X86AsmPrinter.cpp revision c07736a397012499e337c994f7f952b07c709544
1//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
2//
3// This file contains a printer that converts from our internal representation
4// of LLVM code to a nice human readable form that is suitable for debugging.
5//
6//===----------------------------------------------------------------------===//
7
8#include "X86.h"
9#include "X86InstrInfo.h"
10#include "llvm/Function.h"
11#include "llvm/Constant.h"
12#include "llvm/Target/TargetMachine.h"
13#include "llvm/CodeGen/MachineFunctionPass.h"
14#include "llvm/CodeGen/MachineConstantPool.h"
15#include "llvm/CodeGen/MachineInstr.h"
16#include "Support/Statistic.h"
17#include "Support/hash_map"
18#include "llvm/Type.h"
19#include "llvm/Constants.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/SlotCalculator.h"
23#include "Support/StringExtras.h"
24#include "llvm/Module.h"
25
26namespace {
27  std::set<const Value *> MangledGlobals;
28  struct Printer : public MachineFunctionPass {
29    std::ostream &O;
30    typedef std::map<const Value *, unsigned> ValueMapTy;
31    ValueMapTy NumberForBB;
32    Printer(std::ostream &o) : O(o) {}
33    const TargetData *TD;
34    std::string CurrentFnName;
35    virtual const char *getPassName() const {
36      return "X86 Assembly Printer";
37    }
38
39    void printMachineInstruction(const MachineInstr *MI, std::ostream &O,
40				 const TargetMachine &TM) const;
41    void printOp(std::ostream &O, const MachineOperand &MO,
42		 const MRegisterInfo &RI, bool elideOffsetKeyword = false) const;
43    void printMemReference(std::ostream &O, const MachineInstr *MI,
44			   unsigned Op,
45			   const MRegisterInfo &RI) const;
46    void printConstantPool(MachineConstantPool *MCP);
47    bool runOnMachineFunction(MachineFunction &F);
48    std::string ConstantExprToString(const ConstantExpr* CE);
49    std::string valToExprString(const Value* V);
50    bool doInitialization(Module &M);
51    bool doFinalization(Module &M);
52    void PrintZeroBytesToPad(int numBytes);
53    void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
54    void printSingleConstantValue(const Constant* CV);
55  };
56} // end of anonymous namespace
57
58/// createX86CodePrinterPass - Print out the specified machine code function to
59/// the specified stream.  This function should work regardless of whether or
60/// not the function is in SSA form or not.
61///
62Pass *createX86CodePrinterPass(std::ostream &O) {
63  return new Printer(O);
64}
65
66// We don't want identifier names with ., space, or - in them,
67// so we replace them with underscores.
68static std::string makeNameProper(std::string x) {
69  std::string tmp;
70  for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
71    switch (*sI) {
72    case '.': tmp += "d_"; break;
73    case ' ': tmp += "s_"; break;
74    case '-': tmp += "D_"; break;
75    default:  tmp += *sI;
76    }
77  return tmp;
78}
79
80static std::string getValueName(const Value *V) {
81  if (V->hasName()) { // Print out the label if it exists...
82    // Name mangling occurs as follows:
83    // - If V is not a global, mangling always occurs.
84    // - Otherwise, mangling occurs when any of the following are true:
85    //   1) V has internal linkage
86    //   2) V's name would collide if it is not mangled.
87    //
88    if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) {
89      if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
90        // No internal linkage, name will not collide -> no mangling.
91        return makeNameProper(gv->getName());
92      }
93    }
94    // Non-global, or global with internal linkage / colliding name -> mangle.
95    return "l" + utostr(V->getType()->getUniqueID()) + "_" +
96      makeNameProper(V->getName());
97  }
98  static int Count = 0;
99  Count++;
100  return "ltmp_" + itostr(Count) + "_" + utostr(V->getType()->getUniqueID());
101}
102
103// valToExprString - Helper function for ConstantExprToString().
104// Appends result to argument string S.
