PPCISelLowering.cpp revision 5e764233f398b6929b67701672a5e78fec20ce2e
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()),
43    PPCAtomicLabelIndex(0) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no intrinsics for these particular operations
82  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
83
84  // PowerPC has no SREM/UREM instructions
85  setOperationAction(ISD::SREM, MVT::i32, Expand);
86  setOperationAction(ISD::UREM, MVT::i32, Expand);
87  setOperationAction(ISD::SREM, MVT::i64, Expand);
88  setOperationAction(ISD::UREM, MVT::i64, Expand);
89
90  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
91  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
92  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
93  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
95  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
96  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
99
100  // We don't support sin/cos/sqrt/fmod/pow
101  setOperationAction(ISD::FSIN , MVT::f64, Expand);
102  setOperationAction(ISD::FCOS , MVT::f64, Expand);
103  setOperationAction(ISD::FREM , MVT::f64, Expand);
104  setOperationAction(ISD::FPOW , MVT::f64, Expand);
105  setOperationAction(ISD::FSIN , MVT::f32, Expand);
106  setOperationAction(ISD::FCOS , MVT::f32, Expand);
107  setOperationAction(ISD::FREM , MVT::f32, Expand);
108  setOperationAction(ISD::FPOW , MVT::f32, Expand);
109
110  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
111
112  // If we're enabling GP optimizations, use hardware square root
113  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
114    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
115    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
116  }
117
118  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
119  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
120
121  // PowerPC does not have BSWAP, CTPOP or CTTZ
122  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
125  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
126  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
128
129  // PowerPC does not have ROTR
130  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
131
132  // PowerPC does not have Select
133  setOperationAction(ISD::SELECT, MVT::i32, Expand);
134  setOperationAction(ISD::SELECT, MVT::i64, Expand);
135  setOperationAction(ISD::SELECT, MVT::f32, Expand);
136  setOperationAction(ISD::SELECT, MVT::f64, Expand);
137
138  // PowerPC wants to turn select_cc of FP into fsel when possible.
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141
142  // PowerPC wants to optimize integer setcc a bit
143  setOperationAction(ISD::SETCC, MVT::i32, Custom);
144
145  // PowerPC does not have BRCOND which requires SetCC
146  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
147
148  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
149
150  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
151  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
152
153  // PowerPC does not have [U|S]INT_TO_FP
154  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
155  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
156
157  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
158  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
161
162  // We cannot sextinreg(i1).  Expand to shifts.
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164
165  // Support label based line numbers.
166  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
167  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
168
169  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
170  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
173
174
175  // We want to legalize GlobalAddress and ConstantPool nodes into the
176  // appropriate instructions to materialize the address.
177  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
178  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
179  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
180  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
181  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
182  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
183  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
184  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
185
186  // RET must be custom lowered, to meet ABI requirements
187  setOperationAction(ISD::RET               , MVT::Other, Custom);
188
189  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
190  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
191
192  // VAARG is custom lowered with ELF 32 ABI
193  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
194    setOperationAction(ISD::VAARG, MVT::Other, Custom);
195  else
196    setOperationAction(ISD::VAARG, MVT::Other, Expand);
197
198  // Use the default implementation.
199  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
200  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
201  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
202  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
203  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
205
206  setOperationAction(ISD::ATOMIC_LAS        , MVT::i32  , Custom);
207  setOperationAction(ISD::ATOMIC_LCS        , MVT::i32  , Custom);
208  setOperationAction(ISD::ATOMIC_SWAP       , MVT::i32  , Custom);
209  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
210    setOperationAction(ISD::ATOMIC_LAS      , MVT::i64  , Custom);
211    setOperationAction(ISD::ATOMIC_LCS      , MVT::i64  , Custom);
212    setOperationAction(ISD::ATOMIC_SWAP     , MVT::i64  , Custom);
213  }
214
215  // We want to custom lower some of our intrinsics.
216  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
217
218  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
219    // They also have instructions for converting between i64 and fp.
220    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
221    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
222    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
223    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
224    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
225
226    // FIXME: disable this lowered code.  This generates 64-bit register values,
227    // and we don't model the fact that the top part is clobbered by calls.  We
228    // need to flag these together so that the value isn't live across a call.
229    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
230
231    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
233  } else {
234    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
235    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
236  }
237
238  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
239    // 64-bit PowerPC implementations can support i64 types directly
240    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
241    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
242    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
243    // 64-bit PowerPC wants to expand i128 shifts itself.
244    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
245    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
246    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
247  } else {
248    // 32-bit PowerPC wants to expand i64 shifts itself.
249    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
250    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
251    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
252  }
253
254  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
255    // First set operation action for all vector types to expand. Then we
256    // will selectively turn on ones that can be effectively codegen'd.
257    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
258         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
259      // add/sub are legal for all supported vector VT's.
260      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
261      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
262
263      // We promote all shuffles to v16i8.
264      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
265      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
266
267      // We promote all non-typed operations to v4i32.
268      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
269      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
270      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
271      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
272      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
273      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
274      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
275      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
276      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
277      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
278      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
279      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
280
281      // No other operations are legal.
282      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
292      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
293      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
294      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
295      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
296      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
297      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
298      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
299      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
300      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
301    }
302
303    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
304    // with merges, splats, etc.
305    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
306
307    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
308    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
309    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
310    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
311    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
312    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
313
314    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
315    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
316    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
317    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
318
319    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
320    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
321    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
322    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
323
324    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
325    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
326
327    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
328    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
329    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
330    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
331  }
332
333  setShiftAmountType(MVT::i32);
334  setSetCCResultContents(ZeroOrOneSetCCResult);
335
336  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
337    setStackPointerRegisterToSaveRestore(PPC::X1);
338    setExceptionPointerRegister(PPC::X3);
339    setExceptionSelectorRegister(PPC::X4);
340  } else {
341    setStackPointerRegisterToSaveRestore(PPC::R1);
342    setExceptionPointerRegister(PPC::R3);
343    setExceptionSelectorRegister(PPC::R4);
344  }
345
346  // We have target-specific dag combine patterns for the following nodes:
347  setTargetDAGCombine(ISD::SINT_TO_FP);
348  setTargetDAGCombine(ISD::STORE);
349  setTargetDAGCombine(ISD::BR_CC);
350  setTargetDAGCombine(ISD::BSWAP);
351
352  // Darwin long double math library functions have $LDBL128 appended.
353  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
354    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
355    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
356    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
357    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
358    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
359  }
360
361  computeRegisterProperties();
362}
363
364/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
365/// function arguments in the caller parameter area.
366unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
367  TargetMachine &TM = getTargetMachine();
368  // Darwin passes everything on 4 byte boundary.
369  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
370    return 4;
371  // FIXME Elf TBD
372  return 4;
373}
374
375const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
376  switch (Opcode) {
377  default: return 0;
378  case PPCISD::FSEL:          return "PPCISD::FSEL";
379  case PPCISD::FCFID:         return "PPCISD::FCFID";
380  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
381  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
382  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
383  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
384  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
385  case PPCISD::VPERM:         return "PPCISD::VPERM";
386  case PPCISD::Hi:            return "PPCISD::Hi";
387  case PPCISD::Lo:            return "PPCISD::Lo";
388  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
389  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
390  case PPCISD::SRL:           return "PPCISD::SRL";
391  case PPCISD::SRA:           return "PPCISD::SRA";
392  case PPCISD::SHL:           return "PPCISD::SHL";
393  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
394  case PPCISD::STD_32:        return "PPCISD::STD_32";
395  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
396  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
397  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
398  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
399  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
400  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
401  case PPCISD::MFCR:          return "PPCISD::MFCR";
402  case PPCISD::VCMP:          return "PPCISD::VCMP";
403  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
404  case PPCISD::LBRX:          return "PPCISD::LBRX";
405  case PPCISD::STBRX:         return "PPCISD::STBRX";
406  case PPCISD::LARX:          return "PPCISD::LARX";
407  case PPCISD::STCX:          return "PPCISD::STCX";
408  case PPCISD::CMP_UNRESERVE: return "PPCISD::CMP_UNRESERVE";
409  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
410  case PPCISD::MFFS:          return "PPCISD::MFFS";
411  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
412  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
413  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
414  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
415  }
416}
417
418
419MVT::ValueType
420PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
421  return MVT::i32;
422}
423
424
425//===----------------------------------------------------------------------===//
426// Node matching predicates, for use by the tblgen matching code.
427//===----------------------------------------------------------------------===//
428
429/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
430static bool isFloatingPointZero(SDOperand Op) {
431  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
432    return CFP->getValueAPF().isZero();
433  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
434    // Maybe this has already been legalized into the constant pool?
435    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
436      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
437        return CFP->getValueAPF().isZero();
438  }
439  return false;
440}
441
442/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
443/// true if Op is undef or if it matches the specified value.
444static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
445  return Op.getOpcode() == ISD::UNDEF ||
446         cast<ConstantSDNode>(Op)->getValue() == Val;
447}
448
449/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
450/// VPKUHUM instruction.
451bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
452  if (!isUnary) {
453    for (unsigned i = 0; i != 16; ++i)
454      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
455        return false;
456  } else {
457    for (unsigned i = 0; i != 8; ++i)
458      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
459          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
460        return false;
461  }
462  return true;
463}
464
465/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
466/// VPKUWUM instruction.
467bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
468  if (!isUnary) {
469    for (unsigned i = 0; i != 16; i += 2)
470      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
471          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
472        return false;
473  } else {
474    for (unsigned i = 0; i != 8; i += 2)
475      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
476          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
477          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
478          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
479        return false;
480  }
481  return true;
482}
483
484/// isVMerge - Common function, used to match vmrg* shuffles.
485///
486static bool isVMerge(SDNode *N, unsigned UnitSize,
487                     unsigned LHSStart, unsigned RHSStart) {
488  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
489         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
490  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
491         "Unsupported merge size!");
492
493  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
494    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
495      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
496                             LHSStart+j+i*UnitSize) ||
497          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
498                             RHSStart+j+i*UnitSize))
499        return false;
500    }
501      return true;
502}
503
504/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
505/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
506bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
507  if (!isUnary)
508    return isVMerge(N, UnitSize, 8, 24);
509  return isVMerge(N, UnitSize, 8, 8);
510}
511
512/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
513/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
514bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
515  if (!isUnary)
516    return isVMerge(N, UnitSize, 0, 16);
517  return isVMerge(N, UnitSize, 0, 0);
518}
519
520
521/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
522/// amount, otherwise return -1.
523int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
524  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
525         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
526  // Find the first non-undef value in the shuffle mask.
527  unsigned i;
528  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
529    /*search*/;
530
531  if (i == 16) return -1;  // all undef.
532
533  // Otherwise, check to see if the rest of the elements are consequtively
534  // numbered from this value.
535  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
536  if (ShiftAmt < i) return -1;
537  ShiftAmt -= i;
538
539  if (!isUnary) {
540    // Check the rest of the elements to see if they are consequtive.
541    for (++i; i != 16; ++i)
542      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
543        return -1;
544  } else {
545    // Check the rest of the elements to see if they are consequtive.
546    for (++i; i != 16; ++i)
547      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
548        return -1;
549  }
550
551  return ShiftAmt;
552}
553
554/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
555/// specifies a splat of a single element that is suitable for input to
556/// VSPLTB/VSPLTH/VSPLTW.
557bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
558  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
559         N->getNumOperands() == 16 &&
560         (EltSize == 1 || EltSize == 2 || EltSize == 4));
561
562  // This is a splat operation if each element of the permute is the same, and
563  // if the value doesn't reference the second vector.
564  unsigned ElementBase = 0;
565  SDOperand Elt = N->getOperand(0);
566  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
567    ElementBase = EltV->getValue();
568  else
569    return false;   // FIXME: Handle UNDEF elements too!
570
571  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
572    return false;
573
574  // Check that they are consequtive.
575  for (unsigned i = 1; i != EltSize; ++i) {
576    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
577        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
578      return false;
579  }
580
581  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
582  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
583    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
584    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
585           "Invalid VECTOR_SHUFFLE mask!");
586    for (unsigned j = 0; j != EltSize; ++j)
587      if (N->getOperand(i+j) != N->getOperand(j))
588        return false;
589  }
590
591  return true;
592}
593
594/// isAllNegativeZeroVector - Returns true if all elements of build_vector
595/// are -0.0.
596bool PPC::isAllNegativeZeroVector(SDNode *N) {
597  assert(N->getOpcode() == ISD::BUILD_VECTOR);
598  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
599    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
600      return CFP->getValueAPF().isNegZero();
601  return false;
602}
603
604/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
605/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
606unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
607  assert(isSplatShuffleMask(N, EltSize));
608  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
609}
610
611/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
612/// by using a vspltis[bhw] instruction of the specified element size, return
613/// the constant being splatted.  The ByteSize field indicates the number of
614/// bytes of each element [124] -> [bhw].
615SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
616  SDOperand OpVal(0, 0);
617
618  // If ByteSize of the splat is bigger than the element size of the
619  // build_vector, then we have a case where we are checking for a splat where
620  // multiple elements of the buildvector are folded together into a single
621  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
622  unsigned EltSize = 16/N->getNumOperands();
623  if (EltSize < ByteSize) {
624    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
625    SDOperand UniquedVals[4];
626    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
627
628    // See if all of the elements in the buildvector agree across.
629    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
630      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
631      // If the element isn't a constant, bail fully out.
632      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
633
634
635      if (UniquedVals[i&(Multiple-1)].Val == 0)
636        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
637      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
638        return SDOperand();  // no match.
639    }
640
641    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
642    // either constant or undef values that are identical for each chunk.  See
643    // if these chunks can form into a larger vspltis*.
644
645    // Check to see if all of the leading entries are either 0 or -1.  If
646    // neither, then this won't fit into the immediate field.
647    bool LeadingZero = true;
648    bool LeadingOnes = true;
649    for (unsigned i = 0; i != Multiple-1; ++i) {
650      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
651
652      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
653      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
654    }
655    // Finally, check the least significant entry.
656    if (LeadingZero) {
657      if (UniquedVals[Multiple-1].Val == 0)
658        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
659      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
660      if (Val < 16)
661        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
662    }
663    if (LeadingOnes) {
664      if (UniquedVals[Multiple-1].Val == 0)
665        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
666      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
667      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
668        return DAG.getTargetConstant(Val, MVT::i32);
669    }
670
671    return SDOperand();
672  }
673
674  // Check to see if this buildvec has a single non-undef value in its elements.
