X86AsmPrinter.cpp revision 8863f1814ba2c26910edb30857d10a8587f2f7de
1//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to Intel-format assembly language. This
12// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
13// on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineCodeEmitter.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/Mangler.h"
30#include "Support/Statistic.h"
31#include "Support/StringExtras.h"
32#include "Support/CommandLine.h"
33using namespace llvm;
34
35namespace {
36  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
37
38  // FIXME: This should be automatically picked up by autoconf from the C
39  // frontend
40  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
41         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
42
43  struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
44      GasBugWorkaroundEmitter(std::ostream& o)
45          : O(o), OldFlags(O.flags()), firstByte(true) {
46          O << std::hex;
47      }
48
49      ~GasBugWorkaroundEmitter() {
50          O.flags(OldFlags);
51          O << "\t# ";
52      }
53
54      virtual void emitByte(unsigned char B) {
55          if (!firstByte) O << "\n\t";
56          firstByte = false;
57          O << ".byte 0x" << (unsigned) B;
58      }
59
60      // These should never be called
61      virtual void emitWord(unsigned W) { assert(0); }
62      virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
63      virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
64      virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
65      virtual uint64_t getCurrentPCValue() { abort(); }
66      virtual uint64_t forceCompilationOf(Function *F) { abort(); }
67
68  private:
69      std::ostream& O;
70      std::ios::fmtflags OldFlags;
71      bool firstByte;
72  };
73
74  struct Printer : public MachineFunctionPass {
75    /// Output stream on which we're printing assembly code.
76    ///
77    std::ostream &O;
78
79    /// Target machine description which we query for reg. names, data
80    /// layout, etc.
81    ///
82    TargetMachine &TM;
83
84    /// Name-mangler for global names.
85    ///
86    Mangler *Mang;
87
88    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
89
90    /// Cache of mangled name for current function. This is
91    /// recalculated at the beginning of each call to
92    /// runOnMachineFunction().
93    ///
94    std::string CurrentFnName;
95
96    virtual const char *getPassName() const {
97      return "X86 Assembly Printer";
98    }
99
100    void printImplUsesBefore(const TargetInstrDescriptor &Desc);
101    bool printImplDefsBefore(const TargetInstrDescriptor &Desc);
102    bool printImplUsesAfter(const TargetInstrDescriptor &Desc, const bool LC);
103    bool printImplDefsAfter(const TargetInstrDescriptor &Desc, const bool LC);
104    void printMachineInstruction(const MachineInstr *MI);
105    void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
106    void printMemReference(const MachineInstr *MI, unsigned Op);
107    void printConstantPool(MachineConstantPool *MCP);
108    bool runOnMachineFunction(MachineFunction &F);
109    bool doInitialization(Module &M);
110    bool doFinalization(Module &M);
111    void emitGlobalConstant(const Constant* CV);
112    void emitConstantValueOnly(const Constant *CV);
113  };
114} // end of anonymous namespace
115
116/// createX86CodePrinterPass - Returns a pass that prints the X86
117/// assembly code for a MachineFunction to the given output stream,
118/// using the given target machine description.  This should work
119/// regardless of whether the function is in SSA form.
120///
121FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
122  return new Printer(o, tm);
123}
124
125/// toOctal - Convert the low order bits of X into an octal digit.
126///
127static inline char toOctal(int X) {
128  return (X&7)+'0';
129}
130
131/// getAsCString - Return the specified array as a C compatible
132/// string, only if the predicate isStringCompatible is true.
133///
134static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
135  assert(CVA->isString() && "Array is not string compatible!");
136
137  O << "\"";
138  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
139    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
140
141    if (C == '"') {
142      O << "\\\"";
143    } else if (C == '\\') {
144      O << "\\\\";
145    } else if (isprint(C)) {
146      O << C;
147    } else {
148      switch(C) {
149      case '\b': O << "\\b"; break;
150      case '\f': O << "\\f"; break;
151      case '\n': O << "\\n"; break;
152      case '\r': O << "\\r"; break;
153      case '\t': O << "\\t"; break;
154      default:
155        O << '\\';
156        O << toOctal(C >> 6);
157        O << toOctal(C >> 3);
158        O << toOctal(C >> 0);
159        break;
160      }
161    }
162  }
163  O << "\"";
164}
165
166// Print out the specified constant, without a storage class.  Only the
167// constants valid in constant expressions can occur here.
