X86AsmPrinter.cpp revision b44210d768fa677d63e5b1e098148bcddb2c92ff
1//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
2//
3// This file contains a printer that converts from our internal representation
4// of LLVM code to a nice human readable form that is suitable for debugging.
5//
6//===----------------------------------------------------------------------===//
7
8#include "X86.h"
9#include "X86InstrInfo.h"
10#include "llvm/Function.h"
11#include "llvm/Constant.h"
12#include "llvm/Target/TargetMachine.h"
13#include "llvm/CodeGen/MachineFunctionPass.h"
14#include "llvm/CodeGen/MachineConstantPool.h"
15#include "llvm/CodeGen/MachineInstr.h"
16#include "Support/Statistic.h"
17#include "Support/hash_map"
18#include "llvm/Type.h"
19#include "llvm/Constants.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/SlotCalculator.h"
23#include "Support/StringExtras.h"
24#include "llvm/Module.h"
25
26namespace {
27  std::set<const Value *> MangledGlobals;
28  struct Printer : public MachineFunctionPass {
29    std::ostream &O;
30    typedef std::map<const Value *, unsigned> ValueMapTy;
31    ValueMapTy NumberForBB;
32    Printer(std::ostream &o) : O(o) {}
33    const TargetData *TD;
34    std::string CurrentFnName;
35    virtual const char *getPassName() const {
36      return "X86 Assembly Printer";
37    }
38
39    void printMachineInstruction(const MachineInstr *MI, std::ostream &O,
40				 const TargetMachine &TM) const;
41    void printOp(std::ostream &O, const MachineOperand &MO,
42		 const MRegisterInfo &RI, bool elideOffsetKeyword = false) const;
43    void printMemReference(std::ostream &O, const MachineInstr *MI,
44			   unsigned Op,
45			   const MRegisterInfo &RI) const;
46    void printConstantPool(MachineConstantPool *MCP);
47    bool runOnMachineFunction(MachineFunction &F);
48    std::string ConstantExprToString(const ConstantExpr* CE);
49    std::string valToExprString(const Value* V);
50    bool doInitialization(Module &M);
51    bool doFinalization(Module &M);
52    void PrintZeroBytesToPad(int numBytes);
53    void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
54    void printSingleConstantValue(const Constant* CV);
55  };
56} // end of anonymous namespace
57
58/// createX86CodePrinterPass - Print out the specified machine code function to
59/// the specified stream.  This function should work regardless of whether or
60/// not the function is in SSA form or not.
61///
62Pass *createX86CodePrinterPass(std::ostream &O) {
63  return new Printer(O);
64}
65
66// We don't want identifier names with ., space, or - in them,
67// so we replace them with underscores.
68static std::string makeNameProper(std::string x) {
69  std::string tmp;
70  for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
71    switch (*sI) {
72    case '.': tmp += "d_"; break;
73    case ' ': tmp += "s_"; break;
74    case '-': tmp += "D_"; break;
75    default:  tmp += *sI;
76    }
77  return tmp;
78}
79
80static std::string getValueName(const Value *V) {
81  if (V->hasName()) { // Print out the label if it exists...
82    // Name mangling occurs as follows:
83    // - If V is not a global, mangling always occurs.
84    // - Otherwise, mangling occurs when any of the following are true:
85    //   1) V has internal linkage
86    //   2) V's name would collide if it is not mangled.
87    //
88    if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) {
89      if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
90        // No internal linkage, name will not collide -> no mangling.
91        return makeNameProper(gv->getName());
92      }
93    }
94    // Non-global, or global with internal linkage / colliding name -> mangle.
95    return "l" + utostr(V->getType()->getUniqueID()) + "_" +
96      makeNameProper(V->getName());
97  }
98  static int Count = 0;
99  Count++;
100  return "ltmp_" + itostr(Count) + "_" + utostr(V->getType()->getUniqueID());
101}
102
103// valToExprString - Helper function for ConstantExprToString().
104// Appends result to argument string S.
