SROA.cpp revision 225d25de490386dd6398842c19f567b921a97db6
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/PtrUseVisitor.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Constants.h"
37#include "llvm/DIBuilder.h"
38#include "llvm/DataLayout.h"
39#include "llvm/DebugInfo.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Function.h"
42#include "llvm/IRBuilder.h"
43#include "llvm/InstVisitor.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Module.h"
48#include "llvm/Operator.h"
49#include "llvm/Pass.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/GetElementPtrTypeIterator.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Transforms/Utils/Local.h"
57#include "llvm/Transforms/Utils/PromoteMemToReg.h"
58#include "llvm/Transforms/Utils/SSAUpdater.h"
59using namespace llvm;
60
61STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
62STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
63STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
64STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
65STATISTIC(NumDeleted,         "Number of instructions deleted");
66STATISTIC(NumVectorized,      "Number of vectorized aggregates");
67
68/// Hidden option to force the pass to not use DomTree and mem2reg, instead
69/// forming SSA values through the SSAUpdater infrastructure.
70static cl::opt<bool>
71ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
72
73namespace {
74/// \brief Alloca partitioning representation.
75///
76/// This class represents a partitioning of an alloca into slices, and
77/// information about the nature of uses of each slice of the alloca. The goal
78/// is that this information is sufficient to decide if and how to split the
79/// alloca apart and replace slices with scalars. It is also intended that this
80/// structure can capture the relevant information needed both to decide about
81/// and to enact these transformations.
82class AllocaPartitioning {
83public:
84  /// \brief A common base class for representing a half-open byte range.
85  struct ByteRange {
86    /// \brief The beginning offset of the range.
87    uint64_t BeginOffset;
88
89    /// \brief The ending offset, not included in the range.
90    uint64_t EndOffset;
91
92    ByteRange() : BeginOffset(), EndOffset() {}
93    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
94        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
95
96    /// \brief Support for ordering ranges.
97    ///
98    /// This provides an ordering over ranges such that start offsets are
99    /// always increasing, and within equal start offsets, the end offsets are
100    /// decreasing. Thus the spanning range comes first in a cluster with the
101    /// same start position.
102    bool operator<(const ByteRange &RHS) const {
103      if (BeginOffset < RHS.BeginOffset) return true;
104      if (BeginOffset > RHS.BeginOffset) return false;
105      if (EndOffset > RHS.EndOffset) return true;
106      return false;
107    }
108
109    /// \brief Support comparison with a single offset to allow binary searches.
110    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
111      return LHS.BeginOffset < RHSOffset;
112    }
113
114    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
115                                                const ByteRange &RHS) {
116      return LHSOffset < RHS.BeginOffset;
117    }
118
119    bool operator==(const ByteRange &RHS) const {
120      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
121    }
122    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
123  };
124
125  /// \brief A partition of an alloca.
126  ///
127  /// This structure represents a contiguous partition of the alloca. These are
128  /// formed by examining the uses of the alloca. During formation, they may
129  /// overlap but once an AllocaPartitioning is built, the Partitions within it
130  /// are all disjoint.
131  struct Partition : public ByteRange {
132    /// \brief Whether this partition is splittable into smaller partitions.
133    ///
134    /// We flag partitions as splittable when they are formed entirely due to
135    /// accesses by trivially splittable operations such as memset and memcpy.
136    bool IsSplittable;
137
138    /// \brief Test whether a partition has been marked as dead.
139    bool isDead() const {
140      if (BeginOffset == UINT64_MAX) {
141        assert(EndOffset == UINT64_MAX);
142        return true;
143      }
144      return false;
145    }
146
147    /// \brief Kill a partition.
148    /// This is accomplished by setting both its beginning and end offset to
149    /// the maximum possible value.
150    void kill() {
151      assert(!isDead() && "He's Dead, Jim!");
152      BeginOffset = EndOffset = UINT64_MAX;
153    }
154
155    Partition() : ByteRange(), IsSplittable() {}
156    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
157        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
158  };
159
160  /// \brief A particular use of a partition of the alloca.
161  ///
162  /// This structure is used to associate uses of a partition with it. They
163  /// mark the range of bytes which are referenced by a particular instruction,
164  /// and includes a handle to the user itself and the pointer value in use.
165  /// The bounds of these uses are determined by intersecting the bounds of the
166  /// memory use itself with a particular partition. As a consequence there is
167  /// intentionally overlap between various uses of the same partition.
168  struct PartitionUse : public ByteRange {
169    /// \brief The use in question. Provides access to both user and used value.
170    ///
171    /// Note that this may be null if the partition use is *dead*, that is, it
172    /// should be ignored.
173    Use *U;
174
175    PartitionUse() : ByteRange(), U() {}
176    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
177        : ByteRange(BeginOffset, EndOffset), U(U) {}
178  };
179
180  /// \brief Construct a partitioning of a particular alloca.
181  ///
182  /// Construction does most of the work for partitioning the alloca. This
183  /// performs the necessary walks of users and builds a partitioning from it.
184  AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
185
186  /// \brief Test whether a pointer to the allocation escapes our analysis.
187  ///
188  /// If this is true, the partitioning is never fully built and should be
189  /// ignored.
190  bool isEscaped() const { return PointerEscapingInstr; }
191
192  /// \brief Support for iterating over the partitions.
193  /// @{
194  typedef SmallVectorImpl<Partition>::iterator iterator;
195  iterator begin() { return Partitions.begin(); }
196  iterator end() { return Partitions.end(); }
197
198  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
199  const_iterator begin() const { return Partitions.begin(); }
200  const_iterator end() const { return Partitions.end(); }
201  /// @}
202
203  /// \brief Support for iterating over and manipulating a particular
204  /// partition's uses.
205  ///
206  /// The iteration support provided for uses is more limited, but also
207  /// includes some manipulation routines to support rewriting the uses of
208  /// partitions during SROA.
209  /// @{
210  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
211  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
212  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
213  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
214  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
215
216  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
217  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
218  const_use_iterator use_begin(const_iterator I) const {
219    return Uses[I - begin()].begin();
220  }
221  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
222  const_use_iterator use_end(const_iterator I) const {
223    return Uses[I - begin()].end();
224  }
225
226  unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
227  unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
228  const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
229    return Uses[PIdx][UIdx];
230  }
231  const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
232    return Uses[I - begin()][UIdx];
233  }
234
235  void use_push_back(unsigned Idx, const PartitionUse &PU) {
236    Uses[Idx].push_back(PU);
237  }
238  void use_push_back(const_iterator I, const PartitionUse &PU) {
239    Uses[I - begin()].push_back(PU);
240  }
241  /// @}
242
243  /// \brief Allow iterating the dead users for this alloca.
244  ///
245  /// These are instructions which will never actually use the alloca as they
246  /// are outside the allocated range. They are safe to replace with undef and
247  /// delete.
248  /// @{
249  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
250  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
251  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
252  /// @}
253
254  /// \brief Allow iterating the dead expressions referring to this alloca.
255  ///
256  /// These are operands which have cannot actually be used to refer to the
257  /// alloca as they are outside its range and the user doesn't correct for
258  /// that. These mostly consist of PHI node inputs and the like which we just
259  /// need to replace with undef.
260  /// @{
261  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
262  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
263  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
264  /// @}
265
266  /// \brief MemTransferInst auxiliary data.
267  /// This struct provides some auxiliary data about memory transfer
268  /// intrinsics such as memcpy and memmove. These intrinsics can use two
269  /// different ranges within the same alloca, and provide other challenges to
270  /// correctly represent. We stash extra data to help us untangle this
271  /// after the partitioning is complete.
272  struct MemTransferOffsets {
273    /// The destination begin and end offsets when the destination is within
274    /// this alloca. If the end offset is zero the destination is not within
275    /// this alloca.
276    uint64_t DestBegin, DestEnd;
277
278    /// The source begin and end offsets when the source is within this alloca.
279    /// If the end offset is zero, the source is not within this alloca.
280    uint64_t SourceBegin, SourceEnd;
281
282    /// Flag for whether an alloca is splittable.
283    bool IsSplittable;
284  };
285  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
286    return MemTransferInstData.lookup(&II);
287  }
288
289  /// \brief Map from a PHI or select operand back to a partition.
290  ///
291  /// When manipulating PHI nodes or selects, they can use more than one
292  /// partition of an alloca. We store a special mapping to allow finding the
293  /// partition referenced by each of these operands, if any.
294  iterator findPartitionForPHIOrSelectOperand(Use *U) {
295    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
296      = PHIOrSelectOpMap.find(U);
297    if (MapIt == PHIOrSelectOpMap.end())
298      return end();
299
300    return begin() + MapIt->second.first;
301  }
302
303  /// \brief Map from a PHI or select operand back to the specific use of
304  /// a partition.
305  ///
306  /// Similar to mapping these operands back to the partitions, this maps
307  /// directly to the use structure of that partition.
308  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
309    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
310      = PHIOrSelectOpMap.find(U);
311    assert(MapIt != PHIOrSelectOpMap.end());
312    return Uses[MapIt->second.first].begin() + MapIt->second.second;
313  }
314
315  /// \brief Compute a common type among the uses of a particular partition.
316  ///
317  /// This routines walks all of the uses of a particular partition and tries
318  /// to find a common type between them. Untyped operations such as memset and
319  /// memcpy are ignored.
320  Type *getCommonType(iterator I) const;
321
322#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
323  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
324  void printUsers(raw_ostream &OS, const_iterator I,
325                  StringRef Indent = "  ") const;
326  void print(raw_ostream &OS) const;
327  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
328  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
329#endif
330
331private:
332  template <typename DerivedT, typename RetT = void> class BuilderBase;
333  class PartitionBuilder;
334  friend class AllocaPartitioning::PartitionBuilder;
335  class UseBuilder;
336  friend class AllocaPartitioning::UseBuilder;
337
338#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
339  /// \brief Handle to alloca instruction to simplify method interfaces.
340  AllocaInst &AI;
341#endif
342
343  /// \brief The instruction responsible for this alloca having no partitioning.
