PPCISelLowering.cpp revision f89437d049b4a3dff2b04e2635b45068db0a6b34
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Chris Lattner and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PPCISelLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCISelLowering.h" 15#include "PPCTargetMachine.h" 16#include "PPCPerfectShuffle.h" 17#include "llvm/ADT/VectorExtras.h" 18#include "llvm/Analysis/ScalarEvolutionExpressions.h" 19#include "llvm/CodeGen/MachineFrameInfo.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineInstrBuilder.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/CodeGen/SSARegMap.h" 24#include "llvm/Constants.h" 25#include "llvm/Function.h" 26#include "llvm/Intrinsics.h" 27#include "llvm/Support/MathExtras.h" 28#include "llvm/Target/TargetOptions.h" 29using namespace llvm; 30 31PPCTargetLowering::PPCTargetLowering(TargetMachine &TM) 32 : TargetLowering(TM) { 33 34 // Fold away setcc operations if possible. 35 setSetCCIsExpensive(); 36 setPow2DivIsCheap(); 37 38 // Use _setjmp/_longjmp instead of setjmp/longjmp. 39 setUseUnderscoreSetJmpLongJmp(true); 40 41 // Set up the register classes. 42 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 45 46 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 48 49 // PowerPC has no intrinsics for these particular operations 50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); 51 setOperationAction(ISD::MEMSET, MVT::Other, Expand); 52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand); 53 54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand); 56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand); 57 58 // PowerPC has no SREM/UREM instructions 59 setOperationAction(ISD::SREM, MVT::i32, Expand); 60 setOperationAction(ISD::UREM, MVT::i32, Expand); 61 setOperationAction(ISD::SREM, MVT::i64, Expand); 62 setOperationAction(ISD::UREM, MVT::i64, Expand); 63 64 // We don't support sin/cos/sqrt/fmod 65 setOperationAction(ISD::FSIN , MVT::f64, Expand); 66 setOperationAction(ISD::FCOS , MVT::f64, Expand); 67 setOperationAction(ISD::FREM , MVT::f64, Expand); 68 setOperationAction(ISD::FSIN , MVT::f32, Expand); 69 setOperationAction(ISD::FCOS , MVT::f32, Expand); 70 setOperationAction(ISD::FREM , MVT::f32, Expand); 71 72 // If we're enabling GP optimizations, use hardware square root 73 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 74 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 75 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 76 } 77 78 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 79 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 80 81 // PowerPC does not have BSWAP, CTPOP or CTTZ 82 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 83 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 84 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 85 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 86 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 87 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 88 89 // PowerPC does not have ROTR 90 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 91 92 // PowerPC does not have Select 93 setOperationAction(ISD::SELECT, MVT::i32, Expand); 94 setOperationAction(ISD::SELECT, MVT::i64, Expand); 95 setOperationAction(ISD::SELECT, MVT::f32, Expand); 96 setOperationAction(ISD::SELECT, MVT::f64, Expand); 97 98 // PowerPC wants to turn select_cc of FP into fsel when possible. 99 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 100 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 101 102 // PowerPC wants to optimize integer setcc a bit 103 setOperationAction(ISD::SETCC, MVT::i32, Custom); 104 105 // PowerPC does not have BRCOND which requires SetCC 106 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 107 108 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 109 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 110 111 // PowerPC does not have [U|S]INT_TO_FP 112 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 113 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 114 115 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); 116 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); 117 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); 118 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); 119 120 // PowerPC does not have truncstore for i1. 121 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote); 122 123 // We cannot sextinreg(i1). Expand to shifts. 124 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 125 126 127 // Support label based line numbers. 128 setOperationAction(ISD::LOCATION, MVT::Other, Expand); 129 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); 130 // FIXME - use subtarget debug flags 131 if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) 132 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); 133 134 // We want to legalize GlobalAddress and ConstantPool nodes into the 135 // appropriate instructions to materialize the address. 136 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 137 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 138 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 139 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 140 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 141 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 142 143 // RET must be custom lowered, to meet ABI requirements 144 setOperationAction(ISD::RET , MVT::Other, Custom); 145 146 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 147 setOperationAction(ISD::VASTART , MVT::Other, Custom); 148 149 // Use the default implementation. 150 setOperationAction(ISD::VAARG , MVT::Other, Expand); 151 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 152 setOperationAction(ISD::VAEND , MVT::Other, Expand); 153 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 154 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 155 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); 156 157 // We want to custom lower some of our intrinsics. 158 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 159 160 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 161 // They also have instructions for converting between i64 and fp. 162 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 163 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 164 165 // FIXME: disable this lowered code. This generates 64-bit register values, 166 // and we don't model the fact that the top part is clobbered by calls. We 167 // need to flag these together so that the value isn't live across a call. 168 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 169 170 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT 171 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); 172 } else { 173 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 174 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 175 } 176 177 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 178 // 64 bit PowerPC implementations can support i64 types directly 179 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 180 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 181 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 182 } else { 183 // 32 bit PowerPC wants to expand i64 shifts itself. 184 setOperationAction(ISD::SHL, MVT::i64, Custom); 185 setOperationAction(ISD::SRL, MVT::i64, Custom); 186 setOperationAction(ISD::SRA, MVT::i64, Custom); 187 } 188 189 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 190 // First set operation action for all vector types to expand. Then we 191 // will selectively turn on ones that can be effectively codegen'd. 192 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 193 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 194 // add/sub are legal for all supported vector VT's. 195 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); 196 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); 197 198 // We promote all shuffles to v16i8. 199 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); 200 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); 201 202 // We promote all non-typed operations to v4i32. 203 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote); 204 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32); 205 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote); 206 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32); 207 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote); 208 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32); 209 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote); 210 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32); 211 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); 212 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); 213 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); 214 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); 215 216 // No other operations are legal. 217 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); 218 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); 219 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); 220 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); 221 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); 222 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); 223 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); 224 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); 225 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); 226 227 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); 228 } 229 230 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 231 // with merges, splats, etc. 232 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 233 234 setOperationAction(ISD::AND , MVT::v4i32, Legal); 235 setOperationAction(ISD::OR , MVT::v4i32, Legal); 236 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 237 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 238 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 239 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 240 241 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 242 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 243 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 244 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 245 246 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 247 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 248 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 249 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 250 251 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 252 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 253 254 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 255 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 256 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 257 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 258 } 259 260 setSetCCResultType(MVT::i32); 261 setShiftAmountType(MVT::i32); 262 setSetCCResultContents(ZeroOrOneSetCCResult); 263 setStackPointerRegisterToSaveRestore(PPC::R1); 264 265 // We have target-specific dag combine patterns for the following nodes: 266 setTargetDAGCombine(ISD::SINT_TO_FP); 267 setTargetDAGCombine(ISD::STORE); 268 setTargetDAGCombine(ISD::BR_CC); 269 270 computeRegisterProperties(); 271} 272 273const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 274 switch (Opcode) { 275 default: return 0; 276 case PPCISD::FSEL: return "PPCISD::FSEL"; 277 case PPCISD::FCFID: return "PPCISD::FCFID"; 278 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 279 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 280 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 281 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 282 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 283 case PPCISD::VPERM: return "PPCISD::VPERM"; 284 case PPCISD::Hi: return "PPCISD::Hi"; 285 case PPCISD::Lo: return "PPCISD::Lo"; 286 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 287 case PPCISD::SRL: return "PPCISD::SRL"; 288 case PPCISD::SRA: return "PPCISD::SRA"; 289 case PPCISD::SHL: return "PPCISD::SHL"; 290 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 291 case PPCISD::STD_32: return "PPCISD::STD_32"; 292 case PPCISD::CALL: return "PPCISD::CALL"; 293 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 294 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 295 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 296 case PPCISD::MFCR: return "PPCISD::MFCR"; 297 case PPCISD::VCMP: return "PPCISD::VCMP"; 298 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 299 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 300 } 301} 302 303//===----------------------------------------------------------------------===// 304// Node matching predicates, for use by the tblgen matching code. 305//===----------------------------------------------------------------------===// 306 307/// isFloatingPointZero - Return true if this is 0.0 or -0.0. 