675  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
676    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
677    if (OpVal.Val == 0)
678      OpVal = N->getOperand(i);
679    else if (OpVal != N->getOperand(i))
680      return SDOperand();
681  }
682
683  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
684
685  unsigned ValSizeInBytes = 0;
686  uint64_t Value = 0;
687  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
688    Value = CN->getValue();
689    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
690  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
691    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
692    Value = FloatToBits(CN->getValueAPF().convertToFloat());
693    ValSizeInBytes = 4;
694  }
695
696  // If the splat value is larger than the element value, then we can never do
697  // this splat.  The only case that we could fit the replicated bits into our
698  // immediate field for would be zero, and we prefer to use vxor for it.
699  if (ValSizeInBytes < ByteSize) return SDOperand();
700
701  // If the element value is larger than the splat value, cut it in half and
702  // check to see if the two halves are equal.  Continue doing this until we
703  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
704  while (ValSizeInBytes > ByteSize) {
705    ValSizeInBytes >>= 1;
706
707    // If the top half equals the bottom half, we're still ok.
708    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
709         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
710      return SDOperand();
711  }
712
713  // Properly sign extend the value.
714  int ShAmt = (4-ByteSize)*8;
715  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
716
717  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
718  if (MaskVal == 0) return SDOperand();
719
720  // Finally, if this value fits in a 5 bit sext field, return it
721  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
722    return DAG.getTargetConstant(MaskVal, MVT::i32);
723  return SDOperand();
724}
725
726//===----------------------------------------------------------------------===//
727//  Addressing Mode Selection
728//===----------------------------------------------------------------------===//
729
730/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
731/// or 64-bit immediate, and if the value can be accurately represented as a
732/// sign extension from a 16-bit value.  If so, this returns true and the
733/// immediate.
734static bool isIntS16Immediate(SDNode *N, short &Imm) {
735  if (N->getOpcode() != ISD::Constant)
736    return false;
737
738  Imm = (short)cast<ConstantSDNode>(N)->getValue();
739  if (N->getValueType(0) == MVT::i32)
740    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
741  else
742    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
743}
744static bool isIntS16Immediate(SDOperand Op, short &Imm) {
745  return isIntS16Immediate(Op.Val, Imm);
746}
747
748
749/// SelectAddressRegReg - Given the specified addressed, check to see if it
750/// can be represented as an indexed [r+r] operation.  Returns false if it
751/// can be more efficiently represented with [r+imm].
752bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
753                                            SDOperand &Index,
754                                            SelectionDAG &DAG) {
755  short imm = 0;
756  if (N.getOpcode() == ISD::ADD) {
757    if (isIntS16Immediate(N.getOperand(1), imm))
758      return false;    // r+i
759    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
760      return false;    // r+i
761
762    Base = N.getOperand(0);
763    Index = N.getOperand(1);
764    return true;
765  } else if (N.getOpcode() == ISD::OR) {
766    if (isIntS16Immediate(N.getOperand(1), imm))
767      return false;    // r+i can fold it if we can.
768
769    // If this is an or of disjoint bitfields, we can codegen this as an add
770    // (for better address arithmetic) if the LHS and RHS of the OR are provably
771    // disjoint.
772    APInt LHSKnownZero, LHSKnownOne;
773    APInt RHSKnownZero, RHSKnownOne;
774    DAG.ComputeMaskedBits(N.getOperand(0),
775                          APInt::getAllOnesValue(N.getOperand(0)
776                            .getValueSizeInBits()),
777                          LHSKnownZero, LHSKnownOne);
778
779    if (LHSKnownZero.getBoolValue()) {
780      DAG.ComputeMaskedBits(N.getOperand(1),
781                            APInt::getAllOnesValue(N.getOperand(1)
782                              .getValueSizeInBits()),
783                            RHSKnownZero, RHSKnownOne);
784      // If all of the bits are known zero on the LHS or RHS, the add won't
785      // carry.
786      if (~(LHSKnownZero | RHSKnownZero) == 0) {
787        Base = N.getOperand(0);
788        Index = N.getOperand(1);
789        return true;
790      }
791    }
792  }
793
794  return false;
795}
796
797/// Returns true if the address N can be represented by a base register plus
798/// a signed 16-bit displacement [r+imm], and if it is not better
799/// represented as reg+reg.
800bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
801                                            SDOperand &Base, SelectionDAG &DAG){
802  // If this can be more profitably realized as r+r, fail.
803  if (SelectAddressRegReg(N, Disp, Base, DAG))
804    return false;
805
806  if (N.getOpcode() == ISD::ADD) {
807    short imm = 0;
808    if (isIntS16Immediate(N.getOperand(1), imm)) {
809      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
810      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
811        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
812      } else {
813        Base = N.getOperand(0);
814      }
815      return true; // [r+i]
816    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
817      // Match LOAD (ADD (X, Lo(G))).
818      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
819             && "Cannot handle constant offsets yet!");
820      Disp = N.getOperand(1).getOperand(0);  // The global address.
821      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
822             Disp.getOpcode() == ISD::TargetConstantPool ||
823             Disp.getOpcode() == ISD::TargetJumpTable);
824      Base = N.getOperand(0);
825      return true;  // [&g+r]
826    }
827  } else if (N.getOpcode() == ISD::OR) {
828    short imm = 0;
829    if (isIntS16Immediate(N.getOperand(1), imm)) {
830      // If this is an or of disjoint bitfields, we can codegen this as an add
831      // (for better address arithmetic) if the LHS and RHS of the OR are
832      // provably disjoint.
833      APInt LHSKnownZero, LHSKnownOne;
834      DAG.ComputeMaskedBits(N.getOperand(0),
835                            APInt::getAllOnesValue(N.getOperand(0)
836                                                   .getValueSizeInBits()),
837                            LHSKnownZero, LHSKnownOne);
838
839      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
840        // If all of the bits are known zero on the LHS or RHS, the add won't
841        // carry.
842        Base = N.getOperand(0);
843        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
844        return true;
845      }
846    }
847  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
848    // Loading from a constant address.
849
850    // If this address fits entirely in a 16-bit sext immediate field, codegen
851    // this as "d, 0"
852    short Imm;
853    if (isIntS16Immediate(CN, Imm)) {
854      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
855      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
856      return true;
857    }
858
859    // Handle 32-bit sext immediates with LIS + addr mode.
860    if (CN->getValueType(0) == MVT::i32 ||
861        (int64_t)CN->getValue() == (int)CN->getValue()) {
862      int Addr = (int)CN->getValue();
863
864      // Otherwise, break this down into an LIS + disp.
865      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
866
867      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
868      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
869      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
870      return true;
871    }
872  }
873
874  Disp = DAG.getTargetConstant(0, getPointerTy());
875  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
876    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
877  else
878    Base = N;
879  return true;      // [r+0]
880}
881
882/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
883/// represented as an indexed [r+r] operation.
884bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
885                                                SDOperand &Index,
886                                                SelectionDAG &DAG) {
887  // Check to see if we can easily represent this as an [r+r] address.  This
888  // will fail if it thinks that the address is more profitably represented as
889  // reg+imm, e.g. where imm = 0.
890  if (SelectAddressRegReg(N, Base, Index, DAG))
891    return true;
892
893  // If the operand is an addition, always emit this as [r+r], since this is
894  // better (for code size, and execution, as the memop does the add for free)
895  // than emitting an explicit add.
896  if (N.getOpcode() == ISD::ADD) {
897    Base = N.getOperand(0);
898    Index = N.getOperand(1);
899    return true;
900  }
901
902  // Otherwise, do it the hard way, using R0 as the base register.
903  Base = DAG.getRegister(PPC::R0, N.getValueType());
904  Index = N;
905  return true;
906}
907
908/// SelectAddressRegImmShift - Returns true if the address N can be
909/// represented by a base register plus a signed 14-bit displacement
910/// [r+imm*4].  Suitable for use by STD and friends.
911bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
912                                                 SDOperand &Base,
913                                                 SelectionDAG &DAG) {
914  // If this can be more profitably realized as r+r, fail.
915  if (SelectAddressRegReg(N, Disp, Base, DAG))
916    return false;
917
918  if (N.getOpcode() == ISD::ADD) {
919    short imm = 0;
920    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
921      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
922      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
923        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
924      } else {
925        Base = N.getOperand(0);
926      }
927      return true; // [r+i]
928    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
929      // Match LOAD (ADD (X, Lo(G))).
930      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
931             && "Cannot handle constant offsets yet!");
932      Disp = N.getOperand(1).getOperand(0);  // The global address.
933      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
934             Disp.getOpcode() == ISD::TargetConstantPool ||
935             Disp.getOpcode() == ISD::TargetJumpTable);
936      Base = N.getOperand(0);
937      return true;  // [&g+r]
938    }
939  } else if (N.getOpcode() == ISD::OR) {
940    short imm = 0;
941    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
942      // If this is an or of disjoint bitfields, we can codegen this as an add
943      // (for better address arithmetic) if the LHS and RHS of the OR are
944      // provably disjoint.
945      APInt LHSKnownZero, LHSKnownOne;
946      DAG.ComputeMaskedBits(N.getOperand(0),
947                            APInt::getAllOnesValue(N.getOperand(0)
948                                                   .getValueSizeInBits()),
949                            LHSKnownZero, LHSKnownOne);
950      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
951        // If all of the bits are known zero on the LHS or RHS, the add won't
952        // carry.
953        Base = N.getOperand(0);
954        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
955        return true;
956      }
957    }
958  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
959    // Loading from a constant address.  Verify low two bits are clear.
960    if ((CN->getValue() & 3) == 0) {
961      // If this address fits entirely in a 14-bit sext immediate field, codegen
962      // this as "d, 0"
963      short Imm;
964      if (isIntS16Immediate(CN, Imm)) {
965        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
966        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
967        return true;
968      }
969
970      // Fold the low-part of 32-bit absolute addresses into addr mode.
971      if (CN->getValueType(0) == MVT::i32 ||
972          (int64_t)CN->getValue() == (int)CN->getValue()) {
973        int Addr = (int)CN->getValue();
974
975        // Otherwise, break this down into an LIS + disp.
976        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
977
978        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
979        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
980        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
981        return true;
982      }
983    }
984  }
985
986  Disp = DAG.getTargetConstant(0, getPointerTy());
987  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
988    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
989  else
990    Base = N;
991  return true;      // [r+0]
992}
993
994
995/// getPreIndexedAddressParts - returns true by value, base pointer and
996/// offset pointer and addressing mode by reference if the node's address
997/// can be legally represented as pre-indexed load / store address.
998bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
999                                                  SDOperand &Offset,
1000                                                  ISD::MemIndexedMode &AM,
1001                                                  SelectionDAG &DAG) {
1002  // Disabled by default for now.
1003  if (!EnablePPCPreinc) return false;
1004
1005  SDOperand Ptr;
1006  MVT::ValueType VT;
1007  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1008    Ptr = LD->getBasePtr();
1009    VT = LD->getMemoryVT();
1010
1011  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1012    ST = ST;
1013    Ptr = ST->getBasePtr();
1014    VT  = ST->getMemoryVT();
1015  } else
1016    return false;
1017
1018  // PowerPC doesn't have preinc load/store instructions for vectors.
1019  if (MVT::isVector(VT))
1020    return false;
1021
1022  // TODO: Check reg+reg first.
1023
1024  // LDU/STU use reg+imm*4, others use reg+imm.
1025  if (VT != MVT::i64) {
1026    // reg + imm
1027    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1028      return false;
1029  } else {
1030    // reg + imm * 4.
1031    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1032      return false;
1033  }
1034
1035  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1036    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1037    // sext i32 to i64 when addr mode is r+i.
1038    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1039        LD->getExtensionType() == ISD::SEXTLOAD &&
1040        isa<ConstantSDNode>(Offset))
1041      return false;
1042  }
1043
1044  AM = ISD::PRE_INC;
1045  return true;
1046}
1047
1048//===----------------------------------------------------------------------===//
1049//  LowerOperation implementation
1050//===----------------------------------------------------------------------===//
1051
1052SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1053                                             SelectionDAG &DAG) {
1054  MVT::ValueType PtrVT = Op.getValueType();
1055  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1056  Constant *C = CP->getConstVal();
1057  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1058  SDOperand Zero = DAG.getConstant(0, PtrVT);
1059
1060  const TargetMachine &TM = DAG.getTarget();
1061
1062  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1063  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1064
1065  // If this is a non-darwin platform, we don't support non-static relo models
1066  // yet.
1067  if (TM.getRelocationModel() == Reloc::Static ||
1068      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1069    // Generate non-pic code that has direct accesses to the constant pool.
1070    // The address of the global is just (hi(&g)+lo(&g)).
1071    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1072  }
1073
1074  if (TM.getRelocationModel() == Reloc::PIC_) {
1075    // With PIC, the first instruction is actually "GR+hi(&G)".
1076    Hi = DAG.getNode(ISD::ADD, PtrVT,
1077                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1078  }
1079
1080  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1081  return Lo;
1082}
1083
1084SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1085  MVT::ValueType PtrVT = Op.getValueType();
1086  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1087  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1088  SDOperand Zero = DAG.getConstant(0, PtrVT);
1089
1090  const TargetMachine &TM = DAG.getTarget();
1091
1092  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1093  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1094
1095  // If this is a non-darwin platform, we don't support non-static relo models
1096  // yet.
1097  if (TM.getRelocationModel() == Reloc::Static ||
1098      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1099    // Generate non-pic code that has direct accesses to the constant pool.
1100    // The address of the global is just (hi(&g)+lo(&g)).
1101    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1102  }
1103
1104  if (TM.getRelocationModel() == Reloc::PIC_) {
1105    // With PIC, the first instruction is actually "GR+hi(&G)".
1106    Hi = DAG.getNode(ISD::ADD, PtrVT,
1107                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1108  }
1109
1110  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1111  return Lo;
1112}
1113
1114SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1115                                                   SelectionDAG &DAG) {
1116  assert(0 && "TLS not implemented for PPC.");
1117  return SDOperand(); // Not reached
1118}
1119
1120SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1121                                                SelectionDAG &DAG) {
1122  MVT::ValueType PtrVT = Op.getValueType();
1123  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1124  GlobalValue *GV = GSDN->getGlobal();
1125  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1126  // If it's a debug information descriptor, don't mess with it.