105//
106std::string Printer::valToExprString(const Value* V) {
107  std::string S;
108  bool failed = false;
109  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
110    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
111      S += std::string(CB == ConstantBool::True ? "1" : "0");
112    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
113      S += itostr(CI->getValue());
114    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
115      S += utostr(CI->getValue());
116    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
117      S += ftostr(CFP->getValue());
118    else if (isa<ConstantPointerNull>(CV))
119      S += "0";
120    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
121      S += valToExprString(CPR->getValue());
122    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
123      S += ConstantExprToString(CE);
124    else
125      failed = true;
126  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
127    S += getValueName(GV);
128  }
129  else
130    failed = true;
131
132  if (failed) {
133    assert(0 && "Cannot convert value to string");
134    S += "<illegal-value>";
135  }
136  return S;
137}
138
139// ConstantExprToString() - Convert a ConstantExpr to an asm expression
140// and return this as a string.
141std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
142  std::string S;
143  switch(CE->getOpcode()) {
144  case Instruction::GetElementPtr:
145    { // generate a symbolic expression for the byte address
146      const Value* ptrVal = CE->getOperand(0);
147      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
148      S += "(" + valToExprString(ptrVal) + ") + ("
149	+ utostr(TD->getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
150      break;
151    }
152
153  case Instruction::Cast:
154    // Support only non-converting casts for now, i.e., a no-op.
155    // This assertion is not a complete check.
156    assert(TD->getTypeSize(CE->getType()) ==
157	   TD->getTypeSize(CE->getOperand(0)->getType()));
158    S += "(" + valToExprString(CE->getOperand(0)) + ")";
159    break;
160
161  case Instruction::Add:
162    S += "(" + valToExprString(CE->getOperand(0)) + ") + ("
163      + valToExprString(CE->getOperand(1)) + ")";
164    break;
165
166  default:
167    assert(0 && "Unsupported operator in ConstantExprToString()");
168    break;
169  }
170
171  return S;
172}
173
174// Print a single constant value.
175void
176Printer::printSingleConstantValue(const Constant* CV)
177{
178  assert(CV->getType() != Type::VoidTy &&
179         CV->getType() != Type::TypeTy &&
180         CV->getType() != Type::LabelTy &&
181         "Unexpected type for Constant");
182
183  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
184         && "Aggregate types should be handled outside this function");
185
186  const Type *type = CV->getType();
187  O << "\t";
188  switch(type->getPrimitiveID())
189    {
190    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
191      O << ".byte";
192      break;
193    case Type::UShortTyID: case Type::ShortTyID:
194      O << ".word";
195      break;
196    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
197      O << ".long";
198      break;
199    case Type::ULongTyID: case Type::LongTyID:
200      O << ".quad";
201      break;
202    case Type::FloatTyID:
203      O << ".long";
204      break;
205    case Type::DoubleTyID:
206      O << ".quad";
207      break;
208    case Type::ArrayTyID:
209      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
210	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
211	O << ".string";
212      else
213	assert (0 && "Can't handle printing this type of array");
214      break;
215    default:
216      assert (0 && "Can't handle printing this type of thing");
217      break;
218    }
219  O << "\t";
220
221  if (type->isPrimitiveType())
222    {
223      if (type->isFloatingPoint()) {
224	// FP Constants are printed as integer constants to avoid losing
225	// precision...
226	double Val = cast<ConstantFP>(CV)->getValue();
227	if (type == Type::FloatTy) {
228	  float FVal = (float)Val;
229	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
230	  O << *(unsigned int*)ProxyPtr;
231	} else if (type == Type::DoubleTy) {
232	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
233	  O << *(uint64_t*)ProxyPtr;
234	} else {
235	  assert(0 && "Unknown floating point type!");
236	}
237
238	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
239      } else {
240	WriteAsOperand(O, CV, false, false) << "\n";
241      }
242    }
243  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
244    {
245      // This is a constant address for a global variable or method.
246      // Use the name of the variable or method as the address value.
