PPCISelLowering.cpp revision f0757b0edc1ef3d1998485d3f74cadaa3f7180a0
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
186  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
187  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
188  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
189
190
191  // We want to legalize GlobalAddress and ConstantPool nodes into the
192  // appropriate instructions to materialize the address.
193  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
194  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
195  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
196  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
197  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
198  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
199  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
200  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
201  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
202  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
203
204  // TRAP is legal.
205  setOperationAction(ISD::TRAP, MVT::Other, Legal);
206
207  // TRAMPOLINE is custom lowered.
208  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
209
210  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
211  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
212
213  // VAARG is custom lowered with the 32-bit SVR4 ABI.
214  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
215      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
216    setOperationAction(ISD::VAARG, MVT::Other, Custom);
217  else
218    setOperationAction(ISD::VAARG, MVT::Other, Expand);
219
220  // Use the default implementation.
221  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
222  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
223  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
224  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
225  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
227
228  // We want to custom lower some of our intrinsics.
229  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
230
231  // Comparisons that require checking two conditions.
232  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
233  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
234  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
244
245  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
246    // They also have instructions for converting between i64 and fp.
247    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
248    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
249    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
250    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
251    // This is just the low 32 bits of a (signed) fp->i64 conversion.
252    // We cannot do this with Promote because i64 is not a legal type.
253    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
254
255    // FIXME: disable this lowered code.  This generates 64-bit register values,
256    // and we don't model the fact that the top part is clobbered by calls.  We
257    // need to flag these together so that the value isn't live across a call.
258    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
259  } else {
260    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
262  }
263
264  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
265    // 64-bit PowerPC implementations can support i64 types directly
266    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
267    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
268    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
269    // 64-bit PowerPC wants to expand i128 shifts itself.
270    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
271    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
273  } else {
274    // 32-bit PowerPC wants to expand i64 shifts itself.
275    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
276    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
278  }
279
280  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
281    // First set operation action for all vector types to expand. Then we
282    // will selectively turn on ones that can be effectively codegen'd.
283    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
284         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
285      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
286
287      // add/sub are legal for all supported vector VT's.
288      setOperationAction(ISD::ADD , VT, Legal);
289      setOperationAction(ISD::SUB , VT, Legal);
290
291      // We promote all shuffles to v16i8.
292      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
293      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
294
295      // We promote all non-typed operations to v4i32.
296      setOperationAction(ISD::AND   , VT, Promote);
297      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
298      setOperationAction(ISD::OR    , VT, Promote);
299      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
300      setOperationAction(ISD::XOR   , VT, Promote);
301      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
302      setOperationAction(ISD::LOAD  , VT, Promote);
303      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
304      setOperationAction(ISD::SELECT, VT, Promote);
305      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
306      setOperationAction(ISD::STORE, VT, Promote);
307      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
308
309      // No other operations are legal.
310      setOperationAction(ISD::MUL , VT, Expand);
311      setOperationAction(ISD::SDIV, VT, Expand);
312      setOperationAction(ISD::SREM, VT, Expand);
313      setOperationAction(ISD::UDIV, VT, Expand);
314      setOperationAction(ISD::UREM, VT, Expand);
315      setOperationAction(ISD::FDIV, VT, Expand);
316      setOperationAction(ISD::FNEG, VT, Expand);
317      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
318      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
320      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
321      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::UDIVREM, VT, Expand);
323      setOperationAction(ISD::SDIVREM, VT, Expand);
324      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
325      setOperationAction(ISD::FPOW, VT, Expand);
326      setOperationAction(ISD::CTPOP, VT, Expand);
327      setOperationAction(ISD::CTLZ, VT, Expand);
328      setOperationAction(ISD::CTTZ, VT, Expand);
329    }
330
331    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
332    // with merges, splats, etc.
333    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
334
335    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
336    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
337    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
338    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
339    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
340    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
341
342    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
343    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
346
347    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
348    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
349    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
350    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
351
352    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
354
355    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
359  }
360
361  setShiftAmountType(MVT::i32);
362  setBooleanContents(ZeroOrOneBooleanContent);
363
364  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
365    setStackPointerRegisterToSaveRestore(PPC::X1);
366    setExceptionPointerRegister(PPC::X3);
367    setExceptionSelectorRegister(PPC::X4);
368  } else {
369    setStackPointerRegisterToSaveRestore(PPC::R1);
370    setExceptionPointerRegister(PPC::R3);
371    setExceptionSelectorRegister(PPC::R4);
372  }
373
374  // We have target-specific dag combine patterns for the following nodes:
375  setTargetDAGCombine(ISD::SINT_TO_FP);
376  setTargetDAGCombine(ISD::STORE);
377  setTargetDAGCombine(ISD::BR_CC);
378  setTargetDAGCombine(ISD::BSWAP);
379
380  // Darwin long double math library functions have $LDBL128 appended.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
382    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
383    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
384    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
385    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
386    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
387    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
388    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
389    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
390    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
391    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
392  }
393
394  computeRegisterProperties();
395}
396
397/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
398/// function arguments in the caller parameter area.
399unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
400  const TargetMachine &TM = getTargetMachine();
401  // Darwin passes everything on 4 byte boundary.
402  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
403    return 4;
404  // FIXME SVR4 TBD
405  return 4;
406}
407
408const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
409  switch (Opcode) {
410  default: return 0;
411  case PPCISD::FSEL:            return "PPCISD::FSEL";
412  case PPCISD::FCFID:           return "PPCISD::FCFID";
413  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
414  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
415  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
416  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
417  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
418  case PPCISD::VPERM:           return "PPCISD::VPERM";
419  case PPCISD::Hi:              return "PPCISD::Hi";
420  case PPCISD::Lo:              return "PPCISD::Lo";
421  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
422  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
423  case PPCISD::LOAD:            return "PPCISD::LOAD";
424  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
425  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
426  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
427  case PPCISD::SRL:             return "PPCISD::SRL";
428  case PPCISD::SRA:             return "PPCISD::SRA";
429  case PPCISD::SHL:             return "PPCISD::SHL";
430  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
431  case PPCISD::STD_32:          return "PPCISD::STD_32";
432  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
433  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
434  case PPCISD::NOP:             return "PPCISD::NOP";
435  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
436  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
437  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
438  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
439  case PPCISD::MFCR:            return "PPCISD::MFCR";
440  case PPCISD::VCMP:            return "PPCISD::VCMP";
441  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
442  case PPCISD::LBRX:            return "PPCISD::LBRX";
443  case PPCISD::STBRX:           return "PPCISD::STBRX";
444  case PPCISD::LARX:            return "PPCISD::LARX";
445  case PPCISD::STCX:            return "PPCISD::STCX";
446  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
447  case PPCISD::MFFS:            return "PPCISD::MFFS";
448  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
449  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
450  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
451  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
452  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
453  }
454}
455
456MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
457  return MVT::i32;
458}
459
460/// getFunctionAlignment - Return the Log2 alignment of this function.
461unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
462  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
463    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
464  else
465    return 2;
466}
467
468//===----------------------------------------------------------------------===//
469// Node matching predicates, for use by the tblgen matching code.
470//===----------------------------------------------------------------------===//
471
472/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
473static bool isFloatingPointZero(SDValue Op) {
474  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
475    return CFP->getValueAPF().isZero();
476  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
477    // Maybe this has already been legalized into the constant pool?
478    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
479      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
480        return CFP->getValueAPF().isZero();
481  }
482  return false;
483}
484
485/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
486/// true if Op is undef or if it matches the specified value.
487static bool isConstantOrUndef(int Op, int Val) {
488  return Op < 0 || Op == Val;
489}
490
491/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492/// VPKUHUM instruction.
493bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
494  if (!isUnary) {
495    for (unsigned i = 0; i != 16; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
497        return false;
498  } else {
499    for (unsigned i = 0; i != 8; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
501          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
502        return false;
503  }
504  return true;
505}
506
507/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
508/// VPKUWUM instruction.
509bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
510  if (!isUnary) {
511    for (unsigned i = 0; i != 16; i += 2)
512      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
513          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
514        return false;
515  } else {
516    for (unsigned i = 0; i != 8; i += 2)
517      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
518          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
519          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
521        return false;
522  }
523  return true;
524}
525
526/// isVMerge - Common function, used to match vmrg* shuffles.
527///
528static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
529                     unsigned LHSStart, unsigned RHSStart) {
530  assert(N->getValueType(0) == MVT::v16i8 &&
531         "PPC only supports shuffles by bytes!");
532  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
533         "Unsupported merge size!");
534
535  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
536    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
537      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
538                             LHSStart+j+i*UnitSize) ||
539          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
540                             RHSStart+j+i*UnitSize))
541        return false;
542    }
543  return true;
544}
545
546/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
547/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
548bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
549                             bool isUnary) {
550  if (!isUnary)
551    return isVMerge(N, UnitSize, 8, 24);
552  return isVMerge(N, UnitSize, 8, 8);
553}
554
555/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 0, 16);
561  return isVMerge(N, UnitSize, 0, 0);
562}
563
564
565/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
566/// amount, otherwise return -1.
567int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
568  assert(N->getValueType(0) == MVT::v16i8 &&
569         "PPC only supports shuffles by bytes!");
570
571  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
572
573  // Find the first non-undef value in the shuffle mask.
574  unsigned i;
575  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
576    /*search*/;
577
578  if (i == 16) return -1;  // all undef.
579
580  // Otherwise, check to see if the rest of the elements are consecutively
581  // numbered from this value.
582  unsigned ShiftAmt = SVOp->getMaskElt(i);
583  if (ShiftAmt < i) return -1;
584  ShiftAmt -= i;
585
586  if (!isUnary) {
587    // Check the rest of the elements to see if they are consecutive.
588    for (++i; i != 16; ++i)
589      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
590        return -1;
591  } else {
592    // Check the rest of the elements to see if they are consecutive.
593    for (++i; i != 16; ++i)
594      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
595        return -1;
596  }
597  return ShiftAmt;
598}
599
600/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
601/// specifies a splat of a single element that is suitable for input to
602/// VSPLTB/VSPLTH/VSPLTW.
603bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
604  assert(N->getValueType(0) == MVT::v16i8 &&
605         (EltSize == 1 || EltSize == 2 || EltSize == 4));
606
607  // This is a splat operation if each element of the permute is the same, and
608  // if the value doesn't reference the second vector.
609  unsigned ElementBase = N->getMaskElt(0);
610
611  // FIXME: Handle UNDEF elements too!
612  if (ElementBase >= 16)
613    return false;
614
615  // Check that the indices are consecutive, in the case of a multi-byte element
616  // splatted with a v16i8 mask.
617  for (unsigned i = 1; i != EltSize; ++i)
618    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
619      return false;
620
621  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
622    if (N->getMaskElt(i) < 0) continue;
623    for (unsigned j = 0; j != EltSize; ++j)
624      if (N->getMaskElt(i+j) != N->getMaskElt(j))
625        return false;
626  }
627  return true;
628}
629
630/// isAllNegativeZeroVector - Returns true if all elements of build_vector
631/// are -0.0.
632bool PPC::isAllNegativeZeroVector(SDNode *N) {
633  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
634
635  APInt APVal, APUndef;
636  unsigned BitSize;
637  bool HasAnyUndefs;
638
639  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
640    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
641      return CFP->getValueAPF().isNegZero();
642
643  return false;
644}
645
646/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
647/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
648unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
649  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
650  assert(isSplatShuffleMask(SVOp, EltSize));
651  return SVOp->getMaskElt(0) / EltSize;
652}
653
654/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
655/// by using a vspltis[bhw] instruction of the specified element size, return
656/// the constant being splatted.  The ByteSize field indicates the number of
657/// bytes of each element [124] -> [bhw].
658SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
659  SDValue OpVal(0, 0);
660
661  // If ByteSize of the splat is bigger than the element size of the
662  // build_vector, then we have a case where we are checking for a splat where
663  // multiple elements of the buildvector are folded together into a single
664  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
665  unsigned EltSize = 16/N->getNumOperands();
666  if (EltSize < ByteSize) {
667    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
668    SDValue UniquedVals[4];
669    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
670
671    // See if all of the elements in the buildvector agree across.
672    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
673      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
674      // If the element isn't a constant, bail fully out.
675      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
676
677
678      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
679        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
680      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
681        return SDValue();  // no match.
682    }
683
684    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
685    // either constant or undef values that are identical for each chunk.  See
686    // if these chunks can form into a larger vspltis*.
687
688    // Check to see if all of the leading entries are either 0 or -1.  If
689    // neither, then this won't fit into the immediate field.
690    bool LeadingZero = true;
691    bool LeadingOnes = true;
692    for (unsigned i = 0; i != Multiple-1; ++i) {
693      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
694
695      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
696      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
697    }
698    // Finally, check the least significant entry.
699    if (LeadingZero) {
700      if (UniquedVals[Multiple-1].getNode() == 0)
701        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
702      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
703      if (Val < 16)
704        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
705    }
706    if (LeadingOnes) {
707      if (UniquedVals[Multiple-1].getNode() == 0)
708        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
709      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
710      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
711        return DAG.getTargetConstant(Val, MVT::i32);
712    }
713
714    return SDValue();
715  }
716
717  // Check to see if this buildvec has a single non-undef value in its elements.
718  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
719    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
720    if (OpVal.getNode() == 0)
721      OpVal = N->getOperand(i);
722    else if (OpVal != N->getOperand(i))
723      return SDValue();
724  }
725
726  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
727
728  unsigned ValSizeInBytes = EltSize;
729  uint64_t Value = 0;
730  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
731    Value = CN->getZExtValue();
732  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
733    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
734    Value = FloatToBits(CN->getValueAPF().convertToFloat());
735  }
736
737  // If the splat value is larger than the element value, then we can never do
738  // this splat.  The only case that we could fit the replicated bits into our
739  // immediate field for would be zero, and we prefer to use vxor for it.
740  if (ValSizeInBytes < ByteSize) return SDValue();
741
742  // If the element value is larger than the splat value, cut it in half and
743  // check to see if the two halves are equal.  Continue doing this until we
744  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
745  while (ValSizeInBytes > ByteSize) {
746    ValSizeInBytes >>= 1;
747
748    // If the top half equals the bottom half, we're still ok.
749    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
750         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
751      return SDValue();
752  }
753
754  // Properly sign extend the value.
755  int ShAmt = (4-ByteSize)*8;
756  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
757
758  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
759  if (MaskVal == 0) return SDValue();
760
761  // Finally, if this value fits in a 5 bit sext field, return it
762  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
763    return DAG.getTargetConstant(MaskVal, MVT::i32);
764  return SDValue();
765}
766
767//===----------------------------------------------------------------------===//
768//  Addressing Mode Selection
769//===----------------------------------------------------------------------===//
770
771/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
772/// or 64-bit immediate, and if the value can be accurately represented as a
773/// sign extension from a 16-bit value.  If so, this returns true and the
774/// immediate.
775static bool isIntS16Immediate(SDNode *N, short &Imm) {
776  if (N->getOpcode() != ISD::Constant)
777    return false;
778
779  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
780  if (N->getValueType(0) == MVT::i32)
781    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
782  else
783    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
784}
785static bool isIntS16Immediate(SDValue Op, short &Imm) {
786  return isIntS16Immediate(Op.getNode(), Imm);
787}
788
789
790/// SelectAddressRegReg - Given the specified addressed, check to see if it
791/// can be represented as an indexed [r+r] operation.  Returns false if it
792/// can be more efficiently represented with [r+imm].
793bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
794                                            SDValue &Index,
795                                            SelectionDAG &DAG) const {
796  short imm = 0;
797  if (N.getOpcode() == ISD::ADD) {
798    if (isIntS16Immediate(N.getOperand(1), imm))
799      return false;    // r+i
800    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
801      return false;    // r+i
802
803    Base = N.getOperand(0);
804    Index = N.getOperand(1);
805    return true;
806  } else if (N.getOpcode() == ISD::OR) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i can fold it if we can.
809
810    // If this is an or of disjoint bitfields, we can codegen this as an add
811    // (for better address arithmetic) if the LHS and RHS of the OR are provably
812    // disjoint.
813    APInt LHSKnownZero, LHSKnownOne;
814    APInt RHSKnownZero, RHSKnownOne;
815    DAG.ComputeMaskedBits(N.getOperand(0),
816                          APInt::getAllOnesValue(N.getOperand(0)
817                            .getValueSizeInBits()),
818                          LHSKnownZero, LHSKnownOne);
819
820    if (LHSKnownZero.getBoolValue()) {
821      DAG.ComputeMaskedBits(N.getOperand(1),
822                            APInt::getAllOnesValue(N.getOperand(1)
823                              .getValueSizeInBits()),
824                            RHSKnownZero, RHSKnownOne);
825      // If all of the bits are known zero on the LHS or RHS, the add won't
826      // carry.
827      if (~(LHSKnownZero | RHSKnownZero) == 0) {
828        Base = N.getOperand(0);
829        Index = N.getOperand(1);
830        return true;
831      }
832    }
833  }
834
835  return false;
836}
837
838/// Returns true if the address N can be represented by a base register plus
839/// a signed 16-bit displacement [r+imm], and if it is not better
840/// represented as reg+reg.
841bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
842                                            SDValue &Base,
843                                            SelectionDAG &DAG) const {
844  // FIXME dl should come from parent load or store, not from address
845  DebugLoc dl = N.getDebugLoc();
846  // If this can be more profitably realized as r+r, fail.
847  if (SelectAddressRegReg(N, Disp, Base, DAG))
848    return false;
849
850  if (N.getOpcode() == ISD::ADD) {
851    short imm = 0;
852    if (isIntS16Immediate(N.getOperand(1), imm)) {
853      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
854      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
855        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
856      } else {
857        Base = N.getOperand(0);
858      }
859      return true; // [r+i]
860    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
861      // Match LOAD (ADD (X, Lo(G))).
862     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
863             && "Cannot handle constant offsets yet!");
864      Disp = N.getOperand(1).getOperand(0);  // The global address.
865      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
866             Disp.getOpcode() == ISD::TargetConstantPool ||
867             Disp.getOpcode() == ISD::TargetJumpTable);
868      Base = N.getOperand(0);
869      return true;  // [&g+r]
870    }
871  } else if (N.getOpcode() == ISD::OR) {
872    short imm = 0;
873    if (isIntS16Immediate(N.getOperand(1), imm)) {
874      // If this is an or of disjoint bitfields, we can codegen this as an add
875      // (for better address arithmetic) if the LHS and RHS of the OR are
876      // provably disjoint.
877      APInt LHSKnownZero, LHSKnownOne;
878      DAG.ComputeMaskedBits(N.getOperand(0),
879                            APInt::getAllOnesValue(N.getOperand(0)
880                                                   .getValueSizeInBits()),
881                            LHSKnownZero, LHSKnownOne);
882
883      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
884        // If all of the bits are known zero on the LHS or RHS, the add won't
885        // carry.
886        Base = N.getOperand(0);
887        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
888        return true;
889      }
890    }
891  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
892    // Loading from a constant address.
893
894    // If this address fits entirely in a 16-bit sext immediate field, codegen
895    // this as "d, 0"
896    short Imm;
897    if (isIntS16Immediate(CN, Imm)) {
898      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
899      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
900      return true;
901    }
902
903    // Handle 32-bit sext immediates with LIS + addr mode.
904    if (CN->getValueType(0) == MVT::i32 ||
905        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906      int Addr = (int)CN->getZExtValue();
907
908      // Otherwise, break this down into an LIS + disp.