1127  if (DAG.isVerifiedDebugInfoDesc(Op))
1128    return GA;
1129  SDOperand Zero = DAG.getConstant(0, PtrVT);
1130
1131  const TargetMachine &TM = DAG.getTarget();
1132
1133  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1134  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1135
1136  // If this is a non-darwin platform, we don't support non-static relo models
1137  // yet.
1138  if (TM.getRelocationModel() == Reloc::Static ||
1139      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1140    // Generate non-pic code that has direct accesses to globals.
1141    // The address of the global is just (hi(&g)+lo(&g)).
1142    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1143  }
1144
1145  if (TM.getRelocationModel() == Reloc::PIC_) {
1146    // With PIC, the first instruction is actually "GR+hi(&G)".
1147    Hi = DAG.getNode(ISD::ADD, PtrVT,
1148                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1149  }
1150
1151  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1152
1153  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1154    return Lo;
1155
1156  // If the global is weak or external, we have to go through the lazy
1157  // resolution stub.
1158  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1159}
1160
1161SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1162  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1163
1164  // If we're comparing for equality to zero, expose the fact that this is
1165  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1166  // fold the new nodes.
1167  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1168    if (C->isNullValue() && CC == ISD::SETEQ) {
1169      MVT::ValueType VT = Op.getOperand(0).getValueType();
1170      SDOperand Zext = Op.getOperand(0);
1171      if (VT < MVT::i32) {
1172        VT = MVT::i32;
1173        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1174      }
1175      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1176      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1177      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1178                                  DAG.getConstant(Log2b, MVT::i32));
1179      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1180    }
1181    // Leave comparisons against 0 and -1 alone for now, since they're usually
1182    // optimized.  FIXME: revisit this when we can custom lower all setcc
1183    // optimizations.
1184    if (C->isAllOnesValue() || C->isNullValue())
1185      return SDOperand();
1186  }
1187
1188  // If we have an integer seteq/setne, turn it into a compare against zero
1189  // by xor'ing the rhs with the lhs, which is faster than setting a
1190  // condition register, reading it back out, and masking the correct bit.  The
1191  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1192  // the result to other bit-twiddling opportunities.
1193  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1194  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1195    MVT::ValueType VT = Op.getValueType();
1196    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1197                                Op.getOperand(1));
1198    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1199  }
1200  return SDOperand();
1201}
1202
1203SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1204                              int VarArgsFrameIndex,
1205                              int VarArgsStackOffset,
1206                              unsigned VarArgsNumGPR,
1207                              unsigned VarArgsNumFPR,
1208                              const PPCSubtarget &Subtarget) {
1209
1210  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1211  return SDOperand(); // Not reached
1212}
1213
1214SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1215                              int VarArgsFrameIndex,
1216                              int VarArgsStackOffset,
1217                              unsigned VarArgsNumGPR,
1218                              unsigned VarArgsNumFPR,
1219                              const PPCSubtarget &Subtarget) {
1220
1221  if (Subtarget.isMachoABI()) {
1222    // vastart just stores the address of the VarArgsFrameIndex slot into the
1223    // memory location argument.
1224    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1225    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1226    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1227    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1228  }
1229
1230  // For ELF 32 ABI we follow the layout of the va_list struct.
1231  // We suppose the given va_list is already allocated.
1232  //
1233  // typedef struct {
1234  //  char gpr;     /* index into the array of 8 GPRs
1235  //                 * stored in the register save area
1236  //                 * gpr=0 corresponds to r3,
1237  //                 * gpr=1 to r4, etc.
1238  //                 */
1239  //  char fpr;     /* index into the array of 8 FPRs
1240  //                 * stored in the register save area
1241  //                 * fpr=0 corresponds to f1,
1242  //                 * fpr=1 to f2, etc.
1243  //                 */
1244  //  char *overflow_arg_area;
1245  //                /* location on stack that holds
1246  //                 * the next overflow argument
1247  //                 */
1248  //  char *reg_save_area;
1249  //               /* where r3:r10 and f1:f8 (if saved)
1250  //                * are stored
1251  //                */
1252  // } va_list[1];
1253
1254
1255  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1256  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1257
1258
1259  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1260
1261  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1262  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1263
1264  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1265  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1266
1267  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1268  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1269
1270  uint64_t FPROffset = 1;
1271  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1272
1273  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1274
1275  // Store first byte : number of int regs
1276  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1277                                      Op.getOperand(1), SV, 0);
1278  uint64_t nextOffset = FPROffset;
1279  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1280                                  ConstFPROffset);
1281
1282  // Store second byte : number of float regs
1283  SDOperand secondStore =
1284    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1285  nextOffset += StackOffset;
1286  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1287
1288  // Store second word : arguments given on stack
1289  SDOperand thirdStore =
1290    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1291  nextOffset += FrameOffset;
1292  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1293
1294  // Store third word : arguments given in registers
1295  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1296
1297}
1298
1299#include "PPCGenCallingConv.inc"
1300
1301/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1302/// depending on which subtarget is selected.
1303static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1304  if (Subtarget.isMachoABI()) {
1305    static const unsigned FPR[] = {
1306      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1307      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1308    };
1309    return FPR;
1310  }
1311
1312
1313  static const unsigned FPR[] = {
1314    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1315    PPC::F8
1316  };
1317  return FPR;
1318}
1319
1320SDOperand
1321PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1322                                         SelectionDAG &DAG,
1323                                         int &VarArgsFrameIndex,
1324                                         int &VarArgsStackOffset,
1325                                         unsigned &VarArgsNumGPR,
1326                                         unsigned &VarArgsNumFPR,
1327                                         const PPCSubtarget &Subtarget) {
1328  // TODO: add description of PPC stack frame format, or at least some docs.
1329  //
1330  MachineFunction &MF = DAG.getMachineFunction();
1331  MachineFrameInfo *MFI = MF.getFrameInfo();
1332  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1333  SmallVector<SDOperand, 8> ArgValues;
1334  SDOperand Root = Op.getOperand(0);
1335  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1336
1337  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1338  bool isPPC64 = PtrVT == MVT::i64;
1339  bool isMachoABI = Subtarget.isMachoABI();
1340  bool isELF32_ABI = Subtarget.isELF32_ABI();
1341  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1342
1343  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1344
1345  static const unsigned GPR_32[] = {           // 32-bit registers.
1346    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1347    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1348  };
1349  static const unsigned GPR_64[] = {           // 64-bit registers.
1350    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1351    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1352  };
1353
1354  static const unsigned *FPR = GetFPR(Subtarget);
1355
1356  static const unsigned VR[] = {
1357    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1358    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1359  };
1360
1361  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1362  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1363  const unsigned Num_VR_Regs  = array_lengthof( VR);
1364
1365  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1366
1367  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1368
1369  // In 32-bit non-varargs functions, the stack space for vectors is after the
1370  // stack space for non-vectors.  We do not use this space unless we have
1371  // too many vectors to fit in registers, something that only occurs in
1372  // constructed examples:), but we have to walk the arglist to figure
1373  // that out...for the pathological case, compute VecArgOffset as the
1374  // start of the vector parameter area.  Computing VecArgOffset is the
1375  // entire point of the following loop.
1376  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1377  // to handle Elf here.
1378  unsigned VecArgOffset = ArgOffset;
1379  if (!isVarArg && !isPPC64) {
1380    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1381         ++ArgNo) {
1382      MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1383      unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1384      ISD::ArgFlagsTy Flags =
1385        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1386
1387      if (Flags.isByVal()) {
1388        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1389        ObjSize = Flags.getByValSize();
1390        unsigned ArgSize =
1391                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1392        VecArgOffset += ArgSize;
1393        continue;
1394      }
1395
1396      switch(ObjectVT) {
1397      default: assert(0 && "Unhandled argument type!");
1398      case MVT::i32:
1399      case MVT::f32:
1400        VecArgOffset += isPPC64 ? 8 : 4;
1401        break;
1402      case MVT::i64:  // PPC64
1403      case MVT::f64:
1404        VecArgOffset += 8;
1405        break;
1406      case MVT::v4f32:
1407      case MVT::v4i32:
1408      case MVT::v8i16:
1409      case MVT::v16i8:
1410        // Nothing to do, we're only looking at Nonvector args here.
1411        break;
1412      }
1413    }
1414  }
1415  // We've found where the vector parameter area in memory is.  Skip the
1416  // first 12 parameters; these don't use that memory.
1417  VecArgOffset = ((VecArgOffset+15)/16)*16;
1418  VecArgOffset += 12*16;
1419
1420  // Add DAG nodes to load the arguments or copy them out of registers.  On
1421  // entry to a function on PPC, the arguments start after the linkage area,
1422  // although the first ones are often in registers.
1423  //
1424  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1425  // represented with two words (long long or double) must be copied to an
1426  // even GPR_idx value or to an even ArgOffset value.
1427
1428  SmallVector<SDOperand, 8> MemOps;
1429
1430  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1431    SDOperand ArgVal;
1432    bool needsLoad = false;
1433    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1434    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1435    unsigned ArgSize = ObjSize;
1436    ISD::ArgFlagsTy Flags =
1437      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1438    // See if next argument requires stack alignment in ELF
1439    bool Align = Flags.isSplit();
1440
1441    unsigned CurArgOffset = ArgOffset;
1442
1443    // FIXME alignment for ELF may not be right
1444    // FIXME the codegen can be much improved in some cases.
1445    // We do not have to keep everything in memory.
1446    if (Flags.isByVal()) {
1447      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1448      ObjSize = Flags.getByValSize();
1449      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1450      // Double word align in ELF
1451      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1452      // Objects of size 1 and 2 are right justified, everything else is
1453      // left justified.  This means the memory address is adjusted forwards.
1454      if (ObjSize==1 || ObjSize==2) {
1455        CurArgOffset = CurArgOffset + (4 - ObjSize);
1456      }
1457      // The value of the object is its address.
1458      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1459      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1460      ArgValues.push_back(FIN);
1461      if (ObjSize==1 || ObjSize==2) {
1462        if (GPR_idx != Num_GPR_Regs) {
1463          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1464          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1465          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1466          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1467                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1468          MemOps.push_back(Store);
1469          ++GPR_idx;
1470          if (isMachoABI) ArgOffset += PtrByteSize;
1471        } else {
1472          ArgOffset += PtrByteSize;
1473        }
1474        continue;
1475      }
1476      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1477        // Store whatever pieces of the object are in registers
1478        // to memory.  ArgVal will be address of the beginning of
1479        // the object.
1480        if (GPR_idx != Num_GPR_Regs) {
1481          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1482          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1483          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1484          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1485          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1486          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1487          MemOps.push_back(Store);
1488          ++GPR_idx;
1489          if (isMachoABI) ArgOffset += PtrByteSize;
1490        } else {
1491          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1492          break;
1493        }
1494      }
1495      continue;
1496    }
1497
1498    switch (ObjectVT) {
1499    default: assert(0 && "Unhandled argument type!");
1500    case MVT::i32:
1501      if (!isPPC64) {
1502        // Double word align in ELF
1503        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1504
1505        if (GPR_idx != Num_GPR_Regs) {
1506          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1507          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1508          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1509          ++GPR_idx;
1510        } else {
1511          needsLoad = true;
1512          ArgSize = PtrByteSize;
1513        }
1514        // Stack align in ELF
1515        if (needsLoad && Align && isELF32_ABI)
1516          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1517        // All int arguments reserve stack space in Macho ABI.
1518        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1519        break;
1520      }
1521      // FALLTHROUGH
1522    case MVT::i64:  // PPC64
1523      if (GPR_idx != Num_GPR_Regs) {
1524        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1525        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1526        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1527
1528        if (ObjectVT == MVT::i32) {
1529          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1530          // value to MVT::i64 and then truncate to the correct register size.
1531          if (Flags.isSExt())
1532            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1533                                 DAG.getValueType(ObjectVT));
1534          else if (Flags.isZExt())
1535            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1536                                 DAG.getValueType(ObjectVT));
1537
1538          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1539        }
1540
1541        ++GPR_idx;
1542      } else {
1543        needsLoad = true;
1544      }
1545      // All int arguments reserve stack space in Macho ABI.
1546      if (isMachoABI || needsLoad) ArgOffset += 8;
1547      break;
1548
1549    case MVT::f32:
1550    case MVT::f64:
1551      // Every 4 bytes of argument space consumes one of the GPRs available for
1552      // argument passing.
1553      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1554        ++GPR_idx;
1555        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1556          ++GPR_idx;
1557      }
1558      if (FPR_idx != Num_FPR_Regs) {
1559        unsigned VReg;
1560        if (ObjectVT == MVT::f32)
1561          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1562        else
1563          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1564        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1565        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1566        ++FPR_idx;
1567      } else {
1568        needsLoad = true;
1569      }
1570
1571      // Stack align in ELF
1572      if (needsLoad && Align && isELF32_ABI)
1573        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1574      // All FP arguments reserve stack space in Macho ABI.
1575      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1576      break;
1577    case MVT::v4f32:
1578    case MVT::v4i32:
1579    case MVT::v8i16:
1580    case MVT::v16i8:
1581      // Note that vector arguments in registers don't reserve stack space,
1582      // except in varargs functions.
1583      if (VR_idx != Num_VR_Regs) {
1584        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1585        RegInfo.addLiveIn(VR[VR_idx], VReg);
1586        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1587        if (isVarArg) {
1588          while ((ArgOffset % 16) != 0) {
1589            ArgOffset += PtrByteSize;
1590            if (GPR_idx != Num_GPR_Regs)
1591              GPR_idx++;
1592          }
1593          ArgOffset += 16;
1594          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1595        }
1596        ++VR_idx;
1597      } else {
1598        if (!isVarArg && !isPPC64) {
1599          // Vectors go after all the nonvectors.
1600          CurArgOffset = VecArgOffset;
1601          VecArgOffset += 16;
1602        } else {
1603          // Vectors are aligned.
1604          ArgOffset = ((ArgOffset+15)/16)*16;
1605          CurArgOffset = ArgOffset;
1606          ArgOffset += 16;
1607        }
1608        needsLoad = true;
1609      }
1610      break;
1611    }
1612
1613    // We need to load the argument to a virtual register if we determined above
1614    // that we ran out of physical registers of the appropriate type.
1615    if (needsLoad) {
1616      int FI = MFI->CreateFixedObject(ObjSize,
1617                                      CurArgOffset + (ArgSize - ObjSize));
1618      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1619      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1620    }
1621
1622    ArgValues.push_back(ArgVal);
1623  }
1624
1625  // If the function takes variable number of arguments, make a frame index for
1626  // the start of the first vararg value... for expansion of llvm.va_start.
