PPCISelLowering.cpp revision af4ec0c56d2162a369fcdeba740ddda21be359b9
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "PPCPerfectShuffle.h"
17#include "llvm/ADT/VectorExtras.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetOptions.h"
29using namespace llvm;
30
31PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32  : TargetLowering(TM) {
33
34  // Fold away setcc operations if possible.
35  setSetCCIsExpensive();
36  setPow2DivIsCheap();
37
38  // Use _setjmp/_longjmp instead of setjmp/longjmp.
39  setUseUnderscoreSetJmpLongJmp(true);
40
41  // Set up the register classes.
42  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
45
46  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
49  // PowerPC has no intrinsics for these particular operations
50  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC has no SREM/UREM instructions
59  setOperationAction(ISD::SREM, MVT::i32, Expand);
60  setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62  // We don't support sin/cos/sqrt/fmod
63  setOperationAction(ISD::FSIN , MVT::f64, Expand);
64  setOperationAction(ISD::FCOS , MVT::f64, Expand);
65  setOperationAction(ISD::FREM , MVT::f64, Expand);
66  setOperationAction(ISD::FSIN , MVT::f32, Expand);
67  setOperationAction(ISD::FCOS , MVT::f32, Expand);
68  setOperationAction(ISD::FREM , MVT::f32, Expand);
69
70  // If we're enabling GP optimizations, use hardware square root
71  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
72    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74  }
75
76  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
79  // PowerPC does not have BSWAP, CTPOP or CTTZ
80  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
81  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
82  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
83
84  // PowerPC does not have ROTR
85  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
86
87  // PowerPC does not have Select
88  setOperationAction(ISD::SELECT, MVT::i32, Expand);
89  setOperationAction(ISD::SELECT, MVT::f32, Expand);
90  setOperationAction(ISD::SELECT, MVT::f64, Expand);
91
92  // PowerPC wants to turn select_cc of FP into fsel when possible.
93  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
95
96  // PowerPC wants to optimize integer setcc a bit
97  setOperationAction(ISD::SETCC, MVT::i32, Custom);
98
99  // PowerPC does not have BRCOND which requires SetCC
100  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
101
102  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
104
105  // PowerPC does not have [U|S]INT_TO_FP
106  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
109  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
112  // PowerPC does not have truncstore for i1.
113  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
114
115  // We cannot sextinreg(i1).  Expand to shifts.
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117
118
119  // Support label based line numbers.
120  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
121  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
122  // FIXME - use subtarget debug flags
123  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
124    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
125
126  // We want to legalize GlobalAddress and ConstantPool nodes into the
127  // appropriate instructions to materialize the address.
128  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
129  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
130  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
131
132  // RET must be custom lowered, to meet ABI requirements
133  setOperationAction(ISD::RET               , MVT::Other, Custom);
134
135  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
137
138  // Use the default implementation.
139  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
140  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
141  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
142  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
143  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
144  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
145
146  // We want to custom lower some of our intrinsics.
147  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
148
149  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
150    // They also have instructions for converting between i64 and fp.
151    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
153
154    // FIXME: disable this lowered code.  This generates 64-bit register values,
155    // and we don't model the fact that the top part is clobbered by calls.  We
156    // need to flag these together so that the value isn't live across a call.
157    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
158
159    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
161  } else {
162    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
163    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
164  }
165
166  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167    // 64 bit PowerPC implementations can support i64 types directly
168    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
169    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
171  } else {
172    // 32 bit PowerPC wants to expand i64 shifts itself.
173    setOperationAction(ISD::SHL, MVT::i64, Custom);
174    setOperationAction(ISD::SRL, MVT::i64, Custom);
175    setOperationAction(ISD::SRA, MVT::i64, Custom);
176  }
177
178  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
179    // First set operation action for all vector types to expand. Then we
180    // will selectively turn on ones that can be effectively codegen'd.
181    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
183      // add/sub are legal for all supported vector VT's.
184      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
186
187      // We promote all shuffles to v16i8.
188      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
189      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
190
191      // We promote all non-typed operations to v4i32.
192      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
193      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
194      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
195      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
196      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
197      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
198      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
199      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
200      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
204
205      // No other operations are legal.
206      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
214
215      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
216    }
217
218    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219    // with merges, splats, etc.
220    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
221
222    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
223    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
224    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
225    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
226    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
228
229    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
230    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
231    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
233
234    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
235    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
236    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
237    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
238
239    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
241
242    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
244    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
246  }
247
248  setSetCCResultContents(ZeroOrOneSetCCResult);
249  setStackPointerRegisterToSaveRestore(PPC::R1);
250
251  // We have target-specific dag combine patterns for the following nodes:
252  setTargetDAGCombine(ISD::SINT_TO_FP);
253  setTargetDAGCombine(ISD::STORE);
254  setTargetDAGCombine(ISD::BR_CC);
255
256  computeRegisterProperties();
257}
258
259const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
260  switch (Opcode) {
261  default: return 0;
262  case PPCISD::FSEL:          return "PPCISD::FSEL";
263  case PPCISD::FCFID:         return "PPCISD::FCFID";
264  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
265  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
266  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
267  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
268  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
269  case PPCISD::VPERM:         return "PPCISD::VPERM";
270  case PPCISD::Hi:            return "PPCISD::Hi";
271  case PPCISD::Lo:            return "PPCISD::Lo";
272  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273  case PPCISD::SRL:           return "PPCISD::SRL";
274  case PPCISD::SRA:           return "PPCISD::SRA";
275  case PPCISD::SHL:           return "PPCISD::SHL";
276  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
277  case PPCISD::STD_32:        return "PPCISD::STD_32";
278  case PPCISD::CALL:          return "PPCISD::CALL";
279  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
280  case PPCISD::MFCR:          return "PPCISD::MFCR";
281  case PPCISD::VCMP:          return "PPCISD::VCMP";
282  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
283  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
284  }
285}
286
287//===----------------------------------------------------------------------===//
288// Node matching predicates, for use by the tblgen matching code.
289//===----------------------------------------------------------------------===//
290
291/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292static bool isFloatingPointZero(SDOperand Op) {
293  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296    // Maybe this has already been legalized into the constant pool?
297    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
300  }
301  return false;
302}
303
304/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
305/// true if Op is undef or if it matches the specified value.
306static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307  return Op.getOpcode() == ISD::UNDEF ||
308         cast<ConstantSDNode>(Op)->getValue() == Val;
309}
310
311/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312/// VPKUHUM instruction.
313bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
314  if (!isUnary) {
315    for (unsigned i = 0; i != 16; ++i)
316      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
317        return false;
318  } else {
319    for (unsigned i = 0; i != 8; ++i)
320      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
321          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
322        return false;
323  }
324  return true;
325}
326
327/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328/// VPKUWUM instruction.
329bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
330  if (!isUnary) {
331    for (unsigned i = 0; i != 16; i += 2)
332      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
333          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
334        return false;
335  } else {
336    for (unsigned i = 0; i != 8; i += 2)
337      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
338          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
339          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
340          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
341        return false;
342  }
343  return true;
344}
345
346/// isVMerge - Common function, used to match vmrg* shuffles.
347///
348static bool isVMerge(SDNode *N, unsigned UnitSize,
349                     unsigned LHSStart, unsigned RHSStart) {
350  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353         "Unsupported merge size!");
354
355  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
356    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
357      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
358                             LHSStart+j+i*UnitSize) ||
359          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
360                             RHSStart+j+i*UnitSize))
361        return false;
362    }
363      return true;
364}
365
366/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
369  if (!isUnary)
370    return isVMerge(N, UnitSize, 8, 24);
371  return isVMerge(N, UnitSize, 8, 8);
372}
373
374/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
376bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
377  if (!isUnary)
378    return isVMerge(N, UnitSize, 0, 16);
379  return isVMerge(N, UnitSize, 0, 0);
380}
381
382
383/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384/// amount, otherwise return -1.
385int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
386  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
388  // Find the first non-undef value in the shuffle mask.
389  unsigned i;
390  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
391    /*search*/;
392
393  if (i == 16) return -1;  // all undef.
394
395  // Otherwise, check to see if the rest of the elements are consequtively
396  // numbered from this value.