168void Printer::emitConstantValueOnly(const Constant *CV) {
169  if (CV->isNullValue())
170    O << "0";
171  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
172    assert(CB == ConstantBool::True);
173    O << "1";
174  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
175    if (((CI->getValue() << 32) >> 32) == CI->getValue())
176      O << CI->getValue();
177    else
178      O << (unsigned long long)CI->getValue();
179  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
180    O << CI->getValue();
181  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
182    // This is a constant address for a global variable or function.  Use the
183    // name of the variable or function as the address value.
184    O << Mang->getValueName(GV);
185  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
186    const TargetData &TD = TM.getTargetData();
187    switch(CE->getOpcode()) {
188    case Instruction::GetElementPtr: {
189      // generate a symbolic expression for the byte address
190      const Constant *ptrVal = CE->getOperand(0);
191      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
192      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
193        O << "(";
194        emitConstantValueOnly(ptrVal);
195        O << ") + " << Offset;
196      } else {
197        emitConstantValueOnly(ptrVal);
198      }
199      break;
200    }
201    case Instruction::Cast: {
202      // Support only non-converting or widening casts for now, that is, ones
203      // that do not involve a change in value.  This assertion is really gross,
204      // and may not even be a complete check.
205      Constant *Op = CE->getOperand(0);
206      const Type *OpTy = Op->getType(), *Ty = CE->getType();
207
208      // Remember, kids, pointers on x86 can be losslessly converted back and
209      // forth into 32-bit or wider integers, regardless of signedness. :-P
210      assert(((isa<PointerType>(OpTy)
211               && (Ty == Type::LongTy || Ty == Type::ULongTy
212                   || Ty == Type::IntTy || Ty == Type::UIntTy))
213              || (isa<PointerType>(Ty)
214                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
215                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
216              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
217                   && OpTy->isLosslesslyConvertibleTo(Ty))))
218             && "FIXME: Don't yet support this kind of constant cast expr");
219      O << "(";
220      emitConstantValueOnly(Op);
221      O << ")";
222      break;
223    }
224    case Instruction::Add:
225      O << "(";
226      emitConstantValueOnly(CE->getOperand(0));
227      O << ") + (";
228      emitConstantValueOnly(CE->getOperand(1));
229      O << ")";
230      break;
231    default:
232      assert(0 && "Unsupported operator!");
233    }
234  } else {
235    assert(0 && "Unknown constant value!");
236  }
237}
238
239// Print a constant value or values, with the appropriate storage class as a
240// prefix.
241void Printer::emitGlobalConstant(const Constant *CV) {
242  const TargetData &TD = TM.getTargetData();
243
244  if (CV->isNullValue()) {
245    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
246    return;
247  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
248    if (CVA->isString()) {
249      O << "\t.ascii\t";
250      printAsCString(O, CVA);
251      O << "\n";
252    } else { // Not a string.  Print the values in successive locations
253      const std::vector<Use> &constValues = CVA->getValues();
254      for (unsigned i=0; i < constValues.size(); i++)
255        emitGlobalConstant(cast<Constant>(constValues[i].get()));
256    }
257    return;
258  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
259    // Print the fields in successive locations. Pad to align if needed!
260    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
261    const std::vector<Use>& constValues = CVS->getValues();
262    unsigned sizeSoFar = 0;
263    for (unsigned i=0, N = constValues.size(); i < N; i++) {
264      const Constant* field = cast<Constant>(constValues[i].get());
265
266      // Check if padding is needed and insert one or more 0s.
267      unsigned fieldSize = TD.getTypeSize(field->getType());
268      unsigned padSize = ((i == N-1? cvsLayout->StructSize
269                           : cvsLayout->MemberOffsets[i+1])
270                          - cvsLayout->MemberOffsets[i]) - fieldSize;
271      sizeSoFar += fieldSize + padSize;
272
273      // Now print the actual field value
274      emitGlobalConstant(field);
275
276      // Insert the field padding unless it's zero bytes...
277      if (padSize)
278        O << "\t.zero\t " << padSize << "\n";
279    }
280    assert(sizeSoFar == cvsLayout->StructSize &&
281           "Layout of constant struct may be incorrect!");
282    return;
283  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
284    // FP Constants are printed as integer constants to avoid losing
285    // precision...
