1149} 1150 1151SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1152 SelectionDAG &DAG) const { 1153 EVT PtrVT = Op.getValueType(); 1154 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1155 const Constant *C = CP->getConstVal(); 1156 1157 unsigned MOHiFlag, MOLoFlag; 1158 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1159 SDValue CPIHi = 1160 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1161 SDValue CPILo = 1162 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1163 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1164} 1165 1166SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1167 EVT PtrVT = Op.getValueType(); 1168 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1169 1170 unsigned MOHiFlag, MOLoFlag; 1171 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1172 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1173 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1174 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1175} 1176 1177SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1178 SelectionDAG &DAG) const { 1179 EVT PtrVT = Op.getValueType(); 1180 1181 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1182 1183 unsigned MOHiFlag, MOLoFlag; 1184 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1185 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1186 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1187 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1188} 1189 1190SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1191 SelectionDAG &DAG) const { 1192 EVT PtrVT = Op.getValueType(); 1193 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1194 DebugLoc DL = GSDN->getDebugLoc(); 1195 const GlobalValue *GV = GSDN->getGlobal(); 1196 1197 // 64-bit SVR4 ABI code is always position-independent. 1198 // The actual address of the GlobalValue is stored in the TOC. 1199 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1200 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1201 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1202 DAG.getRegister(PPC::X2, MVT::i64)); 1203 } 1204 1205 unsigned MOHiFlag, MOLoFlag; 1206 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1207 1208 SDValue GAHi = 1209 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1210 SDValue GALo = 1211 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1212 1213 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1214 1215 // If the global reference is actually to a non-lazy-pointer, we have to do an 1216 // extra load to get the address of the global. 1217 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1218 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1219 false, false, 0); 1220 return Ptr; 1221} 1222 1223SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1224 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1225 DebugLoc dl = Op.getDebugLoc(); 1226 1227 // If we're comparing for equality to zero, expose the fact that this is 1228 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1229 // fold the new nodes. 1230 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1231 if (C->isNullValue() && CC == ISD::SETEQ) { 1232 EVT VT = Op.getOperand(0).getValueType(); 1233 SDValue Zext = Op.getOperand(0); 1234 if (VT.bitsLT(MVT::i32)) { 1235 VT = MVT::i32; 1236 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1237 } 1238 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1239 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1240 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1241 DAG.getConstant(Log2b, MVT::i32)); 1242 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1243 } 1244 // Leave comparisons against 0 and -1 alone for now, since they're usually 1245 // optimized. FIXME: revisit this when we can custom lower all setcc 1246 // optimizations. 1247 if (C->isAllOnesValue() || C->isNullValue()) 1248 return SDValue(); 1249 } 1250 1251 // If we have an integer seteq/setne, turn it into a compare against zero 1252 // by xor'ing the rhs with the lhs, which is faster than setting a 1253 // condition register, reading it back out, and masking the correct bit. The 1254 // normal approach here uses sub to do this instead of xor. Using xor exposes 1255 // the result to other bit-twiddling opportunities. 1256 EVT LHSVT = Op.getOperand(0).getValueType(); 1257 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1258 EVT VT = Op.getValueType(); 1259 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1260 Op.getOperand(1)); 1261 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1262 } 1263 return SDValue(); 1264} 1265 1266SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1267 const PPCSubtarget &Subtarget) const { 1268 1269 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!"); 1270 return SDValue(); // Not reached 1271} 1272 1273SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, 1274 SelectionDAG &DAG) const { 1275 SDValue Chain = Op.getOperand(0); 1276 SDValue Trmp = Op.getOperand(1); // trampoline 1277 SDValue FPtr = Op.getOperand(2); // nested function 1278 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1279 DebugLoc dl = Op.getDebugLoc(); 1280 1281 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1282 bool isPPC64 = (PtrVT == MVT::i64); 1283 const Type *IntPtrTy = 1284 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1285 *DAG.getContext()); 1286 1287 TargetLowering::ArgListTy Args; 1288 TargetLowering::ArgListEntry Entry; 1289 1290 Entry.Ty = IntPtrTy; 1291 Entry.Node = Trmp; Args.push_back(Entry); 1292 1293 // TrampSize == (isPPC64 ? 48 : 40); 1294 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1295 isPPC64 ? MVT::i64 : MVT::i32); 1296 Args.push_back(Entry); 1297 1298 Entry.Node = FPtr; Args.push_back(Entry); 1299 Entry.Node = Nest; Args.push_back(Entry); 1300 1301 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1302 std::pair<SDValue, SDValue> CallResult = 1303 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), 1304 false, false, false, false, 0, CallingConv::C, false, 1305 /*isReturnValueUsed=*/true, 1306 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1307 Args, DAG, dl); 1308 1309 SDValue Ops[] = 1310 { CallResult.first, CallResult.second }; 1311 1312 return DAG.getMergeValues(Ops, 2, dl); 1313} 1314 1315SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1316 const PPCSubtarget &Subtarget) const { 1317 MachineFunction &MF = DAG.getMachineFunction(); 1318 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1319 1320 DebugLoc dl = Op.getDebugLoc(); 1321 1322 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1323 // vastart just stores the address of the VarArgsFrameIndex slot into the 1324 // memory location argument. 1325 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1326 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1327 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1328 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1329 MachinePointerInfo(SV), 1330 false, false, 0); 1331 } 1332 1333 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1334 // We suppose the given va_list is already allocated. 1335 // 1336 // typedef struct { 1337 // char gpr; /* index into the array of 8 GPRs 1338 // * stored in the register save area 1339 // * gpr=0 corresponds to r3, 1340 // * gpr=1 to r4, etc. 1341 // */ 1342 // char fpr; /* index into the array of 8 FPRs 1343 // * stored in the register save area 1344 // * fpr=0 corresponds to f1, 1345 // * fpr=1 to f2, etc. 1346 // */ 1347 // char *overflow_arg_area; 1348 // /* location on stack that holds 1349 // * the next overflow argument 1350 // */ 1351 // char *reg_save_area; 1352 // /* where r3:r10 and f1:f8 (if saved) 1353 // * are stored 1354 // */ 1355 // } va_list[1]; 1356 1357 1358 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1359 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1360 1361 1362 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1363 1364 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1365 PtrVT); 1366 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1367 PtrVT); 1368 1369 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1370 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1371 1372 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1373 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1374 1375 uint64_t FPROffset = 1; 1376 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1377 1378 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1379 1380 // Store first byte : number of int regs 1381 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1382 Op.getOperand(1), 1383 MachinePointerInfo(SV), 1384 MVT::i8, false, false, 0); 1385 uint64_t nextOffset = FPROffset; 1386 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1387 ConstFPROffset); 1388 1389 // Store second byte : number of float regs 1390 SDValue secondStore = 1391 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1392 MachinePointerInfo(SV, nextOffset), MVT::i8, 1393 false, false, 0); 1394 nextOffset += StackOffset; 1395 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1396 1397 // Store second word : arguments given on stack 1398 SDValue thirdStore = 1399 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1400 MachinePointerInfo(SV, nextOffset), 1401 false, false, 0); 1402 nextOffset += FrameOffset; 1403 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1404 1405 // Store third word : arguments given in registers 1406 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1407 MachinePointerInfo(SV, nextOffset), 1408 false, false, 0); 1409 1410} 1411 1412#include "PPCGenCallingConv.inc" 1413 1414static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1415 CCValAssign::LocInfo &LocInfo, 1416 ISD::ArgFlagsTy &ArgFlags, 1417 CCState &State) { 1418 return true; 1419} 1420 1421static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1422 MVT &LocVT, 1423 CCValAssign::LocInfo &LocInfo, 1424 ISD::ArgFlagsTy &ArgFlags, 1425 CCState &State) { 1426 static const unsigned ArgRegs[] = { 1427 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1428 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1429 }; 1430 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1431 1432 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1433 1434 // Skip one register if the first unallocated register has an even register 1435 // number and there are still argument registers available which have not been 1436 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1437 // need to skip a register if RegNum is odd. 1438 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1439 State.AllocateReg(ArgRegs[RegNum]); 1440 } 1441 1442 // Always return false here, as this function only makes sure that the first 1443 // unallocated register has an odd register number and does not actually 1444 // allocate a register for the current argument. 1445 return false; 1446} 1447 1448static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1449 MVT &LocVT, 1450 CCValAssign::LocInfo &LocInfo, 1451 ISD::ArgFlagsTy &ArgFlags, 1452 CCState &State) { 1453 static const unsigned ArgRegs[] = { 1454 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1455 PPC::F8 1456 }; 1457 1458 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1459 1460 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1461 1462 // If there is only one Floating-point register left we need to put both f64 1463 // values of a split ppc_fp128 value on the stack. 1464 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1465 State.AllocateReg(ArgRegs[RegNum]); 1466 } 1467 1468 // Always return false here, as this function only makes sure that the two f64 1469 // values a ppc_fp128 value is split into are both passed in registers or both 1470 // passed on the stack and does not actually allocate a register for the 1471 // current argument. 1472 return false; 1473} 1474 1475/// GetFPR - Get the set of FP registers that should be allocated for arguments, 1476/// on Darwin. 1477static const unsigned *GetFPR() { 1478 static const unsigned FPR[] = { 1479 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1480 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1481 }; 1482 1483 return FPR; 1484} 1485 1486/// CalculateStackSlotSize - Calculates the size reserved for this argument on 1487/// the stack. 1488static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1489 unsigned PtrByteSize) { 1490 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1491 if (Flags.isByVal()) 1492 ArgSize = Flags.getByValSize(); 1493 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1494 1495 return ArgSize; 1496} 1497 1498SDValue 1499PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1500 CallingConv::ID CallConv, bool isVarArg, 1501 const SmallVectorImpl<ISD::InputArg> 1502 &Ins, 1503 DebugLoc dl, SelectionDAG &DAG, 1504 SmallVectorImpl<SDValue> &InVals) 1505 const { 1506 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1507 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1508 dl, DAG, InVals); 1509 } else { 1510 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1511 dl, DAG, InVals); 1512 } 1513} 1514 1515SDValue 1516PPCTargetLowering::LowerFormalArguments_SVR4( 1517 SDValue Chain, 1518 CallingConv::ID CallConv, bool isVarArg, 1519 const SmallVectorImpl<ISD::InputArg> 1520 &Ins, 1521 DebugLoc dl, SelectionDAG &DAG, 1522 SmallVectorImpl<SDValue> &InVals) const { 1523 1524 // 32-bit SVR4 ABI Stack Frame Layout: 1525 // +-----------------------------------+ 1526 // +--> | Back chain | 1527 // | +-----------------------------------+ 1528 // | | Floating-point register save area | 1529 // | +-----------------------------------+ 1530 // | | General register save area | 1531 // | +-----------------------------------+ 1532 // | | CR save word | 1533 // | +-----------------------------------+ 1534 // | | VRSAVE save word | 1535 // | +-----------------------------------+ 1536 // | | Alignment padding | 1537 // | +-----------------------------------+ 1538 // | | Vector register save area | 1539 // | +-----------------------------------+ 1540 // | | Local variable space | 1541 // | +-----------------------------------+ 1542 // | | Parameter list area | 1543 // | +-----------------------------------+ 1544 // | | LR save word | 1545 // | +-----------------------------------+ 1546 // SP--> +--- | Back chain | 1547 // +-----------------------------------+ 1548 // 1549 // Specifications: 1550 // System V Application Binary Interface PowerPC Processor Supplement 1551 // AltiVec Technology Programming Interface Manual 1552 1553 MachineFunction &MF = DAG.getMachineFunction(); 1554 MachineFrameInfo *MFI = MF.getFrameInfo(); 1555 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1556 1557 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1558 // Potential tail calls could cause overwriting of argument stack slots. 1559 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1560 unsigned PtrByteSize = 4; 1561 1562 // Assign locations to all of the incoming arguments. 1563 SmallVector<CCValAssign, 16> ArgLocs; 1564 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, 1565 *DAG.getContext()); 1566 1567 // Reserve space for the linkage area on the stack. 1568 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1569 1570 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1571 1572 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1573 CCValAssign &VA = ArgLocs[i]; 1574 1575 // Arguments stored in registers. 1576 if (VA.isRegLoc()) { 1577 TargetRegisterClass *RC; 1578 EVT ValVT = VA.getValVT(); 1579 1580 switch (ValVT.getSimpleVT().SimpleTy) { 1581 default: 1582 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1583 case MVT::i32: 1584 RC = PPC::GPRCRegisterClass; 1585 break; 1586 case MVT::f32: 1587 RC = PPC::F4RCRegisterClass; 1588 break; 1589 case MVT::f64: 1590 RC = PPC::F8RCRegisterClass; 1591 break; 1592 case MVT::v16i8: 1593 case MVT::v8i16: 1594 case MVT::v4i32: 1595 case MVT::v4f32: 1596 RC = PPC::VRRCRegisterClass; 1597 break; 1598 } 1599 1600 // Transform the arguments stored in physical registers into virtual ones. 1601 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1602 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1603 1604 InVals.push_back(ArgValue); 1605 } else { 1606 // Argument stored in memory. 1607 assert(VA.isMemLoc()); 1608 1609 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1610 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1611 isImmutable); 1612 1613 // Create load nodes to retrieve arguments from the stack. 1614 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1615 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1616 MachinePointerInfo(), 1617 false, false, 0)); 1618 } 1619 } 1620 1621 // Assign locations to all of the incoming aggregate by value arguments. 1622 // Aggregates passed by value are stored in the local variable space of the 1623 // caller's stack frame, right above the parameter list area. 1624 SmallVector<CCValAssign, 16> ByValArgLocs; 1625 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), 1626 ByValArgLocs, *DAG.getContext()); 1627 1628 // Reserve stack space for the allocations in CCInfo. 1629 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1630 1631 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1632 1633 // Area that is at least reserved in the caller of this function. 1634 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1635 1636 // Set the size that is at least reserved in caller of this function. Tail 1637 // call optimized function's reserved stack space needs to be aligned so that 1638 // taking the difference between two stack areas will result in an aligned 1639 // stack. 1640 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1641 1642 MinReservedArea = 1643 std::max(MinReservedArea, 1644 PPCFrameLowering::getMinCallFrameSize(false, false)); 1645 1646 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1647 getStackAlignment(); 1648 unsigned AlignMask = TargetAlign-1; 1649 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1650 1651 FI->setMinReservedArea(MinReservedArea); 1652 1653 SmallVector<SDValue, 8> MemOps; 1654 1655 // If the function takes variable number of arguments, make a frame index for 1656 // the start of the first vararg value... for expansion of llvm.va_start. 1657 if (isVarArg) { 1658 static const unsigned GPArgRegs[] = { 1659 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1660 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1661 }; 1662 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1663 1664 static const unsigned FPArgRegs[] = { 1665 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1666 PPC::F8 1667 }; 1668 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1669 1670 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1671 NumGPArgRegs)); 1672 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1673 NumFPArgRegs)); 1674 1675 // Make room for NumGPArgRegs and NumFPArgRegs. 1676 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1677 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1678 1679 FuncInfo->setVarArgsStackOffset( 1680 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1681 CCInfo.getNextStackOffset(), true)); 1682 1683 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1684 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1685 1686 // The fixed integer arguments of a variadic function are stored to the 1687 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1688 // the result of va_next. 1689 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1690 // Get an existing live-in vreg, or add a new one. 1691 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1692 if (!VReg) 1693 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1694 1695 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1696 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1697 MachinePointerInfo(), false, false, 0); 1698 MemOps.push_back(Store); 1699 // Increment the address by four for the next argument to store 1700 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1701 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1702 } 1703 1704 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1705 // is set. 1706 // The double arguments are stored to the VarArgsFrameIndex 1707 // on the stack. 1708 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1709 // Get an existing live-in vreg, or add a new one. 1710 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1711 if (!VReg) 1712 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1713 1714 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1715 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1716 MachinePointerInfo(), false, false, 0); 1717 MemOps.push_back(Store); 1718 // Increment the address by eight for the next argument to store 1719 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1720 PtrVT); 1721 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1722 } 1723 } 1724 1725 if (!MemOps.empty()) 1726 Chain = DAG.getNode(ISD::TokenFactor, dl, 1727 MVT::Other, &MemOps[0], MemOps.size()); 1728 1729 return Chain; 1730} 1731 1732SDValue 1733PPCTargetLowering::LowerFormalArguments_Darwin( 1734 SDValue Chain, 1735 CallingConv::ID CallConv, bool isVarArg, 1736 const SmallVectorImpl<ISD::InputArg> 1737 &Ins, 1738 DebugLoc dl, SelectionDAG &DAG, 1739 SmallVectorImpl<SDValue> &InVals) const { 1740 // TODO: add description of PPC stack frame format, or at least some docs. 1741 // 1742 MachineFunction &MF = DAG.getMachineFunction(); 1743 MachineFrameInfo *MFI = MF.getFrameInfo(); 1744 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1745 1746 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1747 bool isPPC64 = PtrVT == MVT::i64; 1748 // Potential tail calls could cause overwriting of argument stack slots. 