397  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398  if (ShiftAmt < i) return -1;
399  ShiftAmt -= i;
400
401  if (!isUnary) {
402    // Check the rest of the elements to see if they are consequtive.
403    for (++i; i != 16; ++i)
404      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
405        return -1;
406  } else {
407    // Check the rest of the elements to see if they are consequtive.
408    for (++i; i != 16; ++i)
409      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
410        return -1;
411  }
412
413  return ShiftAmt;
414}
415
416/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417/// specifies a splat of a single element that is suitable for input to
418/// VSPLTB/VSPLTH/VSPLTW.
419bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421         N->getNumOperands() == 16 &&
422         (EltSize == 1 || EltSize == 2 || EltSize == 4));
423
424  // This is a splat operation if each element of the permute is the same, and
425  // if the value doesn't reference the second vector.
426  unsigned ElementBase = 0;
427  SDOperand Elt = N->getOperand(0);
428  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429    ElementBase = EltV->getValue();
430  else
431    return false;   // FIXME: Handle UNDEF elements too!
432
433  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
434    return false;
435
436  // Check that they are consequtive.
437  for (unsigned i = 1; i != EltSize; ++i) {
438    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
440      return false;
441  }
442
443  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
444  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
445    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
446    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447           "Invalid VECTOR_SHUFFLE mask!");
448    for (unsigned j = 0; j != EltSize; ++j)
449      if (N->getOperand(i+j) != N->getOperand(j))
450        return false;
451  }
452
453  return true;
454}
455
456/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
458unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459  assert(isSplatShuffleMask(N, EltSize));
460  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
461}
462
463/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
464/// by using a vspltis[bhw] instruction of the specified element size, return
465/// the constant being splatted.  The ByteSize field indicates the number of
466/// bytes of each element [124] -> [bhw].
467SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
468  SDOperand OpVal(0, 0);
469
470  // If ByteSize of the splat is bigger than the element size of the
471  // build_vector, then we have a case where we are checking for a splat where
472  // multiple elements of the buildvector are folded together into a single
473  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474  unsigned EltSize = 16/N->getNumOperands();
475  if (EltSize < ByteSize) {
476    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
477    SDOperand UniquedVals[4];
478    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
479
480    // See if all of the elements in the buildvector agree across.
481    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483      // If the element isn't a constant, bail fully out.
484      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
485
486
487      if (UniquedVals[i&(Multiple-1)].Val == 0)
488        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490        return SDOperand();  // no match.
491    }
492
493    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494    // either constant or undef values that are identical for each chunk.  See
495    // if these chunks can form into a larger vspltis*.
496
497    // Check to see if all of the leading entries are either 0 or -1.  If
498    // neither, then this won't fit into the immediate field.
499    bool LeadingZero = true;
500    bool LeadingOnes = true;
501    for (unsigned i = 0; i != Multiple-1; ++i) {
502      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
503
504      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
506    }
507    // Finally, check the least significant entry.
508    if (LeadingZero) {
509      if (UniquedVals[Multiple-1].Val == 0)
510        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
511      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
512      if (Val < 16)
513        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
514    }
515    if (LeadingOnes) {
516      if (UniquedVals[Multiple-1].Val == 0)
517        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
518      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
520        return DAG.getTargetConstant(Val, MVT::i32);
521    }
522
523    return SDOperand();
524  }
525
526  // Check to see if this buildvec has a single non-undef value in its elements.
527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
529    if (OpVal.Val == 0)
530      OpVal = N->getOperand(i);
531    else if (OpVal != N->getOperand(i))
532      return SDOperand();
533  }
534
535  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
536
537  unsigned ValSizeInBytes = 0;
538  uint64_t Value = 0;
539  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540    Value = CN->getValue();
541    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544    Value = FloatToBits(CN->getValue());
545    ValSizeInBytes = 4;
546  }
547
548  // If the splat value is larger than the element value, then we can never do
549  // this splat.  The only case that we could fit the replicated bits into our
550  // immediate field for would be zero, and we prefer to use vxor for it.
551  if (ValSizeInBytes < ByteSize) return SDOperand();
552
553  // If the element value is larger than the splat value, cut it in half and
554  // check to see if the two halves are equal.  Continue doing this until we
555  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
556  while (ValSizeInBytes > ByteSize) {
557    ValSizeInBytes >>= 1;
558
559    // If the top half equals the bottom half, we're still ok.
560    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
562      return SDOperand();
563  }
564
565  // Properly sign extend the value.
566  int ShAmt = (4-ByteSize)*8;
567  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
568
569  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
570  if (MaskVal == 0) return SDOperand();
571
572  // Finally, if this value fits in a 5 bit sext field, return it
573  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574    return DAG.getTargetConstant(MaskVal, MVT::i32);
575  return SDOperand();
576}
577
578//===----------------------------------------------------------------------===//
579//  LowerOperation implementation
580//===----------------------------------------------------------------------===//
581
582static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584  Constant *C = CP->get();
585  SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586  SDOperand Zero = DAG.getConstant(0, MVT::i32);
587
588  const TargetMachine &TM = DAG.getTarget();
589
590  // If this is a non-darwin platform, we don't support non-static relo models
591  // yet.
592  if (TM.getRelocationModel() == Reloc::Static ||
593      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594    // Generate non-pic code that has direct accesses to the constant pool.
595    // The address of the global is just (hi(&g)+lo(&g)).
596    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
599  }
600
601  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602  if (TM.getRelocationModel() == Reloc::PIC) {
603    // With PIC, the first instruction is actually "GR+hi(&G)".
604    Hi = DAG.getNode(ISD::ADD, MVT::i32,
605                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
606  }
607
608  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
610  return Lo;
611}
612
613static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616  SDOperand Zero = DAG.getConstant(0, MVT::i32);
617
618  const TargetMachine &TM = DAG.getTarget();
619
620  // If this is a non-darwin platform, we don't support non-static relo models
621  // yet.
622  if (TM.getRelocationModel() == Reloc::Static ||
623      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624    // Generate non-pic code that has direct accesses to the constant pool.
625    // The address of the global is just (hi(&g)+lo(&g)).
626    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
629  }
630
631  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632  if (TM.getRelocationModel() == Reloc::PIC) {
633    // With PIC, the first instruction is actually "GR+hi(&G)".
634    Hi = DAG.getNode(ISD::ADD, MVT::i32,
635                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
636  }
637
638  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
640  return Lo;
641}
642
643static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645  GlobalValue *GV = GSDN->getGlobal();
646  SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647  SDOperand Zero = DAG.getConstant(0, MVT::i32);
648
649  const TargetMachine &TM = DAG.getTarget();
650
651  // If this is a non-darwin platform, we don't support non-static relo models
652  // yet.
653  if (TM.getRelocationModel() == Reloc::Static ||
654      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655    // Generate non-pic code that has direct accesses to globals.
656    // The address of the global is just (hi(&g)+lo(&g)).
657    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
660  }
661
662  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663  if (TM.getRelocationModel() == Reloc::PIC) {
664    // With PIC, the first instruction is actually "GR+hi(&G)".
665    Hi = DAG.getNode(ISD::ADD, MVT::i32,
666                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
667  }
668
669  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
671
672  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
674    return Lo;
675
676  // If the global is weak or external, we have to go through the lazy
677  // resolution stub.
678  return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
679}
680
681static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
683
684  // If we're comparing for equality to zero, expose the fact that this is
685  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686  // fold the new nodes.
687  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688    if (C->isNullValue() && CC == ISD::SETEQ) {
689      MVT::ValueType VT = Op.getOperand(0).getValueType();
690      SDOperand Zext = Op.getOperand(0);
691      if (VT < MVT::i32) {
692        VT = MVT::i32;
693        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
694      }
695      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698                                  DAG.getConstant(Log2b, MVT::i32));
699      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
700    }
701    // Leave comparisons against 0 and -1 alone for now, since they're usually
702    // optimized.  FIXME: revisit this when we can custom lower all setcc
703    // optimizations.
704    if (C->isAllOnesValue() || C->isNullValue())
705      return SDOperand();
706  }
707
708  // If we have an integer seteq/setne, turn it into a compare against zero
709  // by subtracting the rhs from the lhs, which is faster than setting a
710  // condition register, reading it back out, and masking the correct bit.