286    double Val = CFP->getValue();
287    switch (CFP->getType()->getTypeID()) {
288    default: assert(0 && "Unknown floating point type!");
289    case Type::FloatTyID: {
290      union FU {                            // Abide by C TBAA rules
291        float FVal;
292        unsigned UVal;
293      } U;
294      U.FVal = Val;
295      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
296      return;
297    }
298    case Type::DoubleTyID: {
299      union DU {                            // Abide by C TBAA rules
300        double FVal;
301        uint64_t UVal;
302      } U;
303      U.FVal = Val;
304      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
305      return;
306    }
307    }
308  }
309
310  const Type *type = CV->getType();
311  O << "\t";
312  switch (type->getTypeID()) {
313  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
314    O << ".byte";
315    break;
316  case Type::UShortTyID: case Type::ShortTyID:
317    O << ".word";
318    break;
319  case Type::FloatTyID: case Type::PointerTyID:
320  case Type::UIntTyID: case Type::IntTyID:
321    O << ".long";
322    break;
323  case Type::DoubleTyID:
324  case Type::ULongTyID: case Type::LongTyID:
325    O << ".quad";
326    break;
327  default:
328    assert (0 && "Can't handle printing this type of thing");
329    break;
330  }
331  O << "\t";
332  emitConstantValueOnly(CV);
333  O << "\n";
334}
335
336/// printConstantPool - Print to the current output stream assembly
337/// representations of the constants in the constant pool MCP. This is
338/// used to print out constants which have been "spilled to memory" by
339/// the code generator.
340///
341void Printer::printConstantPool(MachineConstantPool *MCP) {
342  const std::vector<Constant*> &CP = MCP->getConstants();
343  const TargetData &TD = TM.getTargetData();
344
345  if (CP.empty()) return;
346
347  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
348    O << "\t.section .rodata\n";
349    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
350      << "\n";
351    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
352      << *CP[i] << "\n";
353    emitGlobalConstant(CP[i]);
354  }
355}
356
357/// runOnMachineFunction - This uses the printMachineInstruction()
358/// method to print assembly for each instruction.
359///
360bool Printer::runOnMachineFunction(MachineFunction &MF) {
361  O << "\n\n";
362  // What's my mangled name?
363  CurrentFnName = Mang->getValueName(MF.getFunction());
364
365  // Print out constants referenced by the function
366  printConstantPool(MF.getConstantPool());
367
368  // Print out labels for the function.
369  O << "\t.text\n";
370  O << "\t.align 16\n";
371  O << "\t.globl\t" << CurrentFnName << "\n";
372  if (!EmitCygwin)
373    O << "\t.type\t" << CurrentFnName << ", @function\n";
374  O << CurrentFnName << ":\n";
375
376  // Print out code for the function.
377  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
378       I != E; ++I) {
379    // Print a label for the basic block.
380    O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
381      << I->getBasicBlock()->getName() << "\n";
382    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
383         II != E; ++II) {
384      // Print the assembly for the instruction.
385      O << "\t";
386      printMachineInstruction(II);
387    }
388  }
389
390  // We didn't modify anything.
391  return false;
392}
393
394static bool isScale(const MachineOperand &MO) {
395  return MO.isImmediate() &&
396    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
397     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
398}
399
400static bool isMem(const MachineInstr *MI, unsigned Op) {
401  if (MI->getOperand(Op).isFrameIndex()) return true;
402  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
403  return Op+4 <= MI->getNumOperands() &&
404    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
405    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
406}
407
408
409
410void Printer::printOp(const MachineOperand &MO,
411                      bool elideOffsetKeyword /* = false */) {
412  const MRegisterInfo &RI = *TM.getRegisterInfo();
413  switch (MO.getType()) {
414  case MachineOperand::MO_VirtualRegister:
415    if (Value *V = MO.getVRegValueOrNull()) {
416      O << "<" << V->getName() << ">";
417      return;
418    }
419    // FALLTHROUGH
420  case MachineOperand::MO_MachineRegister:
421    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
422      // Bug Workaround: See note in Printer::doInitialization about %.
