PPCISelLowering.cpp revision f1b4eafbfec976f939ec0ea3e8acf91cef5363e3
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
182  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
183  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
184  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setShiftAmountType(MVT::i32);
366  setBooleanContents(ZeroOrOneBooleanContent);
367
368  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369    setStackPointerRegisterToSaveRestore(PPC::X1);
370    setExceptionPointerRegister(PPC::X3);
371    setExceptionSelectorRegister(PPC::X4);
372  } else {
373    setStackPointerRegisterToSaveRestore(PPC::R1);
374    setExceptionPointerRegister(PPC::R3);
375    setExceptionSelectorRegister(PPC::R4);
376  }
377
378  // We have target-specific dag combine patterns for the following nodes:
379  setTargetDAGCombine(ISD::SINT_TO_FP);
380  setTargetDAGCombine(ISD::STORE);
381  setTargetDAGCombine(ISD::BR_CC);
382  setTargetDAGCombine(ISD::BSWAP);
383
384  // Darwin long double math library functions have $LDBL128 appended.
385  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396  }
397
398  computeRegisterProperties();
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.
403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404  const TargetMachine &TM = getTargetMachine();
405  // Darwin passes everything on 4 byte boundary.
406  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407    return 4;
408  // FIXME SVR4 TBD
409  return 4;
410}
411
412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413  switch (Opcode) {
414  default: return 0;
415  case PPCISD::FSEL:            return "PPCISD::FSEL";
416  case PPCISD::FCFID:           return "PPCISD::FCFID";
417  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
418  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
419  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
420  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
421  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
422  case PPCISD::VPERM:           return "PPCISD::VPERM";
423  case PPCISD::Hi:              return "PPCISD::Hi";
424  case PPCISD::Lo:              return "PPCISD::Lo";
425  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
426  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
427  case PPCISD::LOAD:            return "PPCISD::LOAD";
428  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
429  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
430  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
431  case PPCISD::SRL:             return "PPCISD::SRL";
432  case PPCISD::SRA:             return "PPCISD::SRA";
433  case PPCISD::SHL:             return "PPCISD::SHL";
434  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
435  case PPCISD::STD_32:          return "PPCISD::STD_32";
436  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
437  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
438  case PPCISD::NOP:             return "PPCISD::NOP";
439  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
440  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
441  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
442  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
443  case PPCISD::MFCR:            return "PPCISD::MFCR";
444  case PPCISD::VCMP:            return "PPCISD::VCMP";
445  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
446  case PPCISD::LBRX:            return "PPCISD::LBRX";
447  case PPCISD::STBRX:           return "PPCISD::STBRX";
448  case PPCISD::LARX:            return "PPCISD::LARX";
449  case PPCISD::STCX:            return "PPCISD::STCX";
450  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
451  case PPCISD::MFFS:            return "PPCISD::MFFS";
452  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
453  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
454  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
455  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
456  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
457  }
458}
459
460MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
461  return MVT::i32;
462}
463
464/// getFunctionAlignment - Return the Log2 alignment of this function.
465unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
466  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
467    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
468  else
469    return 2;
470}
471
472//===----------------------------------------------------------------------===//
473// Node matching predicates, for use by the tblgen matching code.
474//===----------------------------------------------------------------------===//
475
476/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477static bool isFloatingPointZero(SDValue Op) {
478  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
479    return CFP->getValueAPF().isZero();
480  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
481    // Maybe this has already been legalized into the constant pool?
482    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
483      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
484        return CFP->getValueAPF().isZero();
485  }
486  return false;
487}
488
489/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
490/// true if Op is undef or if it matches the specified value.
491static bool isConstantOrUndef(int Op, int Val) {
492  return Op < 0 || Op == Val;
493}
494
495/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496/// VPKUHUM instruction.
497bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
498  if (!isUnary) {
499    for (unsigned i = 0; i != 16; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
501        return false;
502  } else {
503    for (unsigned i = 0; i != 8; ++i)
504      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
505          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
506        return false;
507  }
508  return true;
509}
510
511/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512/// VPKUWUM instruction.
513bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
514  if (!isUnary) {
515    for (unsigned i = 0; i != 16; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
518        return false;
519  } else {
520    for (unsigned i = 0; i != 8; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
523          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
524          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
525        return false;
526  }
527  return true;
528}
529
530/// isVMerge - Common function, used to match vmrg* shuffles.
531///
532static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
533                     unsigned LHSStart, unsigned RHSStart) {
534  assert(N->getValueType(0) == MVT::v16i8 &&
535         "PPC only supports shuffles by bytes!");
536  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
537         "Unsupported merge size!");
538
539  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
540    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
541      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
542                             LHSStart+j+i*UnitSize) ||
543          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
544                             RHSStart+j+i*UnitSize))
545        return false;
546    }
547  return true;
548}
549
550/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
553                             bool isUnary) {
554  if (!isUnary)
555    return isVMerge(N, UnitSize, 8, 24);
556  return isVMerge(N, UnitSize, 8, 8);
557}
558
559/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
562                             bool isUnary) {
563  if (!isUnary)
564    return isVMerge(N, UnitSize, 0, 16);
565  return isVMerge(N, UnitSize, 0, 0);
566}
567
568
569/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570/// amount, otherwise return -1.
571int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
572  assert(N->getValueType(0) == MVT::v16i8 &&
573         "PPC only supports shuffles by bytes!");
574
575  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
576
577  // Find the first non-undef value in the shuffle mask.
578  unsigned i;
579  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
580    /*search*/;
581
582  if (i == 16) return -1;  // all undef.
583
584  // Otherwise, check to see if the rest of the elements are consecutively
585  // numbered from this value.
586  unsigned ShiftAmt = SVOp->getMaskElt(i);
587  if (ShiftAmt < i) return -1;
588  ShiftAmt -= i;
589
590  if (!isUnary) {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
594        return -1;
595  } else {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
599        return -1;
600  }
601  return ShiftAmt;
602}
603
604/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605/// specifies a splat of a single element that is suitable for input to
606/// VSPLTB/VSPLTH/VSPLTW.
607bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
608  assert(N->getValueType(0) == MVT::v16i8 &&
609         (EltSize == 1 || EltSize == 2 || EltSize == 4));
610
611  // This is a splat operation if each element of the permute is the same, and
612  // if the value doesn't reference the second vector.
613  unsigned ElementBase = N->getMaskElt(0);
614
615  // FIXME: Handle UNDEF elements too!
616  if (ElementBase >= 16)
617    return false;
618
619  // Check that the indices are consecutive, in the case of a multi-byte element
620  // splatted with a v16i8 mask.
621  for (unsigned i = 1; i != EltSize; ++i)
622    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
623      return false;
624
625  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
626    if (N->getMaskElt(i) < 0) continue;
627    for (unsigned j = 0; j != EltSize; ++j)
628      if (N->getMaskElt(i+j) != N->getMaskElt(j))
629        return false;
630  }
631  return true;
632}
633
634/// isAllNegativeZeroVector - Returns true if all elements of build_vector
635/// are -0.0.
636bool PPC::isAllNegativeZeroVector(SDNode *N) {
637  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
638
639  APInt APVal, APUndef;
640  unsigned BitSize;
641  bool HasAnyUndefs;
642
643  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
644    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
645      return CFP->getValueAPF().isNegZero();
646
647  return false;
648}
649
650/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
653  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
654  assert(isSplatShuffleMask(SVOp, EltSize));
655  return SVOp->getMaskElt(0) / EltSize;
656}
657
658/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659/// by using a vspltis[bhw] instruction of the specified element size, return
660/// the constant being splatted.  The ByteSize field indicates the number of
661/// bytes of each element [124] -> [bhw].
662SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
663  SDValue OpVal(0, 0);
664
665  // If ByteSize of the splat is bigger than the element size of the
666  // build_vector, then we have a case where we are checking for a splat where
667  // multiple elements of the buildvector are folded together into a single
668  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669  unsigned EltSize = 16/N->getNumOperands();
670  if (EltSize < ByteSize) {
671    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
672    SDValue UniquedVals[4];
673    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
674
675    // See if all of the elements in the buildvector agree across.
676    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678      // If the element isn't a constant, bail fully out.
679      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
680
681
682      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
683        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
684      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
685        return SDValue();  // no match.
686    }
687
688    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689    // either constant or undef values that are identical for each chunk.  See
690    // if these chunks can form into a larger vspltis*.
691
692    // Check to see if all of the leading entries are either 0 or -1.  If
693    // neither, then this won't fit into the immediate field.
694    bool LeadingZero = true;
695    bool LeadingOnes = true;
696    for (unsigned i = 0; i != Multiple-1; ++i) {
697      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
698
699      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
700      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
701    }
702    // Finally, check the least significant entry.
703    if (LeadingZero) {
704      if (UniquedVals[Multiple-1].getNode() == 0)
705        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
706      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
707      if (Val < 16)
708        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
709    }
710    if (LeadingOnes) {
711      if (UniquedVals[Multiple-1].getNode() == 0)
712        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
713      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
714      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
715        return DAG.getTargetConstant(Val, MVT::i32);
716    }
717
718    return SDValue();
719  }
720
721  // Check to see if this buildvec has a single non-undef value in its elements.
722  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
723    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
724    if (OpVal.getNode() == 0)
725      OpVal = N->getOperand(i);
726    else if (OpVal != N->getOperand(i))
727      return SDValue();
728  }
729
730  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
731
732  unsigned ValSizeInBytes = EltSize;
733  uint64_t Value = 0;
734  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
735    Value = CN->getZExtValue();
736  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
737    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
738    Value = FloatToBits(CN->getValueAPF().convertToFloat());
739  }
740
741  // If the splat value is larger than the element value, then we can never do
742  // this splat.  The only case that we could fit the replicated bits into our
743  // immediate field for would be zero, and we prefer to use vxor for it.
744  if (ValSizeInBytes < ByteSize) return SDValue();
745
746  // If the element value is larger than the splat value, cut it in half and
747  // check to see if the two halves are equal.  Continue doing this until we
748  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
749  while (ValSizeInBytes > ByteSize) {
750    ValSizeInBytes >>= 1;
751
752    // If the top half equals the bottom half, we're still ok.
753    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
754         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
755      return SDValue();
756  }
757
758  // Properly sign extend the value.
759  int ShAmt = (4-ByteSize)*8;
760  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
761
762  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763  if (MaskVal == 0) return SDValue();
764
765  // Finally, if this value fits in a 5 bit sext field, return it
766  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
767    return DAG.getTargetConstant(MaskVal, MVT::i32);
768  return SDValue();
769}
770
771//===----------------------------------------------------------------------===//
772//  Addressing Mode Selection
773//===----------------------------------------------------------------------===//
774
775/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776/// or 64-bit immediate, and if the value can be accurately represented as a
777/// sign extension from a 16-bit value.  If so, this returns true and the
778/// immediate.
779static bool isIntS16Immediate(SDNode *N, short &Imm) {
780  if (N->getOpcode() != ISD::Constant)
781    return false;
782
783  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
784  if (N->getValueType(0) == MVT::i32)
785    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
786  else
787    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
788}
789static bool isIntS16Immediate(SDValue Op, short &Imm) {
790  return isIntS16Immediate(Op.getNode(), Imm);
791}
792
793
794/// SelectAddressRegReg - Given the specified addressed, check to see if it
795/// can be represented as an indexed [r+r] operation.  Returns false if it
796/// can be more efficiently represented with [r+imm].
797bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
798                                            SDValue &Index,
799                                            SelectionDAG &DAG) const {
800  short imm = 0;
801  if (N.getOpcode() == ISD::ADD) {
802    if (isIntS16Immediate(N.getOperand(1), imm))
803      return false;    // r+i
804    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
805      return false;    // r+i
806
807    Base = N.getOperand(0);
808    Index = N.getOperand(1);
809    return true;
810  } else if (N.getOpcode() == ISD::OR) {
811    if (isIntS16Immediate(N.getOperand(1), imm))
812      return false;    // r+i can fold it if we can.
813
814    // If this is an or of disjoint bitfields, we can codegen this as an add
815    // (for better address arithmetic) if the LHS and RHS of the OR are provably
816    // disjoint.
817    APInt LHSKnownZero, LHSKnownOne;
818    APInt RHSKnownZero, RHSKnownOne;
819    DAG.ComputeMaskedBits(N.getOperand(0),
820                          APInt::getAllOnesValue(N.getOperand(0)
821                            .getValueSizeInBits()),
822                          LHSKnownZero, LHSKnownOne);
823
824    if (LHSKnownZero.getBoolValue()) {
825      DAG.ComputeMaskedBits(N.getOperand(1),
826                            APInt::getAllOnesValue(N.getOperand(1)
827                              .getValueSizeInBits()),
828                            RHSKnownZero, RHSKnownOne);
829      // If all of the bits are known zero on the LHS or RHS, the add won't
830      // carry.
831      if (~(LHSKnownZero | RHSKnownZero) == 0) {
832        Base = N.getOperand(0);
833        Index = N.getOperand(1);
834        return true;
835      }
836    }
837  }
838
839  return false;
840}
841
842/// Returns true if the address N can be represented by a base register plus
843/// a signed 16-bit displacement [r+imm], and if it is not better
844/// represented as reg+reg.
845bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
846                                            SDValue &Base,
847                                            SelectionDAG &DAG) const {
848  // FIXME dl should come from parent load or store, not from address
849  DebugLoc dl = N.getDebugLoc();
850  // If this can be more profitably realized as r+r, fail.
851  if (SelectAddressRegReg(N, Disp, Base, DAG))
852    return false;
853
854  if (N.getOpcode() == ISD::ADD) {
855    short imm = 0;
856    if (isIntS16Immediate(N.getOperand(1), imm)) {
857      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
858      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
859        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860      } else {
861        Base = N.getOperand(0);
862      }
863      return true; // [r+i]
864    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
865      // Match LOAD (ADD (X, Lo(G))).
866     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
867             && "Cannot handle constant offsets yet!");
868      Disp = N.getOperand(1).getOperand(0);  // The global address.
869      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
870             Disp.getOpcode() == ISD::TargetConstantPool ||
871             Disp.getOpcode() == ISD::TargetJumpTable);
872      Base = N.getOperand(0);
873      return true;  // [&g+r]
874    }
875  } else if (N.getOpcode() == ISD::OR) {
876    short imm = 0;
877    if (isIntS16Immediate(N.getOperand(1), imm)) {
878      // If this is an or of disjoint bitfields, we can codegen this as an add
879      // (for better address arithmetic) if the LHS and RHS of the OR are
880      // provably disjoint.
881      APInt LHSKnownZero, LHSKnownOne;
882      DAG.ComputeMaskedBits(N.getOperand(0),
883                            APInt::getAllOnesValue(N.getOperand(0)
884                                                   .getValueSizeInBits()),
885                            LHSKnownZero, LHSKnownOne);
886
887      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
888        // If all of the bits are known zero on the LHS or RHS, the add won't
889        // carry.
890        Base = N.getOperand(0);
891        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
892        return true;
893      }
894    }
895  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
896    // Loading from a constant address.
897
898    // If this address fits entirely in a 16-bit sext immediate field, codegen
899    // this as "d, 0"
900    short Imm;
901    if (isIntS16Immediate(CN, Imm)) {
902      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
903      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
904      return true;
905    }
906
907    // Handle 32-bit sext immediates with LIS + addr mode.
908    if (CN->getValueType(0) == MVT::i32 ||
909        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
910      int Addr = (int)CN->getZExtValue();
911
912      // Otherwise, break this down into an LIS + disp.
913      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
914
915      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
916      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
917      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
918      return true;
919    }
920  }
921
922  Disp = DAG.getTargetConstant(0, getPointerTy());
923  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925  else
926    Base = N;
927  return true;      // [r+0]
928}
929
930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931/// represented as an indexed [r+r] operation.
932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
933                                                SDValue &Index,
934                                                SelectionDAG &DAG) const {
935  // Check to see if we can easily represent this as an [r+r] address.  This
936  // will fail if it thinks that the address is more profitably represented as
937  // reg+imm, e.g. where imm = 0.
938  if (SelectAddressRegReg(N, Base, Index, DAG))
939    return true;
940
941  // If the operand is an addition, always emit this as [r+r], since this is
942  // better (for code size, and execution, as the memop does the add for free)
943  // than emitting an explicit add.
944  if (N.getOpcode() == ISD::ADD) {
945    Base = N.getOperand(0);
946    Index = N.getOperand(1);
947    return true;
948  }
949
950  // Otherwise, do it the hard way, using R0 as the base register.
951  Base = DAG.getRegister(PPC::R0, N.getValueType());
952  Index = N;
953  return true;
954}
955
956/// SelectAddressRegImmShift - Returns true if the address N can be
957/// represented by a base register plus a signed 14-bit displacement
958/// [r+imm*4].  Suitable for use by STD and friends.
959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                 SDValue &Base,
961                                                 SelectionDAG &DAG) const {
962  // FIXME dl should come from the parent load or store, not the address
963  DebugLoc dl = N.getDebugLoc();
964  // If this can be more profitably realized as r+r, fail.
965  if (SelectAddressRegReg(N, Disp, Base, DAG))
966    return false;
967
968  if (N.getOpcode() == ISD::ADD) {
969    short imm = 0;
970    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974      } else {
975        Base = N.getOperand(0);
976      }
977      return true; // [r+i]
978    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979      // Match LOAD (ADD (X, Lo(G))).
980     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981             && "Cannot handle constant offsets yet!");
982      Disp = N.getOperand(1).getOperand(0);  // The global address.
983      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984             Disp.getOpcode() == ISD::TargetConstantPool ||
985             Disp.getOpcode() == ISD::TargetJumpTable);
986      Base = N.getOperand(0);
987      return true;  // [&g+r]
988    }
989  } else if (N.getOpcode() == ISD::OR) {
990    short imm = 0;
991    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992      // If this is an or of disjoint bitfields, we can codegen this as an add
993      // (for better address arithmetic) if the LHS and RHS of the OR are
994      // provably disjoint.
995      APInt LHSKnownZero, LHSKnownOne;
996      DAG.ComputeMaskedBits(N.getOperand(0),
997                            APInt::getAllOnesValue(N.getOperand(0)
998                                                   .getValueSizeInBits()),
999                            LHSKnownZero, LHSKnownOne);
1000      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001        // If all of the bits are known zero on the LHS or RHS, the add won't
1002        // carry.
1003        Base = N.getOperand(0);
1004        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005        return true;
1006      }
1007    }
1008  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009    // Loading from a constant address.  Verify low two bits are clear.
1010    if ((CN->getZExtValue() & 3) == 0) {
1011      // If this address fits entirely in a 14-bit sext immediate field, codegen
1012      // this as "d, 0"
1013      short Imm;
1014      if (isIntS16Immediate(CN, Imm)) {
1015        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1017        return true;
1018      }
1019
1020      // Fold the low-part of 32-bit absolute addresses into addr mode.
1021      if (CN->getValueType(0) == MVT::i32 ||
1022          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1023        int Addr = (int)CN->getZExtValue();
1024
1025        // Otherwise, break this down into an LIS + disp.
1026        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1027        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1028        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1029        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1030        return true;
1031      }
1032    }
1033  }
1034
1035  Disp = DAG.getTargetConstant(0, getPointerTy());
1036  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1037    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1038  else
1039    Base = N;
1040  return true;      // [r+0]
1041}
1042
1043
1044/// getPreIndexedAddressParts - returns true by value, base pointer and
1045/// offset pointer and addressing mode by reference if the node's address
1046/// can be legally represented as pre-indexed load / store address.