308static bool isFloatingPointZero(SDOperand Op) { 309 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 310 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); 311 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) { 312 // Maybe this has already been legalized into the constant pool? 313 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 314 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get())) 315 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); 316 } 317 return false; 318} 319 320/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 321/// true if Op is undef or if it matches the specified value. 322static bool isConstantOrUndef(SDOperand Op, unsigned Val) { 323 return Op.getOpcode() == ISD::UNDEF || 324 cast<ConstantSDNode>(Op)->getValue() == Val; 325} 326 327/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 328/// VPKUHUM instruction. 329bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { 330 if (!isUnary) { 331 for (unsigned i = 0; i != 16; ++i) 332 if (!isConstantOrUndef(N->getOperand(i), i*2+1)) 333 return false; 334 } else { 335 for (unsigned i = 0; i != 8; ++i) 336 if (!isConstantOrUndef(N->getOperand(i), i*2+1) || 337 !isConstantOrUndef(N->getOperand(i+8), i*2+1)) 338 return false; 339 } 340 return true; 341} 342 343/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 344/// VPKUWUM instruction. 345bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { 346 if (!isUnary) { 347 for (unsigned i = 0; i != 16; i += 2) 348 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || 349 !isConstantOrUndef(N->getOperand(i+1), i*2+3)) 350 return false; 351 } else { 352 for (unsigned i = 0; i != 8; i += 2) 353 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || 354 !isConstantOrUndef(N->getOperand(i+1), i*2+3) || 355 !isConstantOrUndef(N->getOperand(i+8), i*2+2) || 356 !isConstantOrUndef(N->getOperand(i+9), i*2+3)) 357 return false; 358 } 359 return true; 360} 361 362/// isVMerge - Common function, used to match vmrg* shuffles. 363/// 364static bool isVMerge(SDNode *N, unsigned UnitSize, 365 unsigned LHSStart, unsigned RHSStart) { 366 assert(N->getOpcode() == ISD::BUILD_VECTOR && 367 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); 368 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 369 "Unsupported merge size!"); 370 371 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 372 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 373 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), 374 LHSStart+j+i*UnitSize) || 375 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), 376 RHSStart+j+i*UnitSize)) 377 return false; 378 } 379 return true; 380} 381 382/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 383/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 384bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { 385 if (!isUnary) 386 return isVMerge(N, UnitSize, 8, 24); 387 return isVMerge(N, UnitSize, 8, 8); 388} 389 390/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 391/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 392bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { 393 if (!isUnary) 394 return isVMerge(N, UnitSize, 0, 16); 395 return isVMerge(N, UnitSize, 0, 0); 396} 397 398 399/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 400/// amount, otherwise return -1. 401int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 402 assert(N->getOpcode() == ISD::BUILD_VECTOR && 403 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); 404 // Find the first non-undef value in the shuffle mask. 405 unsigned i; 406 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) 407 /*search*/; 408 409 if (i == 16) return -1; // all undef. 410 411 // Otherwise, check to see if the rest of the elements are consequtively 412 // numbered from this value. 413 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); 414 if (ShiftAmt < i) return -1; 415 ShiftAmt -= i; 416 417 if (!isUnary) { 418 // Check the rest of the elements to see if they are consequtive. 419 for (++i; i != 16; ++i) 420 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) 421 return -1; 422 } else { 423 // Check the rest of the elements to see if they are consequtive. 424 for (++i; i != 16; ++i) 425 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) 426 return -1; 427 } 428 429 return ShiftAmt; 430} 431 432/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 433/// specifies a splat of a single element that is suitable for input to 434/// VSPLTB/VSPLTH/VSPLTW. 435bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { 436 assert(N->getOpcode() == ISD::BUILD_VECTOR && 437 N->getNumOperands() == 16 && 438 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 439 440 // This is a splat operation if each element of the permute is the same, and 441 // if the value doesn't reference the second vector. 442 unsigned ElementBase = 0; 443 SDOperand Elt = N->getOperand(0); 444 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) 445 ElementBase = EltV->getValue(); 446 else 447 return false; // FIXME: Handle UNDEF elements too! 448 449 if (cast<ConstantSDNode>(Elt)->getValue() >= 16) 450 return false; 451 452 // Check that they are consequtive. 453 for (unsigned i = 1; i != EltSize; ++i) { 454 if (!isa<ConstantSDNode>(N->getOperand(i)) || 455 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) 456 return false; 457 } 458 459 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); 460 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 461 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 462 assert(isa<ConstantSDNode>(N->getOperand(i)) && 463 "Invalid VECTOR_SHUFFLE mask!"); 464 for (unsigned j = 0; j != EltSize; ++j) 465 if (N->getOperand(i+j) != N->getOperand(j)) 466 return false; 467 } 468 469 return true; 470} 471 472/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 473/// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 474unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 475 assert(isSplatShuffleMask(N, EltSize)); 476 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; 477} 478 479/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 480/// by using a vspltis[bhw] instruction of the specified element size, return 481/// the constant being splatted. The ByteSize field indicates the number of 482/// bytes of each element [124] -> [bhw]. 483SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 484 SDOperand OpVal(0, 0); 485 486 // If ByteSize of the splat is bigger than the element size of the 487 // build_vector, then we have a case where we are checking for a splat where 488 // multiple elements of the buildvector are folded together into a single 489 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 490 unsigned EltSize = 16/N->getNumOperands(); 491 if (EltSize < ByteSize) { 492 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 493 SDOperand UniquedVals[4]; 494 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 495 496 // See if all of the elements in the buildvector agree across. 497 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 498 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 499 // If the element isn't a constant, bail fully out. 500 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand(); 501 502 503 if (UniquedVals[i&(Multiple-1)].Val == 0) 504 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 505 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 506 return SDOperand(); // no match. 507 } 508 509 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 510 // either constant or undef values that are identical for each chunk. See 511 // if these chunks can form into a larger vspltis*. 512 513 // Check to see if all of the leading entries are either 0 or -1. If 514 // neither, then this won't fit into the immediate field. 515 bool LeadingZero = true; 516 bool LeadingOnes = true; 517 for (unsigned i = 0; i != Multiple-1; ++i) { 518 if (UniquedVals[i].Val == 0) continue; // Must have been undefs. 519 520 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 521 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 522 } 523 // Finally, check the least significant entry. 524 if (LeadingZero) { 525 if (UniquedVals[Multiple-1].Val == 0) 526 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 527 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue(); 528 if (Val < 16) 529 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 530 } 531 if (LeadingOnes) { 532 if (UniquedVals[Multiple-1].Val == 0) 533 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 534 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended(); 535 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 536 return DAG.getTargetConstant(Val, MVT::i32); 537 } 538 539 return SDOperand(); 540 } 541 542 // Check to see if this buildvec has a single non-undef value in its elements. 543 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 544 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 545 if (OpVal.Val == 0) 546 OpVal = N->getOperand(i); 547 else if (OpVal != N->getOperand(i)) 548 return SDOperand(); 549 } 550 551 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def. 552 553 unsigned ValSizeInBytes = 0; 554 uint64_t Value = 0; 555 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 556 Value = CN->getValue(); 557 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; 558 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 559 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 560 Value = FloatToBits(CN->getValue()); 561 ValSizeInBytes = 4; 562 } 563 564 // If the splat value is larger than the element value, then we can never do 565 // this splat. The only case that we could fit the replicated bits into our 566 // immediate field for would be zero, and we prefer to use vxor for it. 567 if (ValSizeInBytes < ByteSize) return SDOperand(); 568 569 // If the element value is larger than the splat value, cut it in half and 570 // check to see if the two halves are equal. Continue doing this until we 571 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 572 while (ValSizeInBytes > ByteSize) { 573 ValSizeInBytes >>= 1; 574 575 // If the top half equals the bottom half, we're still ok. 576 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 577 (Value & ((1 << (8*ValSizeInBytes))-1))) 578 return SDOperand(); 579 } 580 581 // Properly sign extend the value. 582 int ShAmt = (4-ByteSize)*8; 583 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 584 585 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 586 if (MaskVal == 0) return SDOperand(); 587 588 // Finally, if this value fits in a 5 bit sext field, return it 589 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 590 return DAG.getTargetConstant(MaskVal, MVT::i32); 591 return SDOperand(); 592} 593 594//===----------------------------------------------------------------------===// 595// LowerOperation implementation 596//===----------------------------------------------------------------------===// 597 598static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { 599 MVT::ValueType PtrVT = Op.getValueType(); 600 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 601 Constant *C = CP->get(); 602 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); 603 SDOperand Zero = DAG.getConstant(0, PtrVT); 604 605 const TargetMachine &TM = DAG.getTarget(); 606 607 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); 608 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); 609 610 // If this is a non-darwin platform, we don't support non-static relo models 611 // yet. 612 if (TM.getRelocationModel() == Reloc::Static || 613 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 614 // Generate non-pic code that has direct accesses to the constant pool. 615 // The address of the global is just (hi(&g)+lo(&g)). 616 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 617 } 618 619 if (TM.getRelocationModel() == Reloc::PIC) { 620 // With PIC, the first instruction is actually "GR+hi(&G)". 621 Hi = DAG.getNode(ISD::ADD, PtrVT, 622 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); 623 } 624 625 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 626 return Lo; 627} 628 629static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { 630 MVT::ValueType PtrVT = Op.getValueType(); 631 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 632 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 633 SDOperand Zero = DAG.getConstant(0, PtrVT); 634 635 const TargetMachine &TM = DAG.getTarget(); 636 637 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); 638 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); 639 640 // If this is a non-darwin platform, we don't support non-static relo models 641 // yet. 642 if (TM.getRelocationModel() == Reloc::Static || 643 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 644 // Generate non-pic code that has direct accesses to the constant pool. 645 // The address of the global is just (hi(&g)+lo(&g)). 