344  ///
345  /// When an instruction (potentially) escapes the pointer to the alloca, we
346  /// store a pointer to that here and abort trying to partition the alloca.
347  /// This will be null if the alloca is partitioned successfully.
348  Instruction *PointerEscapingInstr;
349
350  /// \brief The partitions of the alloca.
351  ///
352  /// We store a vector of the partitions over the alloca here. This vector is
353  /// sorted by increasing begin offset, and then by decreasing end offset. See
354  /// the Partition inner class for more details. Initially (during
355  /// construction) there are overlaps, but we form a disjoint sequence of
356  /// partitions while finishing construction and a fully constructed object is
357  /// expected to always have this as a disjoint space.
358  SmallVector<Partition, 8> Partitions;
359
360  /// \brief The uses of the partitions.
361  ///
362  /// This is essentially a mapping from each partition to a list of uses of
363  /// that partition. The mapping is done with a Uses vector that has the exact
364  /// same number of entries as the partition vector. Each entry is itself
365  /// a vector of the uses.
366  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
367
368  /// \brief Instructions which will become dead if we rewrite the alloca.
369  ///
370  /// Note that these are not separated by partition. This is because we expect
371  /// a partitioned alloca to be completely rewritten or not rewritten at all.
372  /// If rewritten, all these instructions can simply be removed and replaced
373  /// with undef as they come from outside of the allocated space.
374  SmallVector<Instruction *, 8> DeadUsers;
375
376  /// \brief Operands which will become dead if we rewrite the alloca.
377  ///
378  /// These are operands that in their particular use can be replaced with
379  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
380  /// to PHI nodes and the like. They aren't entirely dead (there might be
381  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
382  /// want to swap this particular input for undef to simplify the use lists of
383  /// the alloca.
384  SmallVector<Use *, 8> DeadOperands;
385
386  /// \brief The underlying storage for auxiliary memcpy and memset info.
387  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
388
389  /// \brief A side datastructure used when building up the partitions and uses.
390  ///
391  /// This mapping is only really used during the initial building of the
392  /// partitioning so that we can retain information about PHI and select nodes
393  /// processed.
394  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
395
396  /// \brief Auxiliary information for particular PHI or select operands.
397  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
398
399  /// \brief A utility routine called from the constructor.
400  ///
401  /// This does what it says on the tin. It is the key of the alloca partition
402  /// splitting and merging. After it is called we have the desired disjoint
403  /// collection of partitions.
404  void splitAndMergePartitions();
405};
406}
407
408static Value *foldSelectInst(SelectInst &SI) {
409  // If the condition being selected on is a constant or the same value is
410  // being selected between, fold the select. Yes this does (rarely) happen
411  // early on.
412  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
413    return SI.getOperand(1+CI->isZero());
414  if (SI.getOperand(1) == SI.getOperand(2)) {
415    return SI.getOperand(1);
416  }
417  return 0;
418}
419
420/// \brief Builder for the alloca partitioning.
421///
422/// This class builds an alloca partitioning by recursively visiting the uses
423/// of an alloca and splitting the partitions for each load and store at each
424/// offset.
425class AllocaPartitioning::PartitionBuilder
426    : public PtrUseVisitor<PartitionBuilder> {
427  friend class PtrUseVisitor<PartitionBuilder>;
428  friend class InstVisitor<PartitionBuilder>;
429  typedef PtrUseVisitor<PartitionBuilder> Base;
430
431  const uint64_t AllocSize;
432  AllocaPartitioning &P;
433
434  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
435
436public:
437  PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
438      : PtrUseVisitor<PartitionBuilder>(DL),
439        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
440        P(P) {}
441
442private:
443  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
444                 bool IsSplittable = false) {
445    // Completely skip uses which have a zero size or start either before or
446    // past the end of the allocation.
447    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
448      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
449                   << " which has zero size or starts outside of the "
450                   << AllocSize << " byte alloca:\n"
451                   << "    alloca: " << P.AI << "\n"
452                   << "       use: " << I << "\n");
453      return;
454    }
455
456    uint64_t BeginOffset = Offset.getZExtValue();
457    uint64_t EndOffset = BeginOffset + Size;
458
459    // Clamp the end offset to the end of the allocation. Note that this is
460    // formulated to handle even the case where "BeginOffset + Size" overflows.
461    // NOTE! This may appear superficially to be something we could ignore
462    // entirely, but that is not so! There may be PHI-node uses where some
463    // instructions are dead but not others. We can't completely ignore the
464    // PHI node, and so have to record at least the information here.
465    assert(AllocSize >= BeginOffset); // Established above.
466    if (Size > AllocSize - BeginOffset) {
467      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
468                   << " to remain within the " << AllocSize << " byte alloca:\n"
469                   << "    alloca: " << P.AI << "\n"
470                   << "       use: " << I << "\n");
471      EndOffset = AllocSize;
472    }
473
474    Partition New(BeginOffset, EndOffset, IsSplittable);
475    P.Partitions.push_back(New);
476  }
477
478  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
479                         bool IsVolatile) {
480    uint64_t Size = DL.getTypeStoreSize(Ty);
481
482    // If this memory access can be shown to *statically* extend outside the
483    // bounds of of the allocation, it's behavior is undefined, so simply
484    // ignore it. Note that this is more strict than the generic clamping
485    // behavior of insertUse. We also try to handle cases which might run the
486    // risk of overflow.
487    // FIXME: We should instead consider the pointer to have escaped if this
488    // function is being instrumented for addressing bugs or race conditions.
489    if (Offset.isNegative() || Size > AllocSize ||
490        Offset.ugt(AllocSize - Size)) {
491      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
492                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
493                   << " which extends past the end of the " << AllocSize
494                   << " byte alloca:\n"
495                   << "    alloca: " << P.AI << "\n"
496                   << "       use: " << I << "\n");
497      return;
498    }
499
500    // We allow splitting of loads and stores where the type is an integer type
501    // and which cover the entire alloca. Such integer loads and stores
502    // often require decomposition into fine grained loads and stores.
503    bool IsSplittable = false;
504    if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
505      IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
506
507    insertUse(I, Offset, Size, IsSplittable);
508  }
509
510  void visitLoadInst(LoadInst &LI) {
511    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
512           "All simple FCA loads should have been pre-split");
513
514    if (!IsOffsetKnown)
515      return PI.setAborted(&LI);
516
517    return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
518  }
519
520  void visitStoreInst(StoreInst &SI) {
521    Value *ValOp = SI.getValueOperand();
522    if (ValOp == *U)
523      return PI.setEscapedAndAborted(&SI);
524    if (!IsOffsetKnown)
525      return PI.setAborted(&SI);
526
527    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
528           "All simple FCA stores should have been pre-split");
529    handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
530  }
531
532
533  void visitMemSetInst(MemSetInst &II) {
534    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
535    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
536    if ((Length && Length->getValue() == 0) ||
537        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
538      // Zero-length mem transfer intrinsics can be ignored entirely.
539      return;
540
541    if (!IsOffsetKnown)
542      return PI.setAborted(&II);
543
544    insertUse(II, Offset,
545              Length ? Length->getLimitedValue()
546                     : AllocSize - Offset.getLimitedValue(),
547              (bool)Length);
548  }
549
550  void visitMemTransferInst(MemTransferInst &II) {
551    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
552    if ((Length && Length->getValue() == 0) ||
553        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
554      // Zero-length mem transfer intrinsics can be ignored entirely.
555      return;
556
557    if (!IsOffsetKnown)
558      return PI.setAborted(&II);
559
560    uint64_t RawOffset = Offset.getLimitedValue();
561    uint64_t Size = Length ? Length->getLimitedValue()
562                           : AllocSize - RawOffset;
563
564    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
565
566    // Only intrinsics with a constant length can be split.
567    Offsets.IsSplittable = Length;
568
569    if (*U == II.getRawDest()) {
570      Offsets.DestBegin = RawOffset;
571      Offsets.DestEnd = RawOffset + Size;
572    }
573    if (*U == II.getRawSource()) {
574      Offsets.SourceBegin = RawOffset;
575      Offsets.SourceEnd = RawOffset + Size;
576    }
577
578    // If we have set up end offsets for both the source and the destination,
579    // we have found both sides of this transfer pointing at the same alloca.
580    bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
581    if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
582      unsigned PrevIdx = MemTransferPartitionMap[&II];
583
584      // Check if the begin offsets match and this is a non-volatile transfer.
585      // In that case, we can completely elide the transfer.
586      if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
587        P.Partitions[PrevIdx].kill();
588        return;
589      }
590
591      // Otherwise we have an offset transfer within the same alloca. We can't
592      // split those.
593      P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
594    } else if (SeenBothEnds) {
595      // Handle the case where this exact use provides both ends of the
596      // operation.
597      assert(II.getRawDest() == II.getRawSource());
598
599      // For non-volatile transfers this is a no-op.
600      if (!II.isVolatile())
601        return;
602
603      // Otherwise just suppress splitting.
604      Offsets.IsSplittable = false;
605    }
606
607
608    // Insert the use now that we've fixed up the splittable nature.
609    insertUse(II, Offset, Size, Offsets.IsSplittable);
610
611    // Setup the mapping from intrinsic to partition of we've not seen both
612    // ends of this transfer.
613    if (!SeenBothEnds) {
614      unsigned NewIdx = P.Partitions.size() - 1;
615      bool Inserted
616        = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
617      assert(Inserted &&
618             "Already have intrinsic in map but haven't seen both ends");
619      (void)Inserted;
620    }
621  }
622
623  // Disable SRoA for any intrinsics except for lifetime invariants.
624  // FIXME: What about debug instrinsics? This matches old behavior, but
625  // doesn't make sense.