1047bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1048                                                  SDValue &Offset,
1049                                                  ISD::MemIndexedMode &AM,
1050                                                  SelectionDAG &DAG) const {
1051  // Disabled by default for now.
1052  if (!EnablePPCPreinc) return false;
1053
1054  SDValue Ptr;
1055  EVT VT;
1056  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1057    Ptr = LD->getBasePtr();
1058    VT = LD->getMemoryVT();
1059
1060  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1061    ST = ST;
1062    Ptr = ST->getBasePtr();
1063    VT  = ST->getMemoryVT();
1064  } else
1065    return false;
1066
1067  // PowerPC doesn't have preinc load/store instructions for vectors.
1068  if (VT.isVector())
1069    return false;
1070
1071  // TODO: Check reg+reg first.
1072
1073  // LDU/STU use reg+imm*4, others use reg+imm.
1074  if (VT != MVT::i64) {
1075    // reg + imm
1076    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077      return false;
1078  } else {
1079    // reg + imm * 4.
1080    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081      return false;
1082  }
1083
1084  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086    // sext i32 to i64 when addr mode is r+i.
1087    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088        LD->getExtensionType() == ISD::SEXTLOAD &&
1089        isa<ConstantSDNode>(Offset))
1090      return false;
1091  }
1092
1093  AM = ISD::PRE_INC;
1094  return true;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  LowerOperation implementation
1099//===----------------------------------------------------------------------===//
1100
1101/// GetLabelAccessInfo - Return true if we should reference labels using a
1102/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1103static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1104                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1105  HiOpFlags = PPCII::MO_HA16;
1106  LoOpFlags = PPCII::MO_LO16;
1107
1108  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1109  // non-darwin platform.  We don't support PIC on other platforms yet.
1110  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1111               TM.getSubtarget<PPCSubtarget>().isDarwin();
1112  if (isPIC) {
1113    HiOpFlags |= PPCII::MO_PIC_FLAG;
1114    LoOpFlags |= PPCII::MO_PIC_FLAG;
1115  }
1116
1117  // If this is a reference to a global value that requires a non-lazy-ptr, make
1118  // sure that instruction lowering adds it.
1119  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1120    HiOpFlags |= PPCII::MO_NLP_FLAG;
1121    LoOpFlags |= PPCII::MO_NLP_FLAG;
1122
1123    if (GV->hasHiddenVisibility()) {
1124      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1125      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1126    }
1127  }
1128
1129  return isPIC;
1130}
1131
1132static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1133                             SelectionDAG &DAG) {
1134  EVT PtrVT = HiPart.getValueType();
1135  SDValue Zero = DAG.getConstant(0, PtrVT);
1136  DebugLoc DL = HiPart.getDebugLoc();
1137
1138  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1139  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1140
1141  // With PIC, the first instruction is actually "GR+hi(&G)".
1142  if (isPIC)
1143    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1144                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1145
1146  // Generate non-pic code that has direct accesses to the constant pool.
1147  // The address of the global is just (hi(&g)+lo(&g)).
1148  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1149}
1150
1151SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1152                                             SelectionDAG &DAG) const {
1153  EVT PtrVT = Op.getValueType();
1154  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1155  const Constant *C = CP->getConstVal();
1156
1157  unsigned MOHiFlag, MOLoFlag;
1158  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1159  SDValue CPIHi =
1160    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1161  SDValue CPILo =
1162    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1163  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1164}
1165
1166SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1167  EVT PtrVT = Op.getValueType();
1168  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1169
1170  unsigned MOHiFlag, MOLoFlag;
1171  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1172  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1173  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1174  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1175}
1176
1177SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1178                                             SelectionDAG &DAG) const {
1179  EVT PtrVT = Op.getValueType();
1180  DebugLoc DL = Op.getDebugLoc();
1181
1182  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1183
1184  unsigned MOHiFlag, MOLoFlag;
1185  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1186  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1187  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1188  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1189}
1190
1191SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1192                                              SelectionDAG &DAG) const {
1193  EVT PtrVT = Op.getValueType();
1194  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1195  DebugLoc DL = GSDN->getDebugLoc();
1196  const GlobalValue *GV = GSDN->getGlobal();
1197
1198  // 64-bit SVR4 ABI code is always position-independent.
1199  // The actual address of the GlobalValue is stored in the TOC.
1200  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1201    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1202    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1203                       DAG.getRegister(PPC::X2, MVT::i64));
1204  }
1205
1206  unsigned MOHiFlag, MOLoFlag;
1207  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1208
1209  SDValue GAHi =
1210    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1211  SDValue GALo =
1212    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1213
1214  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1215
1216  // If the global reference is actually to a non-lazy-pointer, we have to do an
1217  // extra load to get the address of the global.
1218  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1219    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1220                      false, false, 0);
1221  return Ptr;
1222}
1223
1224SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1225  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1226  DebugLoc dl = Op.getDebugLoc();
1227
1228  // If we're comparing for equality to zero, expose the fact that this is
1229  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1230  // fold the new nodes.
1231  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1232    if (C->isNullValue() && CC == ISD::SETEQ) {
1233      EVT VT = Op.getOperand(0).getValueType();
1234      SDValue Zext = Op.getOperand(0);
1235      if (VT.bitsLT(MVT::i32)) {
1236        VT = MVT::i32;
1237        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1238      }
1239      unsigned Log2b = Log2_32(VT.getSizeInBits());
1240      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1241      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1242                                DAG.getConstant(Log2b, MVT::i32));
1243      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1244    }
1245    // Leave comparisons against 0 and -1 alone for now, since they're usually
1246    // optimized.  FIXME: revisit this when we can custom lower all setcc
1247    // optimizations.
1248    if (C->isAllOnesValue() || C->isNullValue())
1249      return SDValue();
1250  }
1251
1252  // If we have an integer seteq/setne, turn it into a compare against zero
1253  // by xor'ing the rhs with the lhs, which is faster than setting a
1254  // condition register, reading it back out, and masking the correct bit.  The
1255  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1256  // the result to other bit-twiddling opportunities.
1257  EVT LHSVT = Op.getOperand(0).getValueType();
1258  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1259    EVT VT = Op.getValueType();
1260    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1261                                Op.getOperand(1));
1262    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1263  }
1264  return SDValue();
1265}
1266
1267SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1268                                      const PPCSubtarget &Subtarget) const {
1269
1270  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1271  return SDValue(); // Not reached
1272}
1273
1274SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1275                                           SelectionDAG &DAG) const {
1276  SDValue Chain = Op.getOperand(0);
1277  SDValue Trmp = Op.getOperand(1); // trampoline
1278  SDValue FPtr = Op.getOperand(2); // nested function
1279  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1280  DebugLoc dl = Op.getDebugLoc();
1281
1282  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1283  bool isPPC64 = (PtrVT == MVT::i64);
1284  const Type *IntPtrTy =
1285    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1286                                                             *DAG.getContext());
1287
1288  TargetLowering::ArgListTy Args;
1289  TargetLowering::ArgListEntry Entry;
1290
1291  Entry.Ty = IntPtrTy;
1292  Entry.Node = Trmp; Args.push_back(Entry);
1293
1294  // TrampSize == (isPPC64 ? 48 : 40);
1295  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1296                               isPPC64 ? MVT::i64 : MVT::i32);
1297  Args.push_back(Entry);
1298
1299  Entry.Node = FPtr; Args.push_back(Entry);
1300  Entry.Node = Nest; Args.push_back(Entry);
1301
1302  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1303  std::pair<SDValue, SDValue> CallResult =
1304    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1305                false, false, false, false, 0, CallingConv::C, false,
1306                /*isReturnValueUsed=*/true,
1307                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1308                Args, DAG, dl);
1309
1310  SDValue Ops[] =
1311    { CallResult.first, CallResult.second };
1312
1313  return DAG.getMergeValues(Ops, 2, dl);
1314}
1315
1316SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1317                                        const PPCSubtarget &Subtarget) const {
1318  MachineFunction &MF = DAG.getMachineFunction();
1319  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1320
1321  DebugLoc dl = Op.getDebugLoc();
1322
1323  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1324    // vastart just stores the address of the VarArgsFrameIndex slot into the
1325    // memory location argument.
1326    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1327    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1328    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1329    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1330                        MachinePointerInfo(SV),
1331                        false, false, 0);
1332  }
1333
1334  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1335  // We suppose the given va_list is already allocated.
1336  //
1337  // typedef struct {
1338  //  char gpr;     /* index into the array of 8 GPRs
1339  //                 * stored in the register save area
1340  //                 * gpr=0 corresponds to r3,
1341  //                 * gpr=1 to r4, etc.
1342  //                 */
1343  //  char fpr;     /* index into the array of 8 FPRs
1344  //                 * stored in the register save area
1345  //                 * fpr=0 corresponds to f1,
1346  //                 * fpr=1 to f2, etc.
1347  //                 */
1348  //  char *overflow_arg_area;
1349  //                /* location on stack that holds
1350  //                 * the next overflow argument
1351  //                 */
1352  //  char *reg_save_area;
1353  //               /* where r3:r10 and f1:f8 (if saved)
1354  //                * are stored
1355  //                */
1356  // } va_list[1];
1357
1358
1359  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1360  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1361
1362
1363  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1364
1365  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1366                                            PtrVT);
1367  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1368                                 PtrVT);
1369
1370  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1371  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1372
1373  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1374  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1375
1376  uint64_t FPROffset = 1;
1377  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1378
1379  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1380
1381  // Store first byte : number of int regs
1382  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1383                                         Op.getOperand(1),
1384                                         MachinePointerInfo(SV),
1385                                         MVT::i8, false, false, 0);
1386  uint64_t nextOffset = FPROffset;
1387  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1388                                  ConstFPROffset);
1389
1390  // Store second byte : number of float regs
1391  SDValue secondStore =
1392    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1393                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1394                      false, false, 0);
1395  nextOffset += StackOffset;
1396  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1397
1398  // Store second word : arguments given on stack
1399  SDValue thirdStore =
1400    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1401                 MachinePointerInfo(SV, nextOffset),
1402                 false, false, 0);
1403  nextOffset += FrameOffset;
1404  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1405
1406  // Store third word : arguments given in registers
1407  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1408                      MachinePointerInfo(SV, nextOffset),
1409                      false, false, 0);
1410
1411}
1412
1413#include "PPCGenCallingConv.inc"
1414
1415static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1416                                     CCValAssign::LocInfo &LocInfo,
1417                                     ISD::ArgFlagsTy &ArgFlags,
1418                                     CCState &State) {
1419  return true;
1420}
1421
1422static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1423                                            MVT &LocVT,
1424                                            CCValAssign::LocInfo &LocInfo,
1425                                            ISD::ArgFlagsTy &ArgFlags,
1426                                            CCState &State) {
1427  static const unsigned ArgRegs[] = {
1428    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1429    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1430  };
1431  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1432
1433  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1434
1435  // Skip one register if the first unallocated register has an even register
1436  // number and there are still argument registers available which have not been
1437  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1438  // need to skip a register if RegNum is odd.
1439  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1440    State.AllocateReg(ArgRegs[RegNum]);
1441  }
1442
1443  // Always return false here, as this function only makes sure that the first
1444  // unallocated register has an odd register number and does not actually
1445  // allocate a register for the current argument.
1446  return false;
1447}
1448
1449static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1450                                              MVT &LocVT,
1451                                              CCValAssign::LocInfo &LocInfo,
1452                                              ISD::ArgFlagsTy &ArgFlags,
1453                                              CCState &State) {
1454  static const unsigned ArgRegs[] = {
1455    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1456    PPC::F8
1457  };
1458
1459  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1460
1461  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1462
1463  // If there is only one Floating-point register left we need to put both f64
1464  // values of a split ppc_fp128 value on the stack.
1465  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1466    State.AllocateReg(ArgRegs[RegNum]);
1467  }
1468
1469  // Always return false here, as this function only makes sure that the two f64
1470  // values a ppc_fp128 value is split into are both passed in registers or both
1471  // passed on the stack and does not actually allocate a register for the
1472  // current argument.
1473  return false;
1474}
1475
1476/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1477/// on Darwin.
1478static const unsigned *GetFPR() {
1479  static const unsigned FPR[] = {
1480    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1481    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1482  };
1483
1484  return FPR;
1485}
1486
1487/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1488/// the stack.
1489static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1490                                       unsigned PtrByteSize) {
1491  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1492  if (Flags.isByVal())
1493    ArgSize = Flags.getByValSize();
1494  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1495
1496  return ArgSize;
1497}
1498
1499SDValue
1500PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1501                                        CallingConv::ID CallConv, bool isVarArg,
1502                                        const SmallVectorImpl<ISD::InputArg>
1503                                          &Ins,
1504                                        DebugLoc dl, SelectionDAG &DAG,
1505                                        SmallVectorImpl<SDValue> &InVals)
1506                                          const {
1507  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1508    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1509                                     dl, DAG, InVals);
1510  } else {
1511    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1512                                       dl, DAG, InVals);
1513  }
1514}
1515
1516SDValue
1517PPCTargetLowering::LowerFormalArguments_SVR4(
1518                                      SDValue Chain,
1519                                      CallingConv::ID CallConv, bool isVarArg,
1520                                      const SmallVectorImpl<ISD::InputArg>
1521                                        &Ins,
1522                                      DebugLoc dl, SelectionDAG &DAG,
1523                                      SmallVectorImpl<SDValue> &InVals) const {
1524
1525  // 32-bit SVR4 ABI Stack Frame Layout:
1526  //              +-----------------------------------+
1527  //        +-->  |            Back chain             |
1528  //        |     +-----------------------------------+
1529  //        |     | Floating-point register save area |
1530  //        |     +-----------------------------------+
1531  //        |     |    General register save area     |
1532  //        |     +-----------------------------------+
1533  //        |     |          CR save word             |
1534  //        |     +-----------------------------------+
1535  //        |     |         VRSAVE save word          |
1536  //        |     +-----------------------------------+
1537  //        |     |         Alignment padding         |
1538  //        |     +-----------------------------------+
1539  //        |     |     Vector register save area     |
1540  //        |     +-----------------------------------+
1541  //        |     |       Local variable space        |
1542  //        |     +-----------------------------------+
1543  //        |     |        Parameter list area        |
1544  //        |     +-----------------------------------+
1545  //        |     |           LR save word            |
1546  //        |     +-----------------------------------+
1547  // SP-->  +---  |            Back chain             |
1548  //              +-----------------------------------+
1549  //
1550  // Specifications:
1551  //   System V Application Binary Interface PowerPC Processor Supplement
1552  //   AltiVec Technology Programming Interface Manual
1553
1554  MachineFunction &MF = DAG.getMachineFunction();
1555  MachineFrameInfo *MFI = MF.getFrameInfo();
1556  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1557
1558  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1559  // Potential tail calls could cause overwriting of argument stack slots.
1560  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1561  unsigned PtrByteSize = 4;
1562
1563  // Assign locations to all of the incoming arguments.
1564  SmallVector<CCValAssign, 16> ArgLocs;
1565  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1566                 *DAG.getContext());
1567
1568  // Reserve space for the linkage area on the stack.
1569  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1570
1571  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1572
1573  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1574    CCValAssign &VA = ArgLocs[i];
1575
1576    // Arguments stored in registers.
1577    if (VA.isRegLoc()) {
1578      TargetRegisterClass *RC;
1579      EVT ValVT = VA.getValVT();
1580
1581      switch (ValVT.getSimpleVT().SimpleTy) {
1582        default:
1583          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1584        case MVT::i32:
1585          RC = PPC::GPRCRegisterClass;
1586          break;
1587        case MVT::f32:
1588          RC = PPC::F4RCRegisterClass;
1589          break;
1590        case MVT::f64:
1591          RC = PPC::F8RCRegisterClass;
1592          break;
1593        case MVT::v16i8:
1594        case MVT::v8i16:
1595        case MVT::v4i32:
1596        case MVT::v4f32:
1597          RC = PPC::VRRCRegisterClass;
1598          break;
1599      }
1600
1601      // Transform the arguments stored in physical registers into virtual ones.
1602      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1603      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1604
1605      InVals.push_back(ArgValue);
1606    } else {
1607      // Argument stored in memory.
1608      assert(VA.isMemLoc());
1609
1610      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1611      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1612                                      isImmutable);
1613
1614      // Create load nodes to retrieve arguments from the stack.
1615      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1616      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1617                                   MachinePointerInfo(),
1618                                   false, false, 0));
1619    }
1620  }
1621
1622  // Assign locations to all of the incoming aggregate by value arguments.
1623  // Aggregates passed by value are stored in the local variable space of the
1624  // caller's stack frame, right above the parameter list area.
1625  SmallVector<CCValAssign, 16> ByValArgLocs;
1626  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1627                      ByValArgLocs, *DAG.getContext());
1628
1629  // Reserve stack space for the allocations in CCInfo.
1630  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1631
1632  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1633
1634  // Area that is at least reserved in the caller of this function.
1635  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1636
1637  // Set the size that is at least reserved in caller of this function.  Tail
1638  // call optimized function's reserved stack space needs to be aligned so that
1639  // taking the difference between two stack areas will result in an aligned
1640  // stack.
1641  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1642
1643  MinReservedArea =
1644    std::max(MinReservedArea,
1645             PPCFrameInfo::getMinCallFrameSize(false, false));
1646
1647  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1648    getStackAlignment();
1649  unsigned AlignMask = TargetAlign-1;
1650  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1651
1652  FI->setMinReservedArea(MinReservedArea);
1653
1654  SmallVector<SDValue, 8> MemOps;
1655
1656  // If the function takes variable number of arguments, make a frame index for
1657  // the start of the first vararg value... for expansion of llvm.va_start.
1658  if (isVarArg) {
1659    static const unsigned GPArgRegs[] = {
1660      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1661      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1662    };
1663    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1664
1665    static const unsigned FPArgRegs[] = {
1666      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1667      PPC::F8
1668    };
1669    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1670
1671    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1672                                                          NumGPArgRegs));
1673    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1674                                                          NumFPArgRegs));
1675
1676    // Make room for NumGPArgRegs and NumFPArgRegs.
1677    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1678                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1679
1680    FuncInfo->setVarArgsStackOffset(
1681      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1682                             CCInfo.getNextStackOffset(), true));
1683
1684    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1685    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1686
1687    // The fixed integer arguments of a variadic function are stored to the
1688    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1689    // the result of va_next.
1690    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1691      // Get an existing live-in vreg, or add a new one.
1692      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1693      if (!VReg)
1694        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1695
1696      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1697      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1698                                   MachinePointerInfo(), false, false, 0);
1699      MemOps.push_back(Store);
1700      // Increment the address by four for the next argument to store
1701      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1702      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1703    }
1704
1705    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1706    // is set.
1707    // The double arguments are stored to the VarArgsFrameIndex
1708    // on the stack.
1709    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1710      // Get an existing live-in vreg, or add a new one.