1749 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1750 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1751 1752 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1753 // Area that is at least reserved in caller of this function. 1754 unsigned MinReservedArea = ArgOffset; 1755 1756 static const unsigned GPR_32[] = { // 32-bit registers. 1757 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1758 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1759 }; 1760 static const unsigned GPR_64[] = { // 64-bit registers. 1761 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1762 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1763 }; 1764 1765 static const unsigned *FPR = GetFPR(); 1766 1767 static const unsigned VR[] = { 1768 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1769 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1770 }; 1771 1772 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1773 const unsigned Num_FPR_Regs = 13; 1774 const unsigned Num_VR_Regs = array_lengthof( VR); 1775 1776 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1777 1778 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1779 1780 // In 32-bit non-varargs functions, the stack space for vectors is after the 1781 // stack space for non-vectors. We do not use this space unless we have 1782 // too many vectors to fit in registers, something that only occurs in 1783 // constructed examples:), but we have to walk the arglist to figure 1784 // that out...for the pathological case, compute VecArgOffset as the 1785 // start of the vector parameter area. Computing VecArgOffset is the 1786 // entire point of the following loop. 1787 unsigned VecArgOffset = ArgOffset; 1788 if (!isVarArg && !isPPC64) { 1789 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1790 ++ArgNo) { 1791 EVT ObjectVT = Ins[ArgNo].VT; 1792 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1793 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1794 1795 if (Flags.isByVal()) { 1796 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1797 ObjSize = Flags.getByValSize(); 1798 unsigned ArgSize = 1799 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1800 VecArgOffset += ArgSize; 1801 continue; 1802 } 1803 1804 switch(ObjectVT.getSimpleVT().SimpleTy) { 1805 default: llvm_unreachable("Unhandled argument type!"); 1806 case MVT::i32: 1807 case MVT::f32: 1808 VecArgOffset += isPPC64 ? 8 : 4; 1809 break; 1810 case MVT::i64: // PPC64 1811 case MVT::f64: 1812 VecArgOffset += 8; 1813 break; 1814 case MVT::v4f32: 1815 case MVT::v4i32: 1816 case MVT::v8i16: 1817 case MVT::v16i8: 1818 // Nothing to do, we're only looking at Nonvector args here. 1819 break; 1820 } 1821 } 1822 } 1823 // We've found where the vector parameter area in memory is. Skip the 1824 // first 12 parameters; these don't use that memory. 1825 VecArgOffset = ((VecArgOffset+15)/16)*16; 1826 VecArgOffset += 12*16; 1827 1828 // Add DAG nodes to load the arguments or copy them out of registers. On 1829 // entry to a function on PPC, the arguments start after the linkage area, 1830 // although the first ones are often in registers. 1831 1832 SmallVector<SDValue, 8> MemOps; 1833 unsigned nAltivecParamsAtEnd = 0; 1834 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1835 SDValue ArgVal; 1836 bool needsLoad = false; 1837 EVT ObjectVT = Ins[ArgNo].VT; 1838 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1839 unsigned ArgSize = ObjSize; 1840 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1841 1842 unsigned CurArgOffset = ArgOffset; 1843 1844 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1845 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1846 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1847 if (isVarArg || isPPC64) { 1848 MinReservedArea = ((MinReservedArea+15)/16)*16; 1849 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1850 Flags, 1851 PtrByteSize); 1852 } else nAltivecParamsAtEnd++; 1853 } else 1854 // Calculate min reserved area. 1855 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1856 Flags, 1857 PtrByteSize); 1858 1859 // FIXME the codegen can be much improved in some cases. 1860 // We do not have to keep everything in memory. 1861 if (Flags.isByVal()) { 1862 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1863 ObjSize = Flags.getByValSize(); 1864 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1865 // Objects of size 1 and 2 are right justified, everything else is 1866 // left justified. This means the memory address is adjusted forwards. 1867 if (ObjSize==1 || ObjSize==2) { 1868 CurArgOffset = CurArgOffset + (4 - ObjSize); 1869 } 1870 // The value of the object is its address. 1871 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1872 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1873 InVals.push_back(FIN); 1874 if (ObjSize==1 || ObjSize==2) { 1875 if (GPR_idx != Num_GPR_Regs) { 1876 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1877 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1878 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 1879 MachinePointerInfo(), 1880 ObjSize==1 ? MVT::i8 : MVT::i16, 1881 false, false, 0); 1882 MemOps.push_back(Store); 1883 ++GPR_idx; 1884 } 1885 1886 ArgOffset += PtrByteSize; 1887 1888 continue; 1889 } 1890 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 1891 // Store whatever pieces of the object are in registers 1892 // to memory. ArgVal will be address of the beginning of 1893 // the object. 1894 if (GPR_idx != Num_GPR_Regs) { 1895 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1896 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 1897 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1898 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1899 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1900 MachinePointerInfo(), 1901 false, false, 0); 1902 MemOps.push_back(Store); 1903 ++GPR_idx; 1904 ArgOffset += PtrByteSize; 1905 } else { 1906 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 1907 break; 1908 } 1909 } 1910 continue; 1911 } 1912 1913 switch (ObjectVT.getSimpleVT().SimpleTy) { 1914 default: llvm_unreachable("Unhandled argument type!"); 1915 case MVT::i32: 1916 if (!isPPC64) { 1917 if (GPR_idx != Num_GPR_Regs) { 1918 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1919 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1920 ++GPR_idx; 1921 } else { 1922 needsLoad = true; 1923 ArgSize = PtrByteSize; 1924 } 1925 // All int arguments reserve stack space in the Darwin ABI. 1926 ArgOffset += PtrByteSize; 1927 break; 1928 } 1929 // FALLTHROUGH 1930 case MVT::i64: // PPC64 1931 if (GPR_idx != Num_GPR_Regs) { 1932 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 1933 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 1934 1935 if (ObjectVT == MVT::i32) { 1936 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 1937 // value to MVT::i64 and then truncate to the correct register size. 1938 if (Flags.isSExt()) 1939 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 1940 DAG.getValueType(ObjectVT)); 1941 else if (Flags.isZExt()) 1942 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 1943 DAG.getValueType(ObjectVT)); 1944 1945 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 1946 } 1947 1948 ++GPR_idx; 1949 } else { 1950 needsLoad = true; 1951 ArgSize = PtrByteSize; 1952 } 1953 // All int arguments reserve stack space in the Darwin ABI. 1954 ArgOffset += 8; 1955 break; 1956 1957 case MVT::f32: 1958 case MVT::f64: 1959 // Every 4 bytes of argument space consumes one of the GPRs available for 1960 // argument passing. 1961 if (GPR_idx != Num_GPR_Regs) { 1962 ++GPR_idx; 1963 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 1964 ++GPR_idx; 1965 } 1966 if (FPR_idx != Num_FPR_Regs) { 1967 unsigned VReg; 1968 1969 if (ObjectVT == MVT::f32) 1970 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 1971 else 1972 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 1973 1974 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 1975 ++FPR_idx; 1976 } else { 1977 needsLoad = true; 1978 } 1979 1980 // All FP arguments reserve stack space in the Darwin ABI. 1981 ArgOffset += isPPC64 ? 8 : ObjSize; 1982 break; 1983 case MVT::v4f32: 1984 case MVT::v4i32: 1985 case MVT::v8i16: 1986 case MVT::v16i8: 1987 // Note that vector arguments in registers don't reserve stack space, 1988 // except in varargs functions. 1989 if (VR_idx != Num_VR_Regs) { 1990 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 1991 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 1992 if (isVarArg) { 1993 while ((ArgOffset % 16) != 0) { 1994 ArgOffset += PtrByteSize; 1995 if (GPR_idx != Num_GPR_Regs) 1996 GPR_idx++; 1997 } 1998 ArgOffset += 16; 1999 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2000 } 2001 ++VR_idx; 2002 } else { 2003 if (!isVarArg && !isPPC64) { 2004 // Vectors go after all the nonvectors. 2005 CurArgOffset = VecArgOffset; 2006 VecArgOffset += 16; 2007 } else { 2008 // Vectors are aligned. 2009 ArgOffset = ((ArgOffset+15)/16)*16; 2010 CurArgOffset = ArgOffset; 2011 ArgOffset += 16; 2012 } 2013 needsLoad = true; 2014 } 2015 break; 2016 } 2017 2018 // We need to load the argument to a virtual register if we determined above 2019 // that we ran out of physical registers of the appropriate type. 2020 if (needsLoad) { 2021 int FI = MFI->CreateFixedObject(ObjSize, 2022 CurArgOffset + (ArgSize - ObjSize), 2023 isImmutable); 2024 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2025 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2026 false, false, 0); 2027 } 2028 2029 InVals.push_back(ArgVal); 2030 } 2031 2032 // Set the size that is at least reserved in caller of this function. Tail 2033 // call optimized function's reserved stack space needs to be aligned so that 2034 // taking the difference between two stack areas will result in an aligned 2035 // stack. 2036 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2037 // Add the Altivec parameters at the end, if needed. 2038 if (nAltivecParamsAtEnd) { 2039 MinReservedArea = ((MinReservedArea+15)/16)*16; 2040 MinReservedArea += 16*nAltivecParamsAtEnd; 2041 } 2042 MinReservedArea = 2043 std::max(MinReservedArea, 2044 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2045 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2046 getStackAlignment(); 2047 unsigned AlignMask = TargetAlign-1; 2048 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2049 FI->setMinReservedArea(MinReservedArea); 2050 2051 // If the function takes variable number of arguments, make a frame index for 2052 // the start of the first vararg value... for expansion of llvm.va_start. 2053 if (isVarArg) { 2054 int Depth = ArgOffset; 2055 2056 FuncInfo->setVarArgsFrameIndex( 2057 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2058 Depth, true)); 2059 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2060 2061 // If this function is vararg, store any remaining integer argument regs 2062 // to their spots on the stack so that they may be loaded by deferencing the 2063 // result of va_next. 2064 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2065 unsigned VReg; 2066 2067 if (isPPC64) 2068 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2069 else 2070 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2071 2072 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2073 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2074 MachinePointerInfo(), false, false, 0); 2075 MemOps.push_back(Store); 2076 // Increment the address by four for the next argument to store 2077 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2078 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2079 } 2080 } 2081 2082 if (!MemOps.empty()) 2083 Chain = DAG.getNode(ISD::TokenFactor, dl, 2084 MVT::Other, &MemOps[0], MemOps.size()); 2085 2086 return Chain; 2087} 2088 2089/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2090/// linkage area for the Darwin ABI. 2091static unsigned 2092CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2093 bool isPPC64, 2094 bool isVarArg, 2095 unsigned CC, 2096 const SmallVectorImpl<ISD::OutputArg> 2097 &Outs, 2098 const SmallVectorImpl<SDValue> &OutVals, 2099 unsigned &nAltivecParamsAtEnd) { 2100 // Count how many bytes are to be pushed on the stack, including the linkage 2101 // area, and parameter passing area. We start with 24/48 bytes, which is 2102 // prereserved space for [SP][CR][LR][3 x unused]. 2103 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2104 unsigned NumOps = Outs.size(); 2105 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2106 2107 // Add up all the space actually used. 2108 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2109 // they all go in registers, but we must reserve stack space for them for 2110 // possible use by the caller. In varargs or 64-bit calls, parameters are 2111 // assigned stack space in order, with padding so Altivec parameters are 2112 // 16-byte aligned. 2113 nAltivecParamsAtEnd = 0; 2114 for (unsigned i = 0; i != NumOps; ++i) { 2115 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2116 EVT ArgVT = Outs[i].VT; 2117 // Varargs Altivec parameters are padded to a 16 byte boundary. 2118 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2119 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2120 if (!isVarArg && !isPPC64) { 2121 // Non-varargs Altivec parameters go after all the non-Altivec 2122 // parameters; handle those later so we know how much padding we need. 2123 nAltivecParamsAtEnd++; 2124 continue; 2125 } 2126 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2127 NumBytes = ((NumBytes+15)/16)*16; 2128 } 2129 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2130 } 2131 2132 // Allow for Altivec parameters at the end, if needed. 2133 if (nAltivecParamsAtEnd) { 2134 NumBytes = ((NumBytes+15)/16)*16; 2135 NumBytes += 16*nAltivecParamsAtEnd; 2136 } 2137 2138 // The prolog code of the callee may store up to 8 GPR argument registers to 2139 // the stack, allowing va_start to index over them in memory if its varargs. 2140 // Because we cannot tell if this is needed on the caller side, we have to 2141 // conservatively assume that it is needed. As such, make sure we have at 2142 // least enough stack space for the caller to store the 8 GPRs. 2143 NumBytes = std::max(NumBytes, 2144 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2145 2146 // Tail call needs the stack to be aligned. 2147 if (CC==CallingConv::Fast && GuaranteedTailCallOpt) { 2148 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2149 getStackAlignment(); 2150 unsigned AlignMask = TargetAlign-1; 2151 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2152 } 2153 2154 return NumBytes; 2155} 2156 2157/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2158/// adjusted to accommodate the arguments for the tailcall. 2159static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2160 unsigned ParamSize) { 2161 2162 if (!isTailCall) return 0; 2163 2164 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2165 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2166 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2167 // Remember only if the new adjustement is bigger. 2168 if (SPDiff < FI->getTailCallSPDelta()) 2169 FI->setTailCallSPDelta(SPDiff); 2170 2171 return SPDiff; 2172} 2173 2174/// IsEligibleForTailCallOptimization - Check whether the call is eligible 2175/// for tail call optimization. Targets which want to do tail call 2176/// optimization should implement this function. 2177bool 2178PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2179 CallingConv::ID CalleeCC, 2180 bool isVarArg, 2181 const SmallVectorImpl<ISD::InputArg> &Ins, 2182 SelectionDAG& DAG) const { 2183 if (!GuaranteedTailCallOpt) 2184 return false; 2185 2186 // Variable argument functions are not supported. 2187 if (isVarArg) 2188 return false; 2189 2190 MachineFunction &MF = DAG.getMachineFunction(); 2191 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2192 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2193 // Functions containing by val parameters are not supported. 2194 for (unsigned i = 0; i != Ins.size(); i++) { 2195 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2196 if (Flags.isByVal()) return false; 2197 } 2198 2199 // Non PIC/GOT tail calls are supported. 2200 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2201 return true; 2202 2203 // At the moment we can only do local tail calls (in same module, hidden 2204 // or protected) if we are generating PIC. 2205 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2206 return G->getGlobal()->hasHiddenVisibility() 2207 || G->getGlobal()->hasProtectedVisibility(); 2208 } 2209 2210 return false; 2211} 2212 2213/// isCallCompatibleAddress - Return the immediate to use if the specified 2214/// 32-bit value is representable in the immediate field of a BxA instruction. 2215static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2216 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2217 if (!C) return 0; 2218 2219 int Addr = C->getZExtValue(); 2220 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2221 (Addr << 6 >> 6) != Addr) 2222 return 0; // Top 6 bits have to be sext of immediate. 2223 2224 return DAG.getConstant((int)C->getZExtValue() >> 2, 2225 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2226} 2227 2228namespace { 2229 2230struct TailCallArgumentInfo { 2231 SDValue Arg; 2232 SDValue FrameIdxOp; 2233 int FrameIdx; 2234 2235 TailCallArgumentInfo() : FrameIdx(0) {} 2236}; 2237 2238} 2239 2240/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2241static void 2242StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2243 SDValue Chain, 2244 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2245 SmallVector<SDValue, 8> &MemOpChains, 2246 DebugLoc dl) { 2247 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2248 SDValue Arg = TailCallArgs[i].Arg; 2249 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2250 int FI = TailCallArgs[i].FrameIdx; 2251 // Store relative to framepointer. 2252 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2253 MachinePointerInfo::getFixedStack(FI), 2254 false, false, 0)); 2255 } 2256} 2257 2258/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2259/// the appropriate stack slot for the tail call optimized function call. 2260static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2261 MachineFunction &MF, 2262 SDValue Chain, 2263 SDValue OldRetAddr, 2264 SDValue OldFP, 2265 int SPDiff, 2266 bool isPPC64, 2267 bool isDarwinABI, 2268 DebugLoc dl) { 2269 if (SPDiff) { 2270 // Calculate the new stack slot for the return address. 2271 int SlotSize = isPPC64 ? 8 : 4; 2272 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2273 isDarwinABI); 2274 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2275 NewRetAddrLoc, true); 2276 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2277 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2278 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2279 MachinePointerInfo::getFixedStack(NewRetAddr), 2280 false, false, 0); 2281 2282 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2283 // slot as the FP is never overwritten. 2284 if (isDarwinABI) { 2285 int NewFPLoc = 2286 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2287 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2288 true); 2289 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2290 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2291 MachinePointerInfo::getFixedStack(NewFPIdx), 2292 false, false, 0); 2293 } 2294 } 2295 return Chain; 2296} 2297 2298/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2299/// the position of the argument. 2300static void 2301CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2302 SDValue Arg, int SPDiff, unsigned ArgOffset, 2303 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2304 int Offset = ArgOffset + SPDiff; 2305 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2306 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2307 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2308 SDValue FIN = DAG.getFrameIndex(FI, VT); 2309 TailCallArgumentInfo Info; 2310 Info.Arg = Arg; 2311 Info.FrameIdxOp = FIN; 2312 Info.FrameIdx = FI; 2313 TailCallArguments.push_back(Info); 2314} 2315 2316/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2317/// stack slot. Returns the chain as result and the loaded frame pointers in 2318/// LROpOut/FPOpout. Used when tail calling. 