105//
106std::string Printer::valToExprString(const Value* V) {
107  std::string S;
108  bool failed = false;
109  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
110    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
111      S += std::string(CB == ConstantBool::True ? "1" : "0");
112    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
113      S += itostr(CI->getValue());
114    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
115      S += utostr(CI->getValue());
116    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
117      S += ftostr(CFP->getValue());
118    else if (isa<ConstantPointerNull>(CV))
119      S += "0";
120    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
121      S += valToExprString(CPR->getValue());
122    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
123      S += ConstantExprToString(CE);
124    else
125      failed = true;
126  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
127    S += getValueName(GV);
128  }
129  else
130    failed = true;
131
132  if (failed) {
133    assert(0 && "Cannot convert value to string");
134    S += "<illegal-value>";
135  }
136  return S;
137}
138
139// ConstantExprToString() - Convert a ConstantExpr to an asm expression
140// and return this as a string.
141std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
142  std::string S;
143  switch(CE->getOpcode()) {
144  case Instruction::GetElementPtr:
145    { // generate a symbolic expression for the byte address
146      const Value* ptrVal = CE->getOperand(0);
147      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
148      S += "(" + valToExprString(ptrVal) + ") + ("
149	+ utostr(TD->getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
150      break;
151    }
152
153  case Instruction::Cast:
154    // Support only non-converting casts for now, i.e., a no-op.
155    // This assertion is not a complete check.
156    assert(TD->getTypeSize(CE->getType()) ==
157	   TD->getTypeSize(CE->getOperand(0)->getType()));
158    S += "(" + valToExprString(CE->getOperand(0)) + ")";
159    break;
160
161  case Instruction::Add:
162    S += "(" + valToExprString(CE->getOperand(0)) + ") + ("
163      + valToExprString(CE->getOperand(1)) + ")";
164    break;
165
166  default:
167    assert(0 && "Unsupported operator in ConstantExprToString()");
168    break;
169  }
170
171  return S;
172}
173
174// Print a single constant value.
175void
176Printer::printSingleConstantValue(const Constant* CV)
177{
178  assert(CV->getType() != Type::VoidTy &&
179         CV->getType() != Type::TypeTy &&
180         CV->getType() != Type::LabelTy &&
181         "Unexpected type for Constant");
182
183  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
184         && "Aggregate types should be handled outside this function");
185
186  const Type *type = CV->getType();
187  O << "\t";
188  switch(type->getPrimitiveID())
189    {
190    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
191      O << ".byte";
192      break;
193    case Type::UShortTyID: case Type::ShortTyID:
194      O << ".word";
195      break;
196    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
197      O << ".long";
198      break;
199    case Type::ULongTyID: case Type::LongTyID:
200      O << ".quad";
201      break;
202    case Type::FloatTyID:
203      O << ".long";
204      break;
205    case Type::DoubleTyID:
206      O << ".quad";
207      break;
208    case Type::ArrayTyID:
209      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
210	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
211	O << ".string";
212      else
213	assert (0 && "Can't handle printing this type of array");
214      break;
215    default:
216      assert (0 && "Can't handle printing this type of thing");
217      break;
218    }
219  O << "\t";
220
221  if (type->isPrimitiveType())
222    {
223      if (type->isFloatingPoint()) {
224	// FP Constants are printed as integer constants to avoid losing
225	// precision...
226	double Val = cast<ConstantFP>(CV)->getValue();
227	if (type == Type::FloatTy) {
228	  float FVal = (float)Val;
229	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
230	  O << *(unsigned int*)ProxyPtr;
231	} else if (type == Type::DoubleTy) {
232	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
233	  O << *(uint64_t*)ProxyPtr;
234	} else {
235	  assert(0 && "Unknown floating point type!");
236	}
237
238	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
239      } else {
240	WriteAsOperand(O, CV, false, false) << "\n";
241      }
242    }
243  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
244    {
245      // This is a constant address for a global variable or method.
246      // Use the name of the variable or method as the address value.
247      O << getValueName(CPR->getValue()) << "\n";
248    }
249  else if (isa<ConstantPointerNull>(CV))
250    {
251      // Null pointer value
252      O << "0\n";
253    }
254  else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
255    {
256      // Constant expression built from operators, constants, and
257      // symbolic addrs
258      O << ConstantExprToString(CE) << "\n";
259    }
260  else
261    {
262      assert(0 && "Unknown elementary type for constant");
263    }
264}
265
266// Can we treat the specified array as a string?  Only if it is an array of
267// ubytes or non-negative sbytes.
