X86AsmPrinter.cpp revision 8295f202d9cc37a6c325abd38e2feb5b47d7fc63
1//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal
11// representation of machine-dependent LLVM code to Intel-format
12// assembly language. This printer is the output mechanism used
13// by `llc' and `lli -print-machineinstrs' on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Mangler.h"
28#include "Support/Statistic.h"
29#include "Support/StringExtras.h"
30#include "Support/CommandLine.h"
31using namespace llvm;
32
33namespace {
34  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
35
36  // FIXME: This should be automatically picked up by autoconf from the C
37  // frontend
38  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
39         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
40
41  struct Printer : public MachineFunctionPass {
42    /// Output stream on which we're printing assembly code.
43    ///
44    std::ostream &O;
45
46    /// Target machine description which we query for reg. names, data
47    /// layout, etc.
48    ///
49    TargetMachine &TM;
50
51    /// Name-mangler for global names.
52    ///
53    Mangler *Mang;
54
55    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
56
57    /// We name each basic block in a Function with a unique number, so
58    /// that we can consistently refer to them later. This is cleared
59    /// at the beginning of each call to runOnMachineFunction().
60    ///
61    typedef std::map<const Value *, unsigned> ValueMapTy;
62    ValueMapTy NumberForBB;
63
64    /// Cache of mangled name for current function. This is
65    /// recalculated at the beginning of each call to
66    /// runOnMachineFunction().
67    ///
68    std::string CurrentFnName;
69
70    virtual const char *getPassName() const {
71      return "X86 Assembly Printer";
72    }
73
74    void checkImplUses (const TargetInstrDescriptor &Desc);
75    void printMachineInstruction(const MachineInstr *MI);
76    void printOp(const MachineOperand &MO,
77		 bool elideOffsetKeyword = false);
78    void printMemReference(const MachineInstr *MI, unsigned Op);
79    void printConstantPool(MachineConstantPool *MCP);
80    bool runOnMachineFunction(MachineFunction &F);
81    bool doInitialization(Module &M);
82    bool doFinalization(Module &M);
83    void emitGlobalConstant(const Constant* CV);
84    void emitConstantValueOnly(const Constant *CV);
85  };
86} // end of anonymous namespace
87
88/// createX86CodePrinterPass - Returns a pass that prints the X86
89/// assembly code for a MachineFunction to the given output stream,
90/// using the given target machine description.  This should work
91/// regardless of whether the function is in SSA form.
92///
93FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
94  return new Printer(o, tm);
95}
96
97/// toOctal - Convert the low order bits of X into an octal digit.
98///
99static inline char toOctal(int X) {
100  return (X&7)+'0';
101}
102
103/// getAsCString - Return the specified array as a C compatible
104/// string, only if the predicate isStringCompatible is true.
105///
106static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
107  assert(CVA->isString() && "Array is not string compatible!");
108
109  O << "\"";
110  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
111    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
112
113    if (C == '"') {
114      O << "\\\"";
115    } else if (C == '\\') {
116      O << "\\\\";
117    } else if (isprint(C)) {
118      O << C;
119    } else {
120      switch(C) {
121      case '\b': O << "\\b"; break;
122      case '\f': O << "\\f"; break;
123      case '\n': O << "\\n"; break;
124      case '\r': O << "\\r"; break;
125      case '\t': O << "\\t"; break;
126      default:
127        O << '\\';
128        O << toOctal(C >> 6);
129        O << toOctal(C >> 3);
130        O << toOctal(C >> 0);
131        break;
132      }
133    }
134  }
135  O << "\"";
136}
137
138// Print out the specified constant, without a storage class.  Only the
139// constants valid in constant expressions can occur here.