646 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 647 } 648 649 if (TM.getRelocationModel() == Reloc::PIC) { 650 // With PIC, the first instruction is actually "GR+hi(&G)". 651 Hi = DAG.getNode(ISD::ADD, PtrVT, 652 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi); 653 } 654 655 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 656 return Lo; 657} 658 659static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { 660 MVT::ValueType PtrVT = Op.getValueType(); 661 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 662 GlobalValue *GV = GSDN->getGlobal(); 663 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); 664 SDOperand Zero = DAG.getConstant(0, PtrVT); 665 666 const TargetMachine &TM = DAG.getTarget(); 667 668 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); 669 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); 670 671 // If this is a non-darwin platform, we don't support non-static relo models 672 // yet. 673 if (TM.getRelocationModel() == Reloc::Static || 674 !TM.getSubtarget<PPCSubtarget>().isDarwin()) { 675 // Generate non-pic code that has direct accesses to globals. 676 // The address of the global is just (hi(&g)+lo(&g)). 677 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 678 } 679 680 if (TM.getRelocationModel() == Reloc::PIC) { 681 // With PIC, the first instruction is actually "GR+hi(&G)". 682 Hi = DAG.getNode(ISD::ADD, PtrVT, 683 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); 684 } 685 686 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); 687 688 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() && 689 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode())) 690 return Lo; 691 692 // If the global is weak or external, we have to go through the lazy 693 // resolution stub. 694 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, DAG.getSrcValue(0)); 695} 696 697static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) { 698 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 699 700 // If we're comparing for equality to zero, expose the fact that this is 701 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 702 // fold the new nodes. 703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 704 if (C->isNullValue() && CC == ISD::SETEQ) { 705 MVT::ValueType VT = Op.getOperand(0).getValueType(); 706 SDOperand Zext = Op.getOperand(0); 707 if (VT < MVT::i32) { 708 VT = MVT::i32; 709 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); 710 } 711 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); 712 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); 713 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, 714 DAG.getConstant(Log2b, MVT::i32)); 715 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); 716 } 717 // Leave comparisons against 0 and -1 alone for now, since they're usually 718 // optimized. FIXME: revisit this when we can custom lower all setcc 719 // optimizations. 720 if (C->isAllOnesValue() || C->isNullValue()) 721 return SDOperand(); 722 } 723 724 // If we have an integer seteq/setne, turn it into a compare against zero 725 // by subtracting the rhs from the lhs, which is faster than setting a 726 // condition register, reading it back out, and masking the correct bit. 727 MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); 728 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 729 MVT::ValueType VT = Op.getValueType(); 730 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), 731 Op.getOperand(1)); 732 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); 733 } 734 return SDOperand(); 735} 736 737static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, 738 unsigned VarArgsFrameIndex) { 739 // vastart just stores the address of the VarArgsFrameIndex slot into the 740 // memory location argument. 741 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); 742 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, 743 Op.getOperand(1), Op.getOperand(2)); 744} 745 746static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, 747 int &VarArgsFrameIndex) { 748 // TODO: add description of PPC stack frame format, or at least some docs. 749 // 750 MachineFunction &MF = DAG.getMachineFunction(); 751 MachineFrameInfo *MFI = MF.getFrameInfo(); 752 SSARegMap *RegMap = MF.getSSARegMap(); 753 std::vector<SDOperand> ArgValues; 754 SDOperand Root = Op.getOperand(0); 755 756 unsigned ArgOffset = 24; 757 const unsigned Num_GPR_Regs = 8; 758 const unsigned Num_FPR_Regs = 13; 759 const unsigned Num_VR_Regs = 12; 760 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 761 762 static const unsigned GPR_32[] = { // 32-bit registers. 763 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 764 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 765 }; 766 static const unsigned GPR_64[] = { // 64-bit registers. 767 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 768 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 769 }; 770 static const unsigned FPR[] = { 771 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 772 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 773 }; 774 static const unsigned VR[] = { 775 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 776 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 777 }; 778 779 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 780 bool isPPC64 = PtrVT == MVT::i64; 781 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 782 783 // Add DAG nodes to load the arguments or copy them out of registers. On 784 // entry to a function on PPC, the arguments start at offset 24, although the 785 // first ones are often in registers. 786 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { 787 SDOperand ArgVal; 788 bool needsLoad = false; 789 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); 790 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; 791 792 unsigned CurArgOffset = ArgOffset; 793 switch (ObjectVT) { 794 default: assert(0 && "Unhandled argument type!"); 795 case MVT::i32: 796 // All int arguments reserve stack space. 797 ArgOffset += isPPC64 ? 8 : 4; 798 799 if (GPR_idx != Num_GPR_Regs) { 800 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); 801 MF.addLiveIn(GPR[GPR_idx], VReg); 802 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); 803 ++GPR_idx; 804 } else { 805 needsLoad = true; 806 } 807 break; 808 case MVT::i64: // PPC64 809 // All int arguments reserve stack space. 810 ArgOffset += 8; 811 812 if (GPR_idx != Num_GPR_Regs) { 813 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass); 814 MF.addLiveIn(GPR[GPR_idx], VReg); 815 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); 816 ++GPR_idx; 817 } else { 818 needsLoad = true; 819 } 820 break; 821 case MVT::f32: 822 case MVT::f64: 823 // All FP arguments reserve stack space. 824 ArgOffset += ObjSize; 825 826 // Every 4 bytes of argument space consumes one of the GPRs available for 827 // argument passing. 828 if (GPR_idx != Num_GPR_Regs) { 829 ++GPR_idx; 830 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs) 831 ++GPR_idx; 832 } 833 if (FPR_idx != Num_FPR_Regs) { 834 unsigned VReg; 835 if (ObjectVT == MVT::f32) 836 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass); 837 else 838 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass); 839 MF.addLiveIn(FPR[FPR_idx], VReg); 840 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); 841 ++FPR_idx; 842 } else { 843 needsLoad = true; 844 } 845 break; 846 case MVT::v4f32: 847 case MVT::v4i32: 848 case MVT::v8i16: 849 case MVT::v16i8: 850 // Note that vector arguments in registers don't reserve stack space. 851 if (VR_idx != Num_VR_Regs) { 852 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass); 853 MF.addLiveIn(VR[VR_idx], VReg); 854 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); 855 ++VR_idx; 856 } else { 857 // This should be simple, but requires getting 16-byte aligned stack 858 // values. 859 assert(0 && "Loading VR argument not implemented yet!"); 860 needsLoad = true; 861 } 862 break; 863 } 864 865 // We need to load the argument to a virtual register if we determined above 866 // that we ran out of physical registers of the appropriate type 867 if (needsLoad) { 868 // If the argument is actually used, emit a load from the right stack 869 // slot. 870 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { 871 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset); 872 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); 873 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, 874 DAG.getSrcValue(NULL)); 875 } else { 876 // Don't emit a dead load. 877 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT); 878 } 879 } 880 881 ArgValues.push_back(ArgVal); 882 } 883 884 // If the function takes variable number of arguments, make a frame index for 885 // the start of the first vararg value... for expansion of llvm.va_start. 886 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 887 if (isVarArg) { 888 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, 889 ArgOffset); 890 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); 891 // If this function is vararg, store any remaining integer argument regs 892 // to their spots on the stack so that they may be loaded by deferencing the 893 // result of va_next. 894 std::vector<SDOperand> MemOps; 895 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 896 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); 897 MF.addLiveIn(GPR[GPR_idx], VReg); 898 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); 899 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), 900 Val, FIN, DAG.getSrcValue(NULL)); 901 MemOps.push_back(Store); 902 // Increment the address by four for the next argument to store 903 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); 904 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); 905 } 906 if (!MemOps.empty()) 907 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps); 908 } 909 910 ArgValues.push_back(Root); 911 912 // Return the new list of results. 913 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(), 914 Op.Val->value_end()); 915 return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues); 916} 917 918/// isCallCompatibleAddress - Return the immediate to use if the specified 919/// 32-bit value is representable in the immediate field of a BxA instruction. 920static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) { 921 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 922 if (!C) return 0; 923 924 int Addr = C->getValue(); 925 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 926 (Addr << 6 >> 6) != Addr) 927 return 0; // Top 6 bits have to be sext of immediate. 928 929 return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val; 930} 931 932 933static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) { 934 SDOperand Chain = Op.getOperand(0); 935 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 936 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 937 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; 938 SDOperand Callee = Op.getOperand(4); 939 unsigned NumOps = (Op.getNumOperands() - 5) / 2; 940 941 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 942 bool isPPC64 = PtrVT == MVT::i64; 943 unsigned PtrByteSize = isPPC64 ? 8 : 4; 944 945 946 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in 947 // SelectExpr to use to put the arguments in the appropriate registers. 948 std::vector<SDOperand> args_to_use; 949 950 // Count how many bytes are to be pushed on the stack, including the linkage 951 // area, and parameter passing area. We start with 24/48 bytes, which is 952 // prereserved space for [SP][CR][LR][3 x unused]. 953 unsigned NumBytes = 6*PtrByteSize; 954 955 // Add up all the space actually used. 956 for (unsigned i = 0; i != NumOps; ++i) 957 NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8; 958 959 // The prolog code of the callee may store up to 8 GPR argument registers to 960 // the stack, allowing va_start to index over them in memory if its varargs. 961 // Because we cannot tell if this is needed on the caller side, we have to 962 // conservatively assume that it is needed. As such, make sure we have at 963 // least enough stack space for the caller to store the 8 GPRs. 964 if (NumBytes < 6*PtrByteSize+8*PtrByteSize) 965 NumBytes = 6*PtrByteSize+8*PtrByteSize; 966 967 // Adjust the stack pointer for the new arguments... 968 // These operations are automatically eliminated by the prolog/epilog pass 969 Chain = DAG.getCALLSEQ_START(Chain, 970 DAG.getConstant(NumBytes, PtrVT)); 971 972 // Set up a copy of the stack pointer for use loading and storing any 973 // arguments that may not fit in the registers available for argument 974 // passing. 