626  void visitIntrinsicInst(IntrinsicInst &II) {
627    if (!IsOffsetKnown)
628      return PI.setAborted(&II);
629
630    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
631        II.getIntrinsicID() == Intrinsic::lifetime_end) {
632      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
633      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
634                               Length->getLimitedValue());
635      insertUse(II, Offset, Size, true);
636      return;
637    }
638
639    Base::visitIntrinsicInst(II);
640  }
641
642  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
643    // We consider any PHI or select that results in a direct load or store of
644    // the same offset to be a viable use for partitioning purposes. These uses
645    // are considered unsplittable and the size is the maximum loaded or stored
646    // size.
647    SmallPtrSet<Instruction *, 4> Visited;
648    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
649    Visited.insert(Root);
650    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
651    // If there are no loads or stores, the access is dead. We mark that as
652    // a size zero access.
653    Size = 0;
654    do {
655      Instruction *I, *UsedI;
656      llvm::tie(UsedI, I) = Uses.pop_back_val();
657
658      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
659        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
660        continue;
661      }
662      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
663        Value *Op = SI->getOperand(0);
664        if (Op == UsedI)
665          return SI;
666        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
667        continue;
668      }
669
670      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
671        if (!GEP->hasAllZeroIndices())
672          return GEP;
673      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
674                 !isa<SelectInst>(I)) {
675        return I;
676      }
677
678      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
679           ++UI)
680        if (Visited.insert(cast<Instruction>(*UI)))
681          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
682    } while (!Uses.empty());
683
684    return 0;
685  }
686
687  void visitPHINode(PHINode &PN) {
688    if (PN.use_empty())
689      return;
690    if (!IsOffsetKnown)
691      return PI.setAborted(&PN);
692
693    // See if we already have computed info on this node.
694    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
695    if (PHIInfo.first) {
696      PHIInfo.second = true;
697      insertUse(PN, Offset, PHIInfo.first);
698      return;
699    }
700
701    // Check for an unsafe use of the PHI node.
702    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
703      return PI.setAborted(UnsafeI);
704
705    insertUse(PN, Offset, PHIInfo.first);
706  }
707
708  void visitSelectInst(SelectInst &SI) {
709    if (SI.use_empty())
710      return;
711    if (Value *Result = foldSelectInst(SI)) {
712      if (Result == *U)
713        // If the result of the constant fold will be the pointer, recurse
714        // through the select as if we had RAUW'ed it.
715        enqueueUsers(SI);
716
717      return;
718    }
719    if (!IsOffsetKnown)
720      return PI.setAborted(&SI);
721
722    // See if we already have computed info on this node.
723    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
724    if (SelectInfo.first) {
725      SelectInfo.second = true;
726      insertUse(SI, Offset, SelectInfo.first);
727      return;
728    }
729
730    // Check for an unsafe use of the PHI node.
731    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
732      return PI.setAborted(UnsafeI);
733
734    insertUse(SI, Offset, SelectInfo.first);
735  }
736
737  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
738  void visitInstruction(Instruction &I) {
739    PI.setAborted(&I);
740  }
741};
742
743/// \brief Use adder for the alloca partitioning.
744///
745/// This class adds the uses of an alloca to all of the partitions which they
746/// use. For splittable partitions, this can end up doing essentially a linear
747/// walk of the partitions, but the number of steps remains bounded by the
748/// total result instruction size:
749/// - The number of partitions is a result of the number unsplittable
750///   instructions using the alloca.
751/// - The number of users of each partition is at worst the total number of
752///   splittable instructions using the alloca.
753/// Thus we will produce N * M instructions in the end, where N are the number
754/// of unsplittable uses and M are the number of splittable. This visitor does
755/// the exact same number of updates to the partitioning.
756///
757/// In the more common case, this visitor will leverage the fact that the
758/// partition space is pre-sorted, and do a logarithmic search for the
759/// partition needed, making the total visit a classical ((N + M) * log(N))
760/// complexity operation.
761class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
762  friend class PtrUseVisitor<UseBuilder>;
763  friend class InstVisitor<UseBuilder>;
764  typedef PtrUseVisitor<UseBuilder> Base;
765
766  const uint64_t AllocSize;
767  AllocaPartitioning &P;
768
769  /// \brief Set to de-duplicate dead instructions found in the use walk.
770  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
771
772public:
773  UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
774      : PtrUseVisitor<UseBuilder>(TD),
775        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
776        P(P) {}
777
778private:
779  void markAsDead(Instruction &I) {
780    if (VisitedDeadInsts.insert(&I))
781      P.DeadUsers.push_back(&I);
782  }
783
784  void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
785    // If the use has a zero size or extends outside of the allocation, record
786    // it as a dead use for elimination later.
787    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
788      return markAsDead(User);
789
790    uint64_t BeginOffset = Offset.getZExtValue();
791    uint64_t EndOffset = BeginOffset + Size;
792
793    // Clamp the end offset to the end of the allocation. Note that this is
794    // formulated to handle even the case where "BeginOffset + Size" overflows.
795    assert(AllocSize >= BeginOffset); // Established above.
796    if (Size > AllocSize - BeginOffset)
797      EndOffset = AllocSize;
798
799    // NB: This only works if we have zero overlapping partitions.
800    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
801    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
802      B = llvm::prior(B);
803    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
804         ++I) {
805      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
806                         std::min(I->EndOffset, EndOffset), U);
807      P.use_push_back(I, NewPU);
808      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
809        P.PHIOrSelectOpMap[U]
810          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
811    }
812  }
813
814  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset) {
815    uint64_t Size = DL.getTypeStoreSize(Ty);
816
817    // If this memory access can be shown to *statically* extend outside the
818    // bounds of of the allocation, it's behavior is undefined, so simply
819    // ignore it. Note that this is more strict than the generic clamping
820    // behavior of insertUse.
821    if (Offset.isNegative() || Size > AllocSize ||
822        Offset.ugt(AllocSize - Size))
823      return markAsDead(I);
824
825    insertUse(I, Offset, Size);
826  }
827
828  void visitBitCastInst(BitCastInst &BC) {
829    if (BC.use_empty())
830      return markAsDead(BC);
831
832    return Base::visitBitCastInst(BC);
833  }
834
835  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
836    if (GEPI.use_empty())
837      return markAsDead(GEPI);
838
839    return Base::visitGetElementPtrInst(GEPI);
840  }
841
842  void visitLoadInst(LoadInst &LI) {
843    assert(IsOffsetKnown);
844    handleLoadOrStore(LI.getType(), LI, Offset);
845  }
846
847  void visitStoreInst(StoreInst &SI) {
848    assert(IsOffsetKnown);
849    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
850  }
851
852  void visitMemSetInst(MemSetInst &II) {
853    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
854    if ((Length && Length->getValue() == 0) ||
855        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
856      return markAsDead(II);
857
858    assert(IsOffsetKnown);
859    insertUse(II, Offset, Length ? Length->getLimitedValue()
860                                 : AllocSize - Offset.getLimitedValue());
861  }
862
863  void visitMemTransferInst(MemTransferInst &II) {
864    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
865    if ((Length && Length->getValue() == 0) ||
866        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
867      return markAsDead(II);
868
869    assert(IsOffsetKnown);
870    uint64_t Size = Length ? Length->getLimitedValue()
871                           : AllocSize - Offset.getLimitedValue();
872
873    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
874    if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
875        Offsets.DestBegin == Offsets.SourceBegin)
876      return markAsDead(II); // Skip identity transfers without side-effects.
877
878    insertUse(II, Offset, Size);
879  }
880
881  void visitIntrinsicInst(IntrinsicInst &II) {
882    assert(IsOffsetKnown);
883    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
884           II.getIntrinsicID() == Intrinsic::lifetime_end);
885
886    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
887    insertUse(II, Offset, std::min(Length->getLimitedValue(),
888                                   AllocSize - Offset.getLimitedValue()));
889  }
890
891  void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
892    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
893
894    // For PHI and select operands outside the alloca, we can't nuke the entire
895    // phi or select -- the other side might still be relevant, so we special
896    // case them here and use a separate structure to track the operands
897    // themselves which should be replaced with undef.
898    if ((Offset.isNegative() && Offset.uge(Size)) ||
899        (!Offset.isNegative() && Offset.uge(AllocSize))) {
900      P.DeadOperands.push_back(U);
901      return;
902    }
903
904    insertUse(User, Offset, Size);
905  }
906
907  void visitPHINode(PHINode &PN) {
908    if (PN.use_empty())
909      return markAsDead(PN);
910
911    assert(IsOffsetKnown);
912    insertPHIOrSelect(PN, Offset);
913  }
914
915  void visitSelectInst(SelectInst &SI) {
916    if (SI.use_empty())
917      return markAsDead(SI);
918
919    if (Value *Result = foldSelectInst(SI)) {
920      if (Result == *U)
921        // If the result of the constant fold will be the pointer, recurse
922        // through the select as if we had RAUW'ed it.
923        enqueueUsers(SI);
924      else
925        // Otherwise the operand to the select is dead, and we can replace it
926        // with undef.
927        P.DeadOperands.push_back(U);
928
929      return;
930    }
931
932    assert(IsOffsetKnown);
933    insertPHIOrSelect(SI, Offset);
934  }
935
936  /// \brief Unreachable, we've already visited the alloca once.
937  void visitInstruction(Instruction &I) {
938    llvm_unreachable("Unhandled instruction in use builder.");
939  }
940};
941
942void AllocaPartitioning::splitAndMergePartitions() {
943  size_t NumDeadPartitions = 0;
944
945  // Track the range of splittable partitions that we pass when accumulating
946  // overlapping unsplittable partitions.
947  uint64_t SplitEndOffset = 0ull;
948
949  Partition New(0ull, 0ull, false);
950
951  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
952    ++j;
953
954    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
955      assert(New.BeginOffset == New.EndOffset);
956      New = Partitions[i];
957    } else {
958      assert(New.IsSplittable);
959      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
960    }
961    assert(New.BeginOffset != New.EndOffset);
962
963    // Scan the overlapping partitions.
964    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
965      // If the new partition we are forming is splittable, stop at the first
966      // unsplittable partition.
967      if (New.IsSplittable && !Partitions[j].IsSplittable)
968        break;
969
970      // Grow the new partition to include any equally splittable range. 'j' is
971      // always equally splittable when New is splittable, but when New is not
972      // splittable, we may subsume some (or part of some) splitable partition
973      // without growing the new one.