909      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910
911      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914      return true;
915    }
916  }
917
918  Disp = DAG.getTargetConstant(0, getPointerTy());
919  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921  else
922    Base = N;
923  return true;      // [r+0]
924}
925
926/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927/// represented as an indexed [r+r] operation.
928bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                SDValue &Index,
930                                                SelectionDAG &DAG) const {
931  // Check to see if we can easily represent this as an [r+r] address.  This
932  // will fail if it thinks that the address is more profitably represented as
933  // reg+imm, e.g. where imm = 0.
934  if (SelectAddressRegReg(N, Base, Index, DAG))
935    return true;
936
937  // If the operand is an addition, always emit this as [r+r], since this is
938  // better (for code size, and execution, as the memop does the add for free)
939  // than emitting an explicit add.
940  if (N.getOpcode() == ISD::ADD) {
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  }
945
946  // Otherwise, do it the hard way, using R0 as the base register.
947  Base = DAG.getRegister(PPC::R0, N.getValueType());
948  Index = N;
949  return true;
950}
951
952/// SelectAddressRegImmShift - Returns true if the address N can be
953/// represented by a base register plus a signed 14-bit displacement
954/// [r+imm*4].  Suitable for use by STD and friends.
955bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
956                                                 SDValue &Base,
957                                                 SelectionDAG &DAG) const {
958  // FIXME dl should come from the parent load or store, not the address
959  DebugLoc dl = N.getDebugLoc();
960  // If this can be more profitably realized as r+r, fail.
961  if (SelectAddressRegReg(N, Disp, Base, DAG))
962    return false;
963
964  if (N.getOpcode() == ISD::ADD) {
965    short imm = 0;
966    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
967      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
968      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
969        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
970      } else {
971        Base = N.getOperand(0);
972      }
973      return true; // [r+i]
974    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
975      // Match LOAD (ADD (X, Lo(G))).
976     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
977             && "Cannot handle constant offsets yet!");
978      Disp = N.getOperand(1).getOperand(0);  // The global address.
979      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
980             Disp.getOpcode() == ISD::TargetConstantPool ||
981             Disp.getOpcode() == ISD::TargetJumpTable);
982      Base = N.getOperand(0);
983      return true;  // [&g+r]
984    }
985  } else if (N.getOpcode() == ISD::OR) {
986    short imm = 0;
987    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
988      // If this is an or of disjoint bitfields, we can codegen this as an add
989      // (for better address arithmetic) if the LHS and RHS of the OR are
990      // provably disjoint.
991      APInt LHSKnownZero, LHSKnownOne;
992      DAG.ComputeMaskedBits(N.getOperand(0),
993                            APInt::getAllOnesValue(N.getOperand(0)
994                                                   .getValueSizeInBits()),
995                            LHSKnownZero, LHSKnownOne);
996      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
997        // If all of the bits are known zero on the LHS or RHS, the add won't
998        // carry.
999        Base = N.getOperand(0);
1000        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1001        return true;
1002      }
1003    }
1004  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1005    // Loading from a constant address.  Verify low two bits are clear.
1006    if ((CN->getZExtValue() & 3) == 0) {
1007      // If this address fits entirely in a 14-bit sext immediate field, codegen
1008      // this as "d, 0"
1009      short Imm;
1010      if (isIntS16Immediate(CN, Imm)) {
1011        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1012        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1013        return true;
1014      }
1015
1016      // Fold the low-part of 32-bit absolute addresses into addr mode.
1017      if (CN->getValueType(0) == MVT::i32 ||
1018          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1019        int Addr = (int)CN->getZExtValue();
1020
1021        // Otherwise, break this down into an LIS + disp.
1022        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1023        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1024        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1025        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1026        return true;
1027      }
1028    }
1029  }
1030
1031  Disp = DAG.getTargetConstant(0, getPointerTy());
1032  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1033    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1034  else
1035    Base = N;
1036  return true;      // [r+0]
1037}
1038
1039
1040/// getPreIndexedAddressParts - returns true by value, base pointer and
1041/// offset pointer and addressing mode by reference if the node's address
1042/// can be legally represented as pre-indexed load / store address.
1043bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1044                                                  SDValue &Offset,
1045                                                  ISD::MemIndexedMode &AM,
1046                                                  SelectionDAG &DAG) const {
1047  // Disabled by default for now.
1048  if (!EnablePPCPreinc) return false;
1049
1050  SDValue Ptr;
1051  EVT VT;
1052  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1053    Ptr = LD->getBasePtr();
1054    VT = LD->getMemoryVT();
1055
1056  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1057    ST = ST;
1058    Ptr = ST->getBasePtr();
1059    VT  = ST->getMemoryVT();
1060  } else
1061    return false;
1062
1063  // PowerPC doesn't have preinc load/store instructions for vectors.
1064  if (VT.isVector())
1065    return false;
1066
1067  // TODO: Check reg+reg first.
1068
1069  // LDU/STU use reg+imm*4, others use reg+imm.
1070  if (VT != MVT::i64) {
1071    // reg + imm
1072    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1073      return false;
1074  } else {
1075    // reg + imm * 4.
1076    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1077      return false;
1078  }
1079
1080  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1081    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1082    // sext i32 to i64 when addr mode is r+i.
1083    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1084        LD->getExtensionType() == ISD::SEXTLOAD &&
1085        isa<ConstantSDNode>(Offset))
1086      return false;
1087  }
1088
1089  AM = ISD::PRE_INC;
1090  return true;
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  LowerOperation implementation
1095//===----------------------------------------------------------------------===//
1096
1097SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1098                                             SelectionDAG &DAG) const {
1099  EVT PtrVT = Op.getValueType();
1100  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1101  const Constant *C = CP->getConstVal();
1102  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1103  SDValue Zero = DAG.getConstant(0, PtrVT);
1104  // FIXME there isn't really any debug info here
1105  DebugLoc dl = Op.getDebugLoc();
1106
1107  const TargetMachine &TM = DAG.getTarget();
1108
1109  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1110  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1111
1112  // If this is a non-darwin platform, we don't support non-static relo models
1113  // yet.
1114  if (TM.getRelocationModel() == Reloc::Static ||
1115      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1116    // Generate non-pic code that has direct accesses to the constant pool.
1117    // The address of the global is just (hi(&g)+lo(&g)).
1118    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1119  }
1120
1121  if (TM.getRelocationModel() == Reloc::PIC_) {
1122    // With PIC, the first instruction is actually "GR+hi(&G)".
1123    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1124                     DAG.getNode(PPCISD::GlobalBaseReg,
1125                                 DebugLoc(), PtrVT), Hi);
1126  }
1127
1128  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1129  return Lo;
1130}
1131
1132SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1133  EVT PtrVT = Op.getValueType();
1134  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1135  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1136  SDValue Zero = DAG.getConstant(0, PtrVT);
1137  // FIXME there isn't really any debug loc here
1138  DebugLoc dl = Op.getDebugLoc();
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to the constant pool.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg,
1158                                 DebugLoc(), PtrVT), Hi);
1159  }
1160
1161  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1162  return Lo;
1163}
1164
1165SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1166                                                 SelectionDAG &DAG) const {
1167  llvm_unreachable("TLS not implemented for PPC.");
1168  return SDValue(); // Not reached
1169}
1170
1171SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1172                                             SelectionDAG &DAG) const {
1173  EVT PtrVT = Op.getValueType();
1174  DebugLoc DL = Op.getDebugLoc();
1175
1176  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1177  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1178  SDValue Zero = DAG.getConstant(0, PtrVT);
1179  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1180  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1181
1182  // If this is a non-darwin platform, we don't support non-static relo models
1183  // yet.
1184  const TargetMachine &TM = DAG.getTarget();
1185  if (TM.getRelocationModel() == Reloc::Static ||
1186      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1187    // Generate non-pic code that has direct accesses to globals.
1188    // The address of the global is just (hi(&g)+lo(&g)).
1189    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1190  }
1191
1192  if (TM.getRelocationModel() == Reloc::PIC_) {
1193    // With PIC, the first instruction is actually "GR+hi(&G)".
1194    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1195                     DAG.getNode(PPCISD::GlobalBaseReg,
1196                                 DebugLoc(), PtrVT), Hi);
1197  }
1198
1199  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1200}
1201
1202SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1203                                              SelectionDAG &DAG) const {
1204  EVT PtrVT = Op.getValueType();
1205  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1206  const GlobalValue *GV = GSDN->getGlobal();
1207  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1208  SDValue Zero = DAG.getConstant(0, PtrVT);
1209  // FIXME there isn't really any debug info here
1210  DebugLoc dl = GSDN->getDebugLoc();
1211
1212  const TargetMachine &TM = DAG.getTarget();
1213
1214  // 64-bit SVR4 ABI code is always position-independent.
1215  // The actual address of the GlobalValue is stored in the TOC.
1216  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1217    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1218                       DAG.getRegister(PPC::X2, MVT::i64));
1219  }
1220
1221  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1222  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1223
1224  // If this is a non-darwin platform, we don't support non-static relo models
1225  // yet.
1226  if (TM.getRelocationModel() == Reloc::Static ||
1227      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1228    // Generate non-pic code that has direct accesses to globals.
1229    // The address of the global is just (hi(&g)+lo(&g)).
1230    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1231  }
1232
1233  if (TM.getRelocationModel() == Reloc::PIC_) {
1234    // With PIC, the first instruction is actually "GR+hi(&G)".
1235    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1236                     DAG.getNode(PPCISD::GlobalBaseReg,
1237                                 DebugLoc(), PtrVT), Hi);
1238  }
1239
1240  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1241
1242  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1243    return Lo;
1244
1245  // If the global is weak or external, we have to go through the lazy
1246  // resolution stub.
1247  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0,
1248                     false, false, 0);
1249}
1250
1251SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1252  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1253  DebugLoc dl = Op.getDebugLoc();
1254
1255  // If we're comparing for equality to zero, expose the fact that this is
1256  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1257  // fold the new nodes.
1258  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1259    if (C->isNullValue() && CC == ISD::SETEQ) {
1260      EVT VT = Op.getOperand(0).getValueType();
1261      SDValue Zext = Op.getOperand(0);
1262      if (VT.bitsLT(MVT::i32)) {
1263        VT = MVT::i32;
1264        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1265      }
1266      unsigned Log2b = Log2_32(VT.getSizeInBits());
1267      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1268      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1269                                DAG.getConstant(Log2b, MVT::i32));
1270      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1271    }
1272    // Leave comparisons against 0 and -1 alone for now, since they're usually
1273    // optimized.  FIXME: revisit this when we can custom lower all setcc
1274    // optimizations.
1275    if (C->isAllOnesValue() || C->isNullValue())
1276      return SDValue();
1277  }
1278
1279  // If we have an integer seteq/setne, turn it into a compare against zero
1280  // by xor'ing the rhs with the lhs, which is faster than setting a
1281  // condition register, reading it back out, and masking the correct bit.  The
1282  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1283  // the result to other bit-twiddling opportunities.
1284  EVT LHSVT = Op.getOperand(0).getValueType();
1285  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1286    EVT VT = Op.getValueType();
1287    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1288                                Op.getOperand(1));
1289    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1290  }
1291  return SDValue();
1292}
1293
1294SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1295                                      const PPCSubtarget &Subtarget) const {
1296
1297  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1298  return SDValue(); // Not reached
1299}
1300
1301SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1302                                           SelectionDAG &DAG) const {
1303  SDValue Chain = Op.getOperand(0);
1304  SDValue Trmp = Op.getOperand(1); // trampoline
1305  SDValue FPtr = Op.getOperand(2); // nested function
1306  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1307  DebugLoc dl = Op.getDebugLoc();
1308
1309  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1310  bool isPPC64 = (PtrVT == MVT::i64);
1311  const Type *IntPtrTy =
1312    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1313                                                             *DAG.getContext());
1314
1315  TargetLowering::ArgListTy Args;
1316  TargetLowering::ArgListEntry Entry;
1317
1318  Entry.Ty = IntPtrTy;
1319  Entry.Node = Trmp; Args.push_back(Entry);
1320
1321  // TrampSize == (isPPC64 ? 48 : 40);
1322  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1323                               isPPC64 ? MVT::i64 : MVT::i32);
1324  Args.push_back(Entry);
1325
1326  Entry.Node = FPtr; Args.push_back(Entry);
1327  Entry.Node = Nest; Args.push_back(Entry);
1328
1329  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1330  std::pair<SDValue, SDValue> CallResult =
1331    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1332                false, false, false, false, 0, CallingConv::C, false,
1333                /*isReturnValueUsed=*/true,
1334                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1335                Args, DAG, dl);
1336
1337  SDValue Ops[] =
1338    { CallResult.first, CallResult.second };
1339
1340  return DAG.getMergeValues(Ops, 2, dl);
1341}
1342
1343SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1344                                        const PPCSubtarget &Subtarget) const {
1345  MachineFunction &MF = DAG.getMachineFunction();
1346  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1347
1348  DebugLoc dl = Op.getDebugLoc();
1349
1350  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1351    // vastart just stores the address of the VarArgsFrameIndex slot into the
1352    // memory location argument.
1353    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1354    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1355    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1356    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
1357                        false, false, 0);
1358  }
1359
1360  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1361  // We suppose the given va_list is already allocated.
1362  //
1363  // typedef struct {
1364  //  char gpr;     /* index into the array of 8 GPRs
1365  //                 * stored in the register save area
1366  //                 * gpr=0 corresponds to r3,
1367  //                 * gpr=1 to r4, etc.
1368  //                 */
1369  //  char fpr;     /* index into the array of 8 FPRs
1370  //                 * stored in the register save area
1371  //                 * fpr=0 corresponds to f1,
1372  //                 * fpr=1 to f2, etc.
1373  //                 */
1374  //  char *overflow_arg_area;
1375  //                /* location on stack that holds
1376  //                 * the next overflow argument
1377  //                 */
1378  //  char *reg_save_area;
1379  //               /* where r3:r10 and f1:f8 (if saved)
1380  //                * are stored
1381  //                */
1382  // } va_list[1];
1383
1384
1385  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1386  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1387
1388
1389  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1390
1391  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1392                                            PtrVT);
1393  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1394                                 PtrVT);
1395
1396  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1397  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1398
1399  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1400  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1401
1402  uint64_t FPROffset = 1;
1403  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1404
1405  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1406
1407  // Store first byte : number of int regs
1408  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1409                                         Op.getOperand(1), SV, 0, MVT::i8,
1410                                         false, false, 0);
1411  uint64_t nextOffset = FPROffset;
1412  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1413                                  ConstFPROffset);
1414
1415  // Store second byte : number of float regs
1416  SDValue secondStore =
1417    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8,
1418                      false, false, 0);
1419  nextOffset += StackOffset;
1420  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1421
1422  // Store second word : arguments given on stack
1423  SDValue thirdStore =
1424    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset,
1425                 false, false, 0);
1426  nextOffset += FrameOffset;
1427  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1428
1429  // Store third word : arguments given in registers
1430  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset,
1431                      false, false, 0);
1432
1433}
1434
1435#include "PPCGenCallingConv.inc"
1436
1437static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1438                                     CCValAssign::LocInfo &LocInfo,
1439                                     ISD::ArgFlagsTy &ArgFlags,
1440                                     CCState &State) {
1441  return true;
1442}
1443
1444static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1445                                            EVT &LocVT,
1446                                            CCValAssign::LocInfo &LocInfo,
1447                                            ISD::ArgFlagsTy &ArgFlags,
1448                                            CCState &State) {
1449  static const unsigned ArgRegs[] = {
1450    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1451    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1452  };
1453  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1454
1455  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1456
1457  // Skip one register if the first unallocated register has an even register
1458  // number and there are still argument registers available which have not been
1459  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1460  // need to skip a register if RegNum is odd.
1461  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1462    State.AllocateReg(ArgRegs[RegNum]);
1463  }
1464
1465  // Always return false here, as this function only makes sure that the first
1466  // unallocated register has an odd register number and does not actually
1467  // allocate a register for the current argument.
1468  return false;
1469}
1470
1471static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1472                                              EVT &LocVT,
1473                                              CCValAssign::LocInfo &LocInfo,
1474                                              ISD::ArgFlagsTy &ArgFlags,
1475                                              CCState &State) {
1476  static const unsigned ArgRegs[] = {
1477    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1478    PPC::F8
1479  };
1480
1481  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1482
1483  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1484
1485  // If there is only one Floating-point register left we need to put both f64
1486  // values of a split ppc_fp128 value on the stack.
1487  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1488    State.AllocateReg(ArgRegs[RegNum]);
1489  }
1490
1491  // Always return false here, as this function only makes sure that the two f64
1492  // values a ppc_fp128 value is split into are both passed in registers or both
1493  // passed on the stack and does not actually allocate a register for the
1494  // current argument.
1495  return false;
1496}
1497
1498/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1499/// on Darwin.
1500static const unsigned *GetFPR() {
1501  static const unsigned FPR[] = {
1502    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1503    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1504  };
1505
1506  return FPR;
1507}
1508
1509/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1510/// the stack.
1511static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1512                                       unsigned PtrByteSize) {
1513  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1514  if (Flags.isByVal())
1515    ArgSize = Flags.getByValSize();
1516  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1517
1518  return ArgSize;
1519}
1520
1521SDValue
1522PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1523                                        CallingConv::ID CallConv, bool isVarArg,
1524                                        const SmallVectorImpl<ISD::InputArg>
1525                                          &Ins,
1526                                        DebugLoc dl, SelectionDAG &DAG,
1527                                        SmallVectorImpl<SDValue> &InVals)
1528                                          const {
1529  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1530    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1531                                     dl, DAG, InVals);
1532  } else {
1533    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1534                                       dl, DAG, InVals);
1535  }
1536}
1537
1538SDValue
1539PPCTargetLowering::LowerFormalArguments_SVR4(
1540                                      SDValue Chain,
1541                                      CallingConv::ID CallConv, bool isVarArg,
1542                                      const SmallVectorImpl<ISD::InputArg>
1543                                        &Ins,
1544                                      DebugLoc dl, SelectionDAG &DAG,
1545                                      SmallVectorImpl<SDValue> &InVals) const {
1546
1547  // 32-bit SVR4 ABI Stack Frame Layout:
1548  //              +-----------------------------------+
1549  //        +-->  |            Back chain             |
1550  //        |     +-----------------------------------+
1551  //        |     | Floating-point register save area |
1552  //        |     +-----------------------------------+
1553  //        |     |    General register save area     |
1554  //        |     +-----------------------------------+
1555  //        |     |          CR save word             |
1556  //        |     +-----------------------------------+
1557  //        |     |         VRSAVE save word          |
1558  //        |     +-----------------------------------+
1559  //        |     |         Alignment padding         |
1560  //        |     +-----------------------------------+
1561  //        |     |     Vector register save area     |
1562  //        |     +-----------------------------------+
1563  //        |     |       Local variable space        |
1564  //        |     +-----------------------------------+
1565  //        |     |        Parameter list area        |
1566  //        |     +-----------------------------------+
1567  //        |     |           LR save word            |
1568  //        |     +-----------------------------------+
1569  // SP-->  +---  |            Back chain             |
1570  //              +-----------------------------------+
1571  //
1572  // Specifications:
1573  //   System V Application Binary Interface PowerPC Processor Supplement
1574  //   AltiVec Technology Programming Interface Manual
1575
1576  MachineFunction &MF = DAG.getMachineFunction();
1577  MachineFrameInfo *MFI = MF.getFrameInfo();
1578  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1579
1580  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1581  // Potential tail calls could cause overwriting of argument stack slots.
1582  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1583  unsigned PtrByteSize = 4;
1584
1585  // Assign locations to all of the incoming arguments.