711  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713    MVT::ValueType VT = Op.getValueType();
714    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
715                                Op.getOperand(1));
716    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
717  }
718  return SDOperand();
719}
720
721static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722                              unsigned VarArgsFrameIndex) {
723  // vastart just stores the address of the VarArgsFrameIndex slot into the
724  // memory location argument.
725  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726  return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727                     Op.getOperand(1), Op.getOperand(2));
728}
729
730static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
731                                       int &VarArgsFrameIndex) {
732  // TODO: add description of PPC stack frame format, or at least some docs.
733  //
734  MachineFunction &MF = DAG.getMachineFunction();
735  MachineFrameInfo *MFI = MF.getFrameInfo();
736  SSARegMap *RegMap = MF.getSSARegMap();
737  std::vector<SDOperand> ArgValues;
738  SDOperand Root = Op.getOperand(0);
739
740  unsigned ArgOffset = 24;
741  const unsigned Num_GPR_Regs = 8;
742  const unsigned Num_FPR_Regs = 13;
743  const unsigned Num_VR_Regs  = 12;
744  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
745  static const unsigned GPR[] = {
746    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
747    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
748  };
749  static const unsigned FPR[] = {
750    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
751    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
752  };
753  static const unsigned VR[] = {
754    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
755    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
756  };
757
758  // Add DAG nodes to load the arguments or copy them out of registers.  On
759  // entry to a function on PPC, the arguments start at offset 24, although the
760  // first ones are often in registers.
761  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
762    SDOperand ArgVal;
763    bool needsLoad = false;
764    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
765    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
766
767    unsigned CurArgOffset = ArgOffset;
768
769    switch (ObjectVT) {
770    default: assert(0 && "Unhandled argument type!");
771    case MVT::i32:
772      // All int arguments reserve stack space.
773      ArgOffset += 4;
774
775      if (GPR_idx != Num_GPR_Regs) {
776        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
777        MF.addLiveIn(GPR[GPR_idx], VReg);
778        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
779        ++GPR_idx;
780      } else {
781        needsLoad = true;
782      }
783      break;
784    case MVT::f32:
785    case MVT::f64:
786      // All FP arguments reserve stack space.
787      ArgOffset += ObjSize;
788
789      // Every 4 bytes of argument space consumes one of the GPRs available for
790      // argument passing.
791      if (GPR_idx != Num_GPR_Regs) {
792        ++GPR_idx;
793        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
794          ++GPR_idx;
795      }
796      if (FPR_idx != Num_FPR_Regs) {
797        unsigned VReg;
798        if (ObjectVT == MVT::f32)
799          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
800        else
801          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
802        MF.addLiveIn(FPR[FPR_idx], VReg);
803        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
804        ++FPR_idx;
805      } else {
806        needsLoad = true;
807      }
808      break;
809    case MVT::v4f32:
810    case MVT::v4i32:
811    case MVT::v8i16:
812    case MVT::v16i8:
813      // Note that vector arguments in registers don't reserve stack space.
814      if (VR_idx != Num_VR_Regs) {
815        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
816        MF.addLiveIn(VR[VR_idx], VReg);
817        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
818        ++VR_idx;
819      } else {
820        // This should be simple, but requires getting 16-byte aligned stack
821        // values.
822        assert(0 && "Loading VR argument not implemented yet!");
823        needsLoad = true;
824      }
825      break;
826    }
827
828    // We need to load the argument to a virtual register if we determined above
829    // that we ran out of physical registers of the appropriate type
830    if (needsLoad) {
831      // If the argument is actually used, emit a load from the right stack
832      // slot.
833      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
834        int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
835        SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
836        ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
837                             DAG.getSrcValue(NULL));
838      } else {
839        // Don't emit a dead load.
840        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
841      }
842    }
843
844    ArgValues.push_back(ArgVal);
845  }
846
847  // If the function takes variable number of arguments, make a frame index for
848  // the start of the first vararg value... for expansion of llvm.va_start.
849  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
850  if (isVarArg) {
851    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
852    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
853    // If this function is vararg, store any remaining integer argument regs
854    // to their spots on the stack so that they may be loaded by deferencing the
855    // result of va_next.
856    std::vector<SDOperand> MemOps;
857    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
858      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
859      MF.addLiveIn(GPR[GPR_idx], VReg);
860      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
861      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
862                                    Val, FIN, DAG.getSrcValue(NULL));
863      MemOps.push_back(Store);
864      // Increment the address by four for the next argument to store
865      SDOperand PtrOff = DAG.getConstant(4, MVT::i32);
866      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
867    }
868    if (!MemOps.empty())
869      Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
870  }
871
872  ArgValues.push_back(Root);
873
874  // Return the new list of results.
875  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
876                                    Op.Val->value_end());
877  return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
878}
879
880static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
881  SDOperand Copy;
882  switch(Op.getNumOperands()) {
883  default:
884    assert(0 && "Do not know how to return this many arguments!");
885    abort();
886  case 1:
887    return SDOperand(); // ret void is legal
888  case 2: {
889    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
890    unsigned ArgReg;
891    if (MVT::isVector(ArgVT))
892      ArgReg = PPC::V2;
893    else if (MVT::isInteger(ArgVT))
894      ArgReg = PPC::R3;
895    else {
896      assert(MVT::isFloatingPoint(ArgVT));
897      ArgReg = PPC::F1;
898    }
899
900    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
901                            SDOperand());
902
903    // If we haven't noted the R3/F1 are live out, do so now.
904    if (DAG.getMachineFunction().liveout_empty())
905      DAG.getMachineFunction().addLiveOut(ArgReg);
906    break;
907  }
908  case 3:
909    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
910                            SDOperand());
911    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
912    // If we haven't noted the R3+R4 are live out, do so now.
913    if (DAG.getMachineFunction().liveout_empty()) {
914      DAG.getMachineFunction().addLiveOut(PPC::R3);
915      DAG.getMachineFunction().addLiveOut(PPC::R4);
916    }
917    break;
918  }
919  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
920}
921
922/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
923/// possible.
924static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
925  // Not FP? Not a fsel.
926  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
927      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
928    return SDOperand();
929
930  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
931
932  // Cannot handle SETEQ/SETNE.
933  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
934
935  MVT::ValueType ResVT = Op.getValueType();
936  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
937  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
938  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
939
940  // If the RHS of the comparison is a 0.0, we don't need to do the
941  // subtraction at all.
942  if (isFloatingPointZero(RHS))
943    switch (CC) {
944    default: break;       // SETUO etc aren't handled by fsel.
945    case ISD::SETULT:
946    case ISD::SETLT:
947      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
948    case ISD::SETUGE:
949    case ISD::SETGE:
950      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
951        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
952      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
953    case ISD::SETUGT:
954    case ISD::SETGT:
955      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
956    case ISD::SETULE:
957    case ISD::SETLE:
958      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
959        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
960      return DAG.getNode(PPCISD::FSEL, ResVT,
961                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
962    }
963
964      SDOperand Cmp;
965  switch (CC) {
966  default: break;       // SETUO etc aren't handled by fsel.
967  case ISD::SETULT:
968  case ISD::SETLT:
969    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
970    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
971      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
972      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
973  case ISD::SETUGE:
974  case ISD::SETGE:
975    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
976    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
977      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
978      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
979  case ISD::SETUGT:
980  case ISD::SETGT:
981    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
982    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
983      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
984      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
985  case ISD::SETULE:
986  case ISD::SETLE:
987    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
988    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
989      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
990      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
991  }
992  return SDOperand();
993}
994
995static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
996  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
997  SDOperand Src = Op.getOperand(0);
998  if (Src.getValueType() == MVT::f32)
999    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1000
1001  SDOperand Tmp;
1002  switch (Op.getValueType()) {
1003  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1004  case MVT::i32:
1005    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1006    break;
1007  case MVT::i64:
1008    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1009    break;
1010  }
1011
1012  // Convert the FP value to an int value through memory.