1627  if (isVarArg) {
1628
1629    int depth;
1630    if (isELF32_ABI) {
1631      VarArgsNumGPR = GPR_idx;
1632      VarArgsNumFPR = FPR_idx;
1633
1634      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1635      // pointer.
1636      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1637                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1638                MVT::getSizeInBits(PtrVT)/8);
1639
1640      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1641                                                  ArgOffset);
1642
1643    }
1644    else
1645      depth = ArgOffset;
1646
1647    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1648                                               depth);
1649    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1650
1651    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1652    // stored to the VarArgsFrameIndex on the stack.
1653    if (isELF32_ABI) {
1654      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1655        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1656        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1657        MemOps.push_back(Store);
1658        // Increment the address by four for the next argument to store
1659        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1660        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1661      }
1662    }
1663
1664    // If this function is vararg, store any remaining integer argument regs
1665    // to their spots on the stack so that they may be loaded by deferencing the
1666    // result of va_next.
1667    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1668      unsigned VReg;
1669      if (isPPC64)
1670        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1671      else
1672        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1673
1674      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1675      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1676      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1677      MemOps.push_back(Store);
1678      // Increment the address by four for the next argument to store
1679      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1680      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1681    }
1682
1683    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1684    // on the stack.
1685    if (isELF32_ABI) {
1686      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1687        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1688        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1689        MemOps.push_back(Store);
1690        // Increment the address by eight for the next argument to store
1691        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1692                                           PtrVT);
1693        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1694      }
1695
1696      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1697        unsigned VReg;
1698        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1699
1700        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1701        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1702        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1703        MemOps.push_back(Store);
1704        // Increment the address by eight for the next argument to store
1705        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1706                                           PtrVT);
1707        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1708      }
1709    }
1710  }
1711
1712  if (!MemOps.empty())
1713    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1714
1715  ArgValues.push_back(Root);
1716
1717  // Return the new list of results.
1718  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1719                                    Op.Val->value_end());
1720  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1721}
1722
1723/// isCallCompatibleAddress - Return the immediate to use if the specified
1724/// 32-bit value is representable in the immediate field of a BxA instruction.
1725static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1726  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1727  if (!C) return 0;
1728
1729  int Addr = C->getValue();
1730  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1731      (Addr << 6 >> 6) != Addr)
1732    return 0;  // Top 6 bits have to be sext of immediate.
1733
1734  return DAG.getConstant((int)C->getValue() >> 2,
1735                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1736}
1737
1738/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1739/// by "Src" to address "Dst" of size "Size".  Alignment information is
1740/// specified by the specific parameter attribute. The copy will be passed as
1741/// a byval function parameter.
1742/// Sometimes what we are copying is the end of a larger object, the part that
1743/// does not fit in registers.
1744static SDOperand
1745CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1746                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1747                          unsigned Size) {
1748  SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1749  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
1750                       NULL, 0, NULL, 0);
1751}
1752
1753SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1754                                       const PPCSubtarget &Subtarget,
1755                                       TargetMachine &TM) {
1756  SDOperand Chain  = Op.getOperand(0);
1757  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1758  SDOperand Callee = Op.getOperand(4);
1759  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1760
1761  bool isMachoABI = Subtarget.isMachoABI();
1762  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1763
1764  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1765  bool isPPC64 = PtrVT == MVT::i64;
1766  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1767
1768  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1769  // SelectExpr to use to put the arguments in the appropriate registers.
1770  std::vector<SDOperand> args_to_use;
1771
1772  // Count how many bytes are to be pushed on the stack, including the linkage
1773  // area, and parameter passing area.  We start with 24/48 bytes, which is
1774  // prereserved space for [SP][CR][LR][3 x unused].
1775  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1776
1777  // Add up all the space actually used.
1778  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1779  // they all go in registers, but we must reserve stack space for them for
1780  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1781  // assigned stack space in order, with padding so Altivec parameters are
1782  // 16-byte aligned.
1783  unsigned nAltivecParamsAtEnd = 0;
1784  for (unsigned i = 0; i != NumOps; ++i) {
1785    SDOperand Arg = Op.getOperand(5+2*i);
1786    MVT::ValueType ArgVT = Arg.getValueType();
1787    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1788        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1789      if (!isVarArg && !isPPC64) {
1790      // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1791      // do those last so we know how much padding we need.
1792        nAltivecParamsAtEnd++;
1793        continue;
1794      } else {
1795        // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1796        NumBytes = ((NumBytes+15)/16)*16;
1797      }
1798    }
1799    ISD::ArgFlagsTy Flags =
1800      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1801    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1802    if (Flags.isByVal())
1803      ArgSize = Flags.getByValSize();
1804    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1805    NumBytes += ArgSize;
1806  }
1807  // Allow for Altivec parameters at the end, if needed.
1808  if (nAltivecParamsAtEnd) {
1809    NumBytes = ((NumBytes+15)/16)*16;
1810    NumBytes += 16*nAltivecParamsAtEnd;
1811  }
1812
1813  // The prolog code of the callee may store up to 8 GPR argument registers to
1814  // the stack, allowing va_start to index over them in memory if its varargs.
1815  // Because we cannot tell if this is needed on the caller side, we have to
1816  // conservatively assume that it is needed.  As such, make sure we have at
1817  // least enough stack space for the caller to store the 8 GPRs.
1818  NumBytes = std::max(NumBytes,
1819                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1820
1821  // Adjust the stack pointer for the new arguments...
1822  // These operations are automatically eliminated by the prolog/epilog pass
1823  Chain = DAG.getCALLSEQ_START(Chain,
1824                               DAG.getConstant(NumBytes, PtrVT));
1825  SDOperand CallSeqStart = Chain;
1826
1827  // Set up a copy of the stack pointer for use loading and storing any
1828  // arguments that may not fit in the registers available for argument
1829  // passing.
1830  SDOperand StackPtr;
1831  if (isPPC64)
1832    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1833  else
1834    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1835
1836  // Figure out which arguments are going to go in registers, and which in
1837  // memory.  Also, if this is a vararg function, floating point operations
1838  // must be stored to our stack, and loaded into integer regs as well, if
1839  // any integer regs are available for argument passing.
1840  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1841  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1842
1843  static const unsigned GPR_32[] = {           // 32-bit registers.
1844    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1845    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1846  };
1847  static const unsigned GPR_64[] = {           // 64-bit registers.
1848    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1849    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1850  };
1851  static const unsigned *FPR = GetFPR(Subtarget);
1852
1853  static const unsigned VR[] = {
1854    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1855    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1856  };
1857  const unsigned NumGPRs = array_lengthof(GPR_32);
1858  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1859  const unsigned NumVRs  = array_lengthof( VR);
1860
1861  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1862
1863  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1864  SmallVector<SDOperand, 8> MemOpChains;
1865  for (unsigned i = 0; i != NumOps; ++i) {
1866    bool inMem = false;
1867    SDOperand Arg = Op.getOperand(5+2*i);
1868    ISD::ArgFlagsTy Flags =
1869      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1870    // See if next argument requires stack alignment in ELF
1871    bool Align = Flags.isSplit();
1872
1873    // PtrOff will be used to store the current argument to the stack if a
1874    // register cannot be found for it.
1875    SDOperand PtrOff;
1876
1877    // Stack align in ELF 32
1878    if (isELF32_ABI && Align)
1879      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1880                               StackPtr.getValueType());
1881    else
1882      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1883
1884    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1885
1886    // On PPC64, promote integers to 64-bit values.
1887    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1888      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
1889      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1890      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1891    }
1892
1893    // FIXME Elf untested, what are alignment rules?
1894    // FIXME memcpy is used way more than necessary.  Correctness first.
1895    if (Flags.isByVal()) {
1896      unsigned Size = Flags.getByValSize();
1897      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
1898      if (Size==1 || Size==2) {
1899        // Very small objects are passed right-justified.
1900        // Everything else is passed left-justified.
1901        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1902        if (GPR_idx != NumGPRs) {
1903          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1904                                          NULL, 0, VT);
1905          MemOpChains.push_back(Load.getValue(1));
1906          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1907          if (isMachoABI)
1908            ArgOffset += PtrByteSize;
1909        } else {
1910          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1911          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1912          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1913                                CallSeqStart.Val->getOperand(0),
1914                                Flags, DAG, Size);
1915          // This must go outside the CALLSEQ_START..END.
1916          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1917                               CallSeqStart.Val->getOperand(1));
1918          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1919          Chain = CallSeqStart = NewCallSeqStart;
1920          ArgOffset += PtrByteSize;
1921        }
1922        continue;
1923      }
1924      // Copy entire object into memory.  There are cases where gcc-generated
1925      // code assumes it is there, even if it could be put entirely into
1926      // registers.  (This is not what the doc says.)
1927      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1928                            CallSeqStart.Val->getOperand(0),
1929                            Flags, DAG, Size);
1930      // This must go outside the CALLSEQ_START..END.
1931      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1932                           CallSeqStart.Val->getOperand(1));
1933      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1934      Chain = CallSeqStart = NewCallSeqStart;
1935      // And copy the pieces of it that fit into registers.
1936      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1937        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1938        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1939        if (GPR_idx != NumGPRs) {
1940          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1941          MemOpChains.push_back(Load.getValue(1));
1942          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1943          if (isMachoABI)
1944            ArgOffset += PtrByteSize;
1945        } else {
1946          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
1947          break;
1948        }
1949      }
1950      continue;
1951    }
1952
1953    switch (Arg.getValueType()) {
1954    default: assert(0 && "Unexpected ValueType for argument!");
1955    case MVT::i32:
1956    case MVT::i64:
1957      // Double word align in ELF
1958      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
1959      if (GPR_idx != NumGPRs) {
1960        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1961      } else {
1962        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1963        inMem = true;
1964      }
1965      if (inMem || isMachoABI) {
1966        // Stack align in ELF
1967        if (isELF32_ABI && Align)
1968          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1969
1970        ArgOffset += PtrByteSize;
1971      }
1972      break;
1973    case MVT::f32:
1974    case MVT::f64:
1975      if (FPR_idx != NumFPRs) {
1976        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1977
1978        if (isVarArg) {
1979          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1980          MemOpChains.push_back(Store);
1981
1982          // Float varargs are always shadowed in available integer registers
1983          if (GPR_idx != NumGPRs) {
1984            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1985            MemOpChains.push_back(Load.getValue(1));
1986            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1987                                                                Load));
1988          }
1989          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1990            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1991            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1992            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1993            MemOpChains.push_back(Load.getValue(1));
1994            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1995                                                                Load));
1996          }
1997        } else {
1998          // If we have any FPRs remaining, we may also have GPRs remaining.
1999          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2000          // GPRs.
2001          if (isMachoABI) {
2002            if (GPR_idx != NumGPRs)
2003              ++GPR_idx;
2004            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2005                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2006              ++GPR_idx;
2007          }
2008        }
2009      } else {
2010        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2011        inMem = true;
2012      }
2013      if (inMem || isMachoABI) {
2014        // Stack align in ELF
2015        if (isELF32_ABI && Align)
2016          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2017        if (isPPC64)
2018          ArgOffset += 8;
2019        else
2020          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2021      }
2022      break;
2023    case MVT::v4f32:
2024    case MVT::v4i32:
2025    case MVT::v8i16:
2026    case MVT::v16i8:
2027      if (isVarArg) {
2028        // These go aligned on the stack, or in the corresponding R registers
2029        // when within range.  The Darwin PPC ABI doc claims they also go in
2030        // V registers; in fact gcc does this only for arguments that are
2031        // prototyped, not for those that match the ...  We do it for all
2032        // arguments, seems to work.
2033        while (ArgOffset % 16 !=0) {
2034          ArgOffset += PtrByteSize;
2035          if (GPR_idx != NumGPRs)
2036            GPR_idx++;
2037        }
2038        // We could elide this store in the case where the object fits
2039        // entirely in R registers.  Maybe later.
2040        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2041                            DAG.getConstant(ArgOffset, PtrVT));
2042        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2043        MemOpChains.push_back(Store);
2044        if (VR_idx != NumVRs) {
2045          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2046          MemOpChains.push_back(Load.getValue(1));
2047          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2048        }
2049        ArgOffset += 16;
2050        for (unsigned i=0; i<16; i+=PtrByteSize) {
2051          if (GPR_idx == NumGPRs)
2052            break;
2053          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2054                                  DAG.getConstant(i, PtrVT));
2055          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2056          MemOpChains.push_back(Load.getValue(1));
2057          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2058        }
2059        break;
2060      }
2061      // Non-varargs Altivec params generally go in registers, but have
2062      // stack space allocated at the end.
2063      if (VR_idx != NumVRs) {
2064        // Doesn't have GPR space allocated.
2065        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2066      } else if (nAltivecParamsAtEnd==0) {
2067        // We are emitting Altivec params in order.
2068        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2069                            DAG.getConstant(ArgOffset, PtrVT));
2070        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2071        MemOpChains.push_back(Store);
2072        ArgOffset += 16;
2073      }
2074      break;
2075    }
2076  }
2077  // If all Altivec parameters fit in registers, as they usually do,
2078  // they get stack space following the non-Altivec parameters.  We
2079  // don't track this here because nobody below needs it.
2080  // If there are more Altivec parameters than fit in registers emit
2081  // the stores here.
2082  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2083    unsigned j = 0;
2084    // Offset is aligned; skip 1st 12 params which go in V registers.
2085    ArgOffset = ((ArgOffset+15)/16)*16;
2086    ArgOffset += 12*16;
2087    for (unsigned i = 0; i != NumOps; ++i) {
2088      SDOperand Arg = Op.getOperand(5+2*i);
2089      MVT::ValueType ArgType = Arg.getValueType();
2090      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2091          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2092        if (++j > NumVRs) {
2093          SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2094                              DAG.getConstant(ArgOffset, PtrVT));
2095          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2096          MemOpChains.push_back(Store);
2097          ArgOffset += 16;
2098        }
2099      }
2100    }
2101  }
2102
2103  if (!MemOpChains.empty())
2104    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2105                        &MemOpChains[0], MemOpChains.size());
2106
2107  // Build a sequence of copy-to-reg nodes chained together with token chain
2108  // and flag operands which copy the outgoing args into the appropriate regs.