1711      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1712      if (!VReg)
1713        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1714
1715      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1716      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1717                                   MachinePointerInfo(), false, false, 0);
1718      MemOps.push_back(Store);
1719      // Increment the address by eight for the next argument to store
1720      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1721                                         PtrVT);
1722      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1723    }
1724  }
1725
1726  if (!MemOps.empty())
1727    Chain = DAG.getNode(ISD::TokenFactor, dl,
1728                        MVT::Other, &MemOps[0], MemOps.size());
1729
1730  return Chain;
1731}
1732
1733SDValue
1734PPCTargetLowering::LowerFormalArguments_Darwin(
1735                                      SDValue Chain,
1736                                      CallingConv::ID CallConv, bool isVarArg,
1737                                      const SmallVectorImpl<ISD::InputArg>
1738                                        &Ins,
1739                                      DebugLoc dl, SelectionDAG &DAG,
1740                                      SmallVectorImpl<SDValue> &InVals) const {
1741  // TODO: add description of PPC stack frame format, or at least some docs.
1742  //
1743  MachineFunction &MF = DAG.getMachineFunction();
1744  MachineFrameInfo *MFI = MF.getFrameInfo();
1745  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1746
1747  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1748  bool isPPC64 = PtrVT == MVT::i64;
1749  // Potential tail calls could cause overwriting of argument stack slots.
1750  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1751  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1752
1753  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1754  // Area that is at least reserved in caller of this function.
1755  unsigned MinReservedArea = ArgOffset;
1756
1757  static const unsigned GPR_32[] = {           // 32-bit registers.
1758    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1759    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1760  };
1761  static const unsigned GPR_64[] = {           // 64-bit registers.
1762    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1763    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1764  };
1765
1766  static const unsigned *FPR = GetFPR();
1767
1768  static const unsigned VR[] = {
1769    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1770    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1771  };
1772
1773  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1774  const unsigned Num_FPR_Regs = 13;
1775  const unsigned Num_VR_Regs  = array_lengthof( VR);
1776
1777  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1778
1779  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1780
1781  // In 32-bit non-varargs functions, the stack space for vectors is after the
1782  // stack space for non-vectors.  We do not use this space unless we have
1783  // too many vectors to fit in registers, something that only occurs in
1784  // constructed examples:), but we have to walk the arglist to figure
1785  // that out...for the pathological case, compute VecArgOffset as the
1786  // start of the vector parameter area.  Computing VecArgOffset is the
1787  // entire point of the following loop.
1788  unsigned VecArgOffset = ArgOffset;
1789  if (!isVarArg && !isPPC64) {
1790    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1791         ++ArgNo) {
1792      EVT ObjectVT = Ins[ArgNo].VT;
1793      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1794      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1795
1796      if (Flags.isByVal()) {
1797        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1798        ObjSize = Flags.getByValSize();
1799        unsigned ArgSize =
1800                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1801        VecArgOffset += ArgSize;
1802        continue;
1803      }
1804
1805      switch(ObjectVT.getSimpleVT().SimpleTy) {
1806      default: llvm_unreachable("Unhandled argument type!");
1807      case MVT::i32:
1808      case MVT::f32:
1809        VecArgOffset += isPPC64 ? 8 : 4;
1810        break;
1811      case MVT::i64:  // PPC64
1812      case MVT::f64:
1813        VecArgOffset += 8;
1814        break;
1815      case MVT::v4f32:
1816      case MVT::v4i32:
1817      case MVT::v8i16:
1818      case MVT::v16i8:
1819        // Nothing to do, we're only looking at Nonvector args here.
1820        break;
1821      }
1822    }
1823  }
1824  // We've found where the vector parameter area in memory is.  Skip the
1825  // first 12 parameters; these don't use that memory.
1826  VecArgOffset = ((VecArgOffset+15)/16)*16;
1827  VecArgOffset += 12*16;
1828
1829  // Add DAG nodes to load the arguments or copy them out of registers.  On
1830  // entry to a function on PPC, the arguments start after the linkage area,
1831  // although the first ones are often in registers.
1832
1833  SmallVector<SDValue, 8> MemOps;
1834  unsigned nAltivecParamsAtEnd = 0;
1835  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1836    SDValue ArgVal;
1837    bool needsLoad = false;
1838    EVT ObjectVT = Ins[ArgNo].VT;
1839    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1840    unsigned ArgSize = ObjSize;
1841    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1842
1843    unsigned CurArgOffset = ArgOffset;
1844
1845    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1846    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1847        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1848      if (isVarArg || isPPC64) {
1849        MinReservedArea = ((MinReservedArea+15)/16)*16;
1850        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1851                                                  Flags,
1852                                                  PtrByteSize);
1853      } else  nAltivecParamsAtEnd++;
1854    } else
1855      // Calculate min reserved area.
1856      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1857                                                Flags,
1858                                                PtrByteSize);
1859
1860    // FIXME the codegen can be much improved in some cases.
1861    // We do not have to keep everything in memory.
1862    if (Flags.isByVal()) {
1863      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1864      ObjSize = Flags.getByValSize();
1865      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1866      // Objects of size 1 and 2 are right justified, everything else is
1867      // left justified.  This means the memory address is adjusted forwards.
1868      if (ObjSize==1 || ObjSize==2) {
1869        CurArgOffset = CurArgOffset + (4 - ObjSize);
1870      }
1871      // The value of the object is its address.
1872      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1873      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1874      InVals.push_back(FIN);
1875      if (ObjSize==1 || ObjSize==2) {
1876        if (GPR_idx != Num_GPR_Regs) {
1877          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1878          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1879          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1880                                            MachinePointerInfo(),
1881                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1882                                            false, false, 0);
1883          MemOps.push_back(Store);
1884          ++GPR_idx;
1885        }
1886
1887        ArgOffset += PtrByteSize;
1888
1889        continue;
1890      }
1891      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1892        // Store whatever pieces of the object are in registers
1893        // to memory.  ArgVal will be address of the beginning of
1894        // the object.
1895        if (GPR_idx != Num_GPR_Regs) {
1896          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1897          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1898          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1899          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1900          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1901                                       MachinePointerInfo(),
1902                                       false, false, 0);
1903          MemOps.push_back(Store);
1904          ++GPR_idx;
1905          ArgOffset += PtrByteSize;
1906        } else {
1907          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1908          break;
1909        }
1910      }
1911      continue;
1912    }
1913
1914    switch (ObjectVT.getSimpleVT().SimpleTy) {
1915    default: llvm_unreachable("Unhandled argument type!");
1916    case MVT::i32:
1917      if (!isPPC64) {
1918        if (GPR_idx != Num_GPR_Regs) {
1919          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1920          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1921          ++GPR_idx;
1922        } else {
1923          needsLoad = true;
1924          ArgSize = PtrByteSize;
1925        }
1926        // All int arguments reserve stack space in the Darwin ABI.
1927        ArgOffset += PtrByteSize;
1928        break;
1929      }
1930      // FALLTHROUGH
1931    case MVT::i64:  // PPC64
1932      if (GPR_idx != Num_GPR_Regs) {
1933        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1934        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1935
1936        if (ObjectVT == MVT::i32) {
1937          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1938          // value to MVT::i64 and then truncate to the correct register size.
1939          if (Flags.isSExt())
1940            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1941                                 DAG.getValueType(ObjectVT));
1942          else if (Flags.isZExt())
1943            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1944                                 DAG.getValueType(ObjectVT));
1945
1946          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1947        }
1948
1949        ++GPR_idx;
1950      } else {
1951        needsLoad = true;
1952        ArgSize = PtrByteSize;
1953      }
1954      // All int arguments reserve stack space in the Darwin ABI.
1955      ArgOffset += 8;
1956      break;
1957
1958    case MVT::f32:
1959    case MVT::f64:
1960      // Every 4 bytes of argument space consumes one of the GPRs available for
1961      // argument passing.
1962      if (GPR_idx != Num_GPR_Regs) {
1963        ++GPR_idx;
1964        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1965          ++GPR_idx;
1966      }
1967      if (FPR_idx != Num_FPR_Regs) {
1968        unsigned VReg;
1969
1970        if (ObjectVT == MVT::f32)
1971          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1972        else
1973          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1974
1975        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1976        ++FPR_idx;
1977      } else {
1978        needsLoad = true;
1979      }
1980
1981      // All FP arguments reserve stack space in the Darwin ABI.
1982      ArgOffset += isPPC64 ? 8 : ObjSize;
1983      break;
1984    case MVT::v4f32:
1985    case MVT::v4i32:
1986    case MVT::v8i16:
1987    case MVT::v16i8:
1988      // Note that vector arguments in registers don't reserve stack space,
1989      // except in varargs functions.
1990      if (VR_idx != Num_VR_Regs) {
1991        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1992        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1993        if (isVarArg) {
1994          while ((ArgOffset % 16) != 0) {
1995            ArgOffset += PtrByteSize;
1996            if (GPR_idx != Num_GPR_Regs)
1997              GPR_idx++;
1998          }
1999          ArgOffset += 16;
2000          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2001        }
2002        ++VR_idx;
2003      } else {
2004        if (!isVarArg && !isPPC64) {
2005          // Vectors go after all the nonvectors.
2006          CurArgOffset = VecArgOffset;
2007          VecArgOffset += 16;
2008        } else {
2009          // Vectors are aligned.
2010          ArgOffset = ((ArgOffset+15)/16)*16;
2011          CurArgOffset = ArgOffset;
2012          ArgOffset += 16;
2013        }
2014        needsLoad = true;
2015      }
2016      break;
2017    }
2018
2019    // We need to load the argument to a virtual register if we determined above
2020    // that we ran out of physical registers of the appropriate type.
2021    if (needsLoad) {
2022      int FI = MFI->CreateFixedObject(ObjSize,
2023                                      CurArgOffset + (ArgSize - ObjSize),
2024                                      isImmutable);
2025      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2026      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2027                           false, false, 0);
2028    }
2029
2030    InVals.push_back(ArgVal);
2031  }
2032
2033  // Set the size that is at least reserved in caller of this function.  Tail
2034  // call optimized function's reserved stack space needs to be aligned so that
2035  // taking the difference between two stack areas will result in an aligned
2036  // stack.
2037  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2038  // Add the Altivec parameters at the end, if needed.
2039  if (nAltivecParamsAtEnd) {
2040    MinReservedArea = ((MinReservedArea+15)/16)*16;
2041    MinReservedArea += 16*nAltivecParamsAtEnd;
2042  }
2043  MinReservedArea =
2044    std::max(MinReservedArea,
2045             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2046  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2047    getStackAlignment();
2048  unsigned AlignMask = TargetAlign-1;
2049  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2050  FI->setMinReservedArea(MinReservedArea);
2051
2052  // If the function takes variable number of arguments, make a frame index for
2053  // the start of the first vararg value... for expansion of llvm.va_start.
2054  if (isVarArg) {
2055    int Depth = ArgOffset;
2056
2057    FuncInfo->setVarArgsFrameIndex(
2058      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2059                             Depth, true));
2060    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2061
2062    // If this function is vararg, store any remaining integer argument regs
2063    // to their spots on the stack so that they may be loaded by deferencing the
2064    // result of va_next.
2065    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2066      unsigned VReg;
2067
2068      if (isPPC64)
2069        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2070      else
2071        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2072
2073      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2074      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2075                                   MachinePointerInfo(), false, false, 0);
2076      MemOps.push_back(Store);
2077      // Increment the address by four for the next argument to store
2078      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2079      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2080    }
2081  }
2082
2083  if (!MemOps.empty())
2084    Chain = DAG.getNode(ISD::TokenFactor, dl,
2085                        MVT::Other, &MemOps[0], MemOps.size());
2086
2087  return Chain;
2088}
2089
2090/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2091/// linkage area for the Darwin ABI.
2092static unsigned
2093CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2094                                     bool isPPC64,
2095                                     bool isVarArg,
2096                                     unsigned CC,
2097                                     const SmallVectorImpl<ISD::OutputArg>
2098                                       &Outs,
2099                                     const SmallVectorImpl<SDValue> &OutVals,
2100                                     unsigned &nAltivecParamsAtEnd) {
2101  // Count how many bytes are to be pushed on the stack, including the linkage
2102  // area, and parameter passing area.  We start with 24/48 bytes, which is
2103  // prereserved space for [SP][CR][LR][3 x unused].
2104  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2105  unsigned NumOps = Outs.size();
2106  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2107
2108  // Add up all the space actually used.
2109  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2110  // they all go in registers, but we must reserve stack space for them for
2111  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2112  // assigned stack space in order, with padding so Altivec parameters are
2113  // 16-byte aligned.
2114  nAltivecParamsAtEnd = 0;
2115  for (unsigned i = 0; i != NumOps; ++i) {
2116    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2117    EVT ArgVT = Outs[i].VT;
2118    // Varargs Altivec parameters are padded to a 16 byte boundary.
2119    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2120        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2121      if (!isVarArg && !isPPC64) {
2122        // Non-varargs Altivec parameters go after all the non-Altivec
2123        // parameters; handle those later so we know how much padding we need.
2124        nAltivecParamsAtEnd++;
2125        continue;
2126      }
2127      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2128      NumBytes = ((NumBytes+15)/16)*16;
2129    }
2130    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2131  }
2132
2133   // Allow for Altivec parameters at the end, if needed.
2134  if (nAltivecParamsAtEnd) {
2135    NumBytes = ((NumBytes+15)/16)*16;
2136    NumBytes += 16*nAltivecParamsAtEnd;
2137  }
2138
2139  // The prolog code of the callee may store up to 8 GPR argument registers to
2140  // the stack, allowing va_start to index over them in memory if its varargs.
2141  // Because we cannot tell if this is needed on the caller side, we have to
2142  // conservatively assume that it is needed.  As such, make sure we have at
2143  // least enough stack space for the caller to store the 8 GPRs.
2144  NumBytes = std::max(NumBytes,
2145                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2146
2147  // Tail call needs the stack to be aligned.
2148  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2149    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2150      getStackAlignment();
2151    unsigned AlignMask = TargetAlign-1;
2152    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2153  }
2154
2155  return NumBytes;
2156}
2157
2158/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2159/// adjusted to accomodate the arguments for the tailcall.
2160static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2161                                   unsigned ParamSize) {
2162
2163  if (!isTailCall) return 0;
2164
2165  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2166  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2167  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2168  // Remember only if the new adjustement is bigger.
2169  if (SPDiff < FI->getTailCallSPDelta())
2170    FI->setTailCallSPDelta(SPDiff);
2171
2172  return SPDiff;
2173}
2174
2175/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2176/// for tail call optimization. Targets which want to do tail call
2177/// optimization should implement this function.
2178bool
2179PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2180                                                     CallingConv::ID CalleeCC,
2181                                                     bool isVarArg,
2182                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2183                                                     SelectionDAG& DAG) const {
2184  if (!GuaranteedTailCallOpt)
2185    return false;
2186
2187  // Variable argument functions are not supported.
2188  if (isVarArg)
2189    return false;
2190
2191  MachineFunction &MF = DAG.getMachineFunction();
2192  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2193  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2194    // Functions containing by val parameters are not supported.
2195    for (unsigned i = 0; i != Ins.size(); i++) {
2196       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2197       if (Flags.isByVal()) return false;
2198    }
2199
2200    // Non PIC/GOT  tail calls are supported.
2201    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2202      return true;
2203
2204    // At the moment we can only do local tail calls (in same module, hidden
2205    // or protected) if we are generating PIC.
2206    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2207      return G->getGlobal()->hasHiddenVisibility()
2208          || G->getGlobal()->hasProtectedVisibility();
2209  }
2210
2211  return false;
2212}
2213
2214/// isCallCompatibleAddress - Return the immediate to use if the specified
2215/// 32-bit value is representable in the immediate field of a BxA instruction.
2216static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2217  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2218  if (!C) return 0;
2219
2220  int Addr = C->getZExtValue();
2221  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2222      (Addr << 6 >> 6) != Addr)
2223    return 0;  // Top 6 bits have to be sext of immediate.
2224
2225  return DAG.getConstant((int)C->getZExtValue() >> 2,
2226                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2227}
2228
2229namespace {
2230
2231struct TailCallArgumentInfo {
2232  SDValue Arg;
2233  SDValue FrameIdxOp;
2234  int       FrameIdx;
2235
2236  TailCallArgumentInfo() : FrameIdx(0) {}
2237};
2238
2239}
2240
2241/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2242static void
2243StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2244                                           SDValue Chain,
2245                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2246                   SmallVector<SDValue, 8> &MemOpChains,
2247                   DebugLoc dl) {
2248  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2249    SDValue Arg = TailCallArgs[i].Arg;
2250    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2251    int FI = TailCallArgs[i].FrameIdx;
2252    // Store relative to framepointer.
2253    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2254                                       MachinePointerInfo::getFixedStack(FI),
2255                                       false, false, 0));
2256  }
2257}
2258
2259/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2260/// the appropriate stack slot for the tail call optimized function call.
2261static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2262                                               MachineFunction &MF,
2263                                               SDValue Chain,
2264                                               SDValue OldRetAddr,
2265                                               SDValue OldFP,
2266                                               int SPDiff,
2267                                               bool isPPC64,
2268                                               bool isDarwinABI,
2269                                               DebugLoc dl) {
2270  if (SPDiff) {
2271    // Calculate the new stack slot for the return address.
2272    int SlotSize = isPPC64 ? 8 : 4;
2273    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2274                                                                   isDarwinABI);
2275    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2276                                                          NewRetAddrLoc, true);
2277    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2278    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2279    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2280                         MachinePointerInfo::getFixedStack(NewRetAddr),
2281                         false, false, 0);
2282
2283    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2284    // slot as the FP is never overwritten.
2285    if (isDarwinABI) {
2286      int NewFPLoc =
2287        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2288      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2289                                                          true);
2290      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2291      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2292                           MachinePointerInfo::getFixedStack(NewFPIdx),
2293                           false, false, 0);
2294    }
2295  }
2296  return Chain;
2297}
2298
2299/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2300/// the position of the argument.
2301static void
2302CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2303                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2304                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2305  int Offset = ArgOffset + SPDiff;
2306  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2307  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2308  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2309  SDValue FIN = DAG.getFrameIndex(FI, VT);
2310  TailCallArgumentInfo Info;
2311  Info.Arg = Arg;
2312  Info.FrameIdxOp = FIN;
2313  Info.FrameIdx = FI;
2314  TailCallArguments.push_back(Info);
2315}
2316
2317/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2318/// stack slot. Returns the chain as result and the loaded frame pointers in
2319/// LROpOut/FPOpout. Used when tail calling.
2320SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2321                                                        int SPDiff,
2322                                                        SDValue Chain,
2323                                                        SDValue &LROpOut,
2324                                                        SDValue &FPOpOut,
2325                                                        bool isDarwinABI,
2326                                                        DebugLoc dl) const {
2327  if (SPDiff) {
2328    // Load the LR and FP stack slot for later adjusting.
2329    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2330    LROpOut = getReturnAddrFrameIndex(DAG);
2331    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2332                          false, false, 0);
2333    Chain = SDValue(LROpOut.getNode(), 1);
2334
2335    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2336    // slot as the FP is never overwritten.
2337    if (isDarwinABI) {
2338      FPOpOut = getFramePointerFrameIndex(DAG);
2339      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2340                            false, false, 0);
2341      Chain = SDValue(FPOpOut.getNode(), 1);
2342    }
2343  }
2344  return Chain;
2345}
2346
2347/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2348/// by "Src" to address "Dst" of size "Size".  Alignment information is
2349/// specified by the specific parameter attribute. The copy will be passed as
2350/// a byval function parameter.
2351/// Sometimes what we are copying is the end of a larger object, the part that
2352/// does not fit in registers.