1013  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1014  if (Op.getValueType() == MVT::i32)
1015    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1016  return Bits;
1017}
1018
1019static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1020  if (Op.getOperand(0).getValueType() == MVT::i64) {
1021    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1022    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1023    if (Op.getValueType() == MVT::f32)
1024      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1025    return FP;
1026  }
1027
1028  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1029         "Unhandled SINT_TO_FP type in custom expander!");
1030  // Since we only generate this in 64-bit mode, we can take advantage of
1031  // 64-bit registers.  In particular, sign extend the input value into the
1032  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1033  // then lfd it and fcfid it.
1034  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1035  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1036  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1037
1038  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1039                                Op.getOperand(0));
1040
1041  // STD the extended value into the stack slot.
1042  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1043                                DAG.getEntryNode(), Ext64, FIdx,
1044                                DAG.getSrcValue(NULL));
1045  // Load the value as a double.
1046  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1047
1048  // FCFID it and return it.
1049  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1050  if (Op.getValueType() == MVT::f32)
1051    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1052  return FP;
1053}
1054
1055static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
1056  assert(Op.getValueType() == MVT::i64 &&
1057         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1058  // The generic code does a fine job expanding shift by a constant.
1059  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1060
1061  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1062  // depend on the PPC behavior for oversized shift amounts.
1063  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1064                             DAG.getConstant(0, MVT::i32));
1065  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1066                             DAG.getConstant(1, MVT::i32));
1067  SDOperand Amt = Op.getOperand(1);
1068
1069  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1070                               DAG.getConstant(32, MVT::i32), Amt);
1071  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1072  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1073  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1074  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1075                               DAG.getConstant(-32U, MVT::i32));
1076  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1077  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1078  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1079  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1080}
1081
1082static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
1083  assert(Op.getValueType() == MVT::i64 &&
1084         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1085  // The generic code does a fine job expanding shift by a constant.
1086  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1087
1088  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1089  // depend on the PPC behavior for oversized shift amounts.
1090  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1091                             DAG.getConstant(0, MVT::i32));
1092  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1093                             DAG.getConstant(1, MVT::i32));
1094  SDOperand Amt = Op.getOperand(1);
1095
1096  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1097                               DAG.getConstant(32, MVT::i32), Amt);
1098  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1099  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1100  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1101  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1102                               DAG.getConstant(-32U, MVT::i32));
1103  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1104  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1105  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1106  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1107}
1108
1109static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
1110  assert(Op.getValueType() == MVT::i64 &&
1111         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1112  // The generic code does a fine job expanding shift by a constant.
1113  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1114
1115  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1116  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1117                             DAG.getConstant(0, MVT::i32));
1118  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1119                             DAG.getConstant(1, MVT::i32));
1120  SDOperand Amt = Op.getOperand(1);
1121
1122  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1123                               DAG.getConstant(32, MVT::i32), Amt);
1124  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1125  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1126  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1127  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1128                               DAG.getConstant(-32U, MVT::i32));
1129  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1130  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1131  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1132                                    Tmp4, Tmp6, ISD::SETLE);
1133  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Vector related lowering.
1138//
1139
1140// If this is a vector of constants or undefs, get the bits.  A bit in
1141// UndefBits is set if the corresponding element of the vector is an
1142// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1143// zero.   Return true if this is not an array of constants, false if it is.
1144//
1145static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1146                                       uint64_t UndefBits[2]) {
1147  // Start with zero'd results.
1148  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1149
1150  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1151  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1152    SDOperand OpVal = BV->getOperand(i);
1153
1154    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1155    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1156
1157    uint64_t EltBits = 0;
1158    if (OpVal.getOpcode() == ISD::UNDEF) {
1159      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1160      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1161      continue;
1162    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1163      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1164    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1165      assert(CN->getValueType(0) == MVT::f32 &&
1166             "Only one legal FP vector type!");
1167      EltBits = FloatToBits(CN->getValue());
1168    } else {
1169      // Nonconstant element.
1170      return true;
1171    }
1172
1173    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1174  }
1175
1176  //printf("%llx %llx  %llx %llx\n",
1177  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1178  return false;
1179}
1180
1181// If this is a splat (repetition) of a value across the whole vector, return
1182// the smallest size that splats it.  For example, "0x01010101010101..." is a
1183// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1184// SplatSize = 1 byte.
1185static bool isConstantSplat(const uint64_t Bits128[2],
1186                            const uint64_t Undef128[2],
1187                            unsigned &SplatBits, unsigned &SplatUndef,
1188                            unsigned &SplatSize) {
1189
1190  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1191  // the same as the lower 64-bits, ignoring undefs.
1192  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1193    return false;  // Can't be a splat if two pieces don't match.
1194
1195  uint64_t Bits64  = Bits128[0] | Bits128[1];
1196  uint64_t Undef64 = Undef128[0] & Undef128[1];
1197
1198  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1199  // undefs.
1200  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1201    return false;  // Can't be a splat if two pieces don't match.
1202
1203  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1204  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1205
1206  // If the top 16-bits are different than the lower 16-bits, ignoring
1207  // undefs, we have an i32 splat.
1208  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1209    SplatBits = Bits32;
1210    SplatUndef = Undef32;
1211    SplatSize = 4;
1212    return true;
1213  }
1214
1215  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1216  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1217
1218  // If the top 8-bits are different than the lower 8-bits, ignoring
1219  // undefs, we have an i16 splat.
1220  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1221    SplatBits = Bits16;
1222    SplatUndef = Undef16;
1223    SplatSize = 2;
1224    return true;
1225  }
1226
1227  // Otherwise, we have an 8-bit splat.
1228  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1229  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1230  SplatSize = 1;
1231  return true;
1232}
1233
1234/// BuildSplatI - Build a canonical splati of Val with an element size of
1235/// SplatSize.  Cast the result to VT.
1236static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1237                             SelectionDAG &DAG) {
1238  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1239
1240  // Force vspltis[hw] -1 to vspltisb -1.
1241  if (Val == -1) SplatSize = 1;
1242
1243  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1244    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1245  };
1246  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1247
1248  // Build a canonical splat for this value.
1249  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1250  std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1251  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1252  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1253}
1254
1255/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1256/// specified intrinsic ID.
1257static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1258                                  SelectionDAG &DAG,
1259                                  MVT::ValueType DestVT = MVT::Other) {
1260  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1261  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1262                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1263}
1264
1265/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1266/// specified intrinsic ID.
1267static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1268                                  SDOperand Op2, SelectionDAG &DAG,
1269                                  MVT::ValueType DestVT = MVT::Other) {
1270  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1271  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1272                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1273}
1274
1275
1276/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1277/// amount.  The result has the specified value type.
1278static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1279                             MVT::ValueType VT, SelectionDAG &DAG) {
1280  // Force LHS/RHS to be the right type.
1281  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1282  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1283
1284  std::vector<SDOperand> Ops;
1285  for (unsigned i = 0; i != 16; ++i)
1286    Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1287  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1288                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1289  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1290}
1291
1292// If this is a case we can't handle, return null and let the default
1293// expansion code take care of it.  If we CAN select this case, and if it
1294// selects to a single instruction, return Op.  Otherwise, if we can codegen
1295// this case more efficiently than a constant pool load, lower it to the
1296// sequence of ops that should be used.
1297static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1298  // If this is a vector of constants or undefs, get the bits.  A bit in
1299  // UndefBits is set if the corresponding element of the vector is an
1300  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1301  // zero.
1302  uint64_t VectorBits[2];
1303  uint64_t UndefBits[2];
1304  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1305    return SDOperand();   // Not a constant vector.
1306
1307  // If this is a splat (repetition) of a value across the whole vector, return
1308  // the smallest size that splats it.  For example, "0x01010101010101..." is a
1309  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1310  // SplatSize = 1 byte.
1311  unsigned SplatBits, SplatUndef, SplatSize;
1312  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1313    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1314
1315    // First, handle single instruction cases.
1316
1317    // All zeros?
1318    if (SplatBits == 0) {
1319      // Canonicalize all zero vectors to be v4i32.
1320      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1321        SDOperand Z = DAG.getConstant(0, MVT::i32);
1322        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1323        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1324      }
1325      return Op;
1326    }
1327
1328    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1329    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1330    if (SextVal >= -16 && SextVal <= 15)
1331      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1332
1333
1334    // Two instruction sequences.