423      O << "%" << RI.get(MO.getReg()).Name;
424    else
425      O << "%reg" << MO.getReg();
426    return;
427
428  case MachineOperand::MO_SignExtendedImmed:
429  case MachineOperand::MO_UnextendedImmed:
430    O << (int)MO.getImmedValue();
431    return;
432  case MachineOperand::MO_MachineBasicBlock: {
433    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
434    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
435      << "_" << MBBOp->getNumber () << "\t# "
436      << MBBOp->getBasicBlock ()->getName ();
437    return;
438  }
439  case MachineOperand::MO_PCRelativeDisp:
440    std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs";
441    abort ();
442    return;
443  case MachineOperand::MO_GlobalAddress:
444    if (!elideOffsetKeyword)
445      O << "OFFSET ";
446    O << Mang->getValueName(MO.getGlobal());
447    return;
448  case MachineOperand::MO_ExternalSymbol:
449    O << MO.getSymbolName();
450    return;
451  default:
452    O << "<unknown operand type>"; return;
453  }
454}
455
456static const char* const sizePtr(const TargetInstrDescriptor &Desc) {
457  switch (Desc.TSFlags & X86II::MemMask) {
458  default: assert(0 && "Unknown arg size!");
459  case X86II::Mem8:   return "BYTE PTR";
460  case X86II::Mem16:  return "WORD PTR";
461  case X86II::Mem32:  return "DWORD PTR";
462  case X86II::Mem64:  return "QWORD PTR";
463  case X86II::Mem80:  return "XWORD PTR";
464  }
465}
466
467void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
468  assert(isMem(MI, Op) && "Invalid memory reference!");
469
470  if (MI->getOperand(Op).isFrameIndex()) {
471    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
472    if (MI->getOperand(Op+3).getImmedValue())
473      O << " + " << MI->getOperand(Op+3).getImmedValue();
474    O << "]";
475    return;
476  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
477    O << "[.CPI" << CurrentFnName << "_"
478      << MI->getOperand(Op).getConstantPoolIndex();
479    if (MI->getOperand(Op+3).getImmedValue())
480      O << " + " << MI->getOperand(Op+3).getImmedValue();
481    O << "]";
482    return;
483  }
484
485  const MachineOperand &BaseReg  = MI->getOperand(Op);
486  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
487  const MachineOperand &IndexReg = MI->getOperand(Op+2);
488  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
489
490  O << "[";
491  bool NeedPlus = false;
492  if (BaseReg.getReg()) {
493    printOp(BaseReg);
494    NeedPlus = true;
495  }
496
497  if (IndexReg.getReg()) {
498    if (NeedPlus) O << " + ";
499    if (ScaleVal != 1)
500      O << ScaleVal << "*";
501    printOp(IndexReg);
502    NeedPlus = true;
503  }
504
505  if (DispVal) {
506    if (NeedPlus)
507      if (DispVal > 0)
508        O << " + ";
509      else {
510        O << " - ";
511        DispVal = -DispVal;
512      }
513    O << DispVal;
514  }
515  O << "]";
516}
517
518
519/// printImplUsesBefore - Emit the implicit-use registers for the instruction
520/// described by DESC, if its PrintImplUsesBefore flag is set.
521///
522void Printer::printImplUsesBefore(const TargetInstrDescriptor &Desc) {
523  const MRegisterInfo &RI = *TM.getRegisterInfo();
524  if (Desc.TSFlags & X86II::PrintImplUsesBefore) {
525    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
526      // Bug Workaround: See note in Printer::doInitialization about %.
527      O << "%" << RI.get(*p).Name << ", ";
528    }
529  }
530}
531
532/// printImplDefsBefore - Emit the implicit-def registers for the instruction
533/// described by DESC, if its PrintImplUsesBefore flag is set.  Return true if
534/// we printed any registers.
535///
536bool Printer::printImplDefsBefore(const TargetInstrDescriptor &Desc) {
537  bool Printed = false;
538  const MRegisterInfo &RI = *TM.getRegisterInfo();
539  if (Desc.TSFlags & X86II::PrintImplDefsBefore) {
540    const unsigned *p = Desc.ImplicitDefs;
541    if (*p) {
542      O << (Printed ? ", %" : "%") << RI.get (*p).Name;
543      Printed = true;
544      ++p;
545    }
546    while (*p) {
547      // Bug Workaround: See note in Printer::doInitialization about %.