2319SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2320 int SPDiff, 2321 SDValue Chain, 2322 SDValue &LROpOut, 2323 SDValue &FPOpOut, 2324 bool isDarwinABI, 2325 DebugLoc dl) const { 2326 if (SPDiff) { 2327 // Load the LR and FP stack slot for later adjusting. 2328 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2329 LROpOut = getReturnAddrFrameIndex(DAG); 2330 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2331 false, false, 0); 2332 Chain = SDValue(LROpOut.getNode(), 1); 2333 2334 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2335 // slot as the FP is never overwritten. 2336 if (isDarwinABI) { 2337 FPOpOut = getFramePointerFrameIndex(DAG); 2338 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2339 false, false, 0); 2340 Chain = SDValue(FPOpOut.getNode(), 1); 2341 } 2342 } 2343 return Chain; 2344} 2345 2346/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2347/// by "Src" to address "Dst" of size "Size". Alignment information is 2348/// specified by the specific parameter attribute. The copy will be passed as 2349/// a byval function parameter. 2350/// Sometimes what we are copying is the end of a larger object, the part that 2351/// does not fit in registers. 2352static SDValue 2353CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2354 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2355 DebugLoc dl) { 2356 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2357 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2358 false, false, MachinePointerInfo(0), 2359 MachinePointerInfo(0)); 2360} 2361 2362/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2363/// tail calls. 2364static void 2365LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2366 SDValue Arg, SDValue PtrOff, int SPDiff, 2367 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2368 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2369 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2370 DebugLoc dl) { 2371 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2372 if (!isTailCall) { 2373 if (isVector) { 2374 SDValue StackPtr; 2375 if (isPPC64) 2376 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2377 else 2378 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2379 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2380 DAG.getConstant(ArgOffset, PtrVT)); 2381 } 2382 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2383 MachinePointerInfo(), false, false, 0)); 2384 // Calculate and remember argument location. 2385 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2386 TailCallArguments); 2387} 2388 2389static 2390void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2391 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2392 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2393 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2394 MachineFunction &MF = DAG.getMachineFunction(); 2395 2396 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2397 // might overwrite each other in case of tail call optimization. 2398 SmallVector<SDValue, 8> MemOpChains2; 2399 // Do not flag preceding copytoreg stuff together with the following stuff. 2400 InFlag = SDValue(); 2401 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2402 MemOpChains2, dl); 2403 if (!MemOpChains2.empty()) 2404 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2405 &MemOpChains2[0], MemOpChains2.size()); 2406 2407 // Store the return address to the appropriate stack slot. 2408 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2409 isPPC64, isDarwinABI, dl); 2410 2411 // Emit callseq_end just before tailcall node. 2412 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2413 DAG.getIntPtrConstant(0, true), InFlag); 2414 InFlag = Chain.getValue(1); 2415} 2416 2417static 2418unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2419 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2420 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2421 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2422 const PPCSubtarget &PPCSubTarget) { 2423 2424 bool isPPC64 = PPCSubTarget.isPPC64(); 2425 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2426 2427 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2428 NodeTys.push_back(MVT::Other); // Returns a chain 2429 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2430 2431 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2432 2433 bool needIndirectCall = true; 2434 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2435 // If this is an absolute destination address, use the munged value. 2436 Callee = SDValue(Dest, 0); 2437 needIndirectCall = false; 2438 } 2439 2440 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2441 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2442 // Use indirect calls for ALL functions calls in JIT mode, since the 2443 // far-call stubs may be outside relocation limits for a BL instruction. 2444 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2445 unsigned OpFlags = 0; 2446 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2447 (!PPCSubTarget.getTargetTriple().isMacOSX() || 2448 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2449 (G->getGlobal()->isDeclaration() || 2450 G->getGlobal()->isWeakForLinker())) { 2451 // PC-relative references to external symbols should go through $stub, 2452 // unless we're building with the leopard linker or later, which 2453 // automatically synthesizes these stubs. 2454 OpFlags = PPCII::MO_DARWIN_STUB; 2455 } 2456 2457 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2458 // every direct call is) turn it into a TargetGlobalAddress / 2459 // TargetExternalSymbol node so that legalize doesn't hack it. 2460 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2461 Callee.getValueType(), 2462 0, OpFlags); 2463 needIndirectCall = false; 2464 } 2465 } 2466 2467 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2468 unsigned char OpFlags = 0; 2469 2470 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2471 (!PPCSubTarget.getTargetTriple().isMacOSX() || 2472 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2473 // PC-relative references to external symbols should go through $stub, 2474 // unless we're building with the leopard linker or later, which 2475 // automatically synthesizes these stubs. 2476 OpFlags = PPCII::MO_DARWIN_STUB; 2477 } 2478 2479 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2480 OpFlags); 2481 needIndirectCall = false; 2482 } 2483 2484 if (needIndirectCall) { 2485 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2486 // to do the call, we can't use PPCISD::CALL. 2487 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2488 2489 if (isSVR4ABI && isPPC64) { 2490 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2491 // entry point, but to the function descriptor (the function entry point 2492 // address is part of the function descriptor though). 2493 // The function descriptor is a three doubleword structure with the 2494 // following fields: function entry point, TOC base address and 2495 // environment pointer. 2496 // Thus for a call through a function pointer, the following actions need 2497 // to be performed: 2498 // 1. Save the TOC of the caller in the TOC save area of its stack 2499 // frame (this is done in LowerCall_Darwin()). 2500 // 2. Load the address of the function entry point from the function 2501 // descriptor. 2502 // 3. Load the TOC of the callee from the function descriptor into r2. 2503 // 4. Load the environment pointer from the function descriptor into 2504 // r11. 2505 // 5. Branch to the function entry point address. 2506 // 6. On return of the callee, the TOC of the caller needs to be 2507 // restored (this is done in FinishCall()). 2508 // 2509 // All those operations are flagged together to ensure that no other 2510 // operations can be scheduled in between. E.g. without flagging the 2511 // operations together, a TOC access in the caller could be scheduled 2512 // between the load of the callee TOC and the branch to the callee, which 2513 // results in the TOC access going through the TOC of the callee instead 2514 // of going through the TOC of the caller, which leads to incorrect code. 2515 2516 // Load the address of the function entry point from the function 2517 // descriptor. 2518 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2519 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2520 InFlag.getNode() ? 3 : 2); 2521 Chain = LoadFuncPtr.getValue(1); 2522 InFlag = LoadFuncPtr.getValue(2); 2523 2524 // Load environment pointer into r11. 2525 // Offset of the environment pointer within the function descriptor. 2526 SDValue PtrOff = DAG.getIntPtrConstant(16); 2527 2528 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2529 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2530 InFlag); 2531 Chain = LoadEnvPtr.getValue(1); 2532 InFlag = LoadEnvPtr.getValue(2); 2533 2534 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2535 InFlag); 2536 Chain = EnvVal.getValue(0); 2537 InFlag = EnvVal.getValue(1); 2538 2539 // Load TOC of the callee into r2. We are using a target-specific load 2540 // with r2 hard coded, because the result of a target-independent load 2541 // would never go directly into r2, since r2 is a reserved register (which 2542 // prevents the register allocator from allocating it), resulting in an 2543 // additional register being allocated and an unnecessary move instruction 2544 // being generated. 2545 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2546 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2547 Callee, InFlag); 2548 Chain = LoadTOCPtr.getValue(0); 2549 InFlag = LoadTOCPtr.getValue(1); 2550 2551 MTCTROps[0] = Chain; 2552 MTCTROps[1] = LoadFuncPtr; 2553 MTCTROps[2] = InFlag; 2554 } 2555 2556 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2557 2 + (InFlag.getNode() != 0)); 2558 InFlag = Chain.getValue(1); 2559 2560 NodeTys.clear(); 2561 NodeTys.push_back(MVT::Other); 2562 NodeTys.push_back(MVT::Glue); 2563 Ops.push_back(Chain); 2564 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2565 Callee.setNode(0); 2566 // Add CTR register as callee so a bctr can be emitted later. 2567 if (isTailCall) 2568 Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT)); 2569 } 2570 2571 // If this is a direct call, pass the chain and the callee. 2572 if (Callee.getNode()) { 2573 Ops.push_back(Chain); 2574 Ops.push_back(Callee); 2575 } 2576 // If this is a tail call add stack pointer delta. 2577 if (isTailCall) 2578 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2579 2580 // Add argument registers to the end of the list so that they are known live 2581 // into the call. 2582 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2583 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2584 RegsToPass[i].second.getValueType())); 2585 2586 return CallOpc; 2587} 2588 2589SDValue 2590PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2591 CallingConv::ID CallConv, bool isVarArg, 2592 const SmallVectorImpl<ISD::InputArg> &Ins, 2593 DebugLoc dl, SelectionDAG &DAG, 2594 SmallVectorImpl<SDValue> &InVals) const { 2595 2596 SmallVector<CCValAssign, 16> RVLocs; 2597 CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(), 2598 RVLocs, *DAG.getContext()); 2599 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2600 2601 // Copy all of the result registers out of their specified physreg. 2602 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2603 CCValAssign &VA = RVLocs[i]; 2604 EVT VT = VA.getValVT(); 2605 assert(VA.isRegLoc() && "Can only return in registers!"); 2606 Chain = DAG.getCopyFromReg(Chain, dl, 2607 VA.getLocReg(), VT, InFlag).getValue(1); 2608 InVals.push_back(Chain.getValue(0)); 2609 InFlag = Chain.getValue(2); 2610 } 2611 2612 return Chain; 2613} 2614 2615SDValue 2616PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2617 bool isTailCall, bool isVarArg, 2618 SelectionDAG &DAG, 2619 SmallVector<std::pair<unsigned, SDValue>, 8> 2620 &RegsToPass, 2621 SDValue InFlag, SDValue Chain, 2622 SDValue &Callee, 2623 int SPDiff, unsigned NumBytes, 2624 const SmallVectorImpl<ISD::InputArg> &Ins, 2625 SmallVectorImpl<SDValue> &InVals) const { 2626 std::vector<EVT> NodeTys; 2627 SmallVector<SDValue, 8> Ops; 2628 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2629 isTailCall, RegsToPass, Ops, NodeTys, 2630 PPCSubTarget); 2631 2632 // When performing tail call optimization the callee pops its arguments off 2633 // the stack. Account for this here so these bytes can be pushed back on in 2634 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2635 int BytesCalleePops = 2636 (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0; 2637 2638 if (InFlag.getNode()) 2639 Ops.push_back(InFlag); 2640 2641 // Emit tail call. 2642 if (isTailCall) { 2643 // If this is the first return lowered for this function, add the regs 2644 // to the liveout set for the function. 2645 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2646 SmallVector<CCValAssign, 16> RVLocs; 2647 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, 2648 *DAG.getContext()); 2649 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2650 for (unsigned i = 0; i != RVLocs.size(); ++i) 2651 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2652 } 2653 2654 assert(((Callee.getOpcode() == ISD::Register && 2655 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2656 Callee.getOpcode() == ISD::TargetExternalSymbol || 2657 Callee.getOpcode() == ISD::TargetGlobalAddress || 2658 isa<ConstantSDNode>(Callee)) && 2659 "Expecting an global address, external symbol, absolute value or register"); 2660 2661 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2662 } 2663 2664 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2665 InFlag = Chain.getValue(1); 2666 2667 // Add a NOP immediately after the branch instruction when using the 64-bit 2668 // SVR4 ABI. At link time, if caller and callee are in a different module and 2669 // thus have a different TOC, the call will be replaced with a call to a stub 2670 // function which saves the current TOC, loads the TOC of the callee and 2671 // branches to the callee. The NOP will be replaced with a load instruction 2672 // which restores the TOC of the caller from the TOC save slot of the current 2673 // stack frame. If caller and callee belong to the same module (and have the 2674 // same TOC), the NOP will remain unchanged. 2675 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2676 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2677 if (CallOpc == PPCISD::BCTRL_SVR4) { 2678 // This is a call through a function pointer. 2679 // Restore the caller TOC from the save area into R2. 2680 // See PrepareCall() for more information about calls through function 2681 // pointers in the 64-bit SVR4 ABI. 2682 // We are using a target-specific load with r2 hard coded, because the 2683 // result of a target-independent load would never go directly into r2, 2684 // since r2 is a reserved register (which prevents the register allocator 2685 // from allocating it), resulting in an additional register being 2686 // allocated and an unnecessary move instruction being generated. 2687 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2688 InFlag = Chain.getValue(1); 2689 } else { 2690 // Otherwise insert NOP. 2691 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2692 } 2693 } 2694 2695 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2696 DAG.getIntPtrConstant(BytesCalleePops, true), 2697 InFlag); 2698 if (!Ins.empty()) 2699 InFlag = Chain.getValue(1); 2700 2701 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2702 Ins, dl, DAG, InVals); 2703} 2704 2705SDValue 2706PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2707 CallingConv::ID CallConv, bool isVarArg, 2708 bool &isTailCall, 2709 const SmallVectorImpl<ISD::OutputArg> &Outs, 2710 const SmallVectorImpl<SDValue> &OutVals, 2711 const SmallVectorImpl<ISD::InputArg> &Ins, 2712 DebugLoc dl, SelectionDAG &DAG, 2713 SmallVectorImpl<SDValue> &InVals) const { 2714 if (isTailCall) 2715 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2716 Ins, DAG); 2717 2718 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2719 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2720 isTailCall, Outs, OutVals, Ins, 2721 dl, DAG, InVals); 2722 2723 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2724 isTailCall, Outs, OutVals, Ins, 2725 dl, DAG, InVals); 2726} 2727 2728SDValue 2729PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2730 CallingConv::ID CallConv, bool isVarArg, 2731 bool isTailCall, 2732 const SmallVectorImpl<ISD::OutputArg> &Outs, 2733 const SmallVectorImpl<SDValue> &OutVals, 2734 const SmallVectorImpl<ISD::InputArg> &Ins, 2735 DebugLoc dl, SelectionDAG &DAG, 2736 SmallVectorImpl<SDValue> &InVals) const { 2737 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2738 // of the 32-bit SVR4 ABI stack frame layout. 2739 2740 assert((CallConv == CallingConv::C || 2741 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2742 2743 unsigned PtrByteSize = 4; 2744 2745 MachineFunction &MF = DAG.getMachineFunction(); 2746 2747 // Mark this function as potentially containing a function that contains a 2748 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2749 // and restoring the callers stack pointer in this functions epilog. This is 2750 // done because by tail calling the called function might overwrite the value 2751 // in this function's (MF) stack pointer stack slot 0(SP). 2752 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2753 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2754 2755 // Count how many bytes are to be pushed on the stack, including the linkage 2756 // area, parameter list area and the part of the local variable space which 2757 // contains copies of aggregates which are passed by value. 2758 2759 // Assign locations to all of the outgoing arguments. 2760 SmallVector<CCValAssign, 16> ArgLocs; 2761 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 2762 ArgLocs, *DAG.getContext()); 2763 2764 // Reserve space for the linkage area on the stack. 2765 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2766 2767 if (isVarArg) { 2768 // Handle fixed and variable vector arguments differently. 2769 // Fixed vector arguments go into registers as long as registers are 2770 // available. Variable vector arguments always go into memory. 2771 unsigned NumArgs = Outs.size(); 2772 2773 for (unsigned i = 0; i != NumArgs; ++i) { 2774 MVT ArgVT = Outs[i].VT; 2775 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2776 bool Result; 2777 2778 if (Outs[i].IsFixed) { 2779 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2780 CCInfo); 2781 } else { 2782 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2783 ArgFlags, CCInfo); 2784 } 2785 2786 if (Result) { 2787#ifndef NDEBUG 2788 errs() << "Call operand #" << i << " has unhandled type " 2789 << EVT(ArgVT).getEVTString() << "\n"; 2790#endif 2791 llvm_unreachable(0); 2792 } 2793 } 2794 } else { 2795 // All arguments are treated the same. 2796 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2797 } 2798 2799 // Assign locations to all of the outgoing aggregate by value arguments. 2800 SmallVector<CCValAssign, 16> ByValArgLocs; 2801 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs, 2802 *DAG.getContext()); 2803 2804 // Reserve stack space for the allocations in CCInfo. 2805 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2806 2807 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2808 2809 // Size of the linkage area, parameter list area and the part of the local 2810 // space variable where copies of aggregates which are passed by value are 2811 // stored. 2812 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2813 2814 // Calculate by how many bytes the stack has to be adjusted in case of tail 2815 // call optimization. 2816 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2817 2818 // Adjust the stack pointer for the new arguments... 2819 // These operations are automatically eliminated by the prolog/epilog pass 2820 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2821 SDValue CallSeqStart = Chain; 2822 2823 // Load the return address and frame pointer so it can be moved somewhere else 2824 // later. 2825 SDValue LROp, FPOp; 2826 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2827 dl); 2828 2829 // Set up a copy of the stack pointer for use loading and storing any 2830 // arguments that may not fit in the registers available for argument 2831 // passing. 2832 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2833 2834 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2835 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2836 SmallVector<SDValue, 8> MemOpChains; 2837 2838 // Walk the register/memloc assignments, inserting copies/loads. 2839 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2840 i != e; 2841 ++i) { 2842 CCValAssign &VA = ArgLocs[i]; 2843 SDValue Arg = OutVals[i]; 2844 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2845 2846 if (Flags.isByVal()) { 2847 // Argument is an aggregate which is passed by value, thus we need to 2848 // create a copy of it in the local variable space of the current stack 2849 // frame (which is the stack frame of the caller) and pass the address of 2850 // this copy to the callee. 