974      if (New.IsSplittable == Partitions[j].IsSplittable) {
975        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
976      } else {
977        assert(!New.IsSplittable);
978        assert(Partitions[j].IsSplittable);
979        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
980      }
981
982      Partitions[j].kill();
983      ++NumDeadPartitions;
984      ++j;
985    }
986
987    // If the new partition is splittable, chop off the end as soon as the
988    // unsplittable subsequent partition starts and ensure we eventually cover
989    // the splittable area.
990    if (j != e && New.IsSplittable) {
991      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
992      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
993    }
994
995    // Add the new partition if it differs from the original one and is
996    // non-empty. We can end up with an empty partition here if it was
997    // splittable but there is an unsplittable one that starts at the same
998    // offset.
999    if (New != Partitions[i]) {
1000      if (New.BeginOffset != New.EndOffset)
1001        Partitions.push_back(New);
1002      // Mark the old one for removal.
1003      Partitions[i].kill();
1004      ++NumDeadPartitions;
1005    }
1006
1007    New.BeginOffset = New.EndOffset;
1008    if (!New.IsSplittable) {
1009      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1010      if (j != e && !Partitions[j].IsSplittable)
1011        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1012      New.IsSplittable = true;
1013      // If there is a trailing splittable partition which won't be fused into
1014      // the next splittable partition go ahead and add it onto the partitions
1015      // list.
1016      if (New.BeginOffset < New.EndOffset &&
1017          (j == e || !Partitions[j].IsSplittable ||
1018           New.EndOffset < Partitions[j].BeginOffset)) {
1019        Partitions.push_back(New);
1020        New.BeginOffset = New.EndOffset = 0ull;
1021      }
1022    }
1023  }
1024
1025  // Re-sort the partitions now that they have been split and merged into
1026  // disjoint set of partitions. Also remove any of the dead partitions we've
1027  // replaced in the process.
1028  std::sort(Partitions.begin(), Partitions.end());
1029  if (NumDeadPartitions) {
1030    assert(Partitions.back().isDead());
1031    assert((ptrdiff_t)NumDeadPartitions ==
1032           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1033  }
1034  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1035}
1036
1037AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
1038    :
1039#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1040      AI(AI),
1041#endif
1042      PointerEscapingInstr(0) {
1043  PartitionBuilder PB(TD, AI, *this);
1044  PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1045  if (PtrI.isEscaped() || PtrI.isAborted()) {
1046    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1047    // possibly by just storing the PtrInfo in the AllocaPartitioning.
1048    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1049                                                  : PtrI.getAbortingInst();
1050    assert(PointerEscapingInstr && "Did not track a bad instruction");
1051    return;
1052  }
1053
1054  // Sort the uses. This arranges for the offsets to be in ascending order,
1055  // and the sizes to be in descending order.
1056  std::sort(Partitions.begin(), Partitions.end());
1057
1058  // Remove any partitions from the back which are marked as dead.
1059  while (!Partitions.empty() && Partitions.back().isDead())
1060    Partitions.pop_back();
1061
1062  if (Partitions.size() > 1) {
1063    // Intersect splittability for all partitions with equal offsets and sizes.
1064    // Then remove all but the first so that we have a sequence of non-equal but
1065    // potentially overlapping partitions.
1066    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1067         I = J) {
1068      ++J;
1069      while (J != E && *I == *J) {
1070        I->IsSplittable &= J->IsSplittable;
1071        ++J;
1072      }
1073    }
1074    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1075                     Partitions.end());
1076
1077    // Split splittable and merge unsplittable partitions into a disjoint set
1078    // of partitions over the used space of the allocation.
1079    splitAndMergePartitions();
1080  }
1081
1082  // Now build up the user lists for each of these disjoint partitions by
1083  // re-walking the recursive users of the alloca.
1084  Uses.resize(Partitions.size());
1085  UseBuilder UB(TD, AI, *this);
1086  PtrI = UB.visitPtr(AI);
1087  assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
1088  assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
1089}
1090
1091Type *AllocaPartitioning::getCommonType(iterator I) const {
1092  Type *Ty = 0;
1093  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1094    if (!UI->U)
1095      continue; // Skip dead uses.
1096    if (isa<IntrinsicInst>(*UI->U->getUser()))
1097      continue;
1098    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1099      continue;
1100
1101    Type *UserTy = 0;
1102    if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
1103      UserTy = LI->getType();
1104    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
1105      UserTy = SI->getValueOperand()->getType();
1106    } else {
1107      return 0; // Bail if we have weird uses.
1108    }
1109
1110    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
1111      // If the type is larger than the partition, skip it. We only encounter
1112      // this for split integer operations where we want to use the type of the
1113      // entity causing the split.
1114      if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
1115        continue;
1116
1117      // If we have found an integer type use covering the alloca, use that
1118      // regardless of the other types, as integers are often used for a "bucket
1119      // of bits" type.
1120      return ITy;
1121    }
1122
1123    if (Ty && Ty != UserTy)
1124      return 0;
1125
1126    Ty = UserTy;
1127  }
1128  return Ty;
1129}
1130
1131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1132
1133void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1134                               StringRef Indent) const {
1135  OS << Indent << "partition #" << (I - begin())
1136     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1137     << (I->IsSplittable ? " (splittable)" : "")
1138     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1139     << "\n";
1140}
1141
1142void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1143                                    StringRef Indent) const {
1144  for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1145       UI != UE; ++UI) {
1146    if (!UI->U)
1147      continue; // Skip dead uses.
1148    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1149       << "used by: " << *UI->U->getUser() << "\n";
1150    if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
1151      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1152      bool IsDest;
1153      if (!MTO.IsSplittable)
1154        IsDest = UI->BeginOffset == MTO.DestBegin;
1155      else
1156        IsDest = MTO.DestBegin != 0u;
1157      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1158         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1159         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1160    }
1161  }
1162}
1163
1164void AllocaPartitioning::print(raw_ostream &OS) const {
1165  if (PointerEscapingInstr) {
1166    OS << "No partitioning for alloca: " << AI << "\n"
1167       << "  A pointer to this alloca escaped by:\n"
1168       << "  " << *PointerEscapingInstr << "\n";
1169    return;
1170  }
1171
1172  OS << "Partitioning of alloca: " << AI << "\n";
1173  unsigned Num = 0;
1174  for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1175    print(OS, I);
1176    printUsers(OS, I);
1177  }
1178}
1179
1180void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1181void AllocaPartitioning::dump() const { print(dbgs()); }
1182
1183#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1184
1185
1186namespace {
1187/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1188///
1189/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1190/// the loads and stores of an alloca instruction, as well as updating its
1191/// debug information. This is used when a domtree is unavailable and thus
1192/// mem2reg in its full form can't be used to handle promotion of allocas to
1193/// scalar values.
1194class AllocaPromoter : public LoadAndStorePromoter {
1195  AllocaInst &AI;
1196  DIBuilder &DIB;
1197
1198  SmallVector<DbgDeclareInst *, 4> DDIs;
1199  SmallVector<DbgValueInst *, 4> DVIs;
1200
1201public:
1202  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1203                 AllocaInst &AI, DIBuilder &DIB)
1204    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1205
1206  void run(const SmallVectorImpl<Instruction*> &Insts) {
1207    // Remember which alloca we're promoting (for isInstInList).
1208    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1209      for (Value::use_iterator UI = DebugNode->use_begin(),
1210                               UE = DebugNode->use_end();
1211           UI != UE; ++UI)
1212        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1213          DDIs.push_back(DDI);
1214        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1215          DVIs.push_back(DVI);
1216    }
1217
1218    LoadAndStorePromoter::run(Insts);
1219    AI.eraseFromParent();
1220    while (!DDIs.empty())
1221      DDIs.pop_back_val()->eraseFromParent();
1222    while (!DVIs.empty())
1223      DVIs.pop_back_val()->eraseFromParent();
1224  }
1225
1226  virtual bool isInstInList(Instruction *I,
1227                            const SmallVectorImpl<Instruction*> &Insts) const {
1228    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1229      return LI->getOperand(0) == &AI;
1230    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1231  }
1232
1233  virtual void updateDebugInfo(Instruction *Inst) const {
1234    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1235           E = DDIs.end(); I != E; ++I) {
1236      DbgDeclareInst *DDI = *I;
1237      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1238        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1239      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1240        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1241    }
1242    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1243           E = DVIs.end(); I != E; ++I) {
1244      DbgValueInst *DVI = *I;
1245      Value *Arg = NULL;
1246      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1247        // If an argument is zero extended then use argument directly. The ZExt
1248        // may be zapped by an optimization pass in future.
1249        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1250          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1251        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1252          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1253        if (!Arg)
1254          Arg = SI->getOperand(0);
1255      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1256        Arg = LI->getOperand(0);
1257      } else {
1258        continue;
1259      }
1260      Instruction *DbgVal =
1261        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1262                                     Inst);
1263      DbgVal->setDebugLoc(DVI->getDebugLoc());
1264    }
1265  }
1266};
1267} // end anon namespace
1268
1269
1270namespace {
1271/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1272///
1273/// This pass takes allocations which can be completely analyzed (that is, they
1274/// don't escape) and tries to turn them into scalar SSA values. There are
1275/// a few steps to this process.
1276///
1277/// 1) It takes allocations of aggregates and analyzes the ways in which they
1278///    are used to try to split them into smaller allocations, ideally of
1279///    a single scalar data type. It will split up memcpy and memset accesses
1280///    as necessary and try to isolate invidual scalar accesses.
1281/// 2) It will transform accesses into forms which are suitable for SSA value
1282///    promotion. This can be replacing a memset with a scalar store of an
1283///    integer value, or it can involve speculating operations on a PHI or
1284///    select to be a PHI or select of the results.
1285/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1286///    onto insert and extract operations on a vector value, and convert them to
1287///    this form. By doing so, it will enable promotion of vector aggregates to
1288///    SSA vector values.
