1//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies expensive constants to hoist and coalesces them to
11// better prepare it for SelectionDAG-based code generation. This works around
12// the limitations of the basic-block-at-a-time approach.
13//
14// First it scans all instructions for integer constants and calculates its
15// cost. If the constant can be folded into the instruction (the cost is
16// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17// consider it expensive and leave it alone. This is the default behavior and
18// the default implementation of getIntImmCost will always return TCC_Free.
19//
20// If the cost is more than TCC_BASIC, then the integer constant can't be folded
21// into the instruction and it might be beneficial to hoist the constant.
22// Similar constants are coalesced to reduce register pressure and
23// materialization code.
24//
25// When a constant is hoisted, it is also hidden behind a bitcast to force it to
26// be live-out of the basic block. Otherwise the constant would be just
27// duplicated and each basic block would have its own copy in the SelectionDAG.
28// The SelectionDAG recognizes such constants as opaque and doesn't perform
29// certain transformations on them, which would create a new expensive constant.
30//
31// This optimization is only applied to integer constants in instructions and
32// simple (this means not nested) constant cast expressions. For example:
33// %0 = load i64* inttoptr (i64 big_constant to i64*)
34//===----------------------------------------------------------------------===//
35
36#include "llvm/Transforms/Scalar/ConstantHoisting.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Transforms/Scalar.h"
46#include <tuple>
47
48using namespace llvm;
49using namespace consthoist;
50
51#define DEBUG_TYPE "consthoist"
52
53STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
54STATISTIC(NumConstantsRebased, "Number of constants rebased");
55
56namespace {
57/// \brief The constant hoisting pass.
58class ConstantHoistingLegacyPass : public FunctionPass {
59public:
60  static char ID; // Pass identification, replacement for typeid
61  ConstantHoistingLegacyPass() : FunctionPass(ID) {
62    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
63  }
64
65  bool runOnFunction(Function &Fn) override;
66
67  const char *getPassName() const override { return "Constant Hoisting"; }
68
69  void getAnalysisUsage(AnalysisUsage &AU) const override {
70    AU.setPreservesCFG();
71    AU.addRequired<DominatorTreeWrapperPass>();
72    AU.addRequired<TargetTransformInfoWrapperPass>();
73  }
74
75  void releaseMemory() override { Impl.releaseMemory(); }
76
77private:
78  ConstantHoistingPass Impl;
79};
80}
81
82char ConstantHoistingLegacyPass::ID = 0;
83INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
84                      "Constant Hoisting", false, false)
85INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
86INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
87INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
88                    "Constant Hoisting", false, false)
89
90FunctionPass *llvm::createConstantHoistingPass() {
91  return new ConstantHoistingLegacyPass();
92}
93
94/// \brief Perform the constant hoisting optimization for the given function.
95bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
96  if (skipFunction(Fn))
97    return false;
98
99  DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
100  DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
101
102  bool MadeChange = Impl.runImpl(
103      Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
104      getAnalysis<DominatorTreeWrapperPass>().getDomTree(), Fn.getEntryBlock());
105
106  if (MadeChange) {
107    DEBUG(dbgs() << "********** Function after Constant Hoisting: "
108                 << Fn.getName() << '\n');
109    DEBUG(dbgs() << Fn);
110  }
111  DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
112
113  return MadeChange;
114}
115
116
117/// \brief Find the constant materialization insertion point.
118Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
119                                                   unsigned Idx) const {
120  // If the operand is a cast instruction, then we have to materialize the
121  // constant before the cast instruction.
122  if (Idx != ~0U) {
123    Value *Opnd = Inst->getOperand(Idx);
124    if (auto CastInst = dyn_cast<Instruction>(Opnd))
125      if (CastInst->isCast())
126        return CastInst;
127  }
128
129  // The simple and common case. This also includes constant expressions.
130  if (!isa<PHINode>(Inst) && !Inst->isEHPad())
131    return Inst;
132
133  // We can't insert directly before a phi node or an eh pad. Insert before
134  // the terminator of the incoming or dominating block.