2109  SDOperand InFlag;
2110  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2111    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2112                             InFlag);
2113    InFlag = Chain.getValue(1);
2114  }
2115
2116  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2117  if (isVarArg && isELF32_ABI) {
2118    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2119    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2120    InFlag = Chain.getValue(1);
2121  }
2122
2123  std::vector<MVT::ValueType> NodeTys;
2124  NodeTys.push_back(MVT::Other);   // Returns a chain
2125  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2126
2127  SmallVector<SDOperand, 8> Ops;
2128  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2129
2130  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2131  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2132  // node so that legalize doesn't hack it.
2133  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2134    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2135  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2136    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2137  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2138    // If this is an absolute destination address, use the munged value.
2139    Callee = SDOperand(Dest, 0);
2140  else {
2141    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2142    // to do the call, we can't use PPCISD::CALL.
2143    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2144    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2145    InFlag = Chain.getValue(1);
2146
2147    // Copy the callee address into R12/X12 on darwin.
2148    if (isMachoABI) {
2149      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2150      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2151      InFlag = Chain.getValue(1);
2152    }
2153
2154    NodeTys.clear();
2155    NodeTys.push_back(MVT::Other);
2156    NodeTys.push_back(MVT::Flag);
2157    Ops.push_back(Chain);
2158    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2159    Callee.Val = 0;
2160  }
2161
2162  // If this is a direct call, pass the chain and the callee.
2163  if (Callee.Val) {
2164    Ops.push_back(Chain);
2165    Ops.push_back(Callee);
2166  }
2167
2168  // Add argument registers to the end of the list so that they are known live
2169  // into the call.
2170  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2171    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2172                                  RegsToPass[i].second.getValueType()));
2173
2174  if (InFlag.Val)
2175    Ops.push_back(InFlag);
2176  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2177  InFlag = Chain.getValue(1);
2178
2179  Chain = DAG.getCALLSEQ_END(Chain,
2180                             DAG.getConstant(NumBytes, PtrVT),
2181                             DAG.getConstant(0, PtrVT),
2182                             InFlag);
2183  if (Op.Val->getValueType(0) != MVT::Other)
2184    InFlag = Chain.getValue(1);
2185
2186  SmallVector<SDOperand, 16> ResultVals;
2187  SmallVector<CCValAssign, 16> RVLocs;
2188  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2189  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2190  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2191
2192  // Copy all of the result registers out of their specified physreg.
2193  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2194    CCValAssign &VA = RVLocs[i];
2195    MVT::ValueType VT = VA.getValVT();
2196    assert(VA.isRegLoc() && "Can only return in registers!");
2197    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2198    ResultVals.push_back(Chain.getValue(0));
2199    InFlag = Chain.getValue(2);
2200  }
2201
2202  // If the function returns void, just return the chain.
2203  if (RVLocs.empty())
2204    return Chain;
2205
2206  // Otherwise, merge everything together with a MERGE_VALUES node.
2207  ResultVals.push_back(Chain);
2208  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2209                              &ResultVals[0], ResultVals.size());
2210  return Res.getValue(Op.ResNo);
2211}
2212
2213SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2214                                      TargetMachine &TM) {
2215  SmallVector<CCValAssign, 16> RVLocs;
2216  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2217  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2218  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2219  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2220
2221  // If this is the first return lowered for this function, add the regs to the
2222  // liveout set for the function.
2223  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2224    for (unsigned i = 0; i != RVLocs.size(); ++i)
2225      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2226  }
2227
2228  SDOperand Chain = Op.getOperand(0);
2229  SDOperand Flag;
2230
2231  // Copy the result values into the output registers.
2232  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2233    CCValAssign &VA = RVLocs[i];
2234    assert(VA.isRegLoc() && "Can only return in registers!");
2235    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2236    Flag = Chain.getValue(1);
2237  }
2238
2239  if (Flag.Val)
2240    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2241  else
2242    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2243}
2244
2245SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2246                                   const PPCSubtarget &Subtarget) {
2247  // When we pop the dynamic allocation we need to restore the SP link.
2248
2249  // Get the corect type for pointers.
2250  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2251
2252  // Construct the stack pointer operand.
2253  bool IsPPC64 = Subtarget.isPPC64();
2254  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2255  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2256
2257  // Get the operands for the STACKRESTORE.
2258  SDOperand Chain = Op.getOperand(0);
2259  SDOperand SaveSP = Op.getOperand(1);
2260
2261  // Load the old link SP.
2262  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2263
2264  // Restore the stack pointer.
2265  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2266
2267  // Store the old link SP.
2268  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2269}
2270
2271SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2272                                         SelectionDAG &DAG,
2273                                         const PPCSubtarget &Subtarget) {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  bool IsPPC64 = Subtarget.isPPC64();
2276  bool isMachoABI = Subtarget.isMachoABI();
2277
2278  // Get current frame pointer save index.  The users of this index will be
2279  // primarily DYNALLOC instructions.
2280  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2281  int FPSI = FI->getFramePointerSaveIndex();
2282
2283  // If the frame pointer save index hasn't been defined yet.
2284  if (!FPSI) {
2285    // Find out what the fix offset of the frame pointer save area.
2286    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2287
2288    // Allocate the frame index for frame pointer save area.
2289    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2290    // Save the result.
2291    FI->setFramePointerSaveIndex(FPSI);
2292  }
2293
2294  // Get the inputs.
2295  SDOperand Chain = Op.getOperand(0);
2296  SDOperand Size  = Op.getOperand(1);
2297
2298  // Get the corect type for pointers.
2299  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2300  // Negate the size.
2301  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2302                                  DAG.getConstant(0, PtrVT), Size);
2303  // Construct a node for the frame pointer save index.
2304  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2305  // Build a DYNALLOC node.
2306  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2307  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2308  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2309}
2310
2311SDOperand PPCTargetLowering::LowerAtomicLAS(SDOperand Op, SelectionDAG &DAG) {
2312  MVT::ValueType VT = Op.Val->getValueType(0);
2313  SDOperand Chain   = Op.getOperand(0);
2314  SDOperand Ptr     = Op.getOperand(1);
2315  SDOperand Incr    = Op.getOperand(2);
2316
2317  // Issue a "load and reserve".
2318  std::vector<MVT::ValueType> VTs;
2319  VTs.push_back(VT);
2320  VTs.push_back(MVT::Other);
2321
2322  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2323  SDOperand Ops[] = {
2324    Chain,               // Chain
2325    Ptr,                 // Ptr
2326    Label,               // Label
2327  };
2328  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2329  Chain = Load.getValue(1);
2330
2331  // Compute new value.
2332  SDOperand NewVal  = DAG.getNode(ISD::ADD, VT, Load, Incr);
2333
2334  // Issue a "store and check".
2335  SDOperand Ops2[] = {
2336    Chain,               // Chain
2337    NewVal,              // Value
2338    Ptr,                 // Ptr
2339    Label,               // Label
2340  };
2341  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops2, 4);
2342  SDOperand OutOps[] = { Load, Store };
2343  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2344                     OutOps, 2);
2345}
2346
2347SDOperand PPCTargetLowering::LowerAtomicLCS(SDOperand Op, SelectionDAG &DAG) {
2348  MVT::ValueType VT = Op.Val->getValueType(0);
2349  SDOperand Chain   = Op.getOperand(0);
2350  SDOperand Ptr     = Op.getOperand(1);
2351  SDOperand NewVal  = Op.getOperand(2);
2352  SDOperand OldVal  = Op.getOperand(3);
2353
2354  // Issue a "load and reserve".
2355  std::vector<MVT::ValueType> VTs;
2356  VTs.push_back(VT);
2357  VTs.push_back(MVT::Other);
2358
2359  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2360  SDOperand Ops[] = {
2361    Chain,               // Chain
2362    Ptr,                 // Ptr
2363    Label,               // Label
2364  };
2365  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2366  Chain = Load.getValue(1);
2367
2368  // Compare and unreserve if not equal.
2369  SDOperand Ops2[] = {
2370    Chain,               // Chain
2371    OldVal,              // Old value
2372    Load,                // Value in memory
2373    Label,               // Label
2374  };
2375  Chain = DAG.getNode(PPCISD::CMP_UNRESERVE, MVT::Other, Ops2, 4);
2376
2377  // Issue a "store and check".
2378  SDOperand Ops3[] = {
2379    Chain,               // Chain
2380    NewVal,              // Value
2381    Ptr,                 // Ptr
2382    Label,               // Label
2383  };
2384  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops3, 4);
2385  SDOperand OutOps[] = { Load, Store };
2386  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2387                     OutOps, 2);
2388}
2389
2390SDOperand PPCTargetLowering::LowerAtomicSWAP(SDOperand Op, SelectionDAG &DAG) {
2391  MVT::ValueType VT = Op.Val->getValueType(0);
2392  SDOperand Chain   = Op.getOperand(0);
2393  SDOperand Ptr     = Op.getOperand(1);
2394  SDOperand NewVal  = Op.getOperand(2);
2395
2396  // Issue a "load and reserve".
2397  std::vector<MVT::ValueType> VTs;
2398  VTs.push_back(VT);
2399  VTs.push_back(MVT::Other);
2400
2401  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2402  SDOperand Ops[] = {
2403    Chain,               // Chain
2404    Ptr,                 // Ptr
2405    Label,               // Label
2406  };
2407  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2408  Chain = Load.getValue(1);
2409
2410  // Issue a "store and check".
2411  SDOperand Ops2[] = {
2412    Chain,               // Chain
2413    NewVal,              // Value
2414    Ptr,                 // Ptr
2415    Label,               // Label
2416  };
2417  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops2, 4);
2418  SDOperand OutOps[] = { Load, Store };
2419  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2420                     OutOps, 2);
2421}
2422
2423/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2424/// possible.
2425SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2426  // Not FP? Not a fsel.
2427  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2428      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2429    return SDOperand();
2430
2431  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2432
2433  // Cannot handle SETEQ/SETNE.
2434  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2435
2436  MVT::ValueType ResVT = Op.getValueType();
2437  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2438  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2439  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2440
2441  // If the RHS of the comparison is a 0.0, we don't need to do the
2442  // subtraction at all.
2443  if (isFloatingPointZero(RHS))
2444    switch (CC) {
2445    default: break;       // SETUO etc aren't handled by fsel.
2446    case ISD::SETULT:
2447    case ISD::SETOLT:
2448    case ISD::SETLT:
2449      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2450    case ISD::SETUGE:
2451    case ISD::SETOGE:
2452    case ISD::SETGE:
2453      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2454        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2455      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2456    case ISD::SETUGT:
2457    case ISD::SETOGT:
2458    case ISD::SETGT:
2459      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2460    case ISD::SETULE:
2461    case ISD::SETOLE:
2462    case ISD::SETLE:
2463      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2464        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2465      return DAG.getNode(PPCISD::FSEL, ResVT,
2466                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2467    }
2468
2469  SDOperand Cmp;
2470  switch (CC) {
2471  default: break;       // SETUO etc aren't handled by fsel.
2472  case ISD::SETULT:
2473  case ISD::SETOLT:
2474  case ISD::SETLT:
2475    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2476    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2477      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2478      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2479  case ISD::SETUGE:
2480  case ISD::SETOGE:
2481  case ISD::SETGE:
2482    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2483    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2484      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2485      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2486  case ISD::SETUGT:
2487  case ISD::SETOGT:
2488  case ISD::SETGT:
2489    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2490    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2491      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2492      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2493  case ISD::SETULE:
2494  case ISD::SETOLE:
2495  case ISD::SETLE:
2496    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2497    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2498      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2499      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2500  }
2501  return SDOperand();
2502}
2503
2504// FIXME: Split this code up when LegalizeDAGTypes lands.
2505SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2506  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2507  SDOperand Src = Op.getOperand(0);
2508  if (Src.getValueType() == MVT::f32)
2509    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2510
2511  SDOperand Tmp;
2512  switch (Op.getValueType()) {
2513  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2514  case MVT::i32:
2515    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2516    break;
2517  case MVT::i64:
2518    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2519    break;
2520  }
2521
2522  // Convert the FP value to an int value through memory.
2523  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2524
2525  // Emit a store to the stack slot.
2526  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2527
2528  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2529  // add in a bias.
2530  if (Op.getValueType() == MVT::i32)
2531    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2532                        DAG.getConstant(4, FIPtr.getValueType()));
2533  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2534}
2535
2536SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2537                                                 SelectionDAG &DAG) {
2538  assert(Op.getValueType() == MVT::ppcf128);
2539  SDNode *Node = Op.Val;
2540  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2541  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2542  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2543  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2544
2545  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2546  // of the long double, and puts FPSCR back the way it was.  We do not
2547  // actually model FPSCR.
2548  std::vector<MVT::ValueType> NodeTys;
2549  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2550
2551  NodeTys.push_back(MVT::f64);   // Return register
2552  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2553  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2554  MFFSreg = Result.getValue(0);
2555  InFlag = Result.getValue(1);
2556
2557  NodeTys.clear();
2558  NodeTys.push_back(MVT::Flag);   // Returns a flag
2559  Ops[0] = DAG.getConstant(31, MVT::i32);
2560  Ops[1] = InFlag;
2561  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2562  InFlag = Result.getValue(0);
2563
2564  NodeTys.clear();
2565  NodeTys.push_back(MVT::Flag);   // Returns a flag
2566  Ops[0] = DAG.getConstant(30, MVT::i32);
2567  Ops[1] = InFlag;
2568  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2569  InFlag = Result.getValue(0);
2570
2571  NodeTys.clear();
2572  NodeTys.push_back(MVT::f64);    // result of add
2573  NodeTys.push_back(MVT::Flag);   // Returns a flag
2574  Ops[0] = Lo;
2575  Ops[1] = Hi;
2576  Ops[2] = InFlag;
2577  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2578  FPreg = Result.getValue(0);
2579  InFlag = Result.getValue(1);
2580
2581  NodeTys.clear();
2582  NodeTys.push_back(MVT::f64);
2583  Ops[0] = DAG.getConstant(1, MVT::i32);
2584  Ops[1] = MFFSreg;
2585  Ops[2] = FPreg;
2586  Ops[3] = InFlag;
2587  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2588  FPreg = Result.getValue(0);
2589
2590  // We know the low half is about to be thrown away, so just use something
2591  // convenient.