247      O << getValueName(CPR->getValue()) << "\n";
248    }
249  else if (isa<ConstantPointerNull>(CV))
250    {
251      // Null pointer value
252      O << "0\n";
253    }
254  else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
255    {
256      // Constant expression built from operators, constants, and
257      // symbolic addrs
258      O << ConstantExprToString(CE) << "\n";
259    }
260  else
261    {
262      assert(0 && "Unknown elementary type for constant");
263    }
264}
265
266// Can we treat the specified array as a string?  Only if it is an array of
267// ubytes or non-negative sbytes.
268//
269static bool isStringCompatible(const ConstantArray *CVA) {
270  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
271  if (ETy == Type::UByteTy) return true;
272  if (ETy != Type::SByteTy) return false;
273
274  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
275    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
276      return false;
277
278  return true;
279}
280
281// toOctal - Convert the low order bits of X into an octal letter
282static inline char toOctal(int X) {
283  return (X&7)+'0';
284}
285
286// getAsCString - Return the specified array as a C compatible string, only if
287// the predicate isStringCompatible is true.
288//
289static std::string getAsCString(const ConstantArray *CVA) {
290  assert(isStringCompatible(CVA) && "Array is not string compatible!");
291
292  std::string Result;
293  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
294  Result = "\"";
295  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
296    unsigned char C = (ETy == Type::SByteTy) ?
297      (unsigned char)cast<ConstantSInt>(CVA->getOperand(i))->getValue() :
298      (unsigned char)cast<ConstantUInt>(CVA->getOperand(i))->getValue();
299
300    if (C == '"') {
301      Result += "\\\"";
302    } else if (C == '\\') {
303      Result += "\\\\";
304    } else if (isprint(C)) {
305      Result += C;
306    } else {
307      switch(C) {
308      case '\a': Result += "\\a"; break;
309      case '\b': Result += "\\b"; break;
310      case '\f': Result += "\\f"; break;
311      case '\n': Result += "\\n"; break;
312      case '\r': Result += "\\r"; break;
313      case '\t': Result += "\\t"; break;
314      case '\v': Result += "\\v"; break;
315      default:
316        Result += '\\';
317        Result += toOctal(C >> 6);
318        Result += toOctal(C >> 3);
319        Result += toOctal(C >> 0);
320        break;
321      }
322    }
323  }
324  Result += "\"";
325  return Result;
326}
327
328// Print a constant value or values (it may be an aggregate).
329// Uses printSingleConstantValue() to print each individual value.
330void
331Printer::printConstantValueOnly(const Constant* CV,
332				int numPadBytesAfter /* = 0 */)
333{
334  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
335
336  if (CVA && isStringCompatible(CVA))
337    { // print the string alone and return
338      O << "\t" << ".string" << "\t" << getAsCString(CVA) << "\n";
339    }
340  else if (CVA)
341    { // Not a string.  Print the values in successive locations
342      const std::vector<Use> &constValues = CVA->getValues();
343      for (unsigned i=0; i < constValues.size(); i++)
344        printConstantValueOnly(cast<Constant>(constValues[i].get()));
345    }
346  else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
347    { // Print the fields in successive locations. Pad to align if needed!
348      const StructLayout *cvsLayout =
349        TD->getStructLayout(CVS->getType());
350      const std::vector<Use>& constValues = CVS->getValues();
351      unsigned sizeSoFar = 0;
352      for (unsigned i=0, N = constValues.size(); i < N; i++)
353        {
354          const Constant* field = cast<Constant>(constValues[i].get());
355
356          // Check if padding is needed and insert one or more 0s.