2851 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2852 CCValAssign &ByValVA = ByValArgLocs[j++]; 2853 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2854 2855 // Memory reserved in the local variable space of the callers stack frame. 2856 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2857 2858 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2859 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2860 2861 // Create a copy of the argument in the local area of the current 2862 // stack frame. 2863 SDValue MemcpyCall = 2864 CreateCopyOfByValArgument(Arg, PtrOff, 2865 CallSeqStart.getNode()->getOperand(0), 2866 Flags, DAG, dl); 2867 2868 // This must go outside the CALLSEQ_START..END. 2869 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2870 CallSeqStart.getNode()->getOperand(1)); 2871 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 2872 NewCallSeqStart.getNode()); 2873 Chain = CallSeqStart = NewCallSeqStart; 2874 2875 // Pass the address of the aggregate copy on the stack either in a 2876 // physical register or in the parameter list area of the current stack 2877 // frame to the callee. 2878 Arg = PtrOff; 2879 } 2880 2881 if (VA.isRegLoc()) { 2882 // Put argument in a physical register. 2883 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2884 } else { 2885 // Put argument in the parameter list area of the current stack frame. 2886 assert(VA.isMemLoc()); 2887 unsigned LocMemOffset = VA.getLocMemOffset(); 2888 2889 if (!isTailCall) { 2890 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2891 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2892 2893 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2894 MachinePointerInfo(), 2895 false, false, 0)); 2896 } else { 2897 // Calculate and remember argument location. 2898 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 2899 TailCallArguments); 2900 } 2901 } 2902 } 2903 2904 if (!MemOpChains.empty()) 2905 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2906 &MemOpChains[0], MemOpChains.size()); 2907 2908 // Build a sequence of copy-to-reg nodes chained together with token chain 2909 // and flag operands which copy the outgoing args into the appropriate regs. 2910 SDValue InFlag; 2911 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2912 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 2913 RegsToPass[i].second, InFlag); 2914 InFlag = Chain.getValue(1); 2915 } 2916 2917 // Set CR6 to true if this is a vararg call. 2918 if (isVarArg) { 2919 SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); 2920 Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag); 2921 InFlag = Chain.getValue(1); 2922 } 2923 2924 if (isTailCall) 2925 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 2926 false, TailCallArguments); 2927 2928 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 2929 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 2930 Ins, InVals); 2931} 2932 2933SDValue 2934PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 2935 CallingConv::ID CallConv, bool isVarArg, 2936 bool isTailCall, 2937 const SmallVectorImpl<ISD::OutputArg> &Outs, 2938 const SmallVectorImpl<SDValue> &OutVals, 2939 const SmallVectorImpl<ISD::InputArg> &Ins, 2940 DebugLoc dl, SelectionDAG &DAG, 2941 SmallVectorImpl<SDValue> &InVals) const { 2942 2943 unsigned NumOps = Outs.size(); 2944 2945 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2946 bool isPPC64 = PtrVT == MVT::i64; 2947 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2948 2949 MachineFunction &MF = DAG.getMachineFunction(); 2950 2951 // Mark this function as potentially containing a function that contains a 2952 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2953 // and restoring the callers stack pointer in this functions epilog. This is 2954 // done because by tail calling the called function might overwrite the value 2955 // in this function's (MF) stack pointer stack slot 0(SP). 2956 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2957 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2958 2959 unsigned nAltivecParamsAtEnd = 0; 2960 2961 // Count how many bytes are to be pushed on the stack, including the linkage 2962 // area, and parameter passing area. We start with 24/48 bytes, which is 2963 // prereserved space for [SP][CR][LR][3 x unused]. 2964 unsigned NumBytes = 2965 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 2966 Outs, OutVals, 2967 nAltivecParamsAtEnd); 2968 2969 // Calculate by how many bytes the stack has to be adjusted in case of tail 2970 // call optimization. 2971 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2972 2973 // To protect arguments on the stack from being clobbered in a tail call, 2974 // force all the loads to happen before doing any other lowering. 2975 if (isTailCall) 2976 Chain = DAG.getStackArgumentTokenFactor(Chain); 2977 2978 // Adjust the stack pointer for the new arguments... 2979 // These operations are automatically eliminated by the prolog/epilog pass 2980 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2981 SDValue CallSeqStart = Chain; 2982 2983 // Load the return address and frame pointer so it can be move somewhere else 2984 // later. 2985 SDValue LROp, FPOp; 2986 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 2987 dl); 2988 2989 // Set up a copy of the stack pointer for use loading and storing any 2990 // arguments that may not fit in the registers available for argument 2991 // passing. 2992 SDValue StackPtr; 2993 if (isPPC64) 2994 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2995 else 2996 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2997 2998 // Figure out which arguments are going to go in registers, and which in 2999 // memory. Also, if this is a vararg function, floating point operations 3000 // must be stored to our stack, and loaded into integer regs as well, if 3001 // any integer regs are available for argument passing. 3002 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3003 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3004 3005 static const unsigned GPR_32[] = { // 32-bit registers. 3006 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3007 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3008 }; 3009 static const unsigned GPR_64[] = { // 64-bit registers. 3010 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3011 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3012 }; 3013 static const unsigned *FPR = GetFPR(); 3014 3015 static const unsigned VR[] = { 3016 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3017 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3018 }; 3019 const unsigned NumGPRs = array_lengthof(GPR_32); 3020 const unsigned NumFPRs = 13; 3021 const unsigned NumVRs = array_lengthof(VR); 3022 3023 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3024 3025 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3026 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3027 3028 SmallVector<SDValue, 8> MemOpChains; 3029 for (unsigned i = 0; i != NumOps; ++i) { 3030 SDValue Arg = OutVals[i]; 3031 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3032 3033 // PtrOff will be used to store the current argument to the stack if a 3034 // register cannot be found for it. 3035 SDValue PtrOff; 3036 3037 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3038 3039 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3040 3041 // On PPC64, promote integers to 64-bit values. 3042 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3043 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3044 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3045 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3046 } 3047 3048 // FIXME memcpy is used way more than necessary. Correctness first. 3049 if (Flags.isByVal()) { 3050 unsigned Size = Flags.getByValSize(); 3051 if (Size==1 || Size==2) { 3052 // Very small objects are passed right-justified. 3053 // Everything else is passed left-justified. 3054 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3055 if (GPR_idx != NumGPRs) { 3056 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3057 MachinePointerInfo(), VT, 3058 false, false, 0); 3059 MemOpChains.push_back(Load.getValue(1)); 3060 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3061 3062 ArgOffset += PtrByteSize; 3063 } else { 3064 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3065 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3066 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3067 CallSeqStart.getNode()->getOperand(0), 3068 Flags, DAG, dl); 3069 // This must go outside the CALLSEQ_START..END. 3070 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3071 CallSeqStart.getNode()->getOperand(1)); 3072 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3073 NewCallSeqStart.getNode()); 3074 Chain = CallSeqStart = NewCallSeqStart; 3075 ArgOffset += PtrByteSize; 3076 } 3077 continue; 3078 } 3079 // Copy entire object into memory. There are cases where gcc-generated 3080 // code assumes it is there, even if it could be put entirely into 3081 // registers. (This is not what the doc says.) 3082 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3083 CallSeqStart.getNode()->getOperand(0), 3084 Flags, DAG, dl); 3085 // This must go outside the CALLSEQ_START..END. 3086 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3087 CallSeqStart.getNode()->getOperand(1)); 3088 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3089 Chain = CallSeqStart = NewCallSeqStart; 3090 // And copy the pieces of it that fit into registers. 3091 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3092 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3093 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3094 if (GPR_idx != NumGPRs) { 3095 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3096 MachinePointerInfo(), 3097 false, false, 0); 3098 MemOpChains.push_back(Load.getValue(1)); 3099 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3100 ArgOffset += PtrByteSize; 3101 } else { 3102 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3103 break; 3104 } 3105 } 3106 continue; 3107 } 3108 3109 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3110 default: llvm_unreachable("Unexpected ValueType for argument!"); 3111 case MVT::i32: 3112 case MVT::i64: 3113 if (GPR_idx != NumGPRs) { 3114 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3115 } else { 3116 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3117 isPPC64, isTailCall, false, MemOpChains, 3118 TailCallArguments, dl); 3119 } 3120 ArgOffset += PtrByteSize; 3121 break; 3122 case MVT::f32: 3123 case MVT::f64: 3124 if (FPR_idx != NumFPRs) { 3125 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3126 3127 if (isVarArg) { 3128 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3129 MachinePointerInfo(), false, false, 0); 3130 MemOpChains.push_back(Store); 3131 3132 // Float varargs are always shadowed in available integer registers 3133 if (GPR_idx != NumGPRs) { 3134 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3135 MachinePointerInfo(), false, false, 0); 3136 MemOpChains.push_back(Load.getValue(1)); 3137 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3138 } 3139 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3140 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3141 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3142 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3143 MachinePointerInfo(), 3144 false, false, 0); 3145 MemOpChains.push_back(Load.getValue(1)); 3146 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3147 } 3148 } else { 3149 // If we have any FPRs remaining, we may also have GPRs remaining. 3150 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3151 // GPRs. 3152 if (GPR_idx != NumGPRs) 3153 ++GPR_idx; 3154 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3155 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3156 ++GPR_idx; 3157 } 3158 } else { 3159 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3160 isPPC64, isTailCall, false, MemOpChains, 3161 TailCallArguments, dl); 3162 } 3163 if (isPPC64) 3164 ArgOffset += 8; 3165 else 3166 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3167 break; 3168 case MVT::v4f32: 3169 case MVT::v4i32: 3170 case MVT::v8i16: 3171 case MVT::v16i8: 3172 if (isVarArg) { 3173 // These go aligned on the stack, or in the corresponding R registers 3174 // when within range. The Darwin PPC ABI doc claims they also go in 3175 // V registers; in fact gcc does this only for arguments that are 3176 // prototyped, not for those that match the ... We do it for all 3177 // arguments, seems to work. 3178 while (ArgOffset % 16 !=0) { 3179 ArgOffset += PtrByteSize; 3180 if (GPR_idx != NumGPRs) 3181 GPR_idx++; 3182 } 3183 // We could elide this store in the case where the object fits 3184 // entirely in R registers. Maybe later. 3185 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3186 DAG.getConstant(ArgOffset, PtrVT)); 3187 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3188 MachinePointerInfo(), false, false, 0); 3189 MemOpChains.push_back(Store); 3190 if (VR_idx != NumVRs) { 3191 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3192 MachinePointerInfo(), 3193 false, false, 0); 3194 MemOpChains.push_back(Load.getValue(1)); 3195 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3196 } 3197 ArgOffset += 16; 3198 for (unsigned i=0; i<16; i+=PtrByteSize) { 3199 if (GPR_idx == NumGPRs) 3200 break; 3201 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3202 DAG.getConstant(i, PtrVT)); 3203 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3204 false, false, 0); 3205 MemOpChains.push_back(Load.getValue(1)); 3206 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3207 } 3208 break; 3209 } 3210 3211 // Non-varargs Altivec params generally go in registers, but have 3212 // stack space allocated at the end. 3213 if (VR_idx != NumVRs) { 3214 // Doesn't have GPR space allocated. 3215 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3216 } else if (nAltivecParamsAtEnd==0) { 3217 // We are emitting Altivec params in order. 3218 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3219 isPPC64, isTailCall, true, MemOpChains, 3220 TailCallArguments, dl); 3221 ArgOffset += 16; 3222 } 3223 break; 3224 } 3225 } 3226 // If all Altivec parameters fit in registers, as they usually do, 3227 // they get stack space following the non-Altivec parameters. We 3228 // don't track this here because nobody below needs it. 3229 // If there are more Altivec parameters than fit in registers emit 3230 // the stores here. 3231 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3232 unsigned j = 0; 3233 // Offset is aligned; skip 1st 12 params which go in V registers. 3234 ArgOffset = ((ArgOffset+15)/16)*16; 3235 ArgOffset += 12*16; 3236 for (unsigned i = 0; i != NumOps; ++i) { 3237 SDValue Arg = OutVals[i]; 3238 EVT ArgType = Outs[i].VT; 3239 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3240 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3241 if (++j > NumVRs) { 3242 SDValue PtrOff; 3243 // We are emitting Altivec params in order. 3244 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3245 isPPC64, isTailCall, true, MemOpChains, 3246 TailCallArguments, dl); 3247 ArgOffset += 16; 3248 } 3249 } 3250 } 3251 } 3252 3253 if (!MemOpChains.empty()) 3254 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3255 &MemOpChains[0], MemOpChains.size()); 3256 3257 // Check if this is an indirect call (MTCTR/BCTRL). 3258 // See PrepareCall() for more information about calls through function 3259 // pointers in the 64-bit SVR4 ABI. 3260 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3261 !dyn_cast<GlobalAddressSDNode>(Callee) && 3262 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3263 !isBLACompatibleAddress(Callee, DAG)) { 3264 // Load r2 into a virtual register and store it to the TOC save area. 3265 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3266 // TOC save area offset. 3267 SDValue PtrOff = DAG.getIntPtrConstant(40); 3268 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3269 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3270 false, false, 0); 3271 } 3272 3273 // On Darwin, R12 must contain the address of an indirect callee. This does 3274 // not mean the MTCTR instruction must use R12; it's easier to model this as 3275 // an extra parameter, so do that. 3276 if (!isTailCall && 3277 !dyn_cast<GlobalAddressSDNode>(Callee) && 3278 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3279 !isBLACompatibleAddress(Callee, DAG)) 3280 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3281 PPC::R12), Callee)); 3282 3283 // Build a sequence of copy-to-reg nodes chained together with token chain 3284 // and flag operands which copy the outgoing args into the appropriate regs. 3285 SDValue InFlag; 3286 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3287 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3288 RegsToPass[i].second, InFlag); 3289 InFlag = Chain.getValue(1); 3290 } 3291 3292 if (isTailCall) 3293 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3294 FPOp, true, TailCallArguments); 3295 3296 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3297 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3298 Ins, InVals); 3299} 3300 3301SDValue 3302PPCTargetLowering::LowerReturn(SDValue Chain, 3303 CallingConv::ID CallConv, bool isVarArg, 3304 const SmallVectorImpl<ISD::OutputArg> &Outs, 3305 const SmallVectorImpl<SDValue> &OutVals, 3306 DebugLoc dl, SelectionDAG &DAG) const { 3307 3308 SmallVector<CCValAssign, 16> RVLocs; 3309 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 3310 RVLocs, *DAG.getContext()); 3311 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3312 3313 // If this is the first return lowered for this function, add the regs to the 3314 // liveout set for the function. 3315 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3316 for (unsigned i = 0; i != RVLocs.size(); ++i) 3317 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3318 } 3319 3320 SDValue Flag; 3321 3322 // Copy the result values into the output registers. 3323 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3324 CCValAssign &VA = RVLocs[i]; 3325 assert(VA.isRegLoc() && "Can only return in registers!"); 3326 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3327 OutVals[i], Flag); 3328 Flag = Chain.getValue(1); 3329 } 3330 3331 if (Flag.getNode()) 3332 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3333 else 3334 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3335} 3336 3337SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3338 const PPCSubtarget &Subtarget) const { 3339 // When we pop the dynamic allocation we need to restore the SP link. 3340 DebugLoc dl = Op.getDebugLoc(); 3341 3342 // Get the corect type for pointers. 3343 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3344 3345 // Construct the stack pointer operand. 3346 bool isPPC64 = Subtarget.isPPC64(); 3347 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3348 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3349 3350 // Get the operands for the STACKRESTORE. 3351 SDValue Chain = Op.getOperand(0); 3352 SDValue SaveSP = Op.getOperand(1); 3353 3354 // Load the old link SP. 3355 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3356 MachinePointerInfo(), 3357 false, false, 0); 3358 3359 // Restore the stack pointer. 3360 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3361 3362 // Store the old link SP. 3363 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3364 false, false, 0); 3365} 3366 3367 3368 3369SDValue 3370PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3371 MachineFunction &MF = DAG.getMachineFunction(); 3372 bool isPPC64 = PPCSubTarget.isPPC64(); 3373 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3374 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3375 3376 // Get current frame pointer save index. The users of this index will be 3377 // primarily DYNALLOC instructions. 3378 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3379 int RASI = FI->getReturnAddrSaveIndex(); 3380 3381 // If the frame pointer save index hasn't been defined yet. 3382 if (!RASI) { 3383 // Find out what the fix offset of the frame pointer save area. 3384 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3385 // Allocate the frame index for frame pointer save area. 3386 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3387 // Save the result. 3388 FI->setReturnAddrSaveIndex(RASI); 3389 } 3390 return DAG.getFrameIndex(RASI, PtrVT); 3391} 3392 3393SDValue 3394PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3395 MachineFunction &MF = DAG.getMachineFunction(); 3396 bool isPPC64 = PPCSubTarget.isPPC64(); 3397 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3398 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3399 3400 // Get current frame pointer save index. The users of this index will be 3401 // primarily DYNALLOC instructions. 