975 SDOperand StackPtr; 976 if (isPPC64) 977 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 978 else 979 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 980 981 // Figure out which arguments are going to go in registers, and which in 982 // memory. Also, if this is a vararg function, floating point operations 983 // must be stored to our stack, and loaded into integer regs as well, if 984 // any integer regs are available for argument passing. 985 unsigned ArgOffset = 6*PtrByteSize; 986 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 987 static const unsigned GPR_32[] = { // 32-bit registers. 988 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 989 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 990 }; 991 static const unsigned GPR_64[] = { // 64-bit registers. 992 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 993 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 994 }; 995 static const unsigned FPR[] = { 996 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 997 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 998 }; 999 static const unsigned VR[] = { 1000 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1001 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1002 }; 1003 const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]); 1004 const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]); 1005 const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]); 1006 1007 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1008 1009 std::vector<std::pair<unsigned, SDOperand> > RegsToPass; 1010 std::vector<SDOperand> MemOpChains; 1011 for (unsigned i = 0; i != NumOps; ++i) { 1012 SDOperand Arg = Op.getOperand(5+2*i); 1013 1014 // PtrOff will be used to store the current argument to the stack if a 1015 // register cannot be found for it. 1016 SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 1017 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); 1018 1019 // On PPC64, promote integers to 64-bit values. 1020 if (isPPC64 && Arg.getValueType() == MVT::i32) { 1021 unsigned ExtOp = ISD::ZERO_EXTEND; 1022 if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue()) 1023 ExtOp = ISD::SIGN_EXTEND; 1024 Arg = DAG.getNode(ExtOp, MVT::i64, Arg); 1025 } 1026 1027 switch (Arg.getValueType()) { 1028 default: assert(0 && "Unexpected ValueType for argument!"); 1029 case MVT::i32: 1030 case MVT::i64: 1031 if (GPR_idx != NumGPRs) { 1032 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 1033 } else { 1034 MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, 1035 Arg, PtrOff, DAG.getSrcValue(NULL))); 1036 } 1037 ArgOffset += PtrByteSize; 1038 break; 1039 case MVT::f32: 1040 case MVT::f64: 1041 if (FPR_idx != NumFPRs) { 1042 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 1043 1044 if (isVarArg) { 1045 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, 1046 Arg, PtrOff, 1047 DAG.getSrcValue(NULL)); 1048 MemOpChains.push_back(Store); 1049 1050 // Float varargs are always shadowed in available integer registers 1051 if (GPR_idx != NumGPRs) { 1052 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, 1053 DAG.getSrcValue(NULL)); 1054 MemOpChains.push_back(Load.getValue(1)); 1055 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 1056 } 1057 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) { 1058 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 1059 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour); 1060 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, 1061 DAG.getSrcValue(NULL)); 1062 MemOpChains.push_back(Load.getValue(1)); 1063 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 1064 } 1065 } else { 1066 // If we have any FPRs remaining, we may also have GPRs remaining. 1067 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 1068 // GPRs. 1069 if (GPR_idx != NumGPRs) 1070 ++GPR_idx; 1071 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) 1072 ++GPR_idx; 1073 } 1074 } else { 1075 MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, 1076 Arg, PtrOff, DAG.getSrcValue(NULL))); 1077 } 1078 if (isPPC64) 1079 ArgOffset += 8; 1080 else 1081 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 1082 break; 1083 case MVT::v4f32: 1084 case MVT::v4i32: 1085 case MVT::v8i16: 1086 case MVT::v16i8: 1087 assert(!isVarArg && "Don't support passing vectors to varargs yet!"); 1088 assert(VR_idx != NumVRs && 1089 "Don't support passing more than 12 vector args yet!"); 1090 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 1091 break; 1092 } 1093 } 1094 if (!MemOpChains.empty()) 1095 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains); 1096 1097 // Build a sequence of copy-to-reg nodes chained together with token chain 1098 // and flag operands which copy the outgoing args into the appropriate regs. 1099 SDOperand InFlag; 1100 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1101 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1102 InFlag); 1103 InFlag = Chain.getValue(1); 1104 } 1105 1106 std::vector<MVT::ValueType> NodeTys; 1107 NodeTys.push_back(MVT::Other); // Returns a chain 1108 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. 1109 1110 std::vector<SDOperand> Ops; 1111 unsigned CallOpc = PPCISD::CALL; 1112 1113 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 1114 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 1115 // node so that legalize doesn't hack it. 1116 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1117 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); 1118 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 1119 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); 1120 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 1121 // If this is an absolute destination address, use the munged value. 1122 Callee = SDOperand(Dest, 0); 1123 else { 1124 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 1125 // to do the call, we can't use PPCISD::CALL. 1126 Ops.push_back(Chain); 1127 Ops.push_back(Callee); 1128 1129 if (InFlag.Val) 1130 Ops.push_back(InFlag); 1131 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, Ops); 1132 InFlag = Chain.getValue(1); 1133 1134 // Copy the callee address into R12 on darwin. 1135 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag); 1136 InFlag = Chain.getValue(1); 1137 1138 NodeTys.clear(); 1139 NodeTys.push_back(MVT::Other); 1140 NodeTys.push_back(MVT::Flag); 1141 Ops.clear(); 1142 Ops.push_back(Chain); 1143 CallOpc = PPCISD::BCTRL; 1144 Callee.Val = 0; 1145 } 1146 1147 // If this is a direct call, pass the chain and the callee. 1148 if (Callee.Val) { 1149 Ops.push_back(Chain); 1150 Ops.push_back(Callee); 1151 } 1152 1153 // Add argument registers to the end of the list so that they are known live 1154 // into the call. 1155 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1156 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1157 RegsToPass[i].second.getValueType())); 1158 1159 if (InFlag.Val) 1160 Ops.push_back(InFlag); 1161 Chain = DAG.getNode(CallOpc, NodeTys, Ops); 1162 InFlag = Chain.getValue(1); 1163 1164 std::vector<SDOperand> ResultVals; 1165 NodeTys.clear(); 1166 1167 // If the call has results, copy the values out of the ret val registers. 1168 switch (Op.Val->getValueType(0)) { 1169 default: assert(0 && "Unexpected ret value!"); 1170 case MVT::Other: break; 1171 case MVT::i32: 1172 if (Op.Val->getValueType(1) == MVT::i32) { 1173 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1); 1174 ResultVals.push_back(Chain.getValue(0)); 1175 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, 1176 Chain.getValue(2)).getValue(1); 1177 ResultVals.push_back(Chain.getValue(0)); 1178 NodeTys.push_back(MVT::i32); 1179 } else { 1180 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1); 1181 ResultVals.push_back(Chain.getValue(0)); 1182 } 1183 NodeTys.push_back(MVT::i32); 1184 break; 1185 case MVT::i64: 1186 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1); 1187 ResultVals.push_back(Chain.getValue(0)); 1188 NodeTys.push_back(MVT::i64); 1189 break; 1190 case MVT::f32: 1191 case MVT::f64: 1192 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0), 1193 InFlag).getValue(1); 1194 ResultVals.push_back(Chain.getValue(0)); 1195 NodeTys.push_back(Op.Val->getValueType(0)); 1196 break; 1197 case MVT::v4f32: 1198 case MVT::v4i32: 1199 case MVT::v8i16: 1200 case MVT::v16i8: 1201 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0), 1202 InFlag).getValue(1); 1203 ResultVals.push_back(Chain.getValue(0)); 1204 NodeTys.push_back(Op.Val->getValueType(0)); 1205 break; 1206 } 1207 1208 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, 1209 DAG.getConstant(NumBytes, PtrVT)); 1210 NodeTys.push_back(MVT::Other); 1211 1212 // If the function returns void, just return the chain. 1213 if (ResultVals.empty()) 1214 return Chain; 1215 1216 // Otherwise, merge everything together with a MERGE_VALUES node. 1217 ResultVals.push_back(Chain); 1218 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals); 1219 return Res.getValue(Op.ResNo); 1220} 1221 1222static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { 1223 SDOperand Copy; 1224 switch(Op.getNumOperands()) { 1225 default: 1226 assert(0 && "Do not know how to return this many arguments!"); 1227 abort(); 1228 case 1: 1229 return SDOperand(); // ret void is legal 1230 case 3: { 1231 MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); 1232 unsigned ArgReg; 1233 if (ArgVT == MVT::i32) { 1234 ArgReg = PPC::R3; 1235 } else if (ArgVT == MVT::i64) { 1236 ArgReg = PPC::X3; 1237 } else if (MVT::isFloatingPoint(ArgVT)) { 1238 ArgReg = PPC::F1; 1239 } else { 1240 assert(MVT::isVector(ArgVT)); 1241 ArgReg = PPC::V2; 1242 } 1243 1244 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1), 1245 SDOperand()); 1246 1247 // If we haven't noted the R3/F1 are live out, do so now. 1248 if (DAG.getMachineFunction().liveout_empty()) 1249 DAG.getMachineFunction().addLiveOut(ArgReg); 1250 break; 1251 } 1252 case 5: 1253 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3), 1254 SDOperand()); 1255 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1)); 1256 // If we haven't noted the R3+R4 are live out, do so now. 1257 if (DAG.getMachineFunction().liveout_empty()) { 1258 DAG.getMachineFunction().addLiveOut(PPC::R3); 1259 DAG.getMachineFunction().addLiveOut(PPC::R4); 1260 } 1261 break; 1262 } 1263 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); 1264} 1265 1266/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 1267/// possible. 1268static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { 1269 // Not FP? Not a fsel. 1270 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || 1271 !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) 1272 return SDOperand(); 1273 1274 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1275 1276 // Cannot handle SETEQ/SETNE. 1277 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); 1278 1279 MVT::ValueType ResVT = Op.getValueType(); 1280 MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); 1281 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); 1282 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3); 1283 1284 // If the RHS of the comparison is a 0.0, we don't need to do the 1285 // subtraction at all. 1286 if (isFloatingPointZero(RHS)) 1287 switch (CC) { 1288 default: break; // SETUO etc aren't handled by fsel. 1289 case ISD::SETULT: 1290 case ISD::SETOLT: 1291 case ISD::SETLT: 1292 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 1293 case ISD::SETUGE: 1294 case ISD::SETOGE: 1295 case ISD::SETGE: 1296 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 1297 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); 1298 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); 1299 case ISD::SETUGT: 1300 case ISD::SETOGT: 1301 case ISD::SETGT: 1302 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 1303 case ISD::SETULE: 1304 case ISD::SETOLE: 1305 case ISD::SETLE: 1306 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 1307 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); 1308 return DAG.getNode(PPCISD::FSEL, ResVT, 1309 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); 1310 } 1311 1312 SDOperand Cmp; 1313 switch (CC) { 1314 default: break; // SETUO etc aren't handled by fsel. 1315 case ISD::SETULT: 1316 case ISD::SETOLT: 1317 case ISD::SETLT: 1318 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); 1319 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 1320 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 1321 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); 1322 case ISD::SETUGE: 1323 case ISD::SETOGE: 1324 case ISD::SETGE: 1325 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); 1326 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 1327 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 1328 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); 1329 case ISD::SETUGT: 1330 case ISD::SETOGT: 1331 case ISD::SETGT: 1332 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); 1333 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 1334 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 1335 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); 1336 case ISD::SETULE: 1337 case ISD::SETOLE: 1338 case ISD::SETLE: 1339 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); 1340 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 1341 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); 1342 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); 1343 } 1344 return SDOperand(); 1345} 1346 1347static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { 1348 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); 1349 SDOperand Src = Op.getOperand(0); 1350 if (Src.getValueType() == MVT::f32) 1351 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); 1352 1353 SDOperand Tmp; 1354 switch (Op.getValueType()) { 1355 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); 1356 case MVT::i32: 1357 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); 1358 break; 1359 case MVT::i64: 1360 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); 1361 break; 1362 } 1363 1364 // Convert the FP value to an int value through memory. 