268//
269static bool isStringCompatible(const ConstantArray *CVA) {
270  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
271  if (ETy == Type::UByteTy) return true;
272  if (ETy != Type::SByteTy) return false;
273
274  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
275    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
276      return false;
277
278  return true;
279}
280
281// toOctal - Convert the low order bits of X into an octal letter
282static inline char toOctal(int X) {
283  return (X&7)+'0';
284}
285
286// getAsCString - Return the specified array as a C compatible string, only if
287// the predicate isStringCompatible is true.
288//
289static std::string getAsCString(const ConstantArray *CVA) {
290  assert(isStringCompatible(CVA) && "Array is not string compatible!");
291
292  std::string Result;
293  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
294  Result = "\"";
295  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
296    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
297
298    if (C == '"') {
299      Result += "\\\"";
300    } else if (C == '\\') {
301      Result += "\\\\";
302    } else if (isprint(C)) {
303      Result += C;
304    } else {
305      switch(C) {
306      case '\a': Result += "\\a"; break;
307      case '\b': Result += "\\b"; break;
308      case '\f': Result += "\\f"; break;
309      case '\n': Result += "\\n"; break;
310      case '\r': Result += "\\r"; break;
311      case '\t': Result += "\\t"; break;
312      case '\v': Result += "\\v"; break;
313      default:
314        Result += '\\';
315        Result += toOctal(C >> 6);
316        Result += toOctal(C >> 3);
317        Result += toOctal(C >> 0);
318        break;
319      }
320    }
321  }
322  Result += "\"";
323  return Result;
324}
325
326// Print a constant value or values (it may be an aggregate).
327// Uses printSingleConstantValue() to print each individual value.
328void
329Printer::printConstantValueOnly(const Constant* CV,
330				int numPadBytesAfter /* = 0 */)
331{
332  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
333
334  if (CVA && isStringCompatible(CVA))
335    { // print the string alone and return
336      O << "\t" << ".string" << "\t" << getAsCString(CVA) << "\n";
337    }
338  else if (CVA)
339    { // Not a string.  Print the values in successive locations
340      const std::vector<Use> &constValues = CVA->getValues();
341      for (unsigned i=0; i < constValues.size(); i++)
342        printConstantValueOnly(cast<Constant>(constValues[i].get()));
343    }
344  else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
345    { // Print the fields in successive locations. Pad to align if needed!
346      const StructLayout *cvsLayout =
347        TD->getStructLayout(CVS->getType());
348      const std::vector<Use>& constValues = CVS->getValues();
349      unsigned sizeSoFar = 0;
350      for (unsigned i=0, N = constValues.size(); i < N; i++)
351        {
352          const Constant* field = cast<Constant>(constValues[i].get());
353
354          // Check if padding is needed and insert one or more 0s.
355          unsigned fieldSize = TD->getTypeSize(field->getType());
356          int padSize = ((i == N-1? cvsLayout->StructSize
357			  : cvsLayout->MemberOffsets[i+1])
358                         - cvsLayout->MemberOffsets[i]) - fieldSize;
359          sizeSoFar += (fieldSize + padSize);
360
361          // Now print the actual field value
362          printConstantValueOnly(field, padSize);
363        }
364      assert(sizeSoFar == cvsLayout->StructSize &&
365             "Layout of constant struct may be incorrect!");
366    }
367  else
368    printSingleConstantValue(CV);
369
370  if (numPadBytesAfter) {
371    unsigned numBytes = numPadBytesAfter;
372    for ( ; numBytes >= 8; numBytes -= 8)
373      printSingleConstantValue(Constant::getNullValue(Type::ULongTy));
374    if (numBytes >= 4)
375      {
376	printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
377	numBytes -= 4;
378      }
379    while (numBytes--)
380      printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
381  }
382}
383
384// printConstantPool - Print out any constants which have been spilled to
385// memory...
386void Printer::printConstantPool(MachineConstantPool *MCP){
387  const std::vector<Constant*> &CP = MCP->getConstants();
388  if (CP.empty()) return;
389
390  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
391    O << "\t.section .rodata\n";
392    O << "\t.align " << (unsigned)TD->getTypeAlignment(CP[i]->getType())
393      << "\n";
394    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
395      << *CP[i] << "\n";
396    printConstantValueOnly (CP[i]);
397  }
398}
399
400/// runOnMachineFunction - This uses the X86InstructionInfo::print method
401/// to print assembly for each instruction.