1335
1336    // If this value is in the range [-32,30] and is even, use:
1337    //    tmp = VSPLTI[bhw], result = add tmp, tmp
1338    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1339      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1340      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1341    }
1342
1343    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
1344    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
1345    // for fneg/fabs.
1346    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1347      // Make -1 and vspltisw -1:
1348      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1349
1350      // Make the VSLW intrinsic, computing 0x8000_0000.
1351      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1352                                       OnesV, DAG);
1353
1354      // xor by OnesV to invert it.
1355      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1356      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1357    }
1358
1359    // Check to see if this is a wide variety of vsplti*, binop self cases.
1360    unsigned SplatBitSize = SplatSize*8;
1361    static const char SplatCsts[] = {
1362      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1363      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1364    };
1365    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1366      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1367      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
1368      int i = SplatCsts[idx];
1369
1370      // Figure out what shift amount will be used by altivec if shifted by i in
1371      // this splat size.
1372      unsigned TypeShiftAmt = i & (SplatBitSize-1);
1373
1374      // vsplti + shl self.
1375      if (SextVal == (i << (int)TypeShiftAmt)) {
1376        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1377        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1378          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1379          Intrinsic::ppc_altivec_vslw
1380        };
1381        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1382      }
1383
1384      // vsplti + srl self.
1385      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1386        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1387        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1388          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1389          Intrinsic::ppc_altivec_vsrw
1390        };
1391        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1392      }
1393
1394      // vsplti + sra self.
1395      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1396        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1397        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1398          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1399          Intrinsic::ppc_altivec_vsraw
1400        };
1401        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1402      }
1403
1404      // vsplti + rol self.
1405      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1406                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1407        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1408        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1409          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1410          Intrinsic::ppc_altivec_vrlw
1411        };
1412        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1413      }
1414
1415      // t = vsplti c, result = vsldoi t, t, 1
1416      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1417        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1418        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1419      }
1420      // t = vsplti c, result = vsldoi t, t, 2
1421      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1422        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1423        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1424      }
1425      // t = vsplti c, result = vsldoi t, t, 3
1426      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1427        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1428        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1429      }
1430    }
1431
1432    // Three instruction sequences.
1433
1434    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
1435    if (SextVal >= 0 && SextVal <= 31) {
1436      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1437      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1438      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1439    }
1440    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
1441    if (SextVal >= -31 && SextVal <= 0) {
1442      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1443      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1444      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1445    }
1446  }
1447
1448  return SDOperand();
1449}
1450
1451/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1452/// the specified operations to build the shuffle.
1453static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1454                                        SDOperand RHS, SelectionDAG &DAG) {
1455  unsigned OpNum = (PFEntry >> 26) & 0x0F;
1456  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
1457  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
1458
1459  enum {
1460    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1461    OP_VMRGHW,
1462    OP_VMRGLW,
1463    OP_VSPLTISW0,
1464    OP_VSPLTISW1,
1465    OP_VSPLTISW2,
1466    OP_VSPLTISW3,
1467    OP_VSLDOI4,
1468    OP_VSLDOI8,
1469    OP_VSLDOI12,
1470  };
1471
1472  if (OpNum == OP_COPY) {
1473    if (LHSID == (1*9+2)*9+3) return LHS;
1474    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1475    return RHS;
1476  }
1477
1478  SDOperand OpLHS, OpRHS;
1479  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1480  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1481
1482  unsigned ShufIdxs[16];
1483  switch (OpNum) {
1484  default: assert(0 && "Unknown i32 permute!");
1485  case OP_VMRGHW:
1486    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
1487    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1488    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
1489    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1490    break;
1491  case OP_VMRGLW:
1492    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1493    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1494    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1495    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1496    break;
1497  case OP_VSPLTISW0:
1498    for (unsigned i = 0; i != 16; ++i)
1499      ShufIdxs[i] = (i&3)+0;
1500    break;
1501  case OP_VSPLTISW1:
1502    for (unsigned i = 0; i != 16; ++i)
1503      ShufIdxs[i] = (i&3)+4;
1504    break;
1505  case OP_VSPLTISW2:
1506    for (unsigned i = 0; i != 16; ++i)
1507      ShufIdxs[i] = (i&3)+8;
1508    break;
1509  case OP_VSPLTISW3:
1510    for (unsigned i = 0; i != 16; ++i)
1511      ShufIdxs[i] = (i&3)+12;
1512    break;
1513  case OP_VSLDOI4:
1514    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1515  case OP_VSLDOI8:
1516    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1517  case OP_VSLDOI12:
1518    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1519  }
1520  std::vector<SDOperand> Ops;
1521  for (unsigned i = 0; i != 16; ++i)
1522    Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1523
1524  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1525                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1526}
1527
1528/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
1529/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
1530/// return the code it can be lowered into.  Worst case, it can always be
1531/// lowered into a vperm.
1532static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1533  SDOperand V1 = Op.getOperand(0);
1534  SDOperand V2 = Op.getOperand(1);
1535  SDOperand PermMask = Op.getOperand(2);
1536
1537  // Cases that are handled by instructions that take permute immediates
1538  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1539  // selected by the instruction selector.
1540  if (V2.getOpcode() == ISD::UNDEF) {
1541    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1542        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1543        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1544        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1545        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1546        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1547        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1548        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1549        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1550        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1551        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1552        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1553      return Op;
1554    }
1555  }
1556
1557  // Altivec has a variety of "shuffle immediates" that take two vector inputs
1558  // and produce a fixed permutation.  If any of these match, do not lower to
1559  // VPERM.
1560  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1561      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1562      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1563      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1564      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1565      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1566      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1567      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1568      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1569    return Op;
1570
1571  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
1572  // perfect shuffle table to emit an optimal matching sequence.
1573  unsigned PFIndexes[4];
1574  bool isFourElementShuffle = true;
1575  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1576    unsigned EltNo = 8;   // Start out undef.
1577    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
1578      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1579        continue;   // Undef, ignore it.
1580
1581      unsigned ByteSource =
1582        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1583      if ((ByteSource & 3) != j) {
1584        isFourElementShuffle = false;
1585        break;
1586      }
1587
1588      if (EltNo == 8) {
1589        EltNo = ByteSource/4;
1590      } else if (EltNo != ByteSource/4) {
1591        isFourElementShuffle = false;
1592        break;
1593      }
1594    }
1595    PFIndexes[i] = EltNo;
1596  }
1597
1598  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1599  // perfect shuffle vector to determine if it is cost effective to do this as
1600  // discrete instructions, or whether we should use a vperm.
1601  if (isFourElementShuffle) {
1602    // Compute the index in the perfect shuffle table.
1603    unsigned PFTableIndex =
1604      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1605
1606    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1607    unsigned Cost  = (PFEntry >> 30);
1608
1609    // Determining when to avoid vperm is tricky.  Many things affect the cost
1610    // of vperm, particularly how many times the perm mask needs to be computed.
1611    // For example, if the perm mask can be hoisted out of a loop or is already
1612    // used (perhaps because there are multiple permutes with the same shuffle
1613    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
1614    // the loop requires an extra register.
1615    //
1616    // As a compromise, we only emit discrete instructions if the shuffle can be
1617    // generated in 3 or fewer operations.  When we have loop information
1618    // available, if this block is within a loop, we should avoid using vperm
1619    // for 3-operation perms and use a constant pool load instead.
1620    if (Cost < 3)
1621      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1622  }
1623
1624  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1625  // vector that will get spilled to the constant pool.
1626  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1627
1628  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1629  // that it is in input element units, not in bytes.  Convert now.
1630  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1631  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1632
1633  std::vector<SDOperand> ResultMask;
1634  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1635    unsigned SrcElt;
1636    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1637      SrcElt = 0;
1638    else
1639      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1640
1641    for (unsigned j = 0; j != BytesPerElement; ++j)
1642      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1643                                           MVT::i8));
1644  }
1645
1646  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1647  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1648}
1649
1650/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1651/// altivec comparison.  If it is, return true and fill in Opc/isDot with
1652/// information about the intrinsic.
1653static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1654                                  bool &isDot) {
1655  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1656  CompareOpc = -1;
1657  isDot = false;
1658  switch (IntrinsicID) {
1659  default: return false;
1660    // Comparison predicates.