1289class SROA : public FunctionPass {
1290  const bool RequiresDomTree;
1291
1292  LLVMContext *C;
1293  const DataLayout *TD;
1294  DominatorTree *DT;
1295
1296  /// \brief Worklist of alloca instructions to simplify.
1297  ///
1298  /// Each alloca in the function is added to this. Each new alloca formed gets
1299  /// added to it as well to recursively simplify unless that alloca can be
1300  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1301  /// the one being actively rewritten, we add it back onto the list if not
1302  /// already present to ensure it is re-visited.
1303  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1304
1305  /// \brief A collection of instructions to delete.
1306  /// We try to batch deletions to simplify code and make things a bit more
1307  /// efficient.
1308  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
1309
1310  /// \brief Post-promotion worklist.
1311  ///
1312  /// Sometimes we discover an alloca which has a high probability of becoming
1313  /// viable for SROA after a round of promotion takes place. In those cases,
1314  /// the alloca is enqueued here for re-processing.
1315  ///
1316  /// Note that we have to be very careful to clear allocas out of this list in
1317  /// the event they are deleted.
1318  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1319
1320  /// \brief A collection of alloca instructions we can directly promote.
1321  std::vector<AllocaInst *> PromotableAllocas;
1322
1323public:
1324  SROA(bool RequiresDomTree = true)
1325      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1326        C(0), TD(0), DT(0) {
1327    initializeSROAPass(*PassRegistry::getPassRegistry());
1328  }
1329  bool runOnFunction(Function &F);
1330  void getAnalysisUsage(AnalysisUsage &AU) const;
1331
1332  const char *getPassName() const { return "SROA"; }
1333  static char ID;
1334
1335private:
1336  friend class PHIOrSelectSpeculator;
1337  friend class AllocaPartitionRewriter;
1338  friend class AllocaPartitionVectorRewriter;
1339
1340  bool rewriteAllocaPartition(AllocaInst &AI,
1341                              AllocaPartitioning &P,
1342                              AllocaPartitioning::iterator PI);
1343  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1344  bool runOnAlloca(AllocaInst &AI);
1345  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1346  bool promoteAllocas(Function &F);
1347};
1348}
1349
1350char SROA::ID = 0;
1351
1352FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1353  return new SROA(RequiresDomTree);
1354}
1355
1356INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1357                      false, false)
1358INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1359INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1360                    false, false)
1361
1362namespace {
1363/// \brief Visitor to speculate PHIs and Selects where possible.
1364class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1365  // Befriend the base class so it can delegate to private visit methods.
1366  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1367
1368  const DataLayout &TD;
1369  AllocaPartitioning &P;
1370  SROA &Pass;
1371
1372public:
1373  PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
1374    : TD(TD), P(P), Pass(Pass) {}
1375
1376  /// \brief Visit the users of an alloca partition and rewrite them.
1377  void visitUsers(AllocaPartitioning::const_iterator PI) {
1378    // Note that we need to use an index here as the underlying vector of uses
1379    // may be grown during speculation. However, we never need to re-visit the
1380    // new uses, and so we can use the initial size bound.
1381    for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1382      const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1383      if (!PU.U)
1384        continue; // Skip dead use.
1385
1386      visit(cast<Instruction>(PU.U->getUser()));
1387    }
1388  }
1389
1390private:
1391  // By default, skip this instruction.
1392  void visitInstruction(Instruction &I) {}
1393
1394  /// PHI instructions that use an alloca and are subsequently loaded can be
1395  /// rewritten to load both input pointers in the pred blocks and then PHI the
1396  /// results, allowing the load of the alloca to be promoted.
1397  /// From this:
1398  ///   %P2 = phi [i32* %Alloca, i32* %Other]
1399  ///   %V = load i32* %P2
1400  /// to:
1401  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1402  ///   ...
1403  ///   %V2 = load i32* %Other
1404  ///   ...
1405  ///   %V = phi [i32 %V1, i32 %V2]
1406  ///
1407  /// We can do this to a select if its only uses are loads and if the operands
1408  /// to the select can be loaded unconditionally.
1409  ///
1410  /// FIXME: This should be hoisted into a generic utility, likely in
1411  /// Transforms/Util/Local.h
1412  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1413    // For now, we can only do this promotion if the load is in the same block
1414    // as the PHI, and if there are no stores between the phi and load.
1415    // TODO: Allow recursive phi users.
1416    // TODO: Allow stores.
1417    BasicBlock *BB = PN.getParent();
1418    unsigned MaxAlign = 0;
1419    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1420         UI != UE; ++UI) {
1421      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1422      if (LI == 0 || !LI->isSimple()) return false;
1423
1424      // For now we only allow loads in the same block as the PHI.  This is
1425      // a common case that happens when instcombine merges two loads through
1426      // a PHI.
1427      if (LI->getParent() != BB) return false;
1428
1429      // Ensure that there are no instructions between the PHI and the load that
1430      // could store.
1431      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1432        if (BBI->mayWriteToMemory())
1433          return false;
1434
1435      MaxAlign = std::max(MaxAlign, LI->getAlignment());
1436      Loads.push_back(LI);
1437    }
1438
1439    // We can only transform this if it is safe to push the loads into the
1440    // predecessor blocks. The only thing to watch out for is that we can't put
1441    // a possibly trapping load in the predecessor if it is a critical edge.
1442    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1443         ++Idx) {
1444      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1445      Value *InVal = PN.getIncomingValue(Idx);
1446
1447      // If the value is produced by the terminator of the predecessor (an
1448      // invoke) or it has side-effects, there is no valid place to put a load
1449      // in the predecessor.
1450      if (TI == InVal || TI->mayHaveSideEffects())
1451        return false;
1452
1453      // If the predecessor has a single successor, then the edge isn't
1454      // critical.
1455      if (TI->getNumSuccessors() == 1)
1456        continue;
1457
1458      // If this pointer is always safe to load, or if we can prove that there
1459      // is already a load in the block, then we can move the load to the pred
1460      // block.
1461      if (InVal->isDereferenceablePointer() ||
1462          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1463        continue;
1464
1465      return false;
1466    }
1467
1468    return true;
1469  }
1470
1471  void visitPHINode(PHINode &PN) {
1472    DEBUG(dbgs() << "    original: " << PN << "\n");
1473
1474    SmallVector<LoadInst *, 4> Loads;
1475    if (!isSafePHIToSpeculate(PN, Loads))
1476      return;
1477
1478    assert(!Loads.empty());
1479
1480    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1481    IRBuilder<> PHIBuilder(&PN);
1482    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1483                                          PN.getName() + ".sroa.speculated");
1484
1485    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1486    // matter which one we get and if any differ, it doesn't matter.
1487    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1488    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1489    unsigned Align = SomeLoad->getAlignment();
1490
1491    // Rewrite all loads of the PN to use the new PHI.
1492    do {
1493      LoadInst *LI = Loads.pop_back_val();
1494      LI->replaceAllUsesWith(NewPN);
1495      Pass.DeadInsts.insert(LI);
1496    } while (!Loads.empty());
1497
1498    // Inject loads into all of the pred blocks.
1499    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1500      BasicBlock *Pred = PN.getIncomingBlock(Idx);
1501      TerminatorInst *TI = Pred->getTerminator();
1502      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1503      Value *InVal = PN.getIncomingValue(Idx);
1504      IRBuilder<> PredBuilder(TI);
1505
1506      LoadInst *Load
1507        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1508                                         Pred->getName()));
1509      ++NumLoadsSpeculated;
1510      Load->setAlignment(Align);
1511      if (TBAATag)
1512        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1513      NewPN->addIncoming(Load, Pred);
1514
1515      Instruction *Ptr = dyn_cast<Instruction>(InVal);
1516      if (!Ptr)
1517        // No uses to rewrite.
1518        continue;
1519
1520      // Try to lookup and rewrite any partition uses corresponding to this phi
1521      // input.
1522      AllocaPartitioning::iterator PI
1523        = P.findPartitionForPHIOrSelectOperand(InUse);
1524      if (PI == P.end())
1525        continue;
1526
1527      // Replace the Use in the PartitionUse for this operand with the Use
1528      // inside the load.
1529      AllocaPartitioning::use_iterator UI
1530        = P.findPartitionUseForPHIOrSelectOperand(InUse);
1531      assert(isa<PHINode>(*UI->U->getUser()));
1532      UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1533    }
1534    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1535  }
1536
1537  /// Select instructions that use an alloca and are subsequently loaded can be
1538  /// rewritten to load both input pointers and then select between the result,
1539  /// allowing the load of the alloca to be promoted.
1540  /// From this:
1541  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1542  ///   %V = load i32* %P2
1543  /// to:
1544  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1545  ///   %V2 = load i32* %Other
1546  ///   %V = select i1 %cond, i32 %V1, i32 %V2
1547  ///
1548  /// We can do this to a select if its only uses are loads and if the operand
1549  /// to the select can be loaded unconditionally.
1550  bool isSafeSelectToSpeculate(SelectInst &SI,
1551                               SmallVectorImpl<LoadInst *> &Loads) {
1552    Value *TValue = SI.getTrueValue();
1553    Value *FValue = SI.getFalseValue();
1554    bool TDerefable = TValue->isDereferenceablePointer();
1555    bool FDerefable = FValue->isDereferenceablePointer();
1556
1557    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1558         UI != UE; ++UI) {
1559      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1560      if (LI == 0 || !LI->isSimple()) return false;
1561
1562      // Both operands to the select need to be dereferencable, either
1563      // absolutely (e.g. allocas) or at this point because we can see other
1564      // accesses to it.
1565      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1566                                                      LI->getAlignment(), &TD))
1567        return false;
1568      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1569                                                      LI->getAlignment(), &TD))
1570        return false;
1571      Loads.push_back(LI);
1572    }
1573
1574    return true;
1575  }
1576
1577  void visitSelectInst(SelectInst &SI) {
1578    DEBUG(dbgs() << "    original: " << SI << "\n");
1579    IRBuilder<> IRB(&SI);
1580
1581    // If the select isn't safe to speculate, just use simple logic to emit it.
