PPCISelLowering.cpp revision f1b4eafbfec976f939ec0ea3e8acf91cef5363e3
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PPCISelLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCISelLowering.h" 15#include "PPCMachineFunctionInfo.h" 16#include "PPCPerfectShuffle.h" 17#include "PPCPredicates.h" 18#include "PPCTargetMachine.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/VectorExtras.h" 21#include "llvm/CodeGen/CallingConvLower.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineInstrBuilder.h" 25#include "llvm/CodeGen/MachineRegisterInfo.h" 26#include "llvm/CodeGen/PseudoSourceValue.h" 27#include "llvm/CodeGen/SelectionDAG.h" 28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29#include "llvm/CallingConv.h" 30#include "llvm/Constants.h" 31#include "llvm/Function.h" 32#include "llvm/Intrinsics.h" 33#include "llvm/Support/MathExtras.h" 34#include "llvm/Target/TargetOptions.h" 35#include "llvm/Support/CommandLine.h" 36#include "llvm/Support/ErrorHandling.h" 37#include "llvm/Support/raw_ostream.h" 38#include "llvm/DerivedTypes.h" 39using namespace llvm; 40 41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 42 CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, 44 CCState &State); 45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 46 MVT &LocVT, 47 CCValAssign::LocInfo &LocInfo, 48 ISD::ArgFlagsTy &ArgFlags, 49 CCState &State); 50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 51 MVT &LocVT, 52 CCValAssign::LocInfo &LocInfo, 53 ISD::ArgFlagsTy &ArgFlags, 54 CCState &State); 55 56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 57cl::desc("enable preincrement load/store generation on PPC (experimental)"), 58 cl::Hidden); 59 60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65} 66 67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 70 setPow2DivIsCheap(); 71 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 82 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 83 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 84 85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 88 89 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 90 91 // PowerPC has pre-inc load and store's. 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 102 103 // This is used in the ppcf128->int sequence. Note it has different semantics 104 // from FP_ROUND: that rounds to nearest, this rounds to zero. 105 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 106 107 // PowerPC has no SREM/UREM instructions 108 setOperationAction(ISD::SREM, MVT::i32, Expand); 109 setOperationAction(ISD::UREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i64, Expand); 111 setOperationAction(ISD::UREM, MVT::i64, Expand); 112 113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 118 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 119 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 120 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 121 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 122 123 // We don't support sin/cos/sqrt/fmod/pow 124 setOperationAction(ISD::FSIN , MVT::f64, Expand); 125 setOperationAction(ISD::FCOS , MVT::f64, Expand); 126 setOperationAction(ISD::FREM , MVT::f64, Expand); 127 setOperationAction(ISD::FPOW , MVT::f64, Expand); 128 setOperationAction(ISD::FSIN , MVT::f32, Expand); 129 setOperationAction(ISD::FCOS , MVT::f32, Expand); 130 setOperationAction(ISD::FREM , MVT::f32, Expand); 131 setOperationAction(ISD::FPOW , MVT::f32, Expand); 132 133 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 134 135 // If we're enabling GP optimizations, use hardware square root 136 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 137 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 138 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 139 } 140 141 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 142 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 143 144 // PowerPC does not have BSWAP, CTPOP or CTTZ 145 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 146 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 147 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 148 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 149 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 150 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 151 152 // PowerPC does not have ROTR 153 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 154 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 155 156 // PowerPC does not have Select 157 setOperationAction(ISD::SELECT, MVT::i32, Expand); 158 setOperationAction(ISD::SELECT, MVT::i64, Expand); 159 setOperationAction(ISD::SELECT, MVT::f32, Expand); 160 setOperationAction(ISD::SELECT, MVT::f64, Expand); 161 162 // PowerPC wants to turn select_cc of FP into fsel when possible. 163 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 164 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 165 166 // PowerPC wants to optimize integer setcc a bit 167 setOperationAction(ISD::SETCC, MVT::i32, Custom); 168 169 // PowerPC does not have BRCOND which requires SetCC 170 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 174 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 175 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 176 177 // PowerPC does not have [U|S]INT_TO_FP 178 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 179 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 180 181 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 182 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 183 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 184 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 185 186 // We cannot sextinreg(i1). Expand to shifts. 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 189 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 190 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 192 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 193 194 195 // We want to legalize GlobalAddress and ConstantPool nodes into the 196 // appropriate instructions to materialize the address. 197 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 198 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 199 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 200 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 201 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 202 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 203 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 204 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 205 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 206 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 207 208 // TRAP is legal. 209 setOperationAction(ISD::TRAP, MVT::Other, Legal); 210 211 // TRAMPOLINE is custom lowered. 212 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 213 214 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 215 setOperationAction(ISD::VASTART , MVT::Other, Custom); 216 217 // VAARG is custom lowered with the 32-bit SVR4 ABI. 218 if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 219 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) 220 setOperationAction(ISD::VAARG, MVT::Other, Custom); 221 else 222 setOperationAction(ISD::VAARG, MVT::Other, Expand); 223 224 // Use the default implementation. 225 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 226 setOperationAction(ISD::VAEND , MVT::Other, Expand); 227 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 228 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 229 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 230 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 231 232 // We want to custom lower some of our intrinsics. 233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 234 235 // Comparisons that require checking two conditions. 236 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 237 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 238 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 239 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 240 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 241 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 242 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 243 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 244 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 245 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 246 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 247 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 248 249 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 250 // They also have instructions for converting between i64 and fp. 251 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 252 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 253 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 254 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 255 // This is just the low 32 bits of a (signed) fp->i64 conversion. 256 // We cannot do this with Promote because i64 is not a legal type. 257 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 258 259 // FIXME: disable this lowered code. This generates 64-bit register values, 260 // and we don't model the fact that the top part is clobbered by calls. We 261 // need to flag these together so that the value isn't live across a call. 262 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 263 } else { 264 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 265 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 266 } 267 268 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 269 // 64-bit PowerPC implementations can support i64 types directly 270 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 271 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 273 // 64-bit PowerPC wants to expand i128 shifts itself. 274 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 275 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 276 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 277 } else { 278 // 32-bit PowerPC wants to expand i64 shifts itself. 279 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 280 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 281 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 282 } 283 284 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 285 // First set operation action for all vector types to expand. Then we 286 // will selectively turn on ones that can be effectively codegen'd. 287 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 288 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 289 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 290 291 // add/sub are legal for all supported vector VT's. 292 setOperationAction(ISD::ADD , VT, Legal); 293 setOperationAction(ISD::SUB , VT, Legal); 294 295 // We promote all shuffles to v16i8. 296 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 297 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 298 299 // We promote all non-typed operations to v4i32. 300 setOperationAction(ISD::AND , VT, Promote); 301 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 302 setOperationAction(ISD::OR , VT, Promote); 303 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 304 setOperationAction(ISD::XOR , VT, Promote); 305 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 306 setOperationAction(ISD::LOAD , VT, Promote); 307 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 308 setOperationAction(ISD::SELECT, VT, Promote); 309 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 310 setOperationAction(ISD::STORE, VT, Promote); 311 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 312 313 // No other operations are legal. 314 setOperationAction(ISD::MUL , VT, Expand); 315 setOperationAction(ISD::SDIV, VT, Expand); 316 setOperationAction(ISD::SREM, VT, Expand); 317 setOperationAction(ISD::UDIV, VT, Expand); 318 setOperationAction(ISD::UREM, VT, Expand); 319 setOperationAction(ISD::FDIV, VT, Expand); 320 setOperationAction(ISD::FNEG, VT, Expand); 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 322 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 323 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 324 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 325 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 326 setOperationAction(ISD::UDIVREM, VT, Expand); 327 setOperationAction(ISD::SDIVREM, VT, Expand); 328 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 329 setOperationAction(ISD::FPOW, VT, Expand); 330 setOperationAction(ISD::CTPOP, VT, Expand); 331 setOperationAction(ISD::CTLZ, VT, Expand); 332 setOperationAction(ISD::CTTZ, VT, Expand); 333 } 334 335 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 336 // with merges, splats, etc. 337 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 338 339 setOperationAction(ISD::AND , MVT::v4i32, Legal); 340 setOperationAction(ISD::OR , MVT::v4i32, Legal); 341 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 342 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 343 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 344 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 345 346 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 347 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 348 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 349 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 350 351 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 352 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 353 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 354 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 355 356 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 357 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 358 359 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 360 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 361 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 362 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 363 } 364 365 setShiftAmountType(MVT::i32); 366 setBooleanContents(ZeroOrOneBooleanContent); 367 368 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 369 setStackPointerRegisterToSaveRestore(PPC::X1); 370 setExceptionPointerRegister(PPC::X3); 371 setExceptionSelectorRegister(PPC::X4); 372 } else { 373 setStackPointerRegisterToSaveRestore(PPC::R1); 374 setExceptionPointerRegister(PPC::R3); 375 setExceptionSelectorRegister(PPC::R4); 376 } 377 378 // We have target-specific dag combine patterns for the following nodes: 379 setTargetDAGCombine(ISD::SINT_TO_FP); 380 setTargetDAGCombine(ISD::STORE); 381 setTargetDAGCombine(ISD::BR_CC); 382 setTargetDAGCombine(ISD::BSWAP); 383 384 // Darwin long double math library functions have $LDBL128 appended. 385 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 386 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 387 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 388 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 389 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 390 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 391 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 392 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 393 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 394 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 395 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 396 } 397 398 computeRegisterProperties(); 399} 400 401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 402/// function arguments in the caller parameter area. 403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { 404 const TargetMachine &TM = getTargetMachine(); 405 // Darwin passes everything on 4 byte boundary. 406 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 407 return 4; 408 // FIXME SVR4 TBD 409 return 4; 410} 411 412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 413 switch (Opcode) { 414 default: return 0; 415 case PPCISD::FSEL: return "PPCISD::FSEL"; 416 case PPCISD::FCFID: return "PPCISD::FCFID"; 417 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 418 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 419 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 420 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 421 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 422 case PPCISD::VPERM: return "PPCISD::VPERM"; 423 case PPCISD::Hi: return "PPCISD::Hi"; 424 case PPCISD::Lo: return "PPCISD::Lo"; 425 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 426 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 427 case PPCISD::LOAD: return "PPCISD::LOAD"; 428 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 429 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 430 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 431 case PPCISD::SRL: return "PPCISD::SRL"; 432 case PPCISD::SRA: return "PPCISD::SRA"; 433 case PPCISD::SHL: return "PPCISD::SHL"; 434 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 435 case PPCISD::STD_32: return "PPCISD::STD_32"; 436 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 437 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 438 case PPCISD::NOP: return "PPCISD::NOP"; 439 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 440 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 441 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 442 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 443 case PPCISD::MFCR: return "PPCISD::MFCR"; 444 case PPCISD::VCMP: return "PPCISD::VCMP"; 445 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 446 case PPCISD::LBRX: return "PPCISD::LBRX"; 447 case PPCISD::STBRX: return "PPCISD::STBRX"; 448 case PPCISD::LARX: return "PPCISD::LARX"; 449 case PPCISD::STCX: return "PPCISD::STCX"; 450 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 451 case PPCISD::MFFS: return "PPCISD::MFFS"; 452 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 453 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 454 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 455 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 456 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 457 } 458} 459 460MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { 461 return MVT::i32; 462} 463 464/// getFunctionAlignment - Return the Log2 alignment of this function. 465unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const { 466 if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) 467 return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4; 468 else 469 return 2; 470} 471 472//===----------------------------------------------------------------------===// 473// Node matching predicates, for use by the tblgen matching code. 474//===----------------------------------------------------------------------===// 475 476/// isFloatingPointZero - Return true if this is 0.0 or -0.0. 477static bool isFloatingPointZero(SDValue Op) { 478 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 479 return CFP->getValueAPF().isZero(); 480 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 481 // Maybe this has already been legalized into the constant pool? 482 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 484 return CFP->getValueAPF().isZero(); 485 } 486 return false; 487} 488 489/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 490/// true if Op is undef or if it matches the specified value. 491static bool isConstantOrUndef(int Op, int Val) { 492 return Op < 0 || Op == Val; 493} 494 495/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 496/// VPKUHUM instruction. 497bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 498 if (!isUnary) { 499 for (unsigned i = 0; i != 16; ++i) 500 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 501 return false; 502 } else { 503 for (unsigned i = 0; i != 8; ++i) 504 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 505 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 506 return false; 507 } 508 return true; 509} 510 511/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 512/// VPKUWUM instruction. 513bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 514 if (!isUnary) { 515 for (unsigned i = 0; i != 16; i += 2) 516 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 517 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 518 return false; 519 } else { 520 for (unsigned i = 0; i != 8; i += 2) 521 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 522 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 523 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 524 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 525 return false; 526 } 527 return true; 528} 529 530/// isVMerge - Common function, used to match vmrg* shuffles. 531/// 532static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 533 unsigned LHSStart, unsigned RHSStart) { 534 assert(N->getValueType(0) == MVT::v16i8 && 535 "PPC only supports shuffles by bytes!"); 536 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 537 "Unsupported merge size!"); 538 539 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 540 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 541 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 542 LHSStart+j+i*UnitSize) || 543 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 544 RHSStart+j+i*UnitSize)) 545 return false; 546 } 547 return true; 548} 549 550/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 551/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 552bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 553 bool isUnary) { 554 if (!isUnary) 555 return isVMerge(N, UnitSize, 8, 24); 556 return isVMerge(N, UnitSize, 8, 8); 557} 558 559/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 560/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 561bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 562 bool isUnary) { 563 if (!isUnary) 564 return isVMerge(N, UnitSize, 0, 16); 565 return isVMerge(N, UnitSize, 0, 0); 566} 567 568 569/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 570/// amount, otherwise return -1. 571int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 572 assert(N->getValueType(0) == MVT::v16i8 && 573 "PPC only supports shuffles by bytes!"); 574 575 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 576 577 // Find the first non-undef value in the shuffle mask. 578 unsigned i; 579 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 580 /*search*/; 581 582 if (i == 16) return -1; // all undef. 583 584 // Otherwise, check to see if the rest of the elements are consecutively 585 // numbered from this value. 586 unsigned ShiftAmt = SVOp->getMaskElt(i); 587 if (ShiftAmt < i) return -1; 588 ShiftAmt -= i; 589 590 if (!isUnary) { 591 // Check the rest of the elements to see if they are consecutive. 592 for (++i; i != 16; ++i) 593 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 594 return -1; 595 } else { 596 // Check the rest of the elements to see if they are consecutive. 597 for (++i; i != 16; ++i) 598 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 599 return -1; 600 } 601 return ShiftAmt; 602} 603 604/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 605/// specifies a splat of a single element that is suitable for input to 606/// VSPLTB/VSPLTH/VSPLTW. 607bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 608 assert(N->getValueType(0) == MVT::v16i8 && 609 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 610 611 // This is a splat operation if each element of the permute is the same, and 612 // if the value doesn't reference the second vector. 613 unsigned ElementBase = N->getMaskElt(0); 614 615 // FIXME: Handle UNDEF elements too! 616 if (ElementBase >= 16) 617 return false; 618 619 // Check that the indices are consecutive, in the case of a multi-byte element 620 // splatted with a v16i8 mask. 621 for (unsigned i = 1; i != EltSize; ++i) 622 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 623 return false; 624 625 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 626 if (N->getMaskElt(i) < 0) continue; 627 for (unsigned j = 0; j != EltSize; ++j) 628 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 629 return false; 630 } 631 return true; 632} 633 634/// isAllNegativeZeroVector - Returns true if all elements of build_vector 635/// are -0.0. 636bool PPC::isAllNegativeZeroVector(SDNode *N) { 637 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 638 639 APInt APVal, APUndef; 640 unsigned BitSize; 641 bool HasAnyUndefs; 642 643 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 644 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 645 return CFP->getValueAPF().isNegZero(); 646 647 return false; 648} 649 650/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 651/// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 652unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 653 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 654 assert(isSplatShuffleMask(SVOp, EltSize)); 655 return SVOp->getMaskElt(0) / EltSize; 656} 657 658/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 659/// by using a vspltis[bhw] instruction of the specified element size, return 660/// the constant being splatted. The ByteSize field indicates the number of 661/// bytes of each element [124] -> [bhw]. 662SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 663 SDValue OpVal(0, 0); 664 665 // If ByteSize of the splat is bigger than the element size of the 666 // build_vector, then we have a case where we are checking for a splat where 667 // multiple elements of the buildvector are folded together into a single 668 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 669 unsigned EltSize = 16/N->getNumOperands(); 670 if (EltSize < ByteSize) { 671 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 672 SDValue UniquedVals[4]; 673 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 674 675 // See if all of the elements in the buildvector agree across. 676 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 677 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 678 // If the element isn't a constant, bail fully out. 679 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 680 681 682 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 683 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 684 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 685 return SDValue(); // no match. 686 } 687 688 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 689 // either constant or undef values that are identical for each chunk. See 690 // if these chunks can form into a larger vspltis*. 