140void Printer::emitConstantValueOnly(const Constant *CV) {
141  if (CV->isNullValue())
142    O << "0";
143  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
144    assert(CB == ConstantBool::True);
145    O << "1";
146  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
147    if (((CI->getValue() << 32) >> 32) == CI->getValue())
148      O << CI->getValue();
149    else
150      O << (unsigned long long)CI->getValue();
151  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
152    O << CI->getValue();
153  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
154    // This is a constant address for a global variable or function.  Use the
155    // name of the variable or function as the address value.
156    O << Mang->getValueName(CPR->getValue());
157  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
158    const TargetData &TD = TM.getTargetData();
159    switch(CE->getOpcode()) {
160    case Instruction::GetElementPtr: {
161      // generate a symbolic expression for the byte address
162      const Constant *ptrVal = CE->getOperand(0);
163      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
164      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
165        O << "(";
166        emitConstantValueOnly(ptrVal);
167        O << ") + " << Offset;
168      } else {
169        emitConstantValueOnly(ptrVal);
170      }
171      break;
172    }
173    case Instruction::Cast: {
174      // Support only non-converting or widening casts for now, that is, ones
175      // that do not involve a change in value.  This assertion is really gross,
176      // and may not even be a complete check.
177      Constant *Op = CE->getOperand(0);
178      const Type *OpTy = Op->getType(), *Ty = CE->getType();
179
180      // Remember, kids, pointers on x86 can be losslessly converted back and
181      // forth into 32-bit or wider integers, regardless of signedness. :-P
182      assert(((isa<PointerType>(OpTy)
183               && (Ty == Type::LongTy || Ty == Type::ULongTy
184                   || Ty == Type::IntTy || Ty == Type::UIntTy))
185              || (isa<PointerType>(Ty)
186                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
187                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
188              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
189                   && OpTy->isLosslesslyConvertibleTo(Ty))))
190             && "FIXME: Don't yet support this kind of constant cast expr");
191      O << "(";
192      emitConstantValueOnly(Op);
193      O << ")";
194      break;
195    }
196    case Instruction::Add:
197      O << "(";
198      emitConstantValueOnly(CE->getOperand(0));
199      O << ") + (";
200      emitConstantValueOnly(CE->getOperand(1));
201      O << ")";
202      break;
203    default:
204      assert(0 && "Unsupported operator!");
205    }
206  } else {
207    assert(0 && "Unknown constant value!");
208  }
209}
210
211// Print a constant value or values, with the appropriate storage class as a
212// prefix.
213void Printer::emitGlobalConstant(const Constant *CV) {
214  const TargetData &TD = TM.getTargetData();
215
216  if (CV->isNullValue()) {
217    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
218    return;
219  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
220    if (CVA->isString()) {
221      O << "\t.ascii\t";
222      printAsCString(O, CVA);
223      O << "\n";
224    } else { // Not a string.  Print the values in successive locations
225      const std::vector<Use> &constValues = CVA->getValues();
226      for (unsigned i=0; i < constValues.size(); i++)
227        emitGlobalConstant(cast<Constant>(constValues[i].get()));
228    }
229    return;
230  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
231    // Print the fields in successive locations. Pad to align if needed!
232    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
233    const std::vector<Use>& constValues = CVS->getValues();
234    unsigned sizeSoFar = 0;
235    for (unsigned i=0, N = constValues.size(); i < N; i++) {
236      const Constant* field = cast<Constant>(constValues[i].get());
237
238      // Check if padding is needed and insert one or more 0s.
239      unsigned fieldSize = TD.getTypeSize(field->getType());
240      unsigned padSize = ((i == N-1? cvsLayout->StructSize
241                           : cvsLayout->MemberOffsets[i+1])
242                          - cvsLayout->MemberOffsets[i]) - fieldSize;
243      sizeSoFar += fieldSize + padSize;
244
245      // Now print the actual field value
246      emitGlobalConstant(field);
247
248      // Insert the field padding unless it's zero bytes...