2592  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2593}
2594
2595SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2596  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2597  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2598    return SDOperand();
2599
2600  if (Op.getOperand(0).getValueType() == MVT::i64) {
2601    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2602    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2603    if (Op.getValueType() == MVT::f32)
2604      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2605    return FP;
2606  }
2607
2608  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2609         "Unhandled SINT_TO_FP type in custom expander!");
2610  // Since we only generate this in 64-bit mode, we can take advantage of
2611  // 64-bit registers.  In particular, sign extend the input value into the
2612  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2613  // then lfd it and fcfid it.
2614  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2615  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2616  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2617  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2618
2619  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2620                                Op.getOperand(0));
2621
2622  // STD the extended value into the stack slot.
2623  MachineMemOperand MO(PseudoSourceValue::getFixedStack(),
2624                       MachineMemOperand::MOStore, FrameIdx, 8, 8);
2625  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2626                                DAG.getEntryNode(), Ext64, FIdx,
2627                                DAG.getMemOperand(MO));
2628  // Load the value as a double.
2629  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2630
2631  // FCFID it and return it.
2632  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2633  if (Op.getValueType() == MVT::f32)
2634    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2635  return FP;
2636}
2637
2638SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2639  /*
2640   The rounding mode is in bits 30:31 of FPSR, and has the following
2641   settings:
2642     00 Round to nearest
2643     01 Round to 0
2644     10 Round to +inf
2645     11 Round to -inf
2646
2647  FLT_ROUNDS, on the other hand, expects the following:
2648    -1 Undefined
2649     0 Round to 0
2650     1 Round to nearest
2651     2 Round to +inf
2652     3 Round to -inf
2653
2654  To perform the conversion, we do:
2655    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2656  */
2657
2658  MachineFunction &MF = DAG.getMachineFunction();
2659  MVT::ValueType VT = Op.getValueType();
2660  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2661  std::vector<MVT::ValueType> NodeTys;
2662  SDOperand MFFSreg, InFlag;
2663
2664  // Save FP Control Word to register
2665  NodeTys.push_back(MVT::f64);    // return register
2666  NodeTys.push_back(MVT::Flag);   // unused in this context
2667  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2668
2669  // Save FP register to stack slot
2670  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2671  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2672  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2673                                 StackSlot, NULL, 0);
2674
2675  // Load FP Control Word from low 32 bits of stack slot.
2676  SDOperand Four = DAG.getConstant(4, PtrVT);
2677  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2678  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2679
2680  // Transform as necessary
2681  SDOperand CWD1 =
2682    DAG.getNode(ISD::AND, MVT::i32,
2683                CWD, DAG.getConstant(3, MVT::i32));
2684  SDOperand CWD2 =
2685    DAG.getNode(ISD::SRL, MVT::i32,
2686                DAG.getNode(ISD::AND, MVT::i32,
2687                            DAG.getNode(ISD::XOR, MVT::i32,
2688                                        CWD, DAG.getConstant(3, MVT::i32)),
2689                            DAG.getConstant(3, MVT::i32)),
2690                DAG.getConstant(1, MVT::i8));
2691
2692  SDOperand RetVal =
2693    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2694
2695  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2696                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2697}
2698
2699SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2700  MVT::ValueType VT = Op.getValueType();
2701  unsigned BitWidth = MVT::getSizeInBits(VT);
2702  assert(Op.getNumOperands() == 3 &&
2703         VT == Op.getOperand(1).getValueType() &&
2704         "Unexpected SHL!");
2705
2706  // Expand into a bunch of logical ops.  Note that these ops
2707  // depend on the PPC behavior for oversized shift amounts.
2708  SDOperand Lo = Op.getOperand(0);
2709  SDOperand Hi = Op.getOperand(1);
2710  SDOperand Amt = Op.getOperand(2);
2711  MVT::ValueType AmtVT = Amt.getValueType();
2712
2713  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2714                               DAG.getConstant(BitWidth, AmtVT), Amt);
2715  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2716  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2717  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2718  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2719                               DAG.getConstant(-BitWidth, AmtVT));
2720  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2721  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2722  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2723  SDOperand OutOps[] = { OutLo, OutHi };
2724  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2725                     OutOps, 2);
2726}
2727
2728SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2729  MVT::ValueType VT = Op.getValueType();
2730  unsigned BitWidth = MVT::getSizeInBits(VT);
2731  assert(Op.getNumOperands() == 3 &&
2732         VT == Op.getOperand(1).getValueType() &&
2733         "Unexpected SRL!");
2734
2735  // Expand into a bunch of logical ops.  Note that these ops
2736  // depend on the PPC behavior for oversized shift amounts.
2737  SDOperand Lo = Op.getOperand(0);
2738  SDOperand Hi = Op.getOperand(1);
2739  SDOperand Amt = Op.getOperand(2);
2740  MVT::ValueType AmtVT = Amt.getValueType();
2741
2742  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2743                               DAG.getConstant(BitWidth, AmtVT), Amt);
2744  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2745  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2746  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2747  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2748                               DAG.getConstant(-BitWidth, AmtVT));
2749  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2750  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2751  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2752  SDOperand OutOps[] = { OutLo, OutHi };
2753  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2754                     OutOps, 2);
2755}
2756
2757SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2758  MVT::ValueType VT = Op.getValueType();
2759  unsigned BitWidth = MVT::getSizeInBits(VT);
2760  assert(Op.getNumOperands() == 3 &&
2761         VT == Op.getOperand(1).getValueType() &&
2762         "Unexpected SRA!");
2763
2764  // Expand into a bunch of logical ops, followed by a select_cc.
2765  SDOperand Lo = Op.getOperand(0);
2766  SDOperand Hi = Op.getOperand(1);
2767  SDOperand Amt = Op.getOperand(2);
2768  MVT::ValueType AmtVT = Amt.getValueType();
2769
2770  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2771                               DAG.getConstant(BitWidth, AmtVT), Amt);
2772  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2773  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2774  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2775  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2776                               DAG.getConstant(-BitWidth, AmtVT));
2777  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2778  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2779  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2780                                    Tmp4, Tmp6, ISD::SETLE);
2781  SDOperand OutOps[] = { OutLo, OutHi };
2782  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2783                     OutOps, 2);
2784}
2785
2786//===----------------------------------------------------------------------===//
2787// Vector related lowering.
2788//
2789
2790// If this is a vector of constants or undefs, get the bits.  A bit in
2791// UndefBits is set if the corresponding element of the vector is an
2792// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2793// zero.   Return true if this is not an array of constants, false if it is.
2794//
2795static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2796                                       uint64_t UndefBits[2]) {
2797  // Start with zero'd results.
2798  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2799
2800  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2801  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2802    SDOperand OpVal = BV->getOperand(i);
2803
2804    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2805    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2806
2807    uint64_t EltBits = 0;
2808    if (OpVal.getOpcode() == ISD::UNDEF) {
2809      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2810      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2811      continue;
2812    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2813      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2814    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2815      assert(CN->getValueType(0) == MVT::f32 &&
2816             "Only one legal FP vector type!");
2817      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2818    } else {
2819      // Nonconstant element.
2820      return true;
2821    }
2822
2823    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2824  }
2825
2826  //printf("%llx %llx  %llx %llx\n",
2827  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2828  return false;
2829}
2830
2831// If this is a splat (repetition) of a value across the whole vector, return
2832// the smallest size that splats it.  For example, "0x01010101010101..." is a
2833// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2834// SplatSize = 1 byte.
2835static bool isConstantSplat(const uint64_t Bits128[2],
2836                            const uint64_t Undef128[2],
2837                            unsigned &SplatBits, unsigned &SplatUndef,
2838                            unsigned &SplatSize) {
2839
2840  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2841  // the same as the lower 64-bits, ignoring undefs.
2842  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2843    return false;  // Can't be a splat if two pieces don't match.
2844
2845  uint64_t Bits64  = Bits128[0] | Bits128[1];
2846  uint64_t Undef64 = Undef128[0] & Undef128[1];
2847
2848  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2849  // undefs.
2850  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2851    return false;  // Can't be a splat if two pieces don't match.
2852
2853  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2854  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2855
2856  // If the top 16-bits are different than the lower 16-bits, ignoring
2857  // undefs, we have an i32 splat.
2858  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2859    SplatBits = Bits32;
2860    SplatUndef = Undef32;
2861    SplatSize = 4;
2862    return true;
2863  }
2864
2865  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2866  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2867
2868  // If the top 8-bits are different than the lower 8-bits, ignoring
2869  // undefs, we have an i16 splat.
2870  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2871    SplatBits = Bits16;
2872    SplatUndef = Undef16;
2873    SplatSize = 2;
2874    return true;
2875  }
2876
2877  // Otherwise, we have an 8-bit splat.
2878  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2879  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2880  SplatSize = 1;
2881  return true;
2882}
2883
2884/// BuildSplatI - Build a canonical splati of Val with an element size of
2885/// SplatSize.  Cast the result to VT.
2886static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2887                             SelectionDAG &DAG) {
2888  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2889
2890  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2891    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2892  };
2893
2894  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2895
2896  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2897  if (Val == -1)
2898    SplatSize = 1;
2899
2900  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2901
2902  // Build a canonical splat for this value.
2903  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2904  SmallVector<SDOperand, 8> Ops;
2905  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2906  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2907                              &Ops[0], Ops.size());
2908  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2909}
2910
2911/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2912/// specified intrinsic ID.
2913static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2914                                  SelectionDAG &DAG,
2915                                  MVT::ValueType DestVT = MVT::Other) {
2916  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2917  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2918                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2919}
2920
2921/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2922/// specified intrinsic ID.
2923static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2924                                  SDOperand Op2, SelectionDAG &DAG,
2925                                  MVT::ValueType DestVT = MVT::Other) {
2926  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2927  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2928                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2929}
2930
2931
2932/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2933/// amount.  The result has the specified value type.
2934static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2935                             MVT::ValueType VT, SelectionDAG &DAG) {
2936  // Force LHS/RHS to be the right type.
2937  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2938  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2939
2940  SDOperand Ops[16];
2941  for (unsigned i = 0; i != 16; ++i)
2942    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2943  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2944                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2945  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2946}
2947
2948// If this is a case we can't handle, return null and let the default
2949// expansion code take care of it.  If we CAN select this case, and if it
2950// selects to a single instruction, return Op.  Otherwise, if we can codegen
2951// this case more efficiently than a constant pool load, lower it to the
2952// sequence of ops that should be used.
2953SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2954                                               SelectionDAG &DAG) {
2955  // If this is a vector of constants or undefs, get the bits.  A bit in
2956  // UndefBits is set if the corresponding element of the vector is an
2957  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2958  // zero.
2959  uint64_t VectorBits[2];
2960  uint64_t UndefBits[2];
2961  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2962    return SDOperand();   // Not a constant vector.
2963
2964  // If this is a splat (repetition) of a value across the whole vector, return
2965  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2966  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2967  // SplatSize = 1 byte.
2968  unsigned SplatBits, SplatUndef, SplatSize;
2969  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2970    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2971
2972    // First, handle single instruction cases.
2973
2974    // All zeros?
2975    if (SplatBits == 0) {
2976      // Canonicalize all zero vectors to be v4i32.
2977      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2978        SDOperand Z = DAG.getConstant(0, MVT::i32);
2979        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2980        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2981      }
2982      return Op;
2983    }
2984
2985    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2986    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2987    if (SextVal >= -16 && SextVal <= 15)
2988      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2989
2990
2991    // Two instruction sequences.
2992
2993    // If this value is in the range [-32,30] and is even, use:
2994    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2995    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2996      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2997      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2998    }
2999
3000    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3001    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3002    // for fneg/fabs.
3003    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3004      // Make -1 and vspltisw -1:
3005      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3006
3007      // Make the VSLW intrinsic, computing 0x8000_0000.
3008      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3009                                       OnesV, DAG);
3010
3011      // xor by OnesV to invert it.
3012      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3013      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3014    }
3015
3016    // Check to see if this is a wide variety of vsplti*, binop self cases.
3017    unsigned SplatBitSize = SplatSize*8;
3018    static const signed char SplatCsts[] = {
3019      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3020      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3021    };
3022
3023    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3024      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3025      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3026      int i = SplatCsts[idx];
3027
3028      // Figure out what shift amount will be used by altivec if shifted by i in
3029      // this splat size.
3030      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3031
3032      // vsplti + shl self.
3033      if (SextVal == (i << (int)TypeShiftAmt)) {
3034        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3035        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3036          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3037          Intrinsic::ppc_altivec_vslw
3038        };
3039        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3040        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3041      }
3042
3043      // vsplti + srl self.
3044      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3045        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3046        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3047          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3048          Intrinsic::ppc_altivec_vsrw
3049        };
3050        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3051        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3052      }
3053
3054      // vsplti + sra self.
3055      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3056        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3057        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3058          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3059          Intrinsic::ppc_altivec_vsraw
3060        };
3061        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3062        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3063      }
3064
3065      // vsplti + rol self.
3066      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3067                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3068        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3069        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3070          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3071          Intrinsic::ppc_altivec_vrlw
3072        };
3073        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3074        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3075      }
3076
3077      // t = vsplti c, result = vsldoi t, t, 1
3078      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3079        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3080        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3081      }
3082      // t = vsplti c, result = vsldoi t, t, 2
3083      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3084        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3085        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3086      }
3087      // t = vsplti c, result = vsldoi t, t, 3
3088      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3089        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3090        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3091      }
3092    }
3093
3094    // Three instruction sequences.
3095
3096    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3097    if (SextVal >= 0 && SextVal <= 31) {
3098      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3099      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3100      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3101      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3102    }
3103    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3104    if (SextVal >= -31 && SextVal <= 0) {
3105      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3106      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3107      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3108      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3109    }
3110  }
3111
3112  return SDOperand();
3113}
3114
3115/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3116/// the specified operations to build the shuffle.