691 692 // Check to see if all of the leading entries are either 0 or -1. If 693 // neither, then this won't fit into the immediate field. 694 bool LeadingZero = true; 695 bool LeadingOnes = true; 696 for (unsigned i = 0; i != Multiple-1; ++i) { 697 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 698 699 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 700 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 701 } 702 // Finally, check the least significant entry. 703 if (LeadingZero) { 704 if (UniquedVals[Multiple-1].getNode() == 0) 705 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 706 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 707 if (Val < 16) 708 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 709 } 710 if (LeadingOnes) { 711 if (UniquedVals[Multiple-1].getNode() == 0) 712 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 713 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 714 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 715 return DAG.getTargetConstant(Val, MVT::i32); 716 } 717 718 return SDValue(); 719 } 720 721 // Check to see if this buildvec has a single non-undef value in its elements. 722 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 723 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 724 if (OpVal.getNode() == 0) 725 OpVal = N->getOperand(i); 726 else if (OpVal != N->getOperand(i)) 727 return SDValue(); 728 } 729 730 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 731 732 unsigned ValSizeInBytes = EltSize; 733 uint64_t Value = 0; 734 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 735 Value = CN->getZExtValue(); 736 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 737 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 738 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 739 } 740 741 // If the splat value is larger than the element value, then we can never do 742 // this splat. The only case that we could fit the replicated bits into our 743 // immediate field for would be zero, and we prefer to use vxor for it. 744 if (ValSizeInBytes < ByteSize) return SDValue(); 745 746 // If the element value is larger than the splat value, cut it in half and 747 // check to see if the two halves are equal. Continue doing this until we 748 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 749 while (ValSizeInBytes > ByteSize) { 750 ValSizeInBytes >>= 1; 751 752 // If the top half equals the bottom half, we're still ok. 753 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 754 (Value & ((1 << (8*ValSizeInBytes))-1))) 755 return SDValue(); 756 } 757 758 // Properly sign extend the value. 759 int ShAmt = (4-ByteSize)*8; 760 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 761 762 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 763 if (MaskVal == 0) return SDValue(); 764 765 // Finally, if this value fits in a 5 bit sext field, return it 766 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 767 return DAG.getTargetConstant(MaskVal, MVT::i32); 768 return SDValue(); 769} 770 771//===----------------------------------------------------------------------===// 772// Addressing Mode Selection 773//===----------------------------------------------------------------------===// 774 775/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 776/// or 64-bit immediate, and if the value can be accurately represented as a 777/// sign extension from a 16-bit value. If so, this returns true and the 778/// immediate. 779static bool isIntS16Immediate(SDNode *N, short &Imm) { 780 if (N->getOpcode() != ISD::Constant) 781 return false; 782 783 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 784 if (N->getValueType(0) == MVT::i32) 785 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 786 else 787 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 788} 789static bool isIntS16Immediate(SDValue Op, short &Imm) { 790 return isIntS16Immediate(Op.getNode(), Imm); 791} 792 793 794/// SelectAddressRegReg - Given the specified addressed, check to see if it 795/// can be represented as an indexed [r+r] operation. Returns false if it 796/// can be more efficiently represented with [r+imm]. 797bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 798 SDValue &Index, 799 SelectionDAG &DAG) const { 800 short imm = 0; 801 if (N.getOpcode() == ISD::ADD) { 802 if (isIntS16Immediate(N.getOperand(1), imm)) 803 return false; // r+i 804 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 805 return false; // r+i 806 807 Base = N.getOperand(0); 808 Index = N.getOperand(1); 809 return true; 810 } else if (N.getOpcode() == ISD::OR) { 811 if (isIntS16Immediate(N.getOperand(1), imm)) 812 return false; // r+i can fold it if we can. 813 814 // If this is an or of disjoint bitfields, we can codegen this as an add 815 // (for better address arithmetic) if the LHS and RHS of the OR are provably 816 // disjoint. 817 APInt LHSKnownZero, LHSKnownOne; 818 APInt RHSKnownZero, RHSKnownOne; 819 DAG.ComputeMaskedBits(N.getOperand(0), 820 APInt::getAllOnesValue(N.getOperand(0) 821 .getValueSizeInBits()), 822 LHSKnownZero, LHSKnownOne); 823 824 if (LHSKnownZero.getBoolValue()) { 825 DAG.ComputeMaskedBits(N.getOperand(1), 826 APInt::getAllOnesValue(N.getOperand(1) 827 .getValueSizeInBits()), 828 RHSKnownZero, RHSKnownOne); 829 // If all of the bits are known zero on the LHS or RHS, the add won't 830 // carry. 831 if (~(LHSKnownZero | RHSKnownZero) == 0) { 832 Base = N.getOperand(0); 833 Index = N.getOperand(1); 834 return true; 835 } 836 } 837 } 838 839 return false; 840} 841 842/// Returns true if the address N can be represented by a base register plus 843/// a signed 16-bit displacement [r+imm], and if it is not better 844/// represented as reg+reg. 845bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 846 SDValue &Base, 847 SelectionDAG &DAG) const { 848 // FIXME dl should come from parent load or store, not from address 849 DebugLoc dl = N.getDebugLoc(); 850 // If this can be more profitably realized as r+r, fail. 851 if (SelectAddressRegReg(N, Disp, Base, DAG)) 852 return false; 853 854 if (N.getOpcode() == ISD::ADD) { 855 short imm = 0; 856 if (isIntS16Immediate(N.getOperand(1), imm)) { 857 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 859 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 860 } else { 861 Base = N.getOperand(0); 862 } 863 return true; // [r+i] 864 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 865 // Match LOAD (ADD (X, Lo(G))). 866 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 867 && "Cannot handle constant offsets yet!"); 868 Disp = N.getOperand(1).getOperand(0); // The global address. 869 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 870 Disp.getOpcode() == ISD::TargetConstantPool || 871 Disp.getOpcode() == ISD::TargetJumpTable); 872 Base = N.getOperand(0); 873 return true; // [&g+r] 874 } 875 } else if (N.getOpcode() == ISD::OR) { 876 short imm = 0; 877 if (isIntS16Immediate(N.getOperand(1), imm)) { 878 // If this is an or of disjoint bitfields, we can codegen this as an add 879 // (for better address arithmetic) if the LHS and RHS of the OR are 880 // provably disjoint. 881 APInt LHSKnownZero, LHSKnownOne; 882 DAG.ComputeMaskedBits(N.getOperand(0), 883 APInt::getAllOnesValue(N.getOperand(0) 884 .getValueSizeInBits()), 885 LHSKnownZero, LHSKnownOne); 886 887 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 888 // If all of the bits are known zero on the LHS or RHS, the add won't 889 // carry. 890 Base = N.getOperand(0); 891 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 892 return true; 893 } 894 } 895 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 896 // Loading from a constant address. 897 898 // If this address fits entirely in a 16-bit sext immediate field, codegen 899 // this as "d, 0" 900 short Imm; 901 if (isIntS16Immediate(CN, Imm)) { 902 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 903 Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); 904 return true; 905 } 906 907 // Handle 32-bit sext immediates with LIS + addr mode. 908 if (CN->getValueType(0) == MVT::i32 || 909 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 910 int Addr = (int)CN->getZExtValue(); 911 912 // Otherwise, break this down into an LIS + disp. 913 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 914 915 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 916 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 917 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 918 return true; 919 } 920 } 921 922 Disp = DAG.getTargetConstant(0, getPointerTy()); 923 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 924 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 925 else 926 Base = N; 927 return true; // [r+0] 928} 929 930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be 931/// represented as an indexed [r+r] operation. 932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 933 SDValue &Index, 934 SelectionDAG &DAG) const { 935 // Check to see if we can easily represent this as an [r+r] address. This 936 // will fail if it thinks that the address is more profitably represented as 937 // reg+imm, e.g. where imm = 0. 938 if (SelectAddressRegReg(N, Base, Index, DAG)) 939 return true; 940 941 // If the operand is an addition, always emit this as [r+r], since this is 942 // better (for code size, and execution, as the memop does the add for free) 943 // than emitting an explicit add. 944 if (N.getOpcode() == ISD::ADD) { 945 Base = N.getOperand(0); 946 Index = N.getOperand(1); 947 return true; 948 } 949 950 // Otherwise, do it the hard way, using R0 as the base register. 951 Base = DAG.getRegister(PPC::R0, N.getValueType()); 952 Index = N; 953 return true; 954} 955 956/// SelectAddressRegImmShift - Returns true if the address N can be 957/// represented by a base register plus a signed 14-bit displacement 958/// [r+imm*4]. Suitable for use by STD and friends. 959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 960 SDValue &Base, 961 SelectionDAG &DAG) const { 962 // FIXME dl should come from the parent load or store, not the address 963 DebugLoc dl = N.getDebugLoc(); 964 // If this can be more profitably realized as r+r, fail. 965 if (SelectAddressRegReg(N, Disp, Base, DAG)) 966 return false; 967 968 if (N.getOpcode() == ISD::ADD) { 969 short imm = 0; 970 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 971 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 972 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 973 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 974 } else { 975 Base = N.getOperand(0); 976 } 977 return true; // [r+i] 978 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 979 // Match LOAD (ADD (X, Lo(G))). 980 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 981 && "Cannot handle constant offsets yet!"); 982 Disp = N.getOperand(1).getOperand(0); // The global address. 983 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 984 Disp.getOpcode() == ISD::TargetConstantPool || 985 Disp.getOpcode() == ISD::TargetJumpTable); 986 Base = N.getOperand(0); 987 return true; // [&g+r] 988 } 989 } else if (N.getOpcode() == ISD::OR) { 990 short imm = 0; 991 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 992 // If this is an or of disjoint bitfields, we can codegen this as an add 993 // (for better address arithmetic) if the LHS and RHS of the OR are 994 // provably disjoint. 995 APInt LHSKnownZero, LHSKnownOne; 996 DAG.ComputeMaskedBits(N.getOperand(0), 997 APInt::getAllOnesValue(N.getOperand(0) 998 .getValueSizeInBits()), 999 LHSKnownZero, LHSKnownOne); 1000 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1001 // If all of the bits are known zero on the LHS or RHS, the add won't 1002 // carry. 1003 Base = N.getOperand(0); 1004 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1005 return true; 1006 } 1007 } 1008 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1009 // Loading from a constant address. Verify low two bits are clear. 1010 if ((CN->getZExtValue() & 3) == 0) { 1011 // If this address fits entirely in a 14-bit sext immediate field, codegen 1012 // this as "d, 0" 1013 short Imm; 1014 if (isIntS16Immediate(CN, Imm)) { 1015 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1016 Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); 1017 return true; 1018 } 1019 1020 // Fold the low-part of 32-bit absolute addresses into addr mode. 1021 if (CN->getValueType(0) == MVT::i32 || 1022 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1023 int Addr = (int)CN->getZExtValue(); 1024 1025 // Otherwise, break this down into an LIS + disp. 1026 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1027 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1028 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1029 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1030 return true; 1031 } 1032 } 1033 } 1034 1035 Disp = DAG.getTargetConstant(0, getPointerTy()); 1036 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1037 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1038 else 1039 Base = N; 1040 return true; // [r+0] 1041} 1042 1043 1044/// getPreIndexedAddressParts - returns true by value, base pointer and 1045/// offset pointer and addressing mode by reference if the node's address 1046/// can be legally represented as pre-indexed load / store address. 1047bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1048 SDValue &Offset, 1049 ISD::MemIndexedMode &AM, 1050 SelectionDAG &DAG) const { 1051 // Disabled by default for now. 1052 if (!EnablePPCPreinc) return false; 1053 1054 SDValue Ptr; 1055 EVT VT; 1056 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1057 Ptr = LD->getBasePtr(); 1058 VT = LD->getMemoryVT(); 1059 1060 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1061 ST = ST; 1062 Ptr = ST->getBasePtr(); 1063 VT = ST->getMemoryVT(); 1064 } else 1065 return false; 1066 1067 // PowerPC doesn't have preinc load/store instructions for vectors. 1068 if (VT.isVector()) 1069 return false; 1070 1071 // TODO: Check reg+reg first. 1072 1073 // LDU/STU use reg+imm*4, others use reg+imm. 1074 if (VT != MVT::i64) { 1075 // reg + imm 1076 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1077 return false; 1078 } else { 1079 // reg + imm * 4. 1080 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1081 return false; 1082 } 1083 1084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1086 // sext i32 to i64 when addr mode is r+i. 1087 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1088 LD->getExtensionType() == ISD::SEXTLOAD && 1089 isa<ConstantSDNode>(Offset)) 1090 return false; 1091 } 1092 1093 AM = ISD::PRE_INC; 1094 return true; 1095} 1096 1097//===----------------------------------------------------------------------===// 1098// LowerOperation implementation 1099//===----------------------------------------------------------------------===// 1100 1101/// GetLabelAccessInfo - Return true if we should reference labels using a 1102/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1103static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1104 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1105 HiOpFlags = PPCII::MO_HA16; 1106 LoOpFlags = PPCII::MO_LO16; 1107 1108 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1109 // non-darwin platform. We don't support PIC on other platforms yet. 1110 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1111 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1112 if (isPIC) { 1113 HiOpFlags |= PPCII::MO_PIC_FLAG; 1114 LoOpFlags |= PPCII::MO_PIC_FLAG; 1115 } 1116 1117 // If this is a reference to a global value that requires a non-lazy-ptr, make 1118 // sure that instruction lowering adds it. 1119 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1120 HiOpFlags |= PPCII::MO_NLP_FLAG; 1121 LoOpFlags |= PPCII::MO_NLP_FLAG; 1122 1123 if (GV->hasHiddenVisibility()) { 1124 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1125 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1126 } 1127 } 1128 1129 return isPIC; 1130} 1131 1132static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1133 SelectionDAG &DAG) { 1134 EVT PtrVT = HiPart.getValueType(); 1135 SDValue Zero = DAG.getConstant(0, PtrVT); 1136 DebugLoc DL = HiPart.getDebugLoc(); 1137 1138 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1139 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1140 1141 // With PIC, the first instruction is actually "GR+hi(&G)". 1142 if (isPIC) 1143 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1144 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1145 1146 // Generate non-pic code that has direct accesses to the constant pool. 1147 // The address of the global is just (hi(&g)+lo(&g)). 1148 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1149} 1150 1151SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1152 SelectionDAG &DAG) const { 1153 EVT PtrVT = Op.getValueType(); 1154 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1155 const Constant *C = CP->getConstVal(); 1156 1157 unsigned MOHiFlag, MOLoFlag; 1158 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1159 SDValue CPIHi = 1160 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1161 SDValue CPILo = 1162 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1163 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1164} 1165 1166SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1167 EVT PtrVT = Op.getValueType(); 1168 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1169 1170 unsigned MOHiFlag, MOLoFlag; 1171 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1172 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1173 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1174 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1175} 1176 1177SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1178 SelectionDAG &DAG) const { 1179 EVT PtrVT = Op.getValueType(); 1180 DebugLoc DL = Op.getDebugLoc(); 1181 1182 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1183 1184 unsigned MOHiFlag, MOLoFlag; 1185 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1186 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1187 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1188 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1189} 1190 1191SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1192 SelectionDAG &DAG) const { 1193 EVT PtrVT = Op.getValueType(); 1194 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1195 DebugLoc DL = GSDN->getDebugLoc(); 1196 const GlobalValue *GV = GSDN->getGlobal(); 1197 1198 // 64-bit SVR4 ABI code is always position-independent. 1199 // The actual address of the GlobalValue is stored in the TOC. 1200 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1201 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1202 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1203 DAG.getRegister(PPC::X2, MVT::i64)); 1204 } 1205 1206 unsigned MOHiFlag, MOLoFlag; 1207 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1208 1209 SDValue GAHi = 1210 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1211 SDValue GALo = 1212 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1213 1214 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1215 1216 // If the global reference is actually to a non-lazy-pointer, we have to do an 1217 // extra load to get the address of the global. 1218 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1219 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1220 false, false, 0); 1221 return Ptr; 1222} 1223 1224SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1225 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1226 DebugLoc dl = Op.getDebugLoc(); 1227 1228 // If we're comparing for equality to zero, expose the fact that this is 1229 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1230 // fold the new nodes. 1231 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1232 if (C->isNullValue() && CC == ISD::SETEQ) { 1233 EVT VT = Op.getOperand(0).getValueType(); 1234 SDValue Zext = Op.getOperand(0); 1235 if (VT.bitsLT(MVT::i32)) { 1236 VT = MVT::i32; 1237 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1238 } 1239 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1240 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1241 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1242 DAG.getConstant(Log2b, MVT::i32)); 1243 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1244 } 1245 // Leave comparisons against 0 and -1 alone for now, since they're usually 1246 // optimized. FIXME: revisit this when we can custom lower all setcc 1247 // optimizations. 1248 if (C->isAllOnesValue() || C->isNullValue()) 1249 return SDValue(); 1250 } 1251 1252 // If we have an integer seteq/setne, turn it into a compare against zero 1253 // by xor'ing the rhs with the lhs, which is faster than setting a 1254 // condition register, reading it back out, and masking the correct bit. The 1255 // normal approach here uses sub to do this instead of xor. Using xor exposes 1256 // the result to other bit-twiddling opportunities. 1257 EVT LHSVT = Op.getOperand(0).getValueType(); 1258 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1259 EVT VT = Op.getValueType(); 1260 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1261 Op.getOperand(1)); 1262 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1263 } 1264 return SDValue(); 1265} 1266 1267SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1268 const PPCSubtarget &Subtarget) const { 1269 1270 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!"); 1271 return SDValue(); // Not reached 1272} 1273 1274SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, 1275 SelectionDAG &DAG) const { 1276 SDValue Chain = Op.getOperand(0); 1277 SDValue Trmp = Op.getOperand(1); // trampoline 1278 SDValue FPtr = Op.getOperand(2); // nested function 1279 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1280 DebugLoc dl = Op.getDebugLoc(); 1281 1282 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1283 bool isPPC64 = (PtrVT == MVT::i64); 1284 const Type *IntPtrTy = 1285 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1286 *DAG.getContext()); 1287 1288 TargetLowering::ArgListTy Args; 1289 TargetLowering::ArgListEntry Entry; 1290 1291 Entry.Ty = IntPtrTy; 1292 Entry.Node = Trmp; Args.push_back(Entry); 1293 1294 // TrampSize == (isPPC64 ? 48 : 40); 1295 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1296 isPPC64 ? MVT::i64 : MVT::i32); 1297 Args.push_back(Entry); 1298 1299 Entry.Node = FPtr; Args.push_back(Entry); 1300 Entry.Node = Nest; Args.push_back(Entry); 1301 1302 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1303 std::pair<SDValue, SDValue> CallResult = 1304 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), 1305 false, false, false, false, 0, CallingConv::C, false, 1306 /*isReturnValueUsed=*/true, 1307 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1308 Args, DAG, dl); 1309 1310 SDValue Ops[] = 1311 { CallResult.first, CallResult.second }; 1312 1313 return DAG.getMergeValues(Ops, 2, dl); 1314} 1315 1316SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1317 const PPCSubtarget &Subtarget) const { 1318 MachineFunction &MF = DAG.getMachineFunction(); 1319 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1320 1321 DebugLoc dl = Op.getDebugLoc(); 1322 1323 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1324 // vastart just stores the address of the VarArgsFrameIndex slot into the 1325 // memory location argument. 1326 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1327 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1328 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1329 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1330 MachinePointerInfo(SV), 1331 false, false, 0); 1332 } 1333 1334 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1335 // We suppose the given va_list is already allocated. 1336 // 1337 // typedef struct { 1338 // char gpr; /* index into the array of 8 GPRs 1339 // * stored in the register save area 1340 // * gpr=0 corresponds to r3, 1341 // * gpr=1 to r4, etc. 1342 // */ 1343 // char fpr; /* index into the array of 8 FPRs 1344 // * stored in the register save area 1345 // * fpr=0 corresponds to f1, 1346 // * fpr=1 to f2, etc. 1347 // */ 1348 // char *overflow_arg_area; 1349 // /* location on stack that holds 1350 // * the next overflow argument 1351 // */ 1352 // char *reg_save_area; 1353 // /* where r3:r10 and f1:f8 (if saved) 1354 // * are stored 1355 // */ 1356 // } va_list[1]; 1357 1358 1359 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1360 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1361 1362 1363 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1364 1365 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1366 PtrVT); 1367 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1368 PtrVT); 1369 1370 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1371 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1372 1373 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1374 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1375 1376 uint64_t FPROffset = 1; 1377 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1378 1379 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1380 1381 // Store first byte : number of int regs 1382 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1383 Op.getOperand(1), 1384 MachinePointerInfo(SV), 1385 MVT::i8, false, false, 0); 1386 uint64_t nextOffset = FPROffset; 1387 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1388 ConstFPROffset); 1389 1390 // Store second byte : number of float regs 1391 SDValue secondStore = 1392 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1393 MachinePointerInfo(SV, nextOffset), MVT::i8, 1394 false, false, 0); 1395 nextOffset += StackOffset; 1396 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1397 1398 // Store second word : arguments given on stack 1399 SDValue thirdStore = 1400 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1401 MachinePointerInfo(SV, nextOffset), 1402 false, false, 0); 1403 nextOffset += FrameOffset; 1404 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1405 1406 // Store third word : arguments given in registers 1407 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1408 MachinePointerInfo(SV, nextOffset), 1409 false, false, 0); 1410 1411} 1412 1413#include "PPCGenCallingConv.inc" 1414 1415static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1416 CCValAssign::LocInfo &LocInfo, 1417 ISD::ArgFlagsTy &ArgFlags, 1418 CCState &State) { 1419 return true; 1420} 1421 1422static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1423 MVT &LocVT, 1424 CCValAssign::LocInfo &LocInfo, 1425 ISD::ArgFlagsTy &ArgFlags, 1426 CCState &State) { 1427 static const unsigned ArgRegs[] = { 1428 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1429 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1430 }; 1431 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1432 1433 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1434 1435 // Skip one register if the first unallocated register has an even register 1436 // number and there are still argument registers available which have not been 1437 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1438 // need to skip a register if RegNum is odd. 1439 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1440 State.AllocateReg(ArgRegs[RegNum]); 1441 } 1442 1443 // Always return false here, as this function only makes sure that the first 1444 // unallocated register has an odd register number and does not actually 1445 // allocate a register for the current argument. 