249      if (padSize)
250        O << "\t.zero\t " << padSize << "\n";
251    }
252    assert(sizeSoFar == cvsLayout->StructSize &&
253           "Layout of constant struct may be incorrect!");
254    return;
255  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
256    // FP Constants are printed as integer constants to avoid losing
257    // precision...
258    double Val = CFP->getValue();
259    switch (CFP->getType()->getPrimitiveID()) {
260    default: assert(0 && "Unknown floating point type!");
261    case Type::FloatTyID: {
262      union FU {                            // Abide by C TBAA rules
263        float FVal;
264        unsigned UVal;
265      } U;
266      U.FVal = Val;
267      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
268      return;
269    }
270    case Type::DoubleTyID: {
271      union DU {                            // Abide by C TBAA rules
272        double FVal;
273        uint64_t UVal;
274      } U;
275      U.FVal = Val;
276      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
277      return;
278    }
279    }
280  }
281
282  const Type *type = CV->getType();
283  O << "\t";
284  switch (type->getPrimitiveID()) {
285  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
286    O << ".byte";
287    break;
288  case Type::UShortTyID: case Type::ShortTyID:
289    O << ".word";
290    break;
291  case Type::FloatTyID: case Type::PointerTyID:
292  case Type::UIntTyID: case Type::IntTyID:
293    O << ".long";
294    break;
295  case Type::DoubleTyID:
296  case Type::ULongTyID: case Type::LongTyID:
297    O << ".quad";
298    break;
299  default:
300    assert (0 && "Can't handle printing this type of thing");
301    break;
302  }
303  O << "\t";
304  emitConstantValueOnly(CV);
305  O << "\n";
306}
307
308/// printConstantPool - Print to the current output stream assembly
309/// representations of the constants in the constant pool MCP. This is
310/// used to print out constants which have been "spilled to memory" by
311/// the code generator.
312///
313void Printer::printConstantPool(MachineConstantPool *MCP) {
314  const std::vector<Constant*> &CP = MCP->getConstants();
315  const TargetData &TD = TM.getTargetData();
316
317  if (CP.empty()) return;
318
319  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
320    O << "\t.section .rodata\n";
321    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
322      << "\n";
323    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
324      << *CP[i] << "\n";
325    emitGlobalConstant(CP[i]);
326  }
327}
328
329/// runOnMachineFunction - This uses the printMachineInstruction()
330/// method to print assembly for each instruction.
331///
332bool Printer::runOnMachineFunction(MachineFunction &MF) {
333  // BBNumber is used here so that a given Printer will never give two
334  // BBs the same name. (If you have a better way, please let me know!)
335  static unsigned BBNumber = 0;
336
337  O << "\n\n";
338  // What's my mangled name?
339  CurrentFnName = Mang->getValueName(MF.getFunction());
340
341  // Print out constants referenced by the function
342  printConstantPool(MF.getConstantPool());
343
344  // Print out labels for the function.
345  O << "\t.text\n";
346  O << "\t.align 16\n";
347  O << "\t.globl\t" << CurrentFnName << "\n";
348  if (!EmitCygwin)
349    O << "\t.type\t" << CurrentFnName << ", @function\n";
350  O << CurrentFnName << ":\n";
351
352  // Number each basic block so that we can consistently refer to them
353  // in PC-relative references.
354  NumberForBB.clear();
355  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
356       I != E; ++I) {
357    NumberForBB[I->getBasicBlock()] = BBNumber++;
358  }
359
360  // Print out code for the function.
361  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
362       I != E; ++I) {
363    // Print a label for the basic block.
364    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
365      << I->getBasicBlock()->getName() << "\n";
366    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
367	 II != E; ++II) {
368      // Print the assembly for the instruction.
369      O << "\t";
370      printMachineInstruction(II);
371    }
372  }
373
374  // We didn't modify anything.