1661  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
1662  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1663  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
1664  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
1665  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1666  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1667  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1668  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1669  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1670  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1671  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1672  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1673  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1674
1675    // Normal Comparisons.
1676  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
1677  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
1678  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
1679  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
1680  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
1681  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
1682  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
1683  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
1684  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
1685  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
1686  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
1687  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
1688  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
1689  }
1690  return true;
1691}
1692
1693/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1694/// lower, do it, otherwise return null.
1695static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1696  // If this is a lowered altivec predicate compare, CompareOpc is set to the
1697  // opcode number of the comparison.
1698  int CompareOpc;
1699  bool isDot;
1700  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1701    return SDOperand();    // Don't custom lower most intrinsics.
1702
1703  // If this is a non-dot comparison, make the VCMP node and we are done.
1704  if (!isDot) {
1705    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1706                                Op.getOperand(1), Op.getOperand(2),
1707                                DAG.getConstant(CompareOpc, MVT::i32));
1708    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1709  }
1710
1711  // Create the PPCISD altivec 'dot' comparison node.
1712  std::vector<SDOperand> Ops;
1713  std::vector<MVT::ValueType> VTs;
1714  Ops.push_back(Op.getOperand(2));  // LHS
1715  Ops.push_back(Op.getOperand(3));  // RHS
1716  Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1717  VTs.push_back(Op.getOperand(2).getValueType());
1718  VTs.push_back(MVT::Flag);
1719  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1720
1721  // Now that we have the comparison, emit a copy from the CR to a GPR.
1722  // This is flagged to the above dot comparison.
1723  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1724                                DAG.getRegister(PPC::CR6, MVT::i32),
1725                                CompNode.getValue(1));
1726
1727  // Unpack the result based on how the target uses it.
1728  unsigned BitNo;   // Bit # of CR6.
1729  bool InvertBit;   // Invert result?
1730  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1731  default:  // Can't happen, don't crash on invalid number though.
1732  case 0:   // Return the value of the EQ bit of CR6.
1733    BitNo = 0; InvertBit = false;
1734    break;
1735  case 1:   // Return the inverted value of the EQ bit of CR6.
1736    BitNo = 0; InvertBit = true;
1737    break;
1738  case 2:   // Return the value of the LT bit of CR6.
1739    BitNo = 2; InvertBit = false;
1740    break;
1741  case 3:   // Return the inverted value of the LT bit of CR6.
1742    BitNo = 2; InvertBit = true;
1743    break;
1744  }
1745
1746  // Shift the bit into the low position.
1747  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1748                      DAG.getConstant(8-(3-BitNo), MVT::i32));
1749  // Isolate the bit.
1750  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1751                      DAG.getConstant(1, MVT::i32));
1752
1753  // If we are supposed to, toggle the bit.
1754  if (InvertBit)
1755    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1756                        DAG.getConstant(1, MVT::i32));
1757  return Flags;
1758}
1759
1760static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1761  // Create a stack slot that is 16-byte aligned.
1762  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1763  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1764  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1765
1766  // Store the input value into Value#0 of the stack slot.
1767  SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1768                                Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1769  // Load it out.
1770  return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1771}
1772
1773static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
1774  if (Op.getValueType() == MVT::v4i32) {
1775    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1776
1777    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
1778    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1779
1780    SDOperand RHSSwap =   // = vrlw RHS, 16
1781      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1782
1783    // Shrinkify inputs to v8i16.
1784    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1785    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1786    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1787
1788    // Low parts multiplied together, generating 32-bit results (we ignore the
1789    // top parts).
1790    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1791                                        LHS, RHS, DAG, MVT::v4i32);
1792
1793    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1794                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1795    // Shift the high parts up 16 bits.
1796    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1797    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1798  } else if (Op.getValueType() == MVT::v8i16) {
1799    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1800
1801    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
1802
1803    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1804                            LHS, RHS, Zero, DAG);
1805  } else if (Op.getValueType() == MVT::v16i8) {
1806    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1807
1808    // Multiply the even 8-bit parts, producing 16-bit sums.
1809    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1810                                           LHS, RHS, DAG, MVT::v8i16);
1811    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1812
1813    // Multiply the odd 8-bit parts, producing 16-bit sums.
1814    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1815                                          LHS, RHS, DAG, MVT::v8i16);
1816    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1817
1818    // Merge the results together.
1819    std::vector<SDOperand> Ops;
1820    for (unsigned i = 0; i != 8; ++i) {
1821      Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1822      Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1823    }
1824
1825    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1826                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1827  } else {
1828    assert(0 && "Unknown mul to lower!");
1829    abort();
1830  }
1831}
1832
1833/// LowerOperation - Provide custom lowering hooks for some operations.
1834///
1835SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1836  switch (Op.getOpcode()) {
1837  default: assert(0 && "Wasn't expecting to be able to lower this!");
1838  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1839  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1840  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1841  case ISD::SETCC:              return LowerSETCC(Op, DAG);
1842  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1843  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG,
1844                                                             VarArgsFrameIndex);
1845  case ISD::RET:                return LowerRET(Op, DAG);
1846
1847  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1848  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
1849  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
1850
1851  // Lower 64-bit shifts.
1852  case ISD::SHL:                return LowerSHL(Op, DAG);
1853  case ISD::SRL:                return LowerSRL(Op, DAG);
1854  case ISD::SRA:                return LowerSRA(Op, DAG);
1855
1856  // Vector-related lowering.
1857  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
1858  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
1859  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1860  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
1861  case ISD::MUL:                return LowerMUL(Op, DAG);
1862  }
1863  return SDOperand();
1864}
1865
1866//===----------------------------------------------------------------------===//
1867//  Other Lowering Code
1868//===----------------------------------------------------------------------===//
1869
1870std::pair<SDOperand, SDOperand>
1871PPCTargetLowering::LowerCallTo(SDOperand Chain,
1872                               const Type *RetTy, bool isVarArg,
1873                               unsigned CallingConv, bool isTailCall,
1874                               SDOperand Callee, ArgListTy &Args,
1875                               SelectionDAG &DAG) {
1876  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1877  // SelectExpr to use to put the arguments in the appropriate registers.
1878  std::vector<SDOperand> args_to_use;
1879
1880  // Count how many bytes are to be pushed on the stack, including the linkage
1881  // area, and parameter passing area.
1882  unsigned NumBytes = 24;
1883
1884  if (Args.empty()) {
1885    Chain = DAG.getCALLSEQ_START(Chain,
1886                                 DAG.getConstant(NumBytes, getPointerTy()));
1887  } else {
1888    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1889      switch (getValueType(Args[i].second)) {
1890      default: assert(0 && "Unknown value type!");
1891      case MVT::i1:
1892      case MVT::i8:
1893      case MVT::i16:
1894      case MVT::i32:
1895      case MVT::f32:
1896        NumBytes += 4;
1897        break;
1898      case MVT::i64:
1899      case MVT::f64:
1900        NumBytes += 8;
1901        break;
1902      }
1903    }
1904
1905    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1906    // plus 32 bytes of argument space in case any called code gets funky on us.
1907    // (Required by ABI to support var arg)
1908    if (NumBytes < 56) NumBytes = 56;
1909
1910    // Adjust the stack pointer for the new arguments...
1911    // These operations are automatically eliminated by the prolog/epilog pass
1912    Chain = DAG.getCALLSEQ_START(Chain,
1913                                 DAG.getConstant(NumBytes, getPointerTy()));
1914
1915    // Set up a copy of the stack pointer for use loading and storing any
1916    // arguments that may not fit in the registers available for argument
1917    // passing.
1918    SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1919
1920    // Figure out which arguments are going to go in registers, and which in
1921    // memory.  Also, if this is a vararg function, floating point operations
1922    // must be stored to our stack, and loaded into integer regs as well, if
1923    // any integer regs are available for argument passing.
1924    unsigned ArgOffset = 24;
1925    unsigned GPR_remaining = 8;
1926    unsigned FPR_remaining = 13;
1927
1928    std::vector<SDOperand> MemOps;
1929    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1930      // PtrOff will be used to store the current argument to the stack if a
1931      // register cannot be found for it.