357          unsigned fieldSize = TD->getTypeSize(field->getType());
358          int padSize = ((i == N-1? cvsLayout->StructSize
359			  : cvsLayout->MemberOffsets[i+1])
360                         - cvsLayout->MemberOffsets[i]) - fieldSize;
361          sizeSoFar += (fieldSize + padSize);
362
363          // Now print the actual field value
364          printConstantValueOnly(field, padSize);
365        }
366      assert(sizeSoFar == cvsLayout->StructSize &&
367             "Layout of constant struct may be incorrect!");
368    }
369  else
370    printSingleConstantValue(CV);
371
372  if (numPadBytesAfter) {
373    unsigned numBytes = numPadBytesAfter;
374    for ( ; numBytes >= 8; numBytes -= 8)
375      printSingleConstantValue(Constant::getNullValue(Type::ULongTy));
376    if (numBytes >= 4)
377      {
378	printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
379	numBytes -= 4;
380      }
381    while (numBytes--)
382      printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
383  }
384}
385
386// printConstantPool - Print out any constants which have been spilled to
387// memory...
388void Printer::printConstantPool(MachineConstantPool *MCP){
389  const std::vector<Constant*> &CP = MCP->getConstants();
390  if (CP.empty()) return;
391
392  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
393    O << "\t.section .rodata\n";
394    O << "\t.align " << (unsigned)TD->getTypeAlignment(CP[i]->getType())
395      << "\n";
396    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
397      << *CP[i] << "\n";
398    printConstantValueOnly (CP[i]);
399  }
400}
401
402/// runOnMachineFunction - This uses the X86InstructionInfo::print method
403/// to print assembly for each instruction.
404bool Printer::runOnMachineFunction(MachineFunction &MF) {
405  static unsigned BBNumber = 0;
406  const TargetMachine &TM = MF.getTarget();
407  const TargetInstrInfo &TII = TM.getInstrInfo();
408  TD = &TM.getTargetData();
409
410  // What's my mangled name?
411  CurrentFnName = getValueName(MF.getFunction());
412
413  // Print out constants referenced by the function
414  printConstantPool(MF.getConstantPool());
415
416  // Print out labels for the function.
417  O << "\t.text\n";
418  O << "\t.align 16\n";
419  O << "\t.globl\t" << CurrentFnName << "\n";
420  O << "\t.type\t" << CurrentFnName << ", @function\n";
421  O << CurrentFnName << ":\n";
422
423  // Number each basic block so that we can consistently refer to them
424  // in PC-relative references.
425  NumberForBB.clear();
426  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
427       I != E; ++I) {
428    NumberForBB[I->getBasicBlock()] = BBNumber++;
429  }
430
431  // Print out code for the function.
432  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
433       I != E; ++I) {
434    // Print a label for the basic block.
435    O << ".BB" << NumberForBB[I->getBasicBlock()] << ":\t# "
436      << I->getBasicBlock()->getName() << "\n";
437    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
438	 II != E; ++II) {
439      // Print the assembly for the instruction.
440      O << "\t";
441      printMachineInstruction(*II, O, TM);
442    }
443  }
444
445  // We didn't modify anything.
446  return false;
447}
448
449static bool isScale(const MachineOperand &MO) {
450  return MO.isImmediate() &&
451    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
452     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
453}
454
455static bool isMem(const MachineInstr *MI, unsigned Op) {
456  if (MI->getOperand(Op).isFrameIndex()) return true;
457  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
458  return Op+4 <= MI->getNumOperands() &&
459    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
460    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
461}
462
463void Printer::printOp(std::ostream &O, const MachineOperand &MO,
464		      const MRegisterInfo &RI,
465		      bool elideOffsetKeyword /* = false */) const {