548      O << ", %" << RI.get(*p).Name;
549      ++p;
550    }
551  }
552  return Printed;
553}
554
555
556/// printImplUsesAfter - Emit the implicit-use registers for the instruction
557/// described by DESC, if its PrintImplUsesAfter flag is set.
558///
559/// Inputs:
560///   Comma - List of registers will need a leading comma.
561///   Desc  - Description of the Instruction.
562///
563/// Return value:
564///   true  - Emitted one or more registers.
565///   false - Emitted no registers.
566///
567bool Printer::printImplUsesAfter(const TargetInstrDescriptor &Desc,
568                                 const bool Comma = true) {
569  const MRegisterInfo &RI = *TM.getRegisterInfo();
570  if (Desc.TSFlags & X86II::PrintImplUsesAfter) {
571    bool emitted = false;
572    const unsigned *p = Desc.ImplicitUses;
573    if (*p) {
574      O << (Comma ? ", %" : "%") << RI.get (*p).Name;
575      emitted = true;
576      ++p;
577    }
578    while (*p) {
579      // Bug Workaround: See note in Printer::doInitialization about %.
580      O << ", %" << RI.get(*p).Name;
581      ++p;
582    }
583    return emitted;
584  }
585  return false;
586}
587
588/// printImplDefsAfter - Emit the implicit-definition registers for the
589/// instruction described by DESC, if its PrintImplDefsAfter flag is set.
590///
591/// Inputs:
592///   Comma - List of registers will need a leading comma.
593///   Desc  - Description of the Instruction
594///
595/// Return value:
596///   true  - Emitted one or more registers.
597///   false - Emitted no registers.
598///
599bool Printer::printImplDefsAfter(const TargetInstrDescriptor &Desc,
600                                 const bool Comma = true) {
601  const MRegisterInfo &RI = *TM.getRegisterInfo();
602  if (Desc.TSFlags & X86II::PrintImplDefsAfter) {
603    bool emitted = false;
604    const unsigned *p = Desc.ImplicitDefs;
605    if (*p) {
606      O << (Comma ? ", %" : "%") << RI.get (*p).Name;
607      emitted = true;
608      ++p;
609    }
610    while (*p) {
611      // Bug Workaround: See note in Printer::doInitialization about %.
612      O << ", %" << RI.get(*p).Name;
613      ++p;
614    }
615    return emitted;
616  }
617  return false;
618}
619
620/// printMachineInstruction -- Print out a single X86 LLVM instruction
621/// MI in Intel syntax to the current output stream.
622///
623void Printer::printMachineInstruction(const MachineInstr *MI) {
624  unsigned Opcode = MI->getOpcode();
625  const TargetInstrInfo &TII = *TM.getInstrInfo();
626  const TargetInstrDescriptor &Desc = TII.get(Opcode);
627
628  ++EmittedInsts;
629  switch (Desc.TSFlags & X86II::FormMask) {
630  case X86II::Pseudo:
631    // Print pseudo-instructions as comments; either they should have been
632    // turned into real instructions by now, or they don't need to be
633    // seen by the assembler (e.g., IMPLICIT_USEs.)
634    O << "# ";
635    if (Opcode == X86::PHI) {
636      printOp(MI->getOperand(0));
637      O << " = phi ";
638      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
639        if (i != 1) O << ", ";
640        O << "[";
641        printOp(MI->getOperand(i));
642        O << ", ";
643        printOp(MI->getOperand(i+1));
644        O << "]";
645      }
646    } else {
647      unsigned i = 0;
648      if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
649        printOp(MI->getOperand(0));
650        O << " = ";
651        ++i;
652      }
653      O << TII.getName(MI->getOpcode());
654
655      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
656        O << " ";
657        if (MI->getOperand(i).isDef()) O << "*";
658        printOp(MI->getOperand(i));
659        if (MI->getOperand(i).isDef()) O << "*";
660      }
661    }
662    O << "\n";
663    return;
664
665  case X86II::RawFrm:
666  {
667    // The accepted forms of Raw instructions are:
668    //   1. nop     - No operand required
669    //   2. jmp foo - MachineBasicBlock operand
670    //   3. call bar - GlobalAddress Operand or External Symbol Operand
671    //   4. in AL, imm - Immediate operand
672    //
673    assert(MI->getNumOperands() == 0 ||
674           (MI->getNumOperands() == 1 &&
675            (MI->getOperand(0).isMachineBasicBlock() ||
676             MI->getOperand(0).isGlobalAddress() ||
677             MI->getOperand(0).isExternalSymbol() ||
678             MI->getOperand(0).isImmediate())) &&
679           "Illegal raw instruction!");
680    O << TII.getName(MI->getOpcode()) << " ";
681
682    bool LeadingComma = printImplDefsBefore(Desc);
683
684    if (MI->getNumOperands() == 1) {
685      if (LeadingComma) O << ", ";
686      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
687      LeadingComma = true;
688    }
689    LeadingComma = printImplDefsAfter(Desc, LeadingComma) || LeadingComma;
690    printImplUsesAfter(Desc, LeadingComma);
691    O << "\n";
692    return;
693  }
694
695  case X86II::AddRegFrm: {
696    // There are currently two forms of acceptable AddRegFrm instructions.