135  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
136  if (Idx != ~0U && isa<PHINode>(Inst))
137    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
138
139  BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
140  return IDom->getTerminator();
141}
142
143/// \brief Find an insertion point that dominates all uses.
144Instruction *ConstantHoistingPass::findConstantInsertionPoint(
145    const ConstantInfo &ConstInfo) const {
146  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
147  // Collect all basic blocks.
148  SmallPtrSet<BasicBlock *, 8> BBs;
149  for (auto const &RCI : ConstInfo.RebasedConstants)
150    for (auto const &U : RCI.Uses)
151      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
152
153  if (BBs.count(Entry))
154    return &Entry->front();
155
156  while (BBs.size() >= 2) {
157    BasicBlock *BB, *BB1, *BB2;
158    BB1 = *BBs.begin();
159    BB2 = *std::next(BBs.begin());
160    BB = DT->findNearestCommonDominator(BB1, BB2);
161    if (BB == Entry)
162      return &Entry->front();
163    BBs.erase(BB1);
164    BBs.erase(BB2);
165    BBs.insert(BB);
166  }
167  assert((BBs.size() == 1) && "Expected only one element.");
168  Instruction &FirstInst = (*BBs.begin())->front();
169  return findMatInsertPt(&FirstInst);
170}
171
172
173/// \brief Record constant integer ConstInt for instruction Inst at operand
174/// index Idx.
175///
176/// The operand at index Idx is not necessarily the constant integer itself. It
177/// could also be a cast instruction or a constant expression that uses the
178// constant integer.
179void ConstantHoistingPass::collectConstantCandidates(
180    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
181    ConstantInt *ConstInt) {
182  unsigned Cost;
183  // Ask the target about the cost of materializing the constant for the given
184  // instruction and operand index.
185  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
186    Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
187                              ConstInt->getValue(), ConstInt->getType());
188  else
189    Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
190                              ConstInt->getType());
191
192  // Ignore cheap integer constants.
193  if (Cost > TargetTransformInfo::TCC_Basic) {
194    ConstCandMapType::iterator Itr;
195    bool Inserted;
196    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
197    if (Inserted) {
198      ConstCandVec.push_back(ConstantCandidate(ConstInt));
199      Itr->second = ConstCandVec.size() - 1;
200    }
201    ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
202    DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
203            dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
204                   << " with cost " << Cost << '\n';
205          else
206          dbgs() << "Collect constant " << *ConstInt << " indirectly from "
207                 << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
208                 << Cost << '\n';
209    );
210  }
211}
212
213/// \brief Scan the instruction for expensive integer constants and record them
214/// in the constant candidate vector.
215void ConstantHoistingPass::collectConstantCandidates(
216    ConstCandMapType &ConstCandMap, Instruction *Inst) {
217  // Skip all cast instructions. They are visited indirectly later on.
218  if (Inst->isCast())
219    return;
220
221  // Can't handle inline asm. Skip it.
222  if (auto Call = dyn_cast<CallInst>(Inst))
223    if (isa<InlineAsm>(Call->getCalledValue()))
224      return;
225
226  // Switch cases must remain constant, and if the value being tested is
227  // constant the entire thing should disappear.
228  if (isa<SwitchInst>(Inst))
229    return;
230
231  // Static allocas (constant size in the entry block) are handled by
232  // prologue/epilogue insertion so they're free anyway. We definitely don't
233  // want to make them non-constant.
234  auto AI = dyn_cast<AllocaInst>(Inst);
235  if (AI && AI->isStaticAlloca())
236    return;
237
238  // Scan all operands.
239  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
240    Value *Opnd = Inst->getOperand(Idx);
241
242    // Visit constant integers.
243    if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
244      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
245      continue;
246    }
247
248    // Visit cast instructions that have constant integers.
249    if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
250      // Only visit cast instructions, which have been skipped. All other
251      // instructions should have already been visited.
252      if (!CastInst->isCast())
253        continue;
254
255      if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
256        // Pretend the constant is directly used by the instruction and ignore
257        // the cast instruction.