466  switch (MO.getType()) {
467  case MachineOperand::MO_VirtualRegister:
468    if (Value *V = MO.getVRegValueOrNull()) {
469      O << "<" << V->getName() << ">";
470      return;
471    }
472    // FALLTHROUGH
473  case MachineOperand::MO_MachineRegister:
474    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
475      O << RI.get(MO.getReg()).Name;
476    else
477      O << "%reg" << MO.getReg();
478    return;
479
480  case MachineOperand::MO_SignExtendedImmed:
481  case MachineOperand::MO_UnextendedImmed:
482    O << (int)MO.getImmedValue();
483    return;
484  case MachineOperand::MO_PCRelativeDisp:
485    {
486      ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
487      assert (i != NumberForBB.end()
488	      && "Could not find a BB I previously put in the NumberForBB map!");
489      O << ".BB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
490    }
491    return;
492  case MachineOperand::MO_GlobalAddress:
493    if (!elideOffsetKeyword) O << "OFFSET "; O << getValueName(MO.getGlobal());
494    return;
495  case MachineOperand::MO_ExternalSymbol:
496    O << MO.getSymbolName();
497    return;
498  default:
499    O << "<unknown operand type>"; return;
500  }
501}
502
503static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
504  switch (Desc.TSFlags & X86II::ArgMask) {
505  default: assert(0 && "Unknown arg size!");
506  case X86II::Arg8:   return "BYTE PTR";
507  case X86II::Arg16:  return "WORD PTR";
508  case X86II::Arg32:  return "DWORD PTR";
509  case X86II::Arg64:  return "QWORD PTR";
510  case X86II::ArgF32:  return "DWORD PTR";
511  case X86II::ArgF64:  return "QWORD PTR";
512  case X86II::ArgF80:  return "XWORD PTR";
513  }
514}
515
516void Printer::printMemReference(std::ostream &O, const MachineInstr *MI,
517				unsigned Op,
518				const MRegisterInfo &RI) const {
519  assert(isMem(MI, Op) && "Invalid memory reference!");
520
521  if (MI->getOperand(Op).isFrameIndex()) {
522    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
523    if (MI->getOperand(Op+3).getImmedValue())
524      O << " + " << MI->getOperand(Op+3).getImmedValue();
525    O << "]";
526    return;
527  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
528    O << "[.CPI" << CurrentFnName << "_"
529      << MI->getOperand(Op).getConstantPoolIndex();
530    if (MI->getOperand(Op+3).getImmedValue())
531      O << " + " << MI->getOperand(Op+3).getImmedValue();
532    O << "]";
533    return;
534  }
535
536  const MachineOperand &BaseReg  = MI->getOperand(Op);
537  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
538  const MachineOperand &IndexReg = MI->getOperand(Op+2);
539  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
540
541  O << "[";
542  bool NeedPlus = false;
543  if (BaseReg.getReg()) {
544    printOp(O, BaseReg, RI);
545    NeedPlus = true;
546  }
547
548  if (IndexReg.getReg()) {
549    if (NeedPlus) O << " + ";
550    if (ScaleVal != 1)
551      O << ScaleVal << "*";
552    printOp(O, IndexReg, RI);
553    NeedPlus = true;
554  }
555
556  if (DispVal) {
557    if (NeedPlus)
558      if (DispVal > 0)
559	O << " + ";
560      else {
561	O << " - ";
562	DispVal = -DispVal;
563      }
564    O << DispVal;
565  }
566  O << "]";
567}
568
569/// printMachineInstruction -- Print out an x86 instruction in intel syntax
570///
571void Printer::printMachineInstruction(const MachineInstr *MI, std::ostream &O,
572				      const TargetMachine &TM) const {
573  unsigned Opcode = MI->getOpcode();
574  const TargetInstrInfo &TII = TM.getInstrInfo();
575  const TargetInstrDescriptor &Desc = TII.get(Opcode);
576  const MRegisterInfo &RI = *TM.getRegisterInfo();
577
578  switch (Desc.TSFlags & X86II::FormMask) {
579  case X86II::Pseudo:
580    // Print pseudo-instructions as comments; either they should have been
581    // turned into real instructions by now, or they don't need to be
582    // seen by the assembler (e.g., IMPLICIT_USEs.)