1446 return false; 1447} 1448 1449static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1450 MVT &LocVT, 1451 CCValAssign::LocInfo &LocInfo, 1452 ISD::ArgFlagsTy &ArgFlags, 1453 CCState &State) { 1454 static const unsigned ArgRegs[] = { 1455 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1456 PPC::F8 1457 }; 1458 1459 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1460 1461 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1462 1463 // If there is only one Floating-point register left we need to put both f64 1464 // values of a split ppc_fp128 value on the stack. 1465 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1466 State.AllocateReg(ArgRegs[RegNum]); 1467 } 1468 1469 // Always return false here, as this function only makes sure that the two f64 1470 // values a ppc_fp128 value is split into are both passed in registers or both 1471 // passed on the stack and does not actually allocate a register for the 1472 // current argument. 1473 return false; 1474} 1475 1476/// GetFPR - Get the set of FP registers that should be allocated for arguments, 1477/// on Darwin. 1478static const unsigned *GetFPR() { 1479 static const unsigned FPR[] = { 1480 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1481 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1482 }; 1483 1484 return FPR; 1485} 1486 1487/// CalculateStackSlotSize - Calculates the size reserved for this argument on 1488/// the stack. 1489static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1490 unsigned PtrByteSize) { 1491 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1492 if (Flags.isByVal()) 1493 ArgSize = Flags.getByValSize(); 1494 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1495 1496 return ArgSize; 1497} 1498 1499SDValue 1500PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1501 CallingConv::ID CallConv, bool isVarArg, 1502 const SmallVectorImpl<ISD::InputArg> 1503 &Ins, 1504 DebugLoc dl, SelectionDAG &DAG, 1505 SmallVectorImpl<SDValue> &InVals) 1506 const { 1507 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1508 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1509 dl, DAG, InVals); 1510 } else { 1511 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1512 dl, DAG, InVals); 1513 } 1514} 1515 1516SDValue 1517PPCTargetLowering::LowerFormalArguments_SVR4( 1518 SDValue Chain, 1519 CallingConv::ID CallConv, bool isVarArg, 1520 const SmallVectorImpl<ISD::InputArg> 1521 &Ins, 1522 DebugLoc dl, SelectionDAG &DAG, 1523 SmallVectorImpl<SDValue> &InVals) const { 1524 1525 // 32-bit SVR4 ABI Stack Frame Layout: 1526 // +-----------------------------------+ 1527 // +--> | Back chain | 1528 // | +-----------------------------------+ 1529 // | | Floating-point register save area | 1530 // | +-----------------------------------+ 1531 // | | General register save area | 1532 // | +-----------------------------------+ 1533 // | | CR save word | 1534 // | +-----------------------------------+ 1535 // | | VRSAVE save word | 1536 // | +-----------------------------------+ 1537 // | | Alignment padding | 1538 // | +-----------------------------------+ 1539 // | | Vector register save area | 1540 // | +-----------------------------------+ 1541 // | | Local variable space | 1542 // | +-----------------------------------+ 1543 // | | Parameter list area | 1544 // | +-----------------------------------+ 1545 // | | LR save word | 1546 // | +-----------------------------------+ 1547 // SP--> +--- | Back chain | 1548 // +-----------------------------------+ 1549 // 1550 // Specifications: 1551 // System V Application Binary Interface PowerPC Processor Supplement 1552 // AltiVec Technology Programming Interface Manual 1553 1554 MachineFunction &MF = DAG.getMachineFunction(); 1555 MachineFrameInfo *MFI = MF.getFrameInfo(); 1556 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1557 1558 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1559 // Potential tail calls could cause overwriting of argument stack slots. 1560 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1561 unsigned PtrByteSize = 4; 1562 1563 // Assign locations to all of the incoming arguments. 1564 SmallVector<CCValAssign, 16> ArgLocs; 1565 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, 1566 *DAG.getContext()); 1567 1568 // Reserve space for the linkage area on the stack. 1569 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); 1570 1571 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1572 1573 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1574 CCValAssign &VA = ArgLocs[i]; 1575 1576 // Arguments stored in registers. 1577 if (VA.isRegLoc()) { 1578 TargetRegisterClass *RC; 1579 EVT ValVT = VA.getValVT(); 1580 1581 switch (ValVT.getSimpleVT().SimpleTy) { 1582 default: 1583 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1584 case MVT::i32: 1585 RC = PPC::GPRCRegisterClass; 1586 break; 1587 case MVT::f32: 1588 RC = PPC::F4RCRegisterClass; 1589 break; 1590 case MVT::f64: 1591 RC = PPC::F8RCRegisterClass; 1592 break; 1593 case MVT::v16i8: 1594 case MVT::v8i16: 1595 case MVT::v4i32: 1596 case MVT::v4f32: 1597 RC = PPC::VRRCRegisterClass; 1598 break; 1599 } 1600 1601 // Transform the arguments stored in physical registers into virtual ones. 1602 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1603 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1604 1605 InVals.push_back(ArgValue); 1606 } else { 1607 // Argument stored in memory. 1608 assert(VA.isMemLoc()); 1609 1610 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1611 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1612 isImmutable); 1613 1614 // Create load nodes to retrieve arguments from the stack. 1615 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1616 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1617 MachinePointerInfo(), 1618 false, false, 0)); 1619 } 1620 } 1621 1622 // Assign locations to all of the incoming aggregate by value arguments. 1623 // Aggregates passed by value are stored in the local variable space of the 1624 // caller's stack frame, right above the parameter list area. 1625 SmallVector<CCValAssign, 16> ByValArgLocs; 1626 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), 1627 ByValArgLocs, *DAG.getContext()); 1628 1629 // Reserve stack space for the allocations in CCInfo. 1630 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1631 1632 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1633 1634 // Area that is at least reserved in the caller of this function. 1635 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1636 1637 // Set the size that is at least reserved in caller of this function. Tail 1638 // call optimized function's reserved stack space needs to be aligned so that 1639 // taking the difference between two stack areas will result in an aligned 1640 // stack. 1641 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1642 1643 MinReservedArea = 1644 std::max(MinReservedArea, 1645 PPCFrameInfo::getMinCallFrameSize(false, false)); 1646 1647 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> 1648 getStackAlignment(); 1649 unsigned AlignMask = TargetAlign-1; 1650 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1651 1652 FI->setMinReservedArea(MinReservedArea); 1653 1654 SmallVector<SDValue, 8> MemOps; 1655 1656 // If the function takes variable number of arguments, make a frame index for 1657 // the start of the first vararg value... for expansion of llvm.va_start. 1658 if (isVarArg) { 1659 static const unsigned GPArgRegs[] = { 1660 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1661 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1662 }; 1663 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1664 1665 static const unsigned FPArgRegs[] = { 1666 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1667 PPC::F8 1668 }; 1669 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1670 1671 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1672 NumGPArgRegs)); 1673 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1674 NumFPArgRegs)); 1675 1676 // Make room for NumGPArgRegs and NumFPArgRegs. 1677 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1678 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1679 1680 FuncInfo->setVarArgsStackOffset( 1681 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1682 CCInfo.getNextStackOffset(), true)); 1683 1684 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1685 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1686 1687 // The fixed integer arguments of a variadic function are stored to the 1688 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1689 // the result of va_next. 1690 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1691 // Get an existing live-in vreg, or add a new one. 1692 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1693 if (!VReg) 1694 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1695 1696 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1697 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1698 MachinePointerInfo(), false, false, 0); 1699 MemOps.push_back(Store); 1700 // Increment the address by four for the next argument to store 1701 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1702 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1703 } 1704 1705 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1706 // is set. 1707 // The double arguments are stored to the VarArgsFrameIndex 1708 // on the stack. 1709 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1710 // Get an existing live-in vreg, or add a new one. 1711 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1712 if (!VReg) 1713 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1714 1715 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1716 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1717 MachinePointerInfo(), false, false, 0); 1718 MemOps.push_back(Store); 1719 // Increment the address by eight for the next argument to store 1720 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1721 PtrVT); 1722 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1723 } 1724 } 1725 1726 if (!MemOps.empty()) 1727 Chain = DAG.getNode(ISD::TokenFactor, dl, 1728 MVT::Other, &MemOps[0], MemOps.size()); 1729 1730 return Chain; 1731} 1732 1733SDValue 1734PPCTargetLowering::LowerFormalArguments_Darwin( 1735 SDValue Chain, 1736 CallingConv::ID CallConv, bool isVarArg, 1737 const SmallVectorImpl<ISD::InputArg> 1738 &Ins, 1739 DebugLoc dl, SelectionDAG &DAG, 1740 SmallVectorImpl<SDValue> &InVals) const { 1741 // TODO: add description of PPC stack frame format, or at least some docs. 1742 // 1743 MachineFunction &MF = DAG.getMachineFunction(); 1744 MachineFrameInfo *MFI = MF.getFrameInfo(); 1745 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1746 1747 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1748 bool isPPC64 = PtrVT == MVT::i64; 1749 // Potential tail calls could cause overwriting of argument stack slots. 1750 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1751 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1752 1753 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); 1754 // Area that is at least reserved in caller of this function. 1755 unsigned MinReservedArea = ArgOffset; 1756 1757 static const unsigned GPR_32[] = { // 32-bit registers. 1758 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1759 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1760 }; 1761 static const unsigned GPR_64[] = { // 64-bit registers. 1762 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1763 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1764 }; 1765 1766 static const unsigned *FPR = GetFPR(); 1767 1768 static const unsigned VR[] = { 1769 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1770 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1771 }; 1772 1773 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1774 const unsigned Num_FPR_Regs = 13; 1775 const unsigned Num_VR_Regs = array_lengthof( VR); 1776 1777 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1778 1779 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1780 1781 // In 32-bit non-varargs functions, the stack space for vectors is after the 1782 // stack space for non-vectors. We do not use this space unless we have 1783 // too many vectors to fit in registers, something that only occurs in 1784 // constructed examples:), but we have to walk the arglist to figure 1785 // that out...for the pathological case, compute VecArgOffset as the 1786 // start of the vector parameter area. Computing VecArgOffset is the 1787 // entire point of the following loop. 1788 unsigned VecArgOffset = ArgOffset; 1789 if (!isVarArg && !isPPC64) { 1790 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1791 ++ArgNo) { 1792 EVT ObjectVT = Ins[ArgNo].VT; 1793 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1794 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1795 1796 if (Flags.isByVal()) { 1797 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1798 ObjSize = Flags.getByValSize(); 1799 unsigned ArgSize = 1800 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1801 VecArgOffset += ArgSize; 1802 continue; 1803 } 1804 1805 switch(ObjectVT.getSimpleVT().SimpleTy) { 1806 default: llvm_unreachable("Unhandled argument type!"); 1807 case MVT::i32: 1808 case MVT::f32: 1809 VecArgOffset += isPPC64 ? 8 : 4; 1810 break; 1811 case MVT::i64: // PPC64 1812 case MVT::f64: 1813 VecArgOffset += 8; 1814 break; 1815 case MVT::v4f32: 1816 case MVT::v4i32: 1817 case MVT::v8i16: 1818 case MVT::v16i8: 1819 // Nothing to do, we're only looking at Nonvector args here. 1820 break; 1821 } 1822 } 1823 } 1824 // We've found where the vector parameter area in memory is. Skip the 1825 // first 12 parameters; these don't use that memory. 1826 VecArgOffset = ((VecArgOffset+15)/16)*16; 1827 VecArgOffset += 12*16; 1828 1829 // Add DAG nodes to load the arguments or copy them out of registers. On 1830 // entry to a function on PPC, the arguments start after the linkage area, 1831 // although the first ones are often in registers. 1832 1833 SmallVector<SDValue, 8> MemOps; 1834 unsigned nAltivecParamsAtEnd = 0; 1835 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1836 SDValue ArgVal; 1837 bool needsLoad = false; 1838 EVT ObjectVT = Ins[ArgNo].VT; 1839 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1840 unsigned ArgSize = ObjSize; 1841 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1842 1843 unsigned CurArgOffset = ArgOffset; 1844 1845 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1846 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1847 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1848 if (isVarArg || isPPC64) { 1849 MinReservedArea = ((MinReservedArea+15)/16)*16; 1850 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1851 Flags, 1852 PtrByteSize); 1853 } else nAltivecParamsAtEnd++; 1854 } else 1855 // Calculate min reserved area. 1856 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1857 Flags, 1858 PtrByteSize); 1859 1860 // FIXME the codegen can be much improved in some cases. 1861 // We do not have to keep everything in memory. 1862 if (Flags.isByVal()) { 1863 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1864 ObjSize = Flags.getByValSize(); 1865 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1866 // Objects of size 1 and 2 are right justified, everything else is 1867 // left justified. This means the memory address is adjusted forwards. 1868 if (ObjSize==1 || ObjSize==2) { 1869 CurArgOffset = CurArgOffset + (4 - ObjSize); 1870 } 1871 // The value of the object is its address. 1872 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1873 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1874 InVals.push_back(FIN); 1875 if (ObjSize==1 || ObjSize==2) { 1876 if (GPR_idx != Num_GPR_Regs) { 1877 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1878 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1879 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 1880 MachinePointerInfo(), 1881 ObjSize==1 ? MVT::i8 : MVT::i16, 1882 false, false, 0); 1883 MemOps.push_back(Store); 1884 ++GPR_idx; 1885 } 1886 1887 ArgOffset += PtrByteSize; 1888 1889 continue; 1890 } 1891 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 1892 // Store whatever pieces of the object are in registers 1893 // to memory. ArgVal will be address of the beginning of 1894 // the object. 1895 if (GPR_idx != Num_GPR_Regs) { 1896 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1897 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 1898 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1899 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1900 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1901 MachinePointerInfo(), 1902 false, false, 0); 1903 MemOps.push_back(Store); 1904 ++GPR_idx; 1905 ArgOffset += PtrByteSize; 1906 } else { 1907 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 1908 break; 1909 } 1910 } 1911 continue; 1912 } 1913 1914 switch (ObjectVT.getSimpleVT().SimpleTy) { 1915 default: llvm_unreachable("Unhandled argument type!"); 1916 case MVT::i32: 1917 if (!isPPC64) { 1918 if (GPR_idx != Num_GPR_Regs) { 1919 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1920 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1921 ++GPR_idx; 1922 } else { 1923 needsLoad = true; 1924 ArgSize = PtrByteSize; 1925 } 1926 // All int arguments reserve stack space in the Darwin ABI. 1927 ArgOffset += PtrByteSize; 1928 break; 1929 } 1930 // FALLTHROUGH 1931 case MVT::i64: // PPC64 1932 if (GPR_idx != Num_GPR_Regs) { 1933 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 1934 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 1935 1936 if (ObjectVT == MVT::i32) { 1937 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 1938 // value to MVT::i64 and then truncate to the correct register size. 1939 if (Flags.isSExt()) 1940 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 1941 DAG.getValueType(ObjectVT)); 1942 else if (Flags.isZExt()) 1943 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 1944 DAG.getValueType(ObjectVT)); 1945 1946 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 1947 } 1948 1949 ++GPR_idx; 1950 } else { 1951 needsLoad = true; 1952 ArgSize = PtrByteSize; 1953 } 1954 // All int arguments reserve stack space in the Darwin ABI. 1955 ArgOffset += 8; 1956 break; 1957 1958 case MVT::f32: 1959 case MVT::f64: 1960 // Every 4 bytes of argument space consumes one of the GPRs available for 1961 // argument passing. 1962 if (GPR_idx != Num_GPR_Regs) { 1963 ++GPR_idx; 1964 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 1965 ++GPR_idx; 1966 } 1967 if (FPR_idx != Num_FPR_Regs) { 1968 unsigned VReg; 1969 1970 if (ObjectVT == MVT::f32) 1971 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 1972 else 1973 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 1974 1975 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 1976 ++FPR_idx; 1977 } else { 1978 needsLoad = true; 1979 } 1980 1981 // All FP arguments reserve stack space in the Darwin ABI. 1982 ArgOffset += isPPC64 ? 8 : ObjSize; 1983 break; 1984 case MVT::v4f32: 1985 case MVT::v4i32: 1986 case MVT::v8i16: 1987 case MVT::v16i8: 1988 // Note that vector arguments in registers don't reserve stack space, 1989 // except in varargs functions. 1990 if (VR_idx != Num_VR_Regs) { 1991 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 1992 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 1993 if (isVarArg) { 1994 while ((ArgOffset % 16) != 0) { 1995 ArgOffset += PtrByteSize; 1996 if (GPR_idx != Num_GPR_Regs) 1997 GPR_idx++; 1998 } 1999 ArgOffset += 16; 2000 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2001 } 2002 ++VR_idx; 2003 } else { 2004 if (!isVarArg && !isPPC64) { 2005 // Vectors go after all the nonvectors. 2006 CurArgOffset = VecArgOffset; 2007 VecArgOffset += 16; 2008 } else { 2009 // Vectors are aligned. 2010 ArgOffset = ((ArgOffset+15)/16)*16; 2011 CurArgOffset = ArgOffset; 2012 ArgOffset += 16; 2013 } 2014 needsLoad = true; 2015 } 2016 break; 2017 } 2018 2019 // We need to load the argument to a virtual register if we determined above 2020 // that we ran out of physical registers of the appropriate type. 2021 if (needsLoad) { 2022 int FI = MFI->CreateFixedObject(ObjSize, 2023 CurArgOffset + (ArgSize - ObjSize), 2024 isImmutable); 2025 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2026 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2027 false, false, 0); 2028 } 2029 2030 InVals.push_back(ArgVal); 2031 } 2032 2033 // Set the size that is at least reserved in caller of this function. Tail 2034 // call optimized function's reserved stack space needs to be aligned so that 2035 // taking the difference between two stack areas will result in an aligned 2036 // stack. 2037 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2038 // Add the Altivec parameters at the end, if needed. 2039 if (nAltivecParamsAtEnd) { 2040 MinReservedArea = ((MinReservedArea+15)/16)*16; 2041 MinReservedArea += 16*nAltivecParamsAtEnd; 2042 } 2043 MinReservedArea = 2044 std::max(MinReservedArea, 2045 PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); 2046 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> 2047 getStackAlignment(); 2048 unsigned AlignMask = TargetAlign-1; 2049 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2050 FI->setMinReservedArea(MinReservedArea); 2051 2052 // If the function takes variable number of arguments, make a frame index for 2053 // the start of the first vararg value... for expansion of llvm.va_start. 2054 if (isVarArg) { 2055 int Depth = ArgOffset; 2056 2057 FuncInfo->setVarArgsFrameIndex( 2058 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2059 Depth, true)); 2060 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2061 2062 // If this function is vararg, store any remaining integer argument regs 2063 // to their spots on the stack so that they may be loaded by deferencing the 2064 // result of va_next. 2065 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2066 unsigned VReg; 2067 2068 if (isPPC64) 2069 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2070 else 2071 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2072 2073 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2074 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2075 MachinePointerInfo(), false, false, 0); 2076 MemOps.push_back(Store); 2077 // Increment the address by four for the next argument to store 2078 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2079 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2080 } 2081 } 2082 2083 if (!MemOps.empty()) 2084 Chain = DAG.getNode(ISD::TokenFactor, dl, 2085 MVT::Other, &MemOps[0], MemOps.size()); 2086 2087 return Chain; 2088} 2089 2090/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2091/// linkage area for the Darwin ABI. 2092static unsigned 2093CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2094 bool isPPC64, 2095 bool isVarArg, 2096 unsigned CC, 2097 const SmallVectorImpl<ISD::OutputArg> 2098 &Outs, 2099 const SmallVectorImpl<SDValue> &OutVals, 2100 unsigned &nAltivecParamsAtEnd) { 2101 // Count how many bytes are to be pushed on the stack, including the linkage 2102 // area, and parameter passing area. We start with 24/48 bytes, which is 2103 // prereserved space for [SP][CR][LR][3 x unused]. 2104 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true); 2105 unsigned NumOps = Outs.size(); 2106 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2107 2108 // Add up all the space actually used. 2109 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2110 // they all go in registers, but we must reserve stack space for them for 2111 // possible use by the caller. In varargs or 64-bit calls, parameters are 2112 // assigned stack space in order, with padding so Altivec parameters are 2113 // 16-byte aligned. 2114 nAltivecParamsAtEnd = 0; 2115 for (unsigned i = 0; i != NumOps; ++i) { 2116 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2117 EVT ArgVT = Outs[i].VT; 2118 // Varargs Altivec parameters are padded to a 16 byte boundary. 2119 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2120 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2121 if (!isVarArg && !isPPC64) { 2122 // Non-varargs Altivec parameters go after all the non-Altivec 2123 // parameters; handle those later so we know how much padding we need. 2124 nAltivecParamsAtEnd++; 2125 continue; 2126 } 2127 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2128 NumBytes = ((NumBytes+15)/16)*16; 2129 } 2130 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2131 } 2132 2133 // Allow for Altivec parameters at the end, if needed. 2134 if (nAltivecParamsAtEnd) { 2135 NumBytes = ((NumBytes+15)/16)*16; 2136 NumBytes += 16*nAltivecParamsAtEnd; 2137 } 2138 2139 // The prolog code of the callee may store up to 8 GPR argument registers to 2140 // the stack, allowing va_start to index over them in memory if its varargs. 2141 // Because we cannot tell if this is needed on the caller side, we have to 2142 // conservatively assume that it is needed. As such, make sure we have at 2143 // least enough stack space for the caller to store the 8 GPRs. 2144 NumBytes = std::max(NumBytes, 2145 PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); 2146 2147 // Tail call needs the stack to be aligned. 