402bool Printer::runOnMachineFunction(MachineFunction &MF) {
403  static unsigned BBNumber = 0;
404  const TargetMachine &TM = MF.getTarget();
405  const TargetInstrInfo &TII = TM.getInstrInfo();
406  TD = &TM.getTargetData();
407
408  // What's my mangled name?
409  CurrentFnName = getValueName(MF.getFunction());
410
411  // Print out constants referenced by the function
412  printConstantPool(MF.getConstantPool());
413
414  // Print out labels for the function.
415  O << "\t.text\n";
416  O << "\t.align 16\n";
417  O << "\t.globl\t" << CurrentFnName << "\n";
418  O << "\t.type\t" << CurrentFnName << ", @function\n";
419  O << CurrentFnName << ":\n";
420
421  // Number each basic block so that we can consistently refer to them
422  // in PC-relative references.
423  NumberForBB.clear();
424  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
425       I != E; ++I) {
426    NumberForBB[I->getBasicBlock()] = BBNumber++;
427  }
428
429  // Print out code for the function.
430  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
431       I != E; ++I) {
432    // Print a label for the basic block.
433    O << ".BB" << NumberForBB[I->getBasicBlock()] << ":\t# "
434      << I->getBasicBlock()->getName() << "\n";
435    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
436	 II != E; ++II) {
437      // Print the assembly for the instruction.
438      O << "\t";
439      printMachineInstruction(*II, O, TM);
440    }
441  }
442
443  // We didn't modify anything.
444  return false;
445}
446
447static bool isScale(const MachineOperand &MO) {
448  return MO.isImmediate() &&
449    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
450     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
451}
452
453static bool isMem(const MachineInstr *MI, unsigned Op) {
454  if (MI->getOperand(Op).isFrameIndex()) return true;
455  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
456  return Op+4 <= MI->getNumOperands() &&
457    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
458    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
459}
460
461void Printer::printOp(std::ostream &O, const MachineOperand &MO,
462		      const MRegisterInfo &RI,
463		      bool elideOffsetKeyword /* = false */) const {
464  switch (MO.getType()) {
465  case MachineOperand::MO_VirtualRegister:
466    if (Value *V = MO.getVRegValueOrNull()) {
467      O << "<" << V->getName() << ">";
468      return;
469    }
470    // FALLTHROUGH
471  case MachineOperand::MO_MachineRegister:
472    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
473      O << RI.get(MO.getReg()).Name;
474    else
475      O << "%reg" << MO.getReg();
476    return;
477
478  case MachineOperand::MO_SignExtendedImmed:
479  case MachineOperand::MO_UnextendedImmed:
480    O << (int)MO.getImmedValue();
481    return;
482  case MachineOperand::MO_PCRelativeDisp:
483    {
484      ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
485      assert (i != NumberForBB.end()
486	      && "Could not find a BB I previously put in the NumberForBB map!");
487      O << ".BB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
488    }
489    return;
490  case MachineOperand::MO_GlobalAddress:
491    if (!elideOffsetKeyword) O << "OFFSET "; O << getValueName(MO.getGlobal());
492    return;
493  case MachineOperand::MO_ExternalSymbol:
494    O << MO.getSymbolName();
495    return;
496  default:
497    O << "<unknown operand type>"; return;
498  }
499}
500
501static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
502  switch (Desc.TSFlags & X86II::ArgMask) {
503  default: assert(0 && "Unknown arg size!");
504  case X86II::Arg8:   return "BYTE PTR";
505  case X86II::Arg16:  return "WORD PTR";
506  case X86II::Arg32:  return "DWORD PTR";
507  case X86II::Arg64:  return "QWORD PTR";
508  case X86II::ArgF32:  return "DWORD PTR";
509  case X86II::ArgF64:  return "QWORD PTR";
510  case X86II::ArgF80:  return "XWORD PTR";
511  }
512}
513
514void Printer::printMemReference(std::ostream &O, const MachineInstr *MI,
515				unsigned Op,