583    O << "# ";
584    if (Opcode == X86::PHI) {
585      printOp(O, MI->getOperand(0), RI);
586      O << " = phi ";
587      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
588	if (i != 1) O << ", ";
589	O << "[";
590	printOp(O, MI->getOperand(i), RI);
591	O << ", ";
592	printOp(O, MI->getOperand(i+1), RI);
593	O << "]";
594      }
595    } else {
596      unsigned i = 0;
597      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
598                                   MI->getOperand(0).opIsDefAndUse())) {
599	printOp(O, MI->getOperand(0), RI);
600	O << " = ";
601	++i;
602      }
603      O << TII.getName(MI->getOpcode());
604
605      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
606	O << " ";
607	if (MI->getOperand(i).opIsDefOnly() ||
608            MI->getOperand(i).opIsDefAndUse()) O << "*";
609	printOp(O, MI->getOperand(i), RI);
610	if (MI->getOperand(i).opIsDefOnly() ||
611            MI->getOperand(i).opIsDefAndUse()) O << "*";
612      }
613    }
614    O << "\n";
615    return;
616
617  case X86II::RawFrm:
618    // The accepted forms of Raw instructions are:
619    //   1. nop     - No operand required
620    //   2. jmp foo - PC relative displacement operand
621    //   3. call bar - GlobalAddress Operand or External Symbol Operand
622    //
623    assert(MI->getNumOperands() == 0 ||
624           (MI->getNumOperands() == 1 &&
625	    (MI->getOperand(0).isPCRelativeDisp() ||
626	     MI->getOperand(0).isGlobalAddress() ||
627	     MI->getOperand(0).isExternalSymbol())) &&
628           "Illegal raw instruction!");
629    O << TII.getName(MI->getOpcode()) << " ";
630
631    if (MI->getNumOperands() == 1) {
632      printOp(O, MI->getOperand(0), RI, true); // Don't print "OFFSET"...
633    }
634    O << "\n";
635    return;
636
637  case X86II::AddRegFrm: {
638    // There are currently two forms of acceptable AddRegFrm instructions.
639    // Either the instruction JUST takes a single register (like inc, dec, etc),
640    // or it takes a register and an immediate of the same size as the register
641    // (move immediate f.e.).  Note that this immediate value might be stored as
642    // an LLVM value, to represent, for example, loading the address of a global
643    // into a register.  The initial register might be duplicated if this is a
644    // M_2_ADDR_REG instruction
645    //
646    assert(MI->getOperand(0).isRegister() &&
647           (MI->getNumOperands() == 1 ||
648            (MI->getNumOperands() == 2 &&
649             (MI->getOperand(1).getVRegValueOrNull() ||
650              MI->getOperand(1).isImmediate() ||
651	      MI->getOperand(1).isRegister() ||
652	      MI->getOperand(1).isGlobalAddress() ||
653	      MI->getOperand(1).isExternalSymbol()))) &&
654           "Illegal form for AddRegFrm instruction!");
655
656    unsigned Reg = MI->getOperand(0).getReg();
657
658    O << TII.getName(MI->getOpCode()) << " ";
659    printOp(O, MI->getOperand(0), RI);
660    if (MI->getNumOperands() == 2 &&
661	(!MI->getOperand(1).isRegister() ||
662	 MI->getOperand(1).getVRegValueOrNull() ||
663	 MI->getOperand(1).isGlobalAddress() ||
664	 MI->getOperand(1).isExternalSymbol())) {
665      O << ", ";
666      printOp(O, MI->getOperand(1), RI);
667    }
668    O << "\n";
669    return;
670  }
671  case X86II::MRMDestReg: {
672    // There are two acceptable forms of MRMDestReg instructions, those with 2,
673    // 3 and 4 operands:
674    //
675    // 2 Operands: this is for things like mov that do not read a second input
676    //
677    // 3 Operands: in this form, the first two registers (the destination, and
678    // the first operand) should be the same, post register allocation.  The 3rd
679    // operand is an additional input.  This should be for things like add
680    // instructions.
681    //
682    // 4 Operands: This form is for instructions which are 3 operands forms, but
683    // have a constant argument as well.