2148 if (CC==CallingConv::Fast && GuaranteedTailCallOpt) { 2149 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> 2150 getStackAlignment(); 2151 unsigned AlignMask = TargetAlign-1; 2152 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2153 } 2154 2155 return NumBytes; 2156} 2157 2158/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2159/// adjusted to accomodate the arguments for the tailcall. 2160static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2161 unsigned ParamSize) { 2162 2163 if (!isTailCall) return 0; 2164 2165 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2166 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2167 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2168 // Remember only if the new adjustement is bigger. 2169 if (SPDiff < FI->getTailCallSPDelta()) 2170 FI->setTailCallSPDelta(SPDiff); 2171 2172 return SPDiff; 2173} 2174 2175/// IsEligibleForTailCallOptimization - Check whether the call is eligible 2176/// for tail call optimization. Targets which want to do tail call 2177/// optimization should implement this function. 2178bool 2179PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2180 CallingConv::ID CalleeCC, 2181 bool isVarArg, 2182 const SmallVectorImpl<ISD::InputArg> &Ins, 2183 SelectionDAG& DAG) const { 2184 if (!GuaranteedTailCallOpt) 2185 return false; 2186 2187 // Variable argument functions are not supported. 2188 if (isVarArg) 2189 return false; 2190 2191 MachineFunction &MF = DAG.getMachineFunction(); 2192 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2193 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2194 // Functions containing by val parameters are not supported. 2195 for (unsigned i = 0; i != Ins.size(); i++) { 2196 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2197 if (Flags.isByVal()) return false; 2198 } 2199 2200 // Non PIC/GOT tail calls are supported. 2201 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2202 return true; 2203 2204 // At the moment we can only do local tail calls (in same module, hidden 2205 // or protected) if we are generating PIC. 2206 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2207 return G->getGlobal()->hasHiddenVisibility() 2208 || G->getGlobal()->hasProtectedVisibility(); 2209 } 2210 2211 return false; 2212} 2213 2214/// isCallCompatibleAddress - Return the immediate to use if the specified 2215/// 32-bit value is representable in the immediate field of a BxA instruction. 2216static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2217 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2218 if (!C) return 0; 2219 2220 int Addr = C->getZExtValue(); 2221 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2222 (Addr << 6 >> 6) != Addr) 2223 return 0; // Top 6 bits have to be sext of immediate. 2224 2225 return DAG.getConstant((int)C->getZExtValue() >> 2, 2226 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2227} 2228 2229namespace { 2230 2231struct TailCallArgumentInfo { 2232 SDValue Arg; 2233 SDValue FrameIdxOp; 2234 int FrameIdx; 2235 2236 TailCallArgumentInfo() : FrameIdx(0) {} 2237}; 2238 2239} 2240 2241/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2242static void 2243StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2244 SDValue Chain, 2245 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2246 SmallVector<SDValue, 8> &MemOpChains, 2247 DebugLoc dl) { 2248 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2249 SDValue Arg = TailCallArgs[i].Arg; 2250 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2251 int FI = TailCallArgs[i].FrameIdx; 2252 // Store relative to framepointer. 2253 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2254 MachinePointerInfo::getFixedStack(FI), 2255 false, false, 0)); 2256 } 2257} 2258 2259/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2260/// the appropriate stack slot for the tail call optimized function call. 2261static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2262 MachineFunction &MF, 2263 SDValue Chain, 2264 SDValue OldRetAddr, 2265 SDValue OldFP, 2266 int SPDiff, 2267 bool isPPC64, 2268 bool isDarwinABI, 2269 DebugLoc dl) { 2270 if (SPDiff) { 2271 // Calculate the new stack slot for the return address. 2272 int SlotSize = isPPC64 ? 8 : 4; 2273 int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64, 2274 isDarwinABI); 2275 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2276 NewRetAddrLoc, true); 2277 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2278 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2279 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2280 MachinePointerInfo::getFixedStack(NewRetAddr), 2281 false, false, 0); 2282 2283 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2284 // slot as the FP is never overwritten. 2285 if (isDarwinABI) { 2286 int NewFPLoc = 2287 SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2288 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2289 true); 2290 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2291 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2292 MachinePointerInfo::getFixedStack(NewFPIdx), 2293 false, false, 0); 2294 } 2295 } 2296 return Chain; 2297} 2298 2299/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2300/// the position of the argument. 2301static void 2302CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2303 SDValue Arg, int SPDiff, unsigned ArgOffset, 2304 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2305 int Offset = ArgOffset + SPDiff; 2306 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2307 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2308 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2309 SDValue FIN = DAG.getFrameIndex(FI, VT); 2310 TailCallArgumentInfo Info; 2311 Info.Arg = Arg; 2312 Info.FrameIdxOp = FIN; 2313 Info.FrameIdx = FI; 2314 TailCallArguments.push_back(Info); 2315} 2316 2317/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2318/// stack slot. Returns the chain as result and the loaded frame pointers in 2319/// LROpOut/FPOpout. Used when tail calling. 2320SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2321 int SPDiff, 2322 SDValue Chain, 2323 SDValue &LROpOut, 2324 SDValue &FPOpOut, 2325 bool isDarwinABI, 2326 DebugLoc dl) const { 2327 if (SPDiff) { 2328 // Load the LR and FP stack slot for later adjusting. 2329 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2330 LROpOut = getReturnAddrFrameIndex(DAG); 2331 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2332 false, false, 0); 2333 Chain = SDValue(LROpOut.getNode(), 1); 2334 2335 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2336 // slot as the FP is never overwritten. 2337 if (isDarwinABI) { 2338 FPOpOut = getFramePointerFrameIndex(DAG); 2339 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2340 false, false, 0); 2341 Chain = SDValue(FPOpOut.getNode(), 1); 2342 } 2343 } 2344 return Chain; 2345} 2346 2347/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2348/// by "Src" to address "Dst" of size "Size". Alignment information is 2349/// specified by the specific parameter attribute. The copy will be passed as 2350/// a byval function parameter. 2351/// Sometimes what we are copying is the end of a larger object, the part that 2352/// does not fit in registers. 2353static SDValue 2354CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2355 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2356 DebugLoc dl) { 2357 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2358 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2359 false, false, MachinePointerInfo(0), 2360 MachinePointerInfo(0)); 2361} 2362 2363/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2364/// tail calls. 2365static void 2366LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2367 SDValue Arg, SDValue PtrOff, int SPDiff, 2368 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2369 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2370 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2371 DebugLoc dl) { 2372 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2373 if (!isTailCall) { 2374 if (isVector) { 2375 SDValue StackPtr; 2376 if (isPPC64) 2377 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2378 else 2379 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2380 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2381 DAG.getConstant(ArgOffset, PtrVT)); 2382 } 2383 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2384 MachinePointerInfo(), false, false, 0)); 2385 // Calculate and remember argument location. 2386 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2387 TailCallArguments); 2388} 2389 2390static 2391void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2392 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2393 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2394 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2395 MachineFunction &MF = DAG.getMachineFunction(); 2396 2397 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2398 // might overwrite each other in case of tail call optimization. 2399 SmallVector<SDValue, 8> MemOpChains2; 2400 // Do not flag preceeding copytoreg stuff together with the following stuff. 2401 InFlag = SDValue(); 2402 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2403 MemOpChains2, dl); 2404 if (!MemOpChains2.empty()) 2405 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2406 &MemOpChains2[0], MemOpChains2.size()); 2407 2408 // Store the return address to the appropriate stack slot. 2409 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2410 isPPC64, isDarwinABI, dl); 2411 2412 // Emit callseq_end just before tailcall node. 2413 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2414 DAG.getIntPtrConstant(0, true), InFlag); 2415 InFlag = Chain.getValue(1); 2416} 2417 2418static 2419unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2420 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2421 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2422 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2423 const PPCSubtarget &PPCSubTarget) { 2424 2425 bool isPPC64 = PPCSubTarget.isPPC64(); 2426 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2427 2428 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2429 NodeTys.push_back(MVT::Other); // Returns a chain 2430 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2431 2432 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2433 2434 bool needIndirectCall = true; 2435 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2436 // If this is an absolute destination address, use the munged value. 2437 Callee = SDValue(Dest, 0); 2438 needIndirectCall = false; 2439 } 2440 2441 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2442 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2443 // Use indirect calls for ALL functions calls in JIT mode, since the 2444 // far-call stubs may be outside relocation limits for a BL instruction. 2445 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2446 unsigned OpFlags = 0; 2447 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2448 PPCSubTarget.getDarwinVers() < 9 && 2449 (G->getGlobal()->isDeclaration() || 2450 G->getGlobal()->isWeakForLinker())) { 2451 // PC-relative references to external symbols should go through $stub, 2452 // unless we're building with the leopard linker or later, which 2453 // automatically synthesizes these stubs. 2454 OpFlags = PPCII::MO_DARWIN_STUB; 2455 } 2456 2457 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2458 // every direct call is) turn it into a TargetGlobalAddress / 2459 // TargetExternalSymbol node so that legalize doesn't hack it. 2460 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2461 Callee.getValueType(), 2462 0, OpFlags); 2463 needIndirectCall = false; 2464 } 2465 } 2466 2467 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2468 unsigned char OpFlags = 0; 2469 2470 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2471 PPCSubTarget.getDarwinVers() < 9) { 2472 // PC-relative references to external symbols should go through $stub, 2473 // unless we're building with the leopard linker or later, which 2474 // automatically synthesizes these stubs. 2475 OpFlags = PPCII::MO_DARWIN_STUB; 2476 } 2477 2478 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2479 OpFlags); 2480 needIndirectCall = false; 2481 } 2482 2483 if (needIndirectCall) { 2484 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2485 // to do the call, we can't use PPCISD::CALL. 2486 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2487 2488 if (isSVR4ABI && isPPC64) { 2489 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2490 // entry point, but to the function descriptor (the function entry point 2491 // address is part of the function descriptor though). 2492 // The function descriptor is a three doubleword structure with the 2493 // following fields: function entry point, TOC base address and 2494 // environment pointer. 2495 // Thus for a call through a function pointer, the following actions need 2496 // to be performed: 2497 // 1. Save the TOC of the caller in the TOC save area of its stack 2498 // frame (this is done in LowerCall_Darwin()). 2499 // 2. Load the address of the function entry point from the function 2500 // descriptor. 2501 // 3. Load the TOC of the callee from the function descriptor into r2. 2502 // 4. Load the environment pointer from the function descriptor into 2503 // r11. 2504 // 5. Branch to the function entry point address. 2505 // 6. On return of the callee, the TOC of the caller needs to be 2506 // restored (this is done in FinishCall()). 2507 // 2508 // All those operations are flagged together to ensure that no other 2509 // operations can be scheduled in between. E.g. without flagging the 2510 // operations together, a TOC access in the caller could be scheduled 2511 // between the load of the callee TOC and the branch to the callee, which 2512 // results in the TOC access going through the TOC of the callee instead 2513 // of going through the TOC of the caller, which leads to incorrect code. 2514 2515 // Load the address of the function entry point from the function 2516 // descriptor. 2517 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2518 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2519 InFlag.getNode() ? 3 : 2); 2520 Chain = LoadFuncPtr.getValue(1); 2521 InFlag = LoadFuncPtr.getValue(2); 2522 2523 // Load environment pointer into r11. 2524 // Offset of the environment pointer within the function descriptor. 2525 SDValue PtrOff = DAG.getIntPtrConstant(16); 2526 2527 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2528 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2529 InFlag); 2530 Chain = LoadEnvPtr.getValue(1); 2531 InFlag = LoadEnvPtr.getValue(2); 2532 2533 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2534 InFlag); 2535 Chain = EnvVal.getValue(0); 2536 InFlag = EnvVal.getValue(1); 2537 2538 // Load TOC of the callee into r2. We are using a target-specific load 2539 // with r2 hard coded, because the result of a target-independent load 2540 // would never go directly into r2, since r2 is a reserved register (which 2541 // prevents the register allocator from allocating it), resulting in an 2542 // additional register being allocated and an unnecessary move instruction 2543 // being generated. 2544 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2545 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2546 Callee, InFlag); 2547 Chain = LoadTOCPtr.getValue(0); 2548 InFlag = LoadTOCPtr.getValue(1); 2549 2550 MTCTROps[0] = Chain; 2551 MTCTROps[1] = LoadFuncPtr; 2552 MTCTROps[2] = InFlag; 2553 } 2554 2555 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2556 2 + (InFlag.getNode() != 0)); 2557 InFlag = Chain.getValue(1); 2558 2559 NodeTys.clear(); 2560 NodeTys.push_back(MVT::Other); 2561 NodeTys.push_back(MVT::Glue); 2562 Ops.push_back(Chain); 2563 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2564 Callee.setNode(0); 2565 // Add CTR register as callee so a bctr can be emitted later. 2566 if (isTailCall) 2567 Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT)); 2568 } 2569 2570 // If this is a direct call, pass the chain and the callee. 2571 if (Callee.getNode()) { 2572 Ops.push_back(Chain); 2573 Ops.push_back(Callee); 2574 } 2575 // If this is a tail call add stack pointer delta. 2576 if (isTailCall) 2577 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2578 2579 // Add argument registers to the end of the list so that they are known live 2580 // into the call. 2581 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2582 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2583 RegsToPass[i].second.getValueType())); 2584 2585 return CallOpc; 2586} 2587 2588SDValue 2589PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2590 CallingConv::ID CallConv, bool isVarArg, 2591 const SmallVectorImpl<ISD::InputArg> &Ins, 2592 DebugLoc dl, SelectionDAG &DAG, 2593 SmallVectorImpl<SDValue> &InVals) const { 2594 2595 SmallVector<CCValAssign, 16> RVLocs; 2596 CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(), 2597 RVLocs, *DAG.getContext()); 2598 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2599 2600 // Copy all of the result registers out of their specified physreg. 2601 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2602 CCValAssign &VA = RVLocs[i]; 2603 EVT VT = VA.getValVT(); 2604 assert(VA.isRegLoc() && "Can only return in registers!"); 2605 Chain = DAG.getCopyFromReg(Chain, dl, 2606 VA.getLocReg(), VT, InFlag).getValue(1); 2607 InVals.push_back(Chain.getValue(0)); 2608 InFlag = Chain.getValue(2); 2609 } 2610 2611 return Chain; 2612} 2613 2614SDValue 2615PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2616 bool isTailCall, bool isVarArg, 2617 SelectionDAG &DAG, 2618 SmallVector<std::pair<unsigned, SDValue>, 8> 2619 &RegsToPass, 2620 SDValue InFlag, SDValue Chain, 2621 SDValue &Callee, 2622 int SPDiff, unsigned NumBytes, 2623 const SmallVectorImpl<ISD::InputArg> &Ins, 2624 SmallVectorImpl<SDValue> &InVals) const { 2625 std::vector<EVT> NodeTys; 2626 SmallVector<SDValue, 8> Ops; 2627 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2628 isTailCall, RegsToPass, Ops, NodeTys, 2629 PPCSubTarget); 2630 2631 // When performing tail call optimization the callee pops its arguments off 2632 // the stack. Account for this here so these bytes can be pushed back on in 2633 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2634 int BytesCalleePops = 2635 (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0; 2636 2637 if (InFlag.getNode()) 2638 Ops.push_back(InFlag); 2639 2640 // Emit tail call. 2641 if (isTailCall) { 2642 // If this is the first return lowered for this function, add the regs 2643 // to the liveout set for the function. 2644 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2645 SmallVector<CCValAssign, 16> RVLocs; 2646 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, 2647 *DAG.getContext()); 2648 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2649 for (unsigned i = 0; i != RVLocs.size(); ++i) 2650 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2651 } 2652 2653 assert(((Callee.getOpcode() == ISD::Register && 2654 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2655 Callee.getOpcode() == ISD::TargetExternalSymbol || 2656 Callee.getOpcode() == ISD::TargetGlobalAddress || 2657 isa<ConstantSDNode>(Callee)) && 2658 "Expecting an global address, external symbol, absolute value or register"); 2659 2660 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2661 } 2662 2663 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2664 InFlag = Chain.getValue(1); 2665 2666 // Add a NOP immediately after the branch instruction when using the 64-bit 2667 // SVR4 ABI. At link time, if caller and callee are in a different module and 2668 // thus have a different TOC, the call will be replaced with a call to a stub 2669 // function which saves the current TOC, loads the TOC of the callee and 2670 // branches to the callee. The NOP will be replaced with a load instruction 2671 // which restores the TOC of the caller from the TOC save slot of the current 2672 // stack frame. If caller and callee belong to the same module (and have the 2673 // same TOC), the NOP will remain unchanged. 2674 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2675 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2676 if (CallOpc == PPCISD::BCTRL_SVR4) { 2677 // This is a call through a function pointer. 2678 // Restore the caller TOC from the save area into R2. 2679 // See PrepareCall() for more information about calls through function 2680 // pointers in the 64-bit SVR4 ABI. 2681 // We are using a target-specific load with r2 hard coded, because the 2682 // result of a target-independent load would never go directly into r2, 2683 // since r2 is a reserved register (which prevents the register allocator 2684 // from allocating it), resulting in an additional register being 2685 // allocated and an unnecessary move instruction being generated. 2686 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2687 InFlag = Chain.getValue(1); 2688 } else { 2689 // Otherwise insert NOP. 2690 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2691 } 2692 } 2693 2694 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2695 DAG.getIntPtrConstant(BytesCalleePops, true), 2696 InFlag); 2697 if (!Ins.empty()) 2698 InFlag = Chain.getValue(1); 2699 2700 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2701 Ins, dl, DAG, InVals); 2702} 2703 2704SDValue 2705PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2706 CallingConv::ID CallConv, bool isVarArg, 2707 bool &isTailCall, 2708 const SmallVectorImpl<ISD::OutputArg> &Outs, 2709 const SmallVectorImpl<SDValue> &OutVals, 2710 const SmallVectorImpl<ISD::InputArg> &Ins, 2711 DebugLoc dl, SelectionDAG &DAG, 2712 SmallVectorImpl<SDValue> &InVals) const { 2713 if (isTailCall) 2714 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2715 Ins, DAG); 2716 2717 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2718 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2719 isTailCall, Outs, OutVals, Ins, 2720 dl, DAG, InVals); 2721 2722 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2723 isTailCall, Outs, OutVals, Ins, 2724 dl, DAG, InVals); 2725} 2726 2727SDValue 2728PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2729 CallingConv::ID CallConv, bool isVarArg, 2730 bool isTailCall, 2731 const SmallVectorImpl<ISD::OutputArg> &Outs, 2732 const SmallVectorImpl<SDValue> &OutVals, 2733 const SmallVectorImpl<ISD::InputArg> &Ins, 2734 DebugLoc dl, SelectionDAG &DAG, 2735 SmallVectorImpl<SDValue> &InVals) const { 2736 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2737 // of the 32-bit SVR4 ABI stack frame layout. 2738 2739 assert((CallConv == CallingConv::C || 2740 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2741 2742 unsigned PtrByteSize = 4; 2743 2744 MachineFunction &MF = DAG.getMachineFunction(); 2745 2746 // Mark this function as potentially containing a function that contains a 2747 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2748 // and restoring the callers stack pointer in this functions epilog. This is 2749 // done because by tail calling the called function might overwrite the value 2750 // in this function's (MF) stack pointer stack slot 0(SP). 2751 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2752 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2753 2754 // Count how many bytes are to be pushed on the stack, including the linkage 2755 // area, parameter list area and the part of the local variable space which 2756 // contains copies of aggregates which are passed by value. 2757 2758 // Assign locations to all of the outgoing arguments. 2759 SmallVector<CCValAssign, 16> ArgLocs; 2760 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 2761 ArgLocs, *DAG.getContext()); 2762 2763 // Reserve space for the linkage area on the stack. 2764 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); 2765 2766 if (isVarArg) { 2767 // Handle fixed and variable vector arguments differently. 2768 // Fixed vector arguments go into registers as long as registers are 2769 // available. Variable vector arguments always go into memory. 2770 unsigned NumArgs = Outs.size(); 2771 2772 for (unsigned i = 0; i != NumArgs; ++i) { 2773 MVT ArgVT = Outs[i].VT; 2774 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2775 bool Result; 2776 2777 if (Outs[i].IsFixed) { 2778 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2779 CCInfo); 2780 } else { 2781 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2782 ArgFlags, CCInfo); 2783 } 2784 2785 if (Result) { 2786#ifndef NDEBUG 2787 errs() << "Call operand #" << i << " has unhandled type " 2788 << EVT(ArgVT).getEVTString() << "\n"; 2789#endif 2790 llvm_unreachable(0); 2791 } 2792 } 2793 } else { 2794 // All arguments are treated the same. 2795 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2796 } 2797 2798 // Assign locations to all of the outgoing aggregate by value arguments. 2799 SmallVector<CCValAssign, 16> ByValArgLocs; 2800 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs, 2801 *DAG.getContext()); 2802 2803 // Reserve stack space for the allocations in CCInfo. 2804 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2805 2806 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2807 2808 // Size of the linkage area, parameter list area and the part of the local 2809 // space variable where copies of aggregates which are passed by value are 2810 // stored. 2811 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2812 2813 // Calculate by how many bytes the stack has to be adjusted in case of tail 2814 // call optimization. 2815 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2816 2817 // Adjust the stack pointer for the new arguments... 2818 // These operations are automatically eliminated by the prolog/epilog pass 2819 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2820 SDValue CallSeqStart = Chain; 2821 2822 // Load the return address and frame pointer so it can be moved somewhere else 2823 // later. 2824 SDValue LROp, FPOp; 2825 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2826 dl); 2827 2828 // Set up a copy of the stack pointer for use loading and storing any 2829 // arguments that may not fit in the registers available for argument 2830 // passing. 