1586  SmallVector<CCValAssign, 16> ArgLocs;
1587  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1588                 *DAG.getContext());
1589
1590  // Reserve space for the linkage area on the stack.
1591  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1592
1593  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1594
1595  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1596    CCValAssign &VA = ArgLocs[i];
1597
1598    // Arguments stored in registers.
1599    if (VA.isRegLoc()) {
1600      TargetRegisterClass *RC;
1601      EVT ValVT = VA.getValVT();
1602
1603      switch (ValVT.getSimpleVT().SimpleTy) {
1604        default:
1605          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1606        case MVT::i32:
1607          RC = PPC::GPRCRegisterClass;
1608          break;
1609        case MVT::f32:
1610          RC = PPC::F4RCRegisterClass;
1611          break;
1612        case MVT::f64:
1613          RC = PPC::F8RCRegisterClass;
1614          break;
1615        case MVT::v16i8:
1616        case MVT::v8i16:
1617        case MVT::v4i32:
1618        case MVT::v4f32:
1619          RC = PPC::VRRCRegisterClass;
1620          break;
1621      }
1622
1623      // Transform the arguments stored in physical registers into virtual ones.
1624      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1625      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1626
1627      InVals.push_back(ArgValue);
1628    } else {
1629      // Argument stored in memory.
1630      assert(VA.isMemLoc());
1631
1632      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1633      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1634                                      isImmutable, false);
1635
1636      // Create load nodes to retrieve arguments from the stack.
1637      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1638      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0,
1639                                   false, false, 0));
1640    }
1641  }
1642
1643  // Assign locations to all of the incoming aggregate by value arguments.
1644  // Aggregates passed by value are stored in the local variable space of the
1645  // caller's stack frame, right above the parameter list area.
1646  SmallVector<CCValAssign, 16> ByValArgLocs;
1647  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1648                      ByValArgLocs, *DAG.getContext());
1649
1650  // Reserve stack space for the allocations in CCInfo.
1651  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1652
1653  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1654
1655  // Area that is at least reserved in the caller of this function.
1656  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1657
1658  // Set the size that is at least reserved in caller of this function.  Tail
1659  // call optimized function's reserved stack space needs to be aligned so that
1660  // taking the difference between two stack areas will result in an aligned
1661  // stack.
1662  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1663
1664  MinReservedArea =
1665    std::max(MinReservedArea,
1666             PPCFrameInfo::getMinCallFrameSize(false, false));
1667
1668  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1669    getStackAlignment();
1670  unsigned AlignMask = TargetAlign-1;
1671  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1672
1673  FI->setMinReservedArea(MinReservedArea);
1674
1675  SmallVector<SDValue, 8> MemOps;
1676
1677  // If the function takes variable number of arguments, make a frame index for
1678  // the start of the first vararg value... for expansion of llvm.va_start.
1679  if (isVarArg) {
1680    static const unsigned GPArgRegs[] = {
1681      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1682      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1683    };
1684    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1685
1686    static const unsigned FPArgRegs[] = {
1687      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1688      PPC::F8
1689    };
1690    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1691
1692    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1693                                                          NumGPArgRegs));
1694    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1695                                                          NumFPArgRegs));
1696
1697    // Make room for NumGPArgRegs and NumFPArgRegs.
1698    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1699                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1700
1701    FuncInfo->setVarArgsStackOffset(
1702      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1703                             CCInfo.getNextStackOffset(),
1704                             true, false));
1705
1706    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1707    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1708
1709    // The fixed integer arguments of a variadic function are
1710    // stored to the VarArgsFrameIndex on the stack.
1711    unsigned GPRIndex = 0;
1712    for (; GPRIndex != FuncInfo->getVarArgsNumGPR(); ++GPRIndex) {
1713      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1714      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
1715                                   false, false, 0);
1716      MemOps.push_back(Store);
1717      // Increment the address by four for the next argument to store
1718      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1719      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1720    }
1721
1722    // If this function is vararg, store any remaining integer argument regs
1723    // to their spots on the stack so that they may be loaded by deferencing the
1724    // result of va_next.
1725    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1726      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1727
1728      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1729      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1730                                   false, false, 0);
1731      MemOps.push_back(Store);
1732      // Increment the address by four for the next argument to store
1733      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1734      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1735    }
1736
1737    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1738    // is set.
1739
1740    // The double arguments are stored to the VarArgsFrameIndex
1741    // on the stack.
1742    unsigned FPRIndex = 0;
1743    for (FPRIndex = 0; FPRIndex != FuncInfo->getVarArgsNumFPR(); ++FPRIndex) {
1744      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1745      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
1746                                   false, false, 0);
1747      MemOps.push_back(Store);
1748      // Increment the address by eight for the next argument to store
1749      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1750                                         PtrVT);
1751      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1752    }
1753
1754    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1755      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1756
1757      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1758      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1759                                   false, false, 0);
1760      MemOps.push_back(Store);
1761      // Increment the address by eight for the next argument to store
1762      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1763                                         PtrVT);
1764      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1765    }
1766  }
1767
1768  if (!MemOps.empty())
1769    Chain = DAG.getNode(ISD::TokenFactor, dl,
1770                        MVT::Other, &MemOps[0], MemOps.size());
1771
1772  return Chain;
1773}
1774
1775SDValue
1776PPCTargetLowering::LowerFormalArguments_Darwin(
1777                                      SDValue Chain,
1778                                      CallingConv::ID CallConv, bool isVarArg,
1779                                      const SmallVectorImpl<ISD::InputArg>
1780                                        &Ins,
1781                                      DebugLoc dl, SelectionDAG &DAG,
1782                                      SmallVectorImpl<SDValue> &InVals) const {
1783  // TODO: add description of PPC stack frame format, or at least some docs.
1784  //
1785  MachineFunction &MF = DAG.getMachineFunction();
1786  MachineFrameInfo *MFI = MF.getFrameInfo();
1787  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1788
1789  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1790  bool isPPC64 = PtrVT == MVT::i64;
1791  // Potential tail calls could cause overwriting of argument stack slots.
1792  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1793  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1794
1795  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1796  // Area that is at least reserved in caller of this function.
1797  unsigned MinReservedArea = ArgOffset;
1798
1799  static const unsigned GPR_32[] = {           // 32-bit registers.
1800    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1801    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1802  };
1803  static const unsigned GPR_64[] = {           // 64-bit registers.
1804    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1805    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1806  };
1807
1808  static const unsigned *FPR = GetFPR();
1809
1810  static const unsigned VR[] = {
1811    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1812    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1813  };
1814
1815  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1816  const unsigned Num_FPR_Regs = 13;
1817  const unsigned Num_VR_Regs  = array_lengthof( VR);
1818
1819  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1820
1821  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1822
1823  // In 32-bit non-varargs functions, the stack space for vectors is after the
1824  // stack space for non-vectors.  We do not use this space unless we have
1825  // too many vectors to fit in registers, something that only occurs in
1826  // constructed examples:), but we have to walk the arglist to figure
1827  // that out...for the pathological case, compute VecArgOffset as the
1828  // start of the vector parameter area.  Computing VecArgOffset is the
1829  // entire point of the following loop.
1830  unsigned VecArgOffset = ArgOffset;
1831  if (!isVarArg && !isPPC64) {
1832    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1833         ++ArgNo) {
1834      EVT ObjectVT = Ins[ArgNo].VT;
1835      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1836      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1837
1838      if (Flags.isByVal()) {
1839        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1840        ObjSize = Flags.getByValSize();
1841        unsigned ArgSize =
1842                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1843        VecArgOffset += ArgSize;
1844        continue;
1845      }
1846
1847      switch(ObjectVT.getSimpleVT().SimpleTy) {
1848      default: llvm_unreachable("Unhandled argument type!");
1849      case MVT::i32:
1850      case MVT::f32:
1851        VecArgOffset += isPPC64 ? 8 : 4;
1852        break;
1853      case MVT::i64:  // PPC64
1854      case MVT::f64:
1855        VecArgOffset += 8;
1856        break;
1857      case MVT::v4f32:
1858      case MVT::v4i32:
1859      case MVT::v8i16:
1860      case MVT::v16i8:
1861        // Nothing to do, we're only looking at Nonvector args here.
1862        break;
1863      }
1864    }
1865  }
1866  // We've found where the vector parameter area in memory is.  Skip the
1867  // first 12 parameters; these don't use that memory.
1868  VecArgOffset = ((VecArgOffset+15)/16)*16;
1869  VecArgOffset += 12*16;
1870
1871  // Add DAG nodes to load the arguments or copy them out of registers.  On
1872  // entry to a function on PPC, the arguments start after the linkage area,
1873  // although the first ones are often in registers.
1874
1875  SmallVector<SDValue, 8> MemOps;
1876  unsigned nAltivecParamsAtEnd = 0;
1877  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1878    SDValue ArgVal;
1879    bool needsLoad = false;
1880    EVT ObjectVT = Ins[ArgNo].VT;
1881    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1882    unsigned ArgSize = ObjSize;
1883    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1884
1885    unsigned CurArgOffset = ArgOffset;
1886
1887    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1888    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1889        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1890      if (isVarArg || isPPC64) {
1891        MinReservedArea = ((MinReservedArea+15)/16)*16;
1892        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1893                                                  Flags,
1894                                                  PtrByteSize);
1895      } else  nAltivecParamsAtEnd++;
1896    } else
1897      // Calculate min reserved area.
1898      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1899                                                Flags,
1900                                                PtrByteSize);
1901
1902    // FIXME the codegen can be much improved in some cases.
1903    // We do not have to keep everything in memory.
1904    if (Flags.isByVal()) {
1905      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1906      ObjSize = Flags.getByValSize();
1907      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1908      // Objects of size 1 and 2 are right justified, everything else is
1909      // left justified.  This means the memory address is adjusted forwards.
1910      if (ObjSize==1 || ObjSize==2) {
1911        CurArgOffset = CurArgOffset + (4 - ObjSize);
1912      }
1913      // The value of the object is its address.
1914      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false);
1915      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1916      InVals.push_back(FIN);
1917      if (ObjSize==1 || ObjSize==2) {
1918        if (GPR_idx != Num_GPR_Regs) {
1919          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1920          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1921          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1922                                            NULL, 0,
1923                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1924                                            false, false, 0);
1925          MemOps.push_back(Store);
1926          ++GPR_idx;
1927        }
1928
1929        ArgOffset += PtrByteSize;
1930
1931        continue;
1932      }
1933      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1934        // Store whatever pieces of the object are in registers
1935        // to memory.  ArgVal will be address of the beginning of
1936        // the object.
1937        if (GPR_idx != Num_GPR_Regs) {
1938          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1939          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false);
1940          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1941          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1942          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1943                                       false, false, 0);
1944          MemOps.push_back(Store);
1945          ++GPR_idx;
1946          ArgOffset += PtrByteSize;
1947        } else {
1948          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1949          break;
1950        }
1951      }
1952      continue;
1953    }
1954
1955    switch (ObjectVT.getSimpleVT().SimpleTy) {
1956    default: llvm_unreachable("Unhandled argument type!");
1957    case MVT::i32:
1958      if (!isPPC64) {
1959        if (GPR_idx != Num_GPR_Regs) {
1960          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1961          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1962          ++GPR_idx;
1963        } else {
1964          needsLoad = true;
1965          ArgSize = PtrByteSize;
1966        }
1967        // All int arguments reserve stack space in the Darwin ABI.
1968        ArgOffset += PtrByteSize;
1969        break;
1970      }
1971      // FALLTHROUGH
1972    case MVT::i64:  // PPC64
1973      if (GPR_idx != Num_GPR_Regs) {
1974        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1975        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1976
1977        if (ObjectVT == MVT::i32) {
1978          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1979          // value to MVT::i64 and then truncate to the correct register size.
1980          if (Flags.isSExt())
1981            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1982                                 DAG.getValueType(ObjectVT));
1983          else if (Flags.isZExt())
1984            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1985                                 DAG.getValueType(ObjectVT));
1986
1987          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1988        }
1989
1990        ++GPR_idx;
1991      } else {
1992        needsLoad = true;
1993        ArgSize = PtrByteSize;
1994      }
1995      // All int arguments reserve stack space in the Darwin ABI.
1996      ArgOffset += 8;
1997      break;
1998
1999    case MVT::f32:
2000    case MVT::f64:
2001      // Every 4 bytes of argument space consumes one of the GPRs available for
2002      // argument passing.
2003      if (GPR_idx != Num_GPR_Regs) {
2004        ++GPR_idx;
2005        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2006          ++GPR_idx;
2007      }
2008      if (FPR_idx != Num_FPR_Regs) {
2009        unsigned VReg;
2010
2011        if (ObjectVT == MVT::f32)
2012          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2013        else
2014          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2015
2016        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2017        ++FPR_idx;
2018      } else {
2019        needsLoad = true;
2020      }
2021
2022      // All FP arguments reserve stack space in the Darwin ABI.
2023      ArgOffset += isPPC64 ? 8 : ObjSize;
2024      break;
2025    case MVT::v4f32:
2026    case MVT::v4i32:
2027    case MVT::v8i16:
2028    case MVT::v16i8:
2029      // Note that vector arguments in registers don't reserve stack space,
2030      // except in varargs functions.
2031      if (VR_idx != Num_VR_Regs) {
2032        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2033        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2034        if (isVarArg) {
2035          while ((ArgOffset % 16) != 0) {
2036            ArgOffset += PtrByteSize;
2037            if (GPR_idx != Num_GPR_Regs)
2038              GPR_idx++;
2039          }
2040          ArgOffset += 16;
2041          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2042        }
2043        ++VR_idx;
2044      } else {
2045        if (!isVarArg && !isPPC64) {
2046          // Vectors go after all the nonvectors.
2047          CurArgOffset = VecArgOffset;
2048          VecArgOffset += 16;
2049        } else {
2050          // Vectors are aligned.
2051          ArgOffset = ((ArgOffset+15)/16)*16;
2052          CurArgOffset = ArgOffset;
2053          ArgOffset += 16;
2054        }
2055        needsLoad = true;
2056      }
2057      break;
2058    }
2059
2060    // We need to load the argument to a virtual register if we determined above
2061    // that we ran out of physical registers of the appropriate type.
2062    if (needsLoad) {
2063      int FI = MFI->CreateFixedObject(ObjSize,
2064                                      CurArgOffset + (ArgSize - ObjSize),
2065                                      isImmutable, false);
2066      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2067      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0,
2068                           false, false, 0);
2069    }
2070
2071    InVals.push_back(ArgVal);
2072  }
2073
2074  // Set the size that is at least reserved in caller of this function.  Tail
2075  // call optimized function's reserved stack space needs to be aligned so that
2076  // taking the difference between two stack areas will result in an aligned
2077  // stack.
2078  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2079  // Add the Altivec parameters at the end, if needed.
2080  if (nAltivecParamsAtEnd) {
2081    MinReservedArea = ((MinReservedArea+15)/16)*16;
2082    MinReservedArea += 16*nAltivecParamsAtEnd;
2083  }
2084  MinReservedArea =
2085    std::max(MinReservedArea,
2086             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2087  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2088    getStackAlignment();
2089  unsigned AlignMask = TargetAlign-1;
2090  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2091  FI->setMinReservedArea(MinReservedArea);
2092
2093  // If the function takes variable number of arguments, make a frame index for
2094  // the start of the first vararg value... for expansion of llvm.va_start.
2095  if (isVarArg) {
2096    int Depth = ArgOffset;
2097
2098    FuncInfo->setVarArgsFrameIndex(
2099      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2100                             Depth, true, false));
2101    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2102
2103    // If this function is vararg, store any remaining integer argument regs
2104    // to their spots on the stack so that they may be loaded by deferencing the
2105    // result of va_next.
2106    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2107      unsigned VReg;
2108
2109      if (isPPC64)
2110        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2111      else
2112        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2113
2114      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2115      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
2116                                   false, false, 0);
2117      MemOps.push_back(Store);
2118      // Increment the address by four for the next argument to store
2119      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2120      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2121    }
2122  }
2123
2124  if (!MemOps.empty())
2125    Chain = DAG.getNode(ISD::TokenFactor, dl,
2126                        MVT::Other, &MemOps[0], MemOps.size());
2127
2128  return Chain;
2129}
2130
2131/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2132/// linkage area for the Darwin ABI.
2133static unsigned
2134CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2135                                     bool isPPC64,
2136                                     bool isVarArg,
2137                                     unsigned CC,
2138                                     const SmallVectorImpl<ISD::OutputArg>
2139                                       &Outs,
2140                                     unsigned &nAltivecParamsAtEnd) {
2141  // Count how many bytes are to be pushed on the stack, including the linkage
2142  // area, and parameter passing area.  We start with 24/48 bytes, which is
2143  // prereserved space for [SP][CR][LR][3 x unused].
2144  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2145  unsigned NumOps = Outs.size();
2146  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2147
2148  // Add up all the space actually used.
2149  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2150  // they all go in registers, but we must reserve stack space for them for
2151  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2152  // assigned stack space in order, with padding so Altivec parameters are
2153  // 16-byte aligned.
2154  nAltivecParamsAtEnd = 0;
2155  for (unsigned i = 0; i != NumOps; ++i) {
2156    SDValue Arg = Outs[i].Val;
2157    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2158    EVT ArgVT = Arg.getValueType();
2159    // Varargs Altivec parameters are padded to a 16 byte boundary.
2160    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2161        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2162      if (!isVarArg && !isPPC64) {
2163        // Non-varargs Altivec parameters go after all the non-Altivec
2164        // parameters; handle those later so we know how much padding we need.
2165        nAltivecParamsAtEnd++;
2166        continue;
2167      }
2168      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2169      NumBytes = ((NumBytes+15)/16)*16;
2170    }
2171    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2172  }
2173
2174   // Allow for Altivec parameters at the end, if needed.
2175  if (nAltivecParamsAtEnd) {
2176    NumBytes = ((NumBytes+15)/16)*16;
2177    NumBytes += 16*nAltivecParamsAtEnd;
2178  }
2179
2180  // The prolog code of the callee may store up to 8 GPR argument registers to
2181  // the stack, allowing va_start to index over them in memory if its varargs.
2182  // Because we cannot tell if this is needed on the caller side, we have to
2183  // conservatively assume that it is needed.  As such, make sure we have at
2184  // least enough stack space for the caller to store the 8 GPRs.
2185  NumBytes = std::max(NumBytes,
2186                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2187
2188  // Tail call needs the stack to be aligned.
2189  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2190    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2191      getStackAlignment();
2192    unsigned AlignMask = TargetAlign-1;
2193    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2194  }
2195
2196  return NumBytes;
2197}
2198
2199/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2200/// adjusted to accomodate the arguments for the tailcall.
2201static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2202                                   unsigned ParamSize) {
2203
2204  if (!isTailCall) return 0;
2205
2206  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2207  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2208  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2209  // Remember only if the new adjustement is bigger.
2210  if (SPDiff < FI->getTailCallSPDelta())
2211    FI->setTailCallSPDelta(SPDiff);
2212
2213  return SPDiff;
2214}
2215
2216/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2217/// for tail call optimization. Targets which want to do tail call
2218/// optimization should implement this function.
2219bool
2220PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2221                                                     CallingConv::ID CalleeCC,
2222                                                     bool isVarArg,
2223                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2224                                                     SelectionDAG& DAG) const {
2225  if (!GuaranteedTailCallOpt)
2226    return false;
2227
2228  // Variable argument functions are not supported.
2229  if (isVarArg)
2230    return false;
2231
2232  MachineFunction &MF = DAG.getMachineFunction();
2233  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2234  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2235    // Functions containing by val parameters are not supported.