258        collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
259        continue;
260      }
261    }
262
263    // Visit constant expressions that have constant integers.
264    if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
265      // Only visit constant cast expressions.
266      if (!ConstExpr->isCast())
267        continue;
268
269      if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
270        // Pretend the constant is directly used by the instruction and ignore
271        // the constant expression.
272        collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
273        continue;
274      }
275    }
276  } // end of for all operands
277}
278
279/// \brief Collect all integer constants in the function that cannot be folded
280/// into an instruction itself.
281void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
282  ConstCandMapType ConstCandMap;
283  for (BasicBlock &BB : Fn)
284    for (Instruction &Inst : BB)
285      collectConstantCandidates(ConstCandMap, &Inst);
286}
287
288// This helper function is necessary to deal with values that have different
289// bit widths (APInt Operator- does not like that). If the value cannot be
290// represented in uint64 we return an "empty" APInt. This is then interpreted
291// as the value is not in range.
292static llvm::Optional<APInt> calculateOffsetDiff(APInt V1, APInt V2)
293{
294  llvm::Optional<APInt> Res = None;
295  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
296                V1.getBitWidth() : V2.getBitWidth();
297  uint64_t LimVal1 = V1.getLimitedValue();
298  uint64_t LimVal2 = V2.getLimitedValue();
299
300  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
301    return Res;
302
303  uint64_t Diff = LimVal1 - LimVal2;
304  return APInt(BW, Diff, true);
305}
306
307// From a list of constants, one needs to picked as the base and the other
308// constants will be transformed into an offset from that base constant. The
309// question is which we can pick best? For example, consider these constants
310// and their number of uses:
311//
312//  Constants| 2 | 4 | 12 | 42 |
313//  NumUses  | 3 | 2 |  8 |  7 |
314//
315// Selecting constant 12 because it has the most uses will generate negative
316// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
317// offsets lead to less optimal code generation, then there might be better
318// solutions. Suppose immediates in the range of 0..35 are most optimally
319// supported by the architecture, then selecting constant 2 is most optimal
320// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
321// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
322// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
323// selecting the base constant the range of the offsets is a very important
324// factor too that we take into account here. This algorithm calculates a total
325// costs for selecting a constant as the base and substract the costs if
326// immediates are out of range. It has quadratic complexity, so we call this
327// function only when we're optimising for size and there are less than 100
328// constants, we fall back to the straightforward algorithm otherwise
329// which does not do all the offset calculations.
330unsigned
331ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
332                                           ConstCandVecType::iterator E,
333                                           ConstCandVecType::iterator &MaxCostItr) {
334  unsigned NumUses = 0;
335
336  if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
337    for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
338      NumUses += ConstCand->Uses.size();
339      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
340        MaxCostItr = ConstCand;
341    }
342    return NumUses;
343  }
344
345  DEBUG(dbgs() << "== Maximize constants in range ==\n");
346  int MaxCost = -1;
347  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
348    auto Value = ConstCand->ConstInt->getValue();
349    Type *Ty = ConstCand->ConstInt->getType();
350    int Cost = 0;
351    NumUses += ConstCand->Uses.size();
352    DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n");
353
354    for (auto User : ConstCand->Uses) {
355      unsigned Opcode = User.Inst->getOpcode();
356      unsigned OpndIdx = User.OpndIdx;
357      Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
358      DEBUG(dbgs() << "Cost: " << Cost << "\n");
359
360      for (auto C2 = S; C2 != E; ++C2) {
361        llvm::Optional<APInt> Diff = calculateOffsetDiff(
362                                      C2->ConstInt->getValue(),
363                                      ConstCand->ConstInt->getValue());
364        if (Diff) {
365          const int ImmCosts =
366            TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
367          Cost -= ImmCosts;
368          DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
369                       << "has penalty: " << ImmCosts << "\n"
370                       << "Adjusted cost: " << Cost << "\n");
371        }
372      }
373    }
374    DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
375    if (Cost > MaxCost) {
376      MaxCost = Cost;
377      MaxCostItr = ConstCand;
378      DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
379                   << "\n");
380    }
381  }
382  return NumUses;
383}
384
385/// \brief Find the base constant within the given range and rebase all other
386/// constants with respect to the base constant.