2353static SDValue
2354CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2355                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2356                          DebugLoc dl) {
2357  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2358  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2359                       false, false, MachinePointerInfo(0),
2360                       MachinePointerInfo(0));
2361}
2362
2363/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2364/// tail calls.
2365static void
2366LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2367                 SDValue Arg, SDValue PtrOff, int SPDiff,
2368                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2369                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2370                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2371                 DebugLoc dl) {
2372  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2373  if (!isTailCall) {
2374    if (isVector) {
2375      SDValue StackPtr;
2376      if (isPPC64)
2377        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2378      else
2379        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2380      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2381                           DAG.getConstant(ArgOffset, PtrVT));
2382    }
2383    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2384                                       MachinePointerInfo(), false, false, 0));
2385  // Calculate and remember argument location.
2386  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2387                                  TailCallArguments);
2388}
2389
2390static
2391void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2392                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2393                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2394                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2395  MachineFunction &MF = DAG.getMachineFunction();
2396
2397  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2398  // might overwrite each other in case of tail call optimization.
2399  SmallVector<SDValue, 8> MemOpChains2;
2400  // Do not flag preceeding copytoreg stuff together with the following stuff.
2401  InFlag = SDValue();
2402  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2403                                    MemOpChains2, dl);
2404  if (!MemOpChains2.empty())
2405    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2406                        &MemOpChains2[0], MemOpChains2.size());
2407
2408  // Store the return address to the appropriate stack slot.
2409  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2410                                        isPPC64, isDarwinABI, dl);
2411
2412  // Emit callseq_end just before tailcall node.
2413  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2414                             DAG.getIntPtrConstant(0, true), InFlag);
2415  InFlag = Chain.getValue(1);
2416}
2417
2418static
2419unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2420                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2421                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2422                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2423                     const PPCSubtarget &PPCSubTarget) {
2424
2425  bool isPPC64 = PPCSubTarget.isPPC64();
2426  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2427
2428  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2429  NodeTys.push_back(MVT::Other);   // Returns a chain
2430  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2431
2432  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2433
2434  bool needIndirectCall = true;
2435  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2436    // If this is an absolute destination address, use the munged value.
2437    Callee = SDValue(Dest, 0);
2438    needIndirectCall = false;
2439  }
2440
2441  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2442    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2443    // Use indirect calls for ALL functions calls in JIT mode, since the
2444    // far-call stubs may be outside relocation limits for a BL instruction.
2445    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2446      unsigned OpFlags = 0;
2447      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2448          PPCSubTarget.getDarwinVers() < 9 &&
2449          (G->getGlobal()->isDeclaration() ||
2450           G->getGlobal()->isWeakForLinker())) {
2451        // PC-relative references to external symbols should go through $stub,
2452        // unless we're building with the leopard linker or later, which
2453        // automatically synthesizes these stubs.
2454        OpFlags = PPCII::MO_DARWIN_STUB;
2455      }
2456
2457      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2458      // every direct call is) turn it into a TargetGlobalAddress /
2459      // TargetExternalSymbol node so that legalize doesn't hack it.
2460      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2461                                          Callee.getValueType(),
2462                                          0, OpFlags);
2463      needIndirectCall = false;
2464    }
2465  }
2466
2467  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2468    unsigned char OpFlags = 0;
2469
2470    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2471        PPCSubTarget.getDarwinVers() < 9) {
2472      // PC-relative references to external symbols should go through $stub,
2473      // unless we're building with the leopard linker or later, which
2474      // automatically synthesizes these stubs.
2475      OpFlags = PPCII::MO_DARWIN_STUB;
2476    }
2477
2478    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2479                                         OpFlags);
2480    needIndirectCall = false;
2481  }
2482
2483  if (needIndirectCall) {
2484    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2485    // to do the call, we can't use PPCISD::CALL.
2486    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2487
2488    if (isSVR4ABI && isPPC64) {
2489      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2490      // entry point, but to the function descriptor (the function entry point
2491      // address is part of the function descriptor though).
2492      // The function descriptor is a three doubleword structure with the
2493      // following fields: function entry point, TOC base address and
2494      // environment pointer.
2495      // Thus for a call through a function pointer, the following actions need
2496      // to be performed:
2497      //   1. Save the TOC of the caller in the TOC save area of its stack
2498      //      frame (this is done in LowerCall_Darwin()).
2499      //   2. Load the address of the function entry point from the function
2500      //      descriptor.
2501      //   3. Load the TOC of the callee from the function descriptor into r2.
2502      //   4. Load the environment pointer from the function descriptor into
2503      //      r11.
2504      //   5. Branch to the function entry point address.
2505      //   6. On return of the callee, the TOC of the caller needs to be
2506      //      restored (this is done in FinishCall()).
2507      //
2508      // All those operations are flagged together to ensure that no other
2509      // operations can be scheduled in between. E.g. without flagging the
2510      // operations together, a TOC access in the caller could be scheduled
2511      // between the load of the callee TOC and the branch to the callee, which
2512      // results in the TOC access going through the TOC of the callee instead
2513      // of going through the TOC of the caller, which leads to incorrect code.
2514
2515      // Load the address of the function entry point from the function
2516      // descriptor.
2517      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2518      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2519                                        InFlag.getNode() ? 3 : 2);
2520      Chain = LoadFuncPtr.getValue(1);
2521      InFlag = LoadFuncPtr.getValue(2);
2522
2523      // Load environment pointer into r11.
2524      // Offset of the environment pointer within the function descriptor.
2525      SDValue PtrOff = DAG.getIntPtrConstant(16);
2526
2527      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2528      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2529                                       InFlag);
2530      Chain = LoadEnvPtr.getValue(1);
2531      InFlag = LoadEnvPtr.getValue(2);
2532
2533      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2534                                        InFlag);
2535      Chain = EnvVal.getValue(0);
2536      InFlag = EnvVal.getValue(1);
2537
2538      // Load TOC of the callee into r2. We are using a target-specific load
2539      // with r2 hard coded, because the result of a target-independent load
2540      // would never go directly into r2, since r2 is a reserved register (which
2541      // prevents the register allocator from allocating it), resulting in an
2542      // additional register being allocated and an unnecessary move instruction
2543      // being generated.
2544      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2545      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2546                                       Callee, InFlag);
2547      Chain = LoadTOCPtr.getValue(0);
2548      InFlag = LoadTOCPtr.getValue(1);
2549
2550      MTCTROps[0] = Chain;
2551      MTCTROps[1] = LoadFuncPtr;
2552      MTCTROps[2] = InFlag;
2553    }
2554
2555    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2556                        2 + (InFlag.getNode() != 0));
2557    InFlag = Chain.getValue(1);
2558
2559    NodeTys.clear();
2560    NodeTys.push_back(MVT::Other);
2561    NodeTys.push_back(MVT::Glue);
2562    Ops.push_back(Chain);
2563    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2564    Callee.setNode(0);
2565    // Add CTR register as callee so a bctr can be emitted later.
2566    if (isTailCall)
2567      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2568  }
2569
2570  // If this is a direct call, pass the chain and the callee.
2571  if (Callee.getNode()) {
2572    Ops.push_back(Chain);
2573    Ops.push_back(Callee);
2574  }
2575  // If this is a tail call add stack pointer delta.
2576  if (isTailCall)
2577    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2578
2579  // Add argument registers to the end of the list so that they are known live
2580  // into the call.
2581  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2582    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2583                                  RegsToPass[i].second.getValueType()));
2584
2585  return CallOpc;
2586}
2587
2588SDValue
2589PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2590                                   CallingConv::ID CallConv, bool isVarArg,
2591                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2592                                   DebugLoc dl, SelectionDAG &DAG,
2593                                   SmallVectorImpl<SDValue> &InVals) const {
2594
2595  SmallVector<CCValAssign, 16> RVLocs;
2596  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2597                    RVLocs, *DAG.getContext());
2598  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2599
2600  // Copy all of the result registers out of their specified physreg.
2601  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2602    CCValAssign &VA = RVLocs[i];
2603    EVT VT = VA.getValVT();
2604    assert(VA.isRegLoc() && "Can only return in registers!");
2605    Chain = DAG.getCopyFromReg(Chain, dl,
2606                               VA.getLocReg(), VT, InFlag).getValue(1);
2607    InVals.push_back(Chain.getValue(0));
2608    InFlag = Chain.getValue(2);
2609  }
2610
2611  return Chain;
2612}
2613
2614SDValue
2615PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2616                              bool isTailCall, bool isVarArg,
2617                              SelectionDAG &DAG,
2618                              SmallVector<std::pair<unsigned, SDValue>, 8>
2619                                &RegsToPass,
2620                              SDValue InFlag, SDValue Chain,
2621                              SDValue &Callee,
2622                              int SPDiff, unsigned NumBytes,
2623                              const SmallVectorImpl<ISD::InputArg> &Ins,
2624                              SmallVectorImpl<SDValue> &InVals) const {
2625  std::vector<EVT> NodeTys;
2626  SmallVector<SDValue, 8> Ops;
2627  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2628                                 isTailCall, RegsToPass, Ops, NodeTys,
2629                                 PPCSubTarget);
2630
2631  // When performing tail call optimization the callee pops its arguments off
2632  // the stack. Account for this here so these bytes can be pushed back on in
2633  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2634  int BytesCalleePops =
2635    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2636
2637  if (InFlag.getNode())
2638    Ops.push_back(InFlag);
2639
2640  // Emit tail call.
2641  if (isTailCall) {
2642    // If this is the first return lowered for this function, add the regs
2643    // to the liveout set for the function.
2644    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2645      SmallVector<CCValAssign, 16> RVLocs;
2646      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2647                     *DAG.getContext());
2648      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2649      for (unsigned i = 0; i != RVLocs.size(); ++i)
2650        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2651    }
2652
2653    assert(((Callee.getOpcode() == ISD::Register &&
2654             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2655            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2656            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2657            isa<ConstantSDNode>(Callee)) &&
2658    "Expecting an global address, external symbol, absolute value or register");
2659
2660    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2661  }
2662
2663  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2664  InFlag = Chain.getValue(1);
2665
2666  // Add a NOP immediately after the branch instruction when using the 64-bit
2667  // SVR4 ABI. At link time, if caller and callee are in a different module and
2668  // thus have a different TOC, the call will be replaced with a call to a stub
2669  // function which saves the current TOC, loads the TOC of the callee and
2670  // branches to the callee. The NOP will be replaced with a load instruction
2671  // which restores the TOC of the caller from the TOC save slot of the current
2672  // stack frame. If caller and callee belong to the same module (and have the
2673  // same TOC), the NOP will remain unchanged.
2674  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2675    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2676    if (CallOpc == PPCISD::BCTRL_SVR4) {
2677      // This is a call through a function pointer.
2678      // Restore the caller TOC from the save area into R2.
2679      // See PrepareCall() for more information about calls through function
2680      // pointers in the 64-bit SVR4 ABI.
2681      // We are using a target-specific load with r2 hard coded, because the
2682      // result of a target-independent load would never go directly into r2,
2683      // since r2 is a reserved register (which prevents the register allocator
2684      // from allocating it), resulting in an additional register being
2685      // allocated and an unnecessary move instruction being generated.
2686      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2687      InFlag = Chain.getValue(1);
2688    } else {
2689      // Otherwise insert NOP.
2690      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2691    }
2692  }
2693
2694  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2695                             DAG.getIntPtrConstant(BytesCalleePops, true),
2696                             InFlag);
2697  if (!Ins.empty())
2698    InFlag = Chain.getValue(1);
2699
2700  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2701                         Ins, dl, DAG, InVals);
2702}
2703
2704SDValue
2705PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2706                             CallingConv::ID CallConv, bool isVarArg,
2707                             bool &isTailCall,
2708                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2709                             const SmallVectorImpl<SDValue> &OutVals,
2710                             const SmallVectorImpl<ISD::InputArg> &Ins,
2711                             DebugLoc dl, SelectionDAG &DAG,
2712                             SmallVectorImpl<SDValue> &InVals) const {
2713  if (isTailCall)
2714    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2715                                                   Ins, DAG);
2716
2717  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2718    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2719                          isTailCall, Outs, OutVals, Ins,
2720                          dl, DAG, InVals);
2721
2722  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2723                          isTailCall, Outs, OutVals, Ins,
2724                          dl, DAG, InVals);
2725}
2726
2727SDValue
2728PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2729                                  CallingConv::ID CallConv, bool isVarArg,
2730                                  bool isTailCall,
2731                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2732                                  const SmallVectorImpl<SDValue> &OutVals,
2733                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2734                                  DebugLoc dl, SelectionDAG &DAG,
2735                                  SmallVectorImpl<SDValue> &InVals) const {
2736  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2737  // of the 32-bit SVR4 ABI stack frame layout.
2738
2739  assert((CallConv == CallingConv::C ||
2740          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2741
2742  unsigned PtrByteSize = 4;
2743
2744  MachineFunction &MF = DAG.getMachineFunction();
2745
2746  // Mark this function as potentially containing a function that contains a
2747  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2748  // and restoring the callers stack pointer in this functions epilog. This is
2749  // done because by tail calling the called function might overwrite the value
2750  // in this function's (MF) stack pointer stack slot 0(SP).
2751  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2752    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2753
2754  // Count how many bytes are to be pushed on the stack, including the linkage
2755  // area, parameter list area and the part of the local variable space which
2756  // contains copies of aggregates which are passed by value.
2757
2758  // Assign locations to all of the outgoing arguments.
2759  SmallVector<CCValAssign, 16> ArgLocs;
2760  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2761                 ArgLocs, *DAG.getContext());
2762
2763  // Reserve space for the linkage area on the stack.
2764  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2765
2766  if (isVarArg) {
2767    // Handle fixed and variable vector arguments differently.
2768    // Fixed vector arguments go into registers as long as registers are
2769    // available. Variable vector arguments always go into memory.
2770    unsigned NumArgs = Outs.size();
2771
2772    for (unsigned i = 0; i != NumArgs; ++i) {
2773      MVT ArgVT = Outs[i].VT;
2774      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2775      bool Result;
2776
2777      if (Outs[i].IsFixed) {
2778        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2779                             CCInfo);
2780      } else {
2781        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2782                                    ArgFlags, CCInfo);
2783      }
2784
2785      if (Result) {
2786#ifndef NDEBUG
2787        errs() << "Call operand #" << i << " has unhandled type "
2788             << EVT(ArgVT).getEVTString() << "\n";
2789#endif
2790        llvm_unreachable(0);
2791      }
2792    }
2793  } else {
2794    // All arguments are treated the same.
2795    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2796  }
2797
2798  // Assign locations to all of the outgoing aggregate by value arguments.
2799  SmallVector<CCValAssign, 16> ByValArgLocs;
2800  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2801                      *DAG.getContext());
2802
2803  // Reserve stack space for the allocations in CCInfo.
2804  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2805
2806  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2807
2808  // Size of the linkage area, parameter list area and the part of the local
2809  // space variable where copies of aggregates which are passed by value are
2810  // stored.
2811  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2812
2813  // Calculate by how many bytes the stack has to be adjusted in case of tail
2814  // call optimization.
2815  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2816
2817  // Adjust the stack pointer for the new arguments...
2818  // These operations are automatically eliminated by the prolog/epilog pass
2819  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2820  SDValue CallSeqStart = Chain;
2821
2822  // Load the return address and frame pointer so it can be moved somewhere else
2823  // later.
2824  SDValue LROp, FPOp;
2825  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2826                                       dl);
2827
2828  // Set up a copy of the stack pointer for use loading and storing any
2829  // arguments that may not fit in the registers available for argument
2830  // passing.
2831  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2832
2833  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2834  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2835  SmallVector<SDValue, 8> MemOpChains;
2836
2837  // Walk the register/memloc assignments, inserting copies/loads.
2838  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2839       i != e;
2840       ++i) {
2841    CCValAssign &VA = ArgLocs[i];
2842    SDValue Arg = OutVals[i];
2843    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2844
2845    if (Flags.isByVal()) {
2846      // Argument is an aggregate which is passed by value, thus we need to
2847      // create a copy of it in the local variable space of the current stack
2848      // frame (which is the stack frame of the caller) and pass the address of
2849      // this copy to the callee.
2850      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2851      CCValAssign &ByValVA = ByValArgLocs[j++];
2852      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2853
2854      // Memory reserved in the local variable space of the callers stack frame.
2855      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2856
2857      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2858      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2859
2860      // Create a copy of the argument in the local area of the current
2861      // stack frame.
2862      SDValue MemcpyCall =
2863        CreateCopyOfByValArgument(Arg, PtrOff,
2864                                  CallSeqStart.getNode()->getOperand(0),
2865                                  Flags, DAG, dl);
2866
2867      // This must go outside the CALLSEQ_START..END.
2868      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2869                           CallSeqStart.getNode()->getOperand(1));
2870      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2871                             NewCallSeqStart.getNode());
2872      Chain = CallSeqStart = NewCallSeqStart;
2873
2874      // Pass the address of the aggregate copy on the stack either in a
2875      // physical register or in the parameter list area of the current stack
2876      // frame to the callee.
2877      Arg = PtrOff;
2878    }
2879
2880    if (VA.isRegLoc()) {
2881      // Put argument in a physical register.
2882      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2883    } else {
2884      // Put argument in the parameter list area of the current stack frame.
2885      assert(VA.isMemLoc());
2886      unsigned LocMemOffset = VA.getLocMemOffset();
2887
2888      if (!isTailCall) {
2889        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2890        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2891
2892        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2893                                           MachinePointerInfo(),
2894                                           false, false, 0));
2895      } else {
2896        // Calculate and remember argument location.
2897        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2898                                 TailCallArguments);
2899      }
2900    }
2901  }
2902
2903  if (!MemOpChains.empty())
2904    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2905                        &MemOpChains[0], MemOpChains.size());
2906
2907  // Build a sequence of copy-to-reg nodes chained together with token chain
2908  // and flag operands which copy the outgoing args into the appropriate regs.
2909  SDValue InFlag;
2910  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2911    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2912                             RegsToPass[i].second, InFlag);
2913    InFlag = Chain.getValue(1);
2914  }
2915
2916  // Set CR6 to true if this is a vararg call.
2917  if (isVarArg) {
2918    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2919    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2920    InFlag = Chain.getValue(1);
2921  }
2922
2923  if (isTailCall)
2924    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2925                    false, TailCallArguments);
2926
2927  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2928                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2929                    Ins, InVals);
2930}
2931
2932SDValue
2933PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2934                                    CallingConv::ID CallConv, bool isVarArg,
2935                                    bool isTailCall,
2936                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2937                                    const SmallVectorImpl<SDValue> &OutVals,
2938                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2939                                    DebugLoc dl, SelectionDAG &DAG,
2940                                    SmallVectorImpl<SDValue> &InVals) const {
2941
2942  unsigned NumOps  = Outs.size();
2943
2944  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2945  bool isPPC64 = PtrVT == MVT::i64;
2946  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2947
2948  MachineFunction &MF = DAG.getMachineFunction();
2949
2950  // Mark this function as potentially containing a function that contains a
2951  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2952  // and restoring the callers stack pointer in this functions epilog. This is
2953  // done because by tail calling the called function might overwrite the value
2954  // in this function's (MF) stack pointer stack slot 0(SP).
2955  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2956    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2957
2958  unsigned nAltivecParamsAtEnd = 0;
2959
2960  // Count how many bytes are to be pushed on the stack, including the linkage
2961  // area, and parameter passing area.  We start with 24/48 bytes, which is
2962  // prereserved space for [SP][CR][LR][3 x unused].
