1//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pass that optimizes call sequences on x86.
11// Currently, it converts movs of function parameters onto the stack into
12// pushes. This is beneficial for two main reasons:
13// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
14// 2) It is possible to push memory arguments directly. So, if the
15//    the transformation is performed pre-reg-alloc, it can help relieve
16//    register pressure.
17//
18//===----------------------------------------------------------------------===//
19
20#include <algorithm>
21
22#include "X86.h"
23#include "X86InstrInfo.h"
24#include "X86MachineFunctionInfo.h"
25#include "X86Subtarget.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36
37using namespace llvm;
38
39#define DEBUG_TYPE "x86-cf-opt"
40
41static cl::opt<bool>
42    NoX86CFOpt("no-x86-call-frame-opt",
43               cl::desc("Avoid optimizing x86 call frames for size"),
44               cl::init(false), cl::Hidden);
45
46namespace {
47class X86CallFrameOptimization : public MachineFunctionPass {
48public:
49  X86CallFrameOptimization() : MachineFunctionPass(ID) {}
50
51  bool runOnMachineFunction(MachineFunction &MF) override;
52
53private:
54  // Information we know about a particular call site
55  struct CallContext {
56    CallContext()
57        : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
58          MovVector(4, nullptr), NoStackParams(false), UsePush(false) {}
59
60    // Iterator referring to the frame setup instruction
61    MachineBasicBlock::iterator FrameSetup;
62
63    // Actual call instruction
64    MachineInstr *Call;
65
66    // A copy of the stack pointer
67    MachineInstr *SPCopy;
68
69    // The total displacement of all passed parameters
70    int64_t ExpectedDist;
71
72    // The sequence of movs used to pass the parameters
73    SmallVector<MachineInstr *, 4> MovVector;
74
75    // True if this call site has no stack parameters
76    bool NoStackParams;
77
78    // True if this call site can use push instructions
79    bool UsePush;
80  };
81
82  typedef SmallVector<CallContext, 8> ContextVector;
83
84  bool isLegal(MachineFunction &MF);
85
86  bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
87
88  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
89                       MachineBasicBlock::iterator I, CallContext &Context);
90
91  void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
92
93  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
94                                   unsigned Reg);
95
96  enum InstClassification { Convert, Skip, Exit };
97
98  InstClassification classifyInstruction(MachineBasicBlock &MBB,
99                                         MachineBasicBlock::iterator MI,
100                                         const X86RegisterInfo &RegInfo,
101                                         DenseSet<unsigned int> &UsedRegs);
102
103  const char *getPassName() const override { return "X86 Optimize Call Frame"; }
104
105  const TargetInstrInfo *TII;
106  const X86FrameLowering *TFL;
107  const X86Subtarget *STI;
108  MachineRegisterInfo *MRI;
109  unsigned SlotSize;
110  unsigned Log2SlotSize;
111  static char ID;
112};
113
114char X86CallFrameOptimization::ID = 0;
115} // end anonymous namespace
116
117FunctionPass *llvm::createX86CallFrameOptimization() {
118  return new X86CallFrameOptimization();
119}
120
121// This checks whether the transformation is legal.
122// Also returns false in cases where it's potentially legal, but
123// we don't even want to try.
124bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
125  if (NoX86CFOpt.getValue())
126    return false;
127
128  // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
129  // in the compact unwind encoding that Darwin uses. So, bail if there
130  // is a danger of that being generated.
131  if (STI->isTargetDarwin() &&
132      (!MF.getMMI().getLandingPads().empty() ||
133       (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
134    return false;
135
136  // It is not valid to change the stack pointer outside the prolog/epilog
137  // on 64-bit Windows.
138  if (STI->isTargetWin64())
139    return false;
140
141  // You would expect straight-line code between call-frame setup and
142  // call-frame destroy. You would be wrong. There are circumstances (e.g.
143  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
144  // end up with the setup and the destroy in different basic blocks.
145  // This is bad, and breaks SP adjustment.
146  // So, check that all of the frames in the function are closed inside
147  // the same block, and, for good measure, that there are no nested frames.
148  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
149  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
150  for (MachineBasicBlock &BB : MF) {
151    bool InsideFrameSequence = false;
152    for (MachineInstr &MI : BB) {
153      if (MI.getOpcode() == FrameSetupOpcode) {
154        if (InsideFrameSequence)
155          return false;
156        InsideFrameSequence = true;
157      } else if (MI.getOpcode() == FrameDestroyOpcode) {
158        if (!InsideFrameSequence)
159          return false;
160        InsideFrameSequence = false;
161      }
162    }
163
164    if (InsideFrameSequence)
165      return false;
166  }
167
168  return true;
169}
170
171// Check whether this transformation is profitable for a particular
172// function - in terms of code size.
173bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
174                                            ContextVector &CallSeqVector) {
175  // This transformation is always a win when we do not expect to have
176  // a reserved call frame. Under other circumstances, it may be either
177  // a win or a loss, and requires a heuristic.
178  bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
179  if (CannotReserveFrame)
180    return true;
181
182  unsigned StackAlign = TFL->getStackAlignment();
183
184  int64_t Advantage = 0;
185  for (auto CC : CallSeqVector) {
186    // Call sites where no parameters are passed on the stack
187    // do not affect the cost, since there needs to be no
188    // stack adjustment.
189    if (CC.NoStackParams)
190      continue;
191
192    if (!CC.UsePush) {
193      // If we don't use pushes for a particular call site,
194      // we pay for not having a reserved call frame with an
195      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
196      // depending on the size of the constant.
197      // TODO: Callee-pop functions should have a smaller penalty, because
198      // an add is needed even with a reserved call frame.
199      Advantage -= 6;
200    } else {
201      // We can use pushes. First, account for the fixed costs.
202      // We'll need a add after the call.
203      Advantage -= 3;
204      // If we have to realign the stack, we'll also need a sub before
205      if (CC.ExpectedDist % StackAlign)
206        Advantage -= 3;
207      // Now, for each push, we save ~3 bytes. For small constants, we actually,
208      // save more (up to 5 bytes), but 3 should be a good approximation.
209      Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
210    }
211  }
212
213  return Advantage >= 0;
214}
215
216bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
217  STI = &MF.getSubtarget<X86Subtarget>();
218  TII = STI->getInstrInfo();
219  TFL = STI->getFrameLowering();
220  MRI = &MF.getRegInfo();
221
222  const X86RegisterInfo &RegInfo =
223      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
224  SlotSize = RegInfo.getSlotSize();
225  assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
226  Log2SlotSize = Log2_32(SlotSize);
227
228  if (!isLegal(MF))
229    return false;
230
231  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
232
233  bool Changed = false;
234
235  ContextVector CallSeqVector;
236
237  for (auto &MBB : MF)
238    for (auto &MI : MBB)
239      if (MI.getOpcode() == FrameSetupOpcode) {
240        CallContext Context;
241        collectCallInfo(MF, MBB, MI, Context);
242        CallSeqVector.push_back(Context);
243      }
244
245  if (!isProfitable(MF, CallSeqVector))
246    return false;
247
248  for (auto CC : CallSeqVector) {
249    if (CC.UsePush) {
250      adjustCallSequence(MF, CC);
251      Changed = true;
252    }
253  }
254
255  return Changed;
256}
257
258X86CallFrameOptimization::InstClassification
259X86CallFrameOptimization::classifyInstruction(
260    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
261    const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
262  if (MI == MBB.end())
263    return Exit;
264
265  // The instructions we actually care about are movs onto the stack
266  int Opcode = MI->getOpcode();
267  if (Opcode == X86::MOV32mi   || Opcode == X86::MOV32mr ||
268      Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr)
269    return Convert;
270
271  // Not all calling conventions have only stack MOVs between the stack
272  // adjust and the call.
273
274  // We want to tolerate other instructions, to cover more cases.
275  // In particular:
276  // a) PCrel calls, where we expect an additional COPY of the basereg.
277  // b) Passing frame-index addresses.
278  // c) Calling conventions that have inreg parameters. These generate
279  //    both copies and movs into registers.
280  // To avoid creating lots of special cases, allow any instruction
281  // that does not write into memory, does not def or use the stack
282  // pointer, and does not def any register that was used by a preceding
283  // push.
284  // (Reading from memory is allowed, even if referenced through a
285  // frame index, since these will get adjusted properly in PEI)
286
287  // The reason for the last condition is that the pushes can't replace
288  // the movs in place, because the order must be reversed.
289  // So if we have a MOV32mr that uses EDX, then an instruction that defs
290  // EDX, and then the call, after the transformation the push will use
291  // the modified version of EDX, and not the original one.
292  // Since we are still in SSA form at this point, we only need to
293  // make sure we don't clobber any *physical* registers that were
294  // used by an earlier mov that will become a push.