2831 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2832 2833 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2834 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2835 SmallVector<SDValue, 8> MemOpChains; 2836 2837 // Walk the register/memloc assignments, inserting copies/loads. 2838 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2839 i != e; 2840 ++i) { 2841 CCValAssign &VA = ArgLocs[i]; 2842 SDValue Arg = OutVals[i]; 2843 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2844 2845 if (Flags.isByVal()) { 2846 // Argument is an aggregate which is passed by value, thus we need to 2847 // create a copy of it in the local variable space of the current stack 2848 // frame (which is the stack frame of the caller) and pass the address of 2849 // this copy to the callee. 2850 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2851 CCValAssign &ByValVA = ByValArgLocs[j++]; 2852 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2853 2854 // Memory reserved in the local variable space of the callers stack frame. 2855 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2856 2857 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2858 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2859 2860 // Create a copy of the argument in the local area of the current 2861 // stack frame. 2862 SDValue MemcpyCall = 2863 CreateCopyOfByValArgument(Arg, PtrOff, 2864 CallSeqStart.getNode()->getOperand(0), 2865 Flags, DAG, dl); 2866 2867 // This must go outside the CALLSEQ_START..END. 2868 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2869 CallSeqStart.getNode()->getOperand(1)); 2870 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 2871 NewCallSeqStart.getNode()); 2872 Chain = CallSeqStart = NewCallSeqStart; 2873 2874 // Pass the address of the aggregate copy on the stack either in a 2875 // physical register or in the parameter list area of the current stack 2876 // frame to the callee. 2877 Arg = PtrOff; 2878 } 2879 2880 if (VA.isRegLoc()) { 2881 // Put argument in a physical register. 2882 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2883 } else { 2884 // Put argument in the parameter list area of the current stack frame. 2885 assert(VA.isMemLoc()); 2886 unsigned LocMemOffset = VA.getLocMemOffset(); 2887 2888 if (!isTailCall) { 2889 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2890 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2891 2892 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2893 MachinePointerInfo(), 2894 false, false, 0)); 2895 } else { 2896 // Calculate and remember argument location. 2897 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 2898 TailCallArguments); 2899 } 2900 } 2901 } 2902 2903 if (!MemOpChains.empty()) 2904 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2905 &MemOpChains[0], MemOpChains.size()); 2906 2907 // Build a sequence of copy-to-reg nodes chained together with token chain 2908 // and flag operands which copy the outgoing args into the appropriate regs. 2909 SDValue InFlag; 2910 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2911 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 2912 RegsToPass[i].second, InFlag); 2913 InFlag = Chain.getValue(1); 2914 } 2915 2916 // Set CR6 to true if this is a vararg call. 2917 if (isVarArg) { 2918 SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); 2919 Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag); 2920 InFlag = Chain.getValue(1); 2921 } 2922 2923 if (isTailCall) 2924 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 2925 false, TailCallArguments); 2926 2927 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 2928 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 2929 Ins, InVals); 2930} 2931 2932SDValue 2933PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 2934 CallingConv::ID CallConv, bool isVarArg, 2935 bool isTailCall, 2936 const SmallVectorImpl<ISD::OutputArg> &Outs, 2937 const SmallVectorImpl<SDValue> &OutVals, 2938 const SmallVectorImpl<ISD::InputArg> &Ins, 2939 DebugLoc dl, SelectionDAG &DAG, 2940 SmallVectorImpl<SDValue> &InVals) const { 2941 2942 unsigned NumOps = Outs.size(); 2943 2944 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2945 bool isPPC64 = PtrVT == MVT::i64; 2946 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2947 2948 MachineFunction &MF = DAG.getMachineFunction(); 2949 2950 // Mark this function as potentially containing a function that contains a 2951 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2952 // and restoring the callers stack pointer in this functions epilog. This is 2953 // done because by tail calling the called function might overwrite the value 2954 // in this function's (MF) stack pointer stack slot 0(SP). 2955 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2956 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2957 2958 unsigned nAltivecParamsAtEnd = 0; 2959 2960 // Count how many bytes are to be pushed on the stack, including the linkage 2961 // area, and parameter passing area. We start with 24/48 bytes, which is 2962 // prereserved space for [SP][CR][LR][3 x unused]. 2963 unsigned NumBytes = 2964 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 2965 Outs, OutVals, 2966 nAltivecParamsAtEnd); 2967 2968 // Calculate by how many bytes the stack has to be adjusted in case of tail 2969 // call optimization. 2970 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2971 2972 // To protect arguments on the stack from being clobbered in a tail call, 2973 // force all the loads to happen before doing any other lowering. 2974 if (isTailCall) 2975 Chain = DAG.getStackArgumentTokenFactor(Chain); 2976 2977 // Adjust the stack pointer for the new arguments... 2978 // These operations are automatically eliminated by the prolog/epilog pass 2979 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2980 SDValue CallSeqStart = Chain; 2981 2982 // Load the return address and frame pointer so it can be move somewhere else 2983 // later. 2984 SDValue LROp, FPOp; 2985 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 2986 dl); 2987 2988 // Set up a copy of the stack pointer for use loading and storing any 2989 // arguments that may not fit in the registers available for argument 2990 // passing. 2991 SDValue StackPtr; 2992 if (isPPC64) 2993 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2994 else 2995 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2996 2997 // Figure out which arguments are going to go in registers, and which in 2998 // memory. Also, if this is a vararg function, floating point operations 2999 // must be stored to our stack, and loaded into integer regs as well, if 3000 // any integer regs are available for argument passing. 3001 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); 3002 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3003 3004 static const unsigned GPR_32[] = { // 32-bit registers. 3005 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3006 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3007 }; 3008 static const unsigned GPR_64[] = { // 64-bit registers. 3009 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3010 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3011 }; 3012 static const unsigned *FPR = GetFPR(); 3013 3014 static const unsigned VR[] = { 3015 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3016 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3017 }; 3018 const unsigned NumGPRs = array_lengthof(GPR_32); 3019 const unsigned NumFPRs = 13; 3020 const unsigned NumVRs = array_lengthof(VR); 3021 3022 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3023 3024 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3025 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3026 3027 SmallVector<SDValue, 8> MemOpChains; 3028 for (unsigned i = 0; i != NumOps; ++i) { 3029 SDValue Arg = OutVals[i]; 3030 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3031 3032 // PtrOff will be used to store the current argument to the stack if a 3033 // register cannot be found for it. 3034 SDValue PtrOff; 3035 3036 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3037 3038 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3039 3040 // On PPC64, promote integers to 64-bit values. 3041 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3042 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3043 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3044 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3045 } 3046 3047 // FIXME memcpy is used way more than necessary. Correctness first. 3048 if (Flags.isByVal()) { 3049 unsigned Size = Flags.getByValSize(); 3050 if (Size==1 || Size==2) { 3051 // Very small objects are passed right-justified. 3052 // Everything else is passed left-justified. 3053 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3054 if (GPR_idx != NumGPRs) { 3055 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg, 3056 MachinePointerInfo(), VT, 3057 false, false, 0); 3058 MemOpChains.push_back(Load.getValue(1)); 3059 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3060 3061 ArgOffset += PtrByteSize; 3062 } else { 3063 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3064 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3065 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3066 CallSeqStart.getNode()->getOperand(0), 3067 Flags, DAG, dl); 3068 // This must go outside the CALLSEQ_START..END. 3069 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3070 CallSeqStart.getNode()->getOperand(1)); 3071 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3072 NewCallSeqStart.getNode()); 3073 Chain = CallSeqStart = NewCallSeqStart; 3074 ArgOffset += PtrByteSize; 3075 } 3076 continue; 3077 } 3078 // Copy entire object into memory. There are cases where gcc-generated 3079 // code assumes it is there, even if it could be put entirely into 3080 // registers. (This is not what the doc says.) 3081 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3082 CallSeqStart.getNode()->getOperand(0), 3083 Flags, DAG, dl); 3084 // This must go outside the CALLSEQ_START..END. 3085 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3086 CallSeqStart.getNode()->getOperand(1)); 3087 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3088 Chain = CallSeqStart = NewCallSeqStart; 3089 // And copy the pieces of it that fit into registers. 3090 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3091 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3092 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3093 if (GPR_idx != NumGPRs) { 3094 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3095 MachinePointerInfo(), 3096 false, false, 0); 3097 MemOpChains.push_back(Load.getValue(1)); 3098 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3099 ArgOffset += PtrByteSize; 3100 } else { 3101 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3102 break; 3103 } 3104 } 3105 continue; 3106 } 3107 3108 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3109 default: llvm_unreachable("Unexpected ValueType for argument!"); 3110 case MVT::i32: 3111 case MVT::i64: 3112 if (GPR_idx != NumGPRs) { 3113 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3114 } else { 3115 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3116 isPPC64, isTailCall, false, MemOpChains, 3117 TailCallArguments, dl); 3118 } 3119 ArgOffset += PtrByteSize; 3120 break; 3121 case MVT::f32: 3122 case MVT::f64: 3123 if (FPR_idx != NumFPRs) { 3124 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3125 3126 if (isVarArg) { 3127 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3128 MachinePointerInfo(), false, false, 0); 3129 MemOpChains.push_back(Store); 3130 3131 // Float varargs are always shadowed in available integer registers 3132 if (GPR_idx != NumGPRs) { 3133 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3134 MachinePointerInfo(), false, false, 0); 3135 MemOpChains.push_back(Load.getValue(1)); 3136 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3137 } 3138 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3139 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3140 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3141 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3142 MachinePointerInfo(), 3143 false, false, 0); 3144 MemOpChains.push_back(Load.getValue(1)); 3145 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3146 } 3147 } else { 3148 // If we have any FPRs remaining, we may also have GPRs remaining. 3149 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3150 // GPRs. 3151 if (GPR_idx != NumGPRs) 3152 ++GPR_idx; 3153 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3154 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3155 ++GPR_idx; 3156 } 3157 } else { 3158 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3159 isPPC64, isTailCall, false, MemOpChains, 3160 TailCallArguments, dl); 3161 } 3162 if (isPPC64) 3163 ArgOffset += 8; 3164 else 3165 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3166 break; 3167 case MVT::v4f32: 3168 case MVT::v4i32: 3169 case MVT::v8i16: 3170 case MVT::v16i8: 3171 if (isVarArg) { 3172 // These go aligned on the stack, or in the corresponding R registers 3173 // when within range. The Darwin PPC ABI doc claims they also go in 3174 // V registers; in fact gcc does this only for arguments that are 3175 // prototyped, not for those that match the ... We do it for all 3176 // arguments, seems to work. 3177 while (ArgOffset % 16 !=0) { 3178 ArgOffset += PtrByteSize; 3179 if (GPR_idx != NumGPRs) 3180 GPR_idx++; 3181 } 3182 // We could elide this store in the case where the object fits 3183 // entirely in R registers. Maybe later. 3184 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3185 DAG.getConstant(ArgOffset, PtrVT)); 3186 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3187 MachinePointerInfo(), false, false, 0); 3188 MemOpChains.push_back(Store); 3189 if (VR_idx != NumVRs) { 3190 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3191 MachinePointerInfo(), 3192 false, false, 0); 3193 MemOpChains.push_back(Load.getValue(1)); 3194 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3195 } 3196 ArgOffset += 16; 3197 for (unsigned i=0; i<16; i+=PtrByteSize) { 3198 if (GPR_idx == NumGPRs) 3199 break; 3200 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3201 DAG.getConstant(i, PtrVT)); 3202 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3203 false, false, 0); 3204 MemOpChains.push_back(Load.getValue(1)); 3205 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3206 } 3207 break; 3208 } 3209 3210 // Non-varargs Altivec params generally go in registers, but have 3211 // stack space allocated at the end. 3212 if (VR_idx != NumVRs) { 3213 // Doesn't have GPR space allocated. 3214 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3215 } else if (nAltivecParamsAtEnd==0) { 3216 // We are emitting Altivec params in order. 3217 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3218 isPPC64, isTailCall, true, MemOpChains, 3219 TailCallArguments, dl); 3220 ArgOffset += 16; 3221 } 3222 break; 3223 } 3224 } 3225 // If all Altivec parameters fit in registers, as they usually do, 3226 // they get stack space following the non-Altivec parameters. We 3227 // don't track this here because nobody below needs it. 3228 // If there are more Altivec parameters than fit in registers emit 3229 // the stores here. 3230 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3231 unsigned j = 0; 3232 // Offset is aligned; skip 1st 12 params which go in V registers. 3233 ArgOffset = ((ArgOffset+15)/16)*16; 3234 ArgOffset += 12*16; 3235 for (unsigned i = 0; i != NumOps; ++i) { 3236 SDValue Arg = OutVals[i]; 3237 EVT ArgType = Outs[i].VT; 3238 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3239 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3240 if (++j > NumVRs) { 3241 SDValue PtrOff; 3242 // We are emitting Altivec params in order. 3243 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3244 isPPC64, isTailCall, true, MemOpChains, 3245 TailCallArguments, dl); 3246 ArgOffset += 16; 3247 } 3248 } 3249 } 3250 } 3251 3252 if (!MemOpChains.empty()) 3253 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3254 &MemOpChains[0], MemOpChains.size()); 3255 3256 // Check if this is an indirect call (MTCTR/BCTRL). 3257 // See PrepareCall() for more information about calls through function 3258 // pointers in the 64-bit SVR4 ABI. 3259 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3260 !dyn_cast<GlobalAddressSDNode>(Callee) && 3261 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3262 !isBLACompatibleAddress(Callee, DAG)) { 3263 // Load r2 into a virtual register and store it to the TOC save area. 3264 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3265 // TOC save area offset. 3266 SDValue PtrOff = DAG.getIntPtrConstant(40); 3267 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3268 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3269 false, false, 0); 3270 } 3271 3272 // On Darwin, R12 must contain the address of an indirect callee. This does 3273 // not mean the MTCTR instruction must use R12; it's easier to model this as 3274 // an extra parameter, so do that. 3275 if (!isTailCall && 3276 !dyn_cast<GlobalAddressSDNode>(Callee) && 3277 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3278 !isBLACompatibleAddress(Callee, DAG)) 3279 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3280 PPC::R12), Callee)); 3281 3282 // Build a sequence of copy-to-reg nodes chained together with token chain 3283 // and flag operands which copy the outgoing args into the appropriate regs. 3284 SDValue InFlag; 3285 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3286 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3287 RegsToPass[i].second, InFlag); 3288 InFlag = Chain.getValue(1); 3289 } 3290 3291 if (isTailCall) 3292 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3293 FPOp, true, TailCallArguments); 3294 3295 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3296 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3297 Ins, InVals); 3298} 3299 3300SDValue 3301PPCTargetLowering::LowerReturn(SDValue Chain, 3302 CallingConv::ID CallConv, bool isVarArg, 3303 const SmallVectorImpl<ISD::OutputArg> &Outs, 3304 const SmallVectorImpl<SDValue> &OutVals, 3305 DebugLoc dl, SelectionDAG &DAG) const { 3306 3307 SmallVector<CCValAssign, 16> RVLocs; 3308 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 3309 RVLocs, *DAG.getContext()); 3310 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3311 3312 // If this is the first return lowered for this function, add the regs to the 3313 // liveout set for the function. 3314 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3315 for (unsigned i = 0; i != RVLocs.size(); ++i) 3316 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3317 } 3318 3319 SDValue Flag; 3320 3321 // Copy the result values into the output registers. 3322 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3323 CCValAssign &VA = RVLocs[i]; 3324 assert(VA.isRegLoc() && "Can only return in registers!"); 3325 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3326 OutVals[i], Flag); 3327 Flag = Chain.getValue(1); 3328 } 3329 3330 if (Flag.getNode()) 3331 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3332 else 3333 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3334} 3335 3336SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3337 const PPCSubtarget &Subtarget) const { 3338 // When we pop the dynamic allocation we need to restore the SP link. 3339 DebugLoc dl = Op.getDebugLoc(); 3340 3341 // Get the corect type for pointers. 3342 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3343 3344 // Construct the stack pointer operand. 3345 bool isPPC64 = Subtarget.isPPC64(); 3346 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3347 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3348 3349 // Get the operands for the STACKRESTORE. 3350 SDValue Chain = Op.getOperand(0); 3351 SDValue SaveSP = Op.getOperand(1); 3352 3353 // Load the old link SP. 3354 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3355 MachinePointerInfo(), 3356 false, false, 0); 3357 3358 // Restore the stack pointer. 3359 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3360 3361 // Store the old link SP. 3362 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3363 false, false, 0); 3364} 3365 3366 3367 3368SDValue 3369PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3370 MachineFunction &MF = DAG.getMachineFunction(); 3371 bool isPPC64 = PPCSubTarget.isPPC64(); 3372 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3373 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3374 3375 // Get current frame pointer save index. The users of this index will be 3376 // primarily DYNALLOC instructions. 3377 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3378 int RASI = FI->getReturnAddrSaveIndex(); 3379 3380 // If the frame pointer save index hasn't been defined yet. 3381 if (!RASI) { 3382 // Find out what the fix offset of the frame pointer save area. 3383 int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI); 3384 // Allocate the frame index for frame pointer save area. 3385 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3386 // Save the result. 3387 FI->setReturnAddrSaveIndex(RASI); 3388 } 3389 return DAG.getFrameIndex(RASI, PtrVT); 3390} 3391 3392SDValue 3393PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3394 MachineFunction &MF = DAG.getMachineFunction(); 3395 bool isPPC64 = PPCSubTarget.isPPC64(); 3396 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3397 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3398 3399 // Get current frame pointer save index. The users of this index will be 3400 // primarily DYNALLOC instructions. 3401 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3402 int FPSI = FI->getFramePointerSaveIndex(); 3403 3404 // If the frame pointer save index hasn't been defined yet. 3405 if (!FPSI) { 3406 // Find out what the fix offset of the frame pointer save area. 3407 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64, 3408 isDarwinABI); 3409 3410 // Allocate the frame index for frame pointer save area. 3411 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3412 // Save the result. 3413 FI->setFramePointerSaveIndex(FPSI); 3414 } 3415 return DAG.getFrameIndex(FPSI, PtrVT); 3416} 3417 3418SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3419 SelectionDAG &DAG, 3420 const PPCSubtarget &Subtarget) const { 3421 // Get the inputs. 3422 SDValue Chain = Op.getOperand(0); 3423 SDValue Size = Op.getOperand(1); 3424 DebugLoc dl = Op.getDebugLoc(); 3425 3426 // Get the corect type for pointers. 3427 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3428 // Negate the size. 3429 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3430 DAG.getConstant(0, PtrVT), Size); 3431 // Construct a node for the frame pointer save index. 3432 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3433 // Build a DYNALLOC node. 3434 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3435 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3436 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3437} 3438 3439/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3440/// possible. 3441SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3442 // Not FP? Not a fsel. 3443 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3444 !Op.getOperand(2).getValueType().isFloatingPoint()) 3445 return Op; 3446 3447 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3448 3449 // Cannot handle SETEQ/SETNE. 3450 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3451 3452 EVT ResVT = Op.getValueType(); 3453 EVT CmpVT = Op.getOperand(0).getValueType(); 3454 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3455 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3456 DebugLoc dl = Op.getDebugLoc(); 3457 3458 // If the RHS of the comparison is a 0.0, we don't need to do the 3459 // subtraction at all. 3460 if (isFloatingPointZero(RHS)) 3461 switch (CC) { 3462 default: break; // SETUO etc aren't handled by fsel. 3463 case ISD::SETULT: 3464 case ISD::SETLT: 3465 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3466 case ISD::SETOGE: 3467 case ISD::SETGE: 3468 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3469 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3470 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3471 case ISD::SETUGT: 3472 case ISD::SETGT: 3473 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3474 case ISD::SETOLE: 3475 case ISD::SETLE: 3476 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3477 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3478 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3479 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3480 } 3481 3482 SDValue Cmp; 3483 switch (CC) { 3484 default: break; // SETUO etc aren't handled by fsel. 3485 case ISD::SETULT: 3486 case ISD::SETLT: 3487 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3488 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3489 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3490 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3491 case ISD::SETOGE: 3492 case ISD::SETGE: 3493 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3494 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3495 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3496 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3497 case ISD::SETUGT: 3498 case ISD::SETGT: 3499 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3500 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3501 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3502 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3503 case ISD::SETOLE: 3504 case ISD::SETLE: 3505 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3506 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3507 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3508 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3509 } 3510 return Op; 3511} 3512 3513// FIXME: Split this code up when LegalizeDAGTypes lands. 3514SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3515 DebugLoc dl) const { 3516 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3517 SDValue Src = Op.getOperand(0); 3518 if (Src.getValueType() == MVT::f32) 3519 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3520 3521 SDValue Tmp; 3522 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3523 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3524 case MVT::i32: 3525 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3526 PPCISD::FCTIDZ, 3527 dl, MVT::f64, Src); 3528 break; 3529 case MVT::i64: 3530 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3531 break; 3532 } 3533 3534 // Convert the FP value to an int value through memory. 