3117static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
3118                                        SDOperand RHS, SelectionDAG &DAG) {
3119  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3120  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3121  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3122
3123  enum {
3124    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3125    OP_VMRGHW,
3126    OP_VMRGLW,
3127    OP_VSPLTISW0,
3128    OP_VSPLTISW1,
3129    OP_VSPLTISW2,
3130    OP_VSPLTISW3,
3131    OP_VSLDOI4,
3132    OP_VSLDOI8,
3133    OP_VSLDOI12
3134  };
3135
3136  if (OpNum == OP_COPY) {
3137    if (LHSID == (1*9+2)*9+3) return LHS;
3138    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3139    return RHS;
3140  }
3141
3142  SDOperand OpLHS, OpRHS;
3143  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3144  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3145
3146  unsigned ShufIdxs[16];
3147  switch (OpNum) {
3148  default: assert(0 && "Unknown i32 permute!");
3149  case OP_VMRGHW:
3150    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3151    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3152    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3153    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3154    break;
3155  case OP_VMRGLW:
3156    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3157    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3158    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3159    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3160    break;
3161  case OP_VSPLTISW0:
3162    for (unsigned i = 0; i != 16; ++i)
3163      ShufIdxs[i] = (i&3)+0;
3164    break;
3165  case OP_VSPLTISW1:
3166    for (unsigned i = 0; i != 16; ++i)
3167      ShufIdxs[i] = (i&3)+4;
3168    break;
3169  case OP_VSPLTISW2:
3170    for (unsigned i = 0; i != 16; ++i)
3171      ShufIdxs[i] = (i&3)+8;
3172    break;
3173  case OP_VSPLTISW3:
3174    for (unsigned i = 0; i != 16; ++i)
3175      ShufIdxs[i] = (i&3)+12;
3176    break;
3177  case OP_VSLDOI4:
3178    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3179  case OP_VSLDOI8:
3180    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3181  case OP_VSLDOI12:
3182    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3183  }
3184  SDOperand Ops[16];
3185  for (unsigned i = 0; i != 16; ++i)
3186    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3187
3188  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3189                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3190}
3191
3192/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3193/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3194/// return the code it can be lowered into.  Worst case, it can always be
3195/// lowered into a vperm.
3196SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3197                                                 SelectionDAG &DAG) {
3198  SDOperand V1 = Op.getOperand(0);
3199  SDOperand V2 = Op.getOperand(1);
3200  SDOperand PermMask = Op.getOperand(2);
3201
3202  // Cases that are handled by instructions that take permute immediates
3203  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3204  // selected by the instruction selector.
3205  if (V2.getOpcode() == ISD::UNDEF) {
3206    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3207        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3208        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3209        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3210        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3211        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3212        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3213        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3214        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3215        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3216        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3217        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3218      return Op;
3219    }
3220  }
3221
3222  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3223  // and produce a fixed permutation.  If any of these match, do not lower to
3224  // VPERM.
3225  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3226      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3227      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3228      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3229      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3230      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3231      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3232      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3233      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3234    return Op;
3235
3236  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3237  // perfect shuffle table to emit an optimal matching sequence.
3238  unsigned PFIndexes[4];
3239  bool isFourElementShuffle = true;
3240  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3241    unsigned EltNo = 8;   // Start out undef.
3242    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3243      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3244        continue;   // Undef, ignore it.
3245
3246      unsigned ByteSource =
3247        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3248      if ((ByteSource & 3) != j) {
3249        isFourElementShuffle = false;
3250        break;
3251      }
3252
3253      if (EltNo == 8) {
3254        EltNo = ByteSource/4;
3255      } else if (EltNo != ByteSource/4) {
3256        isFourElementShuffle = false;
3257        break;
3258      }
3259    }
3260    PFIndexes[i] = EltNo;
3261  }
3262
3263  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3264  // perfect shuffle vector to determine if it is cost effective to do this as
3265  // discrete instructions, or whether we should use a vperm.
3266  if (isFourElementShuffle) {
3267    // Compute the index in the perfect shuffle table.
3268    unsigned PFTableIndex =
3269      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3270
3271    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3272    unsigned Cost  = (PFEntry >> 30);
3273
3274    // Determining when to avoid vperm is tricky.  Many things affect the cost
3275    // of vperm, particularly how many times the perm mask needs to be computed.
3276    // For example, if the perm mask can be hoisted out of a loop or is already
3277    // used (perhaps because there are multiple permutes with the same shuffle
3278    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3279    // the loop requires an extra register.
3280    //
3281    // As a compromise, we only emit discrete instructions if the shuffle can be
3282    // generated in 3 or fewer operations.  When we have loop information
3283    // available, if this block is within a loop, we should avoid using vperm
3284    // for 3-operation perms and use a constant pool load instead.
3285    if (Cost < 3)
3286      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3287  }
3288
3289  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3290  // vector that will get spilled to the constant pool.
3291  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3292
3293  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3294  // that it is in input element units, not in bytes.  Convert now.
3295  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3296  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3297
3298  SmallVector<SDOperand, 16> ResultMask;
3299  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3300    unsigned SrcElt;
3301    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3302      SrcElt = 0;
3303    else
3304      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3305
3306    for (unsigned j = 0; j != BytesPerElement; ++j)
3307      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3308                                           MVT::i8));
3309  }
3310
3311  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3312                                    &ResultMask[0], ResultMask.size());
3313  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3314}
3315
3316/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3317/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3318/// information about the intrinsic.
3319static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3320                                  bool &isDot) {
3321  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3322  CompareOpc = -1;
3323  isDot = false;
3324  switch (IntrinsicID) {
3325  default: return false;
3326    // Comparison predicates.
3327  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3328  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3329  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3330  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3331  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3332  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3333  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3334  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3335  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3336  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3337  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3338  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3339  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3340
3341    // Normal Comparisons.
3342  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3343  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3344  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3345  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3346  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3347  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3348  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3349  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3350  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3351  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3352  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3353  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3354  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3355  }
3356  return true;
3357}
3358
3359/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3360/// lower, do it, otherwise return null.
3361SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3362                                                     SelectionDAG &DAG) {
3363  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3364  // opcode number of the comparison.
3365  int CompareOpc;
3366  bool isDot;
3367  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3368    return SDOperand();    // Don't custom lower most intrinsics.
3369
3370  // If this is a non-dot comparison, make the VCMP node and we are done.
3371  if (!isDot) {
3372    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3373                                Op.getOperand(1), Op.getOperand(2),
3374                                DAG.getConstant(CompareOpc, MVT::i32));
3375    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3376  }
3377
3378  // Create the PPCISD altivec 'dot' comparison node.
3379  SDOperand Ops[] = {
3380    Op.getOperand(2),  // LHS
3381    Op.getOperand(3),  // RHS
3382    DAG.getConstant(CompareOpc, MVT::i32)
3383  };
3384  std::vector<MVT::ValueType> VTs;
3385  VTs.push_back(Op.getOperand(2).getValueType());
3386  VTs.push_back(MVT::Flag);
3387  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3388
3389  // Now that we have the comparison, emit a copy from the CR to a GPR.
3390  // This is flagged to the above dot comparison.
3391  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3392                                DAG.getRegister(PPC::CR6, MVT::i32),
3393                                CompNode.getValue(1));
3394
3395  // Unpack the result based on how the target uses it.
3396  unsigned BitNo;   // Bit # of CR6.
3397  bool InvertBit;   // Invert result?
3398  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3399  default:  // Can't happen, don't crash on invalid number though.
3400  case 0:   // Return the value of the EQ bit of CR6.
3401    BitNo = 0; InvertBit = false;
3402    break;
3403  case 1:   // Return the inverted value of the EQ bit of CR6.
3404    BitNo = 0; InvertBit = true;
3405    break;
3406  case 2:   // Return the value of the LT bit of CR6.
3407    BitNo = 2; InvertBit = false;
3408    break;
3409  case 3:   // Return the inverted value of the LT bit of CR6.
3410    BitNo = 2; InvertBit = true;
3411    break;
3412  }
3413
3414  // Shift the bit into the low position.
3415  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3416                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3417  // Isolate the bit.
3418  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3419                      DAG.getConstant(1, MVT::i32));
3420
3421  // If we are supposed to, toggle the bit.
3422  if (InvertBit)
3423    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3424                        DAG.getConstant(1, MVT::i32));
3425  return Flags;
3426}
3427
3428SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3429                                                   SelectionDAG &DAG) {
3430  // Create a stack slot that is 16-byte aligned.
3431  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3432  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3433  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3434  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3435
3436  // Store the input value into Value#0 of the stack slot.
3437  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3438                                 Op.getOperand(0), FIdx, NULL, 0);
3439  // Load it out.
3440  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3441}
3442
3443SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3444  if (Op.getValueType() == MVT::v4i32) {
3445    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3446
3447    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3448    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3449
3450    SDOperand RHSSwap =   // = vrlw RHS, 16
3451      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3452
3453    // Shrinkify inputs to v8i16.
3454    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3455    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3456    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3457
3458    // Low parts multiplied together, generating 32-bit results (we ignore the
3459    // top parts).
3460    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3461                                        LHS, RHS, DAG, MVT::v4i32);
3462
3463    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3464                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3465    // Shift the high parts up 16 bits.
3466    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3467    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3468  } else if (Op.getValueType() == MVT::v8i16) {
3469    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3470
3471    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3472
3473    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3474                            LHS, RHS, Zero, DAG);
3475  } else if (Op.getValueType() == MVT::v16i8) {
3476    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3477
3478    // Multiply the even 8-bit parts, producing 16-bit sums.
3479    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3480                                           LHS, RHS, DAG, MVT::v8i16);
3481    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3482
3483    // Multiply the odd 8-bit parts, producing 16-bit sums.
3484    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3485                                          LHS, RHS, DAG, MVT::v8i16);
3486    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3487
3488    // Merge the results together.
3489    SDOperand Ops[16];
3490    for (unsigned i = 0; i != 8; ++i) {
3491      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3492      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3493    }
3494    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3495                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3496  } else {
3497    assert(0 && "Unknown mul to lower!");
3498    abort();
3499  }
3500}
3501
3502/// LowerOperation - Provide custom lowering hooks for some operations.
3503///
3504SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3505  switch (Op.getOpcode()) {
3506  default: assert(0 && "Wasn't expecting to be able to lower this!");
3507  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3508  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3509  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3510  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3511  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3512  case ISD::VASTART:
3513    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3514                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3515
3516  case ISD::VAARG:
3517    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3518                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3519
3520  case ISD::FORMAL_ARGUMENTS:
3521    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3522                                 VarArgsStackOffset, VarArgsNumGPR,
3523                                 VarArgsNumFPR, PPCSubTarget);
3524
3525  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3526                                                 getTargetMachine());
3527  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3528  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3529  case ISD::DYNAMIC_STACKALLOC:
3530    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3531
3532  case ISD::ATOMIC_LAS:         return LowerAtomicLAS(Op, DAG);
3533  case ISD::ATOMIC_LCS:         return LowerAtomicLCS(Op, DAG);
3534  case ISD::ATOMIC_SWAP:        return LowerAtomicSWAP(Op, DAG);
3535
3536  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3537  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3538  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3539  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3540  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3541
3542  // Lower 64-bit shifts.
3543  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3544  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3545  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3546
3547  // Vector-related lowering.
3548  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3549  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3550  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3551  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3552  case ISD::MUL:                return LowerMUL(Op, DAG);
3553
3554  // Frame & Return address.
3555  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3556  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3557  }
3558  return SDOperand();
3559}
3560
3561SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3562  switch (N->getOpcode()) {
3563  default: assert(0 && "Wasn't expecting to be able to lower this!");
3564  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3565  }
3566}
3567
3568
3569//===----------------------------------------------------------------------===//
3570//  Other Lowering Code
3571//===----------------------------------------------------------------------===//
3572
3573MachineBasicBlock *
3574PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3575                                               MachineBasicBlock *BB) {
3576  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3577  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3578          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3579          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3580          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3581          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3582         "Unexpected instr type to insert");
3583
3584  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3585  // control-flow pattern.  The incoming instruction knows the destination vreg
3586  // to set, the condition code register to branch on, the true/false values to
3587  // select between, and a branch opcode to use.
3588  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3589  ilist<MachineBasicBlock>::iterator It = BB;
3590  ++It;
3591
3592  //  thisMBB:
3593  //  ...
3594  //   TrueVal = ...
3595  //   cmpTY ccX, r1, r2
3596  //   bCC copy1MBB
3597  //   fallthrough --> copy0MBB
3598  MachineBasicBlock *thisMBB = BB;
3599  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3600  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3601  unsigned SelectPred = MI->getOperand(4).getImm();
3602  BuildMI(BB, TII->get(PPC::BCC))
3603    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3604  MachineFunction *F = BB->getParent();
3605  F->getBasicBlockList().insert(It, copy0MBB);
3606  F->getBasicBlockList().insert(It, sinkMBB);
3607  // Update machine-CFG edges by first adding all successors of the current
3608  // block to the new block which will contain the Phi node for the select.
3609  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3610      e = BB->succ_end(); i != e; ++i)
3611    sinkMBB->addSuccessor(*i);
3612  // Next, remove all successors of the current block, and add the true
3613  // and fallthrough blocks as its successors.
3614  while(!BB->succ_empty())
3615    BB->removeSuccessor(BB->succ_begin());
3616  BB->addSuccessor(copy0MBB);
3617  BB->addSuccessor(sinkMBB);
3618
3619  //  copy0MBB:
3620  //   %FalseValue = ...
3621  //   # fallthrough to sinkMBB
3622  BB = copy0MBB;
3623
3624  // Update machine-CFG edges
3625  BB->addSuccessor(sinkMBB);
3626
3627  //  sinkMBB:
3628  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3629  //  ...
3630  BB = sinkMBB;
3631  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3632    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3633    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3634
3635  delete MI;   // The pseudo instruction is gone now.
3636  return BB;
3637}
3638
3639//===----------------------------------------------------------------------===//
3640// Target Optimization Hooks
3641//===----------------------------------------------------------------------===//
3642
3643SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3644                                               DAGCombinerInfo &DCI) const {
3645  TargetMachine &TM = getTargetMachine();
3646  SelectionDAG &DAG = DCI.DAG;
3647  switch (N->getOpcode()) {
3648  default: break;
3649  case PPCISD::SHL:
3650    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3651      if (C->getValue() == 0)   // 0 << V -> 0.
3652        return N->getOperand(0);
3653    }
3654    break;
3655  case PPCISD::SRL:
3656    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3657      if (C->getValue() == 0)   // 0 >>u V -> 0.
3658        return N->getOperand(0);
3659    }
3660    break;
3661  case PPCISD::SRA:
3662    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3663      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3664          C->isAllOnesValue())    // -1 >>s V -> -1.
3665        return N->getOperand(0);
3666    }
3667    break;
3668
3669  case ISD::SINT_TO_FP:
3670    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3671      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3672        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3673        // We allow the src/dst to be either f32/f64, but the intermediate
3674        // type must be i64.