2236    for (unsigned i = 0; i != Ins.size(); i++) {
2237       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2238       if (Flags.isByVal()) return false;
2239    }
2240
2241    // Non PIC/GOT  tail calls are supported.
2242    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2243      return true;
2244
2245    // At the moment we can only do local tail calls (in same module, hidden
2246    // or protected) if we are generating PIC.
2247    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2248      return G->getGlobal()->hasHiddenVisibility()
2249          || G->getGlobal()->hasProtectedVisibility();
2250  }
2251
2252  return false;
2253}
2254
2255/// isCallCompatibleAddress - Return the immediate to use if the specified
2256/// 32-bit value is representable in the immediate field of a BxA instruction.
2257static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2258  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2259  if (!C) return 0;
2260
2261  int Addr = C->getZExtValue();
2262  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2263      (Addr << 6 >> 6) != Addr)
2264    return 0;  // Top 6 bits have to be sext of immediate.
2265
2266  return DAG.getConstant((int)C->getZExtValue() >> 2,
2267                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2268}
2269
2270namespace {
2271
2272struct TailCallArgumentInfo {
2273  SDValue Arg;
2274  SDValue FrameIdxOp;
2275  int       FrameIdx;
2276
2277  TailCallArgumentInfo() : FrameIdx(0) {}
2278};
2279
2280}
2281
2282/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2283static void
2284StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2285                                           SDValue Chain,
2286                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2287                   SmallVector<SDValue, 8> &MemOpChains,
2288                   DebugLoc dl) {
2289  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2290    SDValue Arg = TailCallArgs[i].Arg;
2291    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2292    int FI = TailCallArgs[i].FrameIdx;
2293    // Store relative to framepointer.
2294    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2295                                       PseudoSourceValue::getFixedStack(FI),
2296                                       0, false, false, 0));
2297  }
2298}
2299
2300/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2301/// the appropriate stack slot for the tail call optimized function call.
2302static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2303                                               MachineFunction &MF,
2304                                               SDValue Chain,
2305                                               SDValue OldRetAddr,
2306                                               SDValue OldFP,
2307                                               int SPDiff,
2308                                               bool isPPC64,
2309                                               bool isDarwinABI,
2310                                               DebugLoc dl) {
2311  if (SPDiff) {
2312    // Calculate the new stack slot for the return address.
2313    int SlotSize = isPPC64 ? 8 : 4;
2314    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2315                                                                   isDarwinABI);
2316    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2317                                                          NewRetAddrLoc,
2318                                                          true, false);
2319    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2320    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2321    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2322                         PseudoSourceValue::getFixedStack(NewRetAddr), 0,
2323                         false, false, 0);
2324
2325    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2326    // slot as the FP is never overwritten.
2327    if (isDarwinABI) {
2328      int NewFPLoc =
2329        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2330      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2331                                                          true, false);
2332      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2333      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2334                           PseudoSourceValue::getFixedStack(NewFPIdx), 0,
2335                           false, false, 0);
2336    }
2337  }
2338  return Chain;
2339}
2340
2341/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2342/// the position of the argument.
2343static void
2344CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2345                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2346                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2347  int Offset = ArgOffset + SPDiff;
2348  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2349  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false);
2350  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2351  SDValue FIN = DAG.getFrameIndex(FI, VT);
2352  TailCallArgumentInfo Info;
2353  Info.Arg = Arg;
2354  Info.FrameIdxOp = FIN;
2355  Info.FrameIdx = FI;
2356  TailCallArguments.push_back(Info);
2357}
2358
2359/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2360/// stack slot. Returns the chain as result and the loaded frame pointers in
2361/// LROpOut/FPOpout. Used when tail calling.
2362SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2363                                                        int SPDiff,
2364                                                        SDValue Chain,
2365                                                        SDValue &LROpOut,
2366                                                        SDValue &FPOpOut,
2367                                                        bool isDarwinABI,
2368                                                        DebugLoc dl) const {
2369  if (SPDiff) {
2370    // Load the LR and FP stack slot for later adjusting.
2371    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2372    LROpOut = getReturnAddrFrameIndex(DAG);
2373    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0,
2374                          false, false, 0);
2375    Chain = SDValue(LROpOut.getNode(), 1);
2376
2377    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2378    // slot as the FP is never overwritten.
2379    if (isDarwinABI) {
2380      FPOpOut = getFramePointerFrameIndex(DAG);
2381      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0,
2382                            false, false, 0);
2383      Chain = SDValue(FPOpOut.getNode(), 1);
2384    }
2385  }
2386  return Chain;
2387}
2388
2389/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2390/// by "Src" to address "Dst" of size "Size".  Alignment information is
2391/// specified by the specific parameter attribute. The copy will be passed as
2392/// a byval function parameter.
2393/// Sometimes what we are copying is the end of a larger object, the part that
2394/// does not fit in registers.
2395static SDValue
2396CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2397                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2398                          DebugLoc dl) {
2399  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2400  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2401                       false, false, NULL, 0, NULL, 0);
2402}
2403
2404/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2405/// tail calls.
2406static void
2407LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2408                 SDValue Arg, SDValue PtrOff, int SPDiff,
2409                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2410                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2411                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2412                 DebugLoc dl) {
2413  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2414  if (!isTailCall) {
2415    if (isVector) {
2416      SDValue StackPtr;
2417      if (isPPC64)
2418        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2419      else
2420        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2421      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2422                           DAG.getConstant(ArgOffset, PtrVT));
2423    }
2424    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
2425                                       false, false, 0));
2426  // Calculate and remember argument location.
2427  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2428                                  TailCallArguments);
2429}
2430
2431static
2432void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2433                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2434                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2435                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2436  MachineFunction &MF = DAG.getMachineFunction();
2437
2438  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2439  // might overwrite each other in case of tail call optimization.
2440  SmallVector<SDValue, 8> MemOpChains2;
2441  // Do not flag preceeding copytoreg stuff together with the following stuff.
2442  InFlag = SDValue();
2443  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2444                                    MemOpChains2, dl);
2445  if (!MemOpChains2.empty())
2446    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2447                        &MemOpChains2[0], MemOpChains2.size());
2448
2449  // Store the return address to the appropriate stack slot.
2450  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2451                                        isPPC64, isDarwinABI, dl);
2452
2453  // Emit callseq_end just before tailcall node.
2454  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2455                             DAG.getIntPtrConstant(0, true), InFlag);
2456  InFlag = Chain.getValue(1);
2457}
2458
2459static
2460unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2461                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2462                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2463                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2464                     bool isPPC64, bool isSVR4ABI) {
2465  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2466  NodeTys.push_back(MVT::Other);   // Returns a chain
2467  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2468
2469  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2470
2471  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2472  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2473  // node so that legalize doesn't hack it.
2474  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2475    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2476  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2477    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2478  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2479    // If this is an absolute destination address, use the munged value.
2480    Callee = SDValue(Dest, 0);
2481  else {
2482    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2483    // to do the call, we can't use PPCISD::CALL.
2484    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2485
2486    if (isSVR4ABI && isPPC64) {
2487      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2488      // entry point, but to the function descriptor (the function entry point
2489      // address is part of the function descriptor though).
2490      // The function descriptor is a three doubleword structure with the
2491      // following fields: function entry point, TOC base address and
2492      // environment pointer.
2493      // Thus for a call through a function pointer, the following actions need
2494      // to be performed:
2495      //   1. Save the TOC of the caller in the TOC save area of its stack
2496      //      frame (this is done in LowerCall_Darwin()).
2497      //   2. Load the address of the function entry point from the function
2498      //      descriptor.
2499      //   3. Load the TOC of the callee from the function descriptor into r2.
2500      //   4. Load the environment pointer from the function descriptor into
2501      //      r11.
2502      //   5. Branch to the function entry point address.
2503      //   6. On return of the callee, the TOC of the caller needs to be
2504      //      restored (this is done in FinishCall()).
2505      //
2506      // All those operations are flagged together to ensure that no other
2507      // operations can be scheduled in between. E.g. without flagging the
2508      // operations together, a TOC access in the caller could be scheduled
2509      // between the load of the callee TOC and the branch to the callee, which
2510      // results in the TOC access going through the TOC of the callee instead
2511      // of going through the TOC of the caller, which leads to incorrect code.
2512
2513      // Load the address of the function entry point from the function
2514      // descriptor.
2515      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2516      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2517                                        InFlag.getNode() ? 3 : 2);
2518      Chain = LoadFuncPtr.getValue(1);
2519      InFlag = LoadFuncPtr.getValue(2);
2520
2521      // Load environment pointer into r11.
2522      // Offset of the environment pointer within the function descriptor.
2523      SDValue PtrOff = DAG.getIntPtrConstant(16);
2524
2525      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2526      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2527                                       InFlag);
2528      Chain = LoadEnvPtr.getValue(1);
2529      InFlag = LoadEnvPtr.getValue(2);
2530
2531      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2532                                        InFlag);
2533      Chain = EnvVal.getValue(0);
2534      InFlag = EnvVal.getValue(1);
2535
2536      // Load TOC of the callee into r2. We are using a target-specific load
2537      // with r2 hard coded, because the result of a target-independent load
2538      // would never go directly into r2, since r2 is a reserved register (which
2539      // prevents the register allocator from allocating it), resulting in an
2540      // additional register being allocated and an unnecessary move instruction
2541      // being generated.
2542      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2543      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2544                                       Callee, InFlag);
2545      Chain = LoadTOCPtr.getValue(0);
2546      InFlag = LoadTOCPtr.getValue(1);
2547
2548      MTCTROps[0] = Chain;
2549      MTCTROps[1] = LoadFuncPtr;
2550      MTCTROps[2] = InFlag;
2551    }
2552
2553    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2554                        2 + (InFlag.getNode() != 0));
2555    InFlag = Chain.getValue(1);
2556
2557    NodeTys.clear();
2558    NodeTys.push_back(MVT::Other);
2559    NodeTys.push_back(MVT::Flag);
2560    Ops.push_back(Chain);
2561    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2562    Callee.setNode(0);
2563    // Add CTR register as callee so a bctr can be emitted later.
2564    if (isTailCall)
2565      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2566  }
2567
2568  // If this is a direct call, pass the chain and the callee.
2569  if (Callee.getNode()) {
2570    Ops.push_back(Chain);
2571    Ops.push_back(Callee);
2572  }
2573  // If this is a tail call add stack pointer delta.
2574  if (isTailCall)
2575    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2576
2577  // Add argument registers to the end of the list so that they are known live
2578  // into the call.
2579  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2580    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2581                                  RegsToPass[i].second.getValueType()));
2582
2583  return CallOpc;
2584}
2585
2586SDValue
2587PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2588                                   CallingConv::ID CallConv, bool isVarArg,
2589                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2590                                   DebugLoc dl, SelectionDAG &DAG,
2591                                   SmallVectorImpl<SDValue> &InVals) const {
2592
2593  SmallVector<CCValAssign, 16> RVLocs;
2594  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2595                    RVLocs, *DAG.getContext());
2596  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2597
2598  // Copy all of the result registers out of their specified physreg.
2599  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2600    CCValAssign &VA = RVLocs[i];
2601    EVT VT = VA.getValVT();
2602    assert(VA.isRegLoc() && "Can only return in registers!");
2603    Chain = DAG.getCopyFromReg(Chain, dl,
2604                               VA.getLocReg(), VT, InFlag).getValue(1);
2605    InVals.push_back(Chain.getValue(0));
2606    InFlag = Chain.getValue(2);
2607  }
2608
2609  return Chain;
2610}
2611
2612SDValue
2613PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2614                              bool isTailCall, bool isVarArg,
2615                              SelectionDAG &DAG,
2616                              SmallVector<std::pair<unsigned, SDValue>, 8>
2617                                &RegsToPass,
2618                              SDValue InFlag, SDValue Chain,
2619                              SDValue &Callee,
2620                              int SPDiff, unsigned NumBytes,
2621                              const SmallVectorImpl<ISD::InputArg> &Ins,
2622                              SmallVectorImpl<SDValue> &InVals) const {
2623  std::vector<EVT> NodeTys;
2624  SmallVector<SDValue, 8> Ops;
2625  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2626                                 isTailCall, RegsToPass, Ops, NodeTys,
2627                                 PPCSubTarget.isPPC64(),
2628                                 PPCSubTarget.isSVR4ABI());
2629
2630  // When performing tail call optimization the callee pops its arguments off
2631  // the stack. Account for this here so these bytes can be pushed back on in
2632  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2633  int BytesCalleePops =
2634    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2635
2636  if (InFlag.getNode())
2637    Ops.push_back(InFlag);
2638
2639  // Emit tail call.
2640  if (isTailCall) {
2641    // If this is the first return lowered for this function, add the regs
2642    // to the liveout set for the function.
2643    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2644      SmallVector<CCValAssign, 16> RVLocs;
2645      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2646                     *DAG.getContext());
2647      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2648      for (unsigned i = 0; i != RVLocs.size(); ++i)
2649        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2650    }
2651
2652    assert(((Callee.getOpcode() == ISD::Register &&
2653             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2654            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2655            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2656            isa<ConstantSDNode>(Callee)) &&
2657    "Expecting an global address, external symbol, absolute value or register");
2658
2659    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2660  }
2661
2662  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2663  InFlag = Chain.getValue(1);
2664
2665  // Add a NOP immediately after the branch instruction when using the 64-bit
2666  // SVR4 ABI. At link time, if caller and callee are in a different module and
2667  // thus have a different TOC, the call will be replaced with a call to a stub
2668  // function which saves the current TOC, loads the TOC of the callee and
2669  // branches to the callee. The NOP will be replaced with a load instruction
2670  // which restores the TOC of the caller from the TOC save slot of the current
2671  // stack frame. If caller and callee belong to the same module (and have the
2672  // same TOC), the NOP will remain unchanged.
2673  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2674    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2675    if (CallOpc == PPCISD::BCTRL_SVR4) {
2676      // This is a call through a function pointer.
2677      // Restore the caller TOC from the save area into R2.
2678      // See PrepareCall() for more information about calls through function
2679      // pointers in the 64-bit SVR4 ABI.
2680      // We are using a target-specific load with r2 hard coded, because the
2681      // result of a target-independent load would never go directly into r2,
2682      // since r2 is a reserved register (which prevents the register allocator
2683      // from allocating it), resulting in an additional register being
2684      // allocated and an unnecessary move instruction being generated.
2685      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2686      InFlag = Chain.getValue(1);
2687    } else {
2688      // Otherwise insert NOP.
2689      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2690    }
2691  }
2692
2693  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2694                             DAG.getIntPtrConstant(BytesCalleePops, true),
2695                             InFlag);
2696  if (!Ins.empty())
2697    InFlag = Chain.getValue(1);
2698
2699  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2700                         Ins, dl, DAG, InVals);
2701}
2702
2703SDValue
2704PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2705                             CallingConv::ID CallConv, bool isVarArg,
2706                             bool &isTailCall,
2707                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2708                             const SmallVectorImpl<ISD::InputArg> &Ins,
2709                             DebugLoc dl, SelectionDAG &DAG,
2710                             SmallVectorImpl<SDValue> &InVals) const {
2711  if (isTailCall)
2712    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2713                                                   Ins, DAG);
2714
2715  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2716    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2717                          isTailCall, Outs, Ins,
2718                          dl, DAG, InVals);
2719  } else {
2720    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2721                            isTailCall, Outs, Ins,
2722                            dl, DAG, InVals);
2723  }
2724}
2725
2726SDValue
2727PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2728                                  CallingConv::ID CallConv, bool isVarArg,
2729                                  bool isTailCall,
2730                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2731                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2732                                  DebugLoc dl, SelectionDAG &DAG,
2733                                  SmallVectorImpl<SDValue> &InVals) const {
2734  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2735  // of the 32-bit SVR4 ABI stack frame layout.
2736
2737  assert((CallConv == CallingConv::C ||
2738          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2739
2740  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2741  unsigned PtrByteSize = 4;
2742
2743  MachineFunction &MF = DAG.getMachineFunction();
2744
2745  // Mark this function as potentially containing a function that contains a
2746  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2747  // and restoring the callers stack pointer in this functions epilog. This is
2748  // done because by tail calling the called function might overwrite the value
2749  // in this function's (MF) stack pointer stack slot 0(SP).
2750  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2751    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2752
2753  // Count how many bytes are to be pushed on the stack, including the linkage
2754  // area, parameter list area and the part of the local variable space which
2755  // contains copies of aggregates which are passed by value.
2756
2757  // Assign locations to all of the outgoing arguments.
2758  SmallVector<CCValAssign, 16> ArgLocs;
2759  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2760                 ArgLocs, *DAG.getContext());
2761
2762  // Reserve space for the linkage area on the stack.
2763  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2764
2765  if (isVarArg) {
2766    // Handle fixed and variable vector arguments differently.
2767    // Fixed vector arguments go into registers as long as registers are
2768    // available. Variable vector arguments always go into memory.
2769    unsigned NumArgs = Outs.size();
2770
2771    for (unsigned i = 0; i != NumArgs; ++i) {
2772      EVT ArgVT = Outs[i].Val.getValueType();
2773      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2774      bool Result;
2775
2776      if (Outs[i].IsFixed) {
2777        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2778                             CCInfo);
2779      } else {
2780        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2781                                    ArgFlags, CCInfo);
2782      }
2783
2784      if (Result) {
2785#ifndef NDEBUG
2786        errs() << "Call operand #" << i << " has unhandled type "
2787             << ArgVT.getEVTString() << "\n";
2788#endif
2789        llvm_unreachable(0);
2790      }
2791    }
2792  } else {
2793    // All arguments are treated the same.
2794    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2795  }
2796
2797  // Assign locations to all of the outgoing aggregate by value arguments.
2798  SmallVector<CCValAssign, 16> ByValArgLocs;
2799  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2800                      *DAG.getContext());
2801
2802  // Reserve stack space for the allocations in CCInfo.
2803  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2804
2805  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2806
2807  // Size of the linkage area, parameter list area and the part of the local
2808  // space variable where copies of aggregates which are passed by value are
2809  // stored.
2810  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2811
2812  // Calculate by how many bytes the stack has to be adjusted in case of tail
2813  // call optimization.
2814  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2815
2816  // Adjust the stack pointer for the new arguments...
2817  // These operations are automatically eliminated by the prolog/epilog pass
2818  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2819  SDValue CallSeqStart = Chain;
2820
2821  // Load the return address and frame pointer so it can be moved somewhere else
2822  // later.
2823  SDValue LROp, FPOp;
2824  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2825                                       dl);
2826
2827  // Set up a copy of the stack pointer for use loading and storing any
2828  // arguments that may not fit in the registers available for argument
2829  // passing.
2830  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2831
2832  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2833  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2834  SmallVector<SDValue, 8> MemOpChains;
2835
2836  // Walk the register/memloc assignments, inserting copies/loads.
2837  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2838       i != e;
2839       ++i) {
2840    CCValAssign &VA = ArgLocs[i];
2841    SDValue Arg = Outs[i].Val;
2842    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2843
2844    if (Flags.isByVal()) {
2845      // Argument is an aggregate which is passed by value, thus we need to
2846      // create a copy of it in the local variable space of the current stack
2847      // frame (which is the stack frame of the caller) and pass the address of
2848      // this copy to the callee.
2849      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2850      CCValAssign &ByValVA = ByValArgLocs[j++];
2851      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2852
2853      // Memory reserved in the local variable space of the callers stack frame.
2854      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2855
2856      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2857      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2858
2859      // Create a copy of the argument in the local area of the current
2860      // stack frame.