3535 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3536 3537 // Emit a store to the stack slot. 3538 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3539 MachinePointerInfo(), false, false, 0); 3540 3541 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3542 // add in a bias. 3543 if (Op.getValueType() == MVT::i32) 3544 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3545 DAG.getConstant(4, FIPtr.getValueType())); 3546 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3547 false, false, 0); 3548} 3549 3550SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3551 SelectionDAG &DAG) const { 3552 DebugLoc dl = Op.getDebugLoc(); 3553 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3554 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3555 return SDValue(); 3556 3557 if (Op.getOperand(0).getValueType() == MVT::i64) { 3558 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3559 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3560 if (Op.getValueType() == MVT::f32) 3561 FP = DAG.getNode(ISD::FP_ROUND, dl, 3562 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3563 return FP; 3564 } 3565 3566 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3567 "Unhandled SINT_TO_FP type in custom expander!"); 3568 // Since we only generate this in 64-bit mode, we can take advantage of 3569 // 64-bit registers. In particular, sign extend the input value into the 3570 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3571 // then lfd it and fcfid it. 3572 MachineFunction &MF = DAG.getMachineFunction(); 3573 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3574 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3575 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3576 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3577 3578 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3579 Op.getOperand(0)); 3580 3581 // STD the extended value into the stack slot. 3582 MachineMemOperand *MMO = 3583 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3584 MachineMemOperand::MOStore, 8, 8); 3585 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3586 SDValue Store = 3587 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3588 Ops, 4, MVT::i64, MMO); 3589 // Load the value as a double. 3590 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3591 false, false, 0); 3592 3593 // FCFID it and return it. 3594 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3595 if (Op.getValueType() == MVT::f32) 3596 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3597 return FP; 3598} 3599 3600SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3601 SelectionDAG &DAG) const { 3602 DebugLoc dl = Op.getDebugLoc(); 3603 /* 3604 The rounding mode is in bits 30:31 of FPSR, and has the following 3605 settings: 3606 00 Round to nearest 3607 01 Round to 0 3608 10 Round to +inf 3609 11 Round to -inf 3610 3611 FLT_ROUNDS, on the other hand, expects the following: 3612 -1 Undefined 3613 0 Round to 0 3614 1 Round to nearest 3615 2 Round to +inf 3616 3 Round to -inf 3617 3618 To perform the conversion, we do: 3619 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3620 */ 3621 3622 MachineFunction &MF = DAG.getMachineFunction(); 3623 EVT VT = Op.getValueType(); 3624 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3625 std::vector<EVT> NodeTys; 3626 SDValue MFFSreg, InFlag; 3627 3628 // Save FP Control Word to register 3629 NodeTys.push_back(MVT::f64); // return register 3630 NodeTys.push_back(MVT::Glue); // unused in this context 3631 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3632 3633 // Save FP register to stack slot 3634 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3635 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3636 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3637 StackSlot, MachinePointerInfo(), false, false,0); 3638 3639 // Load FP Control Word from low 32 bits of stack slot. 3640 SDValue Four = DAG.getConstant(4, PtrVT); 3641 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3642 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3643 false, false, 0); 3644 3645 // Transform as necessary 3646 SDValue CWD1 = 3647 DAG.getNode(ISD::AND, dl, MVT::i32, 3648 CWD, DAG.getConstant(3, MVT::i32)); 3649 SDValue CWD2 = 3650 DAG.getNode(ISD::SRL, dl, MVT::i32, 3651 DAG.getNode(ISD::AND, dl, MVT::i32, 3652 DAG.getNode(ISD::XOR, dl, MVT::i32, 3653 CWD, DAG.getConstant(3, MVT::i32)), 3654 DAG.getConstant(3, MVT::i32)), 3655 DAG.getConstant(1, MVT::i32)); 3656 3657 SDValue RetVal = 3658 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3659 3660 return DAG.getNode((VT.getSizeInBits() < 16 ? 3661 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3662} 3663 3664SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3665 EVT VT = Op.getValueType(); 3666 unsigned BitWidth = VT.getSizeInBits(); 3667 DebugLoc dl = Op.getDebugLoc(); 3668 assert(Op.getNumOperands() == 3 && 3669 VT == Op.getOperand(1).getValueType() && 3670 "Unexpected SHL!"); 3671 3672 // Expand into a bunch of logical ops. Note that these ops 3673 // depend on the PPC behavior for oversized shift amounts. 3674 SDValue Lo = Op.getOperand(0); 3675 SDValue Hi = Op.getOperand(1); 3676 SDValue Amt = Op.getOperand(2); 3677 EVT AmtVT = Amt.getValueType(); 3678 3679 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3680 DAG.getConstant(BitWidth, AmtVT), Amt); 3681 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3682 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3683 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3684 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3685 DAG.getConstant(-BitWidth, AmtVT)); 3686 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3687 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3688 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3689 SDValue OutOps[] = { OutLo, OutHi }; 3690 return DAG.getMergeValues(OutOps, 2, dl); 3691} 3692 3693SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3694 EVT VT = Op.getValueType(); 3695 DebugLoc dl = Op.getDebugLoc(); 3696 unsigned BitWidth = VT.getSizeInBits(); 3697 assert(Op.getNumOperands() == 3 && 3698 VT == Op.getOperand(1).getValueType() && 3699 "Unexpected SRL!"); 3700 3701 // Expand into a bunch of logical ops. Note that these ops 3702 // depend on the PPC behavior for oversized shift amounts. 3703 SDValue Lo = Op.getOperand(0); 3704 SDValue Hi = Op.getOperand(1); 3705 SDValue Amt = Op.getOperand(2); 3706 EVT AmtVT = Amt.getValueType(); 3707 3708 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3709 DAG.getConstant(BitWidth, AmtVT), Amt); 3710 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3711 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3712 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3713 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3714 DAG.getConstant(-BitWidth, AmtVT)); 3715 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3716 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3717 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3718 SDValue OutOps[] = { OutLo, OutHi }; 3719 return DAG.getMergeValues(OutOps, 2, dl); 3720} 3721 3722SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3723 DebugLoc dl = Op.getDebugLoc(); 3724 EVT VT = Op.getValueType(); 3725 unsigned BitWidth = VT.getSizeInBits(); 3726 assert(Op.getNumOperands() == 3 && 3727 VT == Op.getOperand(1).getValueType() && 3728 "Unexpected SRA!"); 3729 3730 // Expand into a bunch of logical ops, followed by a select_cc. 3731 SDValue Lo = Op.getOperand(0); 3732 SDValue Hi = Op.getOperand(1); 3733 SDValue Amt = Op.getOperand(2); 3734 EVT AmtVT = Amt.getValueType(); 3735 3736 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3737 DAG.getConstant(BitWidth, AmtVT), Amt); 3738 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3739 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3740 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3741 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3742 DAG.getConstant(-BitWidth, AmtVT)); 3743 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3744 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3745 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3746 Tmp4, Tmp6, ISD::SETLE); 3747 SDValue OutOps[] = { OutLo, OutHi }; 3748 return DAG.getMergeValues(OutOps, 2, dl); 3749} 3750 3751//===----------------------------------------------------------------------===// 3752// Vector related lowering. 3753// 3754 3755/// BuildSplatI - Build a canonical splati of Val with an element size of 3756/// SplatSize. Cast the result to VT. 3757static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3758 SelectionDAG &DAG, DebugLoc dl) { 3759 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3760 3761 static const EVT VTys[] = { // canonical VT to use for each size. 3762 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3763 }; 3764 3765 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3766 3767 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3768 if (Val == -1) 3769 SplatSize = 1; 3770 3771 EVT CanonicalVT = VTys[SplatSize-1]; 3772 3773 // Build a canonical splat for this value. 3774 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3775 SmallVector<SDValue, 8> Ops; 3776 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3777 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3778 &Ops[0], Ops.size()); 3779 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3780} 3781 3782/// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3783/// specified intrinsic ID. 3784static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3785 SelectionDAG &DAG, DebugLoc dl, 3786 EVT DestVT = MVT::Other) { 3787 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3788 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3789 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3790} 3791 3792/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3793/// specified intrinsic ID. 3794static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3795 SDValue Op2, SelectionDAG &DAG, 3796 DebugLoc dl, EVT DestVT = MVT::Other) { 3797 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3798 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3799 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3800} 3801 3802 3803/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3804/// amount. The result has the specified value type. 3805static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3806 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3807 // Force LHS/RHS to be the right type. 3808 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3809 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3810 3811 int Ops[16]; 3812 for (unsigned i = 0; i != 16; ++i) 3813 Ops[i] = i + Amt; 3814 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3815 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3816} 3817 3818// If this is a case we can't handle, return null and let the default 3819// expansion code take care of it. If we CAN select this case, and if it 3820// selects to a single instruction, return Op. Otherwise, if we can codegen 3821// this case more efficiently than a constant pool load, lower it to the 3822// sequence of ops that should be used. 3823SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3824 SelectionDAG &DAG) const { 3825 DebugLoc dl = Op.getDebugLoc(); 3826 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3827 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3828 3829 // Check if this is a splat of a constant value. 3830 APInt APSplatBits, APSplatUndef; 3831 unsigned SplatBitSize; 3832 bool HasAnyUndefs; 3833 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3834 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3835 return SDValue(); 3836 3837 unsigned SplatBits = APSplatBits.getZExtValue(); 3838 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3839 unsigned SplatSize = SplatBitSize / 8; 3840 3841 // First, handle single instruction cases. 3842 3843 // All zeros? 3844 if (SplatBits == 0) { 3845 // Canonicalize all zero vectors to be v4i32. 3846 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3847 SDValue Z = DAG.getConstant(0, MVT::i32); 3848 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 3849 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 3850 } 3851 return Op; 3852 } 3853 3854 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 3855 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 3856 (32-SplatBitSize)); 3857 if (SextVal >= -16 && SextVal <= 15) 3858 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 3859 3860 3861 // Two instruction sequences. 3862 3863 // If this value is in the range [-32,30] and is even, use: 3864 // tmp = VSPLTI[bhw], result = add tmp, tmp 3865 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 3866 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 3867 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 3868 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3869 } 3870 3871 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 3872 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 3873 // for fneg/fabs. 3874 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 3875 // Make -1 and vspltisw -1: 3876 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 3877 3878 // Make the VSLW intrinsic, computing 0x8000_0000. 3879 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 3880 OnesV, DAG, dl); 3881 3882 // xor by OnesV to invert it. 3883 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 3884 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3885 } 3886 3887 // Check to see if this is a wide variety of vsplti*, binop self cases. 3888 static const signed char SplatCsts[] = { 3889 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 3890 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 3891 }; 3892 3893 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 3894 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 3895 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 3896 int i = SplatCsts[idx]; 3897 3898 // Figure out what shift amount will be used by altivec if shifted by i in 3899 // this splat size. 3900 unsigned TypeShiftAmt = i & (SplatBitSize-1); 3901 3902 // vsplti + shl self. 3903 if (SextVal == (i << (int)TypeShiftAmt)) { 3904 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3905 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3906 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 3907 Intrinsic::ppc_altivec_vslw 3908 }; 3909 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3910 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3911 } 3912 3913 // vsplti + srl self. 3914 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3915 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3916 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3917 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 3918 Intrinsic::ppc_altivec_vsrw 3919 }; 3920 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3921 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3922 } 3923 3924 // vsplti + sra self. 3925 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 3926 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3927 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3928 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 3929 Intrinsic::ppc_altivec_vsraw 3930 }; 3931 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3932 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3933 } 3934 3935 // vsplti + rol self. 3936 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 3937 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 3938 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 3939 static const unsigned IIDs[] = { // Intrinsic to use for each size. 3940 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 3941 Intrinsic::ppc_altivec_vrlw 3942 }; 3943 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 3944 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3945 } 3946 3947 // t = vsplti c, result = vsldoi t, t, 1 3948 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 3949 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3950 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 3951 } 3952 // t = vsplti c, result = vsldoi t, t, 2 3953 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 3954 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3955 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 3956 } 3957 // t = vsplti c, result = vsldoi t, t, 3 3958 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 3959 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 3960 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 3961 } 3962 } 3963 3964 // Three instruction sequences. 3965 3966 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 3967 if (SextVal >= 0 && SextVal <= 31) { 3968 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 3969 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 3970 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 3971 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 3972 } 3973 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 3974 if (SextVal >= -31 && SextVal <= 0) { 3975 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 3976 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 3977 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 3978 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 3979 } 3980 3981 return SDValue(); 3982} 3983 3984/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 3985/// the specified operations to build the shuffle. 3986static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 3987 SDValue RHS, SelectionDAG &DAG, 3988 DebugLoc dl) { 3989 unsigned OpNum = (PFEntry >> 26) & 0x0F; 3990 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 3991 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 3992 3993 enum { 3994 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 3995 OP_VMRGHW, 3996 OP_VMRGLW, 3997 OP_VSPLTISW0, 3998 OP_VSPLTISW1, 3999 OP_VSPLTISW2, 4000 OP_VSPLTISW3, 4001 OP_VSLDOI4, 4002 OP_VSLDOI8, 4003 OP_VSLDOI12 4004 }; 4005 4006 if (OpNum == OP_COPY) { 4007 if (LHSID == (1*9+2)*9+3) return LHS; 4008 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4009 return RHS; 4010 } 4011 4012 SDValue OpLHS, OpRHS; 4013 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4014 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4015 4016 int ShufIdxs[16]; 4017 switch (OpNum) { 4018 default: llvm_unreachable("Unknown i32 permute!"); 4019 case OP_VMRGHW: 4020 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4021 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4022 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4023 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4024 break; 4025 case OP_VMRGLW: 4026 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4027 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4028 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4029 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4030 break; 4031 case OP_VSPLTISW0: 4032 for (unsigned i = 0; i != 16; ++i) 4033 ShufIdxs[i] = (i&3)+0; 4034 break; 4035 case OP_VSPLTISW1: 4036 for (unsigned i = 0; i != 16; ++i) 4037 ShufIdxs[i] = (i&3)+4; 4038 break; 4039 case OP_VSPLTISW2: 4040 for (unsigned i = 0; i != 16; ++i) 4041 ShufIdxs[i] = (i&3)+8; 4042 break; 4043 case OP_VSPLTISW3: 4044 for (unsigned i = 0; i != 16; ++i) 4045 ShufIdxs[i] = (i&3)+12; 4046 break; 4047 case OP_VSLDOI4: 4048 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4049 case OP_VSLDOI8: 4050 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4051 case OP_VSLDOI12: 4052 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4053 } 4054 EVT VT = OpLHS.getValueType(); 4055 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4056 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4057 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4058 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4059} 4060 4061/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4062/// is a shuffle we can handle in a single instruction, return it. Otherwise, 4063/// return the code it can be lowered into. Worst case, it can always be 4064/// lowered into a vperm. 4065SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4066 SelectionDAG &DAG) const { 4067 DebugLoc dl = Op.getDebugLoc(); 4068 SDValue V1 = Op.getOperand(0); 4069 SDValue V2 = Op.getOperand(1); 4070 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4071 EVT VT = Op.getValueType(); 4072 4073 // Cases that are handled by instructions that take permute immediates 4074 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4075 // selected by the instruction selector. 4076 if (V2.getOpcode() == ISD::UNDEF) { 4077 if (PPC::isSplatShuffleMask(SVOp, 1) || 4078 PPC::isSplatShuffleMask(SVOp, 2) || 4079 PPC::isSplatShuffleMask(SVOp, 4) || 4080 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4081 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4082 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4083 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4084 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4085 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4086 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4087 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4088 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4089 return Op; 4090 } 4091 } 4092 4093 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4094 // and produce a fixed permutation. If any of these match, do not lower to 4095 // VPERM. 4096 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4097 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4098 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4099 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4100 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4101 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4102 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4103 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4104 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4105 return Op; 4106 4107 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4108 // perfect shuffle table to emit an optimal matching sequence. 4109 SmallVector<int, 16> PermMask; 4110 SVOp->getMask(PermMask); 4111 4112 unsigned PFIndexes[4]; 4113 bool isFourElementShuffle = true; 4114 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4115 unsigned EltNo = 8; // Start out undef. 4116 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4117 if (PermMask[i*4+j] < 0) 4118 continue; // Undef, ignore it. 4119 4120 unsigned ByteSource = PermMask[i*4+j]; 4121 if ((ByteSource & 3) != j) { 4122 isFourElementShuffle = false; 4123 break; 4124 } 4125 4126 if (EltNo == 8) { 4127 EltNo = ByteSource/4; 4128 } else if (EltNo != ByteSource/4) { 4129 isFourElementShuffle = false; 4130 break; 4131 } 4132 } 4133 PFIndexes[i] = EltNo; 4134 } 4135 4136 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4137 // perfect shuffle vector to determine if it is cost effective to do this as 4138 // discrete instructions, or whether we should use a vperm. 4139 if (isFourElementShuffle) { 4140 // Compute the index in the perfect shuffle table. 4141 unsigned PFTableIndex = 4142 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4143 4144 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4145 unsigned Cost = (PFEntry >> 30); 4146 4147 // Determining when to avoid vperm is tricky. Many things affect the cost 4148 // of vperm, particularly how many times the perm mask needs to be computed. 4149 // For example, if the perm mask can be hoisted out of a loop or is already 4150 // used (perhaps because there are multiple permutes with the same shuffle 4151 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4152 // the loop requires an extra register. 4153 // 4154 // As a compromise, we only emit discrete instructions if the shuffle can be 4155 // generated in 3 or fewer operations. When we have loop information 4156 // available, if this block is within a loop, we should avoid using vperm 4157 // for 3-operation perms and use a constant pool load instead. 4158 if (Cost < 3) 4159 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4160 } 4161 4162 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4163 // vector that will get spilled to the constant pool. 4164 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4165 4166 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4167 // that it is in input element units, not in bytes. Convert now. 4168 EVT EltVT = V1.getValueType().getVectorElementType(); 4169 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4170 4171 SmallVector<SDValue, 16> ResultMask; 4172 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4173 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4174 4175 for (unsigned j = 0; j != BytesPerElement; ++j) 4176 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4177 MVT::i32)); 4178 } 4179 4180 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4181 &ResultMask[0], ResultMask.size()); 4182 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4183} 4184 4185/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4186/// altivec comparison. If it is, return true and fill in Opc/isDot with 4187/// information about the intrinsic. 4188static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4189 bool &isDot) { 4190 unsigned IntrinsicID = 4191 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4192 CompareOpc = -1; 4193 isDot = false; 4194 switch (IntrinsicID) { 4195 default: return false; 4196 // Comparison predicates. 4197 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4198 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4199 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4200 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4201 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4202 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4203 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4204 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4205 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4206 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4207 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4208 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4209 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4210 4211 // Normal Comparisons. 