3675        if (N->getOperand(0).getValueType() == MVT::i64 &&
3676            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3677          SDOperand Val = N->getOperand(0).getOperand(0);
3678          if (Val.getValueType() == MVT::f32) {
3679            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3680            DCI.AddToWorklist(Val.Val);
3681          }
3682
3683          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3684          DCI.AddToWorklist(Val.Val);
3685          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3686          DCI.AddToWorklist(Val.Val);
3687          if (N->getValueType(0) == MVT::f32) {
3688            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3689                              DAG.getIntPtrConstant(0));
3690            DCI.AddToWorklist(Val.Val);
3691          }
3692          return Val;
3693        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3694          // If the intermediate type is i32, we can avoid the load/store here
3695          // too.
3696        }
3697      }
3698    }
3699    break;
3700  case ISD::STORE:
3701    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3702    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3703        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3704        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3705        N->getOperand(1).getValueType() == MVT::i32 &&
3706        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3707      SDOperand Val = N->getOperand(1).getOperand(0);
3708      if (Val.getValueType() == MVT::f32) {
3709        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3710        DCI.AddToWorklist(Val.Val);
3711      }
3712      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3713      DCI.AddToWorklist(Val.Val);
3714
3715      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3716                        N->getOperand(2), N->getOperand(3));
3717      DCI.AddToWorklist(Val.Val);
3718      return Val;
3719    }
3720
3721    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3722    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3723        N->getOperand(1).Val->hasOneUse() &&
3724        (N->getOperand(1).getValueType() == MVT::i32 ||
3725         N->getOperand(1).getValueType() == MVT::i16)) {
3726      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3727      // Do an any-extend to 32-bits if this is a half-word input.
3728      if (BSwapOp.getValueType() == MVT::i16)
3729        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3730
3731      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3732                         N->getOperand(2), N->getOperand(3),
3733                         DAG.getValueType(N->getOperand(1).getValueType()));
3734    }
3735    break;
3736  case ISD::BSWAP:
3737    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3738    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3739        N->getOperand(0).hasOneUse() &&
3740        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3741      SDOperand Load = N->getOperand(0);
3742      LoadSDNode *LD = cast<LoadSDNode>(Load);
3743      // Create the byte-swapping load.
3744      std::vector<MVT::ValueType> VTs;
3745      VTs.push_back(MVT::i32);
3746      VTs.push_back(MVT::Other);
3747      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3748      SDOperand Ops[] = {
3749        LD->getChain(),    // Chain
3750        LD->getBasePtr(),  // Ptr
3751        MO,                // MemOperand
3752        DAG.getValueType(N->getValueType(0)) // VT
3753      };
3754      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3755
3756      // If this is an i16 load, insert the truncate.
3757      SDOperand ResVal = BSLoad;
3758      if (N->getValueType(0) == MVT::i16)
3759        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3760
3761      // First, combine the bswap away.  This makes the value produced by the
3762      // load dead.
3763      DCI.CombineTo(N, ResVal);
3764
3765      // Next, combine the load away, we give it a bogus result value but a real
3766      // chain result.  The result value is dead because the bswap is dead.
3767      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3768
3769      // Return N so it doesn't get rechecked!
3770      return SDOperand(N, 0);
3771    }
3772
3773    break;
3774  case PPCISD::VCMP: {
3775    // If a VCMPo node already exists with exactly the same operands as this
3776    // node, use its result instead of this node (VCMPo computes both a CR6 and
3777    // a normal output).
3778    //
3779    if (!N->getOperand(0).hasOneUse() &&
3780        !N->getOperand(1).hasOneUse() &&
3781        !N->getOperand(2).hasOneUse()) {
3782
3783      // Scan all of the users of the LHS, looking for VCMPo's that match.
3784      SDNode *VCMPoNode = 0;
3785
3786      SDNode *LHSN = N->getOperand(0).Val;
3787      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3788           UI != E; ++UI)
3789        if ((*UI).getUser()->getOpcode() == PPCISD::VCMPo &&
3790            (*UI).getUser()->getOperand(1) == N->getOperand(1) &&
3791            (*UI).getUser()->getOperand(2) == N->getOperand(2) &&
3792            (*UI).getUser()->getOperand(0) == N->getOperand(0)) {
3793          VCMPoNode = UI->getUser();
3794          break;
3795        }
3796
3797      // If there is no VCMPo node, or if the flag value has a single use, don't
3798      // transform this.
3799      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3800        break;
3801
3802      // Look at the (necessarily single) use of the flag value.  If it has a
3803      // chain, this transformation is more complex.  Note that multiple things
3804      // could use the value result, which we should ignore.
3805      SDNode *FlagUser = 0;
3806      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3807           FlagUser == 0; ++UI) {
3808        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3809        SDNode *User = UI->getUser();
3810        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3811          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3812            FlagUser = User;
3813            break;
3814          }
3815        }
3816      }
3817
3818      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3819      // give up for right now.
3820      if (FlagUser->getOpcode() == PPCISD::MFCR)
3821        return SDOperand(VCMPoNode, 0);
3822    }
3823    break;
3824  }
3825  case ISD::BR_CC: {
3826    // If this is a branch on an altivec predicate comparison, lower this so
3827    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3828    // lowering is done pre-legalize, because the legalizer lowers the predicate
3829    // compare down to code that is difficult to reassemble.
3830    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3831    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3832    int CompareOpc;
3833    bool isDot;
3834
3835    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3836        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3837        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3838      assert(isDot && "Can't compare against a vector result!");
3839
3840      // If this is a comparison against something other than 0/1, then we know
3841      // that the condition is never/always true.
3842      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3843      if (Val != 0 && Val != 1) {
3844        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3845          return N->getOperand(0);
3846        // Always !=, turn it into an unconditional branch.
3847        return DAG.getNode(ISD::BR, MVT::Other,
3848                           N->getOperand(0), N->getOperand(4));
3849      }
3850
3851      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3852
3853      // Create the PPCISD altivec 'dot' comparison node.
3854      std::vector<MVT::ValueType> VTs;
3855      SDOperand Ops[] = {
3856        LHS.getOperand(2),  // LHS of compare
3857        LHS.getOperand(3),  // RHS of compare
3858        DAG.getConstant(CompareOpc, MVT::i32)
3859      };
3860      VTs.push_back(LHS.getOperand(2).getValueType());
3861      VTs.push_back(MVT::Flag);
3862      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3863
3864      // Unpack the result based on how the target uses it.
3865      PPC::Predicate CompOpc;
3866      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3867      default:  // Can't happen, don't crash on invalid number though.
3868      case 0:   // Branch on the value of the EQ bit of CR6.
3869        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3870        break;
3871      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3872        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3873        break;
3874      case 2:   // Branch on the value of the LT bit of CR6.
3875        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3876        break;
3877      case 3:   // Branch on the inverted value of the LT bit of CR6.
3878        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3879        break;
3880      }
3881
3882      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3883                         DAG.getConstant(CompOpc, MVT::i32),
3884                         DAG.getRegister(PPC::CR6, MVT::i32),
3885                         N->getOperand(4), CompNode.getValue(1));
3886    }
3887    break;
3888  }
3889  }
3890
3891  return SDOperand();
3892}
3893
3894//===----------------------------------------------------------------------===//
3895// Inline Assembly Support
3896//===----------------------------------------------------------------------===//
3897
3898void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3899                                                       const APInt &Mask,
3900                                                       APInt &KnownZero,
3901                                                       APInt &KnownOne,
3902                                                       const SelectionDAG &DAG,
3903                                                       unsigned Depth) const {
3904  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3905  switch (Op.getOpcode()) {
3906  default: break;
3907  case PPCISD::LBRX: {
3908    // lhbrx is known to have the top bits cleared out.
3909    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3910      KnownZero = 0xFFFF0000;
3911    break;
3912  }
3913  case ISD::INTRINSIC_WO_CHAIN: {
3914    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3915    default: break;
3916    case Intrinsic::ppc_altivec_vcmpbfp_p:
3917    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3918    case Intrinsic::ppc_altivec_vcmpequb_p:
3919    case Intrinsic::ppc_altivec_vcmpequh_p:
3920    case Intrinsic::ppc_altivec_vcmpequw_p:
3921    case Intrinsic::ppc_altivec_vcmpgefp_p:
3922    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3923    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3924    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3925    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3926    case Intrinsic::ppc_altivec_vcmpgtub_p:
3927    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3928    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3929      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3930      break;
3931    }
3932  }
3933  }
3934}
3935
3936
3937/// getConstraintType - Given a constraint, return the type of
3938/// constraint it is for this target.
3939PPCTargetLowering::ConstraintType
3940PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3941  if (Constraint.size() == 1) {
3942    switch (Constraint[0]) {
3943    default: break;
3944    case 'b':
3945    case 'r':
3946    case 'f':
3947    case 'v':
3948    case 'y':
3949      return C_RegisterClass;
3950    }
3951  }
3952  return TargetLowering::getConstraintType(Constraint);
3953}
3954
3955std::pair<unsigned, const TargetRegisterClass*>
3956PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3957                                                MVT::ValueType VT) const {
3958  if (Constraint.size() == 1) {
3959    // GCC RS6000 Constraint Letters
3960    switch (Constraint[0]) {
3961    case 'b':   // R1-R31
3962    case 'r':   // R0-R31
3963      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3964        return std::make_pair(0U, PPC::G8RCRegisterClass);
3965      return std::make_pair(0U, PPC::GPRCRegisterClass);
3966    case 'f':
3967      if (VT == MVT::f32)
3968        return std::make_pair(0U, PPC::F4RCRegisterClass);
3969      else if (VT == MVT::f64)
3970        return std::make_pair(0U, PPC::F8RCRegisterClass);
3971      break;
3972    case 'v':
3973      return std::make_pair(0U, PPC::VRRCRegisterClass);
3974    case 'y':   // crrc
3975      return std::make_pair(0U, PPC::CRRCRegisterClass);
3976    }
3977  }
3978
3979  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3980}
3981
3982
3983/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3984/// vector.  If it is invalid, don't add anything to Ops.
3985void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3986                                                     std::vector<SDOperand>&Ops,
3987                                                     SelectionDAG &DAG) const {
3988  SDOperand Result(0,0);
3989  switch (Letter) {
3990  default: break;
3991  case 'I':
3992  case 'J':
3993  case 'K':
3994  case 'L':
3995  case 'M':
3996  case 'N':
3997  case 'O':
3998  case 'P': {
3999    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4000    if (!CST) return; // Must be an immediate to match.
4001    unsigned Value = CST->getValue();
4002    switch (Letter) {
4003    default: assert(0 && "Unknown constraint letter!");
4004    case 'I':  // "I" is a signed 16-bit constant.
4005      if ((short)Value == (int)Value)
4006        Result = DAG.getTargetConstant(Value, Op.getValueType());
4007      break;
4008    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4009    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4010      if ((short)Value == 0)
4011        Result = DAG.getTargetConstant(Value, Op.getValueType());
4012      break;
4013    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4014      if ((Value >> 16) == 0)
4015        Result = DAG.getTargetConstant(Value, Op.getValueType());
4016      break;
4017    case 'M':  // "M" is a constant that is greater than 31.
4018      if (Value > 31)
4019        Result = DAG.getTargetConstant(Value, Op.getValueType());
4020      break;
4021    case 'N':  // "N" is a positive constant that is an exact power of two.
4022      if ((int)Value > 0 && isPowerOf2_32(Value))
4023        Result = DAG.getTargetConstant(Value, Op.getValueType());
4024      break;
4025    case 'O':  // "O" is the constant zero.
4026      if (Value == 0)
4027        Result = DAG.getTargetConstant(Value, Op.getValueType());
4028      break;
4029    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4030      if ((short)-Value == (int)-Value)
4031        Result = DAG.getTargetConstant(Value, Op.getValueType());
4032      break;
4033    }
4034    break;
4035  }
4036  }
4037
4038  if (Result.Val) {
4039    Ops.push_back(Result);
4040    return;
4041  }
4042
4043  // Handle standard constraint letters.
4044  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4045}
4046
4047// isLegalAddressingMode - Return true if the addressing mode represented
4048// by AM is legal for this target, for a load/store of the specified type.
4049bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4050                                              const Type *Ty) const {
4051  // FIXME: PPC does not allow r+i addressing modes for vectors!
4052
4053  // PPC allows a sign-extended 16-bit immediate field.
4054  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4055    return false;
4056
4057  // No global is ever allowed as a base.
4058  if (AM.BaseGV)
4059    return false;
4060
4061  // PPC only support r+r,
4062  switch (AM.Scale) {
4063  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4064    break;
4065  case 1:
4066    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4067      return false;
4068    // Otherwise we have r+r or r+i.
4069    break;
4070  case 2:
4071    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4072      return false;
4073    // Allow 2*r as r+r.
4074    break;
4075  default:
4076    // No other scales are supported.
4077    return false;
4078  }
4079
4080  return true;
4081}
4082
4083/// isLegalAddressImmediate - Return true if the integer value can be used
4084/// as the offset of the target addressing mode for load / store of the
4085/// given type.
4086bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4087  // PPC allows a sign-extended 16-bit immediate field.
4088  return (V > -(1 << 16) && V < (1 << 16)-1);
4089}
4090
4091bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4092  return false;
4093}
4094
4095SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4096  // Depths > 0 not supported yet!
4097  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4098    return SDOperand();
4099
4100  MachineFunction &MF = DAG.getMachineFunction();
4101  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4102  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
4103  if (RAIdx == 0) {
4104    bool isPPC64 = PPCSubTarget.isPPC64();
4105    int Offset =
4106      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
4107
4108    // Set up a frame object for the return address.
4109    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
4110
4111    // Remember it for next time.
4112    FuncInfo->setReturnAddrSaveIndex(RAIdx);
4113
4114    // Make sure the function really does not optimize away the store of the RA
4115    // to the stack.
4116    FuncInfo->setLRStoreRequired();
4117  }
4118
4119  // Just load the return address off the stack.
4120  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
4121  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4122}
4123
4124SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4125  // Depths > 0 not supported yet!
4126  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4127    return SDOperand();
4128
4129  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4130  bool isPPC64 = PtrVT == MVT::i64;
4131
4132  MachineFunction &MF = DAG.getMachineFunction();
4133  MachineFrameInfo *MFI = MF.getFrameInfo();
4134  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4135                  && MFI->getStackSize();
4136
4137  if (isPPC64)
4138    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4139      MVT::i64);
4140  else
4141    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4142      MVT::i32);
4143}
4144