2963  unsigned NumBytes =
2964    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2965                                         Outs, OutVals,
2966                                         nAltivecParamsAtEnd);
2967
2968  // Calculate by how many bytes the stack has to be adjusted in case of tail
2969  // call optimization.
2970  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2971
2972  // To protect arguments on the stack from being clobbered in a tail call,
2973  // force all the loads to happen before doing any other lowering.
2974  if (isTailCall)
2975    Chain = DAG.getStackArgumentTokenFactor(Chain);
2976
2977  // Adjust the stack pointer for the new arguments...
2978  // These operations are automatically eliminated by the prolog/epilog pass
2979  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2980  SDValue CallSeqStart = Chain;
2981
2982  // Load the return address and frame pointer so it can be move somewhere else
2983  // later.
2984  SDValue LROp, FPOp;
2985  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2986                                       dl);
2987
2988  // Set up a copy of the stack pointer for use loading and storing any
2989  // arguments that may not fit in the registers available for argument
2990  // passing.
2991  SDValue StackPtr;
2992  if (isPPC64)
2993    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2994  else
2995    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2996
2997  // Figure out which arguments are going to go in registers, and which in
2998  // memory.  Also, if this is a vararg function, floating point operations
2999  // must be stored to our stack, and loaded into integer regs as well, if
3000  // any integer regs are available for argument passing.
3001  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3002  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3003
3004  static const unsigned GPR_32[] = {           // 32-bit registers.
3005    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3006    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3007  };
3008  static const unsigned GPR_64[] = {           // 64-bit registers.
3009    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3010    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3011  };
3012  static const unsigned *FPR = GetFPR();
3013
3014  static const unsigned VR[] = {
3015    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3016    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3017  };
3018  const unsigned NumGPRs = array_lengthof(GPR_32);
3019  const unsigned NumFPRs = 13;
3020  const unsigned NumVRs  = array_lengthof(VR);
3021
3022  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3023
3024  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3025  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3026
3027  SmallVector<SDValue, 8> MemOpChains;
3028  for (unsigned i = 0; i != NumOps; ++i) {
3029    SDValue Arg = OutVals[i];
3030    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3031
3032    // PtrOff will be used to store the current argument to the stack if a
3033    // register cannot be found for it.
3034    SDValue PtrOff;
3035
3036    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3037
3038    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3039
3040    // On PPC64, promote integers to 64-bit values.
3041    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3042      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3043      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3044      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3045    }
3046
3047    // FIXME memcpy is used way more than necessary.  Correctness first.
3048    if (Flags.isByVal()) {
3049      unsigned Size = Flags.getByValSize();
3050      if (Size==1 || Size==2) {
3051        // Very small objects are passed right-justified.
3052        // Everything else is passed left-justified.
3053        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3054        if (GPR_idx != NumGPRs) {
3055          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg,
3056                                        MachinePointerInfo(), VT,
3057                                        false, false, 0);
3058          MemOpChains.push_back(Load.getValue(1));
3059          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3060
3061          ArgOffset += PtrByteSize;
3062        } else {
3063          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3064          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3065          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3066                                CallSeqStart.getNode()->getOperand(0),
3067                                Flags, DAG, dl);
3068          // This must go outside the CALLSEQ_START..END.
3069          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3070                               CallSeqStart.getNode()->getOperand(1));
3071          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3072                                 NewCallSeqStart.getNode());
3073          Chain = CallSeqStart = NewCallSeqStart;
3074          ArgOffset += PtrByteSize;
3075        }
3076        continue;
3077      }
3078      // Copy entire object into memory.  There are cases where gcc-generated
3079      // code assumes it is there, even if it could be put entirely into
3080      // registers.  (This is not what the doc says.)
3081      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3082                            CallSeqStart.getNode()->getOperand(0),
3083                            Flags, DAG, dl);
3084      // This must go outside the CALLSEQ_START..END.
3085      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3086                           CallSeqStart.getNode()->getOperand(1));
3087      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3088      Chain = CallSeqStart = NewCallSeqStart;
3089      // And copy the pieces of it that fit into registers.
3090      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3091        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3092        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3093        if (GPR_idx != NumGPRs) {
3094          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3095                                     MachinePointerInfo(),
3096                                     false, false, 0);
3097          MemOpChains.push_back(Load.getValue(1));
3098          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3099          ArgOffset += PtrByteSize;
3100        } else {
3101          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3102          break;
3103        }
3104      }
3105      continue;
3106    }
3107
3108    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3109    default: llvm_unreachable("Unexpected ValueType for argument!");
3110    case MVT::i32:
3111    case MVT::i64:
3112      if (GPR_idx != NumGPRs) {
3113        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3114      } else {
3115        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3116                         isPPC64, isTailCall, false, MemOpChains,
3117                         TailCallArguments, dl);
3118      }
3119      ArgOffset += PtrByteSize;
3120      break;
3121    case MVT::f32:
3122    case MVT::f64:
3123      if (FPR_idx != NumFPRs) {
3124        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3125
3126        if (isVarArg) {
3127          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3128                                       MachinePointerInfo(), false, false, 0);
3129          MemOpChains.push_back(Store);
3130
3131          // Float varargs are always shadowed in available integer registers
3132          if (GPR_idx != NumGPRs) {
3133            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3134                                       MachinePointerInfo(), false, false, 0);
3135            MemOpChains.push_back(Load.getValue(1));
3136            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3137          }
3138          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3139            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3140            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3141            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3142                                       MachinePointerInfo(),
3143                                       false, false, 0);
3144            MemOpChains.push_back(Load.getValue(1));
3145            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3146          }
3147        } else {
3148          // If we have any FPRs remaining, we may also have GPRs remaining.
3149          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3150          // GPRs.
3151          if (GPR_idx != NumGPRs)
3152            ++GPR_idx;
3153          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3154              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3155            ++GPR_idx;
3156        }
3157      } else {
3158        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3159                         isPPC64, isTailCall, false, MemOpChains,
3160                         TailCallArguments, dl);
3161      }
3162      if (isPPC64)
3163        ArgOffset += 8;
3164      else
3165        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3166      break;
3167    case MVT::v4f32:
3168    case MVT::v4i32:
3169    case MVT::v8i16:
3170    case MVT::v16i8:
3171      if (isVarArg) {
3172        // These go aligned on the stack, or in the corresponding R registers
3173        // when within range.  The Darwin PPC ABI doc claims they also go in
3174        // V registers; in fact gcc does this only for arguments that are
3175        // prototyped, not for those that match the ...  We do it for all
3176        // arguments, seems to work.
3177        while (ArgOffset % 16 !=0) {
3178          ArgOffset += PtrByteSize;
3179          if (GPR_idx != NumGPRs)
3180            GPR_idx++;
3181        }
3182        // We could elide this store in the case where the object fits
3183        // entirely in R registers.  Maybe later.
3184        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3185                            DAG.getConstant(ArgOffset, PtrVT));
3186        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3187                                     MachinePointerInfo(), false, false, 0);
3188        MemOpChains.push_back(Store);
3189        if (VR_idx != NumVRs) {
3190          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3191                                     MachinePointerInfo(),
3192                                     false, false, 0);
3193          MemOpChains.push_back(Load.getValue(1));
3194          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3195        }
3196        ArgOffset += 16;
3197        for (unsigned i=0; i<16; i+=PtrByteSize) {
3198          if (GPR_idx == NumGPRs)
3199            break;
3200          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3201                                  DAG.getConstant(i, PtrVT));
3202          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3203                                     false, false, 0);
3204          MemOpChains.push_back(Load.getValue(1));
3205          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3206        }
3207        break;
3208      }
3209
3210      // Non-varargs Altivec params generally go in registers, but have
3211      // stack space allocated at the end.
3212      if (VR_idx != NumVRs) {
3213        // Doesn't have GPR space allocated.
3214        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3215      } else if (nAltivecParamsAtEnd==0) {
3216        // We are emitting Altivec params in order.
3217        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3218                         isPPC64, isTailCall, true, MemOpChains,
3219                         TailCallArguments, dl);
3220        ArgOffset += 16;
3221      }
3222      break;
3223    }
3224  }
3225  // If all Altivec parameters fit in registers, as they usually do,
3226  // they get stack space following the non-Altivec parameters.  We
3227  // don't track this here because nobody below needs it.
3228  // If there are more Altivec parameters than fit in registers emit
3229  // the stores here.
3230  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3231    unsigned j = 0;
3232    // Offset is aligned; skip 1st 12 params which go in V registers.
3233    ArgOffset = ((ArgOffset+15)/16)*16;
3234    ArgOffset += 12*16;
3235    for (unsigned i = 0; i != NumOps; ++i) {
3236      SDValue Arg = OutVals[i];
3237      EVT ArgType = Outs[i].VT;
3238      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3239          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3240        if (++j > NumVRs) {
3241          SDValue PtrOff;
3242          // We are emitting Altivec params in order.
3243          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3244                           isPPC64, isTailCall, true, MemOpChains,
3245                           TailCallArguments, dl);
3246          ArgOffset += 16;
3247        }
3248      }
3249    }
3250  }
3251
3252  if (!MemOpChains.empty())
3253    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3254                        &MemOpChains[0], MemOpChains.size());
3255
3256  // Check if this is an indirect call (MTCTR/BCTRL).
3257  // See PrepareCall() for more information about calls through function
3258  // pointers in the 64-bit SVR4 ABI.
3259  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3260      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3261      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3262      !isBLACompatibleAddress(Callee, DAG)) {
3263    // Load r2 into a virtual register and store it to the TOC save area.
3264    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3265    // TOC save area offset.
3266    SDValue PtrOff = DAG.getIntPtrConstant(40);
3267    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3268    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3269                         false, false, 0);
3270  }
3271
3272  // On Darwin, R12 must contain the address of an indirect callee.  This does
3273  // not mean the MTCTR instruction must use R12; it's easier to model this as
3274  // an extra parameter, so do that.
3275  if (!isTailCall &&
3276      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3277      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3278      !isBLACompatibleAddress(Callee, DAG))
3279    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3280                                                   PPC::R12), Callee));
3281
3282  // Build a sequence of copy-to-reg nodes chained together with token chain
3283  // and flag operands which copy the outgoing args into the appropriate regs.
3284  SDValue InFlag;
3285  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3286    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3287                             RegsToPass[i].second, InFlag);
3288    InFlag = Chain.getValue(1);
3289  }
3290
3291  if (isTailCall)
3292    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3293                    FPOp, true, TailCallArguments);
3294
3295  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3296                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3297                    Ins, InVals);
3298}
3299
3300SDValue
3301PPCTargetLowering::LowerReturn(SDValue Chain,
3302                               CallingConv::ID CallConv, bool isVarArg,
3303                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3304                               const SmallVectorImpl<SDValue> &OutVals,
3305                               DebugLoc dl, SelectionDAG &DAG) const {
3306
3307  SmallVector<CCValAssign, 16> RVLocs;
3308  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3309                 RVLocs, *DAG.getContext());
3310  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3311
3312  // If this is the first return lowered for this function, add the regs to the
3313  // liveout set for the function.
3314  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3315    for (unsigned i = 0; i != RVLocs.size(); ++i)
3316      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3317  }
3318
3319  SDValue Flag;
3320
3321  // Copy the result values into the output registers.
3322  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3323    CCValAssign &VA = RVLocs[i];
3324    assert(VA.isRegLoc() && "Can only return in registers!");
3325    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3326                             OutVals[i], Flag);
3327    Flag = Chain.getValue(1);
3328  }
3329
3330  if (Flag.getNode())
3331    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3332  else
3333    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3334}
3335
3336SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3337                                   const PPCSubtarget &Subtarget) const {
3338  // When we pop the dynamic allocation we need to restore the SP link.
3339  DebugLoc dl = Op.getDebugLoc();
3340
3341  // Get the corect type for pointers.
3342  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3343
3344  // Construct the stack pointer operand.
3345  bool isPPC64 = Subtarget.isPPC64();
3346  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3347  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3348
3349  // Get the operands for the STACKRESTORE.
3350  SDValue Chain = Op.getOperand(0);
3351  SDValue SaveSP = Op.getOperand(1);
3352
3353  // Load the old link SP.
3354  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3355                                   MachinePointerInfo(),
3356                                   false, false, 0);
3357
3358  // Restore the stack pointer.
3359  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3360
3361  // Store the old link SP.
3362  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3363                      false, false, 0);
3364}
3365
3366
3367
3368SDValue
3369PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3370  MachineFunction &MF = DAG.getMachineFunction();
3371  bool isPPC64 = PPCSubTarget.isPPC64();
3372  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3373  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3374
3375  // Get current frame pointer save index.  The users of this index will be
3376  // primarily DYNALLOC instructions.
3377  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3378  int RASI = FI->getReturnAddrSaveIndex();
3379
3380  // If the frame pointer save index hasn't been defined yet.
3381  if (!RASI) {
3382    // Find out what the fix offset of the frame pointer save area.
3383    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3384    // Allocate the frame index for frame pointer save area.
3385    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3386    // Save the result.
3387    FI->setReturnAddrSaveIndex(RASI);
3388  }
3389  return DAG.getFrameIndex(RASI, PtrVT);
3390}
3391
3392SDValue
3393PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3394  MachineFunction &MF = DAG.getMachineFunction();
3395  bool isPPC64 = PPCSubTarget.isPPC64();
3396  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3397  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3398
3399  // Get current frame pointer save index.  The users of this index will be
3400  // primarily DYNALLOC instructions.
3401  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3402  int FPSI = FI->getFramePointerSaveIndex();
3403
3404  // If the frame pointer save index hasn't been defined yet.
3405  if (!FPSI) {
3406    // Find out what the fix offset of the frame pointer save area.
3407    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3408                                                           isDarwinABI);
3409
3410    // Allocate the frame index for frame pointer save area.
3411    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3412    // Save the result.
3413    FI->setFramePointerSaveIndex(FPSI);
3414  }
3415  return DAG.getFrameIndex(FPSI, PtrVT);
3416}
3417
3418SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3419                                         SelectionDAG &DAG,
3420                                         const PPCSubtarget &Subtarget) const {
3421  // Get the inputs.
3422  SDValue Chain = Op.getOperand(0);
3423  SDValue Size  = Op.getOperand(1);
3424  DebugLoc dl = Op.getDebugLoc();
3425
3426  // Get the corect type for pointers.
3427  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3428  // Negate the size.
3429  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3430                                  DAG.getConstant(0, PtrVT), Size);
3431  // Construct a node for the frame pointer save index.
3432  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3433  // Build a DYNALLOC node.
3434  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3435  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3436  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3437}
3438
3439/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3440/// possible.
3441SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3442  // Not FP? Not a fsel.
3443  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3444      !Op.getOperand(2).getValueType().isFloatingPoint())
3445    return Op;
3446
3447  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3448
3449  // Cannot handle SETEQ/SETNE.
3450  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3451
3452  EVT ResVT = Op.getValueType();
3453  EVT CmpVT = Op.getOperand(0).getValueType();
3454  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3455  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3456  DebugLoc dl = Op.getDebugLoc();
3457
3458  // If the RHS of the comparison is a 0.0, we don't need to do the
3459  // subtraction at all.
3460  if (isFloatingPointZero(RHS))
3461    switch (CC) {
3462    default: break;       // SETUO etc aren't handled by fsel.
3463    case ISD::SETULT:
3464    case ISD::SETLT:
3465      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3466    case ISD::SETOGE:
3467    case ISD::SETGE:
3468      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3469        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3470      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3471    case ISD::SETUGT:
3472    case ISD::SETGT:
3473      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3474    case ISD::SETOLE:
3475    case ISD::SETLE:
3476      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3477        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3478      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3479                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3480    }
3481
3482  SDValue Cmp;
3483  switch (CC) {
3484  default: break;       // SETUO etc aren't handled by fsel.
3485  case ISD::SETULT:
3486  case ISD::SETLT:
3487    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3488    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3489      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3490      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3491  case ISD::SETOGE:
3492  case ISD::SETGE:
3493    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3494    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3495      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3496      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3497  case ISD::SETUGT:
3498  case ISD::SETGT:
3499    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3500    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3501      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3502      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3503  case ISD::SETOLE:
3504  case ISD::SETLE:
3505    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3506    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3507      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3508      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3509  }
3510  return Op;
3511}
3512
3513// FIXME: Split this code up when LegalizeDAGTypes lands.
3514SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3515                                           DebugLoc dl) const {
3516  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3517  SDValue Src = Op.getOperand(0);
3518  if (Src.getValueType() == MVT::f32)
3519    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3520
3521  SDValue Tmp;
3522  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3523  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3524  case MVT::i32:
3525    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3526                                                         PPCISD::FCTIDZ,
3527                      dl, MVT::f64, Src);
3528    break;
3529  case MVT::i64:
3530    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3531    break;
3532  }
3533
3534  // Convert the FP value to an int value through memory.
3535  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3536
3537  // Emit a store to the stack slot.
3538  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3539                               MachinePointerInfo(), false, false, 0);
3540
3541  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3542  // add in a bias.
3543  if (Op.getValueType() == MVT::i32)
3544    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3545                        DAG.getConstant(4, FIPtr.getValueType()));
3546  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3547                     false, false, 0);
3548}
3549
3550SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3551                                           SelectionDAG &DAG) const {
3552  DebugLoc dl = Op.getDebugLoc();
3553  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3554  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3555    return SDValue();
3556
3557  if (Op.getOperand(0).getValueType() == MVT::i64) {
3558    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3559    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3560    if (Op.getValueType() == MVT::f32)
3561      FP = DAG.getNode(ISD::FP_ROUND, dl,
3562                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3563    return FP;
3564  }
3565
3566  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3567         "Unhandled SINT_TO_FP type in custom expander!");
3568  // Since we only generate this in 64-bit mode, we can take advantage of
3569  // 64-bit registers.  In particular, sign extend the input value into the
3570  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3571  // then lfd it and fcfid it.
3572  MachineFunction &MF = DAG.getMachineFunction();
3573  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3574  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3575  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3576  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3577
3578  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3579                                Op.getOperand(0));
3580
3581  // STD the extended value into the stack slot.
3582  MachineMemOperand *MMO =
3583    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3584                            MachineMemOperand::MOStore, 8, 8);
3585  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3586  SDValue Store =
3587    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3588                            Ops, 4, MVT::i64, MMO);
3589  // Load the value as a double.
3590  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3591                           false, false, 0);
3592
3593  // FCFID it and return it.
3594  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3595  if (Op.getValueType() == MVT::f32)
3596    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3597  return FP;
3598}
3599
3600SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3601                                            SelectionDAG &DAG) const {
3602  DebugLoc dl = Op.getDebugLoc();
3603  /*
3604   The rounding mode is in bits 30:31 of FPSR, and has the following
3605   settings:
3606     00 Round to nearest
3607     01 Round to 0
3608     10 Round to +inf
3609     11 Round to -inf
3610
3611  FLT_ROUNDS, on the other hand, expects the following:
3612    -1 Undefined
3613     0 Round to 0
3614     1 Round to nearest
3615     2 Round to +inf
3616     3 Round to -inf
3617
3618  To perform the conversion, we do:
3619    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3620  */
3621
3622  MachineFunction &MF = DAG.getMachineFunction();
3623  EVT VT = Op.getValueType();
3624  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3625  std::vector<EVT> NodeTys;
3626  SDValue MFFSreg, InFlag;
3627
3628  // Save FP Control Word to register
3629  NodeTys.push_back(MVT::f64);    // return register
3630  NodeTys.push_back(MVT::Glue);   // unused in this context
3631  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3632
3633  // Save FP register to stack slot
3634  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3635  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3636  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3637                               StackSlot, MachinePointerInfo(), false, false,0);
3638
3639  // Load FP Control Word from low 32 bits of stack slot.