375  return false;
376}
377
378static bool isScale(const MachineOperand &MO) {
379  return MO.isImmediate() &&
380    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
381     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
382}
383
384static bool isMem(const MachineInstr *MI, unsigned Op) {
385  if (MI->getOperand(Op).isFrameIndex()) return true;
386  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
387  return Op+4 <= MI->getNumOperands() &&
388    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
389    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
390}
391
392
393
394void Printer::printOp(const MachineOperand &MO,
395		      bool elideOffsetKeyword /* = false */) {
396  const MRegisterInfo &RI = *TM.getRegisterInfo();
397  switch (MO.getType()) {
398  case MachineOperand::MO_VirtualRegister:
399    if (Value *V = MO.getVRegValueOrNull()) {
400      O << "<" << V->getName() << ">";
401      return;
402    }
403    // FALLTHROUGH
404  case MachineOperand::MO_MachineRegister:
405    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
406      // Bug Workaround: See note in Printer::doInitialization about %.
407      O << "%" << RI.get(MO.getReg()).Name;
408    else
409      O << "%reg" << MO.getReg();
410    return;
411
412  case MachineOperand::MO_SignExtendedImmed:
413  case MachineOperand::MO_UnextendedImmed:
414    O << (int)MO.getImmedValue();
415    return;
416  case MachineOperand::MO_PCRelativeDisp: {
417    ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
418    assert (i != NumberForBB.end()
419            && "Could not find a BB in the NumberForBB map!");
420    O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
421    return;
422  }
423  case MachineOperand::MO_GlobalAddress:
424    if (!elideOffsetKeyword)
425      O << "OFFSET ";
426    O << Mang->getValueName(MO.getGlobal());
427    return;
428  case MachineOperand::MO_ExternalSymbol:
429    O << MO.getSymbolName();
430    return;
431  default:
432    O << "<unknown operand type>"; return;
433  }
434}
435
436static const char* const sizePtr(const TargetInstrDescriptor &Desc) {
437  switch (Desc.TSFlags & X86II::MemMask) {
438  default: assert(0 && "Unknown arg size!");
439  case X86II::Mem8:   return "BYTE PTR";
440  case X86II::Mem16:  return "WORD PTR";
441  case X86II::Mem32:  return "DWORD PTR";
442  case X86II::Mem64:  return "QWORD PTR";
443  case X86II::Mem80:  return "XWORD PTR";
444  }
445}
446
447void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
448  assert(isMem(MI, Op) && "Invalid memory reference!");
449
450  if (MI->getOperand(Op).isFrameIndex()) {
451    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
452    if (MI->getOperand(Op+3).getImmedValue())
453      O << " + " << MI->getOperand(Op+3).getImmedValue();
454    O << "]";
455    return;
456  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
457    O << "[.CPI" << CurrentFnName << "_"
458      << MI->getOperand(Op).getConstantPoolIndex();
459    if (MI->getOperand(Op+3).getImmedValue())
460      O << " + " << MI->getOperand(Op+3).getImmedValue();
461    O << "]";
462    return;
463  }
464
465  const MachineOperand &BaseReg  = MI->getOperand(Op);
466  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
467  const MachineOperand &IndexReg = MI->getOperand(Op+2);
468  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
469
470  O << "[";
471  bool NeedPlus = false;
472  if (BaseReg.getReg()) {
473    printOp(BaseReg);
474    NeedPlus = true;
475  }
476
477  if (IndexReg.getReg()) {
478    if (NeedPlus) O << " + ";
479    if (ScaleVal != 1)
480      O << ScaleVal << "*";
481    printOp(IndexReg);
482    NeedPlus = true;
483  }
484
485  if (DispVal) {
486    if (NeedPlus)
487      if (DispVal > 0)
488	O << " + ";
489      else {
490	O << " - ";
491	DispVal = -DispVal;
492      }
493    O << DispVal;
494  }
495  O << "]";
496}
497
498/// checkImplUses - Emit the implicit-use registers for the
499/// instruction described by DESC, if its PrintImplUses flag is set.