3402 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3403 int FPSI = FI->getFramePointerSaveIndex(); 3404 3405 // If the frame pointer save index hasn't been defined yet. 3406 if (!FPSI) { 3407 // Find out what the fix offset of the frame pointer save area. 3408 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3409 isDarwinABI); 3410 3411 // Allocate the frame index for frame pointer save area. 3412 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3413 // Save the result. 3414 FI->setFramePointerSaveIndex(FPSI); 3415 } 3416 return DAG.getFrameIndex(FPSI, PtrVT); 3417} 3418 3419SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3420 SelectionDAG &DAG, 3421 const PPCSubtarget &Subtarget) const { 3422 // Get the inputs. 3423 SDValue Chain = Op.getOperand(0); 3424 SDValue Size = Op.getOperand(1); 3425 DebugLoc dl = Op.getDebugLoc(); 3426 3427 // Get the corect type for pointers. 3428 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3429 // Negate the size. 3430 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3431 DAG.getConstant(0, PtrVT), Size); 3432 // Construct a node for the frame pointer save index. 3433 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3434 // Build a DYNALLOC node. 3435 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3436 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3437 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3438} 3439 3440/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3441/// possible. 3442SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3443 // Not FP? Not a fsel. 3444 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3445 !Op.getOperand(2).getValueType().isFloatingPoint()) 3446 return Op; 3447 3448 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3449 3450 // Cannot handle SETEQ/SETNE. 3451 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3452 3453 EVT ResVT = Op.getValueType(); 3454 EVT CmpVT = Op.getOperand(0).getValueType(); 3455 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3456 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3457 DebugLoc dl = Op.getDebugLoc(); 3458 3459 // If the RHS of the comparison is a 0.0, we don't need to do the 3460 // subtraction at all. 3461 if (isFloatingPointZero(RHS)) 3462 switch (CC) { 3463 default: break; // SETUO etc aren't handled by fsel. 3464 case ISD::SETULT: 3465 case ISD::SETLT: 3466 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3467 case ISD::SETOGE: 3468 case ISD::SETGE: 3469 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3470 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3471 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3472 case ISD::SETUGT: 3473 case ISD::SETGT: 3474 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3475 case ISD::SETOLE: 3476 case ISD::SETLE: 3477 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3478 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3479 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3480 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3481 } 3482 3483 SDValue Cmp; 3484 switch (CC) { 3485 default: break; // SETUO etc aren't handled by fsel. 3486 case ISD::SETULT: 3487 case ISD::SETLT: 3488 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3489 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3490 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3491 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3492 case ISD::SETOGE: 3493 case ISD::SETGE: 3494 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3495 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3496 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3497 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3498 case ISD::SETUGT: 3499 case ISD::SETGT: 3500 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3501 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3502 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3503 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3504 case ISD::SETOLE: 3505 case ISD::SETLE: 3506 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3507 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3508 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3509 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3510 } 3511 return Op; 3512} 3513 3514// FIXME: Split this code up when LegalizeDAGTypes lands. 3515SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3516 DebugLoc dl) const { 3517 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3518 SDValue Src = Op.getOperand(0); 3519 if (Src.getValueType() == MVT::f32) 3520 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3521 3522 SDValue Tmp; 3523 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3524 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3525 case MVT::i32: 3526 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3527 PPCISD::FCTIDZ, 3528 dl, MVT::f64, Src); 3529 break; 3530 case MVT::i64: 3531 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3532 break; 3533 } 3534 3535 // Convert the FP value to an int value through memory. 3536 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3537 3538 // Emit a store to the stack slot. 3539 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3540 MachinePointerInfo(), false, false, 0); 3541 3542 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3543 // add in a bias. 3544 if (Op.getValueType() == MVT::i32) 3545 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3546 DAG.getConstant(4, FIPtr.getValueType())); 3547 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3548 false, false, 0); 3549} 3550 3551SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3552 SelectionDAG &DAG) const { 3553 DebugLoc dl = Op.getDebugLoc(); 3554 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3555 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3556 return SDValue(); 3557 3558 if (Op.getOperand(0).getValueType() == MVT::i64) { 3559 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3560 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3561 if (Op.getValueType() == MVT::f32) 3562 FP = DAG.getNode(ISD::FP_ROUND, dl, 3563 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3564 return FP; 3565 } 3566 3567 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3568 "Unhandled SINT_TO_FP type in custom expander!"); 3569 // Since we only generate this in 64-bit mode, we can take advantage of 3570 // 64-bit registers. In particular, sign extend the input value into the 3571 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3572 // then lfd it and fcfid it. 3573 MachineFunction &MF = DAG.getMachineFunction(); 3574 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3575 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3576 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3577 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3578 3579 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3580 Op.getOperand(0)); 3581 3582 // STD the extended value into the stack slot. 3583 MachineMemOperand *MMO = 3584 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3585 MachineMemOperand::MOStore, 8, 8); 3586 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3587 SDValue Store = 3588 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3589 Ops, 4, MVT::i64, MMO); 3590 // Load the value as a double. 3591 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3592 false, false, 0); 3593 3594 // FCFID it and return it. 3595 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3596 if (Op.getValueType() == MVT::f32) 3597 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3598 return FP; 3599} 3600 3601SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3602 SelectionDAG &DAG) const { 3603 DebugLoc dl = Op.getDebugLoc(); 3604 /* 3605 The rounding mode is in bits 30:31 of FPSR, and has the following 3606 settings: 3607 00 Round to nearest 3608 01 Round to 0 3609 10 Round to +inf 3610 11 Round to -inf 3611 3612 FLT_ROUNDS, on the other hand, expects the following: 3613 -1 Undefined 3614 0 Round to 0 3615 1 Round to nearest 3616 2 Round to +inf 3617 3 Round to -inf 3618 3619 To perform the conversion, we do: 3620 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3621 */ 3622 3623 MachineFunction &MF = DAG.getMachineFunction(); 3624 EVT VT = Op.getValueType(); 3625 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3626 std::vector<EVT> NodeTys; 3627 SDValue MFFSreg, InFlag; 3628 3629 // Save FP Control Word to register 3630 NodeTys.push_back(MVT::f64); // return register 3631 NodeTys.push_back(MVT::Glue); // unused in this context 3632 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3633 3634 // Save FP register to stack slot 3635 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3636 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3637 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3638 StackSlot, MachinePointerInfo(), false, false,0); 3639 3640 // Load FP Control Word from low 32 bits of stack slot. 3641 SDValue Four = DAG.getConstant(4, PtrVT); 3642 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3643 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3644 false, false, 0); 3645 3646 // Transform as necessary 3647 SDValue CWD1 = 3648 DAG.getNode(ISD::AND, dl, MVT::i32, 3649 CWD, DAG.getConstant(3, MVT::i32)); 3650 SDValue CWD2 = 3651 DAG.getNode(ISD::SRL, dl, MVT::i32, 3652 DAG.getNode(ISD::AND, dl, MVT::i32, 3653 DAG.getNode(ISD::XOR, dl, MVT::i32, 3654 CWD, DAG.getConstant(3, MVT::i32)), 3655 DAG.getConstant(3, MVT::i32)), 3656 DAG.getConstant(1, MVT::i32)); 3657 3658 SDValue RetVal = 3659 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3660 3661 return DAG.getNode((VT.getSizeInBits() < 16 ? 3662 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3663} 3664 3665SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3666 EVT VT = Op.getValueType(); 3667 unsigned BitWidth = VT.getSizeInBits(); 3668 DebugLoc dl = Op.getDebugLoc(); 3669 assert(Op.getNumOperands() == 3 && 3670 VT == Op.getOperand(1).getValueType() && 3671 "Unexpected SHL!"); 3672 3673 // Expand into a bunch of logical ops. Note that these ops 3674 // depend on the PPC behavior for oversized shift amounts. 3675 SDValue Lo = Op.getOperand(0); 3676 SDValue Hi = Op.getOperand(1); 3677 SDValue Amt = Op.getOperand(2); 3678 EVT AmtVT = Amt.getValueType(); 3679 3680 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3681 DAG.getConstant(BitWidth, AmtVT), Amt); 3682 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3683 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3684 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3685 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3686 DAG.getConstant(-BitWidth, AmtVT)); 3687 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3688 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3689 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3690 SDValue OutOps[] = { OutLo, OutHi }; 3691 return DAG.getMergeValues(OutOps, 2, dl); 3692} 3693 3694SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3695 EVT VT = Op.getValueType(); 3696 DebugLoc dl = Op.getDebugLoc(); 3697 unsigned BitWidth = VT.getSizeInBits(); 3698 assert(Op.getNumOperands() == 3 && 3699 VT == Op.getOperand(1).getValueType() && 3700 "Unexpected SRL!"); 3701 3702 // Expand into a bunch of logical ops. Note that these ops 3703 // depend on the PPC behavior for oversized shift amounts. 3704 SDValue Lo = Op.getOperand(0); 3705 SDValue Hi = Op.getOperand(1); 3706 SDValue Amt = Op.getOperand(2); 3707 EVT AmtVT = Amt.getValueType(); 3708 3709 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3710 DAG.getConstant(BitWidth, AmtVT), Amt); 3711 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3712 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3713 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3714 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3715 DAG.getConstant(-BitWidth, AmtVT)); 3716 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3717 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3718 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3719 SDValue OutOps[] = { OutLo, OutHi }; 3720 return DAG.getMergeValues(OutOps, 2, dl); 3721} 3722 3723SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3724 DebugLoc dl = Op.getDebugLoc(); 3725 EVT VT = Op.getValueType(); 3726 unsigned BitWidth = VT.getSizeInBits(); 3727 assert(Op.getNumOperands() == 3 && 3728 VT == Op.getOperand(1).getValueType() && 3729 "Unexpected SRA!"); 3730 3731 // Expand into a bunch of logical ops, followed by a select_cc. 3732 SDValue Lo = Op.getOperand(0); 3733 SDValue Hi = Op.getOperand(1); 3734 SDValue Amt = Op.getOperand(2); 3735 EVT AmtVT = Amt.getValueType(); 3736 3737 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3738 DAG.getConstant(BitWidth, AmtVT), Amt); 3739 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3740 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3741 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3742 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3743 DAG.getConstant(-BitWidth, AmtVT)); 3744 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3745 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3746 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3747 Tmp4, Tmp6, ISD::SETLE); 3748 SDValue OutOps[] = { OutLo, OutHi }; 3749 return DAG.getMergeValues(OutOps, 2, dl); 3750} 3751 3752//===----------------------------------------------------------------------===// 3753// Vector related lowering. 3754// 3755 3756/// BuildSplatI - Build a canonical splati of Val with an element size of 3757/// SplatSize. Cast the result to VT. 3758static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3759 SelectionDAG &DAG, DebugLoc dl) { 3760 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3761 3762 static const EVT VTys[] = { // canonical VT to use for each size. 3763 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3764 }; 3765 3766 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3767 3768 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3769 if (Val == -1) 3770 SplatSize = 1; 3771 3772 EVT CanonicalVT = VTys[SplatSize-1]; 3773 3774 // Build a canonical splat for this value. 3775 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3776 SmallVector<SDValue, 8> Ops; 3777 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3778 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3779 &Ops[0], Ops.size()); 3780 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3781} 3782 3783/// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3784/// specified intrinsic ID. 3785static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3786 SelectionDAG &DAG, DebugLoc dl, 3787 EVT DestVT = MVT::Other) { 3788 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3789 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3790 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3791} 3792 3793/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3794/// specified intrinsic ID. 3795static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3796 SDValue Op2, SelectionDAG &DAG, 3797 DebugLoc dl, EVT DestVT = MVT::Other) { 3798 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3799 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3800 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3801} 3802 3803 3804/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3805/// amount. The result has the specified value type. 3806static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3807 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3808 // Force LHS/RHS to be the right type. 3809 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3810 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3811 3812 int Ops[16]; 3813 for (unsigned i = 0; i != 16; ++i) 3814 Ops[i] = i + Amt; 3815 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3816 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3817} 3818 3819// If this is a case we can't handle, return null and let the default 3820// expansion code take care of it. If we CAN select this case, and if it 3821// selects to a single instruction, return Op. Otherwise, if we can codegen 3822// this case more efficiently than a constant pool load, lower it to the 3823// sequence of ops that should be used. 3824SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3825 SelectionDAG &DAG) const { 3826 DebugLoc dl = Op.getDebugLoc(); 3827 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3828 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3829 3830 // Check if this is a splat of a constant value. 3831 APInt APSplatBits, APSplatUndef; 3832 unsigned SplatBitSize; 3833 bool HasAnyUndefs; 3834 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3835 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3836 return SDValue(); 3837 3838 unsigned SplatBits = APSplatBits.getZExtValue(); 3839 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3840 unsigned SplatSize = SplatBitSize / 8; 3841 3842 // First, handle single instruction cases. 3843 3844 // All zeros? 3845 if (SplatBits == 0) { 3846 // Canonicalize all zero vectors to be v4i32. 3847 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3848 SDValue Z = DAG.getConstant(0, MVT::i32); 3849 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 3850 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 3851 } 3852 return Op; 3853 } 3854 3855 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 3856 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 3857 (32-SplatBitSize)); 3858 if (SextVal >= -16 && SextVal <= 15) 3859 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 3860 3861 3862 // Two instruction sequences. 3863 3864 // If this value is in the range [-32,30] and is even, use: 3865 // tmp = VSPLTI[bhw], result = add tmp, tmp 3866 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 3867 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 3868 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 3869 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3870 } 3871 3872 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 3873 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 3874 // for fneg/fabs. 3875 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 3876 // Make -1 and vspltisw -1: 3877 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 3878 3879 // Make the VSLW intrinsic, computing 0x8000_0000. 3880 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 3881 OnesV, DAG, dl); 3882 3883 // xor by OnesV to invert it. 3884 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 3885 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3886 } 3887 3888 // Check to see if this is a wide variety of vsplti*, binop self cases. 3889 static const signed char SplatCsts[] = { 3890 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 3891 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 3892 }; 3893 3894 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 3895 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 3896 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 3897 int i = SplatCsts[idx]; 3898 3899 // Figure out what shift amount will be used by altivec if shifted by i in 3900 // this splat size. 3901 unsigned TypeShiftAmt = i & (SplatBitSize-1); 3902 3903 // vsplti + shl self. 3904 if (SextVal == (i << (int)TypeShiftAmt)) { 3905 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3906 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3907 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 3908 Intrinsic::ppc_altivec_vslw 3909 }; 3910 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3911 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3912 } 3913 3914 // vsplti + srl self. 3915 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3916 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3917 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3918 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 3919 Intrinsic::ppc_altivec_vsrw 3920 }; 3921 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3922 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3923 } 3924 3925 // vsplti + sra self. 3926 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3927 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3928 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3929 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 3930 Intrinsic::ppc_altivec_vsraw 3931 }; 3932 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3933 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3934 } 3935 3936 // vsplti + rol self. 3937 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 3938 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 3939 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3940 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3941 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 3942 Intrinsic::ppc_altivec_vrlw 3943 }; 3944 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3945 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3946 } 3947 3948 // t = vsplti c, result = vsldoi t, t, 1 3949 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 3950 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3951 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 3952 } 3953 // t = vsplti c, result = vsldoi t, t, 2 3954 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 3955 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3956 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 3957 } 3958 // t = vsplti c, result = vsldoi t, t, 3 3959 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 3960 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3961 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 3962 } 3963 } 3964 3965 // Three instruction sequences. 