697    // Either the instruction JUST takes a single register (like inc, dec, etc),
698    // or it takes a register and an immediate of the same size as the register
699    // (move immediate f.e.).  Note that this immediate value might be stored as
700    // an LLVM value, to represent, for example, loading the address of a global
701    // into a register.  The initial register might be duplicated if this is a
702    // M_2_ADDR_REG instruction
703    //
704    assert(MI->getOperand(0).isRegister() &&
705           (MI->getNumOperands() == 1 ||
706            (MI->getNumOperands() == 2 &&
707             (MI->getOperand(1).getVRegValueOrNull() ||
708              MI->getOperand(1).isImmediate() ||
709              MI->getOperand(1).isRegister() ||
710              MI->getOperand(1).isGlobalAddress() ||
711              MI->getOperand(1).isExternalSymbol()))) &&
712           "Illegal form for AddRegFrm instruction!");
713
714    unsigned Reg = MI->getOperand(0).getReg();
715
716    O << TII.getName(MI->getOpcode()) << " ";
717
718    printImplUsesBefore(Desc);   // fcmov*
719
720    printOp(MI->getOperand(0));
721    if (MI->getNumOperands() == 2 &&
722        (!MI->getOperand(1).isRegister() ||
723         MI->getOperand(1).getVRegValueOrNull() ||
724         MI->getOperand(1).isGlobalAddress() ||
725         MI->getOperand(1).isExternalSymbol())) {
726      O << ", ";
727      printOp(MI->getOperand(1));
728    }
729    printImplUsesAfter(Desc);
730    O << "\n";
731    return;
732  }
733  case X86II::MRMDestReg: {
734    // There are three forms of MRMDestReg instructions, those with 2
735    // or 3 operands:
736    //
737    // 2 Operands: this is for things like mov that do not read a
738    // second input.
739    //
740    // 2 Operands: two address instructions which def&use the first
741    // argument and use the second as input.
742    //
743    // 3 Operands: in this form, two address instructions are the same
744    // as in 2 but have a constant argument as well.
745    //
746    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
747    assert(MI->getOperand(0).isRegister() &&
748           (MI->getNumOperands() == 2 ||
749            (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
750           && "Bad format for MRMDestReg!");
751
752    O << TII.getName(MI->getOpcode()) << " ";
753    printOp(MI->getOperand(0));
754    O << ", ";
755    printOp(MI->getOperand(1));
756    if (MI->getNumOperands() == 3) {
757      O << ", ";
758      printOp(MI->getOperand(2));
759    }
760    printImplUsesAfter(Desc);
761    O << "\n";
762    return;
763  }
764
765  case X86II::MRMDestMem: {
766    // These instructions are the same as MRMDestReg, but instead of having a
767    // register reference for the mod/rm field, it's a memory reference.
768    //
769    assert(isMem(MI, 0) &&
770           (MI->getNumOperands() == 4+1 ||
771            (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
772           && "Bad format for MRMDestMem!");
773
774    O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
775    printMemReference(MI, 0);
776    O << ", ";
777    printOp(MI->getOperand(4));
778    if (MI->getNumOperands() == 4+2) {
779      O << ", ";
780      printOp(MI->getOperand(5));
781    }
782    printImplUsesAfter(Desc);
783    O << "\n";
784    return;
785  }
786
787  case X86II::MRMSrcReg: {
788    // There are three forms that are acceptable for MRMSrcReg
789    // instructions, those with 2 or 3 operands:
790    //
791    // 2 Operands: this is for things like mov that do not read a
792    // second input.