1365 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp); 1366 if (Op.getValueType() == MVT::i32) 1367 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits); 1368 return Bits; 1369} 1370 1371static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { 1372 if (Op.getOperand(0).getValueType() == MVT::i64) { 1373 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); 1374 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); 1375 if (Op.getValueType() == MVT::f32) 1376 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); 1377 return FP; 1378 } 1379 1380 assert(Op.getOperand(0).getValueType() == MVT::i32 && 1381 "Unhandled SINT_TO_FP type in custom expander!"); 1382 // Since we only generate this in 64-bit mode, we can take advantage of 1383 // 64-bit registers. In particular, sign extend the input value into the 1384 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 1385 // then lfd it and fcfid it. 1386 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 1387 int FrameIdx = FrameInfo->CreateStackObject(8, 8); 1388 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); 1389 1390 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, 1391 Op.getOperand(0)); 1392 1393 // STD the extended value into the stack slot. 1394 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, 1395 DAG.getEntryNode(), Ext64, FIdx, 1396 DAG.getSrcValue(NULL)); 1397 // Load the value as a double. 1398 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL)); 1399 1400 // FCFID it and return it. 1401 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); 1402 if (Op.getValueType() == MVT::f32) 1403 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); 1404 return FP; 1405} 1406 1407static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG, 1408 MVT::ValueType PtrVT) { 1409 assert(Op.getValueType() == MVT::i64 && 1410 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); 1411 // The generic code does a fine job expanding shift by a constant. 1412 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); 1413 1414 // Otherwise, expand into a bunch of logical ops. Note that these ops 1415 // depend on the PPC behavior for oversized shift amounts. 1416 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1417 DAG.getConstant(0, PtrVT)); 1418 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1419 DAG.getConstant(1, PtrVT)); 1420 SDOperand Amt = Op.getOperand(1); 1421 1422 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, 1423 DAG.getConstant(32, MVT::i32), Amt); 1424 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt); 1425 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1); 1426 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); 1427 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, 1428 DAG.getConstant(-32U, MVT::i32)); 1429 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5); 1430 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); 1431 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt); 1432 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); 1433} 1434 1435static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG, 1436 MVT::ValueType PtrVT) { 1437 assert(Op.getValueType() == MVT::i64 && 1438 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); 1439 // The generic code does a fine job expanding shift by a constant. 1440 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); 1441 1442 // Otherwise, expand into a bunch of logical ops. Note that these ops 1443 // depend on the PPC behavior for oversized shift amounts. 1444 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1445 DAG.getConstant(0, PtrVT)); 1446 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1447 DAG.getConstant(1, PtrVT)); 1448 SDOperand Amt = Op.getOperand(1); 1449 1450 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, 1451 DAG.getConstant(32, MVT::i32), Amt); 1452 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); 1453 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); 1454 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); 1455 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, 1456 DAG.getConstant(-32U, MVT::i32)); 1457 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5); 1458 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); 1459 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt); 1460 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); 1461} 1462 1463static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG, 1464 MVT::ValueType PtrVT) { 1465 assert(Op.getValueType() == MVT::i64 && 1466 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!"); 1467 // The generic code does a fine job expanding shift by a constant. 1468 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); 1469 1470 // Otherwise, expand into a bunch of logical ops, followed by a select_cc. 1471 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1472 DAG.getConstant(0, PtrVT)); 1473 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), 1474 DAG.getConstant(1, PtrVT)); 1475 SDOperand Amt = Op.getOperand(1); 1476 1477 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, 1478 DAG.getConstant(32, MVT::i32), Amt); 1479 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); 1480 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); 1481 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); 1482 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, 1483 DAG.getConstant(-32U, MVT::i32)); 1484 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5); 1485 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt); 1486 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32), 1487 Tmp4, Tmp6, ISD::SETLE); 1488 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); 1489} 1490 1491//===----------------------------------------------------------------------===// 1492// Vector related lowering. 1493// 1494 1495// If this is a vector of constants or undefs, get the bits. A bit in 1496// UndefBits is set if the corresponding element of the vector is an 1497// ISD::UNDEF value. For undefs, the corresponding VectorBits values are 1498// zero. Return true if this is not an array of constants, false if it is. 1499// 1500static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], 1501 uint64_t UndefBits[2]) { 1502 // Start with zero'd results. 1503 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; 1504 1505 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); 1506 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 1507 SDOperand OpVal = BV->getOperand(i); 1508 1509 unsigned PartNo = i >= e/2; // In the upper 128 bits? 1510 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t. 1511 1512 uint64_t EltBits = 0; 1513 if (OpVal.getOpcode() == ISD::UNDEF) { 1514 uint64_t EltUndefBits = ~0U >> (32-EltBitSize); 1515 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); 1516 continue; 1517 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1518 EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); 1519 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1520 assert(CN->getValueType(0) == MVT::f32 && 1521 "Only one legal FP vector type!"); 1522 EltBits = FloatToBits(CN->getValue()); 1523 } else { 1524 // Nonconstant element. 1525 return true; 1526 } 1527 1528 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); 1529 } 1530 1531 //printf("%llx %llx %llx %llx\n", 1532 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); 1533 return false; 1534} 1535 1536// If this is a splat (repetition) of a value across the whole vector, return 1537// the smallest size that splats it. For example, "0x01010101010101..." is a 1538// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and 1539// SplatSize = 1 byte. 1540static bool isConstantSplat(const uint64_t Bits128[2], 1541 const uint64_t Undef128[2], 1542 unsigned &SplatBits, unsigned &SplatUndef, 1543 unsigned &SplatSize) { 1544 1545 // Don't let undefs prevent splats from matching. See if the top 64-bits are 1546 // the same as the lower 64-bits, ignoring undefs. 1547 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) 1548 return false; // Can't be a splat if two pieces don't match. 1549 1550 uint64_t Bits64 = Bits128[0] | Bits128[1]; 1551 uint64_t Undef64 = Undef128[0] & Undef128[1]; 1552 1553 // Check that the top 32-bits are the same as the lower 32-bits, ignoring 1554 // undefs. 1555 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) 1556 return false; // Can't be a splat if two pieces don't match. 1557 1558 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32); 1559 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); 1560 1561 // If the top 16-bits are different than the lower 16-bits, ignoring 1562 // undefs, we have an i32 splat. 1563 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { 1564 SplatBits = Bits32; 1565 SplatUndef = Undef32; 1566 SplatSize = 4; 1567 return true; 1568 } 1569 1570 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16); 1571 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); 1572 1573 // If the top 8-bits are different than the lower 8-bits, ignoring 1574 // undefs, we have an i16 splat. 1575 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { 1576 SplatBits = Bits16; 1577 SplatUndef = Undef16; 1578 SplatSize = 2; 1579 return true; 1580 } 1581 1582 // Otherwise, we have an 8-bit splat. 1583 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8); 1584 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); 1585 SplatSize = 1; 1586 return true; 1587} 1588 1589/// BuildSplatI - Build a canonical splati of Val with an element size of 1590/// SplatSize. Cast the result to VT. 1591static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, 1592 SelectionDAG &DAG) { 1593 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 1594 1595 // Force vspltis[hw] -1 to vspltisb -1. 1596 if (Val == -1) SplatSize = 1; 1597 1598 static const MVT::ValueType VTys[] = { // canonical VT to use for each size. 1599 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 1600 }; 1601 MVT::ValueType CanonicalVT = VTys[SplatSize-1]; 1602 1603 // Build a canonical splat for this value. 1604 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT)); 1605 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt); 1606 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops); 1607 return DAG.getNode(ISD::BIT_CONVERT, VT, Res); 1608} 1609 1610/// BuildIntrinsicOp - Return a binary operator intrinsic node with the 1611/// specified intrinsic ID. 1612static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS, 1613 SelectionDAG &DAG, 1614 MVT::ValueType DestVT = MVT::Other) { 1615 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 1616 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, 1617 DAG.getConstant(IID, MVT::i32), LHS, RHS); 1618} 1619 1620/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 1621/// specified intrinsic ID. 1622static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1, 1623 SDOperand Op2, SelectionDAG &DAG, 1624 MVT::ValueType DestVT = MVT::Other) { 1625 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 1626 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, 1627 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 1628} 1629 1630 1631/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 1632/// amount. The result has the specified value type. 1633static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, 1634 MVT::ValueType VT, SelectionDAG &DAG) { 1635 // Force LHS/RHS to be the right type. 1636 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); 1637 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); 1638 1639 std::vector<SDOperand> Ops; 1640 for (unsigned i = 0; i != 16; ++i) 1641 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32)); 1642 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, 1643 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops)); 1644 return DAG.getNode(ISD::BIT_CONVERT, VT, T); 1645} 1646 1647// If this is a case we can't handle, return null and let the default 1648// expansion code take care of it. If we CAN select this case, and if it 1649// selects to a single instruction, return Op. Otherwise, if we can codegen 1650// this case more efficiently than a constant pool load, lower it to the 1651// sequence of ops that should be used. 1652static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { 1653 // If this is a vector of constants or undefs, get the bits. A bit in 1654 // UndefBits is set if the corresponding element of the vector is an 1655 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are 1656 // zero. 1657 uint64_t VectorBits[2]; 1658 uint64_t UndefBits[2]; 1659 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) 1660 return SDOperand(); // Not a constant vector. 