295
296  if (MI->isCall() || MI->mayStore())
297    return Exit;
298
299  for (const MachineOperand &MO : MI->operands()) {
300    if (!MO.isReg())
301      continue;
302    unsigned int Reg = MO.getReg();
303    if (!RegInfo.isPhysicalRegister(Reg))
304      continue;
305    if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
306      return Exit;
307    if (MO.isDef()) {
308      for (unsigned int U : UsedRegs)
309        if (RegInfo.regsOverlap(Reg, U))
310          return Exit;
311    }
312  }
313
314  return Skip;
315}
316
317void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
318                                               MachineBasicBlock &MBB,
319                                               MachineBasicBlock::iterator I,
320                                               CallContext &Context) {
321  // Check that this particular call sequence is amenable to the
322  // transformation.
323  const X86RegisterInfo &RegInfo =
324      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
325  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
326
327  // We expect to enter this at the beginning of a call sequence
328  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
329  MachineBasicBlock::iterator FrameSetup = I++;
330  Context.FrameSetup = FrameSetup;
331
332  // How much do we adjust the stack? This puts an upper bound on
333  // the number of parameters actually passed on it.
334  unsigned int MaxAdjust =
335      FrameSetup->getOperand(0).getImm() >> Log2SlotSize;
336
337  // A zero adjustment means no stack parameters
338  if (!MaxAdjust) {
339    Context.NoStackParams = true;
340    return;
341  }
342
343  // For globals in PIC mode, we can have some LEAs here.
344  // Ignore them, they don't bother us.
345  // TODO: Extend this to something that covers more cases.
346  while (I->getOpcode() == X86::LEA32r)
347    ++I;
348
349  unsigned StackPtr = RegInfo.getStackRegister();
350  // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
351  // register here.  If it's there, use that virtual register as stack pointer
352  // instead.
353  if (I->isCopy() && I->getOperand(0).isReg() && I->getOperand(1).isReg() &&
354      I->getOperand(1).getReg() == StackPtr) {
355    Context.SPCopy = &*I++;
356    StackPtr = Context.SPCopy->getOperand(0).getReg();
357  }
358
359  // Scan the call setup sequence for the pattern we're looking for.
360  // We only handle a simple case - a sequence of store instructions that
361  // push a sequence of stack-slot-aligned values onto the stack, with
362  // no gaps between them.
363  if (MaxAdjust > 4)
364    Context.MovVector.resize(MaxAdjust, nullptr);
365
366  InstClassification Classification;
367  DenseSet<unsigned int> UsedRegs;
368
369  while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
370         Exit) {
371    if (Classification == Skip) {
372      ++I;
373      continue;
374    }
375
376    // We know the instruction has a supported store opcode.
377    // We only want movs of the form:
378    // mov imm/reg, k(%StackPtr)
379    // If we run into something else, bail.
380    // Note that AddrBaseReg may, counter to its name, not be a register,
381    // but rather a frame index.
382    // TODO: Support the fi case. This should probably work now that we
383    // have the infrastructure to track the stack pointer within a call
384    // sequence.
385    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
386        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
387        !I->getOperand(X86::AddrScaleAmt).isImm() ||
388        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
389        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
390        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
391        !I->getOperand(X86::AddrDisp).isImm())
392      return;
393
394    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
395    assert(StackDisp >= 0 &&
396           "Negative stack displacement when passing parameters");
397
398    // We really don't want to consider the unaligned case.
399    if (StackDisp & (SlotSize - 1))
400      return;
401    StackDisp >>= Log2SlotSize;
402
403    assert((size_t)StackDisp < Context.MovVector.size() &&
404           "Function call has more parameters than the stack is adjusted for.");
405
406    // If the same stack slot is being filled twice, something's fishy.
407    if (Context.MovVector[StackDisp] != nullptr)
408      return;
409    Context.MovVector[StackDisp] = &*I;
410
411    for (const MachineOperand &MO : I->uses()) {
412      if (!MO.isReg())
413        continue;
414      unsigned int Reg = MO.getReg();
415      if (RegInfo.isPhysicalRegister(Reg))
416        UsedRegs.insert(Reg);
417    }
418
419    ++I;
420  }
421
422  // We now expect the end of the sequence. If we stopped early,
423  // or reached the end of the block without finding a call, bail.
424  if (I == MBB.end() || !I->isCall())
425    return;
426
427  Context.Call = &*I;
428  if ((++I)->getOpcode() != FrameDestroyOpcode)
429    return;
430
431  // Now, go through the vector, and see that we don't have any gaps,
432  // but only a series of MOVs.
433  auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
434  for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
435    if (*MMI == nullptr)
436      break;
437
438  // If the call had no parameters, do nothing
439  if (MMI == Context.MovVector.begin())
440    return;
441
442  // We are either at the last parameter, or a gap.