793    //
794    // 2 Operands: in this form, the last register is the ModR/M
795    // input.  The first operand is a def&use.  This is for things
796    // like: add r32, r/m32
797    //
798    // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
799    // for instructions like the IMULrri instructions.
800    //
801    //
802    assert(MI->getOperand(0).isRegister() &&
803           MI->getOperand(1).isRegister() &&
804           (MI->getNumOperands() == 2 ||
805            (MI->getNumOperands() == 3 &&
806             (MI->getOperand(2).isImmediate())))
807           && "Bad format for MRMSrcReg!");
808
809    O << TII.getName(MI->getOpcode()) << " ";
810    printOp(MI->getOperand(0));
811    O << ", ";
812    printOp(MI->getOperand(1));
813    if (MI->getNumOperands() == 3) {
814        O << ", ";
815        printOp(MI->getOperand(2));
816    }
817    O << "\n";
818    return;
819  }
820
821  case X86II::MRMSrcMem: {
822    // These instructions are the same as MRMSrcReg, but instead of having a
823    // register reference for the mod/rm field, it's a memory reference.
824    //
825    assert(MI->getOperand(0).isRegister() &&
826           ((MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
827            (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() &&
828             isMem(MI, 1)))
829           && "Bad format for MRMSrcMem!");
830    O << TII.getName(MI->getOpcode()) << " ";
831    printOp(MI->getOperand(0));
832    O << ", " << sizePtr(Desc) << " ";
833    printMemReference(MI, 1);
834    if (MI->getNumOperands() == 2+4) {
835      O << ", ";
836      printOp(MI->getOperand(5));
837    }
838    O << "\n";
839    return;
840  }
841
842  case X86II::MRM0r: case X86II::MRM1r:
843  case X86II::MRM2r: case X86II::MRM3r:
844  case X86II::MRM4r: case X86II::MRM5r:
845  case X86II::MRM6r: case X86II::MRM7r: {
846    // In this form, the following are valid formats:
847    //  1. sete r
848    //  2. cmp reg, immediate
849    //  2. shl rdest, rinput  <implicit CL or 1>
850    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
851    //
852    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
853           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
854    assert((MI->getNumOperands() != 2 ||
855            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
856           "Bad MRMSxR format!");
857    assert((MI->getNumOperands() < 3 ||
858      (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
859           "Bad MRMSxR format!");
860
861    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
862        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
863      O << "**";
864
865    O << TII.getName(MI->getOpcode()) << " ";
866    printOp(MI->getOperand(0));
867    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
868      O << ", ";
869      printOp(MI->getOperand(MI->getNumOperands()-1));
870    }
871    printImplUsesAfter(Desc);
872    O << "\n";
873
874    return;
875  }
876
877  case X86II::MRM0m: case X86II::MRM1m:
878  case X86II::MRM2m: case X86II::MRM3m:
879  case X86II::MRM4m: case X86II::MRM5m:
880  case X86II::MRM6m: case X86II::MRM7m: {
881    // In this form, the following are valid formats:
882    //  1. sete [m]
883    //  2. cmp [m], immediate
884    //  2. shl [m], rinput  <implicit CL or 1>
885    //  3. sbb [m], immediate
886    //
887    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
888           isMem(MI, 0) && "Bad MRMSxM format!");
889    assert((MI->getNumOperands() != 5 ||
890            (MI->getOperand(4).isImmediate() ||
891             MI->getOperand(4).isGlobalAddress())) &&
892           "Bad MRMSxM format!");
893
894    const MachineOperand &Op3 = MI->getOperand(3);
895
896    // gas bugs:
897    //
898    // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
899    // is misassembled by gas in intel_syntax mode as its 32-bit
900    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
901    // opcode bytes instead of the instruction.
902    //
903    // The 80-bit FP load instruction "fld XWORD PTR [...]" is
904    // misassembled by gas in intel_syntax mode as its 32-bit
905    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
906    // opcode bytes instead of the instruction.