1582    SmallVector<LoadInst *, 4> Loads;
1583    if (!isSafeSelectToSpeculate(SI, Loads))
1584      return;
1585
1586    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1587    AllocaPartitioning::iterator PIs[2];
1588    AllocaPartitioning::PartitionUse PUs[2];
1589    for (unsigned i = 0, e = 2; i != e; ++i) {
1590      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1591      if (PIs[i] != P.end()) {
1592        // If the pointer is within the partitioning, remove the select from
1593        // its uses. We'll add in the new loads below.
1594        AllocaPartitioning::use_iterator UI
1595          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1596        PUs[i] = *UI;
1597        // Clear out the use here so that the offsets into the use list remain
1598        // stable but this use is ignored when rewriting.
1599        UI->U = 0;
1600      }
1601    }
1602
1603    Value *TV = SI.getTrueValue();
1604    Value *FV = SI.getFalseValue();
1605    // Replace the loads of the select with a select of two loads.
1606    while (!Loads.empty()) {
1607      LoadInst *LI = Loads.pop_back_val();
1608
1609      IRB.SetInsertPoint(LI);
1610      LoadInst *TL =
1611        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1612      LoadInst *FL =
1613        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1614      NumLoadsSpeculated += 2;
1615
1616      // Transfer alignment and TBAA info if present.
1617      TL->setAlignment(LI->getAlignment());
1618      FL->setAlignment(LI->getAlignment());
1619      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1620        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1621        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1622      }
1623
1624      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1625                                  LI->getName() + ".sroa.speculated");
1626
1627      LoadInst *Loads[2] = { TL, FL };
1628      for (unsigned i = 0, e = 2; i != e; ++i) {
1629        if (PIs[i] != P.end()) {
1630          Use *LoadUse = &Loads[i]->getOperandUse(0);
1631          assert(PUs[i].U->get() == LoadUse->get());
1632          PUs[i].U = LoadUse;
1633          P.use_push_back(PIs[i], PUs[i]);
1634        }
1635      }
1636
1637      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1638      LI->replaceAllUsesWith(V);
1639      Pass.DeadInsts.insert(LI);
1640    }
1641  }
1642};
1643}
1644
1645/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1646///
1647/// If the provided GEP is all-constant, the total byte offset formed by the
1648/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1649/// operands, the function returns false and the value of Offset is unmodified.
1650static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
1651                                 APInt &Offset) {
1652  APInt GEPOffset(Offset.getBitWidth(), 0);
1653  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1654       GTI != GTE; ++GTI) {
1655    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1656    if (!OpC)
1657      return false;
1658    if (OpC->isZero()) continue;
1659
1660    // Handle a struct index, which adds its field offset to the pointer.
1661    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1662      unsigned ElementIdx = OpC->getZExtValue();
1663      const StructLayout *SL = TD.getStructLayout(STy);
1664      GEPOffset += APInt(Offset.getBitWidth(),
1665                         SL->getElementOffset(ElementIdx));
1666      continue;
1667    }
1668
1669    APInt TypeSize(Offset.getBitWidth(),
1670                   TD.getTypeAllocSize(GTI.getIndexedType()));
1671    if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1672      assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1673             "vector element size is not a multiple of 8, cannot GEP over it");
1674      TypeSize = VTy->getScalarSizeInBits() / 8;
1675    }
1676
1677    GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1678  }
1679  Offset = GEPOffset;
1680  return true;
1681}
1682
1683/// \brief Build a GEP out of a base pointer and indices.
1684///
1685/// This will return the BasePtr if that is valid, or build a new GEP
1686/// instruction using the IRBuilder if GEP-ing is needed.
1687static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1688                       SmallVectorImpl<Value *> &Indices,
1689                       const Twine &Prefix) {
1690  if (Indices.empty())
1691    return BasePtr;
1692
1693  // A single zero index is a no-op, so check for this and avoid building a GEP
1694  // in that case.
1695  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1696    return BasePtr;
1697
1698  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1699}
1700
1701/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1702/// TargetTy without changing the offset of the pointer.
1703///
1704/// This routine assumes we've already established a properly offset GEP with
1705/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1706/// zero-indices down through type layers until we find one the same as
1707/// TargetTy. If we can't find one with the same type, we at least try to use
1708/// one with the same size. If none of that works, we just produce the GEP as
1709/// indicated by Indices to have the correct offset.
1710static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
1711                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1712                                    SmallVectorImpl<Value *> &Indices,
1713                                    const Twine &Prefix) {
1714  if (Ty == TargetTy)
1715    return buildGEP(IRB, BasePtr, Indices, Prefix);
1716
1717  // See if we can descend into a struct and locate a field with the correct
1718  // type.
1719  unsigned NumLayers = 0;
1720  Type *ElementTy = Ty;
1721  do {
1722    if (ElementTy->isPointerTy())
1723      break;
1724    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1725      ElementTy = SeqTy->getElementType();
1726      // Note that we use the default address space as this index is over an
1727      // array or a vector, not a pointer.
1728      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
1729    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1730      if (STy->element_begin() == STy->element_end())
1731        break; // Nothing left to descend into.
1732      ElementTy = *STy->element_begin();
1733      Indices.push_back(IRB.getInt32(0));
1734    } else {
1735      break;
1736    }
1737    ++NumLayers;
1738  } while (ElementTy != TargetTy);
1739  if (ElementTy != TargetTy)
1740    Indices.erase(Indices.end() - NumLayers, Indices.end());
1741
1742  return buildGEP(IRB, BasePtr, Indices, Prefix);
1743}
1744
1745/// \brief Recursively compute indices for a natural GEP.
1746///
1747/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1748/// element types adding appropriate indices for the GEP.
1749static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
1750                                       Value *Ptr, Type *Ty, APInt &Offset,
1751                                       Type *TargetTy,
1752                                       SmallVectorImpl<Value *> &Indices,
1753                                       const Twine &Prefix) {
1754  if (Offset == 0)
1755    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1756
1757  // We can't recurse through pointer types.
1758  if (Ty->isPointerTy())
1759    return 0;
1760
1761  // We try to analyze GEPs over vectors here, but note that these GEPs are
1762  // extremely poorly defined currently. The long-term goal is to remove GEPing
1763  // over a vector from the IR completely.
1764  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1765    unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1766    if (ElementSizeInBits % 8)
1767      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1768    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1769    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1770    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1771      return 0;
1772    Offset -= NumSkippedElements * ElementSize;
1773    Indices.push_back(IRB.getInt(NumSkippedElements));
1774    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1775                                    Offset, TargetTy, Indices, Prefix);
1776  }
1777
1778  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1779    Type *ElementTy = ArrTy->getElementType();
1780    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1781    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1782    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1783      return 0;
1784
1785    Offset -= NumSkippedElements * ElementSize;
1786    Indices.push_back(IRB.getInt(NumSkippedElements));
1787    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1788                                    Indices, Prefix);
1789  }
1790
1791  StructType *STy = dyn_cast<StructType>(Ty);
1792  if (!STy)
1793    return 0;
1794
1795  const StructLayout *SL = TD.getStructLayout(STy);
1796  uint64_t StructOffset = Offset.getZExtValue();
1797  if (StructOffset >= SL->getSizeInBytes())
1798    return 0;
1799  unsigned Index = SL->getElementContainingOffset(StructOffset);
1800  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1801  Type *ElementTy = STy->getElementType(Index);
1802  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1803    return 0; // The offset points into alignment padding.
1804
1805  Indices.push_back(IRB.getInt32(Index));
1806  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1807                                  Indices, Prefix);
1808}
1809
1810/// \brief Get a natural GEP from a base pointer to a particular offset and
1811/// resulting in a particular type.
1812///
1813/// The goal is to produce a "natural" looking GEP that works with the existing
1814/// composite types to arrive at the appropriate offset and element type for
1815/// a pointer. TargetTy is the element type the returned GEP should point-to if
1816/// possible. We recurse by decreasing Offset, adding the appropriate index to
1817/// Indices, and setting Ty to the result subtype.
1818///
1819/// If no natural GEP can be constructed, this function returns null.
1820static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
1821                                      Value *Ptr, APInt Offset, Type *TargetTy,
1822                                      SmallVectorImpl<Value *> &Indices,
1823                                      const Twine &Prefix) {
1824  PointerType *Ty = cast<PointerType>(Ptr->getType());
1825
1826  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1827  // an i8.
1828  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1829    return 0;
1830
1831  Type *ElementTy = Ty->getElementType();
1832  if (!ElementTy->isSized())
1833    return 0; // We can't GEP through an unsized element.
1834  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1835  if (ElementSize == 0)
1836    return 0; // Zero-length arrays can't help us build a natural GEP.
1837  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1838
1839  Offset -= NumSkippedElements * ElementSize;
1840  Indices.push_back(IRB.getInt(NumSkippedElements));
1841  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1842                                  Indices, Prefix);
1843}
1844
1845/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1846/// resulting pointer has PointerTy.
1847///
1848/// This tries very hard to compute a "natural" GEP which arrives at the offset
1849/// and produces the pointer type desired. Where it cannot, it will try to use
1850/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1851/// fails, it will try to use an existing i8* and GEP to the byte offset and
1852/// bitcast to the type.
1853///
1854/// The strategy for finding the more natural GEPs is to peel off layers of the
1855/// pointer, walking back through bit casts and GEPs, searching for a base
1856/// pointer from which we can compute a natural GEP with the desired
1857/// properities. The algorithm tries to fold as many constant indices into
1858/// a single GEP as possible, thus making each GEP more independent of the
1859/// surrounding code.
1860static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
1861                             Value *Ptr, APInt Offset, Type *PointerTy,
1862                             const Twine &Prefix) {
1863  // Even though we don't look through PHI nodes, we could be called on an
1864  // instruction in an unreachable block, which may be on a cycle.