387void ConstantHoistingPass::findAndMakeBaseConstant(
388    ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
389  auto MaxCostItr = S;
390  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
391
392  // Don't hoist constants that have only one use.
393  if (NumUses <= 1)
394    return;
395
396  ConstantInfo ConstInfo;
397  ConstInfo.BaseConstant = MaxCostItr->ConstInt;
398  Type *Ty = ConstInfo.BaseConstant->getType();
399
400  // Rebase the constants with respect to the base constant.
401  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
402    APInt Diff = ConstCand->ConstInt->getValue() -
403                 ConstInfo.BaseConstant->getValue();
404    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
405    ConstInfo.RebasedConstants.push_back(
406      RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
407  }
408  ConstantVec.push_back(std::move(ConstInfo));
409}
410
411/// \brief Finds and combines constant candidates that can be easily
412/// rematerialized with an add from a common base constant.
413void ConstantHoistingPass::findBaseConstants() {
414  // Sort the constants by value and type. This invalidates the mapping!
415  std::sort(ConstCandVec.begin(), ConstCandVec.end(),
416            [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
417    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
418      return LHS.ConstInt->getType()->getBitWidth() <
419             RHS.ConstInt->getType()->getBitWidth();
420    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
421  });
422
423  // Simple linear scan through the sorted constant candidate vector for viable
424  // merge candidates.
425  auto MinValItr = ConstCandVec.begin();
426  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
427       CC != E; ++CC) {
428    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
429      // Check if the constant is in range of an add with immediate.
430      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
431      if ((Diff.getBitWidth() <= 64) &&
432          TTI->isLegalAddImmediate(Diff.getSExtValue()))
433        continue;
434    }
435    // We either have now a different constant type or the constant is not in
436    // range of an add with immediate anymore.
437    findAndMakeBaseConstant(MinValItr, CC);
438    // Start a new base constant search.
439    MinValItr = CC;
440  }
441  // Finalize the last base constant search.
442  findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
443}
444
445/// \brief Updates the operand at Idx in instruction Inst with the result of
446///        instruction Mat. If the instruction is a PHI node then special
447///        handling for duplicate values form the same incomming basic block is
448///        required.
449/// \return The update will always succeed, but the return value indicated if
450///         Mat was used for the update or not.
451static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
452  if (auto PHI = dyn_cast<PHINode>(Inst)) {
453    // Check if any previous operand of the PHI node has the same incoming basic
454    // block. This is a very odd case that happens when the incoming basic block
455    // has a switch statement. In this case use the same value as the previous
456    // operand(s), otherwise we will fail verification due to different values.
457    // The values are actually the same, but the variable names are different
458    // and the verifier doesn't like that.
459    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
460    for (unsigned i = 0; i < Idx; ++i) {
461      if (PHI->getIncomingBlock(i) == IncomingBB) {
462        Value *IncomingVal = PHI->getIncomingValue(i);
463        Inst->setOperand(Idx, IncomingVal);
464        return false;
465      }
466    }
467  }
468
469  Inst->setOperand(Idx, Mat);
470  return true;
471}
472
473/// \brief Emit materialization code for all rebased constants and update their
474/// users.
475void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
476                                             Constant *Offset,
477                                             const ConstantUser &ConstUser) {
478  Instruction *Mat = Base;
479  if (Offset) {
480    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
481                                               ConstUser.OpndIdx);
482    Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
483                                 "const_mat", InsertionPt);
484
485    DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
486                 << " + " << *Offset << ") in BB "
487                 << Mat->getParent()->getName() << '\n' << *Mat << '\n');
488    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
489  }
490  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
491
492  // Visit constant integer.
493  if (isa<ConstantInt>(Opnd)) {
494    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
495    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
496      Mat->eraseFromParent();
497    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
498    return;
499  }
500
501  // Visit cast instruction.