2861      SDValue MemcpyCall =
2862        CreateCopyOfByValArgument(Arg, PtrOff,
2863                                  CallSeqStart.getNode()->getOperand(0),
2864                                  Flags, DAG, dl);
2865
2866      // This must go outside the CALLSEQ_START..END.
2867      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2868                           CallSeqStart.getNode()->getOperand(1));
2869      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2870                             NewCallSeqStart.getNode());
2871      Chain = CallSeqStart = NewCallSeqStart;
2872
2873      // Pass the address of the aggregate copy on the stack either in a
2874      // physical register or in the parameter list area of the current stack
2875      // frame to the callee.
2876      Arg = PtrOff;
2877    }
2878
2879    if (VA.isRegLoc()) {
2880      // Put argument in a physical register.
2881      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2882    } else {
2883      // Put argument in the parameter list area of the current stack frame.
2884      assert(VA.isMemLoc());
2885      unsigned LocMemOffset = VA.getLocMemOffset();
2886
2887      if (!isTailCall) {
2888        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2889        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2890
2891        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2892                                           PseudoSourceValue::getStack(), LocMemOffset,
2893                                           false, false, 0));
2894      } else {
2895        // Calculate and remember argument location.
2896        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2897                                 TailCallArguments);
2898      }
2899    }
2900  }
2901
2902  if (!MemOpChains.empty())
2903    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2904                        &MemOpChains[0], MemOpChains.size());
2905
2906  // Build a sequence of copy-to-reg nodes chained together with token chain
2907  // and flag operands which copy the outgoing args into the appropriate regs.
2908  SDValue InFlag;
2909  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2910    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2911                             RegsToPass[i].second, InFlag);
2912    InFlag = Chain.getValue(1);
2913  }
2914
2915  // Set CR6 to true if this is a vararg call.
2916  if (isVarArg) {
2917    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2918    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2919    InFlag = Chain.getValue(1);
2920  }
2921
2922  if (isTailCall) {
2923    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2924                    false, TailCallArguments);
2925  }
2926
2927  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2928                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2929                    Ins, InVals);
2930}
2931
2932SDValue
2933PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2934                                    CallingConv::ID CallConv, bool isVarArg,
2935                                    bool isTailCall,
2936                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2937                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2938                                    DebugLoc dl, SelectionDAG &DAG,
2939                                    SmallVectorImpl<SDValue> &InVals) const {
2940
2941  unsigned NumOps  = Outs.size();
2942
2943  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2944  bool isPPC64 = PtrVT == MVT::i64;
2945  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2946
2947  MachineFunction &MF = DAG.getMachineFunction();
2948
2949  // Mark this function as potentially containing a function that contains a
2950  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2951  // and restoring the callers stack pointer in this functions epilog. This is
2952  // done because by tail calling the called function might overwrite the value
2953  // in this function's (MF) stack pointer stack slot 0(SP).
2954  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2955    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2956
2957  unsigned nAltivecParamsAtEnd = 0;
2958
2959  // Count how many bytes are to be pushed on the stack, including the linkage
2960  // area, and parameter passing area.  We start with 24/48 bytes, which is
2961  // prereserved space for [SP][CR][LR][3 x unused].
2962  unsigned NumBytes =
2963    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2964                                         Outs,
2965                                         nAltivecParamsAtEnd);
2966
2967  // Calculate by how many bytes the stack has to be adjusted in case of tail
2968  // call optimization.
2969  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2970
2971  // To protect arguments on the stack from being clobbered in a tail call,
2972  // force all the loads to happen before doing any other lowering.
2973  if (isTailCall)
2974    Chain = DAG.getStackArgumentTokenFactor(Chain);
2975
2976  // Adjust the stack pointer for the new arguments...
2977  // These operations are automatically eliminated by the prolog/epilog pass
2978  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2979  SDValue CallSeqStart = Chain;
2980
2981  // Load the return address and frame pointer so it can be move somewhere else
2982  // later.
2983  SDValue LROp, FPOp;
2984  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2985                                       dl);
2986
2987  // Set up a copy of the stack pointer for use loading and storing any
2988  // arguments that may not fit in the registers available for argument
2989  // passing.
2990  SDValue StackPtr;
2991  if (isPPC64)
2992    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2993  else
2994    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2995
2996  // Figure out which arguments are going to go in registers, and which in
2997  // memory.  Also, if this is a vararg function, floating point operations
2998  // must be stored to our stack, and loaded into integer regs as well, if
2999  // any integer regs are available for argument passing.
3000  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3001  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3002
3003  static const unsigned GPR_32[] = {           // 32-bit registers.
3004    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3005    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3006  };
3007  static const unsigned GPR_64[] = {           // 64-bit registers.
3008    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3009    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3010  };
3011  static const unsigned *FPR = GetFPR();
3012
3013  static const unsigned VR[] = {
3014    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3015    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3016  };
3017  const unsigned NumGPRs = array_lengthof(GPR_32);
3018  const unsigned NumFPRs = 13;
3019  const unsigned NumVRs  = array_lengthof(VR);
3020
3021  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3022
3023  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3024  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3025
3026  SmallVector<SDValue, 8> MemOpChains;
3027  for (unsigned i = 0; i != NumOps; ++i) {
3028    SDValue Arg = Outs[i].Val;
3029    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3030
3031    // PtrOff will be used to store the current argument to the stack if a
3032    // register cannot be found for it.
3033    SDValue PtrOff;
3034
3035    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3036
3037    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3038
3039    // On PPC64, promote integers to 64-bit values.
3040    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3041      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3042      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3043      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3044    }
3045
3046    // FIXME memcpy is used way more than necessary.  Correctness first.
3047    if (Flags.isByVal()) {
3048      unsigned Size = Flags.getByValSize();
3049      if (Size==1 || Size==2) {
3050        // Very small objects are passed right-justified.
3051        // Everything else is passed left-justified.
3052        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3053        if (GPR_idx != NumGPRs) {
3054          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3055                                        NULL, 0, VT, false, false, 0);
3056          MemOpChains.push_back(Load.getValue(1));
3057          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3058
3059          ArgOffset += PtrByteSize;
3060        } else {
3061          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3062          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3063          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3064                                CallSeqStart.getNode()->getOperand(0),
3065                                Flags, DAG, dl);
3066          // This must go outside the CALLSEQ_START..END.
3067          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3068                               CallSeqStart.getNode()->getOperand(1));
3069          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3070                                 NewCallSeqStart.getNode());
3071          Chain = CallSeqStart = NewCallSeqStart;
3072          ArgOffset += PtrByteSize;
3073        }
3074        continue;
3075      }
3076      // Copy entire object into memory.  There are cases where gcc-generated
3077      // code assumes it is there, even if it could be put entirely into
3078      // registers.  (This is not what the doc says.)
3079      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3080                            CallSeqStart.getNode()->getOperand(0),
3081                            Flags, DAG, dl);
3082      // This must go outside the CALLSEQ_START..END.
3083      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3084                           CallSeqStart.getNode()->getOperand(1));
3085      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3086      Chain = CallSeqStart = NewCallSeqStart;
3087      // And copy the pieces of it that fit into registers.
3088      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3089        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3090        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3091        if (GPR_idx != NumGPRs) {
3092          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0,
3093                                     false, false, 0);
3094          MemOpChains.push_back(Load.getValue(1));
3095          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3096          ArgOffset += PtrByteSize;
3097        } else {
3098          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3099          break;
3100        }
3101      }
3102      continue;
3103    }
3104
3105    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3106    default: llvm_unreachable("Unexpected ValueType for argument!");
3107    case MVT::i32:
3108    case MVT::i64:
3109      if (GPR_idx != NumGPRs) {
3110        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3111      } else {
3112        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3113                         isPPC64, isTailCall, false, MemOpChains,
3114                         TailCallArguments, dl);
3115      }
3116      ArgOffset += PtrByteSize;
3117      break;
3118    case MVT::f32:
3119    case MVT::f64:
3120      if (FPR_idx != NumFPRs) {
3121        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3122
3123        if (isVarArg) {
3124          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
3125                                       false, false, 0);
3126          MemOpChains.push_back(Store);
3127
3128          // Float varargs are always shadowed in available integer registers
3129          if (GPR_idx != NumGPRs) {
3130            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
3131                                       false, false, 0);
3132            MemOpChains.push_back(Load.getValue(1));
3133            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3134          }
3135          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3136            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3137            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3138            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
3139                                       false, false, 0);
3140            MemOpChains.push_back(Load.getValue(1));
3141            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3142          }
3143        } else {
3144          // If we have any FPRs remaining, we may also have GPRs remaining.
3145          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3146          // GPRs.
3147          if (GPR_idx != NumGPRs)
3148            ++GPR_idx;
3149          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3150              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3151            ++GPR_idx;
3152        }
3153      } else {
3154        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3155                         isPPC64, isTailCall, false, MemOpChains,
3156                         TailCallArguments, dl);
3157      }
3158      if (isPPC64)
3159        ArgOffset += 8;
3160      else
3161        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3162      break;
3163    case MVT::v4f32:
3164    case MVT::v4i32:
3165    case MVT::v8i16:
3166    case MVT::v16i8:
3167      if (isVarArg) {
3168        // These go aligned on the stack, or in the corresponding R registers
3169        // when within range.  The Darwin PPC ABI doc claims they also go in
3170        // V registers; in fact gcc does this only for arguments that are
3171        // prototyped, not for those that match the ...  We do it for all
3172        // arguments, seems to work.
3173        while (ArgOffset % 16 !=0) {
3174          ArgOffset += PtrByteSize;
3175          if (GPR_idx != NumGPRs)
3176            GPR_idx++;
3177        }
3178        // We could elide this store in the case where the object fits
3179        // entirely in R registers.  Maybe later.
3180        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3181                            DAG.getConstant(ArgOffset, PtrVT));
3182        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
3183                                     false, false, 0);
3184        MemOpChains.push_back(Store);
3185        if (VR_idx != NumVRs) {
3186          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0,
3187                                     false, false, 0);
3188          MemOpChains.push_back(Load.getValue(1));
3189          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3190        }
3191        ArgOffset += 16;
3192        for (unsigned i=0; i<16; i+=PtrByteSize) {
3193          if (GPR_idx == NumGPRs)
3194            break;
3195          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3196                                  DAG.getConstant(i, PtrVT));
3197          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0,
3198                                     false, false, 0);
3199          MemOpChains.push_back(Load.getValue(1));
3200          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3201        }
3202        break;
3203      }
3204
3205      // Non-varargs Altivec params generally go in registers, but have
3206      // stack space allocated at the end.
3207      if (VR_idx != NumVRs) {
3208        // Doesn't have GPR space allocated.
3209        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3210      } else if (nAltivecParamsAtEnd==0) {
3211        // We are emitting Altivec params in order.
3212        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3213                         isPPC64, isTailCall, true, MemOpChains,
3214                         TailCallArguments, dl);
3215        ArgOffset += 16;
3216      }
3217      break;
3218    }
3219  }
3220  // If all Altivec parameters fit in registers, as they usually do,
3221  // they get stack space following the non-Altivec parameters.  We
3222  // don't track this here because nobody below needs it.
3223  // If there are more Altivec parameters than fit in registers emit
3224  // the stores here.
3225  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3226    unsigned j = 0;
3227    // Offset is aligned; skip 1st 12 params which go in V registers.
3228    ArgOffset = ((ArgOffset+15)/16)*16;
3229    ArgOffset += 12*16;
3230    for (unsigned i = 0; i != NumOps; ++i) {
3231      SDValue Arg = Outs[i].Val;
3232      EVT ArgType = Arg.getValueType();
3233      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3234          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3235        if (++j > NumVRs) {
3236          SDValue PtrOff;
3237          // We are emitting Altivec params in order.
3238          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3239                           isPPC64, isTailCall, true, MemOpChains,
3240                           TailCallArguments, dl);
3241          ArgOffset += 16;
3242        }
3243      }
3244    }
3245  }
3246
3247  if (!MemOpChains.empty())
3248    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3249                        &MemOpChains[0], MemOpChains.size());
3250
3251  // Check if this is an indirect call (MTCTR/BCTRL).
3252  // See PrepareCall() for more information about calls through function
3253  // pointers in the 64-bit SVR4 ABI.
3254  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3255      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3256      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3257      !isBLACompatibleAddress(Callee, DAG)) {
3258    // Load r2 into a virtual register and store it to the TOC save area.
3259    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3260    // TOC save area offset.
3261    SDValue PtrOff = DAG.getIntPtrConstant(40);
3262    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3263    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0,
3264                         false, false, 0);
3265  }
3266
3267  // On Darwin, R12 must contain the address of an indirect callee.  This does
3268  // not mean the MTCTR instruction must use R12; it's easier to model this as
3269  // an extra parameter, so do that.
3270  if (!isTailCall &&
3271      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3272      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3273      !isBLACompatibleAddress(Callee, DAG))
3274    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3275                                                   PPC::R12), Callee));
3276
3277  // Build a sequence of copy-to-reg nodes chained together with token chain
3278  // and flag operands which copy the outgoing args into the appropriate regs.
3279  SDValue InFlag;
3280  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3281    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3282                             RegsToPass[i].second, InFlag);
3283    InFlag = Chain.getValue(1);
3284  }
3285
3286  if (isTailCall) {
3287    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3288                    FPOp, true, TailCallArguments);
3289  }
3290
3291  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3292                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3293                    Ins, InVals);
3294}
3295
3296SDValue
3297PPCTargetLowering::LowerReturn(SDValue Chain,
3298                               CallingConv::ID CallConv, bool isVarArg,
3299                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3300                               DebugLoc dl, SelectionDAG &DAG) const {
3301
3302  SmallVector<CCValAssign, 16> RVLocs;
3303  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3304                 RVLocs, *DAG.getContext());
3305  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3306
3307  // If this is the first return lowered for this function, add the regs to the
3308  // liveout set for the function.
3309  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3310    for (unsigned i = 0; i != RVLocs.size(); ++i)
3311      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3312  }
3313
3314  SDValue Flag;
3315
3316  // Copy the result values into the output registers.
3317  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3318    CCValAssign &VA = RVLocs[i];
3319    assert(VA.isRegLoc() && "Can only return in registers!");
3320    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3321                             Outs[i].Val, Flag);
3322    Flag = Chain.getValue(1);
3323  }
3324
3325  if (Flag.getNode())
3326    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3327  else
3328    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3329}
3330
3331SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3332                                   const PPCSubtarget &Subtarget) const {
3333  // When we pop the dynamic allocation we need to restore the SP link.
3334  DebugLoc dl = Op.getDebugLoc();
3335
3336  // Get the corect type for pointers.
3337  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3338
3339  // Construct the stack pointer operand.
3340  bool isPPC64 = Subtarget.isPPC64();
3341  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3342  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3343
3344  // Get the operands for the STACKRESTORE.
3345  SDValue Chain = Op.getOperand(0);
3346  SDValue SaveSP = Op.getOperand(1);
3347
3348  // Load the old link SP.
3349  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0,
3350                                   false, false, 0);
3351
3352  // Restore the stack pointer.
3353  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3354
3355  // Store the old link SP.
3356  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0,
3357                      false, false, 0);
3358}
3359
3360
3361
3362SDValue
3363PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3364  MachineFunction &MF = DAG.getMachineFunction();
3365  bool isPPC64 = PPCSubTarget.isPPC64();
3366  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3367  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3368
3369  // Get current frame pointer save index.  The users of this index will be
3370  // primarily DYNALLOC instructions.
3371  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3372  int RASI = FI->getReturnAddrSaveIndex();
3373
3374  // If the frame pointer save index hasn't been defined yet.
3375  if (!RASI) {
3376    // Find out what the fix offset of the frame pointer save area.
3377    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3378    // Allocate the frame index for frame pointer save area.
3379    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset,
3380                                                true, false);
3381    // Save the result.
3382    FI->setReturnAddrSaveIndex(RASI);
3383  }
3384  return DAG.getFrameIndex(RASI, PtrVT);
3385}
3386
3387SDValue
3388PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3389  MachineFunction &MF = DAG.getMachineFunction();
3390  bool isPPC64 = PPCSubTarget.isPPC64();
3391  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3392  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3393
3394  // Get current frame pointer save index.  The users of this index will be
3395  // primarily DYNALLOC instructions.
3396  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3397  int FPSI = FI->getFramePointerSaveIndex();
3398
3399  // If the frame pointer save index hasn't been defined yet.
3400  if (!FPSI) {
3401    // Find out what the fix offset of the frame pointer save area.
3402    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3403                                                           isDarwinABI);
3404
3405    // Allocate the frame index for frame pointer save area.
3406    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset,
3407                                                true, false);
3408    // Save the result.
3409    FI->setFramePointerSaveIndex(FPSI);
3410  }
3411  return DAG.getFrameIndex(FPSI, PtrVT);
3412}
3413
3414SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3415                                         SelectionDAG &DAG,
3416                                         const PPCSubtarget &Subtarget) const {
3417  // Get the inputs.
3418  SDValue Chain = Op.getOperand(0);
3419  SDValue Size  = Op.getOperand(1);
3420  DebugLoc dl = Op.getDebugLoc();
3421
3422  // Get the corect type for pointers.
3423  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3424  // Negate the size.
3425  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3426                                  DAG.getConstant(0, PtrVT), Size);
3427  // Construct a node for the frame pointer save index.
3428  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3429  // Build a DYNALLOC node.
3430  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3431  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3432  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3433}
3434
3435/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3436/// possible.
3437SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3438  // Not FP? Not a fsel.
3439  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3440      !Op.getOperand(2).getValueType().isFloatingPoint())
3441    return Op;
3442
3443  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3444
3445  // Cannot handle SETEQ/SETNE.
3446  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3447
3448  EVT ResVT = Op.getValueType();
3449  EVT CmpVT = Op.getOperand(0).getValueType();
3450  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3451  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3452  DebugLoc dl = Op.getDebugLoc();
3453
3454  // If the RHS of the comparison is a 0.0, we don't need to do the
3455  // subtraction at all.
3456  if (isFloatingPointZero(RHS))
3457    switch (CC) {
3458    default: break;       // SETUO etc aren't handled by fsel.
3459    case ISD::SETULT:
3460    case ISD::SETLT:
3461      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3462    case ISD::SETOGE:
3463    case ISD::SETGE:
3464      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3465        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3466      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3467    case ISD::SETUGT:
3468    case ISD::SETGT:
3469      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3470    case ISD::SETOLE:
3471    case ISD::SETLE:
3472      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3473        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3474      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3475                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3476    }
3477
3478  SDValue Cmp;
3479  switch (CC) {
3480  default: break;       // SETUO etc aren't handled by fsel.
3481  case ISD::SETULT:
3482  case ISD::SETLT:
3483    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3484    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3485      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3486      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3487  case ISD::SETOGE:
3488  case ISD::SETGE:
3489    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3490    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3491      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3492      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3493  case ISD::SETUGT:
3494  case ISD::SETGT:
3495    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3496    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3497      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3498      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3499  case ISD::SETOLE:
3500  case ISD::SETLE:
3501    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3502    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3503      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3504      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3505  }
3506  return Op;
3507}
3508
3509// FIXME: Split this code up when LegalizeDAGTypes lands.
3510SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3511                                           DebugLoc dl) const {
3512  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3513  SDValue Src = Op.getOperand(0);
3514  if (Src.getValueType() == MVT::f32)
3515    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3516
3517  SDValue Tmp;
3518  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3519  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3520  case MVT::i32:
3521    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3522                                                         PPCISD::FCTIDZ,
3523                      dl, MVT::f64, Src);
3524    break;
3525  case MVT::i64:
3526    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3527    break;
3528  }
3529
3530  // Convert the FP value to an int value through memory.