3966 3967 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 3968 if (SextVal >= 0 && SextVal <= 31) { 3969 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 3970 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 3971 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 3972 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 3973 } 3974 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 3975 if (SextVal >= -31 && SextVal <= 0) { 3976 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 3977 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 3978 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 3979 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 3980 } 3981 3982 return SDValue(); 3983} 3984 3985/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 3986/// the specified operations to build the shuffle. 3987static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 3988 SDValue RHS, SelectionDAG &DAG, 3989 DebugLoc dl) { 3990 unsigned OpNum = (PFEntry >> 26) & 0x0F; 3991 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 3992 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 3993 3994 enum { 3995 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 3996 OP_VMRGHW, 3997 OP_VMRGLW, 3998 OP_VSPLTISW0, 3999 OP_VSPLTISW1, 4000 OP_VSPLTISW2, 4001 OP_VSPLTISW3, 4002 OP_VSLDOI4, 4003 OP_VSLDOI8, 4004 OP_VSLDOI12 4005 }; 4006 4007 if (OpNum == OP_COPY) { 4008 if (LHSID == (1*9+2)*9+3) return LHS; 4009 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4010 return RHS; 4011 } 4012 4013 SDValue OpLHS, OpRHS; 4014 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4015 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4016 4017 int ShufIdxs[16]; 4018 switch (OpNum) { 4019 default: llvm_unreachable("Unknown i32 permute!"); 4020 case OP_VMRGHW: 4021 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4022 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4023 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4024 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4025 break; 4026 case OP_VMRGLW: 4027 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4028 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4029 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4030 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4031 break; 4032 case OP_VSPLTISW0: 4033 for (unsigned i = 0; i != 16; ++i) 4034 ShufIdxs[i] = (i&3)+0; 4035 break; 4036 case OP_VSPLTISW1: 4037 for (unsigned i = 0; i != 16; ++i) 4038 ShufIdxs[i] = (i&3)+4; 4039 break; 4040 case OP_VSPLTISW2: 4041 for (unsigned i = 0; i != 16; ++i) 4042 ShufIdxs[i] = (i&3)+8; 4043 break; 4044 case OP_VSPLTISW3: 4045 for (unsigned i = 0; i != 16; ++i) 4046 ShufIdxs[i] = (i&3)+12; 4047 break; 4048 case OP_VSLDOI4: 4049 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4050 case OP_VSLDOI8: 4051 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4052 case OP_VSLDOI12: 4053 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4054 } 4055 EVT VT = OpLHS.getValueType(); 4056 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4057 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4058 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4059 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4060} 4061 4062/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4063/// is a shuffle we can handle in a single instruction, return it. Otherwise, 4064/// return the code it can be lowered into. Worst case, it can always be 4065/// lowered into a vperm. 4066SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4067 SelectionDAG &DAG) const { 4068 DebugLoc dl = Op.getDebugLoc(); 4069 SDValue V1 = Op.getOperand(0); 4070 SDValue V2 = Op.getOperand(1); 4071 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4072 EVT VT = Op.getValueType(); 4073 4074 // Cases that are handled by instructions that take permute immediates 4075 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4076 // selected by the instruction selector. 4077 if (V2.getOpcode() == ISD::UNDEF) { 4078 if (PPC::isSplatShuffleMask(SVOp, 1) || 4079 PPC::isSplatShuffleMask(SVOp, 2) || 4080 PPC::isSplatShuffleMask(SVOp, 4) || 4081 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4082 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4083 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4084 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4085 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4086 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4087 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4088 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4089 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4090 return Op; 4091 } 4092 } 4093 4094 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4095 // and produce a fixed permutation. If any of these match, do not lower to 4096 // VPERM. 4097 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4098 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4099 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4100 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4101 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4102 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4103 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4104 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4105 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4106 return Op; 4107 4108 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4109 // perfect shuffle table to emit an optimal matching sequence. 4110 SmallVector<int, 16> PermMask; 4111 SVOp->getMask(PermMask); 4112 4113 unsigned PFIndexes[4]; 4114 bool isFourElementShuffle = true; 4115 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4116 unsigned EltNo = 8; // Start out undef. 4117 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4118 if (PermMask[i*4+j] < 0) 4119 continue; // Undef, ignore it. 4120 4121 unsigned ByteSource = PermMask[i*4+j]; 4122 if ((ByteSource & 3) != j) { 4123 isFourElementShuffle = false; 4124 break; 4125 } 4126 4127 if (EltNo == 8) { 4128 EltNo = ByteSource/4; 4129 } else if (EltNo != ByteSource/4) { 4130 isFourElementShuffle = false; 4131 break; 4132 } 4133 } 4134 PFIndexes[i] = EltNo; 4135 } 4136 4137 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4138 // perfect shuffle vector to determine if it is cost effective to do this as 4139 // discrete instructions, or whether we should use a vperm. 4140 if (isFourElementShuffle) { 4141 // Compute the index in the perfect shuffle table. 4142 unsigned PFTableIndex = 4143 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4144 4145 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4146 unsigned Cost = (PFEntry >> 30); 4147 4148 // Determining when to avoid vperm is tricky. Many things affect the cost 4149 // of vperm, particularly how many times the perm mask needs to be computed. 4150 // For example, if the perm mask can be hoisted out of a loop or is already 4151 // used (perhaps because there are multiple permutes with the same shuffle 4152 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4153 // the loop requires an extra register. 4154 // 4155 // As a compromise, we only emit discrete instructions if the shuffle can be 4156 // generated in 3 or fewer operations. When we have loop information 4157 // available, if this block is within a loop, we should avoid using vperm 4158 // for 3-operation perms and use a constant pool load instead. 4159 if (Cost < 3) 4160 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4161 } 4162 4163 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4164 // vector that will get spilled to the constant pool. 4165 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4166 4167 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4168 // that it is in input element units, not in bytes. Convert now. 4169 EVT EltVT = V1.getValueType().getVectorElementType(); 4170 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4171 4172 SmallVector<SDValue, 16> ResultMask; 4173 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4174 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4175 4176 for (unsigned j = 0; j != BytesPerElement; ++j) 4177 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4178 MVT::i32)); 4179 } 4180 4181 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4182 &ResultMask[0], ResultMask.size()); 4183 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4184} 4185 4186/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4187/// altivec comparison. If it is, return true and fill in Opc/isDot with 4188/// information about the intrinsic. 4189static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4190 bool &isDot) { 4191 unsigned IntrinsicID = 4192 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4193 CompareOpc = -1; 4194 isDot = false; 4195 switch (IntrinsicID) { 4196 default: return false; 4197 // Comparison predicates. 4198 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4199 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4200 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4201 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4202 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4203 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4204 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4205 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4206 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4207 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4208 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4209 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4210 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4211 4212 // Normal Comparisons. 4213 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4214 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4215 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4216 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4217 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4218 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4219 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4220 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4221 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4222 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4223 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4224 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4225 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4226 } 4227 return true; 4228} 4229 4230/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4231/// lower, do it, otherwise return null. 4232SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4233 SelectionDAG &DAG) const { 4234 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4235 // opcode number of the comparison. 4236 DebugLoc dl = Op.getDebugLoc(); 4237 int CompareOpc; 4238 bool isDot; 4239 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4240 return SDValue(); // Don't custom lower most intrinsics. 4241 4242 // If this is a non-dot comparison, make the VCMP node and we are done. 4243 if (!isDot) { 4244 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4245 Op.getOperand(1), Op.getOperand(2), 4246 DAG.getConstant(CompareOpc, MVT::i32)); 4247 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4248 } 4249 4250 // Create the PPCISD altivec 'dot' comparison node. 4251 SDValue Ops[] = { 4252 Op.getOperand(2), // LHS 4253 Op.getOperand(3), // RHS 4254 DAG.getConstant(CompareOpc, MVT::i32) 4255 }; 4256 std::vector<EVT> VTs; 4257 VTs.push_back(Op.getOperand(2).getValueType()); 4258 VTs.push_back(MVT::Glue); 4259 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4260 4261 // Now that we have the comparison, emit a copy from the CR to a GPR. 4262 // This is flagged to the above dot comparison. 4263 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4264 DAG.getRegister(PPC::CR6, MVT::i32), 4265 CompNode.getValue(1)); 4266 4267 // Unpack the result based on how the target uses it. 4268 unsigned BitNo; // Bit # of CR6. 4269 bool InvertBit; // Invert result? 4270 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4271 default: // Can't happen, don't crash on invalid number though. 4272 case 0: // Return the value of the EQ bit of CR6. 4273 BitNo = 0; InvertBit = false; 4274 break; 4275 case 1: // Return the inverted value of the EQ bit of CR6. 4276 BitNo = 0; InvertBit = true; 4277 break; 4278 case 2: // Return the value of the LT bit of CR6. 4279 BitNo = 2; InvertBit = false; 4280 break; 4281 case 3: // Return the inverted value of the LT bit of CR6. 4282 BitNo = 2; InvertBit = true; 4283 break; 4284 } 4285 4286 // Shift the bit into the low position. 4287 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4288 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4289 // Isolate the bit. 4290 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4291 DAG.getConstant(1, MVT::i32)); 4292 4293 // If we are supposed to, toggle the bit. 4294 if (InvertBit) 4295 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4296 DAG.getConstant(1, MVT::i32)); 4297 return Flags; 4298} 4299 4300SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4301 SelectionDAG &DAG) const { 4302 DebugLoc dl = Op.getDebugLoc(); 4303 // Create a stack slot that is 16-byte aligned. 4304 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4305 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4306 EVT PtrVT = getPointerTy(); 4307 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4308 4309 // Store the input value into Value#0 of the stack slot. 4310 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4311 Op.getOperand(0), FIdx, MachinePointerInfo(), 4312 false, false, 0); 4313 // Load it out. 4314 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4315 false, false, 0); 4316} 4317 4318SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4319 DebugLoc dl = Op.getDebugLoc(); 4320 if (Op.getValueType() == MVT::v4i32) { 4321 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4322 4323 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4324 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4325 4326 SDValue RHSSwap = // = vrlw RHS, 16 4327 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4328 4329 // Shrinkify inputs to v8i16. 4330 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4331 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4332 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4333 4334 // Low parts multiplied together, generating 32-bit results (we ignore the 4335 // top parts). 4336 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4337 LHS, RHS, DAG, dl, MVT::v4i32); 4338 4339 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4340 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4341 // Shift the high parts up 16 bits. 4342 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4343 Neg16, DAG, dl); 4344 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4345 } else if (Op.getValueType() == MVT::v8i16) { 4346 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4347 4348 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4349 4350 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4351 LHS, RHS, Zero, DAG, dl); 4352 } else if (Op.getValueType() == MVT::v16i8) { 4353 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4354 4355 // Multiply the even 8-bit parts, producing 16-bit sums. 4356 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4357 LHS, RHS, DAG, dl, MVT::v8i16); 4358 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4359 4360 // Multiply the odd 8-bit parts, producing 16-bit sums. 4361 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4362 LHS, RHS, DAG, dl, MVT::v8i16); 4363 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4364 4365 // Merge the results together. 4366 int Ops[16]; 4367 for (unsigned i = 0; i != 8; ++i) { 4368 Ops[i*2 ] = 2*i+1; 4369 Ops[i*2+1] = 2*i+1+16; 4370 } 4371 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4372 } else { 4373 llvm_unreachable("Unknown mul to lower!"); 4374 } 4375} 4376 4377/// LowerOperation - Provide custom lowering hooks for some operations. 4378/// 4379SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4380 switch (Op.getOpcode()) { 4381 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4382 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4383 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4384 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4385 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4386 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4387 case ISD::SETCC: return LowerSETCC(Op, DAG); 4388 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 4389 case ISD::VASTART: 4390 return LowerVASTART(Op, DAG, PPCSubTarget); 4391 4392 case ISD::VAARG: 4393 return LowerVAARG(Op, DAG, PPCSubTarget); 4394 4395 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4396 case ISD::DYNAMIC_STACKALLOC: 4397 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4398 4399 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4400 case ISD::FP_TO_UINT: 4401 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4402 Op.getDebugLoc()); 4403 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4404 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4405 4406 // Lower 64-bit shifts. 4407 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4408 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4409 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4410 4411 // Vector-related lowering. 4412 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4413 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4414 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4415 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4416 case ISD::MUL: return LowerMUL(Op, DAG); 4417 4418 // Frame & Return address. 4419 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4420 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4421 } 4422 return SDValue(); 4423} 4424 4425void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4426 SmallVectorImpl<SDValue>&Results, 4427 SelectionDAG &DAG) const { 4428 DebugLoc dl = N->getDebugLoc(); 4429 switch (N->getOpcode()) { 4430 default: 4431 assert(false && "Do not know how to custom type legalize this operation!"); 4432 return; 4433 case ISD::FP_ROUND_INREG: { 4434 assert(N->getValueType(0) == MVT::ppcf128); 4435 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4436 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4437 MVT::f64, N->getOperand(0), 4438 DAG.getIntPtrConstant(0)); 4439 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4440 MVT::f64, N->getOperand(0), 4441 DAG.getIntPtrConstant(1)); 4442 4443 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4444 // of the long double, and puts FPSCR back the way it was. We do not 4445 // actually model FPSCR. 4446 std::vector<EVT> NodeTys; 4447 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4448 4449 NodeTys.push_back(MVT::f64); // Return register 4450 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4451 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4452 MFFSreg = Result.getValue(0); 4453 InFlag = Result.getValue(1); 4454 4455 NodeTys.clear(); 4456 NodeTys.push_back(MVT::Glue); // Returns a flag 4457 Ops[0] = DAG.getConstant(31, MVT::i32); 4458 Ops[1] = InFlag; 4459 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4460 InFlag = Result.getValue(0); 4461 4462 NodeTys.clear(); 4463 NodeTys.push_back(MVT::Glue); // Returns a flag 4464 Ops[0] = DAG.getConstant(30, MVT::i32); 4465 Ops[1] = InFlag; 4466 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4467 InFlag = Result.getValue(0); 4468 4469 NodeTys.clear(); 4470 NodeTys.push_back(MVT::f64); // result of add 4471 NodeTys.push_back(MVT::Glue); // Returns a flag 4472 Ops[0] = Lo; 4473 Ops[1] = Hi; 4474 Ops[2] = InFlag; 4475 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4476 FPreg = Result.getValue(0); 4477 InFlag = Result.getValue(1); 4478 4479 NodeTys.clear(); 4480 NodeTys.push_back(MVT::f64); 4481 Ops[0] = DAG.getConstant(1, MVT::i32); 4482 Ops[1] = MFFSreg; 4483 Ops[2] = FPreg; 4484 Ops[3] = InFlag; 4485 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4486 FPreg = Result.getValue(0); 4487 4488 // We know the low half is about to be thrown away, so just use something 4489 // convenient. 