1932      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1933      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1934      MVT::ValueType ArgVT = getValueType(Args[i].second);
1935
1936      switch (ArgVT) {
1937      default: assert(0 && "Unexpected ValueType for argument!");
1938      case MVT::i1:
1939      case MVT::i8:
1940      case MVT::i16:
1941        // Promote the integer to 32 bits.  If the input type is signed use a
1942        // sign extend, otherwise use a zero extend.
1943        if (Args[i].second->isSigned())
1944          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1945        else
1946          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1947        // FALL THROUGH
1948      case MVT::i32:
1949        if (GPR_remaining > 0) {
1950          args_to_use.push_back(Args[i].first);
1951          --GPR_remaining;
1952        } else {
1953          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1954                                       Args[i].first, PtrOff,
1955                                       DAG.getSrcValue(NULL)));
1956        }
1957        ArgOffset += 4;
1958        break;
1959      case MVT::i64:
1960        // If we have one free GPR left, we can place the upper half of the i64
1961        // in it, and store the other half to the stack.  If we have two or more
1962        // free GPRs, then we can pass both halves of the i64 in registers.
1963        if (GPR_remaining > 0) {
1964          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1965                                   Args[i].first, DAG.getConstant(1, MVT::i32));
1966          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1967                                   Args[i].first, DAG.getConstant(0, MVT::i32));
1968          args_to_use.push_back(Hi);
1969          --GPR_remaining;
1970          if (GPR_remaining > 0) {
1971            args_to_use.push_back(Lo);
1972            --GPR_remaining;
1973          } else {
1974            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1975            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1976            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1977                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
1978          }
1979        } else {
1980          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1981                                       Args[i].first, PtrOff,
1982                                       DAG.getSrcValue(NULL)));
1983        }
1984        ArgOffset += 8;
1985        break;
1986      case MVT::f32:
1987      case MVT::f64:
1988        if (FPR_remaining > 0) {
1989          args_to_use.push_back(Args[i].first);
1990          --FPR_remaining;
1991          if (isVarArg) {
1992            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1993                                          Args[i].first, PtrOff,
1994                                          DAG.getSrcValue(NULL));
1995            MemOps.push_back(Store);
1996            // Float varargs are always shadowed in available integer registers
1997            if (GPR_remaining > 0) {
1998              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1999                                           DAG.getSrcValue(NULL));
2000              MemOps.push_back(Load.getValue(1));
2001              args_to_use.push_back(Load);
2002              --GPR_remaining;
2003            }
2004            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2005              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
2006              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
2007              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2008                                           DAG.getSrcValue(NULL));
2009              MemOps.push_back(Load.getValue(1));
2010              args_to_use.push_back(Load);
2011              --GPR_remaining;
2012            }
2013          } else {
2014            // If we have any FPRs remaining, we may also have GPRs remaining.
2015            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2016            // GPRs.
2017            if (GPR_remaining > 0) {
2018              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2019              --GPR_remaining;
2020            }
2021            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2022              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2023              --GPR_remaining;
2024            }
2025          }
2026        } else {
2027          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2028                                       Args[i].first, PtrOff,
2029                                       DAG.getSrcValue(NULL)));
2030        }
2031        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2032        break;
2033      }
2034    }
2035    if (!MemOps.empty())
2036      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2037  }
2038
2039  std::vector<MVT::ValueType> RetVals;
2040  MVT::ValueType RetTyVT = getValueType(RetTy);
2041  MVT::ValueType ActualRetTyVT = RetTyVT;
2042  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2043    ActualRetTyVT = MVT::i32;   // Promote result to i32.
2044
2045  if (RetTyVT == MVT::i64) {
2046    RetVals.push_back(MVT::i32);
2047    RetVals.push_back(MVT::i32);
2048  } else if (RetTyVT != MVT::isVoid) {
2049    RetVals.push_back(ActualRetTyVT);
2050  }
2051  RetVals.push_back(MVT::Other);
2052
2053  // If the callee is a GlobalAddress node (quite common, every direct call is)
2054  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2055  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2056    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2057
2058  std::vector<SDOperand> Ops;
2059  Ops.push_back(Chain);
2060  Ops.push_back(Callee);
2061  Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2062  SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
2063  Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
2064  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2065                      DAG.getConstant(NumBytes, getPointerTy()));
2066  SDOperand RetVal = TheCall;
2067
2068  // If the result is a small value, add a note so that we keep track of the
2069  // information about whether it is sign or zero extended.
2070  if (RetTyVT != ActualRetTyVT) {
2071    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2072                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2073    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
2074  } else if (RetTyVT == MVT::i64) {
2075    RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
2076  }
2077
2078  return std::make_pair(RetVal, Chain);
2079}
2080
2081MachineBasicBlock *
2082PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2083                                           MachineBasicBlock *BB) {
2084  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
2085          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2086          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2087          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2088         "Unexpected instr type to insert");
2089
2090  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2091  // control-flow pattern.  The incoming instruction knows the destination vreg
2092  // to set, the condition code register to branch on, the true/false values to
2093  // select between, and a branch opcode to use.
2094  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2095  ilist<MachineBasicBlock>::iterator It = BB;
2096  ++It;
2097
2098  //  thisMBB:
2099  //  ...
2100  //   TrueVal = ...
2101  //   cmpTY ccX, r1, r2
2102  //   bCC copy1MBB
2103  //   fallthrough --> copy0MBB
2104  MachineBasicBlock *thisMBB = BB;
2105  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2106  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2107  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2108    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2109  MachineFunction *F = BB->getParent();
2110  F->getBasicBlockList().insert(It, copy0MBB);
2111  F->getBasicBlockList().insert(It, sinkMBB);
2112  // Update machine-CFG edges by first adding all successors of the current
2113  // block to the new block which will contain the Phi node for the select.
2114  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2115      e = BB->succ_end(); i != e; ++i)
2116    sinkMBB->addSuccessor(*i);
2117  // Next, remove all successors of the current block, and add the true
2118  // and fallthrough blocks as its successors.
2119  while(!BB->succ_empty())
2120    BB->removeSuccessor(BB->succ_begin());
2121  BB->addSuccessor(copy0MBB);
2122  BB->addSuccessor(sinkMBB);
2123
2124  //  copy0MBB:
2125  //   %FalseValue = ...
2126  //   # fallthrough to sinkMBB
2127  BB = copy0MBB;
2128
2129  // Update machine-CFG edges
2130  BB->addSuccessor(sinkMBB);
2131
2132  //  sinkMBB:
2133  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2134  //  ...
2135  BB = sinkMBB;
2136  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2137    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2138    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2139
2140  delete MI;   // The pseudo instruction is gone now.
2141  return BB;
2142}
2143
2144//===----------------------------------------------------------------------===//
2145// Target Optimization Hooks
2146//===----------------------------------------------------------------------===//
2147
2148SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2149                                               DAGCombinerInfo &DCI) const {
2150  TargetMachine &TM = getTargetMachine();
2151  SelectionDAG &DAG = DCI.DAG;
2152  switch (N->getOpcode()) {
2153  default: break;
2154  case ISD::SINT_TO_FP:
2155    if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
2156      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2157        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2158        // We allow the src/dst to be either f32/f64, but the intermediate
2159        // type must be i64.
2160        if (N->getOperand(0).getValueType() == MVT::i64) {
2161          SDOperand Val = N->getOperand(0).getOperand(0);
2162          if (Val.getValueType() == MVT::f32) {
2163            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2164            DCI.AddToWorklist(Val.Val);
2165          }
2166
2167          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2168          DCI.AddToWorklist(Val.Val);
2169          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2170          DCI.AddToWorklist(Val.Val);
2171          if (N->getValueType(0) == MVT::f32) {
2172            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2173            DCI.AddToWorklist(Val.Val);
2174          }
2175          return Val;
2176        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2177          // If the intermediate type is i32, we can avoid the load/store here
2178          // too.