3531  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3532
3533  // Emit a store to the stack slot.
3534  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0,
3535                               false, false, 0);
3536
3537  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3538  // add in a bias.
3539  if (Op.getValueType() == MVT::i32)
3540    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3541                        DAG.getConstant(4, FIPtr.getValueType()));
3542  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0,
3543                     false, false, 0);
3544}
3545
3546SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3547                                           SelectionDAG &DAG) const {
3548  DebugLoc dl = Op.getDebugLoc();
3549  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3550  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3551    return SDValue();
3552
3553  if (Op.getOperand(0).getValueType() == MVT::i64) {
3554    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3555                               MVT::f64, Op.getOperand(0));
3556    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3557    if (Op.getValueType() == MVT::f32)
3558      FP = DAG.getNode(ISD::FP_ROUND, dl,
3559                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3560    return FP;
3561  }
3562
3563  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3564         "Unhandled SINT_TO_FP type in custom expander!");
3565  // Since we only generate this in 64-bit mode, we can take advantage of
3566  // 64-bit registers.  In particular, sign extend the input value into the
3567  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3568  // then lfd it and fcfid it.
3569  MachineFunction &MF = DAG.getMachineFunction();
3570  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3571  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3572  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3573  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3574
3575  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3576                                Op.getOperand(0));
3577
3578  // STD the extended value into the stack slot.
3579  MachineMemOperand *MMO =
3580    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
3581                            MachineMemOperand::MOStore, 0, 8, 8);
3582  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3583  SDValue Store =
3584    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3585                            Ops, 4, MVT::i64, MMO);
3586  // Load the value as a double.
3587  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0, false, false, 0);
3588
3589  // FCFID it and return it.
3590  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3591  if (Op.getValueType() == MVT::f32)
3592    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3593  return FP;
3594}
3595
3596SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3597                                            SelectionDAG &DAG) const {
3598  DebugLoc dl = Op.getDebugLoc();
3599  /*
3600   The rounding mode is in bits 30:31 of FPSR, and has the following
3601   settings:
3602     00 Round to nearest
3603     01 Round to 0
3604     10 Round to +inf
3605     11 Round to -inf
3606
3607  FLT_ROUNDS, on the other hand, expects the following:
3608    -1 Undefined
3609     0 Round to 0
3610     1 Round to nearest
3611     2 Round to +inf
3612     3 Round to -inf
3613
3614  To perform the conversion, we do:
3615    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3616  */
3617
3618  MachineFunction &MF = DAG.getMachineFunction();
3619  EVT VT = Op.getValueType();
3620  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3621  std::vector<EVT> NodeTys;
3622  SDValue MFFSreg, InFlag;
3623
3624  // Save FP Control Word to register
3625  NodeTys.push_back(MVT::f64);    // return register
3626  NodeTys.push_back(MVT::Flag);   // unused in this context
3627  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3628
3629  // Save FP register to stack slot
3630  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3631  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3632  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3633                               StackSlot, NULL, 0, false, false, 0);
3634
3635  // Load FP Control Word from low 32 bits of stack slot.
3636  SDValue Four = DAG.getConstant(4, PtrVT);
3637  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3638  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0,
3639                            false, false, 0);
3640
3641  // Transform as necessary
3642  SDValue CWD1 =
3643    DAG.getNode(ISD::AND, dl, MVT::i32,
3644                CWD, DAG.getConstant(3, MVT::i32));
3645  SDValue CWD2 =
3646    DAG.getNode(ISD::SRL, dl, MVT::i32,
3647                DAG.getNode(ISD::AND, dl, MVT::i32,
3648                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3649                                        CWD, DAG.getConstant(3, MVT::i32)),
3650                            DAG.getConstant(3, MVT::i32)),
3651                DAG.getConstant(1, MVT::i32));
3652
3653  SDValue RetVal =
3654    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3655
3656  return DAG.getNode((VT.getSizeInBits() < 16 ?
3657                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3658}
3659
3660SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3661  EVT VT = Op.getValueType();
3662  unsigned BitWidth = VT.getSizeInBits();
3663  DebugLoc dl = Op.getDebugLoc();
3664  assert(Op.getNumOperands() == 3 &&
3665         VT == Op.getOperand(1).getValueType() &&
3666         "Unexpected SHL!");
3667
3668  // Expand into a bunch of logical ops.  Note that these ops
3669  // depend on the PPC behavior for oversized shift amounts.
3670  SDValue Lo = Op.getOperand(0);
3671  SDValue Hi = Op.getOperand(1);
3672  SDValue Amt = Op.getOperand(2);
3673  EVT AmtVT = Amt.getValueType();
3674
3675  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3676                             DAG.getConstant(BitWidth, AmtVT), Amt);
3677  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3678  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3679  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3680  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3681                             DAG.getConstant(-BitWidth, AmtVT));
3682  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3683  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3684  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3685  SDValue OutOps[] = { OutLo, OutHi };
3686  return DAG.getMergeValues(OutOps, 2, dl);
3687}
3688
3689SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3690  EVT VT = Op.getValueType();
3691  DebugLoc dl = Op.getDebugLoc();
3692  unsigned BitWidth = VT.getSizeInBits();
3693  assert(Op.getNumOperands() == 3 &&
3694         VT == Op.getOperand(1).getValueType() &&
3695         "Unexpected SRL!");
3696
3697  // Expand into a bunch of logical ops.  Note that these ops
3698  // depend on the PPC behavior for oversized shift amounts.
3699  SDValue Lo = Op.getOperand(0);
3700  SDValue Hi = Op.getOperand(1);
3701  SDValue Amt = Op.getOperand(2);
3702  EVT AmtVT = Amt.getValueType();
3703
3704  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3705                             DAG.getConstant(BitWidth, AmtVT), Amt);
3706  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3707  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3708  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3709  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3710                             DAG.getConstant(-BitWidth, AmtVT));
3711  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3712  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3713  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3714  SDValue OutOps[] = { OutLo, OutHi };
3715  return DAG.getMergeValues(OutOps, 2, dl);
3716}
3717
3718SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3719  DebugLoc dl = Op.getDebugLoc();
3720  EVT VT = Op.getValueType();
3721  unsigned BitWidth = VT.getSizeInBits();
3722  assert(Op.getNumOperands() == 3 &&
3723         VT == Op.getOperand(1).getValueType() &&
3724         "Unexpected SRA!");
3725
3726  // Expand into a bunch of logical ops, followed by a select_cc.
3727  SDValue Lo = Op.getOperand(0);
3728  SDValue Hi = Op.getOperand(1);
3729  SDValue Amt = Op.getOperand(2);
3730  EVT AmtVT = Amt.getValueType();
3731
3732  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3733                             DAG.getConstant(BitWidth, AmtVT), Amt);
3734  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3735  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3736  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3737  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3738                             DAG.getConstant(-BitWidth, AmtVT));
3739  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3740  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3741  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3742                                  Tmp4, Tmp6, ISD::SETLE);
3743  SDValue OutOps[] = { OutLo, OutHi };
3744  return DAG.getMergeValues(OutOps, 2, dl);
3745}
3746
3747//===----------------------------------------------------------------------===//
3748// Vector related lowering.
3749//
3750
3751/// BuildSplatI - Build a canonical splati of Val with an element size of
3752/// SplatSize.  Cast the result to VT.
3753static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3754                             SelectionDAG &DAG, DebugLoc dl) {
3755  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3756
3757  static const EVT VTys[] = { // canonical VT to use for each size.
3758    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3759  };
3760
3761  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3762
3763  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3764  if (Val == -1)
3765    SplatSize = 1;
3766
3767  EVT CanonicalVT = VTys[SplatSize-1];
3768
3769  // Build a canonical splat for this value.
3770  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3771  SmallVector<SDValue, 8> Ops;
3772  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3773  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3774                              &Ops[0], Ops.size());
3775  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3776}
3777
3778/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3779/// specified intrinsic ID.
3780static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3781                                SelectionDAG &DAG, DebugLoc dl,
3782                                EVT DestVT = MVT::Other) {
3783  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3784  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3785                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3786}
3787
3788/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3789/// specified intrinsic ID.
3790static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3791                                SDValue Op2, SelectionDAG &DAG,
3792                                DebugLoc dl, EVT DestVT = MVT::Other) {
3793  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3794  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3795                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3796}
3797
3798
3799/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3800/// amount.  The result has the specified value type.
3801static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3802                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3803  // Force LHS/RHS to be the right type.
3804  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3805  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3806
3807  int Ops[16];
3808  for (unsigned i = 0; i != 16; ++i)
3809    Ops[i] = i + Amt;
3810  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3811  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3812}
3813
3814// If this is a case we can't handle, return null and let the default
3815// expansion code take care of it.  If we CAN select this case, and if it
3816// selects to a single instruction, return Op.  Otherwise, if we can codegen
3817// this case more efficiently than a constant pool load, lower it to the
3818// sequence of ops that should be used.
3819SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3820                                             SelectionDAG &DAG) const {
3821  DebugLoc dl = Op.getDebugLoc();
3822  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3823  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3824
3825  // Check if this is a splat of a constant value.
3826  APInt APSplatBits, APSplatUndef;
3827  unsigned SplatBitSize;
3828  bool HasAnyUndefs;
3829  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3830                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3831    return SDValue();
3832
3833  unsigned SplatBits = APSplatBits.getZExtValue();
3834  unsigned SplatUndef = APSplatUndef.getZExtValue();
3835  unsigned SplatSize = SplatBitSize / 8;
3836
3837  // First, handle single instruction cases.
3838
3839  // All zeros?
3840  if (SplatBits == 0) {
3841    // Canonicalize all zero vectors to be v4i32.
3842    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3843      SDValue Z = DAG.getConstant(0, MVT::i32);
3844      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3845      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3846    }
3847    return Op;
3848  }
3849
3850  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3851  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3852                    (32-SplatBitSize));
3853  if (SextVal >= -16 && SextVal <= 15)
3854    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3855
3856
3857  // Two instruction sequences.
3858
3859  // If this value is in the range [-32,30] and is even, use:
3860  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3861  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3862    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3863    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3864    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3865  }
3866
3867  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3868  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3869  // for fneg/fabs.
3870  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3871    // Make -1 and vspltisw -1:
3872    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3873
3874    // Make the VSLW intrinsic, computing 0x8000_0000.
3875    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3876                                   OnesV, DAG, dl);
3877
3878    // xor by OnesV to invert it.
3879    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3880    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3881  }
3882
3883  // Check to see if this is a wide variety of vsplti*, binop self cases.
3884  static const signed char SplatCsts[] = {
3885    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3886    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3887  };
3888
3889  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3890    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3891    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3892    int i = SplatCsts[idx];
3893
3894    // Figure out what shift amount will be used by altivec if shifted by i in
3895    // this splat size.
3896    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3897
3898    // vsplti + shl self.
3899    if (SextVal == (i << (int)TypeShiftAmt)) {
3900      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3901      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3902        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3903        Intrinsic::ppc_altivec_vslw
3904      };
3905      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3906      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3907    }
3908
3909    // vsplti + srl self.
3910    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3911      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3912      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3913        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3914        Intrinsic::ppc_altivec_vsrw
3915      };
3916      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3917      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3918    }
3919
3920    // vsplti + sra self.
3921    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3922      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3923      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3924        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3925        Intrinsic::ppc_altivec_vsraw
3926      };
3927      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3928      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3929    }
3930
3931    // vsplti + rol self.
3932    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3933                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3934      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3935      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3936        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3937        Intrinsic::ppc_altivec_vrlw
3938      };
3939      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3940      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3941    }
3942
3943    // t = vsplti c, result = vsldoi t, t, 1
3944    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3945      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3946      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3947    }
3948    // t = vsplti c, result = vsldoi t, t, 2
3949    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3950      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3951      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3952    }
3953    // t = vsplti c, result = vsldoi t, t, 3
3954    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3955      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3956      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3957    }
3958  }
3959
3960  // Three instruction sequences.
3961
3962  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3963  if (SextVal >= 0 && SextVal <= 31) {
3964    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3965    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3966    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3967    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3968  }
3969  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3970  if (SextVal >= -31 && SextVal <= 0) {
3971    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3972    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3973    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3974    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3975  }
3976
3977  return SDValue();
3978}
3979
3980/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3981/// the specified operations to build the shuffle.
3982static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3983                                      SDValue RHS, SelectionDAG &DAG,
3984                                      DebugLoc dl) {
3985  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3986  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3987  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3988
3989  enum {
3990    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3991    OP_VMRGHW,
3992    OP_VMRGLW,
3993    OP_VSPLTISW0,
3994    OP_VSPLTISW1,
3995    OP_VSPLTISW2,
3996    OP_VSPLTISW3,
3997    OP_VSLDOI4,
3998    OP_VSLDOI8,
3999    OP_VSLDOI12
4000  };
4001
4002  if (OpNum == OP_COPY) {
4003    if (LHSID == (1*9+2)*9+3) return LHS;
4004    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4005    return RHS;
4006  }
4007
4008  SDValue OpLHS, OpRHS;
4009  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4010  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4011
4012  int ShufIdxs[16];
4013  switch (OpNum) {
4014  default: llvm_unreachable("Unknown i32 permute!");
4015  case OP_VMRGHW:
4016    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4017    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4018    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4019    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4020    break;
4021  case OP_VMRGLW:
4022    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4023    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4024    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4025    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4026    break;
4027  case OP_VSPLTISW0:
4028    for (unsigned i = 0; i != 16; ++i)
4029      ShufIdxs[i] = (i&3)+0;
4030    break;
4031  case OP_VSPLTISW1:
4032    for (unsigned i = 0; i != 16; ++i)
4033      ShufIdxs[i] = (i&3)+4;
4034    break;
4035  case OP_VSPLTISW2:
4036    for (unsigned i = 0; i != 16; ++i)
4037      ShufIdxs[i] = (i&3)+8;
4038    break;
4039  case OP_VSPLTISW3:
4040    for (unsigned i = 0; i != 16; ++i)
4041      ShufIdxs[i] = (i&3)+12;
4042    break;
4043  case OP_VSLDOI4:
4044    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4045  case OP_VSLDOI8:
4046    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4047  case OP_VSLDOI12:
4048    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4049  }
4050  EVT VT = OpLHS.getValueType();
4051  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4052  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4053  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4054  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4055}
4056
4057/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4058/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4059/// return the code it can be lowered into.  Worst case, it can always be
4060/// lowered into a vperm.
4061SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4062                                               SelectionDAG &DAG) const {
4063  DebugLoc dl = Op.getDebugLoc();
4064  SDValue V1 = Op.getOperand(0);
4065  SDValue V2 = Op.getOperand(1);
4066  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4067  EVT VT = Op.getValueType();
4068
4069  // Cases that are handled by instructions that take permute immediates
4070  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4071  // selected by the instruction selector.
4072  if (V2.getOpcode() == ISD::UNDEF) {
4073    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4074        PPC::isSplatShuffleMask(SVOp, 2) ||
4075        PPC::isSplatShuffleMask(SVOp, 4) ||
4076        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4077        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4078        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4079        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4080        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4081        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4082        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4083        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4084        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4085      return Op;
4086    }
4087  }
4088
4089  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4090  // and produce a fixed permutation.  If any of these match, do not lower to
4091  // VPERM.
4092  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4093      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4094      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4095      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4096      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4097      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4098      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4099      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4100      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4101    return Op;
4102
4103  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4104  // perfect shuffle table to emit an optimal matching sequence.
4105  SmallVector<int, 16> PermMask;
4106  SVOp->getMask(PermMask);
4107
4108  unsigned PFIndexes[4];
4109  bool isFourElementShuffle = true;
4110  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4111    unsigned EltNo = 8;   // Start out undef.
4112    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4113      if (PermMask[i*4+j] < 0)
4114        continue;   // Undef, ignore it.
4115
4116      unsigned ByteSource = PermMask[i*4+j];
4117      if ((ByteSource & 3) != j) {
4118        isFourElementShuffle = false;
4119        break;
4120      }
4121
4122      if (EltNo == 8) {
4123        EltNo = ByteSource/4;
4124      } else if (EltNo != ByteSource/4) {
4125        isFourElementShuffle = false;
4126        break;
4127      }
4128    }
4129    PFIndexes[i] = EltNo;
4130  }
4131
4132  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4133  // perfect shuffle vector to determine if it is cost effective to do this as
4134  // discrete instructions, or whether we should use a vperm.
4135  if (isFourElementShuffle) {
4136    // Compute the index in the perfect shuffle table.
4137    unsigned PFTableIndex =
4138      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4139
4140    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4141    unsigned Cost  = (PFEntry >> 30);
4142
4143    // Determining when to avoid vperm is tricky.  Many things affect the cost
4144    // of vperm, particularly how many times the perm mask needs to be computed.
4145    // For example, if the perm mask can be hoisted out of a loop or is already
4146    // used (perhaps because there are multiple permutes with the same shuffle
4147    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4148    // the loop requires an extra register.
4149    //
4150    // As a compromise, we only emit discrete instructions if the shuffle can be
4151    // generated in 3 or fewer operations.  When we have loop information
4152    // available, if this block is within a loop, we should avoid using vperm
4153    // for 3-operation perms and use a constant pool load instead.
4154    if (Cost < 3)
4155      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4156  }
4157
4158  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4159  // vector that will get spilled to the constant pool.
4160  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4161
4162  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4163  // that it is in input element units, not in bytes.  Convert now.
4164  EVT EltVT = V1.getValueType().getVectorElementType();
4165  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4166
4167  SmallVector<SDValue, 16> ResultMask;
4168  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4169    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4170
4171    for (unsigned j = 0; j != BytesPerElement; ++j)
4172      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4173                                           MVT::i32));
4174  }
4175
4176  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4177                                    &ResultMask[0], ResultMask.size());
4178  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4179}
4180
4181/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4182/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4183/// information about the intrinsic.
4184static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4185                                  bool &isDot) {
4186  unsigned IntrinsicID =
4187    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4188  CompareOpc = -1;
4189  isDot = false;
4190  switch (IntrinsicID) {
4191  default: return false;
4192    // Comparison predicates.
4193  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4194  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4195  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4196  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4197  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4198  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4199  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4200  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4201  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4202  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4203  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4204  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4206
4207    // Normal Comparisons.
4208  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4209  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4210  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4211  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4212  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4213  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4214  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4215  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4216  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4217  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4218  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4219  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4221  }
4222  return true;
4223}
4224
4225/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4226/// lower, do it, otherwise return null.
4227SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4228                                                   SelectionDAG &DAG) const {
4229  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4230  // opcode number of the comparison.
4231  DebugLoc dl = Op.getDebugLoc();
4232  int CompareOpc;
4233  bool isDot;
4234  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4235    return SDValue();    // Don't custom lower most intrinsics.
4236
4237  // If this is a non-dot comparison, make the VCMP node and we are done.
4238  if (!isDot) {
4239    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4240                              Op.getOperand(1), Op.getOperand(2),
4241                              DAG.getConstant(CompareOpc, MVT::i32));
4242    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4243  }
4244
4245  // Create the PPCISD altivec 'dot' comparison node.
4246  SDValue Ops[] = {
4247    Op.getOperand(2),  // LHS
4248    Op.getOperand(3),  // RHS
4249    DAG.getConstant(CompareOpc, MVT::i32)
4250  };
4251  std::vector<EVT> VTs;
4252  VTs.push_back(Op.getOperand(2).getValueType());
4253  VTs.push_back(MVT::Flag);
4254  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4255
4256  // Now that we have the comparison, emit a copy from the CR to a GPR.