500///
501void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
502  const MRegisterInfo &RI = *TM.getRegisterInfo();
503  if (Desc.TSFlags & X86II::PrintImplUses) {
504    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
505      // Bug Workaround: See note in Printer::doInitialization about %.
506      O << ", %" << RI.get(*p).Name;
507    }
508  }
509}
510
511/// printMachineInstruction -- Print out a single X86 LLVM instruction
512/// MI in Intel syntax to the current output stream.
513///
514void Printer::printMachineInstruction(const MachineInstr *MI) {
515  unsigned Opcode = MI->getOpcode();
516  const TargetInstrInfo &TII = TM.getInstrInfo();
517  const TargetInstrDescriptor &Desc = TII.get(Opcode);
518
519  ++EmittedInsts;
520  switch (Desc.TSFlags & X86II::FormMask) {
521  case X86II::Pseudo:
522    // Print pseudo-instructions as comments; either they should have been
523    // turned into real instructions by now, or they don't need to be
524    // seen by the assembler (e.g., IMPLICIT_USEs.)
525    O << "# ";
526    if (Opcode == X86::PHI) {
527      printOp(MI->getOperand(0));
528      O << " = phi ";
529      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
530	if (i != 1) O << ", ";
531	O << "[";
532	printOp(MI->getOperand(i));
533	O << ", ";
534	printOp(MI->getOperand(i+1));
535	O << "]";
536      }
537    } else {
538      unsigned i = 0;
539      if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
540	printOp(MI->getOperand(0));
541	O << " = ";
542	++i;
543      }
544      O << TII.getName(MI->getOpcode());
545
546      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
547	O << " ";
548	if (MI->getOperand(i).isDef()) O << "*";
549	printOp(MI->getOperand(i));
550	if (MI->getOperand(i).isDef()) O << "*";
551      }
552    }
553    O << "\n";
554    return;
555
556  case X86II::RawFrm:
557    // The accepted forms of Raw instructions are:
558    //   1. nop     - No operand required
559    //   2. jmp foo - PC relative displacement operand
560    //   3. call bar - GlobalAddress Operand or External Symbol Operand
561    //
562    assert(MI->getNumOperands() == 0 ||
563           (MI->getNumOperands() == 1 &&
564	    (MI->getOperand(0).isPCRelativeDisp() ||
565	     MI->getOperand(0).isGlobalAddress() ||
566	     MI->getOperand(0).isExternalSymbol())) &&
567           "Illegal raw instruction!");
568    O << TII.getName(MI->getOpcode()) << " ";
569
570    if (MI->getNumOperands() == 1) {
571      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
572    }
573    O << "\n";
574    return;
575
576  case X86II::AddRegFrm: {
577    // There are currently two forms of acceptable AddRegFrm instructions.
578    // Either the instruction JUST takes a single register (like inc, dec, etc),
579    // or it takes a register and an immediate of the same size as the register
580    // (move immediate f.e.).  Note that this immediate value might be stored as
581    // an LLVM value, to represent, for example, loading the address of a global
582    // into a register.  The initial register might be duplicated if this is a
583    // M_2_ADDR_REG instruction
584    //
585    assert(MI->getOperand(0).isRegister() &&
586           (MI->getNumOperands() == 1 ||
587            (MI->getNumOperands() == 2 &&
588             (MI->getOperand(1).getVRegValueOrNull() ||
589              MI->getOperand(1).isImmediate() ||
590	      MI->getOperand(1).isRegister() ||
591	      MI->getOperand(1).isGlobalAddress() ||
592	      MI->getOperand(1).isExternalSymbol()))) &&
593           "Illegal form for AddRegFrm instruction!");
594
595    unsigned Reg = MI->getOperand(0).getReg();
596
597    O << TII.getName(MI->getOpcode()) << " ";
598    printOp(MI->getOperand(0));
599    if (MI->getNumOperands() == 2 &&
600	(!MI->getOperand(1).isRegister() ||
601	 MI->getOperand(1).getVRegValueOrNull() ||
602	 MI->getOperand(1).isGlobalAddress() ||
603	 MI->getOperand(1).isExternalSymbol())) {
604      O << ", ";
605      printOp(MI->getOperand(1));
606    }
607    checkImplUses(Desc);
608    O << "\n";
609    return;
610  }
611  case X86II::MRMDestReg: {
612    // There are three forms of MRMDestReg instructions, those with 2
613    // or 3 operands:
614    //
615    // 2 Operands: this is for things like mov that do not read a
616    // second input.