1661 1662 // If this is a splat (repetition) of a value across the whole vector, return 1663 // the smallest size that splats it. For example, "0x01010101010101..." is a 1664 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and 1665 // SplatSize = 1 byte. 1666 unsigned SplatBits, SplatUndef, SplatSize; 1667 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ 1668 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; 1669 1670 // First, handle single instruction cases. 1671 1672 // All zeros? 1673 if (SplatBits == 0) { 1674 // Canonicalize all zero vectors to be v4i32. 1675 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 1676 SDOperand Z = DAG.getConstant(0, MVT::i32); 1677 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); 1678 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); 1679 } 1680 return Op; 1681 } 1682 1683 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 1684 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); 1685 if (SextVal >= -16 && SextVal <= 15) 1686 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); 1687 1688 1689 // Two instruction sequences. 1690 1691 // If this value is in the range [-32,30] and is even, use: 1692 // tmp = VSPLTI[bhw], result = add tmp, tmp 1693 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 1694 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); 1695 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); 1696 } 1697 1698 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 1699 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 1700 // for fneg/fabs. 1701 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 1702 // Make -1 and vspltisw -1: 1703 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); 1704 1705 // Make the VSLW intrinsic, computing 0x8000_0000. 1706 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 1707 OnesV, DAG); 1708 1709 // xor by OnesV to invert it. 1710 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); 1711 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); 1712 } 1713 1714 // Check to see if this is a wide variety of vsplti*, binop self cases. 1715 unsigned SplatBitSize = SplatSize*8; 1716 static const char SplatCsts[] = { 1717 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 1718 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 1719 }; 1720 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){ 1721 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 1722 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 1723 int i = SplatCsts[idx]; 1724 1725 // Figure out what shift amount will be used by altivec if shifted by i in 1726 // this splat size. 1727 unsigned TypeShiftAmt = i & (SplatBitSize-1); 1728 1729 // vsplti + shl self. 1730 if (SextVal == (i << (int)TypeShiftAmt)) { 1731 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); 1732 static const unsigned IIDs[] = { // Intrinsic to use for each size. 1733 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 1734 Intrinsic::ppc_altivec_vslw 1735 }; 1736 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG); 1737 } 1738 1739 // vsplti + srl self. 1740 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 1741 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); 1742 static const unsigned IIDs[] = { // Intrinsic to use for each size. 1743 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 1744 Intrinsic::ppc_altivec_vsrw 1745 }; 1746 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG); 1747 } 1748 1749 // vsplti + sra self. 1750 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 1751 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); 1752 static const unsigned IIDs[] = { // Intrinsic to use for each size. 1753 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 1754 Intrinsic::ppc_altivec_vsraw 1755 }; 1756 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG); 1757 } 1758 1759 // vsplti + rol self. 1760 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 1761 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 1762 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); 1763 static const unsigned IIDs[] = { // Intrinsic to use for each size. 1764 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 1765 Intrinsic::ppc_altivec_vrlw 1766 }; 1767 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG); 1768 } 1769 1770 // t = vsplti c, result = vsldoi t, t, 1 1771 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { 1772 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 1773 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); 1774 } 1775 // t = vsplti c, result = vsldoi t, t, 2 1776 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { 1777 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 1778 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); 1779 } 1780 // t = vsplti c, result = vsldoi t, t, 3 1781 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { 1782 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); 1783 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); 1784 } 1785 } 1786 1787 // Three instruction sequences. 1788 1789 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 1790 if (SextVal >= 0 && SextVal <= 31) { 1791 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG); 1792 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG); 1793 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS); 1794 } 1795 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 1796 if (SextVal >= -31 && SextVal <= 0) { 1797 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG); 1798 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG); 1799 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS); 1800 } 1801 } 1802 1803 return SDOperand(); 1804} 1805 1806/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 1807/// the specified operations to build the shuffle. 1808static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, 1809 SDOperand RHS, SelectionDAG &DAG) { 1810 unsigned OpNum = (PFEntry >> 26) & 0x0F; 1811 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 1812 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 1813 1814 enum { 1815 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 1816 OP_VMRGHW, 1817 OP_VMRGLW, 1818 OP_VSPLTISW0, 1819 OP_VSPLTISW1, 1820 OP_VSPLTISW2, 1821 OP_VSPLTISW3, 1822 OP_VSLDOI4, 1823 OP_VSLDOI8, 1824 OP_VSLDOI12 1825 }; 1826 1827 if (OpNum == OP_COPY) { 1828 if (LHSID == (1*9+2)*9+3) return LHS; 1829 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 1830 return RHS; 1831 } 1832 1833 SDOperand OpLHS, OpRHS; 1834 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); 1835 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); 1836 1837 unsigned ShufIdxs[16]; 1838 switch (OpNum) { 1839 default: assert(0 && "Unknown i32 permute!"); 1840 case OP_VMRGHW: 1841 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 1842 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 1843 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 1844 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 1845 break; 1846 case OP_VMRGLW: 1847 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 1848 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 1849 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 1850 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 1851 break; 1852 case OP_VSPLTISW0: 1853 for (unsigned i = 0; i != 16; ++i) 1854 ShufIdxs[i] = (i&3)+0; 1855 break; 1856 case OP_VSPLTISW1: 1857 for (unsigned i = 0; i != 16; ++i) 1858 ShufIdxs[i] = (i&3)+4; 1859 break; 1860 case OP_VSPLTISW2: 1861 for (unsigned i = 0; i != 16; ++i) 1862 ShufIdxs[i] = (i&3)+8; 1863 break; 1864 case OP_VSPLTISW3: 1865 for (unsigned i = 0; i != 16; ++i) 1866 ShufIdxs[i] = (i&3)+12; 1867 break; 1868 case OP_VSLDOI4: 1869 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); 1870 case OP_VSLDOI8: 1871 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); 1872 case OP_VSLDOI12: 1873 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); 1874 } 1875 std::vector<SDOperand> Ops; 1876 for (unsigned i = 0; i != 16; ++i) 1877 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32)); 1878 1879 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, 1880 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops)); 1881} 1882 1883/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 1884/// is a shuffle we can handle in a single instruction, return it. Otherwise, 1885/// return the code it can be lowered into. Worst case, it can always be 1886/// lowered into a vperm. 1887static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { 1888 SDOperand V1 = Op.getOperand(0); 1889 SDOperand V2 = Op.getOperand(1); 1890 SDOperand PermMask = Op.getOperand(2); 1891 1892 // Cases that are handled by instructions that take permute immediates 1893 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 1894 // selected by the instruction selector. 1895 if (V2.getOpcode() == ISD::UNDEF) { 1896 if (PPC::isSplatShuffleMask(PermMask.Val, 1) || 1897 PPC::isSplatShuffleMask(PermMask.Val, 2) || 1898 PPC::isSplatShuffleMask(PermMask.Val, 4) || 1899 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || 1900 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || 1901 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || 1902 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || 1903 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || 1904 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || 1905 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || 1906 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || 1907 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { 1908 return Op; 1909 } 1910 } 1911 1912 // Altivec has a variety of "shuffle immediates" that take two vector inputs 1913 // and produce a fixed permutation. If any of these match, do not lower to 1914 // VPERM. 1915 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || 1916 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || 1917 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || 1918 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || 1919 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || 1920 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || 1921 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || 1922 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || 1923 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) 1924 return Op; 1925 1926 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 1927 // perfect shuffle table to emit an optimal matching sequence. 1928 unsigned PFIndexes[4]; 1929 bool isFourElementShuffle = true; 1930 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 1931 unsigned EltNo = 8; // Start out undef. 1932 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 1933 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) 1934 continue; // Undef, ignore it. 1935 1936 unsigned ByteSource = 1937 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue(); 1938 if ((ByteSource & 3) != j) { 1939 isFourElementShuffle = false; 1940 break; 1941 } 1942 1943 if (EltNo == 8) { 1944 EltNo = ByteSource/4; 1945 } else if (EltNo != ByteSource/4) { 1946 isFourElementShuffle = false; 1947 break; 1948 } 1949 } 1950 PFIndexes[i] = EltNo; 1951 } 1952 1953 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 1954 // perfect shuffle vector to determine if it is cost effective to do this as 1955 // discrete instructions, or whether we should use a vperm. 1956 if (isFourElementShuffle) { 1957 // Compute the index in the perfect shuffle table. 1958 unsigned PFTableIndex = 1959 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 1960 1961 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 1962 unsigned Cost = (PFEntry >> 30); 1963 1964 // Determining when to avoid vperm is tricky. Many things affect the cost 1965 // of vperm, particularly how many times the perm mask needs to be computed. 1966 // For example, if the perm mask can be hoisted out of a loop or is already 1967 // used (perhaps because there are multiple permutes with the same shuffle 1968 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 1969 // the loop requires an extra register. 