3640  SDValue Four = DAG.getConstant(4, PtrVT);
3641  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3642  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3643                            false, false, 0);
3644
3645  // Transform as necessary
3646  SDValue CWD1 =
3647    DAG.getNode(ISD::AND, dl, MVT::i32,
3648                CWD, DAG.getConstant(3, MVT::i32));
3649  SDValue CWD2 =
3650    DAG.getNode(ISD::SRL, dl, MVT::i32,
3651                DAG.getNode(ISD::AND, dl, MVT::i32,
3652                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3653                                        CWD, DAG.getConstant(3, MVT::i32)),
3654                            DAG.getConstant(3, MVT::i32)),
3655                DAG.getConstant(1, MVT::i32));
3656
3657  SDValue RetVal =
3658    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3659
3660  return DAG.getNode((VT.getSizeInBits() < 16 ?
3661                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3662}
3663
3664SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3665  EVT VT = Op.getValueType();
3666  unsigned BitWidth = VT.getSizeInBits();
3667  DebugLoc dl = Op.getDebugLoc();
3668  assert(Op.getNumOperands() == 3 &&
3669         VT == Op.getOperand(1).getValueType() &&
3670         "Unexpected SHL!");
3671
3672  // Expand into a bunch of logical ops.  Note that these ops
3673  // depend on the PPC behavior for oversized shift amounts.
3674  SDValue Lo = Op.getOperand(0);
3675  SDValue Hi = Op.getOperand(1);
3676  SDValue Amt = Op.getOperand(2);
3677  EVT AmtVT = Amt.getValueType();
3678
3679  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3680                             DAG.getConstant(BitWidth, AmtVT), Amt);
3681  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3682  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3683  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3684  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3685                             DAG.getConstant(-BitWidth, AmtVT));
3686  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3687  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3688  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3689  SDValue OutOps[] = { OutLo, OutHi };
3690  return DAG.getMergeValues(OutOps, 2, dl);
3691}
3692
3693SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3694  EVT VT = Op.getValueType();
3695  DebugLoc dl = Op.getDebugLoc();
3696  unsigned BitWidth = VT.getSizeInBits();
3697  assert(Op.getNumOperands() == 3 &&
3698         VT == Op.getOperand(1).getValueType() &&
3699         "Unexpected SRL!");
3700
3701  // Expand into a bunch of logical ops.  Note that these ops
3702  // depend on the PPC behavior for oversized shift amounts.
3703  SDValue Lo = Op.getOperand(0);
3704  SDValue Hi = Op.getOperand(1);
3705  SDValue Amt = Op.getOperand(2);
3706  EVT AmtVT = Amt.getValueType();
3707
3708  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3709                             DAG.getConstant(BitWidth, AmtVT), Amt);
3710  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3711  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3712  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3713  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3714                             DAG.getConstant(-BitWidth, AmtVT));
3715  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3716  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3717  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3718  SDValue OutOps[] = { OutLo, OutHi };
3719  return DAG.getMergeValues(OutOps, 2, dl);
3720}
3721
3722SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3723  DebugLoc dl = Op.getDebugLoc();
3724  EVT VT = Op.getValueType();
3725  unsigned BitWidth = VT.getSizeInBits();
3726  assert(Op.getNumOperands() == 3 &&
3727         VT == Op.getOperand(1).getValueType() &&
3728         "Unexpected SRA!");
3729
3730  // Expand into a bunch of logical ops, followed by a select_cc.
3731  SDValue Lo = Op.getOperand(0);
3732  SDValue Hi = Op.getOperand(1);
3733  SDValue Amt = Op.getOperand(2);
3734  EVT AmtVT = Amt.getValueType();
3735
3736  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3737                             DAG.getConstant(BitWidth, AmtVT), Amt);
3738  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3739  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3740  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3741  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3742                             DAG.getConstant(-BitWidth, AmtVT));
3743  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3744  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3745  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3746                                  Tmp4, Tmp6, ISD::SETLE);
3747  SDValue OutOps[] = { OutLo, OutHi };
3748  return DAG.getMergeValues(OutOps, 2, dl);
3749}
3750
3751//===----------------------------------------------------------------------===//
3752// Vector related lowering.
3753//
3754
3755/// BuildSplatI - Build a canonical splati of Val with an element size of
3756/// SplatSize.  Cast the result to VT.
3757static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3758                             SelectionDAG &DAG, DebugLoc dl) {
3759  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3760
3761  static const EVT VTys[] = { // canonical VT to use for each size.
3762    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3763  };
3764
3765  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3766
3767  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3768  if (Val == -1)
3769    SplatSize = 1;
3770
3771  EVT CanonicalVT = VTys[SplatSize-1];
3772
3773  // Build a canonical splat for this value.
3774  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3775  SmallVector<SDValue, 8> Ops;
3776  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3777  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3778                              &Ops[0], Ops.size());
3779  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3780}
3781
3782/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3783/// specified intrinsic ID.
3784static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3785                                SelectionDAG &DAG, DebugLoc dl,
3786                                EVT DestVT = MVT::Other) {
3787  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3788  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3789                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3790}
3791
3792/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3793/// specified intrinsic ID.
3794static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3795                                SDValue Op2, SelectionDAG &DAG,
3796                                DebugLoc dl, EVT DestVT = MVT::Other) {
3797  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3798  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3799                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3800}
3801
3802
3803/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3804/// amount.  The result has the specified value type.
3805static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3806                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3807  // Force LHS/RHS to be the right type.
3808  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3809  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3810
3811  int Ops[16];
3812  for (unsigned i = 0; i != 16; ++i)
3813    Ops[i] = i + Amt;
3814  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3815  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3816}
3817
3818// If this is a case we can't handle, return null and let the default
3819// expansion code take care of it.  If we CAN select this case, and if it
3820// selects to a single instruction, return Op.  Otherwise, if we can codegen
3821// this case more efficiently than a constant pool load, lower it to the
3822// sequence of ops that should be used.
3823SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3824                                             SelectionDAG &DAG) const {
3825  DebugLoc dl = Op.getDebugLoc();
3826  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3827  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3828
3829  // Check if this is a splat of a constant value.
3830  APInt APSplatBits, APSplatUndef;
3831  unsigned SplatBitSize;
3832  bool HasAnyUndefs;
3833  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3834                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3835    return SDValue();
3836
3837  unsigned SplatBits = APSplatBits.getZExtValue();
3838  unsigned SplatUndef = APSplatUndef.getZExtValue();
3839  unsigned SplatSize = SplatBitSize / 8;
3840
3841  // First, handle single instruction cases.
3842
3843  // All zeros?
3844  if (SplatBits == 0) {
3845    // Canonicalize all zero vectors to be v4i32.
3846    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3847      SDValue Z = DAG.getConstant(0, MVT::i32);
3848      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3849      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3850    }
3851    return Op;
3852  }
3853
3854  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3855  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3856                    (32-SplatBitSize));
3857  if (SextVal >= -16 && SextVal <= 15)
3858    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3859
3860
3861  // Two instruction sequences.
3862
3863  // If this value is in the range [-32,30] and is even, use:
3864  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3865  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3866    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3867    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3868    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3869  }
3870
3871  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3872  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3873  // for fneg/fabs.
3874  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3875    // Make -1 and vspltisw -1:
3876    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3877
3878    // Make the VSLW intrinsic, computing 0x8000_0000.
3879    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3880                                   OnesV, DAG, dl);
3881
3882    // xor by OnesV to invert it.
3883    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3884    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3885  }
3886
3887  // Check to see if this is a wide variety of vsplti*, binop self cases.
3888  static const signed char SplatCsts[] = {
3889    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3890    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3891  };
3892
3893  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3894    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3895    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3896    int i = SplatCsts[idx];
3897
3898    // Figure out what shift amount will be used by altivec if shifted by i in
3899    // this splat size.
3900    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3901
3902    // vsplti + shl self.
3903    if (SextVal == (i << (int)TypeShiftAmt)) {
3904      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3905      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3906        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3907        Intrinsic::ppc_altivec_vslw
3908      };
3909      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3910      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3911    }
3912
3913    // vsplti + srl self.
3914    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3915      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3916      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3917        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3918        Intrinsic::ppc_altivec_vsrw
3919      };
3920      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3921      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3922    }
3923
3924    // vsplti + sra self.
3925    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3926      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3927      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3928        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3929        Intrinsic::ppc_altivec_vsraw
3930      };
3931      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3932      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3933    }
3934
3935    // vsplti + rol self.
3936    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3937                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3938      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3939      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3940        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3941        Intrinsic::ppc_altivec_vrlw
3942      };
3943      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3944      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3945    }
3946
3947    // t = vsplti c, result = vsldoi t, t, 1
3948    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3949      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3950      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3951    }
3952    // t = vsplti c, result = vsldoi t, t, 2
3953    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3954      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3955      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3956    }
3957    // t = vsplti c, result = vsldoi t, t, 3
3958    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3959      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3960      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3961    }
3962  }
3963
3964  // Three instruction sequences.
3965
3966  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3967  if (SextVal >= 0 && SextVal <= 31) {
3968    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3969    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3970    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3971    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3972  }
3973  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3974  if (SextVal >= -31 && SextVal <= 0) {
3975    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3976    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3977    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3978    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3979  }
3980
3981  return SDValue();
3982}
3983
3984/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3985/// the specified operations to build the shuffle.
3986static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3987                                      SDValue RHS, SelectionDAG &DAG,
3988                                      DebugLoc dl) {
3989  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3990  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3991  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3992
3993  enum {
3994    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3995    OP_VMRGHW,
3996    OP_VMRGLW,
3997    OP_VSPLTISW0,
3998    OP_VSPLTISW1,
3999    OP_VSPLTISW2,
4000    OP_VSPLTISW3,
4001    OP_VSLDOI4,
4002    OP_VSLDOI8,
4003    OP_VSLDOI12
4004  };
4005
4006  if (OpNum == OP_COPY) {
4007    if (LHSID == (1*9+2)*9+3) return LHS;
4008    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4009    return RHS;
4010  }
4011
4012  SDValue OpLHS, OpRHS;
4013  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4014  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4015
4016  int ShufIdxs[16];
4017  switch (OpNum) {
4018  default: llvm_unreachable("Unknown i32 permute!");
4019  case OP_VMRGHW:
4020    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4021    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4022    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4023    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4024    break;
4025  case OP_VMRGLW:
4026    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4027    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4028    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4029    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4030    break;
4031  case OP_VSPLTISW0:
4032    for (unsigned i = 0; i != 16; ++i)
4033      ShufIdxs[i] = (i&3)+0;
4034    break;
4035  case OP_VSPLTISW1:
4036    for (unsigned i = 0; i != 16; ++i)
4037      ShufIdxs[i] = (i&3)+4;
4038    break;
4039  case OP_VSPLTISW2:
4040    for (unsigned i = 0; i != 16; ++i)
4041      ShufIdxs[i] = (i&3)+8;
4042    break;
4043  case OP_VSPLTISW3:
4044    for (unsigned i = 0; i != 16; ++i)
4045      ShufIdxs[i] = (i&3)+12;
4046    break;
4047  case OP_VSLDOI4:
4048    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4049  case OP_VSLDOI8:
4050    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4051  case OP_VSLDOI12:
4052    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4053  }
4054  EVT VT = OpLHS.getValueType();
4055  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4056  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4057  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4058  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4059}
4060
4061/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4062/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4063/// return the code it can be lowered into.  Worst case, it can always be
4064/// lowered into a vperm.
4065SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4066                                               SelectionDAG &DAG) const {
4067  DebugLoc dl = Op.getDebugLoc();
4068  SDValue V1 = Op.getOperand(0);
4069  SDValue V2 = Op.getOperand(1);
4070  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4071  EVT VT = Op.getValueType();
4072
4073  // Cases that are handled by instructions that take permute immediates
4074  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4075  // selected by the instruction selector.
4076  if (V2.getOpcode() == ISD::UNDEF) {
4077    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4078        PPC::isSplatShuffleMask(SVOp, 2) ||
4079        PPC::isSplatShuffleMask(SVOp, 4) ||
4080        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4081        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4082        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4083        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4084        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4085        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4086        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4087        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4088        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4089      return Op;
4090    }
4091  }
4092
4093  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4094  // and produce a fixed permutation.  If any of these match, do not lower to
4095  // VPERM.
4096  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4097      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4098      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4099      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4100      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4101      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4102      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4103      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4104      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4105    return Op;
4106
4107  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4108  // perfect shuffle table to emit an optimal matching sequence.
4109  SmallVector<int, 16> PermMask;
4110  SVOp->getMask(PermMask);
4111
4112  unsigned PFIndexes[4];
4113  bool isFourElementShuffle = true;
4114  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4115    unsigned EltNo = 8;   // Start out undef.
4116    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4117      if (PermMask[i*4+j] < 0)
4118        continue;   // Undef, ignore it.
4119
4120      unsigned ByteSource = PermMask[i*4+j];
4121      if ((ByteSource & 3) != j) {
4122        isFourElementShuffle = false;
4123        break;
4124      }
4125
4126      if (EltNo == 8) {
4127        EltNo = ByteSource/4;
4128      } else if (EltNo != ByteSource/4) {
4129        isFourElementShuffle = false;
4130        break;
4131      }
4132    }
4133    PFIndexes[i] = EltNo;
4134  }
4135
4136  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4137  // perfect shuffle vector to determine if it is cost effective to do this as
4138  // discrete instructions, or whether we should use a vperm.
4139  if (isFourElementShuffle) {
4140    // Compute the index in the perfect shuffle table.
4141    unsigned PFTableIndex =
4142      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4143
4144    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4145    unsigned Cost  = (PFEntry >> 30);
4146
4147    // Determining when to avoid vperm is tricky.  Many things affect the cost
4148    // of vperm, particularly how many times the perm mask needs to be computed.
4149    // For example, if the perm mask can be hoisted out of a loop or is already
4150    // used (perhaps because there are multiple permutes with the same shuffle
4151    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4152    // the loop requires an extra register.
4153    //
4154    // As a compromise, we only emit discrete instructions if the shuffle can be
4155    // generated in 3 or fewer operations.  When we have loop information
4156    // available, if this block is within a loop, we should avoid using vperm
4157    // for 3-operation perms and use a constant pool load instead.
4158    if (Cost < 3)
4159      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4160  }
4161
4162  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4163  // vector that will get spilled to the constant pool.
4164  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4165
4166  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4167  // that it is in input element units, not in bytes.  Convert now.
4168  EVT EltVT = V1.getValueType().getVectorElementType();
4169  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4170
4171  SmallVector<SDValue, 16> ResultMask;
4172  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4173    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4174
4175    for (unsigned j = 0; j != BytesPerElement; ++j)
4176      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4177                                           MVT::i32));
4178  }
4179
4180  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4181                                    &ResultMask[0], ResultMask.size());
4182  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4183}
4184
4185/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4186/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4187/// information about the intrinsic.
4188static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4189                                  bool &isDot) {
4190  unsigned IntrinsicID =
4191    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4192  CompareOpc = -1;
4193  isDot = false;
4194  switch (IntrinsicID) {
4195  default: return false;
4196    // Comparison predicates.
4197  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4198  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4199  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4200  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4201  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4202  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4203  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4204  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4207  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4208  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4209  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4210
4211    // Normal Comparisons.
4212  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4213  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4214  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4215  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4216  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4217  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4218  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4219  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4222  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4223  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4224  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4225  }
4226  return true;
4227}
4228
4229/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4230/// lower, do it, otherwise return null.
4231SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4232                                                   SelectionDAG &DAG) const {
4233  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4234  // opcode number of the comparison.
4235  DebugLoc dl = Op.getDebugLoc();
4236  int CompareOpc;
4237  bool isDot;
4238  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4239    return SDValue();    // Don't custom lower most intrinsics.
4240
4241  // If this is a non-dot comparison, make the VCMP node and we are done.
4242  if (!isDot) {
4243    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4244                              Op.getOperand(1), Op.getOperand(2),
4245                              DAG.getConstant(CompareOpc, MVT::i32));
4246    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4247  }
4248
4249  // Create the PPCISD altivec 'dot' comparison node.
4250  SDValue Ops[] = {
4251    Op.getOperand(2),  // LHS
4252    Op.getOperand(3),  // RHS
4253    DAG.getConstant(CompareOpc, MVT::i32)
4254  };
4255  std::vector<EVT> VTs;
4256  VTs.push_back(Op.getOperand(2).getValueType());
4257  VTs.push_back(MVT::Glue);
4258  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4259
4260  // Now that we have the comparison, emit a copy from the CR to a GPR.
4261  // This is flagged to the above dot comparison.
4262  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4263                                DAG.getRegister(PPC::CR6, MVT::i32),
4264                                CompNode.getValue(1));
4265
4266  // Unpack the result based on how the target uses it.
4267  unsigned BitNo;   // Bit # of CR6.
4268  bool InvertBit;   // Invert result?
4269  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4270  default:  // Can't happen, don't crash on invalid number though.
4271  case 0:   // Return the value of the EQ bit of CR6.
4272    BitNo = 0; InvertBit = false;
4273    break;
4274  case 1:   // Return the inverted value of the EQ bit of CR6.
4275    BitNo = 0; InvertBit = true;
4276    break;
4277  case 2:   // Return the value of the LT bit of CR6.
4278    BitNo = 2; InvertBit = false;
4279    break;
4280  case 3:   // Return the inverted value of the LT bit of CR6.
4281    BitNo = 2; InvertBit = true;
4282    break;
4283  }
4284
4285  // Shift the bit into the low position.
4286  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4287                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4288  // Isolate the bit.
4289  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4290                      DAG.getConstant(1, MVT::i32));
4291
4292  // If we are supposed to, toggle the bit.
4293  if (InvertBit)
4294    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4295                        DAG.getConstant(1, MVT::i32));
4296  return Flags;
4297}
4298
4299SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4300                                                   SelectionDAG &DAG) const {
4301  DebugLoc dl = Op.getDebugLoc();
4302  // Create a stack slot that is 16-byte aligned.
4303  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4304  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4305  EVT PtrVT = getPointerTy();
4306  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4307
4308  // Store the input value into Value#0 of the stack slot.
4309  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4310                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4311                               false, false, 0);
4312  // Load it out.
4313  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4314                     false, false, 0);
4315}
4316
4317SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4318  DebugLoc dl = Op.getDebugLoc();
4319  if (Op.getValueType() == MVT::v4i32) {
4320    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4321
4322    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4323    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4324
4325    SDValue RHSSwap =   // = vrlw RHS, 16
4326      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4327
4328    // Shrinkify inputs to v8i16.
4329    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4330    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4331    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4332
4333    // Low parts multiplied together, generating 32-bit results (we ignore the
4334    // top parts).
4335    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4336                                        LHS, RHS, DAG, dl, MVT::v4i32);
4337
4338    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4339                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4340    // Shift the high parts up 16 bits.