617    //
618    // 2 Operands: two address instructions which def&use the first
619    // argument and use the second as input.
620    //
621    // 3 Operands: in this form, two address instructions are the same
622    // as in 2 but have a constant argument as well.
623    //
624    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
625    assert(MI->getOperand(0).isRegister() &&
626           (MI->getNumOperands() == 2 ||
627            (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
628           && "Bad format for MRMDestReg!");
629
630    O << TII.getName(MI->getOpcode()) << " ";
631    printOp(MI->getOperand(0));
632    O << ", ";
633    printOp(MI->getOperand(1));
634    if (MI->getNumOperands() == 3) {
635      O << ", ";
636      printOp(MI->getOperand(2));
637    }
638    O << "\n";
639    return;
640  }
641
642  case X86II::MRMDestMem: {
643    // These instructions are the same as MRMDestReg, but instead of having a
644    // register reference for the mod/rm field, it's a memory reference.
645    //
646    assert(isMem(MI, 0) &&
647           (MI->getNumOperands() == 4+1 ||
648            (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
649           && "Bad format for MRMDestMem!");
650
651    O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
652    printMemReference(MI, 0);
653    O << ", ";
654    printOp(MI->getOperand(4));
655    if (MI->getNumOperands() == 4+2) {
656      O << ", ";
657      printOp(MI->getOperand(5));
658    }
659    O << "\n";
660    return;
661  }
662
663  case X86II::MRMSrcReg: {
664    // There are three forms that are acceptable for MRMSrcReg
665    // instructions, those with 2 or 3 operands:
666    //
667    // 2 Operands: this is for things like mov that do not read a
668    // second input.
669    //
670    // 2 Operands: in this form, the last register is the ModR/M
671    // input.  The first operand is a def&use.  This is for things
672    // like: add r32, r/m32
673    //
674    // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
675    // for instructions like the IMULrri instructions.
676    //
677    //
678    assert(MI->getOperand(0).isRegister() &&
679           MI->getOperand(1).isRegister() &&
680           (MI->getNumOperands() == 2 ||
681            (MI->getNumOperands() == 3 &&
682             (MI->getOperand(2).isImmediate())))
683           && "Bad format for MRMSrcReg!");
684
685    O << TII.getName(MI->getOpcode()) << " ";
686    printOp(MI->getOperand(0));
687    O << ", ";
688    printOp(MI->getOperand(1));
689    if (MI->getNumOperands() == 3) {
690        O << ", ";
691        printOp(MI->getOperand(2));
692    }
693    O << "\n";
694    return;
695  }
696
697  case X86II::MRMSrcMem: {
698    // These instructions are the same as MRMSrcReg, but instead of having a
699    // register reference for the mod/rm field, it's a memory reference.