4212 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4213 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4214 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4215 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4216 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4217 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4218 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4219 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4220 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4221 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4222 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4223 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4224 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4225 } 4226 return true; 4227} 4228 4229/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4230/// lower, do it, otherwise return null. 4231SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4232 SelectionDAG &DAG) const { 4233 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4234 // opcode number of the comparison. 4235 DebugLoc dl = Op.getDebugLoc(); 4236 int CompareOpc; 4237 bool isDot; 4238 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4239 return SDValue(); // Don't custom lower most intrinsics. 4240 4241 // If this is a non-dot comparison, make the VCMP node and we are done. 4242 if (!isDot) { 4243 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4244 Op.getOperand(1), Op.getOperand(2), 4245 DAG.getConstant(CompareOpc, MVT::i32)); 4246 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4247 } 4248 4249 // Create the PPCISD altivec 'dot' comparison node. 4250 SDValue Ops[] = { 4251 Op.getOperand(2), // LHS 4252 Op.getOperand(3), // RHS 4253 DAG.getConstant(CompareOpc, MVT::i32) 4254 }; 4255 std::vector<EVT> VTs; 4256 VTs.push_back(Op.getOperand(2).getValueType()); 4257 VTs.push_back(MVT::Glue); 4258 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4259 4260 // Now that we have the comparison, emit a copy from the CR to a GPR. 4261 // This is flagged to the above dot comparison. 4262 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4263 DAG.getRegister(PPC::CR6, MVT::i32), 4264 CompNode.getValue(1)); 4265 4266 // Unpack the result based on how the target uses it. 4267 unsigned BitNo; // Bit # of CR6. 4268 bool InvertBit; // Invert result? 4269 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4270 default: // Can't happen, don't crash on invalid number though. 4271 case 0: // Return the value of the EQ bit of CR6. 4272 BitNo = 0; InvertBit = false; 4273 break; 4274 case 1: // Return the inverted value of the EQ bit of CR6. 4275 BitNo = 0; InvertBit = true; 4276 break; 4277 case 2: // Return the value of the LT bit of CR6. 4278 BitNo = 2; InvertBit = false; 4279 break; 4280 case 3: // Return the inverted value of the LT bit of CR6. 4281 BitNo = 2; InvertBit = true; 4282 break; 4283 } 4284 4285 // Shift the bit into the low position. 4286 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4287 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4288 // Isolate the bit. 4289 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4290 DAG.getConstant(1, MVT::i32)); 4291 4292 // If we are supposed to, toggle the bit. 4293 if (InvertBit) 4294 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4295 DAG.getConstant(1, MVT::i32)); 4296 return Flags; 4297} 4298 4299SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4300 SelectionDAG &DAG) const { 4301 DebugLoc dl = Op.getDebugLoc(); 4302 // Create a stack slot that is 16-byte aligned. 4303 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4304 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4305 EVT PtrVT = getPointerTy(); 4306 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4307 4308 // Store the input value into Value#0 of the stack slot. 4309 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4310 Op.getOperand(0), FIdx, MachinePointerInfo(), 4311 false, false, 0); 4312 // Load it out. 4313 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4314 false, false, 0); 4315} 4316 4317SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4318 DebugLoc dl = Op.getDebugLoc(); 4319 if (Op.getValueType() == MVT::v4i32) { 4320 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4321 4322 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4323 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4324 4325 SDValue RHSSwap = // = vrlw RHS, 16 4326 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4327 4328 // Shrinkify inputs to v8i16. 4329 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4330 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4331 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4332 4333 // Low parts multiplied together, generating 32-bit results (we ignore the 4334 // top parts). 4335 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4336 LHS, RHS, DAG, dl, MVT::v4i32); 4337 4338 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4339 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4340 // Shift the high parts up 16 bits. 4341 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4342 Neg16, DAG, dl); 4343 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4344 } else if (Op.getValueType() == MVT::v8i16) { 4345 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4346 4347 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4348 4349 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4350 LHS, RHS, Zero, DAG, dl); 4351 } else if (Op.getValueType() == MVT::v16i8) { 4352 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4353 4354 // Multiply the even 8-bit parts, producing 16-bit sums. 4355 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4356 LHS, RHS, DAG, dl, MVT::v8i16); 4357 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4358 4359 // Multiply the odd 8-bit parts, producing 16-bit sums. 4360 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4361 LHS, RHS, DAG, dl, MVT::v8i16); 4362 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4363 4364 // Merge the results together. 4365 int Ops[16]; 4366 for (unsigned i = 0; i != 8; ++i) { 4367 Ops[i*2 ] = 2*i+1; 4368 Ops[i*2+1] = 2*i+1+16; 4369 } 4370 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4371 } else { 4372 llvm_unreachable("Unknown mul to lower!"); 4373 } 4374} 4375 4376/// LowerOperation - Provide custom lowering hooks for some operations. 4377/// 4378SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4379 switch (Op.getOpcode()) { 4380 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4381 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4382 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4383 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4384 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4385 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4386 case ISD::SETCC: return LowerSETCC(Op, DAG); 4387 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 4388 case ISD::VASTART: 4389 return LowerVASTART(Op, DAG, PPCSubTarget); 4390 4391 case ISD::VAARG: 4392 return LowerVAARG(Op, DAG, PPCSubTarget); 4393 4394 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4395 case ISD::DYNAMIC_STACKALLOC: 4396 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4397 4398 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4399 case ISD::FP_TO_UINT: 4400 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4401 Op.getDebugLoc()); 4402 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4403 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4404 4405 // Lower 64-bit shifts. 4406 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4407 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4408 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4409 4410 // Vector-related lowering. 4411 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4412 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4413 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4414 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4415 case ISD::MUL: return LowerMUL(Op, DAG); 4416 4417 // Frame & Return address. 4418 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4419 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4420 } 4421 return SDValue(); 4422} 4423 4424void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4425 SmallVectorImpl<SDValue>&Results, 4426 SelectionDAG &DAG) const { 4427 DebugLoc dl = N->getDebugLoc(); 4428 switch (N->getOpcode()) { 4429 default: 4430 assert(false && "Do not know how to custom type legalize this operation!"); 4431 return; 4432 case ISD::FP_ROUND_INREG: { 4433 assert(N->getValueType(0) == MVT::ppcf128); 4434 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4435 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4436 MVT::f64, N->getOperand(0), 4437 DAG.getIntPtrConstant(0)); 4438 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4439 MVT::f64, N->getOperand(0), 4440 DAG.getIntPtrConstant(1)); 4441 4442 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4443 // of the long double, and puts FPSCR back the way it was. We do not 4444 // actually model FPSCR. 4445 std::vector<EVT> NodeTys; 4446 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4447 4448 NodeTys.push_back(MVT::f64); // Return register 4449 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4450 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4451 MFFSreg = Result.getValue(0); 4452 InFlag = Result.getValue(1); 4453 4454 NodeTys.clear(); 4455 NodeTys.push_back(MVT::Glue); // Returns a flag 4456 Ops[0] = DAG.getConstant(31, MVT::i32); 4457 Ops[1] = InFlag; 4458 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4459 InFlag = Result.getValue(0); 4460 4461 NodeTys.clear(); 4462 NodeTys.push_back(MVT::Glue); // Returns a flag 4463 Ops[0] = DAG.getConstant(30, MVT::i32); 4464 Ops[1] = InFlag; 4465 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4466 InFlag = Result.getValue(0); 4467 4468 NodeTys.clear(); 4469 NodeTys.push_back(MVT::f64); // result of add 4470 NodeTys.push_back(MVT::Glue); // Returns a flag 4471 Ops[0] = Lo; 4472 Ops[1] = Hi; 4473 Ops[2] = InFlag; 4474 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4475 FPreg = Result.getValue(0); 4476 InFlag = Result.getValue(1); 4477 4478 NodeTys.clear(); 4479 NodeTys.push_back(MVT::f64); 4480 Ops[0] = DAG.getConstant(1, MVT::i32); 4481 Ops[1] = MFFSreg; 4482 Ops[2] = FPreg; 4483 Ops[3] = InFlag; 4484 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4485 FPreg = Result.getValue(0); 4486 4487 // We know the low half is about to be thrown away, so just use something 4488 // convenient. 4489 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4490 FPreg, FPreg)); 4491 return; 4492 } 4493 case ISD::FP_TO_SINT: 4494 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4495 return; 4496 } 4497} 4498 4499 4500//===----------------------------------------------------------------------===// 4501// Other Lowering Code 4502//===----------------------------------------------------------------------===// 4503 4504MachineBasicBlock * 4505PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4506 bool is64bit, unsigned BinOpcode) const { 4507 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4508 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4509 4510 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4511 MachineFunction *F = BB->getParent(); 4512 MachineFunction::iterator It = BB; 4513 ++It; 4514 4515 unsigned dest = MI->getOperand(0).getReg(); 4516 unsigned ptrA = MI->getOperand(1).getReg(); 4517 unsigned ptrB = MI->getOperand(2).getReg(); 4518 unsigned incr = MI->getOperand(3).getReg(); 4519 DebugLoc dl = MI->getDebugLoc(); 4520 4521 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4522 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4523 F->insert(It, loopMBB); 4524 F->insert(It, exitMBB); 4525 exitMBB->splice(exitMBB->begin(), BB, 4526 llvm::next(MachineBasicBlock::iterator(MI)), 4527 BB->end()); 4528 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4529 4530 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4531 unsigned TmpReg = (!BinOpcode) ? incr : 4532 RegInfo.createVirtualRegister( 4533 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4534 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4535 4536 // thisMBB: 4537 // ... 4538 // fallthrough --> loopMBB 4539 BB->addSuccessor(loopMBB); 4540 4541 // loopMBB: 4542 // l[wd]arx dest, ptr 4543 // add r0, dest, incr 4544 // st[wd]cx. r0, ptr 4545 // bne- loopMBB 4546 // fallthrough --> exitMBB 4547 BB = loopMBB; 4548 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4549 .addReg(ptrA).addReg(ptrB); 4550 if (BinOpcode) 4551 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4552 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4553 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4554 BuildMI(BB, dl, TII->get(PPC::BCC)) 4555 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4556 BB->addSuccessor(loopMBB); 4557 BB->addSuccessor(exitMBB); 4558 4559 // exitMBB: 4560 // ... 4561 BB = exitMBB; 4562 return BB; 4563} 4564 4565MachineBasicBlock * 4566PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4567 MachineBasicBlock *BB, 4568 bool is8bit, // operation 4569 unsigned BinOpcode) const { 4570 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4571 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4572 // In 64 bit mode we have to use 64 bits for addresses, even though the 4573 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4574 // registers without caring whether they're 32 or 64, but here we're 4575 // doing actual arithmetic on the addresses. 4576 bool is64bit = PPCSubTarget.isPPC64(); 4577 4578 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4579 MachineFunction *F = BB->getParent(); 4580 MachineFunction::iterator It = BB; 4581 ++It; 4582 4583 unsigned dest = MI->getOperand(0).getReg(); 4584 unsigned ptrA = MI->getOperand(1).getReg(); 4585 unsigned ptrB = MI->getOperand(2).getReg(); 4586 unsigned incr = MI->getOperand(3).getReg(); 4587 DebugLoc dl = MI->getDebugLoc(); 4588 4589 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4590 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4591 F->insert(It, loopMBB); 4592 F->insert(It, exitMBB); 4593 exitMBB->splice(exitMBB->begin(), BB, 4594 llvm::next(MachineBasicBlock::iterator(MI)), 4595 BB->end()); 4596 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4597 4598 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4599 const TargetRegisterClass *RC = 4600 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4601 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4602 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4603 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4604 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4605 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4606 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4607 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4608 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4609 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4610 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4611 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4612 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4613 unsigned Ptr1Reg; 4614 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4615 4616 // thisMBB: 4617 // ... 4618 // fallthrough --> loopMBB 4619 BB->addSuccessor(loopMBB); 4620 4621 // The 4-byte load must be aligned, while a char or short may be 4622 // anywhere in the word. Hence all this nasty bookkeeping code. 4623 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4624 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4625 // xori shift, shift1, 24 [16] 4626 // rlwinm ptr, ptr1, 0, 0, 29 4627 // slw incr2, incr, shift 4628 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4629 // slw mask, mask2, shift 4630 // loopMBB: 4631 // lwarx tmpDest, ptr 4632 // add tmp, tmpDest, incr2 4633 // andc tmp2, tmpDest, mask 4634 // and tmp3, tmp, mask 4635 // or tmp4, tmp3, tmp2 4636 // stwcx. tmp4, ptr 4637 // bne- loopMBB 4638 // fallthrough --> exitMBB 4639 // srw dest, tmpDest, shift 4640 4641 if (ptrA!=PPC::R0) { 4642 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4643 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4644 .addReg(ptrA).addReg(ptrB); 4645 } else { 4646 Ptr1Reg = ptrB; 4647 } 4648 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4649 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4650 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4651 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4652 if (is64bit) 4653 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4654 .addReg(Ptr1Reg).addImm(0).addImm(61); 4655 else 4656 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4657 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4658 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4659 .addReg(incr).addReg(ShiftReg); 4660 if (is8bit) 4661 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4662 else { 4663 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4664 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4665 } 4666 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4667 .addReg(Mask2Reg).addReg(ShiftReg); 4668 4669 BB = loopMBB; 4670 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4671 .addReg(PPC::R0).addReg(PtrReg); 4672 if (BinOpcode) 4673 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4674 .addReg(Incr2Reg).addReg(TmpDestReg); 4675 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4676 .addReg(TmpDestReg).addReg(MaskReg); 4677 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4678 .addReg(TmpReg).addReg(MaskReg); 4679 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4680 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4681 BuildMI(BB, dl, TII->get(PPC::STWCX)) 4682 .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg); 4683 BuildMI(BB, dl, TII->get(PPC::BCC)) 4684 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4685 BB->addSuccessor(loopMBB); 4686 BB->addSuccessor(exitMBB); 4687 4688 // exitMBB: 4689 // ... 4690 BB = exitMBB; 4691 BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg); 4692 return BB; 4693} 4694 4695MachineBasicBlock * 4696PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4697 MachineBasicBlock *BB) const { 4698 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4699 4700 // To "insert" these instructions we actually have to insert their 4701 // control-flow patterns. 4702 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4703 MachineFunction::iterator It = BB; 4704 ++It; 4705 4706 MachineFunction *F = BB->getParent(); 4707 4708 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4709 MI->getOpcode() == PPC::SELECT_CC_I8 || 4710 MI->getOpcode() == PPC::SELECT_CC_F4 || 4711 MI->getOpcode() == PPC::SELECT_CC_F8 || 4712 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4713 4714 // The incoming instruction knows the destination vreg to set, the 4715 // condition code register to branch on, the true/false values to 4716 // select between, and a branch opcode to use. 4717 4718 // thisMBB: 4719 // ... 4720 // TrueVal = ... 4721 // cmpTY ccX, r1, r2 4722 // bCC copy1MBB 4723 // fallthrough --> copy0MBB 4724 MachineBasicBlock *thisMBB = BB; 4725 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4726 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4727 unsigned SelectPred = MI->getOperand(4).getImm(); 4728 DebugLoc dl = MI->getDebugLoc(); 4729 F->insert(It, copy0MBB); 4730 F->insert(It, sinkMBB); 4731 4732 // Transfer the remainder of BB and its successor edges to sinkMBB. 4733 sinkMBB->splice(sinkMBB->begin(), BB, 4734 llvm::next(MachineBasicBlock::iterator(MI)), 4735 BB->end()); 4736 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4737 4738 // Next, add the true and fallthrough blocks as its successors. 4739 BB->addSuccessor(copy0MBB); 4740 BB->addSuccessor(sinkMBB); 4741 4742 BuildMI(BB, dl, TII->get(PPC::BCC)) 4743 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4744 4745 // copy0MBB: 4746 // %FalseValue = ... 4747 // # fallthrough to sinkMBB 4748 BB = copy0MBB; 4749 4750 // Update machine-CFG edges 4751 BB->addSuccessor(sinkMBB); 4752 4753 // sinkMBB: 4754 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4755 // ... 4756 BB = sinkMBB; 4757 BuildMI(*BB, BB->begin(), dl, 4758 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4759 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4760 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4761 } 4762 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4763 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4765 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4766 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4767 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4768 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4769 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4770 4771 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4772 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4774 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4776 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4777 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4778 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4779 4780 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4781 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4783 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4785 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4786 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4787 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4788 4789 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4790 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4792 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4794 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4795 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4796 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4797 4798 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4799 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4801 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4803 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4804 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4805 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4806 4807 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4808 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4809 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4810 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4811 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4812 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4813 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4814 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4815 4816 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4817 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4818 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4819 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4820 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4821 BB = EmitAtomicBinary(MI, BB, false, 0); 4822 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4823 BB = EmitAtomicBinary(MI, BB, true, 0); 4824 4825 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4826 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4827 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4828 4829 unsigned dest = MI->getOperand(0).getReg(); 4830 unsigned ptrA = MI->getOperand(1).getReg(); 4831 unsigned ptrB = MI->getOperand(2).getReg(); 4832 unsigned oldval = MI->getOperand(3).getReg(); 4833 unsigned newval = MI->getOperand(4).getReg(); 4834 DebugLoc dl = MI->getDebugLoc(); 4835 4836 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4837 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4838 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4839 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4840 F->insert(It, loop1MBB); 4841 F->insert(It, loop2MBB); 4842 F->insert(It, midMBB); 4843 F->insert(It, exitMBB); 4844 exitMBB->splice(exitMBB->begin(), BB, 4845 llvm::next(MachineBasicBlock::iterator(MI)), 4846 BB->end()); 4847 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4848 4849 // thisMBB: 4850 // ... 4851 // fallthrough --> loopMBB 4852 BB->addSuccessor(loop1MBB); 4853 4854 // loop1MBB: 4855 // l[wd]arx dest, ptr 4856 // cmp[wd] dest, oldval 4857 // bne- midMBB 4858 // loop2MBB: 4859 // st[wd]cx. newval, ptr 4860 // bne- loopMBB 4861 // b exitBB 4862 // midMBB: 4863 // st[wd]cx. dest, ptr 4864 // exitBB: 4865 BB = loop1MBB; 4866 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4867 .addReg(ptrA).addReg(ptrB); 4868 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 4869 .addReg(oldval).addReg(dest); 4870 BuildMI(BB, dl, TII->get(PPC::BCC)) 4871 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 4872 BB->addSuccessor(loop2MBB); 4873 BB->addSuccessor(midMBB); 4874 4875 BB = loop2MBB; 4876 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4877 .addReg(newval).addReg(ptrA).addReg(ptrB); 4878 BuildMI(BB, dl, TII->get(PPC::BCC)) 4879 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 4880 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 4881 BB->addSuccessor(loop1MBB); 4882 BB->addSuccessor(exitMBB); 4883 4884 BB = midMBB; 4885 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4886 .addReg(dest).addReg(ptrA).addReg(ptrB); 4887 BB->addSuccessor(exitMBB); 4888 4889 // exitMBB: 4890 // ... 