1865  SmallPtrSet<Value *, 4> Visited;
1866  Visited.insert(Ptr);
1867  SmallVector<Value *, 4> Indices;
1868
1869  // We may end up computing an offset pointer that has the wrong type. If we
1870  // never are able to compute one directly that has the correct type, we'll
1871  // fall back to it, so keep it around here.
1872  Value *OffsetPtr = 0;
1873
1874  // Remember any i8 pointer we come across to re-use if we need to do a raw
1875  // byte offset.
1876  Value *Int8Ptr = 0;
1877  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1878
1879  Type *TargetTy = PointerTy->getPointerElementType();
1880
1881  do {
1882    // First fold any existing GEPs into the offset.
1883    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1884      APInt GEPOffset(Offset.getBitWidth(), 0);
1885      if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1886        break;
1887      Offset += GEPOffset;
1888      Ptr = GEP->getPointerOperand();
1889      if (!Visited.insert(Ptr))
1890        break;
1891    }
1892
1893    // See if we can perform a natural GEP here.
1894    Indices.clear();
1895    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1896                                           Indices, Prefix)) {
1897      if (P->getType() == PointerTy) {
1898        // Zap any offset pointer that we ended up computing in previous rounds.
1899        if (OffsetPtr && OffsetPtr->use_empty())
1900          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1901            I->eraseFromParent();
1902        return P;
1903      }
1904      if (!OffsetPtr) {
1905        OffsetPtr = P;
1906      }
1907    }
1908
1909    // Stash this pointer if we've found an i8*.
1910    if (Ptr->getType()->isIntegerTy(8)) {
1911      Int8Ptr = Ptr;
1912      Int8PtrOffset = Offset;
1913    }
1914
1915    // Peel off a layer of the pointer and update the offset appropriately.
1916    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1917      Ptr = cast<Operator>(Ptr)->getOperand(0);
1918    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1919      if (GA->mayBeOverridden())
1920        break;
1921      Ptr = GA->getAliasee();
1922    } else {
1923      break;
1924    }
1925    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1926  } while (Visited.insert(Ptr));
1927
1928  if (!OffsetPtr) {
1929    if (!Int8Ptr) {
1930      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1931                                  Prefix + ".raw_cast");
1932      Int8PtrOffset = Offset;
1933    }
1934
1935    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1936      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1937                            Prefix + ".raw_idx");
1938  }
1939  Ptr = OffsetPtr;
1940
1941  // On the off chance we were targeting i8*, guard the bitcast here.
1942  if (Ptr->getType() != PointerTy)
1943    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1944
1945  return Ptr;
1946}
1947
1948/// \brief Test whether we can convert a value from the old to the new type.
1949///
1950/// This predicate should be used to guard calls to convertValue in order to
1951/// ensure that we only try to convert viable values. The strategy is that we
1952/// will peel off single element struct and array wrappings to get to an
1953/// underlying value, and convert that value.
1954static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1955  if (OldTy == NewTy)
1956    return true;
1957  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1958    return false;
1959  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1960    return false;
1961
1962  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1963    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1964      return true;
1965    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1966      return true;
1967    return false;
1968  }
1969
1970  return true;
1971}
1972
1973/// \brief Generic routine to convert an SSA value to a value of a different
1974/// type.
1975///
1976/// This will try various different casting techniques, such as bitcasts,
1977/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1978/// two types for viability with this routine.
1979static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
1980                           Type *Ty) {
1981  assert(canConvertValue(DL, V->getType(), Ty) &&
1982         "Value not convertable to type");
1983  if (V->getType() == Ty)
1984    return V;
1985  if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1986    return IRB.CreateIntToPtr(V, Ty);
1987  if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1988    return IRB.CreatePtrToInt(V, Ty);
1989
1990  return IRB.CreateBitCast(V, Ty);
1991}
1992
1993/// \brief Test whether the given alloca partition can be promoted to a vector.
1994///
1995/// This is a quick test to check whether we can rewrite a particular alloca
1996/// partition (and its newly formed alloca) into a vector alloca with only
1997/// whole-vector loads and stores such that it could be promoted to a vector
1998/// SSA value. We only can ensure this for a limited set of operations, and we
1999/// don't want to do the rewrites unless we are confident that the result will
2000/// be promotable, so we have an early test here.
2001static bool isVectorPromotionViable(const DataLayout &TD,
2002                                    Type *AllocaTy,
2003                                    AllocaPartitioning &P,
2004                                    uint64_t PartitionBeginOffset,
2005                                    uint64_t PartitionEndOffset,
2006                                    AllocaPartitioning::const_use_iterator I,
2007                                    AllocaPartitioning::const_use_iterator E) {
2008  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2009  if (!Ty)
2010    return false;
2011
2012  uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2013  uint64_t ElementSize = Ty->getScalarSizeInBits();
2014
2015  // While the definition of LLVM vectors is bitpacked, we don't support sizes
2016  // that aren't byte sized.
2017  if (ElementSize % 8)
2018    return false;
2019  assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2020  VecSize /= 8;
2021  ElementSize /= 8;
2022
2023  for (; I != E; ++I) {
2024    if (!I->U)
2025      continue; // Skip dead use.
2026
2027    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2028    uint64_t BeginIndex = BeginOffset / ElementSize;
2029    if (BeginIndex * ElementSize != BeginOffset ||
2030        BeginIndex >= Ty->getNumElements())
2031      return false;
2032    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2033    uint64_t EndIndex = EndOffset / ElementSize;
2034    if (EndIndex * ElementSize != EndOffset ||
2035        EndIndex > Ty->getNumElements())
2036      return false;
2037
2038    assert(EndIndex > BeginIndex && "Empty vector!");
2039    uint64_t NumElements = EndIndex - BeginIndex;
2040    Type *PartitionTy
2041      = (NumElements == 1) ? Ty->getElementType()
2042                           : VectorType::get(Ty->getElementType(), NumElements);
2043
2044    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2045      if (MI->isVolatile())
2046        return false;
2047      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2048        const AllocaPartitioning::MemTransferOffsets &MTO
2049          = P.getMemTransferOffsets(*MTI);
2050        if (!MTO.IsSplittable)
2051          return false;
2052      }
2053    } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
2054      // Disable vector promotion when there are loads or stores of an FCA.
2055      return false;
2056    } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2057      if (LI->isVolatile())
2058        return false;
2059      if (!canConvertValue(TD, PartitionTy, LI->getType()))
2060        return false;
2061    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2062      if (SI->isVolatile())
2063        return false;
2064      if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
2065        return false;
2066    } else {
2067      return false;
2068    }
2069  }
2070  return true;
2071}
2072
2073/// \brief Test whether the given alloca partition's integer operations can be
2074/// widened to promotable ones.
2075///
2076/// This is a quick test to check whether we can rewrite the integer loads and
2077/// stores to a particular alloca into wider loads and stores and be able to
2078/// promote the resulting alloca.
2079static bool isIntegerWideningViable(const DataLayout &TD,
2080                                    Type *AllocaTy,
2081                                    uint64_t AllocBeginOffset,
2082                                    AllocaPartitioning &P,
2083                                    AllocaPartitioning::const_use_iterator I,
2084                                    AllocaPartitioning::const_use_iterator E) {
2085  uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
2086  // Don't create integer types larger than the maximum bitwidth.
2087  if (SizeInBits > IntegerType::MAX_INT_BITS)
2088    return false;
2089
2090  // Don't try to handle allocas with bit-padding.
2091  if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
2092    return false;
2093
2094  // We need to ensure that an integer type with the appropriate bitwidth can
2095  // be converted to the alloca type, whatever that is. We don't want to force
2096  // the alloca itself to have an integer type if there is a more suitable one.
2097  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2098  if (!canConvertValue(TD, AllocaTy, IntTy) ||
2099      !canConvertValue(TD, IntTy, AllocaTy))
2100    return false;
2101
2102  uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2103
2104  // Check the uses to ensure the uses are (likely) promoteable integer uses.
2105  // Also ensure that the alloca has a covering load or store. We don't want
2106  // to widen the integer operotains only to fail to promote due to some other
2107  // unsplittable entry (which we may make splittable later).
2108  bool WholeAllocaOp = false;
2109  for (; I != E; ++I) {
2110    if (!I->U)
2111      continue; // Skip dead use.
2112
2113    uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2114    uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2115
2116    // We can't reasonably handle cases where the load or store extends past
2117    // the end of the aloca's type and into its padding.
2118    if (RelEnd > Size)
2119      return false;
2120
2121    if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2122      if (LI->isVolatile())
2123        return false;
2124      if (RelBegin == 0 && RelEnd == Size)
2125        WholeAllocaOp = true;
2126      if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2127        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2128          return false;
2129        continue;
2130      }
2131      // Non-integer loads need to be convertible from the alloca type so that
2132      // they are promotable.
2133      if (RelBegin != 0 || RelEnd != Size ||
2134          !canConvertValue(TD, AllocaTy, LI->getType()))
2135        return false;
2136    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2137      Type *ValueTy = SI->getValueOperand()->getType();
2138      if (SI->isVolatile())
2139        return false;
2140      if (RelBegin == 0 && RelEnd == Size)
2141        WholeAllocaOp = true;
2142      if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2143        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2144          return false;
2145        continue;
2146      }
2147      // Non-integer stores need to be convertible to the alloca type so that
2148      // they are promotable.