4257  // This is flagged to the above dot comparison.
4258  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4259                                DAG.getRegister(PPC::CR6, MVT::i32),
4260                                CompNode.getValue(1));
4261
4262  // Unpack the result based on how the target uses it.
4263  unsigned BitNo;   // Bit # of CR6.
4264  bool InvertBit;   // Invert result?
4265  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4266  default:  // Can't happen, don't crash on invalid number though.
4267  case 0:   // Return the value of the EQ bit of CR6.
4268    BitNo = 0; InvertBit = false;
4269    break;
4270  case 1:   // Return the inverted value of the EQ bit of CR6.
4271    BitNo = 0; InvertBit = true;
4272    break;
4273  case 2:   // Return the value of the LT bit of CR6.
4274    BitNo = 2; InvertBit = false;
4275    break;
4276  case 3:   // Return the inverted value of the LT bit of CR6.
4277    BitNo = 2; InvertBit = true;
4278    break;
4279  }
4280
4281  // Shift the bit into the low position.
4282  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4283                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4284  // Isolate the bit.
4285  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4286                      DAG.getConstant(1, MVT::i32));
4287
4288  // If we are supposed to, toggle the bit.
4289  if (InvertBit)
4290    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4291                        DAG.getConstant(1, MVT::i32));
4292  return Flags;
4293}
4294
4295SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4296                                                   SelectionDAG &DAG) const {
4297  DebugLoc dl = Op.getDebugLoc();
4298  // Create a stack slot that is 16-byte aligned.
4299  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4300  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4301  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4302  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4303
4304  // Store the input value into Value#0 of the stack slot.
4305  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4306                               Op.getOperand(0), FIdx, NULL, 0,
4307                               false, false, 0);
4308  // Load it out.
4309  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0,
4310                     false, false, 0);
4311}
4312
4313SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4314  DebugLoc dl = Op.getDebugLoc();
4315  if (Op.getValueType() == MVT::v4i32) {
4316    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4317
4318    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4319    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4320
4321    SDValue RHSSwap =   // = vrlw RHS, 16
4322      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4323
4324    // Shrinkify inputs to v8i16.
4325    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4326    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4327    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4328
4329    // Low parts multiplied together, generating 32-bit results (we ignore the
4330    // top parts).
4331    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4332                                        LHS, RHS, DAG, dl, MVT::v4i32);
4333
4334    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4335                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4336    // Shift the high parts up 16 bits.
4337    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4338                              Neg16, DAG, dl);
4339    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4340  } else if (Op.getValueType() == MVT::v8i16) {
4341    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4342
4343    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4344
4345    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4346                            LHS, RHS, Zero, DAG, dl);
4347  } else if (Op.getValueType() == MVT::v16i8) {
4348    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4349
4350    // Multiply the even 8-bit parts, producing 16-bit sums.
4351    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4352                                           LHS, RHS, DAG, dl, MVT::v8i16);
4353    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4354
4355    // Multiply the odd 8-bit parts, producing 16-bit sums.
4356    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4357                                          LHS, RHS, DAG, dl, MVT::v8i16);
4358    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4359
4360    // Merge the results together.
4361    int Ops[16];
4362    for (unsigned i = 0; i != 8; ++i) {
4363      Ops[i*2  ] = 2*i+1;
4364      Ops[i*2+1] = 2*i+1+16;
4365    }
4366    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4367  } else {
4368    llvm_unreachable("Unknown mul to lower!");
4369  }
4370}
4371
4372/// LowerOperation - Provide custom lowering hooks for some operations.
4373///
4374SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4375  switch (Op.getOpcode()) {
4376  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4377  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4378  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4379  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4380  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4381  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4382  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4383  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4384  case ISD::VASTART:
4385    return LowerVASTART(Op, DAG, PPCSubTarget);
4386
4387  case ISD::VAARG:
4388    return LowerVAARG(Op, DAG, PPCSubTarget);
4389
4390  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4391  case ISD::DYNAMIC_STACKALLOC:
4392    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4393
4394  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4395  case ISD::FP_TO_UINT:
4396  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4397                                                       Op.getDebugLoc());
4398  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4399  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4400
4401  // Lower 64-bit shifts.
4402  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4403  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4404  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4405
4406  // Vector-related lowering.
4407  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4408  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4409  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4410  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4411  case ISD::MUL:                return LowerMUL(Op, DAG);
4412
4413  // Frame & Return address.
4414  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4415  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4416  }
4417  return SDValue();
4418}
4419
4420void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4421                                           SmallVectorImpl<SDValue>&Results,
4422                                           SelectionDAG &DAG) const {
4423  DebugLoc dl = N->getDebugLoc();
4424  switch (N->getOpcode()) {
4425  default:
4426    assert(false && "Do not know how to custom type legalize this operation!");
4427    return;
4428  case ISD::FP_ROUND_INREG: {
4429    assert(N->getValueType(0) == MVT::ppcf128);
4430    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4431    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4432                             MVT::f64, N->getOperand(0),
4433                             DAG.getIntPtrConstant(0));
4434    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4435                             MVT::f64, N->getOperand(0),
4436                             DAG.getIntPtrConstant(1));
4437
4438    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4439    // of the long double, and puts FPSCR back the way it was.  We do not
4440    // actually model FPSCR.
4441    std::vector<EVT> NodeTys;
4442    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4443
4444    NodeTys.push_back(MVT::f64);   // Return register
4445    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4446    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4447    MFFSreg = Result.getValue(0);
4448    InFlag = Result.getValue(1);
4449
4450    NodeTys.clear();
4451    NodeTys.push_back(MVT::Flag);   // Returns a flag
4452    Ops[0] = DAG.getConstant(31, MVT::i32);
4453    Ops[1] = InFlag;
4454    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4455    InFlag = Result.getValue(0);
4456
4457    NodeTys.clear();
4458    NodeTys.push_back(MVT::Flag);   // Returns a flag
4459    Ops[0] = DAG.getConstant(30, MVT::i32);
4460    Ops[1] = InFlag;
4461    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4462    InFlag = Result.getValue(0);
4463
4464    NodeTys.clear();
4465    NodeTys.push_back(MVT::f64);    // result of add
4466    NodeTys.push_back(MVT::Flag);   // Returns a flag
4467    Ops[0] = Lo;
4468    Ops[1] = Hi;
4469    Ops[2] = InFlag;
4470    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4471    FPreg = Result.getValue(0);
4472    InFlag = Result.getValue(1);
4473
4474    NodeTys.clear();
4475    NodeTys.push_back(MVT::f64);
4476    Ops[0] = DAG.getConstant(1, MVT::i32);
4477    Ops[1] = MFFSreg;
4478    Ops[2] = FPreg;
4479    Ops[3] = InFlag;
4480    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4481    FPreg = Result.getValue(0);
4482
4483    // We know the low half is about to be thrown away, so just use something
4484    // convenient.
4485    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4486                                FPreg, FPreg));
4487    return;
4488  }
4489  case ISD::FP_TO_SINT:
4490    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4491    return;
4492  }
4493}
4494
4495
4496//===----------------------------------------------------------------------===//
4497//  Other Lowering Code
4498//===----------------------------------------------------------------------===//
4499
4500MachineBasicBlock *
4501PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4502                                    bool is64bit, unsigned BinOpcode) const {
4503  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4504  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4505
4506  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4507  MachineFunction *F = BB->getParent();
4508  MachineFunction::iterator It = BB;
4509  ++It;
4510
4511  unsigned dest = MI->getOperand(0).getReg();
4512  unsigned ptrA = MI->getOperand(1).getReg();
4513  unsigned ptrB = MI->getOperand(2).getReg();
4514  unsigned incr = MI->getOperand(3).getReg();
4515  DebugLoc dl = MI->getDebugLoc();
4516
4517  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4518  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4519  F->insert(It, loopMBB);
4520  F->insert(It, exitMBB);
4521  exitMBB->transferSuccessors(BB);
4522
4523  MachineRegisterInfo &RegInfo = F->getRegInfo();
4524  unsigned TmpReg = (!BinOpcode) ? incr :
4525    RegInfo.createVirtualRegister(
4526       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4527                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4528
4529  //  thisMBB:
4530  //   ...
4531  //   fallthrough --> loopMBB
4532  BB->addSuccessor(loopMBB);
4533
4534  //  loopMBB:
4535  //   l[wd]arx dest, ptr
4536  //   add r0, dest, incr
4537  //   st[wd]cx. r0, ptr
4538  //   bne- loopMBB
4539  //   fallthrough --> exitMBB
4540  BB = loopMBB;
4541  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4542    .addReg(ptrA).addReg(ptrB);
4543  if (BinOpcode)
4544    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4545  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4546    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4547  BuildMI(BB, dl, TII->get(PPC::BCC))
4548    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4549  BB->addSuccessor(loopMBB);
4550  BB->addSuccessor(exitMBB);
4551
4552  //  exitMBB:
4553  //   ...
4554  BB = exitMBB;
4555  return BB;
4556}
4557
4558MachineBasicBlock *
4559PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4560                                            MachineBasicBlock *BB,
4561                                            bool is8bit,    // operation
4562                                            unsigned BinOpcode) const {
4563  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4564  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4565  // In 64 bit mode we have to use 64 bits for addresses, even though the
4566  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4567  // registers without caring whether they're 32 or 64, but here we're
4568  // doing actual arithmetic on the addresses.
4569  bool is64bit = PPCSubTarget.isPPC64();
4570
4571  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4572  MachineFunction *F = BB->getParent();
4573  MachineFunction::iterator It = BB;
4574  ++It;
4575
4576  unsigned dest = MI->getOperand(0).getReg();
4577  unsigned ptrA = MI->getOperand(1).getReg();
4578  unsigned ptrB = MI->getOperand(2).getReg();
4579  unsigned incr = MI->getOperand(3).getReg();
4580  DebugLoc dl = MI->getDebugLoc();
4581
4582  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4583  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4584  F->insert(It, loopMBB);
4585  F->insert(It, exitMBB);
4586  exitMBB->transferSuccessors(BB);
4587
4588  MachineRegisterInfo &RegInfo = F->getRegInfo();
4589  const TargetRegisterClass *RC =
4590    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4591              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4592  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4593  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4594  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4595  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4596  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4597  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4598  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4599  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4600  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4601  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4602  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4603  unsigned Ptr1Reg;
4604  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4605
4606  //  thisMBB:
4607  //   ...
4608  //   fallthrough --> loopMBB
4609  BB->addSuccessor(loopMBB);
4610
4611  // The 4-byte load must be aligned, while a char or short may be
4612  // anywhere in the word.  Hence all this nasty bookkeeping code.
4613  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4614  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4615  //   xori shift, shift1, 24 [16]
4616  //   rlwinm ptr, ptr1, 0, 0, 29
4617  //   slw incr2, incr, shift
4618  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4619  //   slw mask, mask2, shift
4620  //  loopMBB:
4621  //   lwarx tmpDest, ptr
4622  //   add tmp, tmpDest, incr2
4623  //   andc tmp2, tmpDest, mask
4624  //   and tmp3, tmp, mask
4625  //   or tmp4, tmp3, tmp2
4626  //   stwcx. tmp4, ptr
4627  //   bne- loopMBB
4628  //   fallthrough --> exitMBB
4629  //   srw dest, tmpDest, shift
4630
4631  if (ptrA!=PPC::R0) {
4632    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4633    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4634      .addReg(ptrA).addReg(ptrB);
4635  } else {
4636    Ptr1Reg = ptrB;
4637  }
4638  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4639      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4640  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4641      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4642  if (is64bit)
4643    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4644      .addReg(Ptr1Reg).addImm(0).addImm(61);
4645  else
4646    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4647      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4648  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4649      .addReg(incr).addReg(ShiftReg);
4650  if (is8bit)
4651    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4652  else {
4653    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4654    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4655  }
4656  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4657      .addReg(Mask2Reg).addReg(ShiftReg);
4658
4659  BB = loopMBB;
4660  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4661    .addReg(PPC::R0).addReg(PtrReg);
4662  if (BinOpcode)
4663    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4664      .addReg(Incr2Reg).addReg(TmpDestReg);
4665  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4666    .addReg(TmpDestReg).addReg(MaskReg);
4667  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4668    .addReg(TmpReg).addReg(MaskReg);
4669  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4670    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4671  BuildMI(BB, dl, TII->get(PPC::STWCX))
4672    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4673  BuildMI(BB, dl, TII->get(PPC::BCC))
4674    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4675  BB->addSuccessor(loopMBB);
4676  BB->addSuccessor(exitMBB);
4677
4678  //  exitMBB:
4679  //   ...
4680  BB = exitMBB;
4681  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4682  return BB;
4683}
4684
4685MachineBasicBlock *
4686PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4687                                               MachineBasicBlock *BB,
4688                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4689  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4690
4691  // To "insert" these instructions we actually have to insert their
4692  // control-flow patterns.
4693  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4694  MachineFunction::iterator It = BB;
4695  ++It;
4696
4697  MachineFunction *F = BB->getParent();
4698
4699  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4700      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4701      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4702      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4703      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4704
4705    // The incoming instruction knows the destination vreg to set, the
4706    // condition code register to branch on, the true/false values to
4707    // select between, and a branch opcode to use.
4708
4709    //  thisMBB:
4710    //  ...
4711    //   TrueVal = ...
4712    //   cmpTY ccX, r1, r2
4713    //   bCC copy1MBB
4714    //   fallthrough --> copy0MBB
4715    MachineBasicBlock *thisMBB = BB;
4716    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4717    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4718    unsigned SelectPred = MI->getOperand(4).getImm();
4719    DebugLoc dl = MI->getDebugLoc();
4720    BuildMI(BB, dl, TII->get(PPC::BCC))
4721      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4722    F->insert(It, copy0MBB);
4723    F->insert(It, sinkMBB);
4724    // Update machine-CFG edges by first adding all successors of the current
4725    // block to the new block which will contain the Phi node for the select.
4726    // Also inform sdisel of the edge changes.
4727    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4728           E = BB->succ_end(); I != E; ++I) {
4729      EM->insert(std::make_pair(*I, sinkMBB));
4730      sinkMBB->addSuccessor(*I);
4731    }
4732    // Next, remove all successors of the current block, and add the true
4733    // and fallthrough blocks as its successors.
4734    while (!BB->succ_empty())
4735      BB->removeSuccessor(BB->succ_begin());
4736    // Next, add the true and fallthrough blocks as its successors.
4737    BB->addSuccessor(copy0MBB);
4738    BB->addSuccessor(sinkMBB);
4739
4740    //  copy0MBB:
4741    //   %FalseValue = ...
4742    //   # fallthrough to sinkMBB
4743    BB = copy0MBB;
4744
4745    // Update machine-CFG edges
4746    BB->addSuccessor(sinkMBB);
4747
4748    //  sinkMBB:
4749    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4750    //  ...
4751    BB = sinkMBB;
4752    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4753      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4754      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4755  }
4756  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4757    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4758  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4759    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4760  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4761    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4762  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4763    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4764
4765  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4766    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4767  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4768    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4769  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4770    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4771  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4772    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4773
4774  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4775    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4776  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4777    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4778  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4779    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4780  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4781    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4782
4783  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4784    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4785  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4786    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4787  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4788    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4789  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4790    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4791
4792  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4793    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4794  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4795    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4796  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4797    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4798  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4799    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4800
4801  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4802    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4803  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4804    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4805  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4806    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4807  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4808    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4809
4810  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4811    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4812  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4813    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4814  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4815    BB = EmitAtomicBinary(MI, BB, false, 0);
4816  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4817    BB = EmitAtomicBinary(MI, BB, true, 0);
4818
4819  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4820           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4821    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4822
4823    unsigned dest   = MI->getOperand(0).getReg();
4824    unsigned ptrA   = MI->getOperand(1).getReg();
4825    unsigned ptrB   = MI->getOperand(2).getReg();
4826    unsigned oldval = MI->getOperand(3).getReg();
4827    unsigned newval = MI->getOperand(4).getReg();
4828    DebugLoc dl     = MI->getDebugLoc();
4829
4830    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4831    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4832    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4833    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4834    F->insert(It, loop1MBB);
4835    F->insert(It, loop2MBB);
4836    F->insert(It, midMBB);
4837    F->insert(It, exitMBB);
4838    exitMBB->transferSuccessors(BB);
4839
4840    //  thisMBB:
4841    //   ...
4842    //   fallthrough --> loopMBB
4843    BB->addSuccessor(loop1MBB);
4844
4845    // loop1MBB:
4846    //   l[wd]arx dest, ptr
4847    //   cmp[wd] dest, oldval
4848    //   bne- midMBB
4849    // loop2MBB:
4850    //   st[wd]cx. newval, ptr
4851    //   bne- loopMBB
4852    //   b exitBB
4853    // midMBB:
4854    //   st[wd]cx. dest, ptr
4855    // exitBB:
4856    BB = loop1MBB;
4857    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4858      .addReg(ptrA).addReg(ptrB);
4859    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4860      .addReg(oldval).addReg(dest);
4861    BuildMI(BB, dl, TII->get(PPC::BCC))
4862      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4863    BB->addSuccessor(loop2MBB);
4864    BB->addSuccessor(midMBB);
4865
4866    BB = loop2MBB;
4867    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4868      .addReg(newval).addReg(ptrA).addReg(ptrB);
4869    BuildMI(BB, dl, TII->get(PPC::BCC))
4870      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4871    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4872    BB->addSuccessor(loop1MBB);
4873    BB->addSuccessor(exitMBB);
4874
4875    BB = midMBB;
4876    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4877      .addReg(dest).addReg(ptrA).addReg(ptrB);
4878    BB->addSuccessor(exitMBB);
4879
4880    //  exitMBB:
4881    //   ...
4882    BB = exitMBB;
4883  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4884             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4885    // We must use 64-bit registers for addresses when targeting 64-bit,
4886    // since we're actually doing arithmetic on them.  Other registers
4887    // can be 32-bit.
4888    bool is64bit = PPCSubTarget.isPPC64();
4889    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4890
4891    unsigned dest   = MI->getOperand(0).getReg();
4892    unsigned ptrA   = MI->getOperand(1).getReg();
4893    unsigned ptrB   = MI->getOperand(2).getReg();
4894    unsigned oldval = MI->getOperand(3).getReg();
4895    unsigned newval = MI->getOperand(4).getReg();
4896    DebugLoc dl     = MI->getDebugLoc();
4897
4898    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4899    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4900    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4901    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4902    F->insert(It, loop1MBB);
4903    F->insert(It, loop2MBB);
4904    F->insert(It, midMBB);
4905    F->insert(It, exitMBB);
4906    exitMBB->transferSuccessors(BB);
4907
4908    MachineRegisterInfo &RegInfo = F->getRegInfo();
4909    const TargetRegisterClass *RC =
4910      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4911                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4912    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4913    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4914    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4915    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4916    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4917    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4918    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4919    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4920    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4921    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4922    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4923    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4924    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4925    unsigned Ptr1Reg;
4926    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4927    //  thisMBB:
4928    //   ...
4929    //   fallthrough --> loopMBB
4930    BB->addSuccessor(loop1MBB);
4931
4932    // The 4-byte load must be aligned, while a char or short may be
4933    // anywhere in the word.  Hence all this nasty bookkeeping code.