502  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
503    assert(CastInst->isCast() && "Expected an cast instruction!");
504    // Check if we already have visited this cast instruction before to avoid
505    // unnecessary cloning.
506    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
507    if (!ClonedCastInst) {
508      ClonedCastInst = CastInst->clone();
509      ClonedCastInst->setOperand(0, Mat);
510      ClonedCastInst->insertAfter(CastInst);
511      // Use the same debug location as the original cast instruction.
512      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
513      DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
514                   << "To               : " << *ClonedCastInst << '\n');
515    }
516
517    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
518    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
519    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
520    return;
521  }
522
523  // Visit constant expression.
524  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
525    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
526    ConstExprInst->setOperand(0, Mat);
527    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
528                                                ConstUser.OpndIdx));
529
530    // Use the same debug location as the instruction we are about to update.
531    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
532
533    DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
534                 << "From              : " << *ConstExpr << '\n');
535    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
536    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
537      ConstExprInst->eraseFromParent();
538      if (Offset)
539        Mat->eraseFromParent();
540    }
541    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
542    return;
543  }
544}
545
546/// \brief Hoist and hide the base constant behind a bitcast and emit
547/// materialization code for derived constants.
548bool ConstantHoistingPass::emitBaseConstants() {
549  bool MadeChange = false;
550  for (auto const &ConstInfo : ConstantVec) {
551    // Hoist and hide the base constant behind a bitcast.
552    Instruction *IP = findConstantInsertionPoint(ConstInfo);
553    IntegerType *Ty = ConstInfo.BaseConstant->getType();
554    Instruction *Base =
555      new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
556    DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
557                 << IP->getParent()->getName() << '\n' << *Base << '\n');
558    NumConstantsHoisted++;
559
560    // Emit materialization code for all rebased constants.
561    for (auto const &RCI : ConstInfo.RebasedConstants) {
562      NumConstantsRebased++;
563      for (auto const &U : RCI.Uses)
564        emitBaseConstants(Base, RCI.Offset, U);
565    }
566
567    // Use the same debug location as the last user of the constant.
568    assert(!Base->use_empty() && "The use list is empty!?");
569    assert(isa<Instruction>(Base->user_back()) &&
570           "All uses should be instructions.");
571    Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
572
573    // Correct for base constant, which we counted above too.
574    NumConstantsRebased--;
575    MadeChange = true;
576  }
577  return MadeChange;
578}
579
580/// \brief Check all cast instructions we made a copy of and remove them if they
581/// have no more users.
582void ConstantHoistingPass::deleteDeadCastInst() const {
583  for (auto const &I : ClonedCastMap)
584    if (I.first->use_empty())
585      I.first->eraseFromParent();
586}
587
588/// \brief Optimize expensive integer constants in the given function.
589bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
590                                   DominatorTree &DT, BasicBlock &Entry) {
591  this->TTI = &TTI;
592  this->DT = &DT;
593  this->Entry = &Entry;
594  // Collect all constant candidates.
595  collectConstantCandidates(Fn);
596
597  // There are no constant candidates to worry about.
598  if (ConstCandVec.empty())
599    return false;
600
601  // Combine constants that can be easily materialized with an add from a common
602  // base constant.
603  findBaseConstants();
604
605  // There are no constants to emit.
606  if (ConstantVec.empty())
607    return false;
608
609  // Finally hoist the base constant and emit materialization code for dependent
610  // constants.
611  bool MadeChange = emitBaseConstants();
612
613  // Cleanup dead instructions.
614  deleteDeadCastInst();
615
616  return MadeChange;
617}
618
619PreservedAnalyses ConstantHoistingPass::run(Function &F,
620                                            FunctionAnalysisManager &AM) {
621  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
622  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
623  if (!runImpl(F, TTI, DT, F.getEntryBlock()))
624    return PreservedAnalyses::all();
625
626  // FIXME: This should also 'preserve the CFG'.
627  return PreservedAnalyses::none();
628}
629