684    //
685    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
686    assert(MI->getOperand(0).isRegister() &&
687           (MI->getNumOperands() == 2 ||
688	    (isTwoAddr && MI->getOperand(1).isRegister() &&
689	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
690	     (MI->getNumOperands() == 3 ||
691	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
692           && "Bad format for MRMDestReg!");
693
694    O << TII.getName(MI->getOpCode()) << " ";
695    printOp(O, MI->getOperand(0), RI);
696    O << ", ";
697    printOp(O, MI->getOperand(1+isTwoAddr), RI);
698    if (MI->getNumOperands() == 4) {
699      O << ", ";
700      printOp(O, MI->getOperand(3), RI);
701    }
702    O << "\n";
703    return;
704  }
705
706  case X86II::MRMDestMem: {
707    // These instructions are the same as MRMDestReg, but instead of having a
708    // register reference for the mod/rm field, it's a memory reference.
709    //
710    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
711           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
712
713    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
714    printMemReference(O, MI, 0, RI);
715    O << ", ";
716    printOp(O, MI->getOperand(4), RI);
717    O << "\n";
718    return;
719  }
720
721  case X86II::MRMSrcReg: {
722    // There is a two forms that are acceptable for MRMSrcReg instructions,
723    // those with 3 and 2 operands:
724    //
725    // 3 Operands: in this form, the last register (the second input) is the
726    // ModR/M input.  The first two operands should be the same, post register
727    // allocation.  This is for things like: add r32, r/m32
728    //
729    // 2 Operands: this is for things like mov that do not read a second input
730    //
731    assert(MI->getOperand(0).isRegister() &&
732           MI->getOperand(1).isRegister() &&
733           (MI->getNumOperands() == 2 ||
734            (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
735           && "Bad format for MRMSrcReg!");
736    if (MI->getNumOperands() == 3 &&
737        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
738      O << "**";
739
740    O << TII.getName(MI->getOpCode()) << " ";
741    printOp(O, MI->getOperand(0), RI);
742    O << ", ";
743    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
744    O << "\n";
745    return;
746  }
747
748  case X86II::MRMSrcMem: {
749    // These instructions are the same as MRMSrcReg, but instead of having a
750    // register reference for the mod/rm field, it's a memory reference.
751    //
752    assert(MI->getOperand(0).isRegister() &&
753           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
754           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
755            isMem(MI, 2))
756           && "Bad format for MRMDestReg!");
757    if (MI->getNumOperands() == 2+4 &&
758        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
759      O << "**";
760
761    O << TII.getName(MI->getOpCode()) << " ";
762    printOp(O, MI->getOperand(0), RI);
763    O << ", " << sizePtr(Desc) << " ";
764    printMemReference(O, MI, MI->getNumOperands()-4, RI);
765    O << "\n";
766    return;
767  }
768
769  case X86II::MRMS0r: case X86II::MRMS1r:
770  case X86II::MRMS2r: case X86II::MRMS3r:
771  case X86II::MRMS4r: case X86II::MRMS5r:
772  case X86II::MRMS6r: case X86II::MRMS7r: {
773    // In this form, the following are valid formats:
774    //  1. sete r
775    //  2. cmp reg, immediate
776    //  2. shl rdest, rinput  <implicit CL or 1>
777    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
778    //
779    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
780           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
781    assert((MI->getNumOperands() != 2 ||
782            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
783           "Bad MRMSxR format!");
784    assert((MI->getNumOperands() < 3 ||
785	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
786           "Bad MRMSxR format!");
787
788    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
789        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
790      O << "**";
791
792    O << TII.getName(MI->getOpCode()) << " ";
793    printOp(O, MI->getOperand(0), RI);
794    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
795      O << ", ";
796      printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
797    }
798    if (Desc.TSFlags & X86II::PrintImplUses) {
799      for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
800	O << ", " << RI.get(*p).Name;
801      }
802    }
803    O << "\n";
804
805    return;
806  }
807
808  case X86II::MRMS0m: case X86II::MRMS1m:
809  case X86II::MRMS2m: case X86II::MRMS3m:
810  case X86II::MRMS4m: case X86II::MRMS5m:
811  case X86II::MRMS6m: case X86II::MRMS7m: {
812    // In this form, the following are valid formats:
813    //  1. sete [m]
814    //  2. cmp [m], immediate
815    //  2. shl [m], rinput  <implicit CL or 1>
816    //  3. sbb [m], immediate
817    //
818    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
819           isMem(MI, 0) && "Bad MRMSxM format!");
820    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
821           "Bad MRMSxM format!");
822    // Work around GNU assembler bugs in FSTP and FLD.