4341    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4342                              Neg16, DAG, dl);
4343    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4344  } else if (Op.getValueType() == MVT::v8i16) {
4345    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4346
4347    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4348
4349    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4350                            LHS, RHS, Zero, DAG, dl);
4351  } else if (Op.getValueType() == MVT::v16i8) {
4352    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4353
4354    // Multiply the even 8-bit parts, producing 16-bit sums.
4355    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4356                                           LHS, RHS, DAG, dl, MVT::v8i16);
4357    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4358
4359    // Multiply the odd 8-bit parts, producing 16-bit sums.
4360    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4361                                          LHS, RHS, DAG, dl, MVT::v8i16);
4362    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4363
4364    // Merge the results together.
4365    int Ops[16];
4366    for (unsigned i = 0; i != 8; ++i) {
4367      Ops[i*2  ] = 2*i+1;
4368      Ops[i*2+1] = 2*i+1+16;
4369    }
4370    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4371  } else {
4372    llvm_unreachable("Unknown mul to lower!");
4373  }
4374}
4375
4376/// LowerOperation - Provide custom lowering hooks for some operations.
4377///
4378SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4379  switch (Op.getOpcode()) {
4380  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4381  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4382  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4383  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4384  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4385  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4386  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4387  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4388  case ISD::VASTART:
4389    return LowerVASTART(Op, DAG, PPCSubTarget);
4390
4391  case ISD::VAARG:
4392    return LowerVAARG(Op, DAG, PPCSubTarget);
4393
4394  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4395  case ISD::DYNAMIC_STACKALLOC:
4396    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4397
4398  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4399  case ISD::FP_TO_UINT:
4400  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4401                                                       Op.getDebugLoc());
4402  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4403  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4404
4405  // Lower 64-bit shifts.
4406  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4407  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4408  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4409
4410  // Vector-related lowering.
4411  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4412  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4413  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4414  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4415  case ISD::MUL:                return LowerMUL(Op, DAG);
4416
4417  // Frame & Return address.
4418  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4419  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4420  }
4421  return SDValue();
4422}
4423
4424void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4425                                           SmallVectorImpl<SDValue>&Results,
4426                                           SelectionDAG &DAG) const {
4427  DebugLoc dl = N->getDebugLoc();
4428  switch (N->getOpcode()) {
4429  default:
4430    assert(false && "Do not know how to custom type legalize this operation!");
4431    return;
4432  case ISD::FP_ROUND_INREG: {
4433    assert(N->getValueType(0) == MVT::ppcf128);
4434    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4435    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4436                             MVT::f64, N->getOperand(0),
4437                             DAG.getIntPtrConstant(0));
4438    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4439                             MVT::f64, N->getOperand(0),
4440                             DAG.getIntPtrConstant(1));
4441
4442    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4443    // of the long double, and puts FPSCR back the way it was.  We do not
4444    // actually model FPSCR.
4445    std::vector<EVT> NodeTys;
4446    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4447
4448    NodeTys.push_back(MVT::f64);   // Return register
4449    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4450    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4451    MFFSreg = Result.getValue(0);
4452    InFlag = Result.getValue(1);
4453
4454    NodeTys.clear();
4455    NodeTys.push_back(MVT::Glue);   // Returns a flag
4456    Ops[0] = DAG.getConstant(31, MVT::i32);
4457    Ops[1] = InFlag;
4458    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4459    InFlag = Result.getValue(0);
4460
4461    NodeTys.clear();
4462    NodeTys.push_back(MVT::Glue);   // Returns a flag
4463    Ops[0] = DAG.getConstant(30, MVT::i32);
4464    Ops[1] = InFlag;
4465    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4466    InFlag = Result.getValue(0);
4467
4468    NodeTys.clear();
4469    NodeTys.push_back(MVT::f64);    // result of add
4470    NodeTys.push_back(MVT::Glue);   // Returns a flag
4471    Ops[0] = Lo;
4472    Ops[1] = Hi;
4473    Ops[2] = InFlag;
4474    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4475    FPreg = Result.getValue(0);
4476    InFlag = Result.getValue(1);
4477
4478    NodeTys.clear();
4479    NodeTys.push_back(MVT::f64);
4480    Ops[0] = DAG.getConstant(1, MVT::i32);
4481    Ops[1] = MFFSreg;
4482    Ops[2] = FPreg;
4483    Ops[3] = InFlag;
4484    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4485    FPreg = Result.getValue(0);
4486
4487    // We know the low half is about to be thrown away, so just use something
4488    // convenient.
4489    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4490                                FPreg, FPreg));
4491    return;
4492  }
4493  case ISD::FP_TO_SINT:
4494    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4495    return;
4496  }
4497}
4498
4499
4500//===----------------------------------------------------------------------===//
4501//  Other Lowering Code
4502//===----------------------------------------------------------------------===//
4503
4504MachineBasicBlock *
4505PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4506                                    bool is64bit, unsigned BinOpcode) const {
4507  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4508  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4509
4510  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4511  MachineFunction *F = BB->getParent();
4512  MachineFunction::iterator It = BB;
4513  ++It;
4514
4515  unsigned dest = MI->getOperand(0).getReg();
4516  unsigned ptrA = MI->getOperand(1).getReg();
4517  unsigned ptrB = MI->getOperand(2).getReg();
4518  unsigned incr = MI->getOperand(3).getReg();
4519  DebugLoc dl = MI->getDebugLoc();
4520
4521  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4522  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4523  F->insert(It, loopMBB);
4524  F->insert(It, exitMBB);
4525  exitMBB->splice(exitMBB->begin(), BB,
4526                  llvm::next(MachineBasicBlock::iterator(MI)),
4527                  BB->end());
4528  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4529
4530  MachineRegisterInfo &RegInfo = F->getRegInfo();
4531  unsigned TmpReg = (!BinOpcode) ? incr :
4532    RegInfo.createVirtualRegister(
4533       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4534                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4535
4536  //  thisMBB:
4537  //   ...
4538  //   fallthrough --> loopMBB
4539  BB->addSuccessor(loopMBB);
4540
4541  //  loopMBB:
4542  //   l[wd]arx dest, ptr
4543  //   add r0, dest, incr
4544  //   st[wd]cx. r0, ptr
4545  //   bne- loopMBB
4546  //   fallthrough --> exitMBB
4547  BB = loopMBB;
4548  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4549    .addReg(ptrA).addReg(ptrB);
4550  if (BinOpcode)
4551    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4552  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4553    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4554  BuildMI(BB, dl, TII->get(PPC::BCC))
4555    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4556  BB->addSuccessor(loopMBB);
4557  BB->addSuccessor(exitMBB);
4558
4559  //  exitMBB:
4560  //   ...
4561  BB = exitMBB;
4562  return BB;
4563}
4564
4565MachineBasicBlock *
4566PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4567                                            MachineBasicBlock *BB,
4568                                            bool is8bit,    // operation
4569                                            unsigned BinOpcode) const {
4570  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4571  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4572  // In 64 bit mode we have to use 64 bits for addresses, even though the
4573  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4574  // registers without caring whether they're 32 or 64, but here we're
4575  // doing actual arithmetic on the addresses.
4576  bool is64bit = PPCSubTarget.isPPC64();
4577
4578  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4579  MachineFunction *F = BB->getParent();
4580  MachineFunction::iterator It = BB;
4581  ++It;
4582
4583  unsigned dest = MI->getOperand(0).getReg();
4584  unsigned ptrA = MI->getOperand(1).getReg();
4585  unsigned ptrB = MI->getOperand(2).getReg();
4586  unsigned incr = MI->getOperand(3).getReg();
4587  DebugLoc dl = MI->getDebugLoc();
4588
4589  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4590  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4591  F->insert(It, loopMBB);
4592  F->insert(It, exitMBB);
4593  exitMBB->splice(exitMBB->begin(), BB,
4594                  llvm::next(MachineBasicBlock::iterator(MI)),
4595                  BB->end());
4596  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4597
4598  MachineRegisterInfo &RegInfo = F->getRegInfo();
4599  const TargetRegisterClass *RC =
4600    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4601              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4602  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4603  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4604  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4605  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4606  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4607  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4608  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4609  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4610  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4611  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4612  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4613  unsigned Ptr1Reg;
4614  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4615
4616  //  thisMBB:
4617  //   ...
4618  //   fallthrough --> loopMBB
4619  BB->addSuccessor(loopMBB);
4620
4621  // The 4-byte load must be aligned, while a char or short may be
4622  // anywhere in the word.  Hence all this nasty bookkeeping code.
4623  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4624  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4625  //   xori shift, shift1, 24 [16]
4626  //   rlwinm ptr, ptr1, 0, 0, 29
4627  //   slw incr2, incr, shift
4628  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4629  //   slw mask, mask2, shift
4630  //  loopMBB:
4631  //   lwarx tmpDest, ptr
4632  //   add tmp, tmpDest, incr2
4633  //   andc tmp2, tmpDest, mask
4634  //   and tmp3, tmp, mask
4635  //   or tmp4, tmp3, tmp2
4636  //   stwcx. tmp4, ptr
4637  //   bne- loopMBB
4638  //   fallthrough --> exitMBB
4639  //   srw dest, tmpDest, shift
4640
4641  if (ptrA!=PPC::R0) {
4642    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4643    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4644      .addReg(ptrA).addReg(ptrB);
4645  } else {
4646    Ptr1Reg = ptrB;
4647  }
4648  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4649      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4650  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4651      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4652  if (is64bit)
4653    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4654      .addReg(Ptr1Reg).addImm(0).addImm(61);
4655  else
4656    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4657      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4658  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4659      .addReg(incr).addReg(ShiftReg);
4660  if (is8bit)
4661    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4662  else {
4663    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4664    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4665  }
4666  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4667      .addReg(Mask2Reg).addReg(ShiftReg);
4668
4669  BB = loopMBB;
4670  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4671    .addReg(PPC::R0).addReg(PtrReg);
4672  if (BinOpcode)
4673    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4674      .addReg(Incr2Reg).addReg(TmpDestReg);
4675  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4676    .addReg(TmpDestReg).addReg(MaskReg);
4677  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4678    .addReg(TmpReg).addReg(MaskReg);
4679  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4680    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4681  BuildMI(BB, dl, TII->get(PPC::STWCX))
4682    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4683  BuildMI(BB, dl, TII->get(PPC::BCC))
4684    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4685  BB->addSuccessor(loopMBB);
4686  BB->addSuccessor(exitMBB);
4687
4688  //  exitMBB:
4689  //   ...
4690  BB = exitMBB;
4691  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4692  return BB;
4693}
4694
4695MachineBasicBlock *
4696PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4697                                               MachineBasicBlock *BB) const {
4698  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4699
4700  // To "insert" these instructions we actually have to insert their
4701  // control-flow patterns.
4702  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4703  MachineFunction::iterator It = BB;
4704  ++It;
4705
4706  MachineFunction *F = BB->getParent();
4707
4708  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4709      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4710      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4711      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4712      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4713
4714    // The incoming instruction knows the destination vreg to set, the
4715    // condition code register to branch on, the true/false values to
4716    // select between, and a branch opcode to use.
4717
4718    //  thisMBB:
4719    //  ...
4720    //   TrueVal = ...
4721    //   cmpTY ccX, r1, r2
4722    //   bCC copy1MBB
4723    //   fallthrough --> copy0MBB
4724    MachineBasicBlock *thisMBB = BB;
4725    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4726    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4727    unsigned SelectPred = MI->getOperand(4).getImm();
4728    DebugLoc dl = MI->getDebugLoc();
4729    F->insert(It, copy0MBB);
4730    F->insert(It, sinkMBB);
4731
4732    // Transfer the remainder of BB and its successor edges to sinkMBB.
4733    sinkMBB->splice(sinkMBB->begin(), BB,
4734                    llvm::next(MachineBasicBlock::iterator(MI)),
4735                    BB->end());
4736    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4737
4738    // Next, add the true and fallthrough blocks as its successors.
4739    BB->addSuccessor(copy0MBB);
4740    BB->addSuccessor(sinkMBB);
4741
4742    BuildMI(BB, dl, TII->get(PPC::BCC))
4743      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4744
4745    //  copy0MBB:
4746    //   %FalseValue = ...
4747    //   # fallthrough to sinkMBB
4748    BB = copy0MBB;
4749
4750    // Update machine-CFG edges
4751    BB->addSuccessor(sinkMBB);
4752
4753    //  sinkMBB:
4754    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4755    //  ...
4756    BB = sinkMBB;
4757    BuildMI(*BB, BB->begin(), dl,
4758            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4759      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4760      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4761  }
4762  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4763    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4764  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4765    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4766  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4767    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4768  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4769    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4770
4771  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4772    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4773  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4774    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4775  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4776    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4777  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4778    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4779
4780  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4781    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4782  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4783    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4784  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4785    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4786  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4787    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4788
4789  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4790    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4791  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4792    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4793  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4794    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4795  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4796    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4797
4798  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4799    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4800  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4801    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4802  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4803    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4804  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4805    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4806
4807  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4808    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4809  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4810    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4811  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4812    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4813  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4814    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4815
4816  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4817    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4818  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4819    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4820  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4821    BB = EmitAtomicBinary(MI, BB, false, 0);
4822  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4823    BB = EmitAtomicBinary(MI, BB, true, 0);
4824
4825  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4826           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4827    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4828
4829    unsigned dest   = MI->getOperand(0).getReg();
4830    unsigned ptrA   = MI->getOperand(1).getReg();
4831    unsigned ptrB   = MI->getOperand(2).getReg();
4832    unsigned oldval = MI->getOperand(3).getReg();
4833    unsigned newval = MI->getOperand(4).getReg();
4834    DebugLoc dl     = MI->getDebugLoc();
4835
4836    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4837    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4838    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4839    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4840    F->insert(It, loop1MBB);
4841    F->insert(It, loop2MBB);
4842    F->insert(It, midMBB);
4843    F->insert(It, exitMBB);
4844    exitMBB->splice(exitMBB->begin(), BB,
4845                    llvm::next(MachineBasicBlock::iterator(MI)),
4846                    BB->end());
4847    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4848
4849    //  thisMBB:
4850    //   ...
4851    //   fallthrough --> loopMBB
4852    BB->addSuccessor(loop1MBB);
4853
4854    // loop1MBB:
4855    //   l[wd]arx dest, ptr
4856    //   cmp[wd] dest, oldval
4857    //   bne- midMBB
4858    // loop2MBB:
4859    //   st[wd]cx. newval, ptr
4860    //   bne- loopMBB
4861    //   b exitBB
4862    // midMBB:
4863    //   st[wd]cx. dest, ptr
4864    // exitBB:
4865    BB = loop1MBB;
4866    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4867      .addReg(ptrA).addReg(ptrB);
4868    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4869      .addReg(oldval).addReg(dest);
4870    BuildMI(BB, dl, TII->get(PPC::BCC))
4871      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4872    BB->addSuccessor(loop2MBB);
4873    BB->addSuccessor(midMBB);
4874
4875    BB = loop2MBB;
4876    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4877      .addReg(newval).addReg(ptrA).addReg(ptrB);
4878    BuildMI(BB, dl, TII->get(PPC::BCC))
4879      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4880    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4881    BB->addSuccessor(loop1MBB);
4882    BB->addSuccessor(exitMBB);
4883
4884    BB = midMBB;
4885    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4886      .addReg(dest).addReg(ptrA).addReg(ptrB);
4887    BB->addSuccessor(exitMBB);
4888
4889    //  exitMBB:
4890    //   ...
4891    BB = exitMBB;
4892  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4893             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4894    // We must use 64-bit registers for addresses when targeting 64-bit,
4895    // since we're actually doing arithmetic on them.  Other registers
4896    // can be 32-bit.
4897    bool is64bit = PPCSubTarget.isPPC64();
4898    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4899
4900    unsigned dest   = MI->getOperand(0).getReg();
4901    unsigned ptrA   = MI->getOperand(1).getReg();
4902    unsigned ptrB   = MI->getOperand(2).getReg();
4903    unsigned oldval = MI->getOperand(3).getReg();
4904    unsigned newval = MI->getOperand(4).getReg();
4905    DebugLoc dl     = MI->getDebugLoc();
4906
4907    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4908    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4909    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4910    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4911    F->insert(It, loop1MBB);
4912    F->insert(It, loop2MBB);
4913    F->insert(It, midMBB);
4914    F->insert(It, exitMBB);
4915    exitMBB->splice(exitMBB->begin(), BB,
4916                    llvm::next(MachineBasicBlock::iterator(MI)),
4917                    BB->end());
4918    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4919
4920    MachineRegisterInfo &RegInfo = F->getRegInfo();
4921    const TargetRegisterClass *RC =
4922      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4923                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4924    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4925    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4926    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4927    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4928    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4929    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4930    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4931    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4932    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4933    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4934    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4935    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4936    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4937    unsigned Ptr1Reg;
4938    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4939    //  thisMBB:
4940    //   ...
4941    //   fallthrough --> loopMBB
4942    BB->addSuccessor(loop1MBB);
4943
4944    // The 4-byte load must be aligned, while a char or short may be
4945    // anywhere in the word.  Hence all this nasty bookkeeping code.
4946    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4947    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4948    //   xori shift, shift1, 24 [16]
4949    //   rlwinm ptr, ptr1, 0, 0, 29
4950    //   slw newval2, newval, shift
4951    //   slw oldval2, oldval,shift
4952    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4953    //   slw mask, mask2, shift
4954    //   and newval3, newval2, mask
4955    //   and oldval3, oldval2, mask
4956    // loop1MBB:
4957    //   lwarx tmpDest, ptr
4958    //   and tmp, tmpDest, mask
4959    //   cmpw tmp, oldval3
4960    //   bne- midMBB
4961    // loop2MBB:
4962    //   andc tmp2, tmpDest, mask
4963    //   or tmp4, tmp2, newval3
4964    //   stwcx. tmp4, ptr
4965    //   bne- loop1MBB
4966    //   b exitBB
4967    // midMBB:
4968    //   stwcx. tmpDest, ptr
4969    // exitBB:
4970    //   srw dest, tmpDest, shift
4971    if (ptrA!=PPC::R0) {
4972      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4973      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4974        .addReg(ptrA).addReg(ptrB);
4975    } else {
4976      Ptr1Reg = ptrB;
4977    }
4978    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4979        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4980    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4981        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4982    if (is64bit)
4983      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4984        .addReg(Ptr1Reg).addImm(0).addImm(61);
4985    else
4986      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4987        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4988    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4989        .addReg(newval).addReg(ShiftReg);
4990    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4991        .addReg(oldval).addReg(ShiftReg);
4992    if (is8bit)
4993      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4994    else {
4995      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4996      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4997        .addReg(Mask3Reg).addImm(65535);
4998    }
4999    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5000        .addReg(Mask2Reg).addReg(ShiftReg);
5001    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5002        .addReg(NewVal2Reg).addReg(MaskReg);
5003    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5004        .addReg(OldVal2Reg).addReg(MaskReg);
5005
5006    BB = loop1MBB;
5007    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5008        .addReg(PPC::R0).addReg(PtrReg);
5009    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5010        .addReg(TmpDestReg).addReg(MaskReg);
5011    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5012        .addReg(TmpReg).addReg(OldVal3Reg);
5013    BuildMI(BB, dl, TII->get(PPC::BCC))
5014        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5015    BB->addSuccessor(loop2MBB);
5016    BB->addSuccessor(midMBB);
5017
5018    BB = loop2MBB;
5019    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5020        .addReg(TmpDestReg).addReg(MaskReg);
5021    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5022        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5023    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5024        .addReg(PPC::R0).addReg(PtrReg);
5025    BuildMI(BB, dl, TII->get(PPC::BCC))
5026      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5027    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5028    BB->addSuccessor(loop1MBB);
5029    BB->addSuccessor(exitMBB);
5030
5031    BB = midMBB;
5032    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5033      .addReg(PPC::R0).addReg(PtrReg);
5034    BB->addSuccessor(exitMBB);
5035
5036    //  exitMBB:
5037    //   ...