907    //
908    // gas intel_syntax mode treats "fild QWORD PTR [...]" as an
909    // invalid opcode, saying "64 bit operations are only supported in
910    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
911    // [...]", which is wrong. Workaround: Output the raw opcode bytes
912    // instead of the instruction.
913    //
914    // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an
915    // invalid opcode, saying "64 bit operations are only supported in
916    // 64 bit modes." libopcodes disassembles it as "fistpll DWORD PTR
917    // [...]", which is wrong. Workaround: Output the raw opcode bytes
918    // instead of the instruction.
919    if (MI->getOpcode() == X86::FSTP80m ||
920        MI->getOpcode() == X86::FLD80m ||
921        MI->getOpcode() == X86::FILD64m ||
922        MI->getOpcode() == X86::FISTP64m) {
923        GasBugWorkaroundEmitter gwe(O);
924        X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI);
925    }
926
927    O << TII.getName(MI->getOpcode()) << " ";
928    O << sizePtr(Desc) << " ";
929    printMemReference(MI, 0);
930    if (MI->getNumOperands() == 5) {
931      O << ", ";
932      printOp(MI->getOperand(4));
933    }
934    printImplUsesAfter(Desc);
935    O << "\n";
936    return;
937  }
938  default:
939    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, &TM); break;
940  }
941}
942
943bool Printer::doInitialization(Module &M) {
944  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
945  //
946  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
947  // instruction as a reference to the register named sp, and if you try to
948  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
949  // before being looked up in the symbol table. This creates spurious
950  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
951  // mode, and decorate all register names with percent signs.
952  O << "\t.intel_syntax\n";
953  Mang = new Mangler(M, EmitCygwin);
954  return false; // success
955}
956
957// SwitchSection - Switch to the specified section of the executable if we are
958// not already in it!
959//
960static void SwitchSection(std::ostream &OS, std::string &CurSection,
961                          const char *NewSection) {
962  if (CurSection != NewSection) {
963    CurSection = NewSection;
964    if (!CurSection.empty())
965      OS << "\t" << NewSection << "\n";
966  }
967}
968
969bool Printer::doFinalization(Module &M) {
970  const TargetData &TD = TM.getTargetData();
971  std::string CurSection;
972
973  // Print out module-level global variables here.
974  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
975    if (I->hasInitializer()) {   // External global require no code
976      O << "\n\n";
977      std::string name = Mang->getValueName(I);
978      Constant *C = I->getInitializer();
979      unsigned Size = TD.getTypeSize(C->getType());
980      unsigned Align = TD.getTypeAlignment(C->getType());
981
982      if (C->isNullValue() &&
983          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
984           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
985        SwitchSection(O, CurSection, ".data");
986        if (I->hasInternalLinkage())
987          O << "\t.local " << name << "\n";
988
989        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
990          << "," << (unsigned)TD.getTypeAlignment(C->getType());
991        O << "\t\t# ";
992        WriteAsOperand(O, I, true, true, &M);
993        O << "\n";
994      } else {
995        switch (I->getLinkage()) {
996        case GlobalValue::LinkOnceLinkage:
997        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
998          // Nonnull linkonce -> weak
999          O << "\t.weak " << name << "\n";
1000          SwitchSection(O, CurSection, "");
1001          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
1002          break;
1003
1004        case GlobalValue::AppendingLinkage:
1005          // FIXME: appending linkage variables should go into a section of
1006          // their name or something.  For now, just emit them as external.
1007        case GlobalValue::ExternalLinkage:
1008          // If external or appending, declare as a global symbol
1009          O << "\t.globl " << name << "\n";
1010          // FALL THROUGH
1011        case GlobalValue::InternalLinkage:
1012          if (C->isNullValue())
1013            SwitchSection(O, CurSection, ".bss");
1014          else
1015            SwitchSection(O, CurSection, ".data");
1016          break;
1017        }
1018
1019        O << "\t.align " << Align << "\n";
1020        O << "\t.type " << name << ",@object\n";
1021        O << "\t.size " << name << "," << Size << "\n";
1022        O << name << ":\t\t\t\t# ";
1023        WriteAsOperand(O, I, true, true, &M);
1024        O << " = ";
1025        WriteAsOperand(O, C, false, false, &M);
1026        O << "\n";
1027        emitGlobalConstant(C);
1028      }
1029    }
1030
1031  delete Mang;
1032  return false; // success
1033}
1034