516				const MRegisterInfo &RI) const {
517  assert(isMem(MI, Op) && "Invalid memory reference!");
518
519  if (MI->getOperand(Op).isFrameIndex()) {
520    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
521    if (MI->getOperand(Op+3).getImmedValue())
522      O << " + " << MI->getOperand(Op+3).getImmedValue();
523    O << "]";
524    return;
525  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
526    O << "[.CPI" << CurrentFnName << "_"
527      << MI->getOperand(Op).getConstantPoolIndex();
528    if (MI->getOperand(Op+3).getImmedValue())
529      O << " + " << MI->getOperand(Op+3).getImmedValue();
530    O << "]";
531    return;
532  }
533
534  const MachineOperand &BaseReg  = MI->getOperand(Op);
535  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
536  const MachineOperand &IndexReg = MI->getOperand(Op+2);
537  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
538
539  O << "[";
540  bool NeedPlus = false;
541  if (BaseReg.getReg()) {
542    printOp(O, BaseReg, RI);
543    NeedPlus = true;
544  }
545
546  if (IndexReg.getReg()) {
547    if (NeedPlus) O << " + ";
548    if (ScaleVal != 1)
549      O << ScaleVal << "*";
550    printOp(O, IndexReg, RI);
551    NeedPlus = true;
552  }
553
554  if (DispVal) {
555    if (NeedPlus)
556      if (DispVal > 0)
557	O << " + ";
558      else {
559	O << " - ";
560	DispVal = -DispVal;
561      }
562    O << DispVal;
563  }
564  O << "]";
565}
566
567/// printMachineInstruction -- Print out an x86 instruction in intel syntax
568///
569void Printer::printMachineInstruction(const MachineInstr *MI, std::ostream &O,
570				      const TargetMachine &TM) const {
571  unsigned Opcode = MI->getOpcode();
572  const TargetInstrInfo &TII = TM.getInstrInfo();
573  const TargetInstrDescriptor &Desc = TII.get(Opcode);
574  const MRegisterInfo &RI = *TM.getRegisterInfo();
575
576  switch (Desc.TSFlags & X86II::FormMask) {
577  case X86II::Pseudo:
578    // Print pseudo-instructions as comments; either they should have been
579    // turned into real instructions by now, or they don't need to be
580    // seen by the assembler (e.g., IMPLICIT_USEs.)
581    O << "# ";
582    if (Opcode == X86::PHI) {
583      printOp(O, MI->getOperand(0), RI);
584      O << " = phi ";
585      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
586	if (i != 1) O << ", ";
587	O << "[";
588	printOp(O, MI->getOperand(i), RI);
589	O << ", ";
590	printOp(O, MI->getOperand(i+1), RI);
591	O << "]";
592      }
593    } else {
594      unsigned i = 0;
595      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
596                                   MI->getOperand(0).opIsDefAndUse())) {
597	printOp(O, MI->getOperand(0), RI);
598	O << " = ";
599	++i;
600      }
601      O << TII.getName(MI->getOpcode());
602
603      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
604	O << " ";
605	if (MI->getOperand(i).opIsDefOnly() ||
606            MI->getOperand(i).opIsDefAndUse()) O << "*";
607	printOp(O, MI->getOperand(i), RI);
608	if (MI->getOperand(i).opIsDefOnly() ||
609            MI->getOperand(i).opIsDefAndUse()) O << "*";
610      }
611    }
612    O << "\n";
613    return;
614
615  case X86II::RawFrm:
616    // The accepted forms of Raw instructions are:
617    //   1. nop     - No operand required
618    //   2. jmp foo - PC relative displacement operand
619    //   3. call bar - GlobalAddress Operand or External Symbol Operand
620    //
621    assert(MI->getNumOperands() == 0 ||
622           (MI->getNumOperands() == 1 &&
623	    (MI->getOperand(0).isPCRelativeDisp() ||
624	     MI->getOperand(0).isGlobalAddress() ||
625	     MI->getOperand(0).isExternalSymbol())) &&
626           "Illegal raw instruction!");
627    O << TII.getName(MI->getOpcode()) << " ";
628
629    if (MI->getNumOperands() == 1) {
630      printOp(O, MI->getOperand(0), RI, true); // Don't print "OFFSET"...
631    }
632    O << "\n";
633    return;
634
635  case X86II::AddRegFrm: {
636    // There are currently two forms of acceptable AddRegFrm instructions.