700    //
701    assert(MI->getOperand(0).isRegister() &&
702           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
703(MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() && isMem(MI, 1))
704           && "Bad format for MRMSrcMem!");
705    O << TII.getName(MI->getOpcode()) << " ";
706    printOp(MI->getOperand(0));
707    O << ", " << sizePtr(Desc) << " ";
708    printMemReference(MI, 1);
709    if (MI->getNumOperands() == 2+4) {
710      O << ", ";
711      printOp(MI->getOperand(5));
712    }
713    O << "\n";
714    return;
715  }
716
717  case X86II::MRM0r: case X86II::MRM1r:
718  case X86II::MRM2r: case X86II::MRM3r:
719  case X86II::MRM4r: case X86II::MRM5r:
720  case X86II::MRM6r: case X86II::MRM7r: {
721    // In this form, the following are valid formats:
722    //  1. sete r
723    //  2. cmp reg, immediate
724    //  2. shl rdest, rinput  <implicit CL or 1>
725    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
726    //
727    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
728           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
729    assert((MI->getNumOperands() != 2 ||
730            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
731           "Bad MRMSxR format!");
732    assert((MI->getNumOperands() < 3 ||
733	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
734           "Bad MRMSxR format!");
735
736    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
737        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
738      O << "**";
739
740    O << TII.getName(MI->getOpcode()) << " ";
741    printOp(MI->getOperand(0));
742    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
743      O << ", ";
744      printOp(MI->getOperand(MI->getNumOperands()-1));
745    }
746    checkImplUses(Desc);
747    O << "\n";
748
749    return;
750  }
751
752  case X86II::MRM0m: case X86II::MRM1m:
753  case X86II::MRM2m: case X86II::MRM3m:
754  case X86II::MRM4m: case X86II::MRM5m:
755  case X86II::MRM6m: case X86II::MRM7m: {
756    // In this form, the following are valid formats:
757    //  1. sete [m]
758    //  2. cmp [m], immediate
759    //  2. shl [m], rinput  <implicit CL or 1>
760    //  3. sbb [m], immediate
761    //
762    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
763           isMem(MI, 0) && "Bad MRMSxM format!");
764    assert((MI->getNumOperands() != 5 ||
765            (MI->getOperand(4).isImmediate() ||
766             MI->getOperand(4).isGlobalAddress())) &&
767           "Bad MRMSxM format!");
768
769    const MachineOperand &Op3 = MI->getOperand(3);
770
771    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
772    // is misassembled by gas in intel_syntax mode as its 32-bit
773    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
774    // opcode bytes instead of the instruction.
775    if (MI->getOpcode() == X86::FSTP80m) {
776      if ((MI->getOperand(0).getReg() == X86::ESP)
777	  && (MI->getOperand(1).getImmedValue() == 1)) {
778        if (Op3.isImmediate() &&
779            Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) {
780          // 1 byte disp.
781          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex
782            << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
783        } else {
784          O << ".byte 0xdb, 0xbc, 0x24\n\t";
785          O << ".long ";
786          printOp(Op3);
787          O << "\t# ";
788	}
789      }
790    }
791
792    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
793    // misassembled by gas in intel_syntax mode as its 32-bit
794    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
795    // opcode bytes instead of the instruction.
796    if (MI->getOpcode() == X86::FLD80m &&
797        MI->getOperand(0).getReg() == X86::ESP &&
798        MI->getOperand(1).getImmedValue() == 1) {
799      if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
800          Op3.getImmedValue() <= 127) {   // 1 byte displacement
801        O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex
802          << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
803      } else {
804        O << ".byte 0xdb, 0xac, 0x24\n\t";
805        O << ".long ";
806        printOp(Op3);
807        O << "\t# ";
808      }
809    }
810
811    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
812    // invalid opcode, saying "64 bit operations are only supported in
813    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
814    // [...]", which is wrong. Workaround: Output the raw opcode bytes
815    // instead of the instruction.
816    if (MI->getOpcode() == X86::FILD64m &&
817        MI->getOperand(0).getReg() == X86::ESP &&
818        MI->getOperand(1).getImmedValue() == 1) {
819      if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
820          Op3.getImmedValue() <= 127) {   // 1 byte displacement
821        O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex
822          << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
823      } else {
824        O << ".byte 0xdf, 0xac, 0x24\n\t";
825        O << ".long ";
826        printOp(Op3);
827        O << std::dec << "\t# ";
828      }
829    }
830
831    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
832    // an invalid opcode, saying "64 bit operations are only
833    // supported in 64 bit modes." libopcodes disassembles it as
834    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
835    // "fistpll DWORD PTR " instead, which is what libopcodes is
836    // expecting to see.