443  // Make sure it's not a gap
444  for (; MMI != MME; ++MMI)
445    if (*MMI != nullptr)
446      return;
447
448  Context.UsePush = true;
449}
450
451void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
452                                                  const CallContext &Context) {
453  // Ok, we can in fact do the transformation for this call.
454  // Do not remove the FrameSetup instruction, but adjust the parameters.
455  // PEI will end up finalizing the handling of this.
456  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
457  MachineBasicBlock &MBB = *(FrameSetup->getParent());
458  FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
459
460  DebugLoc DL = FrameSetup->getDebugLoc();
461  bool Is64Bit = STI->is64Bit();
462  // Now, iterate through the vector in reverse order, and replace the movs
463  // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
464  // replace uses.
465  for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
466    MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
467    MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
468    MachineBasicBlock::iterator Push = nullptr;
469    unsigned PushOpcode;
470    switch (MOV->getOpcode()) {
471    default:
472      llvm_unreachable("Unexpected Opcode!");
473    case X86::MOV32mi:
474    case X86::MOV64mi32:
475      PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
476      // If the operand is a small (8-bit) immediate, we can use a
477      // PUSH instruction with a shorter encoding.
478      // Note that isImm() may fail even though this is a MOVmi, because
479      // the operand can also be a symbol.
480      if (PushOp.isImm()) {
481        int64_t Val = PushOp.getImm();
482        if (isInt<8>(Val))
483          PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
484      }
485      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
486                 .addOperand(PushOp);
487      break;
488    case X86::MOV32mr:
489    case X86::MOV64mr:
490      unsigned int Reg = PushOp.getReg();
491
492      // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
493      // in preparation for the PUSH64. The upper 32 bits can be undef.
494      if (Is64Bit && MOV->getOpcode() == X86::MOV32mr) {
495        unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
496        Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
497        BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
498        BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
499          .addReg(UndefReg)
500          .addOperand(PushOp)
501          .addImm(X86::sub_32bit);
502      }
503
504      // If PUSHrmm is not slow on this target, try to fold the source of the
505      // push into the instruction.
506      bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
507
508      // Check that this is legal to fold. Right now, we're extremely
509      // conservative about that.
510      MachineInstr *DefMov = nullptr;
511      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
512        PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
513        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
514
515        unsigned NumOps = DefMov->getDesc().getNumOperands();
516        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
517          Push->addOperand(DefMov->getOperand(i));
518
519        DefMov->eraseFromParent();
520      } else {
521        PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
522        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
523                   .addReg(Reg)
524                   .getInstr();
525      }
526      break;
527    }
528
529    // For debugging, when using SP-based CFA, we need to adjust the CFA
530    // offset after each push.
531    // TODO: This is needed only if we require precise CFA.
532    if (!TFL->hasFP(MF))
533      TFL->BuildCFI(
534          MBB, std::next(Push), DL,
535          MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
536
537    MBB.erase(MOV);
538  }
539
540  // The stack-pointer copy is no longer used in the call sequences.
541  // There should not be any other users, but we can't commit to that, so:
542  if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
543    Context.SPCopy->eraseFromParent();
544
545  // Once we've done this, we need to make sure PEI doesn't assume a reserved
546  // frame.
547  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
548  FuncInfo->setHasPushSequences(true);
549}
550
551MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
552    MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
553  // Do an extremely restricted form of load folding.
554  // ISel will often create patterns like:
555  // movl    4(%edi), %eax
556  // movl    8(%edi), %ecx
557  // movl    12(%edi), %edx
558  // movl    %edx, 8(%esp)
559  // movl    %ecx, 4(%esp)
560  // movl    %eax, (%esp)
561  // call
562  // Get rid of those with prejudice.
563  if (!TargetRegisterInfo::isVirtualRegister(Reg))
564    return nullptr;
565
566  // Make sure this is the only use of Reg.
567  if (!MRI->hasOneNonDBGUse(Reg))
568    return nullptr;
569
570  MachineInstr &DefMI = *MRI->getVRegDef(Reg);
571
572  // Make sure the def is a MOV from memory.
573  // If the def is in another block, give up.
574  if ((DefMI.getOpcode() != X86::MOV32rm &&
575       DefMI.getOpcode() != X86::MOV64rm) ||
576      DefMI.getParent() != FrameSetup->getParent())
577    return nullptr;
578
579  // Make sure we don't have any instructions between DefMI and the
580  // push that make folding the load illegal.
581  for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
582    if (I->isLoadFoldBarrier())
583      return nullptr;
584
585  return &DefMI;
586}
587