637    // Either the instruction JUST takes a single register (like inc, dec, etc),
638    // or it takes a register and an immediate of the same size as the register
639    // (move immediate f.e.).  Note that this immediate value might be stored as
640    // an LLVM value, to represent, for example, loading the address of a global
641    // into a register.  The initial register might be duplicated if this is a
642    // M_2_ADDR_REG instruction
643    //
644    assert(MI->getOperand(0).isRegister() &&
645           (MI->getNumOperands() == 1 ||
646            (MI->getNumOperands() == 2 &&
647             (MI->getOperand(1).getVRegValueOrNull() ||
648              MI->getOperand(1).isImmediate() ||
649	      MI->getOperand(1).isRegister() ||
650	      MI->getOperand(1).isGlobalAddress() ||
651	      MI->getOperand(1).isExternalSymbol()))) &&
652           "Illegal form for AddRegFrm instruction!");
653
654    unsigned Reg = MI->getOperand(0).getReg();
655
656    O << TII.getName(MI->getOpCode()) << " ";
657    printOp(O, MI->getOperand(0), RI);
658    if (MI->getNumOperands() == 2 &&
659	(!MI->getOperand(1).isRegister() ||
660	 MI->getOperand(1).getVRegValueOrNull() ||
661	 MI->getOperand(1).isGlobalAddress() ||
662	 MI->getOperand(1).isExternalSymbol())) {
663      O << ", ";
664      printOp(O, MI->getOperand(1), RI);
665    }
666    if (Desc.TSFlags & X86II::PrintImplUses) {
667      for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
668	O << ", " << RI.get(*p).Name;
669      }
670    }
671    O << "\n";
672    return;
673  }
674  case X86II::MRMDestReg: {
675    // There are two acceptable forms of MRMDestReg instructions, those with 2,
676    // 3 and 4 operands:
677    //
678    // 2 Operands: this is for things like mov that do not read a second input
679    //
680    // 3 Operands: in this form, the first two registers (the destination, and
681    // the first operand) should be the same, post register allocation.  The 3rd
682    // operand is an additional input.  This should be for things like add
683    // instructions.
684    //
685    // 4 Operands: This form is for instructions which are 3 operands forms, but
686    // have a constant argument as well.
687    //
688    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
689    assert(MI->getOperand(0).isRegister() &&
690           (MI->getNumOperands() == 2 ||
691	    (isTwoAddr && MI->getOperand(1).isRegister() &&
692	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
693	     (MI->getNumOperands() == 3 ||
694	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
695           && "Bad format for MRMDestReg!");
696
697    O << TII.getName(MI->getOpCode()) << " ";
698    printOp(O, MI->getOperand(0), RI);
699    O << ", ";
700    printOp(O, MI->getOperand(1+isTwoAddr), RI);
701    if (MI->getNumOperands() == 4) {
702      O << ", ";
703      printOp(O, MI->getOperand(3), RI);
704    }
705    O << "\n";
706    return;
707  }
708
709  case X86II::MRMDestMem: {
710    // These instructions are the same as MRMDestReg, but instead of having a
711    // register reference for the mod/rm field, it's a memory reference.
712    //
713    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
714           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
715
716    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
717    printMemReference(O, MI, 0, RI);
718    O << ", ";
719    printOp(O, MI->getOperand(4), RI);
720    O << "\n";
721    return;
722  }
723
724  case X86II::MRMSrcReg: {
725    // There is a two forms that are acceptable for MRMSrcReg instructions,
726    // those with 3 and 2 operands:
727    //
728    // 3 Operands: in this form, the last register (the second input) is the
729    // ModR/M input.  The first two operands should be the same, post register
730    // allocation.  This is for things like: add r32, r/m32
731    //
732    // 2 Operands: this is for things like mov that do not read a second input
733    //
734    assert(MI->getOperand(0).isRegister() &&
735           MI->getOperand(1).isRegister() &&
736           (MI->getNumOperands() == 2 ||
737            (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
738           && "Bad format for MRMSrcReg!");
739    if (MI->getNumOperands() == 3 &&
740        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
741      O << "**";
742
743    O << TII.getName(MI->getOpCode()) << " ";
744    printOp(O, MI->getOperand(0), RI);
745    O << ", ";
746    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
747    O << "\n";
748    return;
749  }
750
751  case X86II::MRMSrcMem: {
752    // These instructions are the same as MRMSrcReg, but instead of having a
753    // register reference for the mod/rm field, it's a memory reference.