4891 BB = exitMBB; 4892 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 4893 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 4894 // We must use 64-bit registers for addresses when targeting 64-bit, 4895 // since we're actually doing arithmetic on them. Other registers 4896 // can be 32-bit. 4897 bool is64bit = PPCSubTarget.isPPC64(); 4898 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 4899 4900 unsigned dest = MI->getOperand(0).getReg(); 4901 unsigned ptrA = MI->getOperand(1).getReg(); 4902 unsigned ptrB = MI->getOperand(2).getReg(); 4903 unsigned oldval = MI->getOperand(3).getReg(); 4904 unsigned newval = MI->getOperand(4).getReg(); 4905 DebugLoc dl = MI->getDebugLoc(); 4906 4907 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4908 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4909 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4910 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4911 F->insert(It, loop1MBB); 4912 F->insert(It, loop2MBB); 4913 F->insert(It, midMBB); 4914 F->insert(It, exitMBB); 4915 exitMBB->splice(exitMBB->begin(), BB, 4916 llvm::next(MachineBasicBlock::iterator(MI)), 4917 BB->end()); 4918 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4919 4920 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4921 const TargetRegisterClass *RC = 4922 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4923 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4924 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4925 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4926 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4927 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 4928 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 4929 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 4930 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 4931 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4932 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4933 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4934 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4935 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4936 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4937 unsigned Ptr1Reg; 4938 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 4939 // thisMBB: 4940 // ... 4941 // fallthrough --> loopMBB 4942 BB->addSuccessor(loop1MBB); 4943 4944 // The 4-byte load must be aligned, while a char or short may be 4945 // anywhere in the word. Hence all this nasty bookkeeping code. 4946 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4947 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4948 // xori shift, shift1, 24 [16] 4949 // rlwinm ptr, ptr1, 0, 0, 29 4950 // slw newval2, newval, shift 4951 // slw oldval2, oldval,shift 4952 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4953 // slw mask, mask2, shift 4954 // and newval3, newval2, mask 4955 // and oldval3, oldval2, mask 4956 // loop1MBB: 4957 // lwarx tmpDest, ptr 4958 // and tmp, tmpDest, mask 4959 // cmpw tmp, oldval3 4960 // bne- midMBB 4961 // loop2MBB: 4962 // andc tmp2, tmpDest, mask 4963 // or tmp4, tmp2, newval3 4964 // stwcx. tmp4, ptr 4965 // bne- loop1MBB 4966 // b exitBB 4967 // midMBB: 4968 // stwcx. tmpDest, ptr 4969 // exitBB: 4970 // srw dest, tmpDest, shift 4971 if (ptrA!=PPC::R0) { 4972 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4973 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4974 .addReg(ptrA).addReg(ptrB); 4975 } else { 4976 Ptr1Reg = ptrB; 4977 } 4978 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4979 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4980 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4981 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4982 if (is64bit) 4983 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4984 .addReg(Ptr1Reg).addImm(0).addImm(61); 4985 else 4986 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4987 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4988 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 4989 .addReg(newval).addReg(ShiftReg); 4990 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 4991 .addReg(oldval).addReg(ShiftReg); 4992 if (is8bit) 4993 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4994 else { 4995 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4996 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 4997 .addReg(Mask3Reg).addImm(65535); 4998 } 4999 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5000 .addReg(Mask2Reg).addReg(ShiftReg); 5001 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5002 .addReg(NewVal2Reg).addReg(MaskReg); 5003 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5004 .addReg(OldVal2Reg).addReg(MaskReg); 5005 5006 BB = loop1MBB; 5007 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5008 .addReg(PPC::R0).addReg(PtrReg); 5009 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5010 .addReg(TmpDestReg).addReg(MaskReg); 5011 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5012 .addReg(TmpReg).addReg(OldVal3Reg); 5013 BuildMI(BB, dl, TII->get(PPC::BCC)) 5014 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5015 BB->addSuccessor(loop2MBB); 5016 BB->addSuccessor(midMBB); 5017 5018 BB = loop2MBB; 5019 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5020 .addReg(TmpDestReg).addReg(MaskReg); 5021 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5022 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5023 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5024 .addReg(PPC::R0).addReg(PtrReg); 5025 BuildMI(BB, dl, TII->get(PPC::BCC)) 5026 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5027 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5028 BB->addSuccessor(loop1MBB); 5029 BB->addSuccessor(exitMBB); 5030 5031 BB = midMBB; 5032 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5033 .addReg(PPC::R0).addReg(PtrReg); 5034 BB->addSuccessor(exitMBB); 5035 5036 // exitMBB: 5037 // ... 5038 BB = exitMBB; 5039 BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg); 5040 } else { 5041 llvm_unreachable("Unexpected instr type to insert"); 5042 } 5043 5044 MI->eraseFromParent(); // The pseudo instruction is gone now. 5045 return BB; 5046} 5047 5048//===----------------------------------------------------------------------===// 5049// Target Optimization Hooks 5050//===----------------------------------------------------------------------===// 5051 5052SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5053 DAGCombinerInfo &DCI) const { 5054 const TargetMachine &TM = getTargetMachine(); 5055 SelectionDAG &DAG = DCI.DAG; 5056 DebugLoc dl = N->getDebugLoc(); 5057 switch (N->getOpcode()) { 5058 default: break; 5059 case PPCISD::SHL: 5060 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5061 if (C->isNullValue()) // 0 << V -> 0. 5062 return N->getOperand(0); 5063 } 5064 break; 5065 case PPCISD::SRL: 5066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5067 if (C->isNullValue()) // 0 >>u V -> 0. 5068 return N->getOperand(0); 5069 } 5070 break; 5071 case PPCISD::SRA: 5072 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5073 if (C->isNullValue() || // 0 >>s V -> 0. 5074 C->isAllOnesValue()) // -1 >>s V -> -1. 5075 return N->getOperand(0); 5076 } 5077 break; 5078 5079 case ISD::SINT_TO_FP: 5080 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5081 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5082 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5083 // We allow the src/dst to be either f32/f64, but the intermediate 5084 // type must be i64. 5085 if (N->getOperand(0).getValueType() == MVT::i64 && 5086 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5087 SDValue Val = N->getOperand(0).getOperand(0); 5088 if (Val.getValueType() == MVT::f32) { 5089 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5090 DCI.AddToWorklist(Val.getNode()); 5091 } 5092 5093 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5094 DCI.AddToWorklist(Val.getNode()); 5095 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5096 DCI.AddToWorklist(Val.getNode()); 5097 if (N->getValueType(0) == MVT::f32) { 5098 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5099 DAG.getIntPtrConstant(0)); 5100 DCI.AddToWorklist(Val.getNode()); 5101 } 5102 return Val; 5103 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5104 // If the intermediate type is i32, we can avoid the load/store here 5105 // too. 5106 } 5107 } 5108 } 5109 break; 5110 case ISD::STORE: 5111 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5112 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5113 !cast<StoreSDNode>(N)->isTruncatingStore() && 5114 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5115 N->getOperand(1).getValueType() == MVT::i32 && 5116 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5117 SDValue Val = N->getOperand(1).getOperand(0); 5118 if (Val.getValueType() == MVT::f32) { 5119 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5120 DCI.AddToWorklist(Val.getNode()); 5121 } 5122 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5123 DCI.AddToWorklist(Val.getNode()); 5124 5125 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5126 N->getOperand(2), N->getOperand(3)); 5127 DCI.AddToWorklist(Val.getNode()); 5128 return Val; 5129 } 5130 5131 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5132 if (cast<StoreSDNode>(N)->isUnindexed() && 5133 N->getOperand(1).getOpcode() == ISD::BSWAP && 5134 N->getOperand(1).getNode()->hasOneUse() && 5135 (N->getOperand(1).getValueType() == MVT::i32 || 5136 N->getOperand(1).getValueType() == MVT::i16)) { 5137 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5138 // Do an any-extend to 32-bits if this is a half-word input. 5139 if (BSwapOp.getValueType() == MVT::i16) 5140 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5141 5142 SDValue Ops[] = { 5143 N->getOperand(0), BSwapOp, N->getOperand(2), 5144 DAG.getValueType(N->getOperand(1).getValueType()) 5145 }; 5146 return 5147 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5148 Ops, array_lengthof(Ops), 5149 cast<StoreSDNode>(N)->getMemoryVT(), 5150 cast<StoreSDNode>(N)->getMemOperand()); 5151 } 5152 break; 5153 case ISD::BSWAP: 5154 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5155 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5156 N->getOperand(0).hasOneUse() && 5157 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5158 SDValue Load = N->getOperand(0); 5159 LoadSDNode *LD = cast<LoadSDNode>(Load); 5160 // Create the byte-swapping load. 5161 SDValue Ops[] = { 5162 LD->getChain(), // Chain 5163 LD->getBasePtr(), // Ptr 5164 DAG.getValueType(N->getValueType(0)) // VT 5165 }; 5166 SDValue BSLoad = 5167 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5168 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5169 LD->getMemoryVT(), LD->getMemOperand()); 5170 5171 // If this is an i16 load, insert the truncate. 5172 SDValue ResVal = BSLoad; 5173 if (N->getValueType(0) == MVT::i16) 5174 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5175 5176 // First, combine the bswap away. This makes the value produced by the 5177 // load dead. 5178 DCI.CombineTo(N, ResVal); 5179 5180 // Next, combine the load away, we give it a bogus result value but a real 5181 // chain result. The result value is dead because the bswap is dead. 5182 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5183 5184 // Return N so it doesn't get rechecked! 5185 return SDValue(N, 0); 5186 } 5187 5188 break; 5189 case PPCISD::VCMP: { 5190 // If a VCMPo node already exists with exactly the same operands as this 5191 // node, use its result instead of this node (VCMPo computes both a CR6 and 5192 // a normal output). 5193 // 5194 if (!N->getOperand(0).hasOneUse() && 5195 !N->getOperand(1).hasOneUse() && 5196 !N->getOperand(2).hasOneUse()) { 5197 5198 // Scan all of the users of the LHS, looking for VCMPo's that match. 5199 SDNode *VCMPoNode = 0; 5200 5201 SDNode *LHSN = N->getOperand(0).getNode(); 5202 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5203 UI != E; ++UI) 5204 if (UI->getOpcode() == PPCISD::VCMPo && 5205 UI->getOperand(1) == N->getOperand(1) && 5206 UI->getOperand(2) == N->getOperand(2) && 5207 UI->getOperand(0) == N->getOperand(0)) { 5208 VCMPoNode = *UI; 5209 break; 5210 } 5211 5212 // If there is no VCMPo node, or if the flag value has a single use, don't 5213 // transform this. 5214 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5215 break; 5216 5217 // Look at the (necessarily single) use of the flag value. If it has a 5218 // chain, this transformation is more complex. Note that multiple things 5219 // could use the value result, which we should ignore. 5220 SDNode *FlagUser = 0; 5221 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5222 FlagUser == 0; ++UI) { 5223 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5224 SDNode *User = *UI; 5225 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5226 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5227 FlagUser = User; 5228 break; 5229 } 5230 } 5231 } 5232 5233 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5234 // give up for right now. 5235 if (FlagUser->getOpcode() == PPCISD::MFCR) 5236 return SDValue(VCMPoNode, 0); 5237 } 5238 break; 5239 } 5240 case ISD::BR_CC: { 5241 // If this is a branch on an altivec predicate comparison, lower this so 5242 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5243 // lowering is done pre-legalize, because the legalizer lowers the predicate 5244 // compare down to code that is difficult to reassemble. 5245 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5246 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5247 int CompareOpc; 5248 bool isDot; 5249 5250 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5251 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5252 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5253 assert(isDot && "Can't compare against a vector result!"); 5254 5255 // If this is a comparison against something other than 0/1, then we know 5256 // that the condition is never/always true. 5257 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5258 if (Val != 0 && Val != 1) { 5259 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5260 return N->getOperand(0); 5261 // Always !=, turn it into an unconditional branch. 5262 return DAG.getNode(ISD::BR, dl, MVT::Other, 5263 N->getOperand(0), N->getOperand(4)); 5264 } 5265 5266 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5267 5268 // Create the PPCISD altivec 'dot' comparison node. 5269 std::vector<EVT> VTs; 5270 SDValue Ops[] = { 5271 LHS.getOperand(2), // LHS of compare 5272 LHS.getOperand(3), // RHS of compare 5273 DAG.getConstant(CompareOpc, MVT::i32) 5274 }; 5275 VTs.push_back(LHS.getOperand(2).getValueType()); 5276 VTs.push_back(MVT::Glue); 5277 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5278 5279 // Unpack the result based on how the target uses it. 5280 PPC::Predicate CompOpc; 5281 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5282 default: // Can't happen, don't crash on invalid number though. 5283 case 0: // Branch on the value of the EQ bit of CR6. 5284 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5285 break; 5286 case 1: // Branch on the inverted value of the EQ bit of CR6. 5287 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5288 break; 5289 case 2: // Branch on the value of the LT bit of CR6. 5290 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5291 break; 5292 case 3: // Branch on the inverted value of the LT bit of CR6. 5293 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5294 break; 5295 } 5296 5297 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5298 DAG.getConstant(CompOpc, MVT::i32), 5299 DAG.getRegister(PPC::CR6, MVT::i32), 5300 N->getOperand(4), CompNode.getValue(1)); 5301 } 5302 break; 5303 } 5304 } 5305 5306 return SDValue(); 5307} 5308 5309//===----------------------------------------------------------------------===// 5310// Inline Assembly Support 5311//===----------------------------------------------------------------------===// 5312 5313void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5314 const APInt &Mask, 5315 APInt &KnownZero, 5316 APInt &KnownOne, 5317 const SelectionDAG &DAG, 5318 unsigned Depth) const { 5319 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5320 switch (Op.getOpcode()) { 5321 default: break; 5322 case PPCISD::LBRX: { 5323 // lhbrx is known to have the top bits cleared out. 5324 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5325 KnownZero = 0xFFFF0000; 5326 break; 5327 } 5328 case ISD::INTRINSIC_WO_CHAIN: { 5329 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5330 default: break; 5331 case Intrinsic::ppc_altivec_vcmpbfp_p: 5332 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5333 case Intrinsic::ppc_altivec_vcmpequb_p: 5334 case Intrinsic::ppc_altivec_vcmpequh_p: 5335 case Intrinsic::ppc_altivec_vcmpequw_p: 5336 case Intrinsic::ppc_altivec_vcmpgefp_p: 5337 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5338 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5339 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5340 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5341 case Intrinsic::ppc_altivec_vcmpgtub_p: 5342 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5343 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5344 KnownZero = ~1U; // All bits but the low one are known to be zero. 5345 break; 5346 } 5347 } 5348 } 5349} 5350 5351 5352/// getConstraintType - Given a constraint, return the type of 5353/// constraint it is for this target. 5354PPCTargetLowering::ConstraintType 5355PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5356 if (Constraint.size() == 1) { 5357 switch (Constraint[0]) { 5358 default: break; 5359 case 'b': 5360 case 'r': 5361 case 'f': 5362 case 'v': 5363 case 'y': 5364 return C_RegisterClass; 5365 } 5366 } 5367 return TargetLowering::getConstraintType(Constraint); 5368} 5369 5370/// Examine constraint type and operand type and determine a weight value. 5371/// This object must already have been set up with the operand type 5372/// and the current alternative constraint selected. 5373TargetLowering::ConstraintWeight 5374PPCTargetLowering::getSingleConstraintMatchWeight( 5375 AsmOperandInfo &info, const char *constraint) const { 5376 ConstraintWeight weight = CW_Invalid; 5377 Value *CallOperandVal = info.CallOperandVal; 5378 // If we don't have a value, we can't do a match, 5379 // but allow it at the lowest weight. 5380 if (CallOperandVal == NULL) 5381 return CW_Default; 5382 const Type *type = CallOperandVal->getType(); 5383 // Look at the constraint type. 5384 switch (*constraint) { 5385 default: 5386 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5387 break; 5388 case 'b': 5389 if (type->isIntegerTy()) 5390 weight = CW_Register; 5391 break; 5392 case 'f': 5393 if (type->isFloatTy()) 5394 weight = CW_Register; 5395 break; 5396 case 'd': 5397 if (type->isDoubleTy()) 5398 weight = CW_Register; 5399 break; 5400 case 'v': 5401 if (type->isVectorTy()) 5402 weight = CW_Register; 5403 break; 5404 case 'y': 5405 weight = CW_Register; 5406 break; 5407 } 5408 return weight; 5409} 5410 5411std::pair<unsigned, const TargetRegisterClass*> 5412PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5413 EVT VT) const { 5414 if (Constraint.size() == 1) { 5415 // GCC RS6000 Constraint Letters 5416 switch (Constraint[0]) { 5417 case 'b': // R1-R31 5418 case 'r': // R0-R31 5419 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5420 return std::make_pair(0U, PPC::G8RCRegisterClass); 5421 return std::make_pair(0U, PPC::GPRCRegisterClass); 5422 case 'f': 5423 if (VT == MVT::f32) 5424 return std::make_pair(0U, PPC::F4RCRegisterClass); 5425 else if (VT == MVT::f64) 5426 return std::make_pair(0U, PPC::F8RCRegisterClass); 5427 break; 5428 case 'v': 5429 return std::make_pair(0U, PPC::VRRCRegisterClass); 5430 case 'y': // crrc 5431 return std::make_pair(0U, PPC::CRRCRegisterClass); 5432 } 5433 } 5434 5435 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5436} 5437 5438 5439/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5440/// vector. If it is invalid, don't add anything to Ops. 5441void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter, 5442 std::vector<SDValue>&Ops, 5443 SelectionDAG &DAG) const { 5444 SDValue Result(0,0); 5445 switch (Letter) { 5446 default: break; 5447 case 'I': 5448 case 'J': 5449 case 'K': 5450 case 'L': 5451 case 'M': 5452 case 'N': 5453 case 'O': 5454 case 'P': { 5455 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5456 if (!CST) return; // Must be an immediate to match. 5457 unsigned Value = CST->getZExtValue(); 5458 switch (Letter) { 5459 default: llvm_unreachable("Unknown constraint letter!"); 5460 case 'I': // "I" is a signed 16-bit constant. 5461 if ((short)Value == (int)Value) 5462 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5463 break; 5464 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5465 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5466 if ((short)Value == 0) 5467 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5468 break; 5469 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5470 if ((Value >> 16) == 0) 5471 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5472 break; 5473 case 'M': // "M" is a constant that is greater than 31. 5474 if (Value > 31) 5475 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5476 break; 5477 case 'N': // "N" is a positive constant that is an exact power of two. 5478 if ((int)Value > 0 && isPowerOf2_32(Value)) 5479 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5480 break; 5481 case 'O': // "O" is the constant zero. 5482 if (Value == 0) 5483 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5484 break; 5485 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5486 if ((short)-Value == (int)-Value) 5487 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5488 break; 5489 } 5490 break; 5491 } 5492 } 5493 5494 if (Result.getNode()) { 5495 Ops.push_back(Result); 5496 return; 5497 } 5498 5499 // Handle standard constraint letters. 5500 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); 5501} 5502 5503// isLegalAddressingMode - Return true if the addressing mode represented 5504// by AM is legal for this target, for a load/store of the specified type. 5505bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5506 const Type *Ty) const { 5507 // FIXME: PPC does not allow r+i addressing modes for vectors! 5508 5509 // PPC allows a sign-extended 16-bit immediate field. 5510 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5511 return false; 5512 5513 // No global is ever allowed as a base. 5514 if (AM.BaseGV) 5515 return false; 5516 5517 // PPC only support r+r, 5518 switch (AM.Scale) { 5519 case 0: // "r+i" or just "i", depending on HasBaseReg. 5520 break; 5521 case 1: 5522 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5523 return false; 5524 // Otherwise we have r+r or r+i. 5525 break; 5526 case 2: 5527 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5528 return false; 5529 // Allow 2*r as r+r. 5530 break; 5531 default: 5532 // No other scales are supported. 5533 return false; 5534 } 5535 5536 return true; 5537} 5538 5539/// isLegalAddressImmediate - Return true if the integer value can be used 5540/// as the offset of the target addressing mode for load / store of the 5541/// given type. 5542bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ 5543 // PPC allows a sign-extended 16-bit immediate field. 5544 return (V > -(1 << 16) && V < (1 << 16)-1); 5545} 5546 5547bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5548 return false; 5549} 5550 5551SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5552 SelectionDAG &DAG) const { 5553 MachineFunction &MF = DAG.getMachineFunction(); 5554 MachineFrameInfo *MFI = MF.getFrameInfo(); 5555 MFI->setReturnAddressIsTaken(true); 5556 5557 DebugLoc dl = Op.getDebugLoc(); 5558 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5559 5560 // Make sure the function does not optimize away the store of the RA to 5561 // the stack. 5562 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5563 FuncInfo->setLRStoreRequired(); 5564 bool isPPC64 = PPCSubTarget.isPPC64(); 5565 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5566 5567 if (Depth > 0) { 5568 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5569 SDValue Offset = 5570 5571 DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI), 5572 isPPC64? MVT::i64 : MVT::i32); 5573 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5574 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5575 FrameAddr, Offset), 5576 MachinePointerInfo(), false, false, 0); 5577 } 5578 5579 // Just load the return address off the stack. 5580 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5581 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5582 RetAddrFI, MachinePointerInfo(), false, false, 0); 5583} 5584 5585SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5586 SelectionDAG &DAG) const { 5587 DebugLoc dl = Op.getDebugLoc(); 5588 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5589 5590 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5591 bool isPPC64 = PtrVT == MVT::i64; 5592 5593 MachineFunction &MF = DAG.getMachineFunction(); 5594 MachineFrameInfo *MFI = MF.getFrameInfo(); 5595 MFI->setFrameAddressIsTaken(true); 5596 bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) && 5597 MFI->getStackSize() && 5598 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5599 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5600 (is31 ? PPC::R31 : PPC::R1); 5601 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5602 PtrVT); 5603 while (Depth--) 5604 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5605 FrameAddr, MachinePointerInfo(), false, false, 0); 5606 return FrameAddr; 5607} 5608 5609bool 5610PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5611 // The PowerPC target isn't yet aware of offsets. 5612 return false; 5613} 5614 5615/// getOptimalMemOpType - Returns the target specific optimal type for load 5616/// and store operations as a result of memset, memcpy, and memmove 5617/// lowering. If DstAlign is zero that means it's safe to destination 5618/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5619/// means there isn't a need to check it against alignment requirement, 5620/// probably because the source does not need to be loaded. If 5621/// 'NonScalarIntSafe' is true, that means it's safe to return a 5622/// non-scalar-integer type, e.g. empty string source, constant, or loaded 5623/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5624/// constant so it does not need to be loaded. 5625/// It returns EVT::Other if the type should be determined using generic 5626/// target-independent logic. 5627EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5628 unsigned DstAlign, unsigned SrcAlign, 5629 bool NonScalarIntSafe, 5630 bool MemcpyStrSrc, 5631 MachineFunction &MF) const { 5632 if (this->PPCSubTarget.isPPC64()) { 5633 return MVT::i64; 5634 } else { 5635 return MVT::i32; 5636 } 5637} 5638