5038    BB = exitMBB;
5039    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5040  } else {
5041    llvm_unreachable("Unexpected instr type to insert");
5042  }
5043
5044  MI->eraseFromParent();   // The pseudo instruction is gone now.
5045  return BB;
5046}
5047
5048//===----------------------------------------------------------------------===//
5049// Target Optimization Hooks
5050//===----------------------------------------------------------------------===//
5051
5052SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5053                                             DAGCombinerInfo &DCI) const {
5054  const TargetMachine &TM = getTargetMachine();
5055  SelectionDAG &DAG = DCI.DAG;
5056  DebugLoc dl = N->getDebugLoc();
5057  switch (N->getOpcode()) {
5058  default: break;
5059  case PPCISD::SHL:
5060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5061      if (C->isNullValue())   // 0 << V -> 0.
5062        return N->getOperand(0);
5063    }
5064    break;
5065  case PPCISD::SRL:
5066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5067      if (C->isNullValue())   // 0 >>u V -> 0.
5068        return N->getOperand(0);
5069    }
5070    break;
5071  case PPCISD::SRA:
5072    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5073      if (C->isNullValue() ||   //  0 >>s V -> 0.
5074          C->isAllOnesValue())    // -1 >>s V -> -1.
5075        return N->getOperand(0);
5076    }
5077    break;
5078
5079  case ISD::SINT_TO_FP:
5080    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5081      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5082        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5083        // We allow the src/dst to be either f32/f64, but the intermediate
5084        // type must be i64.
5085        if (N->getOperand(0).getValueType() == MVT::i64 &&
5086            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5087          SDValue Val = N->getOperand(0).getOperand(0);
5088          if (Val.getValueType() == MVT::f32) {
5089            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5090            DCI.AddToWorklist(Val.getNode());
5091          }
5092
5093          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5094          DCI.AddToWorklist(Val.getNode());
5095          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5096          DCI.AddToWorklist(Val.getNode());
5097          if (N->getValueType(0) == MVT::f32) {
5098            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5099                              DAG.getIntPtrConstant(0));
5100            DCI.AddToWorklist(Val.getNode());
5101          }
5102          return Val;
5103        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5104          // If the intermediate type is i32, we can avoid the load/store here
5105          // too.
5106        }
5107      }
5108    }
5109    break;
5110  case ISD::STORE:
5111    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5112    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5113        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5114        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5115        N->getOperand(1).getValueType() == MVT::i32 &&
5116        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5117      SDValue Val = N->getOperand(1).getOperand(0);
5118      if (Val.getValueType() == MVT::f32) {
5119        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5120        DCI.AddToWorklist(Val.getNode());
5121      }
5122      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5123      DCI.AddToWorklist(Val.getNode());
5124
5125      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5126                        N->getOperand(2), N->getOperand(3));
5127      DCI.AddToWorklist(Val.getNode());
5128      return Val;
5129    }
5130
5131    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5132    if (cast<StoreSDNode>(N)->isUnindexed() &&
5133        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5134        N->getOperand(1).getNode()->hasOneUse() &&
5135        (N->getOperand(1).getValueType() == MVT::i32 ||
5136         N->getOperand(1).getValueType() == MVT::i16)) {
5137      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5138      // Do an any-extend to 32-bits if this is a half-word input.
5139      if (BSwapOp.getValueType() == MVT::i16)
5140        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5141
5142      SDValue Ops[] = {
5143        N->getOperand(0), BSwapOp, N->getOperand(2),
5144        DAG.getValueType(N->getOperand(1).getValueType())
5145      };
5146      return
5147        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5148                                Ops, array_lengthof(Ops),
5149                                cast<StoreSDNode>(N)->getMemoryVT(),
5150                                cast<StoreSDNode>(N)->getMemOperand());
5151    }
5152    break;
5153  case ISD::BSWAP:
5154    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5155    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5156        N->getOperand(0).hasOneUse() &&
5157        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5158      SDValue Load = N->getOperand(0);
5159      LoadSDNode *LD = cast<LoadSDNode>(Load);
5160      // Create the byte-swapping load.
5161      SDValue Ops[] = {
5162        LD->getChain(),    // Chain
5163        LD->getBasePtr(),  // Ptr
5164        DAG.getValueType(N->getValueType(0)) // VT
5165      };
5166      SDValue BSLoad =
5167        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5168                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5169                                LD->getMemoryVT(), LD->getMemOperand());
5170
5171      // If this is an i16 load, insert the truncate.
5172      SDValue ResVal = BSLoad;
5173      if (N->getValueType(0) == MVT::i16)
5174        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5175
5176      // First, combine the bswap away.  This makes the value produced by the
5177      // load dead.
5178      DCI.CombineTo(N, ResVal);
5179
5180      // Next, combine the load away, we give it a bogus result value but a real
5181      // chain result.  The result value is dead because the bswap is dead.
5182      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5183
5184      // Return N so it doesn't get rechecked!
5185      return SDValue(N, 0);
5186    }
5187
5188    break;
5189  case PPCISD::VCMP: {
5190    // If a VCMPo node already exists with exactly the same operands as this
5191    // node, use its result instead of this node (VCMPo computes both a CR6 and
5192    // a normal output).
5193    //
5194    if (!N->getOperand(0).hasOneUse() &&
5195        !N->getOperand(1).hasOneUse() &&
5196        !N->getOperand(2).hasOneUse()) {
5197
5198      // Scan all of the users of the LHS, looking for VCMPo's that match.
5199      SDNode *VCMPoNode = 0;
5200
5201      SDNode *LHSN = N->getOperand(0).getNode();
5202      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5203           UI != E; ++UI)
5204        if (UI->getOpcode() == PPCISD::VCMPo &&
5205            UI->getOperand(1) == N->getOperand(1) &&
5206            UI->getOperand(2) == N->getOperand(2) &&
5207            UI->getOperand(0) == N->getOperand(0)) {
5208          VCMPoNode = *UI;
5209          break;
5210        }
5211
5212      // If there is no VCMPo node, or if the flag value has a single use, don't
5213      // transform this.
5214      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5215        break;
5216
5217      // Look at the (necessarily single) use of the flag value.  If it has a
5218      // chain, this transformation is more complex.  Note that multiple things
5219      // could use the value result, which we should ignore.
5220      SDNode *FlagUser = 0;
5221      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5222           FlagUser == 0; ++UI) {
5223        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5224        SDNode *User = *UI;
5225        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5226          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5227            FlagUser = User;
5228            break;
5229          }
5230        }
5231      }
5232
5233      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5234      // give up for right now.
5235      if (FlagUser->getOpcode() == PPCISD::MFCR)
5236        return SDValue(VCMPoNode, 0);
5237    }
5238    break;
5239  }
5240  case ISD::BR_CC: {
5241    // If this is a branch on an altivec predicate comparison, lower this so
5242    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5243    // lowering is done pre-legalize, because the legalizer lowers the predicate
5244    // compare down to code that is difficult to reassemble.
5245    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5246    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5247    int CompareOpc;
5248    bool isDot;
5249
5250    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5251        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5252        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5253      assert(isDot && "Can't compare against a vector result!");
5254
5255      // If this is a comparison against something other than 0/1, then we know
5256      // that the condition is never/always true.
5257      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5258      if (Val != 0 && Val != 1) {
5259        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5260          return N->getOperand(0);
5261        // Always !=, turn it into an unconditional branch.
5262        return DAG.getNode(ISD::BR, dl, MVT::Other,
5263                           N->getOperand(0), N->getOperand(4));
5264      }
5265
5266      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5267
5268      // Create the PPCISD altivec 'dot' comparison node.
5269      std::vector<EVT> VTs;
5270      SDValue Ops[] = {
5271        LHS.getOperand(2),  // LHS of compare
5272        LHS.getOperand(3),  // RHS of compare
5273        DAG.getConstant(CompareOpc, MVT::i32)
5274      };
5275      VTs.push_back(LHS.getOperand(2).getValueType());
5276      VTs.push_back(MVT::Glue);
5277      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5278
5279      // Unpack the result based on how the target uses it.
5280      PPC::Predicate CompOpc;
5281      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5282      default:  // Can't happen, don't crash on invalid number though.
5283      case 0:   // Branch on the value of the EQ bit of CR6.
5284        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5285        break;
5286      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5287        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5288        break;
5289      case 2:   // Branch on the value of the LT bit of CR6.
5290        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5291        break;
5292      case 3:   // Branch on the inverted value of the LT bit of CR6.
5293        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5294        break;
5295      }
5296
5297      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5298                         DAG.getConstant(CompOpc, MVT::i32),
5299                         DAG.getRegister(PPC::CR6, MVT::i32),
5300                         N->getOperand(4), CompNode.getValue(1));
5301    }
5302    break;
5303  }
5304  }
5305
5306  return SDValue();
5307}
5308
5309//===----------------------------------------------------------------------===//
5310// Inline Assembly Support
5311//===----------------------------------------------------------------------===//
5312
5313void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5314                                                       const APInt &Mask,
5315                                                       APInt &KnownZero,
5316                                                       APInt &KnownOne,
5317                                                       const SelectionDAG &DAG,
5318                                                       unsigned Depth) const {
5319  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5320  switch (Op.getOpcode()) {
5321  default: break;
5322  case PPCISD::LBRX: {
5323    // lhbrx is known to have the top bits cleared out.
5324    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5325      KnownZero = 0xFFFF0000;
5326    break;
5327  }
5328  case ISD::INTRINSIC_WO_CHAIN: {
5329    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5330    default: break;
5331    case Intrinsic::ppc_altivec_vcmpbfp_p:
5332    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5333    case Intrinsic::ppc_altivec_vcmpequb_p:
5334    case Intrinsic::ppc_altivec_vcmpequh_p:
5335    case Intrinsic::ppc_altivec_vcmpequw_p:
5336    case Intrinsic::ppc_altivec_vcmpgefp_p:
5337    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5338    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5339    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5340    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5341    case Intrinsic::ppc_altivec_vcmpgtub_p:
5342    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5343    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5344      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5345      break;
5346    }
5347  }
5348  }
5349}
5350
5351
5352/// getConstraintType - Given a constraint, return the type of
5353/// constraint it is for this target.
5354PPCTargetLowering::ConstraintType
5355PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5356  if (Constraint.size() == 1) {
5357    switch (Constraint[0]) {
5358    default: break;
5359    case 'b':
5360    case 'r':
5361    case 'f':
5362    case 'v':
5363    case 'y':
5364      return C_RegisterClass;
5365    }
5366  }
5367  return TargetLowering::getConstraintType(Constraint);
5368}
5369
5370/// Examine constraint type and operand type and determine a weight value.
5371/// This object must already have been set up with the operand type
5372/// and the current alternative constraint selected.
5373TargetLowering::ConstraintWeight
5374PPCTargetLowering::getSingleConstraintMatchWeight(
5375    AsmOperandInfo &info, const char *constraint) const {
5376  ConstraintWeight weight = CW_Invalid;
5377  Value *CallOperandVal = info.CallOperandVal;
5378    // If we don't have a value, we can't do a match,
5379    // but allow it at the lowest weight.
5380  if (CallOperandVal == NULL)
5381    return CW_Default;
5382  const Type *type = CallOperandVal->getType();
5383  // Look at the constraint type.
5384  switch (*constraint) {
5385  default:
5386    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5387    break;
5388  case 'b':
5389    if (type->isIntegerTy())
5390      weight = CW_Register;
5391    break;
5392  case 'f':
5393    if (type->isFloatTy())
5394      weight = CW_Register;
5395    break;
5396  case 'd':
5397    if (type->isDoubleTy())
5398      weight = CW_Register;
5399    break;
5400  case 'v':
5401    if (type->isVectorTy())
5402      weight = CW_Register;
5403    break;
5404  case 'y':
5405    weight = CW_Register;
5406    break;
5407  }
5408  return weight;
5409}
5410
5411std::pair<unsigned, const TargetRegisterClass*>
5412PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5413                                                EVT VT) const {
5414  if (Constraint.size() == 1) {
5415    // GCC RS6000 Constraint Letters
5416    switch (Constraint[0]) {
5417    case 'b':   // R1-R31
5418    case 'r':   // R0-R31
5419      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5420        return std::make_pair(0U, PPC::G8RCRegisterClass);
5421      return std::make_pair(0U, PPC::GPRCRegisterClass);
5422    case 'f':
5423      if (VT == MVT::f32)
5424        return std::make_pair(0U, PPC::F4RCRegisterClass);
5425      else if (VT == MVT::f64)
5426        return std::make_pair(0U, PPC::F8RCRegisterClass);
5427      break;
5428    case 'v':
5429      return std::make_pair(0U, PPC::VRRCRegisterClass);
5430    case 'y':   // crrc
5431      return std::make_pair(0U, PPC::CRRCRegisterClass);
5432    }
5433  }
5434
5435  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5436}
5437
5438
5439/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5440/// vector.  If it is invalid, don't add anything to Ops.
5441void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5442                                                     std::vector<SDValue>&Ops,
5443                                                     SelectionDAG &DAG) const {
5444  SDValue Result(0,0);
5445  switch (Letter) {
5446  default: break;
5447  case 'I':
5448  case 'J':
5449  case 'K':
5450  case 'L':
5451  case 'M':
5452  case 'N':
5453  case 'O':
5454  case 'P': {
5455    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5456    if (!CST) return; // Must be an immediate to match.
5457    unsigned Value = CST->getZExtValue();
5458    switch (Letter) {
5459    default: llvm_unreachable("Unknown constraint letter!");
5460    case 'I':  // "I" is a signed 16-bit constant.
5461      if ((short)Value == (int)Value)
5462        Result = DAG.getTargetConstant(Value, Op.getValueType());
5463      break;
5464    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5465    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5466      if ((short)Value == 0)
5467        Result = DAG.getTargetConstant(Value, Op.getValueType());
5468      break;
5469    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5470      if ((Value >> 16) == 0)
5471        Result = DAG.getTargetConstant(Value, Op.getValueType());
5472      break;
5473    case 'M':  // "M" is a constant that is greater than 31.
5474      if (Value > 31)
5475        Result = DAG.getTargetConstant(Value, Op.getValueType());
5476      break;
5477    case 'N':  // "N" is a positive constant that is an exact power of two.
5478      if ((int)Value > 0 && isPowerOf2_32(Value))
5479        Result = DAG.getTargetConstant(Value, Op.getValueType());
5480      break;
5481    case 'O':  // "O" is the constant zero.
5482      if (Value == 0)
5483        Result = DAG.getTargetConstant(Value, Op.getValueType());
5484      break;
5485    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5486      if ((short)-Value == (int)-Value)
5487        Result = DAG.getTargetConstant(Value, Op.getValueType());
5488      break;
5489    }
5490    break;
5491  }
5492  }
5493
5494  if (Result.getNode()) {
5495    Ops.push_back(Result);
5496    return;
5497  }
5498
5499  // Handle standard constraint letters.
5500  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5501}
5502
5503// isLegalAddressingMode - Return true if the addressing mode represented
5504// by AM is legal for this target, for a load/store of the specified type.
5505bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5506                                              const Type *Ty) const {
5507  // FIXME: PPC does not allow r+i addressing modes for vectors!
5508
5509  // PPC allows a sign-extended 16-bit immediate field.
5510  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5511    return false;
5512
5513  // No global is ever allowed as a base.
5514  if (AM.BaseGV)
5515    return false;
5516
5517  // PPC only support r+r,
5518  switch (AM.Scale) {
5519  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5520    break;
5521  case 1:
5522    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5523      return false;
5524    // Otherwise we have r+r or r+i.
5525    break;
5526  case 2:
5527    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5528      return false;
5529    // Allow 2*r as r+r.
5530    break;
5531  default:
5532    // No other scales are supported.
5533    return false;
5534  }
5535
5536  return true;
5537}
5538
5539/// isLegalAddressImmediate - Return true if the integer value can be used
5540/// as the offset of the target addressing mode for load / store of the
5541/// given type.
5542bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5543  // PPC allows a sign-extended 16-bit immediate field.
5544  return (V > -(1 << 16) && V < (1 << 16)-1);
5545}
5546
5547bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5548  return false;
5549}
5550
5551SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5552                                           SelectionDAG &DAG) const {
5553  MachineFunction &MF = DAG.getMachineFunction();
5554  MachineFrameInfo *MFI = MF.getFrameInfo();
5555  MFI->setReturnAddressIsTaken(true);
5556
5557  DebugLoc dl = Op.getDebugLoc();
5558  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5559
5560  // Make sure the function does not optimize away the store of the RA to
5561  // the stack.
5562  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5563  FuncInfo->setLRStoreRequired();
5564  bool isPPC64 = PPCSubTarget.isPPC64();
5565  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5566
5567  if (Depth > 0) {
5568    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5569    SDValue Offset =
5570
5571      DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI),
5572                      isPPC64? MVT::i64 : MVT::i32);
5573    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5574                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5575                                   FrameAddr, Offset),
5576                       MachinePointerInfo(), false, false, 0);
5577  }
5578
5579  // Just load the return address off the stack.
5580  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5581  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5582                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5583}
5584
5585SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5586                                          SelectionDAG &DAG) const {
5587  DebugLoc dl = Op.getDebugLoc();
5588  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5589
5590  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5591  bool isPPC64 = PtrVT == MVT::i64;
5592
5593  MachineFunction &MF = DAG.getMachineFunction();
5594  MachineFrameInfo *MFI = MF.getFrameInfo();
5595  MFI->setFrameAddressIsTaken(true);
5596  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5597                  MFI->getStackSize() &&
5598                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5599  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5600                                (is31 ? PPC::R31 : PPC::R1);
5601  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5602                                         PtrVT);
5603  while (Depth--)
5604    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5605                            FrameAddr, MachinePointerInfo(), false, false, 0);
5606  return FrameAddr;
5607}
5608
5609bool
5610PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5611  // The PowerPC target isn't yet aware of offsets.
5612  return false;
5613}
5614
5615/// getOptimalMemOpType - Returns the target specific optimal type for load
5616/// and store operations as a result of memset, memcpy, and memmove
5617/// lowering. If DstAlign is zero that means it's safe to destination
5618/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5619/// means there isn't a need to check it against alignment requirement,
5620/// probably because the source does not need to be loaded. If
5621/// 'NonScalarIntSafe' is true, that means it's safe to return a
5622/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5623/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5624/// constant so it does not need to be loaded.
5625/// It returns EVT::Other if the type should be determined using generic
5626/// target-independent logic.
5627EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5628                                           unsigned DstAlign, unsigned SrcAlign,
5629                                           bool NonScalarIntSafe,
5630                                           bool MemcpyStrSrc,
5631                                           MachineFunction &MF) const {
5632  if (this->PPCSubTarget.isPPC64()) {
5633    return MVT::i64;
5634  } else {
5635    return MVT::i32;
5636  }
5637}
5638