2179        }
2180      }
2181    }
2182    break;
2183  case ISD::STORE:
2184    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2185    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2186        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2187        N->getOperand(1).getValueType() == MVT::i32) {
2188      SDOperand Val = N->getOperand(1).getOperand(0);
2189      if (Val.getValueType() == MVT::f32) {
2190        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2191        DCI.AddToWorklist(Val.Val);
2192      }
2193      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2194      DCI.AddToWorklist(Val.Val);
2195
2196      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2197                        N->getOperand(2), N->getOperand(3));
2198      DCI.AddToWorklist(Val.Val);
2199      return Val;
2200    }
2201    break;
2202  case PPCISD::VCMP: {
2203    // If a VCMPo node already exists with exactly the same operands as this
2204    // node, use its result instead of this node (VCMPo computes both a CR6 and
2205    // a normal output).
2206    //
2207    if (!N->getOperand(0).hasOneUse() &&
2208        !N->getOperand(1).hasOneUse() &&
2209        !N->getOperand(2).hasOneUse()) {
2210
2211      // Scan all of the users of the LHS, looking for VCMPo's that match.
2212      SDNode *VCMPoNode = 0;
2213
2214      SDNode *LHSN = N->getOperand(0).Val;
2215      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2216           UI != E; ++UI)
2217        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2218            (*UI)->getOperand(1) == N->getOperand(1) &&
2219            (*UI)->getOperand(2) == N->getOperand(2) &&
2220            (*UI)->getOperand(0) == N->getOperand(0)) {
2221          VCMPoNode = *UI;
2222          break;
2223        }
2224
2225      // If there is no VCMPo node, or if the flag value has a single use, don't
2226      // transform this.
2227      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2228        break;
2229
2230      // Look at the (necessarily single) use of the flag value.  If it has a
2231      // chain, this transformation is more complex.  Note that multiple things
2232      // could use the value result, which we should ignore.
2233      SDNode *FlagUser = 0;
2234      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2235           FlagUser == 0; ++UI) {
2236        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2237        SDNode *User = *UI;
2238        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2239          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2240            FlagUser = User;
2241            break;
2242          }
2243        }
2244      }
2245
2246      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2247      // give up for right now.
2248      if (FlagUser->getOpcode() == PPCISD::MFCR)
2249        return SDOperand(VCMPoNode, 0);
2250    }
2251    break;
2252  }
2253  case ISD::BR_CC: {
2254    // If this is a branch on an altivec predicate comparison, lower this so
2255    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2256    // lowering is done pre-legalize, because the legalizer lowers the predicate
2257    // compare down to code that is difficult to reassemble.
2258    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2259    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2260    int CompareOpc;
2261    bool isDot;
2262
2263    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2264        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2265        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2266      assert(isDot && "Can't compare against a vector result!");
2267
2268      // If this is a comparison against something other than 0/1, then we know
2269      // that the condition is never/always true.
2270      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2271      if (Val != 0 && Val != 1) {
2272        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2273          return N->getOperand(0);
2274        // Always !=, turn it into an unconditional branch.
2275        return DAG.getNode(ISD::BR, MVT::Other,
2276                           N->getOperand(0), N->getOperand(4));
2277      }
2278
2279      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2280
2281      // Create the PPCISD altivec 'dot' comparison node.
2282      std::vector<SDOperand> Ops;
2283      std::vector<MVT::ValueType> VTs;
2284      Ops.push_back(LHS.getOperand(2));  // LHS of compare
2285      Ops.push_back(LHS.getOperand(3));  // RHS of compare
2286      Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2287      VTs.push_back(LHS.getOperand(2).getValueType());
2288      VTs.push_back(MVT::Flag);
2289      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2290
2291      // Unpack the result based on how the target uses it.
2292      unsigned CompOpc;
2293      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2294      default:  // Can't happen, don't crash on invalid number though.
2295      case 0:   // Branch on the value of the EQ bit of CR6.
2296        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2297        break;
2298      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2299        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2300        break;
2301      case 2:   // Branch on the value of the LT bit of CR6.
2302        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2303        break;
2304      case 3:   // Branch on the inverted value of the LT bit of CR6.
2305        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2306        break;
2307      }
2308
2309      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2310                         DAG.getRegister(PPC::CR6, MVT::i32),
2311                         DAG.getConstant(CompOpc, MVT::i32),
2312                         N->getOperand(4), CompNode.getValue(1));
2313    }
2314    break;
2315  }
2316  }
2317
2318  return SDOperand();
2319}
2320
2321//===----------------------------------------------------------------------===//
2322// Inline Assembly Support
2323//===----------------------------------------------------------------------===//
2324
2325void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2326                                                       uint64_t Mask,
2327                                                       uint64_t &KnownZero,
2328                                                       uint64_t &KnownOne,
2329                                                       unsigned Depth) const {
2330  KnownZero = 0;
2331  KnownOne = 0;
2332  switch (Op.getOpcode()) {
2333  default: break;
2334  case ISD::INTRINSIC_WO_CHAIN: {
2335    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2336    default: break;
2337    case Intrinsic::ppc_altivec_vcmpbfp_p:
2338    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2339    case Intrinsic::ppc_altivec_vcmpequb_p:
2340    case Intrinsic::ppc_altivec_vcmpequh_p:
2341    case Intrinsic::ppc_altivec_vcmpequw_p:
2342    case Intrinsic::ppc_altivec_vcmpgefp_p:
2343    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2344    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2345    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2346    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2347    case Intrinsic::ppc_altivec_vcmpgtub_p:
2348    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2349    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2350      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2351      break;
2352    }
2353  }
2354  }
2355}
2356
2357
2358/// getConstraintType - Given a constraint letter, return the type of
2359/// constraint it is for this target.
2360PPCTargetLowering::ConstraintType
2361PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2362  switch (ConstraintLetter) {
2363  default: break;
2364  case 'b':
2365  case 'r':
2366  case 'f':
2367  case 'v':
2368  case 'y':
2369    return C_RegisterClass;
2370  }
2371  return TargetLowering::getConstraintType(ConstraintLetter);
2372}
2373
2374
2375std::vector<unsigned> PPCTargetLowering::
2376getRegClassForInlineAsmConstraint(const std::string &Constraint,
2377                                  MVT::ValueType VT) const {
2378  if (Constraint.size() == 1) {
2379    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
2380    default: break;  // Unknown constriant letter
2381    case 'b':
2382      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2383                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2384                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2385                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2386                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2387                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2388                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2389                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2390                                   0);
2391    case 'r':
2392      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2393                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2394                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2395                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2396                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2397                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2398                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2399                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2400                                   0);
2401    case 'f':
2402      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2403                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2404                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2405                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2406                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2407                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2408                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2409                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2410                                   0);
2411    case 'v':
2412      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2413                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2414                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2415                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2416                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2417                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2418                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2419                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2420                                   0);
2421    case 'y':
2422      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2423                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2424                                   0);
2425    }
2426  }
2427
2428  return std::vector<unsigned>();
2429}
2430
2431// isOperandValidForConstraint
2432bool PPCTargetLowering::
2433isOperandValidForConstraint(SDOperand Op, char Letter) {
2434  switch (Letter) {
2435  default: break;
2436  case 'I':
2437  case 'J':
2438  case 'K':
2439  case 'L':
2440  case 'M':
2441  case 'N':
2442  case 'O':
2443  case 'P': {
2444    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
2445    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2446    switch (Letter) {
2447    default: assert(0 && "Unknown constraint letter!");
2448    case 'I':  // "I" is a signed 16-bit constant.
2449      return (short)Value == (int)Value;
2450    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
2451    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
2452      return (short)Value == 0;
2453    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
2454      return (Value >> 16) == 0;
2455    case 'M':  // "M" is a constant that is greater than 31.
2456      return Value > 31;
2457    case 'N':  // "N" is a positive constant that is an exact power of two.
2458      return (int)Value > 0 && isPowerOf2_32(Value);
2459    case 'O':  // "O" is the constant zero.
2460      return Value == 0;
2461    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
2462      return (short)-Value == (int)-Value;
2463    }
2464    break;
2465  }
2466  }
2467
2468  // Handle standard constraint letters.
2469  return TargetLowering::isOperandValidForConstraint(Op, Letter);
2470}
2471
2472/// isLegalAddressImmediate - Return true if the integer value can be used
2473/// as the offset of the target addressing mode.
2474bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2475  // PPC allows a sign-extended 16-bit immediate field.
2476  return (V > -(1 << 16) && V < (1 << 16)-1);
2477}
2478