754    //
755    assert(MI->getOperand(0).isRegister() &&
756           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
757           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
758            isMem(MI, 2))
759           && "Bad format for MRMDestReg!");
760    if (MI->getNumOperands() == 2+4 &&
761        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
762      O << "**";
763
764    O << TII.getName(MI->getOpCode()) << " ";
765    printOp(O, MI->getOperand(0), RI);
766    O << ", " << sizePtr(Desc) << " ";
767    printMemReference(O, MI, MI->getNumOperands()-4, RI);
768    O << "\n";
769    return;
770  }
771
772  case X86II::MRMS0r: case X86II::MRMS1r:
773  case X86II::MRMS2r: case X86II::MRMS3r:
774  case X86II::MRMS4r: case X86II::MRMS5r:
775  case X86II::MRMS6r: case X86II::MRMS7r: {
776    // In this form, the following are valid formats:
777    //  1. sete r
778    //  2. cmp reg, immediate
779    //  2. shl rdest, rinput  <implicit CL or 1>
780    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
781    //
782    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
783           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
784    assert((MI->getNumOperands() != 2 ||
785            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
786           "Bad MRMSxR format!");
787    assert((MI->getNumOperands() < 3 ||
788	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
789           "Bad MRMSxR format!");
790
791    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
792        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
793      O << "**";
794
795    O << TII.getName(MI->getOpCode()) << " ";
796    printOp(O, MI->getOperand(0), RI);
797    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
798      O << ", ";
799      printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
800    }
801    if (Desc.TSFlags & X86II::PrintImplUses) {
802      for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
803	O << ", " << RI.get(*p).Name;
804      }
805    }
806    O << "\n";
807
808    return;
809  }
810
811  case X86II::MRMS0m: case X86II::MRMS1m:
812  case X86II::MRMS2m: case X86II::MRMS3m:
813  case X86II::MRMS4m: case X86II::MRMS5m:
814  case X86II::MRMS6m: case X86II::MRMS7m: {
815    // In this form, the following are valid formats:
816    //  1. sete [m]
817    //  2. cmp [m], immediate
818    //  2. shl [m], rinput  <implicit CL or 1>
819    //  3. sbb [m], immediate
820    //
821    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
822           isMem(MI, 0) && "Bad MRMSxM format!");
823    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
824           "Bad MRMSxM format!");
825    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
826    // is misassembled by gas in intel_syntax mode as its 32-bit
827    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
828    // opcode bytes instead of the instruction.
829    if (MI->getOpCode() == X86::FSTPr80) {
830      if ((MI->getOperand(0).getReg() == X86::ESP)
831	  && (MI->getOperand(1).getImmedValue() == 1)) {
832	int DispVal = MI->getOperand(3).getImmedValue();
833	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
834          unsigned int val = (unsigned int) DispVal;
835          O << ".byte 0xdb, 0xbc, 0x24\n\t";
836          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
837	} else { // 1 byte disp.
838          unsigned char val = (unsigned char) DispVal;
839          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
840            << std::dec << "\t# ";
841	}
842      }
843    }
844    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
845    // misassembled by gas in intel_syntax mode as its 32-bit
846    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
847    // opcode bytes instead of the instruction.
848    if (MI->getOpCode() == X86::FLDr80) {
849      if ((MI->getOperand(0).getReg() == X86::ESP)
850          && (MI->getOperand(1).getImmedValue() == 1)) {
851	int DispVal = MI->getOperand(3).getImmedValue();
852	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
853          unsigned int val = (unsigned int) DispVal;
854          O << ".byte 0xdb, 0xac, 0x24\n\t";
855          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
856	} else { // 1 byte disp.
857          unsigned char val = (unsigned char) DispVal;
858          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
859            << std::dec << "\t# ";
860	}
861      }
862    }
863    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
864    // invalid opcode, saying "64 bit operations are only supported in
865    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
866    // [...]", which is wrong. Workaround: Output the raw opcode bytes
867    // instead of the instruction.