837    if (MI->getOpcode() == X86::FISTP64m) {
838      O << "fistpll DWORD PTR ";
839      printMemReference(MI, 0);
840      if (MI->getNumOperands() == 5) {
841	O << ", ";
842	printOp(MI->getOperand(4));
843      }
844      O << "\t# ";
845    }
846
847    O << TII.getName(MI->getOpcode()) << " ";
848    O << sizePtr(Desc) << " ";
849    printMemReference(MI, 0);
850    if (MI->getNumOperands() == 5) {
851      O << ", ";
852      printOp(MI->getOperand(4));
853    }
854    O << "\n";
855    return;
856  }
857
858  default:
859    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
860  }
861}
862
863bool Printer::doInitialization(Module &M) {
864  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
865  //
866  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
867  // instruction as a reference to the register named sp, and if you try to
868  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
869  // before being looked up in the symbol table. This creates spurious
870  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
871  // mode, and decorate all register names with percent signs.
872  O << "\t.intel_syntax\n";
873  Mang = new Mangler(M, EmitCygwin);
874  return false; // success
875}
876
877// SwitchSection - Switch to the specified section of the executable if we are
878// not already in it!
879//
880static void SwitchSection(std::ostream &OS, std::string &CurSection,
881                          const char *NewSection) {
882  if (CurSection != NewSection) {
883    CurSection = NewSection;
884    if (!CurSection.empty())
885      OS << "\t" << NewSection << "\n";
886  }
887}
888
889bool Printer::doFinalization(Module &M) {
890  const TargetData &TD = TM.getTargetData();
891  std::string CurSection;
892
893  // Print out module-level global variables here.
894  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
895    if (I->hasInitializer()) {   // External global require no code
896      O << "\n\n";
897      std::string name = Mang->getValueName(I);
898      Constant *C = I->getInitializer();
899      unsigned Size = TD.getTypeSize(C->getType());
900      unsigned Align = TD.getTypeAlignment(C->getType());
901
902      if (C->isNullValue() &&
903          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
904           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
905        SwitchSection(O, CurSection, ".data");
906        if (I->hasInternalLinkage())
907          O << "\t.local " << name << "\n";
908
909        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
910          << "," << (unsigned)TD.getTypeAlignment(C->getType());
911        O << "\t\t# ";
912        WriteAsOperand(O, I, true, true, &M);
913        O << "\n";
914      } else {
915        switch (I->getLinkage()) {
916        case GlobalValue::LinkOnceLinkage:
917        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
918          // Nonnull linkonce -> weak
919          O << "\t.weak " << name << "\n";
920          SwitchSection(O, CurSection, "");
921          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
922          break;
923
924        case GlobalValue::AppendingLinkage:
925          // FIXME: appending linkage variables should go into a section of
926          // their name or something.  For now, just emit them as external.
927        case GlobalValue::ExternalLinkage:
928          // If external or appending, declare as a global symbol
929          O << "\t.globl " << name << "\n";
930          // FALL THROUGH
931        case GlobalValue::InternalLinkage:
932          if (C->isNullValue())
933            SwitchSection(O, CurSection, ".bss");
934          else
935            SwitchSection(O, CurSection, ".data");
936          break;
937        }
938
939        O << "\t.align " << Align << "\n";
940        O << "\t.type " << name << ",@object\n";
941        O << "\t.size " << name << "," << Size << "\n";
942        O << name << ":\t\t\t\t# ";
943        WriteAsOperand(O, I, true, true, &M);
944        O << " = ";
945        WriteAsOperand(O, C, false, false, &M);
946        O << "\n";
947        emitGlobalConstant(C);
948      }
949    }
950
951  delete Mang;
952  return false; // success
953}
954