1970 // 1971 // As a compromise, we only emit discrete instructions if the shuffle can be 1972 // generated in 3 or fewer operations. When we have loop information 1973 // available, if this block is within a loop, we should avoid using vperm 1974 // for 3-operation perms and use a constant pool load instead. 1975 if (Cost < 3) 1976 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); 1977 } 1978 1979 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 1980 // vector that will get spilled to the constant pool. 1981 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 1982 1983 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 1984 // that it is in input element units, not in bytes. Convert now. 1985 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType()); 1986 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; 1987 1988 std::vector<SDOperand> ResultMask; 1989 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { 1990 unsigned SrcElt; 1991 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) 1992 SrcElt = 0; 1993 else 1994 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); 1995 1996 for (unsigned j = 0; j != BytesPerElement; ++j) 1997 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 1998 MVT::i8)); 1999 } 2000 2001 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask); 2002 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); 2003} 2004 2005/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 2006/// altivec comparison. If it is, return true and fill in Opc/isDot with 2007/// information about the intrinsic. 2008static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc, 2009 bool &isDot) { 2010 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue(); 2011 CompareOpc = -1; 2012 isDot = false; 2013 switch (IntrinsicID) { 2014 default: return false; 2015 // Comparison predicates. 2016 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 2017 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 2018 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 2019 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 2020 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 2021 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 2022 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 2023 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 2024 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 2025 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 2026 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 2027 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 2028 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 2029 2030 // Normal Comparisons. 2031 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 2032 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 2033 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 2034 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 2035 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 2036 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 2037 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 2038 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 2039 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 2040 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 2041 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 2042 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 2043 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 2044 } 2045 return true; 2046} 2047 2048/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 2049/// lower, do it, otherwise return null. 2050static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { 2051 // If this is a lowered altivec predicate compare, CompareOpc is set to the 2052 // opcode number of the comparison. 2053 int CompareOpc; 2054 bool isDot; 2055 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 2056 return SDOperand(); // Don't custom lower most intrinsics. 2057 2058 // If this is a non-dot comparison, make the VCMP node and we are done. 2059 if (!isDot) { 2060 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), 2061 Op.getOperand(1), Op.getOperand(2), 2062 DAG.getConstant(CompareOpc, MVT::i32)); 2063 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); 2064 } 2065 2066 // Create the PPCISD altivec 'dot' comparison node. 2067 std::vector<SDOperand> Ops; 2068 std::vector<MVT::ValueType> VTs; 2069 Ops.push_back(Op.getOperand(2)); // LHS 2070 Ops.push_back(Op.getOperand(3)); // RHS 2071 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32)); 2072 VTs.push_back(Op.getOperand(2).getValueType()); 2073 VTs.push_back(MVT::Flag); 2074 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops); 2075 2076 // Now that we have the comparison, emit a copy from the CR to a GPR. 2077 // This is flagged to the above dot comparison. 2078 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, 2079 DAG.getRegister(PPC::CR6, MVT::i32), 2080 CompNode.getValue(1)); 2081 2082 // Unpack the result based on how the target uses it. 2083 unsigned BitNo; // Bit # of CR6. 2084 bool InvertBit; // Invert result? 2085 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { 2086 default: // Can't happen, don't crash on invalid number though. 2087 case 0: // Return the value of the EQ bit of CR6. 2088 BitNo = 0; InvertBit = false; 2089 break; 2090 case 1: // Return the inverted value of the EQ bit of CR6. 2091 BitNo = 0; InvertBit = true; 2092 break; 2093 case 2: // Return the value of the LT bit of CR6. 2094 BitNo = 2; InvertBit = false; 2095 break; 2096 case 3: // Return the inverted value of the LT bit of CR6. 2097 BitNo = 2; InvertBit = true; 2098 break; 2099 } 2100 2101 // Shift the bit into the low position. 2102 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, 2103 DAG.getConstant(8-(3-BitNo), MVT::i32)); 2104 // Isolate the bit. 2105 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, 2106 DAG.getConstant(1, MVT::i32)); 2107 2108 // If we are supposed to, toggle the bit. 2109 if (InvertBit) 2110 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, 2111 DAG.getConstant(1, MVT::i32)); 2112 return Flags; 2113} 2114 2115static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { 2116 // Create a stack slot that is 16-byte aligned. 2117 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 2118 int FrameIdx = FrameInfo->CreateStackObject(16, 16); 2119 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); 2120 2121 // Store the input value into Value#0 of the stack slot. 2122 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), 2123 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL)); 2124 // Load it out. 2125 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL)); 2126} 2127 2128static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) { 2129 if (Op.getValueType() == MVT::v4i32) { 2130 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); 2131 2132 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG); 2133 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. 2134 2135 SDOperand RHSSwap = // = vrlw RHS, 16 2136 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); 2137 2138 // Shrinkify inputs to v8i16. 2139 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); 2140 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); 2141 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); 2142 2143 // Low parts multiplied together, generating 32-bit results (we ignore the 2144 // top parts). 2145 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 2146 LHS, RHS, DAG, MVT::v4i32); 2147 2148 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 2149 LHS, RHSSwap, Zero, DAG, MVT::v4i32); 2150 // Shift the high parts up 16 bits. 2151 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); 2152 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); 2153 } else if (Op.getValueType() == MVT::v8i16) { 2154 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); 2155 2156 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); 2157 2158 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 2159 LHS, RHS, Zero, DAG); 2160 } else if (Op.getValueType() == MVT::v16i8) { 2161 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); 2162 2163 // Multiply the even 8-bit parts, producing 16-bit sums. 2164 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 2165 LHS, RHS, DAG, MVT::v8i16); 2166 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); 2167 2168 // Multiply the odd 8-bit parts, producing 16-bit sums. 2169 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 2170 LHS, RHS, DAG, MVT::v8i16); 2171 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); 2172 2173 // Merge the results together. 2174 std::vector<SDOperand> Ops; 2175 for (unsigned i = 0; i != 8; ++i) { 2176 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8)); 2177 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8)); 2178 } 2179 2180 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, 2181 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops)); 2182 } else { 2183 assert(0 && "Unknown mul to lower!"); 2184 abort(); 2185 } 2186} 2187 2188/// LowerOperation - Provide custom lowering hooks for some operations. 2189/// 2190SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { 2191 switch (Op.getOpcode()) { 2192 default: assert(0 && "Wasn't expecting to be able to lower this!"); 2193 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2194 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 2195 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2196 case ISD::SETCC: return LowerSETCC(Op, DAG); 2197 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); 2198 case ISD::FORMAL_ARGUMENTS: 2199 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex); 2200 case ISD::CALL: return LowerCALL(Op, DAG); 2201 case ISD::RET: return LowerRET(Op, DAG); 2202 2203 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 2204 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 2205 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 2206 2207 // Lower 64-bit shifts. 2208 case ISD::SHL: return LowerSHL(Op, DAG, getPointerTy()); 2209 case ISD::SRL: return LowerSRL(Op, DAG, getPointerTy()); 2210 case ISD::SRA: return LowerSRA(Op, DAG, getPointerTy()); 2211 2212 // Vector-related lowering. 2213 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2214 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2215 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2216 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 2217 case ISD::MUL: return LowerMUL(Op, DAG); 2218 } 2219 return SDOperand(); 2220} 2221 2222//===----------------------------------------------------------------------===// 2223// Other Lowering Code 2224//===----------------------------------------------------------------------===// 2225 2226MachineBasicBlock * 2227PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, 2228 MachineBasicBlock *BB) { 2229 assert((MI->getOpcode() == PPC::SELECT_CC_I4 || 2230 MI->getOpcode() == PPC::SELECT_CC_I8 || 2231 MI->getOpcode() == PPC::SELECT_CC_F4 || 2232 MI->getOpcode() == PPC::SELECT_CC_F8 || 2233 MI->getOpcode() == PPC::SELECT_CC_VRRC) && 2234 "Unexpected instr type to insert"); 2235 2236 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 2237 // control-flow pattern. The incoming instruction knows the destination vreg 2238 // to set, the condition code register to branch on, the true/false values to 2239 // select between, and a branch opcode to use. 2240 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2241 ilist<MachineBasicBlock>::iterator It = BB; 2242 ++It; 2243 2244 // thisMBB: 2245 // ... 2246 // TrueVal = ... 2247 // cmpTY ccX, r1, r2 2248 // bCC copy1MBB 2249 // fallthrough --> copy0MBB 2250 MachineBasicBlock *thisMBB = BB; 2251 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); 2252 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); 2253 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2) 2254 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 2255 MachineFunction *F = BB->getParent(); 2256 F->getBasicBlockList().insert(It, copy0MBB); 2257 F->getBasicBlockList().insert(It, sinkMBB); 2258 // Update machine-CFG edges by first adding all successors of the current 2259 // block to the new block which will contain the Phi node for the select. 2260 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 2261 e = BB->succ_end(); i != e; ++i) 2262 sinkMBB->addSuccessor(*i); 2263 // Next, remove all successors of the current block, and add the true 2264 // and fallthrough blocks as its successors. 2265 while(!BB->succ_empty()) 2266 BB->removeSuccessor(BB->succ_begin()); 2267 BB->addSuccessor(copy0MBB); 2268 BB->addSuccessor(sinkMBB); 2269 2270 // copy0MBB: 2271 // %FalseValue = ... 2272 // # fallthrough to sinkMBB 2273 BB = copy0MBB; 2274 2275 // Update machine-CFG edges 2276 BB->addSuccessor(sinkMBB); 2277 2278 // sinkMBB: 2279 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 2280 // ... 