868    if (MI->getOpCode() == X86::FILDr64) {
869      if ((MI->getOperand(0).getReg() == X86::ESP)
870          && (MI->getOperand(1).getImmedValue() == 1)) {
871	int DispVal = MI->getOperand(3).getImmedValue();
872	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
873          unsigned int val = (unsigned int) DispVal;
874          O << ".byte 0xdf, 0xac, 0x24\n\t";
875          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
876	} else { // 1 byte disp.
877          unsigned char val = (unsigned char) DispVal;
878          O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
879            << std::dec << "\t# ";
880	}
881      }
882    }
883    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
884    // an invalid opcode, saying "64 bit operations are only
885    // supported in 64 bit modes." libopcodes disassembles it as
886    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
887    // "fistpll DWORD PTR " instead, which is what libopcodes is
888    // expecting to see.
889    if (MI->getOpCode() == X86::FISTPr64) {
890      O << "fistpll DWORD PTR ";
891      printMemReference(O, MI, 0, RI);
892      if (MI->getNumOperands() == 5) {
893	O << ", ";
894	printOp(O, MI->getOperand(4), RI);
895      }
896      O << "\t# ";
897    }
898
899    O << TII.getName(MI->getOpCode()) << " ";
900    O << sizePtr(Desc) << " ";
901    printMemReference(O, MI, 0, RI);
902    if (MI->getNumOperands() == 5) {
903      O << ", ";
904      printOp(O, MI->getOperand(4), RI);
905    }
906    O << "\n";
907    return;
908  }
909
910  default:
911    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
912  }
913}
914
915bool Printer::doInitialization(Module &M)
916{
917  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly,
918  // with no % decorations on register names.
919  O << "\t.intel_syntax noprefix\n";
920
921  // Ripped from CWriter:
922  // Calculate which global values have names that will collide when we throw
923  // away type information.
924  {  // Scope to delete the FoundNames set when we are done with it...
925    std::set<std::string> FoundNames;
926    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
927      if (I->hasName())                      // If the global has a name...
928        if (FoundNames.count(I->getName()))  // And the name is already used
929          MangledGlobals.insert(I);          // Mangle the name
930        else
931          FoundNames.insert(I->getName());   // Otherwise, keep track of name
932
933    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
934      if (I->hasName())                      // If the global has a name...
935        if (FoundNames.count(I->getName()))  // And the name is already used
936          MangledGlobals.insert(I);          // Mangle the name
937        else
938          FoundNames.insert(I->getName());   // Otherwise, keep track of name
939  }
940
941  return false; // success
942}
943
944static const Function *isConstantFunctionPointerRef(const Constant *C) {
945  if (const ConstantPointerRef *R = dyn_cast<ConstantPointerRef>(C))
946    if (const Function *F = dyn_cast<Function>(R->getValue()))
947      return F;
948  return 0;
949}
950
951bool Printer::doFinalization(Module &M) {
952  // Print out module-level global variables here.
953  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
954    std::string name(getValueName(I));
955    if (I->hasInitializer()) {
956      Constant *C = I->getInitializer();
957      O << "\t.data\n";
958      O << "\t.globl " << name << "\n";
959      O << "\t.type " << name << ",@object\n";
960      O << "\t.size " << name << ","
961	<< (unsigned)TD->getTypeSize(I->getType()) << "\n";
962      O << "\t.align " << (unsigned)TD->getTypeAlignment(C->getType()) << "\n";
963      O << name << ":\t\t\t\t\t#";
964      // If this is a constant function pointer, we only print out the
965      // name of the function in the comment (because printing the
966      // function means calling AsmWriter to print the whole LLVM
967      // assembly, which would corrupt the X86 assembly output.)
968      // Otherwise we print out the whole llvm value as a comment.
969      if (const Function *F = isConstantFunctionPointerRef (C)) {
970	O << " %" << F->getName() << "()\n";
971      } else {
972	O << *C << "\n";
973      }
974      printConstantValueOnly (C);
975    } else {
976      O << "\t.globl " << name << "\n";
977      O << "\t.comm " << name << ", "
978        << (unsigned)TD->getTypeSize(I->getType()) << ", "
979        << (unsigned)TD->getTypeAlignment(I->getType()) << "\n";
980    }
981  }
982  MangledGlobals.clear();
983  return false; // success
984}
985