823    if (MI->getOpCode() == X86::FSTPr80) {
824      if ((MI->getOperand(0).getReg() == X86::ESP)
825	  && (MI->getOperand(1).getImmedValue() == 1)) {
826	int DispVal = MI->getOperand(3).getImmedValue();
827	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
828          unsigned int val = (unsigned int) DispVal;
829          O << ".byte 0xdb, 0xbc, 0x24\n\t";
830          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
831	} else { // 1 byte disp.
832          unsigned char val = (unsigned char) DispVal;
833          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
834            << std::dec << "\t# ";
835	}
836      }
837    } else if (MI->getOpCode() == X86::FLDr80) {
838      if ((MI->getOperand(0).getReg() == X86::ESP)
839          && (MI->getOperand(1).getImmedValue() == 1)) {
840	int DispVal = MI->getOperand(3).getImmedValue();
841	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
842          unsigned int val = (unsigned int) DispVal;
843          O << ".byte 0xdb, 0xac, 0x24\n\t";
844          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
845	} else { // 1 byte disp.
846          unsigned char val = (unsigned char) DispVal;
847          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
848            << std::dec << "\t# ";
849	}
850      }
851    }
852    O << TII.getName(MI->getOpCode()) << " ";
853    O << sizePtr(Desc) << " ";
854    printMemReference(O, MI, 0, RI);
855    if (MI->getNumOperands() == 5) {
856      O << ", ";
857      printOp(O, MI->getOperand(4), RI);
858    }
859    O << "\n";
860    return;
861  }
862
863  default:
864    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
865  }
866}
867
868bool Printer::doInitialization(Module &M)
869{
870  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly,
871  // with no % decorations on register names.
872  O << "\t.intel_syntax noprefix\n";
873
874  // Ripped from CWriter:
875  // Calculate which global values have names that will collide when we throw
876  // away type information.
877  {  // Scope to delete the FoundNames set when we are done with it...
878    std::set<std::string> FoundNames;
879    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
880      if (I->hasName())                      // If the global has a name...
881        if (FoundNames.count(I->getName()))  // And the name is already used
882          MangledGlobals.insert(I);          // Mangle the name
883        else
884          FoundNames.insert(I->getName());   // Otherwise, keep track of name
885
886    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
887      if (I->hasName())                      // If the global has a name...
888        if (FoundNames.count(I->getName()))  // And the name is already used
889          MangledGlobals.insert(I);          // Mangle the name
890        else
891          FoundNames.insert(I->getName());   // Otherwise, keep track of name
892  }
893
894  return false; // success
895}
896
897bool Printer::doFinalization(Module &M)
898{
899  // Print out module-level global variables here.
900  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
901    std::string name(getValueName(I));
902    if (I->hasInitializer()) {
903      Constant *C = I->getInitializer();
904      O << "\t.data\n";
905      O << "\t.globl " << name << "\n";
906      O << "\t.type " << name << ",@object\n";
907      O << "\t.size " << name << ","
908	<< (unsigned)TD->getTypeSize(I->getType()) << "\n";
909      O << "\t.align " << (unsigned)TD->getTypeAlignment(C->getType()) << "\n";
910      O << name << ":\t\t\t\t\t#" << *C << "\n";
911      printConstantValueOnly (C);
912    } else {
913      O << "\t.globl " << name << "\n";
914      O << "\t.comm " << name << ", "
915        << (unsigned)TD->getTypeSize(I->getType()) << ", "
916        << (unsigned)TD->getTypeAlignment(I->getType()) << "\n";
917    }
918  }
919  MangledGlobals.clear();
920  return false; // success
921}
922
923
924