4934    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4935    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4936    //   xori shift, shift1, 24 [16]
4937    //   rlwinm ptr, ptr1, 0, 0, 29
4938    //   slw newval2, newval, shift
4939    //   slw oldval2, oldval,shift
4940    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4941    //   slw mask, mask2, shift
4942    //   and newval3, newval2, mask
4943    //   and oldval3, oldval2, mask
4944    // loop1MBB:
4945    //   lwarx tmpDest, ptr
4946    //   and tmp, tmpDest, mask
4947    //   cmpw tmp, oldval3
4948    //   bne- midMBB
4949    // loop2MBB:
4950    //   andc tmp2, tmpDest, mask
4951    //   or tmp4, tmp2, newval3
4952    //   stwcx. tmp4, ptr
4953    //   bne- loop1MBB
4954    //   b exitBB
4955    // midMBB:
4956    //   stwcx. tmpDest, ptr
4957    // exitBB:
4958    //   srw dest, tmpDest, shift
4959    if (ptrA!=PPC::R0) {
4960      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4961      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4962        .addReg(ptrA).addReg(ptrB);
4963    } else {
4964      Ptr1Reg = ptrB;
4965    }
4966    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4967        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4968    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4969        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4970    if (is64bit)
4971      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4972        .addReg(Ptr1Reg).addImm(0).addImm(61);
4973    else
4974      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4975        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4976    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4977        .addReg(newval).addReg(ShiftReg);
4978    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4979        .addReg(oldval).addReg(ShiftReg);
4980    if (is8bit)
4981      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4982    else {
4983      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4984      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4985        .addReg(Mask3Reg).addImm(65535);
4986    }
4987    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4988        .addReg(Mask2Reg).addReg(ShiftReg);
4989    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4990        .addReg(NewVal2Reg).addReg(MaskReg);
4991    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4992        .addReg(OldVal2Reg).addReg(MaskReg);
4993
4994    BB = loop1MBB;
4995    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4996        .addReg(PPC::R0).addReg(PtrReg);
4997    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4998        .addReg(TmpDestReg).addReg(MaskReg);
4999    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5000        .addReg(TmpReg).addReg(OldVal3Reg);
5001    BuildMI(BB, dl, TII->get(PPC::BCC))
5002        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5003    BB->addSuccessor(loop2MBB);
5004    BB->addSuccessor(midMBB);
5005
5006    BB = loop2MBB;
5007    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5008        .addReg(TmpDestReg).addReg(MaskReg);
5009    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5010        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5011    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5012        .addReg(PPC::R0).addReg(PtrReg);
5013    BuildMI(BB, dl, TII->get(PPC::BCC))
5014      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5015    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5016    BB->addSuccessor(loop1MBB);
5017    BB->addSuccessor(exitMBB);
5018
5019    BB = midMBB;
5020    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5021      .addReg(PPC::R0).addReg(PtrReg);
5022    BB->addSuccessor(exitMBB);
5023
5024    //  exitMBB:
5025    //   ...
5026    BB = exitMBB;
5027    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5028  } else {
5029    llvm_unreachable("Unexpected instr type to insert");
5030  }
5031
5032  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
5033  return BB;
5034}
5035
5036//===----------------------------------------------------------------------===//
5037// Target Optimization Hooks
5038//===----------------------------------------------------------------------===//
5039
5040SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5041                                             DAGCombinerInfo &DCI) const {
5042  const TargetMachine &TM = getTargetMachine();
5043  SelectionDAG &DAG = DCI.DAG;
5044  DebugLoc dl = N->getDebugLoc();
5045  switch (N->getOpcode()) {
5046  default: break;
5047  case PPCISD::SHL:
5048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5049      if (C->getZExtValue() == 0)   // 0 << V -> 0.
5050        return N->getOperand(0);
5051    }
5052    break;
5053  case PPCISD::SRL:
5054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5055      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
5056        return N->getOperand(0);
5057    }
5058    break;
5059  case PPCISD::SRA:
5060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5061      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
5062          C->isAllOnesValue())    // -1 >>s V -> -1.
5063        return N->getOperand(0);
5064    }
5065    break;
5066
5067  case ISD::SINT_TO_FP:
5068    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5069      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5070        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5071        // We allow the src/dst to be either f32/f64, but the intermediate
5072        // type must be i64.
5073        if (N->getOperand(0).getValueType() == MVT::i64 &&
5074            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5075          SDValue Val = N->getOperand(0).getOperand(0);
5076          if (Val.getValueType() == MVT::f32) {
5077            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5078            DCI.AddToWorklist(Val.getNode());
5079          }
5080
5081          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5082          DCI.AddToWorklist(Val.getNode());
5083          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5084          DCI.AddToWorklist(Val.getNode());
5085          if (N->getValueType(0) == MVT::f32) {
5086            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5087                              DAG.getIntPtrConstant(0));
5088            DCI.AddToWorklist(Val.getNode());
5089          }
5090          return Val;
5091        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5092          // If the intermediate type is i32, we can avoid the load/store here
5093          // too.
5094        }
5095      }
5096    }
5097    break;
5098  case ISD::STORE:
5099    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5100    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5101        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5102        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5103        N->getOperand(1).getValueType() == MVT::i32 &&
5104        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5105      SDValue Val = N->getOperand(1).getOperand(0);
5106      if (Val.getValueType() == MVT::f32) {
5107        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5108        DCI.AddToWorklist(Val.getNode());
5109      }
5110      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5111      DCI.AddToWorklist(Val.getNode());
5112
5113      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5114                        N->getOperand(2), N->getOperand(3));
5115      DCI.AddToWorklist(Val.getNode());
5116      return Val;
5117    }
5118
5119    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5120    if (cast<StoreSDNode>(N)->isUnindexed() &&
5121        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5122        N->getOperand(1).getNode()->hasOneUse() &&
5123        (N->getOperand(1).getValueType() == MVT::i32 ||
5124         N->getOperand(1).getValueType() == MVT::i16)) {
5125      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5126      // Do an any-extend to 32-bits if this is a half-word input.
5127      if (BSwapOp.getValueType() == MVT::i16)
5128        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5129
5130      SDValue Ops[] = {
5131        N->getOperand(0), BSwapOp, N->getOperand(2),
5132        DAG.getValueType(N->getOperand(1).getValueType())
5133      };
5134      return
5135        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5136                                Ops, array_lengthof(Ops),
5137                                cast<StoreSDNode>(N)->getMemoryVT(),
5138                                cast<StoreSDNode>(N)->getMemOperand());
5139    }
5140    break;
5141  case ISD::BSWAP:
5142    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5143    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5144        N->getOperand(0).hasOneUse() &&
5145        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5146      SDValue Load = N->getOperand(0);
5147      LoadSDNode *LD = cast<LoadSDNode>(Load);
5148      // Create the byte-swapping load.
5149      SDValue Ops[] = {
5150        LD->getChain(),    // Chain
5151        LD->getBasePtr(),  // Ptr
5152        DAG.getValueType(N->getValueType(0)) // VT
5153      };
5154      SDValue BSLoad =
5155        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5156                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5157                                LD->getMemoryVT(), LD->getMemOperand());
5158
5159      // If this is an i16 load, insert the truncate.
5160      SDValue ResVal = BSLoad;
5161      if (N->getValueType(0) == MVT::i16)
5162        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5163
5164      // First, combine the bswap away.  This makes the value produced by the
5165      // load dead.
5166      DCI.CombineTo(N, ResVal);
5167
5168      // Next, combine the load away, we give it a bogus result value but a real
5169      // chain result.  The result value is dead because the bswap is dead.
5170      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5171
5172      // Return N so it doesn't get rechecked!
5173      return SDValue(N, 0);
5174    }
5175
5176    break;
5177  case PPCISD::VCMP: {
5178    // If a VCMPo node already exists with exactly the same operands as this
5179    // node, use its result instead of this node (VCMPo computes both a CR6 and
5180    // a normal output).
5181    //
5182    if (!N->getOperand(0).hasOneUse() &&
5183        !N->getOperand(1).hasOneUse() &&
5184        !N->getOperand(2).hasOneUse()) {
5185
5186      // Scan all of the users of the LHS, looking for VCMPo's that match.
5187      SDNode *VCMPoNode = 0;
5188
5189      SDNode *LHSN = N->getOperand(0).getNode();
5190      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5191           UI != E; ++UI)
5192        if (UI->getOpcode() == PPCISD::VCMPo &&
5193            UI->getOperand(1) == N->getOperand(1) &&
5194            UI->getOperand(2) == N->getOperand(2) &&
5195            UI->getOperand(0) == N->getOperand(0)) {
5196          VCMPoNode = *UI;
5197          break;
5198        }
5199
5200      // If there is no VCMPo node, or if the flag value has a single use, don't
5201      // transform this.
5202      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5203        break;
5204
5205      // Look at the (necessarily single) use of the flag value.  If it has a
5206      // chain, this transformation is more complex.  Note that multiple things
5207      // could use the value result, which we should ignore.
5208      SDNode *FlagUser = 0;
5209      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5210           FlagUser == 0; ++UI) {
5211        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5212        SDNode *User = *UI;
5213        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5214          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5215            FlagUser = User;
5216            break;
5217          }
5218        }
5219      }
5220
5221      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5222      // give up for right now.
5223      if (FlagUser->getOpcode() == PPCISD::MFCR)
5224        return SDValue(VCMPoNode, 0);
5225    }
5226    break;
5227  }
5228  case ISD::BR_CC: {
5229    // If this is a branch on an altivec predicate comparison, lower this so
5230    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5231    // lowering is done pre-legalize, because the legalizer lowers the predicate
5232    // compare down to code that is difficult to reassemble.
5233    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5234    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5235    int CompareOpc;
5236    bool isDot;
5237
5238    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5239        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5240        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5241      assert(isDot && "Can't compare against a vector result!");
5242
5243      // If this is a comparison against something other than 0/1, then we know
5244      // that the condition is never/always true.
5245      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5246      if (Val != 0 && Val != 1) {
5247        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5248          return N->getOperand(0);
5249        // Always !=, turn it into an unconditional branch.
5250        return DAG.getNode(ISD::BR, dl, MVT::Other,
5251                           N->getOperand(0), N->getOperand(4));
5252      }
5253
5254      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5255
5256      // Create the PPCISD altivec 'dot' comparison node.
5257      std::vector<EVT> VTs;
5258      SDValue Ops[] = {
5259        LHS.getOperand(2),  // LHS of compare
5260        LHS.getOperand(3),  // RHS of compare
5261        DAG.getConstant(CompareOpc, MVT::i32)
5262      };
5263      VTs.push_back(LHS.getOperand(2).getValueType());
5264      VTs.push_back(MVT::Flag);
5265      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5266
5267      // Unpack the result based on how the target uses it.
5268      PPC::Predicate CompOpc;
5269      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5270      default:  // Can't happen, don't crash on invalid number though.
5271      case 0:   // Branch on the value of the EQ bit of CR6.
5272        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5273        break;
5274      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5275        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5276        break;
5277      case 2:   // Branch on the value of the LT bit of CR6.
5278        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5279        break;
5280      case 3:   // Branch on the inverted value of the LT bit of CR6.
5281        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5282        break;
5283      }
5284
5285      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5286                         DAG.getConstant(CompOpc, MVT::i32),
5287                         DAG.getRegister(PPC::CR6, MVT::i32),
5288                         N->getOperand(4), CompNode.getValue(1));
5289    }
5290    break;
5291  }
5292  }
5293
5294  return SDValue();
5295}
5296
5297//===----------------------------------------------------------------------===//
5298// Inline Assembly Support
5299//===----------------------------------------------------------------------===//
5300
5301void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5302                                                       const APInt &Mask,
5303                                                       APInt &KnownZero,
5304                                                       APInt &KnownOne,
5305                                                       const SelectionDAG &DAG,
5306                                                       unsigned Depth) const {
5307  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5308  switch (Op.getOpcode()) {
5309  default: break;
5310  case PPCISD::LBRX: {
5311    // lhbrx is known to have the top bits cleared out.
5312    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5313      KnownZero = 0xFFFF0000;
5314    break;
5315  }
5316  case ISD::INTRINSIC_WO_CHAIN: {
5317    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5318    default: break;
5319    case Intrinsic::ppc_altivec_vcmpbfp_p:
5320    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5321    case Intrinsic::ppc_altivec_vcmpequb_p:
5322    case Intrinsic::ppc_altivec_vcmpequh_p:
5323    case Intrinsic::ppc_altivec_vcmpequw_p:
5324    case Intrinsic::ppc_altivec_vcmpgefp_p:
5325    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5326    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5327    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5328    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5329    case Intrinsic::ppc_altivec_vcmpgtub_p:
5330    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5331    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5332      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5333      break;
5334    }
5335  }
5336  }
5337}
5338
5339
5340/// getConstraintType - Given a constraint, return the type of
5341/// constraint it is for this target.
5342PPCTargetLowering::ConstraintType
5343PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5344  if (Constraint.size() == 1) {
5345    switch (Constraint[0]) {
5346    default: break;
5347    case 'b':
5348    case 'r':
5349    case 'f':
5350    case 'v':
5351    case 'y':
5352      return C_RegisterClass;
5353    }
5354  }
5355  return TargetLowering::getConstraintType(Constraint);
5356}
5357
5358std::pair<unsigned, const TargetRegisterClass*>
5359PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5360                                                EVT VT) const {
5361  if (Constraint.size() == 1) {
5362    // GCC RS6000 Constraint Letters
5363    switch (Constraint[0]) {
5364    case 'b':   // R1-R31
5365    case 'r':   // R0-R31
5366      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5367        return std::make_pair(0U, PPC::G8RCRegisterClass);
5368      return std::make_pair(0U, PPC::GPRCRegisterClass);
5369    case 'f':
5370      if (VT == MVT::f32)
5371        return std::make_pair(0U, PPC::F4RCRegisterClass);
5372      else if (VT == MVT::f64)
5373        return std::make_pair(0U, PPC::F8RCRegisterClass);
5374      break;
5375    case 'v':
5376      return std::make_pair(0U, PPC::VRRCRegisterClass);
5377    case 'y':   // crrc
5378      return std::make_pair(0U, PPC::CRRCRegisterClass);
5379    }
5380  }
5381
5382  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5383}
5384
5385
5386/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5387/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5388/// it means one of the asm constraint of the inline asm instruction being
5389/// processed is 'm'.
5390void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5391                                                     bool hasMemory,
5392                                                     std::vector<SDValue>&Ops,
5393                                                     SelectionDAG &DAG) const {
5394  SDValue Result(0,0);
5395  switch (Letter) {
5396  default: break;
5397  case 'I':
5398  case 'J':
5399  case 'K':
5400  case 'L':
5401  case 'M':
5402  case 'N':
5403  case 'O':
5404  case 'P': {
5405    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5406    if (!CST) return; // Must be an immediate to match.
5407    unsigned Value = CST->getZExtValue();
5408    switch (Letter) {
5409    default: llvm_unreachable("Unknown constraint letter!");
5410    case 'I':  // "I" is a signed 16-bit constant.
5411      if ((short)Value == (int)Value)
5412        Result = DAG.getTargetConstant(Value, Op.getValueType());
5413      break;
5414    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5415    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5416      if ((short)Value == 0)
5417        Result = DAG.getTargetConstant(Value, Op.getValueType());
5418      break;
5419    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5420      if ((Value >> 16) == 0)
5421        Result = DAG.getTargetConstant(Value, Op.getValueType());
5422      break;
5423    case 'M':  // "M" is a constant that is greater than 31.
5424      if (Value > 31)
5425        Result = DAG.getTargetConstant(Value, Op.getValueType());
5426      break;
5427    case 'N':  // "N" is a positive constant that is an exact power of two.
5428      if ((int)Value > 0 && isPowerOf2_32(Value))
5429        Result = DAG.getTargetConstant(Value, Op.getValueType());
5430      break;
5431    case 'O':  // "O" is the constant zero.
5432      if (Value == 0)
5433        Result = DAG.getTargetConstant(Value, Op.getValueType());
5434      break;
5435    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5436      if ((short)-Value == (int)-Value)
5437        Result = DAG.getTargetConstant(Value, Op.getValueType());
5438      break;
5439    }
5440    break;
5441  }
5442  }
5443
5444  if (Result.getNode()) {
5445    Ops.push_back(Result);
5446    return;
5447  }
5448
5449  // Handle standard constraint letters.
5450  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5451}
5452
5453// isLegalAddressingMode - Return true if the addressing mode represented
5454// by AM is legal for this target, for a load/store of the specified type.
5455bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5456                                              const Type *Ty) const {
5457  // FIXME: PPC does not allow r+i addressing modes for vectors!
5458
5459  // PPC allows a sign-extended 16-bit immediate field.
5460  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5461    return false;
5462
5463  // No global is ever allowed as a base.
5464  if (AM.BaseGV)
5465    return false;
5466
5467  // PPC only support r+r,
5468  switch (AM.Scale) {
5469  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5470    break;
5471  case 1:
5472    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5473      return false;
5474    // Otherwise we have r+r or r+i.
5475    break;
5476  case 2:
5477    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5478      return false;
5479    // Allow 2*r as r+r.
5480    break;
5481  default:
5482    // No other scales are supported.
5483    return false;
5484  }
5485
5486  return true;
5487}
5488
5489/// isLegalAddressImmediate - Return true if the integer value can be used
5490/// as the offset of the target addressing mode for load / store of the
5491/// given type.
5492bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5493  // PPC allows a sign-extended 16-bit immediate field.
5494  return (V > -(1 << 16) && V < (1 << 16)-1);
5495}
5496
5497bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5498  return false;
5499}
5500
5501SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5502                                           SelectionDAG &DAG) const {
5503  DebugLoc dl = Op.getDebugLoc();
5504  // Depths > 0 not supported yet!
5505  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5506    return SDValue();
5507
5508  MachineFunction &MF = DAG.getMachineFunction();
5509  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5510
5511  // Just load the return address off the stack.
5512  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5513
5514  // Make sure the function really does not optimize away the store of the RA
5515  // to the stack.
5516  FuncInfo->setLRStoreRequired();
5517  return DAG.getLoad(getPointerTy(), dl,
5518                     DAG.getEntryNode(), RetAddrFI, NULL, 0,
5519                     false, false, 0);
5520}
5521
5522SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5523                                          SelectionDAG &DAG) const {
5524  DebugLoc dl = Op.getDebugLoc();
5525  // Depths > 0 not supported yet!
5526  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5527    return SDValue();
5528
5529  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5530  bool isPPC64 = PtrVT == MVT::i64;
5531
5532  MachineFunction &MF = DAG.getMachineFunction();
5533  MachineFrameInfo *MFI = MF.getFrameInfo();
5534  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5535                  && MFI->getStackSize();
5536
5537  if (isPPC64)
5538    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5539      MVT::i64);
5540  else
5541    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5542      MVT::i32);
5543}
5544
5545bool
5546PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5547  // The PowerPC target isn't yet aware of offsets.
5548  return false;
5549}
5550
5551/// getOptimalMemOpType - Returns the target specific optimal type for load
5552/// and store operations as a result of memset, memcpy, and memmove
5553/// lowering. If DstAlign is zero that means it's safe to destination
5554/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5555/// means there isn't a need to check it against alignment requirement,
5556/// probably because the source does not need to be loaded. If
5557/// 'NonScalarIntSafe' is true, that means it's safe to return a
5558/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5559/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5560/// constant so it does not need to be loaded.
5561/// It returns EVT::Other if the type should be determined using generic
5562/// target-independent logic.
5563EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5564                                           unsigned DstAlign, unsigned SrcAlign,
5565                                           bool NonScalarIntSafe,
5566                                           bool MemcpyStrSrc,
5567                                           MachineFunction &MF) const {
5568  if (this->PPCSubTarget.isPPC64()) {
5569    return MVT::i64;
5570  } else {
5571    return MVT::i32;
5572  }
5573}
5574