2281 BB = sinkMBB; 2282 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg()) 2283 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 2284 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 2285 2286 delete MI; // The pseudo instruction is gone now. 2287 return BB; 2288} 2289 2290//===----------------------------------------------------------------------===// 2291// Target Optimization Hooks 2292//===----------------------------------------------------------------------===// 2293 2294SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, 2295 DAGCombinerInfo &DCI) const { 2296 TargetMachine &TM = getTargetMachine(); 2297 SelectionDAG &DAG = DCI.DAG; 2298 switch (N->getOpcode()) { 2299 default: break; 2300 case ISD::SINT_TO_FP: 2301 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 2302 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 2303 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 2304 // We allow the src/dst to be either f32/f64, but the intermediate 2305 // type must be i64. 2306 if (N->getOperand(0).getValueType() == MVT::i64) { 2307 SDOperand Val = N->getOperand(0).getOperand(0); 2308 if (Val.getValueType() == MVT::f32) { 2309 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); 2310 DCI.AddToWorklist(Val.Val); 2311 } 2312 2313 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); 2314 DCI.AddToWorklist(Val.Val); 2315 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); 2316 DCI.AddToWorklist(Val.Val); 2317 if (N->getValueType(0) == MVT::f32) { 2318 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val); 2319 DCI.AddToWorklist(Val.Val); 2320 } 2321 return Val; 2322 } else if (N->getOperand(0).getValueType() == MVT::i32) { 2323 // If the intermediate type is i32, we can avoid the load/store here 2324 // too. 2325 } 2326 } 2327 } 2328 break; 2329 case ISD::STORE: 2330 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 2331 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 2332 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 2333 N->getOperand(1).getValueType() == MVT::i32) { 2334 SDOperand Val = N->getOperand(1).getOperand(0); 2335 if (Val.getValueType() == MVT::f32) { 2336 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); 2337 DCI.AddToWorklist(Val.Val); 2338 } 2339 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); 2340 DCI.AddToWorklist(Val.Val); 2341 2342 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, 2343 N->getOperand(2), N->getOperand(3)); 2344 DCI.AddToWorklist(Val.Val); 2345 return Val; 2346 } 2347 break; 2348 case PPCISD::VCMP: { 2349 // If a VCMPo node already exists with exactly the same operands as this 2350 // node, use its result instead of this node (VCMPo computes both a CR6 and 2351 // a normal output). 2352 // 2353 if (!N->getOperand(0).hasOneUse() && 2354 !N->getOperand(1).hasOneUse() && 2355 !N->getOperand(2).hasOneUse()) { 2356 2357 // Scan all of the users of the LHS, looking for VCMPo's that match. 2358 SDNode *VCMPoNode = 0; 2359 2360 SDNode *LHSN = N->getOperand(0).Val; 2361 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 2362 UI != E; ++UI) 2363 if ((*UI)->getOpcode() == PPCISD::VCMPo && 2364 (*UI)->getOperand(1) == N->getOperand(1) && 2365 (*UI)->getOperand(2) == N->getOperand(2) && 2366 (*UI)->getOperand(0) == N->getOperand(0)) { 2367 VCMPoNode = *UI; 2368 break; 2369 } 2370 2371 // If there is no VCMPo node, or if the flag value has a single use, don't 2372 // transform this. 2373 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 2374 break; 2375 2376 // Look at the (necessarily single) use of the flag value. If it has a 2377 // chain, this transformation is more complex. Note that multiple things 2378 // could use the value result, which we should ignore. 2379 SDNode *FlagUser = 0; 2380 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 2381 FlagUser == 0; ++UI) { 2382 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 2383 SDNode *User = *UI; 2384 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 2385 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) { 2386 FlagUser = User; 2387 break; 2388 } 2389 } 2390 } 2391 2392 // If the user is a MFCR instruction, we know this is safe. Otherwise we 2393 // give up for right now. 2394 if (FlagUser->getOpcode() == PPCISD::MFCR) 2395 return SDOperand(VCMPoNode, 0); 2396 } 2397 break; 2398 } 2399 case ISD::BR_CC: { 2400 // If this is a branch on an altivec predicate comparison, lower this so 2401 // that we don't have to do a MFCR: instead, branch directly on CR6. This 2402 // lowering is done pre-legalize, because the legalizer lowers the predicate 2403 // compare down to code that is difficult to reassemble. 2404 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 2405 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3); 2406 int CompareOpc; 2407 bool isDot; 2408 2409 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2410 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 2411 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 2412 assert(isDot && "Can't compare against a vector result!"); 2413 2414 // If this is a comparison against something other than 0/1, then we know 2415 // that the condition is never/always true. 2416 unsigned Val = cast<ConstantSDNode>(RHS)->getValue(); 2417 if (Val != 0 && Val != 1) { 2418 if (CC == ISD::SETEQ) // Cond never true, remove branch. 2419 return N->getOperand(0); 2420 // Always !=, turn it into an unconditional branch. 2421 return DAG.getNode(ISD::BR, MVT::Other, 2422 N->getOperand(0), N->getOperand(4)); 2423 } 2424 2425 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 2426 2427 // Create the PPCISD altivec 'dot' comparison node. 2428 std::vector<SDOperand> Ops; 2429 std::vector<MVT::ValueType> VTs; 2430 Ops.push_back(LHS.getOperand(2)); // LHS of compare 2431 Ops.push_back(LHS.getOperand(3)); // RHS of compare 2432 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32)); 2433 VTs.push_back(LHS.getOperand(2).getValueType()); 2434 VTs.push_back(MVT::Flag); 2435 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops); 2436 2437 // Unpack the result based on how the target uses it. 2438 unsigned CompOpc; 2439 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) { 2440 default: // Can't happen, don't crash on invalid number though. 2441 case 0: // Branch on the value of the EQ bit of CR6. 2442 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE; 2443 break; 2444 case 1: // Branch on the inverted value of the EQ bit of CR6. 2445 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ; 2446 break; 2447 case 2: // Branch on the value of the LT bit of CR6. 2448 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE; 2449 break; 2450 case 3: // Branch on the inverted value of the LT bit of CR6. 2451 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT; 2452 break; 2453 } 2454 2455 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), 2456 DAG.getRegister(PPC::CR6, MVT::i32), 2457 DAG.getConstant(CompOpc, MVT::i32), 2458 N->getOperand(4), CompNode.getValue(1)); 2459 } 2460 break; 2461 } 2462 } 2463 2464 return SDOperand(); 2465} 2466 2467//===----------------------------------------------------------------------===// 2468// Inline Assembly Support 2469//===----------------------------------------------------------------------===// 2470 2471void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 2472 uint64_t Mask, 2473 uint64_t &KnownZero, 2474 uint64_t &KnownOne, 2475 unsigned Depth) const { 2476 KnownZero = 0; 2477 KnownOne = 0; 2478 switch (Op.getOpcode()) { 2479 default: break; 2480 case ISD::INTRINSIC_WO_CHAIN: { 2481 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { 2482 default: break; 2483 case Intrinsic::ppc_altivec_vcmpbfp_p: 2484 case Intrinsic::ppc_altivec_vcmpeqfp_p: 2485 case Intrinsic::ppc_altivec_vcmpequb_p: 2486 case Intrinsic::ppc_altivec_vcmpequh_p: 2487 case Intrinsic::ppc_altivec_vcmpequw_p: 2488 case Intrinsic::ppc_altivec_vcmpgefp_p: 2489 case Intrinsic::ppc_altivec_vcmpgtfp_p: 2490 case Intrinsic::ppc_altivec_vcmpgtsb_p: 2491 case Intrinsic::ppc_altivec_vcmpgtsh_p: 2492 case Intrinsic::ppc_altivec_vcmpgtsw_p: 2493 case Intrinsic::ppc_altivec_vcmpgtub_p: 2494 case Intrinsic::ppc_altivec_vcmpgtuh_p: 2495 case Intrinsic::ppc_altivec_vcmpgtuw_p: 2496 KnownZero = ~1U; // All bits but the low one are known to be zero. 2497 break; 2498 } 2499 } 2500 } 2501} 2502 2503 2504/// getConstraintType - Given a constraint letter, return the type of 2505/// constraint it is for this target. 2506PPCTargetLowering::ConstraintType 2507PPCTargetLowering::getConstraintType(char ConstraintLetter) const { 2508 switch (ConstraintLetter) { 2509 default: break; 2510 case 'b': 2511 case 'r': 2512 case 'f': 2513 case 'v': 2514 case 'y': 2515 return C_RegisterClass; 2516 } 2517 return TargetLowering::getConstraintType(ConstraintLetter); 2518} 2519 2520 2521std::vector<unsigned> PPCTargetLowering:: 2522getRegClassForInlineAsmConstraint(const std::string &Constraint, 2523 MVT::ValueType VT) const { 2524 if (Constraint.size() == 1) { 2525 switch (Constraint[0]) { // GCC RS6000 Constraint Letters 2526 default: break; // Unknown constriant letter 2527 case 'b': 2528 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 , 2529 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , 2530 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 2531 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 2532 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 2533 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 2534 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 2535 PPC::R28, PPC::R29, PPC::R30, PPC::R31, 2536 0); 2537 case 'r': 2538 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 , 2539 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , 2540 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 2541 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 2542 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 2543 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 2544 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 2545 PPC::R28, PPC::R29, PPC::R30, PPC::R31, 2546 0); 2547 case 'f': 2548 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 , 2549 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 , 2550 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, 2551 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 2552 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 2553 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 2554 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 2555 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 2556 0); 2557 case 'v': 2558 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , 2559 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , 2560 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, 2561 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 2562 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 2563 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 2564 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 2565 PPC::V28, PPC::V29, PPC::V30, PPC::V31, 2566 0); 2567 case 'y': 2568 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 2569 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7, 2570 0); 2571 } 2572 } 2573 2574 return std::vector<unsigned>(); 2575} 2576 2577// isOperandValidForConstraint 2578bool PPCTargetLowering:: 2579isOperandValidForConstraint(SDOperand Op, char Letter) { 2580 switch (Letter) { 2581 default: break; 2582 case 'I': 2583 case 'J': 2584 case 'K': 2585 case 'L': 2586 case 'M': 2587 case 'N': 2588 case 'O': 2589 case 'P': { 2590 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate. 2591 unsigned Value = cast<ConstantSDNode>(Op)->getValue(); 2592 switch (Letter) { 2593 default: assert(0 && "Unknown constraint letter!"); 2594 case 'I': // "I" is a signed 16-bit constant. 2595 return (short)Value == (int)Value; 2596 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 2597 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 2598 return (short)Value == 0; 2599 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 2600 return (Value >> 16) == 0; 2601 case 'M': // "M" is a constant that is greater than 31. 2602 return Value > 31; 2603 case 'N': // "N" is a positive constant that is an exact power of two. 2604 return (int)Value > 0 && isPowerOf2_32(Value); 2605 case 'O': // "O" is the constant zero. 2606 return Value == 0; 2607 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 2608 return (short)-Value == (int)-Value; 2609 } 2610 break; 2611 } 2612 } 2613 2614 // Handle standard constraint letters. 2615 return TargetLowering::isOperandValidForConstraint(Op, Letter); 2616} 2617 2618/// isLegalAddressImmediate - Return true if the integer value can be used 2619/// as the offset of the target addressing mode. 2620bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const { 2621 // PPC allows a sign-extended 16-bit immediate field. 2622 return (V > -(1 << 16) && V < (1 << 16)-1); 2623} 2624