4490 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4491 FPreg, FPreg)); 4492 return; 4493 } 4494 case ISD::FP_TO_SINT: 4495 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4496 return; 4497 } 4498} 4499 4500 4501//===----------------------------------------------------------------------===// 4502// Other Lowering Code 4503//===----------------------------------------------------------------------===// 4504 4505MachineBasicBlock * 4506PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4507 bool is64bit, unsigned BinOpcode) const { 4508 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4509 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4510 4511 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4512 MachineFunction *F = BB->getParent(); 4513 MachineFunction::iterator It = BB; 4514 ++It; 4515 4516 unsigned dest = MI->getOperand(0).getReg(); 4517 unsigned ptrA = MI->getOperand(1).getReg(); 4518 unsigned ptrB = MI->getOperand(2).getReg(); 4519 unsigned incr = MI->getOperand(3).getReg(); 4520 DebugLoc dl = MI->getDebugLoc(); 4521 4522 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4523 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4524 F->insert(It, loopMBB); 4525 F->insert(It, exitMBB); 4526 exitMBB->splice(exitMBB->begin(), BB, 4527 llvm::next(MachineBasicBlock::iterator(MI)), 4528 BB->end()); 4529 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4530 4531 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4532 unsigned TmpReg = (!BinOpcode) ? incr : 4533 RegInfo.createVirtualRegister( 4534 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4535 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4536 4537 // thisMBB: 4538 // ... 4539 // fallthrough --> loopMBB 4540 BB->addSuccessor(loopMBB); 4541 4542 // loopMBB: 4543 // l[wd]arx dest, ptr 4544 // add r0, dest, incr 4545 // st[wd]cx. r0, ptr 4546 // bne- loopMBB 4547 // fallthrough --> exitMBB 4548 BB = loopMBB; 4549 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4550 .addReg(ptrA).addReg(ptrB); 4551 if (BinOpcode) 4552 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4553 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4554 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4555 BuildMI(BB, dl, TII->get(PPC::BCC)) 4556 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4557 BB->addSuccessor(loopMBB); 4558 BB->addSuccessor(exitMBB); 4559 4560 // exitMBB: 4561 // ... 4562 BB = exitMBB; 4563 return BB; 4564} 4565 4566MachineBasicBlock * 4567PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4568 MachineBasicBlock *BB, 4569 bool is8bit, // operation 4570 unsigned BinOpcode) const { 4571 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4572 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4573 // In 64 bit mode we have to use 64 bits for addresses, even though the 4574 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4575 // registers without caring whether they're 32 or 64, but here we're 4576 // doing actual arithmetic on the addresses. 4577 bool is64bit = PPCSubTarget.isPPC64(); 4578 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4579 4580 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4581 MachineFunction *F = BB->getParent(); 4582 MachineFunction::iterator It = BB; 4583 ++It; 4584 4585 unsigned dest = MI->getOperand(0).getReg(); 4586 unsigned ptrA = MI->getOperand(1).getReg(); 4587 unsigned ptrB = MI->getOperand(2).getReg(); 4588 unsigned incr = MI->getOperand(3).getReg(); 4589 DebugLoc dl = MI->getDebugLoc(); 4590 4591 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4592 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4593 F->insert(It, loopMBB); 4594 F->insert(It, exitMBB); 4595 exitMBB->splice(exitMBB->begin(), BB, 4596 llvm::next(MachineBasicBlock::iterator(MI)), 4597 BB->end()); 4598 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4599 4600 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4601 const TargetRegisterClass *RC = 4602 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4603 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4604 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4605 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4606 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4607 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4608 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4609 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4610 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4611 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4612 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4613 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4614 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4615 unsigned Ptr1Reg; 4616 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4617 4618 // thisMBB: 4619 // ... 4620 // fallthrough --> loopMBB 4621 BB->addSuccessor(loopMBB); 4622 4623 // The 4-byte load must be aligned, while a char or short may be 4624 // anywhere in the word. Hence all this nasty bookkeeping code. 4625 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4626 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4627 // xori shift, shift1, 24 [16] 4628 // rlwinm ptr, ptr1, 0, 0, 29 4629 // slw incr2, incr, shift 4630 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4631 // slw mask, mask2, shift 4632 // loopMBB: 4633 // lwarx tmpDest, ptr 4634 // add tmp, tmpDest, incr2 4635 // andc tmp2, tmpDest, mask 4636 // and tmp3, tmp, mask 4637 // or tmp4, tmp3, tmp2 4638 // stwcx. tmp4, ptr 4639 // bne- loopMBB 4640 // fallthrough --> exitMBB 4641 // srw dest, tmpDest, shift 4642 if (ptrA != ZeroReg) { 4643 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4644 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4645 .addReg(ptrA).addReg(ptrB); 4646 } else { 4647 Ptr1Reg = ptrB; 4648 } 4649 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4650 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4651 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4652 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4653 if (is64bit) 4654 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4655 .addReg(Ptr1Reg).addImm(0).addImm(61); 4656 else 4657 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4658 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4659 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4660 .addReg(incr).addReg(ShiftReg); 4661 if (is8bit) 4662 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4663 else { 4664 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4665 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4666 } 4667 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4668 .addReg(Mask2Reg).addReg(ShiftReg); 4669 4670 BB = loopMBB; 4671 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4672 .addReg(ZeroReg).addReg(PtrReg); 4673 if (BinOpcode) 4674 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4675 .addReg(Incr2Reg).addReg(TmpDestReg); 4676 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4677 .addReg(TmpDestReg).addReg(MaskReg); 4678 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4679 .addReg(TmpReg).addReg(MaskReg); 4680 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4681 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4682 BuildMI(BB, dl, TII->get(PPC::STWCX)) 4683 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4684 BuildMI(BB, dl, TII->get(PPC::BCC)) 4685 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4686 BB->addSuccessor(loopMBB); 4687 BB->addSuccessor(exitMBB); 4688 4689 // exitMBB: 4690 // ... 4691 BB = exitMBB; 4692 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4693 .addReg(ShiftReg); 4694 return BB; 4695} 4696 4697MachineBasicBlock * 4698PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4699 MachineBasicBlock *BB) const { 4700 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4701 4702 // To "insert" these instructions we actually have to insert their 4703 // control-flow patterns. 4704 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4705 MachineFunction::iterator It = BB; 4706 ++It; 4707 4708 MachineFunction *F = BB->getParent(); 4709 4710 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4711 MI->getOpcode() == PPC::SELECT_CC_I8 || 4712 MI->getOpcode() == PPC::SELECT_CC_F4 || 4713 MI->getOpcode() == PPC::SELECT_CC_F8 || 4714 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4715 4716 // The incoming instruction knows the destination vreg to set, the 4717 // condition code register to branch on, the true/false values to 4718 // select between, and a branch opcode to use. 4719 4720 // thisMBB: 4721 // ... 4722 // TrueVal = ... 4723 // cmpTY ccX, r1, r2 4724 // bCC copy1MBB 4725 // fallthrough --> copy0MBB 4726 MachineBasicBlock *thisMBB = BB; 4727 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4728 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4729 unsigned SelectPred = MI->getOperand(4).getImm(); 4730 DebugLoc dl = MI->getDebugLoc(); 4731 F->insert(It, copy0MBB); 4732 F->insert(It, sinkMBB); 4733 4734 // Transfer the remainder of BB and its successor edges to sinkMBB. 4735 sinkMBB->splice(sinkMBB->begin(), BB, 4736 llvm::next(MachineBasicBlock::iterator(MI)), 4737 BB->end()); 4738 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4739 4740 // Next, add the true and fallthrough blocks as its successors. 4741 BB->addSuccessor(copy0MBB); 4742 BB->addSuccessor(sinkMBB); 4743 4744 BuildMI(BB, dl, TII->get(PPC::BCC)) 4745 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4746 4747 // copy0MBB: 4748 // %FalseValue = ... 4749 // # fallthrough to sinkMBB 4750 BB = copy0MBB; 4751 4752 // Update machine-CFG edges 4753 BB->addSuccessor(sinkMBB); 4754 4755 // sinkMBB: 4756 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4757 // ... 4758 BB = sinkMBB; 4759 BuildMI(*BB, BB->begin(), dl, 4760 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4761 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4762 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4763 } 4764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4765 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4766 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4767 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4768 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4769 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4770 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4771 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4772 4773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4774 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4776 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4777 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4778 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4779 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4780 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4781 4782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4783 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4785 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4786 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4787 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4788 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4789 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4790 4791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4792 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4794 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4795 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4796 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4797 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4798 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4799 4800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4801 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4803 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4804 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4805 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4806 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4807 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4808 4809 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4810 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4811 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4812 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4813 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4814 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4815 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4816 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4817 4818 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4819 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4820 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4821 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4822 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4823 BB = EmitAtomicBinary(MI, BB, false, 0); 4824 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4825 BB = EmitAtomicBinary(MI, BB, true, 0); 4826 4827 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4828 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4829 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4830 4831 unsigned dest = MI->getOperand(0).getReg(); 4832 unsigned ptrA = MI->getOperand(1).getReg(); 4833 unsigned ptrB = MI->getOperand(2).getReg(); 4834 unsigned oldval = MI->getOperand(3).getReg(); 4835 unsigned newval = MI->getOperand(4).getReg(); 4836 DebugLoc dl = MI->getDebugLoc(); 4837 4838 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4839 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4840 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4841 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4842 F->insert(It, loop1MBB); 4843 F->insert(It, loop2MBB); 4844 F->insert(It, midMBB); 4845 F->insert(It, exitMBB); 4846 exitMBB->splice(exitMBB->begin(), BB, 4847 llvm::next(MachineBasicBlock::iterator(MI)), 4848 BB->end()); 4849 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4850 4851 // thisMBB: 4852 // ... 4853 // fallthrough --> loopMBB 4854 BB->addSuccessor(loop1MBB); 4855 4856 // loop1MBB: 4857 // l[wd]arx dest, ptr 4858 // cmp[wd] dest, oldval 4859 // bne- midMBB 4860 // loop2MBB: 4861 // st[wd]cx. newval, ptr 4862 // bne- loopMBB 4863 // b exitBB 4864 // midMBB: 4865 // st[wd]cx. dest, ptr 4866 // exitBB: 4867 BB = loop1MBB; 4868 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4869 .addReg(ptrA).addReg(ptrB); 4870 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 4871 .addReg(oldval).addReg(dest); 4872 BuildMI(BB, dl, TII->get(PPC::BCC)) 4873 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 4874 BB->addSuccessor(loop2MBB); 4875 BB->addSuccessor(midMBB); 4876 4877 BB = loop2MBB; 4878 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4879 .addReg(newval).addReg(ptrA).addReg(ptrB); 4880 BuildMI(BB, dl, TII->get(PPC::BCC)) 4881 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 4882 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 4883 BB->addSuccessor(loop1MBB); 4884 BB->addSuccessor(exitMBB); 4885 4886 BB = midMBB; 4887 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4888 .addReg(dest).addReg(ptrA).addReg(ptrB); 4889 BB->addSuccessor(exitMBB); 4890 4891 // exitMBB: 4892 // ... 4893 BB = exitMBB; 4894 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 4895 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 4896 // We must use 64-bit registers for addresses when targeting 64-bit, 4897 // since we're actually doing arithmetic on them. Other registers 4898 // can be 32-bit. 4899 bool is64bit = PPCSubTarget.isPPC64(); 4900 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 4901 4902 unsigned dest = MI->getOperand(0).getReg(); 4903 unsigned ptrA = MI->getOperand(1).getReg(); 4904 unsigned ptrB = MI->getOperand(2).getReg(); 4905 unsigned oldval = MI->getOperand(3).getReg(); 4906 unsigned newval = MI->getOperand(4).getReg(); 4907 DebugLoc dl = MI->getDebugLoc(); 4908 4909 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4910 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4911 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4912 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4913 F->insert(It, loop1MBB); 4914 F->insert(It, loop2MBB); 4915 F->insert(It, midMBB); 4916 F->insert(It, exitMBB); 4917 exitMBB->splice(exitMBB->begin(), BB, 4918 llvm::next(MachineBasicBlock::iterator(MI)), 4919 BB->end()); 4920 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4921 4922 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4923 const TargetRegisterClass *RC = 4924 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4925 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4926 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4927 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4928 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4929 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 4930 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 4931 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 4932 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 4933 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4934 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4935 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4936 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4937 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4938 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4939 unsigned Ptr1Reg; 4940 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 4941 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4942 // thisMBB: 4943 // ... 4944 // fallthrough --> loopMBB 4945 BB->addSuccessor(loop1MBB); 4946 4947 // The 4-byte load must be aligned, while a char or short may be 4948 // anywhere in the word. Hence all this nasty bookkeeping code. 4949 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4950 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4951 // xori shift, shift1, 24 [16] 4952 // rlwinm ptr, ptr1, 0, 0, 29 4953 // slw newval2, newval, shift 4954 // slw oldval2, oldval,shift 4955 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4956 // slw mask, mask2, shift 4957 // and newval3, newval2, mask 4958 // and oldval3, oldval2, mask 4959 // loop1MBB: 4960 // lwarx tmpDest, ptr 4961 // and tmp, tmpDest, mask 4962 // cmpw tmp, oldval3 4963 // bne- midMBB 4964 // loop2MBB: 4965 // andc tmp2, tmpDest, mask 4966 // or tmp4, tmp2, newval3 4967 // stwcx. tmp4, ptr 4968 // bne- loop1MBB 4969 // b exitBB 4970 // midMBB: 4971 // stwcx. tmpDest, ptr 4972 // exitBB: 4973 // srw dest, tmpDest, shift 4974 if (ptrA != ZeroReg) { 4975 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4976 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4977 .addReg(ptrA).addReg(ptrB); 4978 } else { 4979 Ptr1Reg = ptrB; 4980 } 4981 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4982 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4983 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4984 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4985 if (is64bit) 4986 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4987 .addReg(Ptr1Reg).addImm(0).addImm(61); 4988 else 4989 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4990 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4991 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 4992 .addReg(newval).addReg(ShiftReg); 4993 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 4994 .addReg(oldval).addReg(ShiftReg); 4995 if (is8bit) 4996 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4997 else { 4998 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4999 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5000 .addReg(Mask3Reg).addImm(65535); 5001 } 5002 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5003 .addReg(Mask2Reg).addReg(ShiftReg); 5004 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5005 .addReg(NewVal2Reg).addReg(MaskReg); 5006 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5007 .addReg(OldVal2Reg).addReg(MaskReg); 5008 5009 BB = loop1MBB; 5010 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5011 .addReg(ZeroReg).addReg(PtrReg); 5012 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5013 .addReg(TmpDestReg).addReg(MaskReg); 5014 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5015 .addReg(TmpReg).addReg(OldVal3Reg); 5016 BuildMI(BB, dl, TII->get(PPC::BCC)) 5017 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5018 BB->addSuccessor(loop2MBB); 5019 BB->addSuccessor(midMBB); 5020 5021 BB = loop2MBB; 5022 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5023 .addReg(TmpDestReg).addReg(MaskReg); 5024 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5025 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5026 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5027 .addReg(ZeroReg).addReg(PtrReg); 5028 BuildMI(BB, dl, TII->get(PPC::BCC)) 5029 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5030 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5031 BB->addSuccessor(loop1MBB); 5032 BB->addSuccessor(exitMBB); 5033 5034 BB = midMBB; 5035 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5036 .addReg(ZeroReg).addReg(PtrReg); 5037 BB->addSuccessor(exitMBB); 5038 5039 // exitMBB: 5040 // ... 5041 BB = exitMBB; 5042 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5043 .addReg(ShiftReg); 5044 } else { 5045 llvm_unreachable("Unexpected instr type to insert"); 5046 } 5047 5048 MI->eraseFromParent(); // The pseudo instruction is gone now. 5049 return BB; 5050} 5051 5052//===----------------------------------------------------------------------===// 5053// Target Optimization Hooks 5054//===----------------------------------------------------------------------===// 5055 5056SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5057 DAGCombinerInfo &DCI) const { 5058 const TargetMachine &TM = getTargetMachine(); 5059 SelectionDAG &DAG = DCI.DAG; 5060 DebugLoc dl = N->getDebugLoc(); 5061 switch (N->getOpcode()) { 5062 default: break; 5063 case PPCISD::SHL: 5064 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5065 if (C->isNullValue()) // 0 << V -> 0. 5066 return N->getOperand(0); 5067 } 5068 break; 5069 case PPCISD::SRL: 5070 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5071 if (C->isNullValue()) // 0 >>u V -> 0. 5072 return N->getOperand(0); 5073 } 5074 break; 5075 case PPCISD::SRA: 5076 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5077 if (C->isNullValue() || // 0 >>s V -> 0. 5078 C->isAllOnesValue()) // -1 >>s V -> -1. 5079 return N->getOperand(0); 5080 } 5081 break; 5082 5083 case ISD::SINT_TO_FP: 5084 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5085 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5086 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5087 // We allow the src/dst to be either f32/f64, but the intermediate 5088 // type must be i64. 5089 if (N->getOperand(0).getValueType() == MVT::i64 && 5090 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5091 SDValue Val = N->getOperand(0).getOperand(0); 5092 if (Val.getValueType() == MVT::f32) { 5093 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5094 DCI.AddToWorklist(Val.getNode()); 5095 } 5096 5097 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5098 DCI.AddToWorklist(Val.getNode()); 5099 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5100 DCI.AddToWorklist(Val.getNode()); 5101 if (N->getValueType(0) == MVT::f32) { 5102 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5103 DAG.getIntPtrConstant(0)); 5104 DCI.AddToWorklist(Val.getNode()); 5105 } 5106 return Val; 5107 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5108 // If the intermediate type is i32, we can avoid the load/store here 5109 // too. 5110 } 5111 } 5112 } 5113 break; 5114 case ISD::STORE: 5115 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5116 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5117 !cast<StoreSDNode>(N)->isTruncatingStore() && 5118 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5119 N->getOperand(1).getValueType() == MVT::i32 && 5120 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5121 SDValue Val = N->getOperand(1).getOperand(0); 5122 if (Val.getValueType() == MVT::f32) { 5123 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5124 DCI.AddToWorklist(Val.getNode()); 5125 } 5126 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5127 DCI.AddToWorklist(Val.getNode()); 5128 5129 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5130 N->getOperand(2), N->getOperand(3)); 5131 DCI.AddToWorklist(Val.getNode()); 5132 return Val; 5133 } 5134 5135 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5136 if (cast<StoreSDNode>(N)->isUnindexed() && 5137 N->getOperand(1).getOpcode() == ISD::BSWAP && 5138 N->getOperand(1).getNode()->hasOneUse() && 5139 (N->getOperand(1).getValueType() == MVT::i32 || 5140 N->getOperand(1).getValueType() == MVT::i16)) { 5141 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5142 // Do an any-extend to 32-bits if this is a half-word input. 5143 if (BSwapOp.getValueType() == MVT::i16) 5144 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5145 5146 SDValue Ops[] = { 5147 N->getOperand(0), BSwapOp, N->getOperand(2), 5148 DAG.getValueType(N->getOperand(1).getValueType()) 5149 }; 5150 return 5151 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5152 Ops, array_lengthof(Ops), 5153 cast<StoreSDNode>(N)->getMemoryVT(), 5154 cast<StoreSDNode>(N)->getMemOperand()); 5155 } 5156 break; 5157 case ISD::BSWAP: 5158 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5159 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5160 N->getOperand(0).hasOneUse() && 5161 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5162 SDValue Load = N->getOperand(0); 5163 LoadSDNode *LD = cast<LoadSDNode>(Load); 5164 // Create the byte-swapping load. 5165 SDValue Ops[] = { 5166 LD->getChain(), // Chain 5167 LD->getBasePtr(), // Ptr 5168 DAG.getValueType(N->getValueType(0)) // VT 5169 }; 5170 SDValue BSLoad = 5171 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5172 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5173 LD->getMemoryVT(), LD->getMemOperand()); 5174 5175 // If this is an i16 load, insert the truncate. 5176 SDValue ResVal = BSLoad; 5177 if (N->getValueType(0) == MVT::i16) 5178 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5179 5180 // First, combine the bswap away. This makes the value produced by the 5181 // load dead. 5182 DCI.CombineTo(N, ResVal); 5183 5184 // Next, combine the load away, we give it a bogus result value but a real 5185 // chain result. The result value is dead because the bswap is dead. 5186 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5187 5188 // Return N so it doesn't get rechecked! 5189 return SDValue(N, 0); 5190 } 5191 5192 break; 5193 case PPCISD::VCMP: { 5194 // If a VCMPo node already exists with exactly the same operands as this 5195 // node, use its result instead of this node (VCMPo computes both a CR6 and 5196 // a normal output). 5197 // 5198 if (!N->getOperand(0).hasOneUse() && 5199 !N->getOperand(1).hasOneUse() && 5200 !N->getOperand(2).hasOneUse()) { 5201 5202 // Scan all of the users of the LHS, looking for VCMPo's that match. 5203 SDNode *VCMPoNode = 0; 5204 5205 SDNode *LHSN = N->getOperand(0).getNode(); 5206 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5207 UI != E; ++UI) 5208 if (UI->getOpcode() == PPCISD::VCMPo && 5209 UI->getOperand(1) == N->getOperand(1) && 5210 UI->getOperand(2) == N->getOperand(2) && 5211 UI->getOperand(0) == N->getOperand(0)) { 5212 VCMPoNode = *UI; 5213 break; 5214 } 5215 5216 // If there is no VCMPo node, or if the flag value has a single use, don't 5217 // transform this. 5218 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5219 break; 5220 5221 // Look at the (necessarily single) use of the flag value. If it has a 5222 // chain, this transformation is more complex. Note that multiple things 5223 // could use the value result, which we should ignore. 5224 SDNode *FlagUser = 0; 5225 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5226 FlagUser == 0; ++UI) { 5227 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5228 SDNode *User = *UI; 5229 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5230 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5231 FlagUser = User; 5232 break; 5233 } 5234 } 5235 } 5236 5237 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5238 // give up for right now. 5239 if (FlagUser->getOpcode() == PPCISD::MFCR) 5240 return SDValue(VCMPoNode, 0); 5241 } 5242 break; 5243 } 5244 case ISD::BR_CC: { 5245 // If this is a branch on an altivec predicate comparison, lower this so 5246 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5247 // lowering is done pre-legalize, because the legalizer lowers the predicate 5248 // compare down to code that is difficult to reassemble. 5249 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5250 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5251 int CompareOpc; 5252 bool isDot; 5253 5254 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5255 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5256 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5257 assert(isDot && "Can't compare against a vector result!"); 5258 5259 // If this is a comparison against something other than 0/1, then we know 5260 // that the condition is never/always true. 5261 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5262 if (Val != 0 && Val != 1) { 5263 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5264 return N->getOperand(0); 5265 // Always !=, turn it into an unconditional branch. 5266 return DAG.getNode(ISD::BR, dl, MVT::Other, 5267 N->getOperand(0), N->getOperand(4)); 5268 } 5269 5270 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5271 5272 // Create the PPCISD altivec 'dot' comparison node. 5273 std::vector<EVT> VTs; 5274 SDValue Ops[] = { 5275 LHS.getOperand(2), // LHS of compare 5276 LHS.getOperand(3), // RHS of compare 5277 DAG.getConstant(CompareOpc, MVT::i32) 5278 }; 5279 VTs.push_back(LHS.getOperand(2).getValueType()); 5280 VTs.push_back(MVT::Glue); 5281 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5282 5283 // Unpack the result based on how the target uses it. 5284 PPC::Predicate CompOpc; 5285 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5286 default: // Can't happen, don't crash on invalid number though. 5287 case 0: // Branch on the value of the EQ bit of CR6. 5288 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5289 break; 5290 case 1: // Branch on the inverted value of the EQ bit of CR6. 5291 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5292 break; 5293 case 2: // Branch on the value of the LT bit of CR6. 5294 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5295 break; 5296 case 3: // Branch on the inverted value of the LT bit of CR6. 5297 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5298 break; 5299 } 5300 5301 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5302 DAG.getConstant(CompOpc, MVT::i32), 5303 DAG.getRegister(PPC::CR6, MVT::i32), 5304 N->getOperand(4), CompNode.getValue(1)); 5305 } 5306 break; 5307 } 5308 } 5309 5310 return SDValue(); 5311} 5312 5313//===----------------------------------------------------------------------===// 5314// Inline Assembly Support 5315//===----------------------------------------------------------------------===// 5316 5317void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5318 const APInt &Mask, 5319 APInt &KnownZero, 5320 APInt &KnownOne, 5321 const SelectionDAG &DAG, 5322 unsigned Depth) const { 5323 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5324 switch (Op.getOpcode()) { 5325 default: break; 5326 case PPCISD::LBRX: { 5327 // lhbrx is known to have the top bits cleared out. 5328 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5329 KnownZero = 0xFFFF0000; 5330 break; 5331 } 5332 case ISD::INTRINSIC_WO_CHAIN: { 5333 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5334 default: break; 5335 case Intrinsic::ppc_altivec_vcmpbfp_p: 5336 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5337 case Intrinsic::ppc_altivec_vcmpequb_p: 5338 case Intrinsic::ppc_altivec_vcmpequh_p: 5339 case Intrinsic::ppc_altivec_vcmpequw_p: 5340 case Intrinsic::ppc_altivec_vcmpgefp_p: 5341 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5342 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5343 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5344 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5345 case Intrinsic::ppc_altivec_vcmpgtub_p: 5346 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5347 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5348 KnownZero = ~1U; // All bits but the low one are known to be zero. 5349 break; 5350 } 5351 } 5352 } 5353} 5354 5355 5356/// getConstraintType - Given a constraint, return the type of 5357/// constraint it is for this target. 5358PPCTargetLowering::ConstraintType 5359PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5360 if (Constraint.size() == 1) { 5361 switch (Constraint[0]) { 5362 default: break; 5363 case 'b': 5364 case 'r': 5365 case 'f': 5366 case 'v': 5367 case 'y': 5368 return C_RegisterClass; 5369 } 5370 } 5371 return TargetLowering::getConstraintType(Constraint); 5372} 5373 5374/// Examine constraint type and operand type and determine a weight value. 5375/// This object must already have been set up with the operand type 5376/// and the current alternative constraint selected. 5377TargetLowering::ConstraintWeight 5378PPCTargetLowering::getSingleConstraintMatchWeight( 5379 AsmOperandInfo &info, const char *constraint) const { 5380 ConstraintWeight weight = CW_Invalid; 5381 Value *CallOperandVal = info.CallOperandVal; 5382 // If we don't have a value, we can't do a match, 5383 // but allow it at the lowest weight. 5384 if (CallOperandVal == NULL) 5385 return CW_Default; 5386 const Type *type = CallOperandVal->getType(); 5387 // Look at the constraint type. 5388 switch (*constraint) { 5389 default: 5390 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5391 break; 5392 case 'b': 5393 if (type->isIntegerTy()) 5394 weight = CW_Register; 5395 break; 5396 case 'f': 5397 if (type->isFloatTy()) 5398 weight = CW_Register; 5399 break; 5400 case 'd': 5401 if (type->isDoubleTy()) 5402 weight = CW_Register; 5403 break; 5404 case 'v': 5405 if (type->isVectorTy()) 5406 weight = CW_Register; 5407 break; 5408 case 'y': 5409 weight = CW_Register; 5410 break; 5411 } 5412 return weight; 5413} 5414 5415std::pair<unsigned, const TargetRegisterClass*> 5416PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5417 EVT VT) const { 5418 if (Constraint.size() == 1) { 5419 // GCC RS6000 Constraint Letters 5420 switch (Constraint[0]) { 5421 case 'b': // R1-R31 5422 case 'r': // R0-R31 5423 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5424 return std::make_pair(0U, PPC::G8RCRegisterClass); 5425 return std::make_pair(0U, PPC::GPRCRegisterClass); 5426 case 'f': 5427 if (VT == MVT::f32) 5428 return std::make_pair(0U, PPC::F4RCRegisterClass); 5429 else if (VT == MVT::f64) 5430 return std::make_pair(0U, PPC::F8RCRegisterClass); 5431 break; 5432 case 'v': 5433 return std::make_pair(0U, PPC::VRRCRegisterClass); 5434 case 'y': // crrc 5435 return std::make_pair(0U, PPC::CRRCRegisterClass); 5436 } 5437 } 5438 5439 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5440} 5441 5442 5443/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5444/// vector. If it is invalid, don't add anything to Ops. 5445void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter, 5446 std::vector<SDValue>&Ops, 5447 SelectionDAG &DAG) const { 5448 SDValue Result(0,0); 5449 switch (Letter) { 5450 default: break; 5451 case 'I': 5452 case 'J': 5453 case 'K': 5454 case 'L': 5455 case 'M': 5456 case 'N': 5457 case 'O': 5458 case 'P': { 5459 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5460 if (!CST) return; // Must be an immediate to match. 5461 unsigned Value = CST->getZExtValue(); 5462 switch (Letter) { 5463 default: llvm_unreachable("Unknown constraint letter!"); 5464 case 'I': // "I" is a signed 16-bit constant. 5465 if ((short)Value == (int)Value) 5466 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5467 break; 5468 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5469 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5470 if ((short)Value == 0) 5471 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5472 break; 5473 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5474 if ((Value >> 16) == 0) 5475 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5476 break; 5477 case 'M': // "M" is a constant that is greater than 31. 5478 if (Value > 31) 5479 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5480 break; 5481 case 'N': // "N" is a positive constant that is an exact power of two. 5482 if ((int)Value > 0 && isPowerOf2_32(Value)) 5483 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5484 break; 5485 case 'O': // "O" is the constant zero. 5486 if (Value == 0) 5487 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5488 break; 5489 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5490 if ((short)-Value == (int)-Value) 5491 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5492 break; 5493 } 5494 break; 5495 } 5496 } 5497 5498 if (Result.getNode()) { 5499 Ops.push_back(Result); 5500 return; 5501 } 5502 5503 // Handle standard constraint letters. 5504 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); 5505} 5506 5507// isLegalAddressingMode - Return true if the addressing mode represented 5508// by AM is legal for this target, for a load/store of the specified type. 5509bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5510 const Type *Ty) const { 5511 // FIXME: PPC does not allow r+i addressing modes for vectors! 5512 5513 // PPC allows a sign-extended 16-bit immediate field. 5514 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5515 return false; 5516 5517 // No global is ever allowed as a base. 5518 if (AM.BaseGV) 5519 return false; 5520 5521 // PPC only support r+r, 5522 switch (AM.Scale) { 5523 case 0: // "r+i" or just "i", depending on HasBaseReg. 5524 break; 5525 case 1: 5526 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5527 return false; 5528 // Otherwise we have r+r or r+i. 5529 break; 5530 case 2: 5531 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5532 return false; 5533 // Allow 2*r as r+r. 5534 break; 5535 default: 5536 // No other scales are supported. 5537 return false; 5538 } 5539 5540 return true; 5541} 5542 5543/// isLegalAddressImmediate - Return true if the integer value can be used 5544/// as the offset of the target addressing mode for load / store of the 5545/// given type. 5546bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ 5547 // PPC allows a sign-extended 16-bit immediate field. 5548 return (V > -(1 << 16) && V < (1 << 16)-1); 5549} 5550 5551bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5552 return false; 5553} 5554 5555SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5556 SelectionDAG &DAG) const { 5557 MachineFunction &MF = DAG.getMachineFunction(); 5558 MachineFrameInfo *MFI = MF.getFrameInfo(); 5559 MFI->setReturnAddressIsTaken(true); 5560 5561 DebugLoc dl = Op.getDebugLoc(); 5562 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5563 5564 // Make sure the function does not optimize away the store of the RA to 5565 // the stack. 5566 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5567 FuncInfo->setLRStoreRequired(); 5568 bool isPPC64 = PPCSubTarget.isPPC64(); 5569 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5570 5571 if (Depth > 0) { 5572 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5573 SDValue Offset = 5574 5575 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5576 isPPC64? MVT::i64 : MVT::i32); 5577 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5578 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5579 FrameAddr, Offset), 5580 MachinePointerInfo(), false, false, 0); 5581 } 5582 5583 // Just load the return address off the stack. 5584 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5585 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5586 RetAddrFI, MachinePointerInfo(), false, false, 0); 5587} 5588 5589SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5590 SelectionDAG &DAG) const { 5591 DebugLoc dl = Op.getDebugLoc(); 5592 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5593 5594 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5595 bool isPPC64 = PtrVT == MVT::i64; 5596 5597 MachineFunction &MF = DAG.getMachineFunction(); 5598 MachineFrameInfo *MFI = MF.getFrameInfo(); 5599 MFI->setFrameAddressIsTaken(true); 5600 bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) && 5601 MFI->getStackSize() && 5602 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5603 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5604 (is31 ? PPC::R31 : PPC::R1); 5605 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5606 PtrVT); 5607 while (Depth--) 5608 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5609 FrameAddr, MachinePointerInfo(), false, false, 0); 5610 return FrameAddr; 5611} 5612 5613bool 5614PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5615 // The PowerPC target isn't yet aware of offsets. 5616 return false; 5617} 5618 5619/// getOptimalMemOpType - Returns the target specific optimal type for load 5620/// and store operations as a result of memset, memcpy, and memmove 5621/// lowering. If DstAlign is zero that means it's safe to destination 5622/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5623/// means there isn't a need to check it against alignment requirement, 5624/// probably because the source does not need to be loaded. If 5625/// 'NonScalarIntSafe' is true, that means it's safe to return a 5626/// non-scalar-integer type, e.g. empty string source, constant, or loaded 5627/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5628/// constant so it does not need to be loaded. 5629/// It returns EVT::Other if the type should be determined using generic 5630/// target-independent logic. 5631EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5632 unsigned DstAlign, unsigned SrcAlign, 5633 bool NonScalarIntSafe, 5634 bool MemcpyStrSrc, 5635 MachineFunction &MF) const { 5636 if (this->PPCSubTarget.isPPC64()) { 5637 return MVT::i64; 5638 } else { 5639 return MVT::i32; 5640 } 5641} 5642