2149      if (RelBegin != 0 || RelEnd != Size ||
2150          !canConvertValue(TD, ValueTy, AllocaTy))
2151        return false;
2152    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2153      if (MI->isVolatile())
2154        return false;
2155      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2156        const AllocaPartitioning::MemTransferOffsets &MTO
2157          = P.getMemTransferOffsets(*MTI);
2158        if (!MTO.IsSplittable)
2159          return false;
2160      }
2161    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2162      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2163          II->getIntrinsicID() != Intrinsic::lifetime_end)
2164        return false;
2165    } else {
2166      return false;
2167    }
2168  }
2169  return WholeAllocaOp;
2170}
2171
2172static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2173                             IntegerType *Ty, uint64_t Offset,
2174                             const Twine &Name) {
2175  DEBUG(dbgs() << "       start: " << *V << "\n");
2176  IntegerType *IntTy = cast<IntegerType>(V->getType());
2177  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2178         "Element extends past full value");
2179  uint64_t ShAmt = 8*Offset;
2180  if (DL.isBigEndian())
2181    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2182  if (ShAmt) {
2183    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2184    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2185  }
2186  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2187         "Cannot extract to a larger integer!");
2188  if (Ty != IntTy) {
2189    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2190    DEBUG(dbgs() << "     trunced: " << *V << "\n");
2191  }
2192  return V;
2193}
2194
2195static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
2196                            Value *V, uint64_t Offset, const Twine &Name) {
2197  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2198  IntegerType *Ty = cast<IntegerType>(V->getType());
2199  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2200         "Cannot insert a larger integer!");
2201  DEBUG(dbgs() << "       start: " << *V << "\n");
2202  if (Ty != IntTy) {
2203    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2204    DEBUG(dbgs() << "    extended: " << *V << "\n");
2205  }
2206  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2207         "Element store outside of alloca store");
2208  uint64_t ShAmt = 8*Offset;
2209  if (DL.isBigEndian())
2210    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2211  if (ShAmt) {
2212    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2213    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2214  }
2215
2216  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2217    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2218    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2219    DEBUG(dbgs() << "      masked: " << *Old << "\n");
2220    V = IRB.CreateOr(Old, V, Name + ".insert");
2221    DEBUG(dbgs() << "    inserted: " << *V << "\n");
2222  }
2223  return V;
2224}
2225
2226namespace {
2227/// \brief Visitor to rewrite instructions using a partition of an alloca to
2228/// use a new alloca.
2229///
2230/// Also implements the rewriting to vector-based accesses when the partition
2231/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2232/// lives here.
2233class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2234                                                   bool> {
2235  // Befriend the base class so it can delegate to private visit methods.
2236  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2237
2238  const DataLayout &TD;
2239  AllocaPartitioning &P;
2240  SROA &Pass;
2241  AllocaInst &OldAI, &NewAI;
2242  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2243  Type *NewAllocaTy;
2244
2245  // If we are rewriting an alloca partition which can be written as pure
2246  // vector operations, we stash extra information here. When VecTy is
2247  // non-null, we have some strict guarantees about the rewriten alloca:
2248  //   - The new alloca is exactly the size of the vector type here.
2249  //   - The accesses all either map to the entire vector or to a single
2250  //     element.
2251  //   - The set of accessing instructions is only one of those handled above
2252  //     in isVectorPromotionViable. Generally these are the same access kinds
2253  //     which are promotable via mem2reg.
2254  VectorType *VecTy;
2255  Type *ElementTy;
2256  uint64_t ElementSize;
2257
2258  // This is a convenience and flag variable that will be null unless the new
2259  // alloca's integer operations should be widened to this integer type due to
2260  // passing isIntegerWideningViable above. If it is non-null, the desired
2261  // integer type will be stored here for easy access during rewriting.
2262  IntegerType *IntTy;
2263
2264  // The offset of the partition user currently being rewritten.
2265  uint64_t BeginOffset, EndOffset;
2266  Use *OldUse;
2267  Instruction *OldPtr;
2268
2269  // The name prefix to use when rewriting instructions for this alloca.
2270  std::string NamePrefix;
2271
2272public:
2273  AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
2274                          AllocaPartitioning::iterator PI,
2275                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2276                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
2277    : TD(TD), P(P), Pass(Pass),
2278      OldAI(OldAI), NewAI(NewAI),
2279      NewAllocaBeginOffset(NewBeginOffset),
2280      NewAllocaEndOffset(NewEndOffset),
2281      NewAllocaTy(NewAI.getAllocatedType()),
2282      VecTy(), ElementTy(), ElementSize(), IntTy(),
2283      BeginOffset(), EndOffset() {
2284  }
2285
2286  /// \brief Visit the users of the alloca partition and rewrite them.
2287  bool visitUsers(AllocaPartitioning::const_use_iterator I,
2288                  AllocaPartitioning::const_use_iterator E) {
2289    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2290                                NewAllocaBeginOffset, NewAllocaEndOffset,
2291                                I, E)) {
2292      ++NumVectorized;
2293      VecTy = cast<VectorType>(NewAI.getAllocatedType());
2294      ElementTy = VecTy->getElementType();
2295      assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2296             "Only multiple-of-8 sized vector elements are viable");
2297      ElementSize = VecTy->getScalarSizeInBits() / 8;
2298    } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2299                                       NewAllocaBeginOffset, P, I, E)) {
2300      IntTy = Type::getIntNTy(NewAI.getContext(),
2301                              TD.getTypeSizeInBits(NewAI.getAllocatedType()));
2302    }
2303    bool CanSROA = true;
2304    for (; I != E; ++I) {
2305      if (!I->U)
2306        continue; // Skip dead uses.
2307      BeginOffset = I->BeginOffset;
2308      EndOffset = I->EndOffset;
2309      OldUse = I->U;
2310      OldPtr = cast<Instruction>(I->U->get());
2311      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
2312      CanSROA &= visit(cast<Instruction>(I->U->getUser()));
2313    }
2314    if (VecTy) {
2315      assert(CanSROA);
2316      VecTy = 0;
2317      ElementTy = 0;
2318      ElementSize = 0;
2319    }
2320    if (IntTy) {
2321      assert(CanSROA);
2322      IntTy = 0;
2323    }
2324    return CanSROA;
2325  }
2326
2327private:
2328  // Every instruction which can end up as a user must have a rewrite rule.
2329  bool visitInstruction(Instruction &I) {
2330    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2331    llvm_unreachable("No rewrite rule for this instruction!");
2332  }
2333
2334  Twine getName(const Twine &Suffix) {
2335    return NamePrefix + Suffix;
2336  }
2337
2338  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2339    assert(BeginOffset >= NewAllocaBeginOffset);
2340    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2341    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2342  }
2343
2344  /// \brief Compute suitable alignment to access an offset into the new alloca.
2345  unsigned getOffsetAlign(uint64_t Offset) {
2346    unsigned NewAIAlign = NewAI.getAlignment();
2347    if (!NewAIAlign)
2348      NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2349    return MinAlign(NewAIAlign, Offset);
2350  }
2351
2352  /// \brief Compute suitable alignment to access this partition of the new
2353  /// alloca.
2354  unsigned getPartitionAlign() {
2355    return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
2356  }
2357
2358  /// \brief Compute suitable alignment to access a type at an offset of the
2359  /// new alloca.
2360  ///
2361  /// \returns zero if the type's ABI alignment is a suitable alignment,
2362  /// otherwise returns the maximal suitable alignment.
2363  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2364    unsigned Align = getOffsetAlign(Offset);
2365    return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2366  }
2367
2368  /// \brief Compute suitable alignment to access a type at the beginning of
2369  /// this partition of the new alloca.
2370  ///
2371  /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2372  unsigned getPartitionTypeAlign(Type *Ty) {
2373    return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
2374  }
2375
2376  unsigned getIndex(uint64_t Offset) {
2377    assert(VecTy && "Can only call getIndex when rewriting a vector");
2378    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2379    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2380    uint32_t Index = RelOffset / ElementSize;
2381    assert(Index * ElementSize == RelOffset);
2382    return Index;
2383  }
2384
2385  void deleteIfTriviallyDead(Value *V) {
2386    Instruction *I = cast<Instruction>(V);
2387    if (isInstructionTriviallyDead(I))
2388      Pass.DeadInsts.insert(I);
2389  }
2390
2391  Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2392    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2393                                     getName(".load"));
2394    unsigned BeginIndex = getIndex(BeginOffset);
2395    unsigned EndIndex = getIndex(EndOffset);
2396    assert(EndIndex > BeginIndex && "Empty vector!");
2397    unsigned NumElements = EndIndex - BeginIndex;
2398    assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2399    if (NumElements == 1) {
2400      V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2401                                   getName(".extract"));
2402      DEBUG(dbgs() << "     extract: " << *V << "\n");
2403    } else if (NumElements < VecTy->getNumElements()) {
2404      SmallVector<Constant*, 8> Mask;
2405      Mask.reserve(NumElements);
2406      for (unsigned i = BeginIndex; i != EndIndex; ++i)
2407        Mask.push_back(IRB.getInt32(i));
2408      V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2409                                  ConstantVector::get(Mask),
2410                                  getName(".extract"));
2411      DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2412    }
2413    return V;
2414  }
2415
2416  Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2417    assert(IntTy && "We cannot insert an integer to the alloca");
2418    assert(!LI.isVolatile());
2419    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2420                                     getName(".load"));
2421    V = convertValue(TD, IRB, V, IntTy);
2422    assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2423    uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2424    if (Offset > 0 || EndOffset < NewAllocaEndOffset)
2425      V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2426                         getName(".extract"));
2427    return V;
2428  }
2429
2430  bool visitLoadInst(LoadInst &LI) {
2431    DEBUG(dbgs() << "    original: " << LI << "\n");
2432    Value *OldOp = LI.getOperand(0);
2433    assert(OldOp == OldPtr);
2434    IRBuilder<> IRB(&LI);
2435
2436    uint64_t Size = EndOffset - BeginOffset;
2437    bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
2438
2439    // If this memory access can be shown to *statically* extend outside the
2440    // bounds of the original allocation it's behavior is undefined. Rather
2441    // than trying to transform it, just replace it with undef.
2442    // FIXME: We should do something more clever for functions being
2443    // instrumented by asan.
2444    // FIXME: Eventually, once ASan and friends can flush out bugs here, this
2445    // should be transformed to a load of null making it unreachable.
2446    uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
2447    if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
2448      LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
2449      Pass.DeadInsts.insert(&LI);
2450      deleteIfTriviallyDead(OldOp);
2451      DEBUG(dbgs() << "          to: undef!!\n");
2452      return true;
2453    }
2454
2455    Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
2456                                    : LI.getType();
2457    bool IsPtrAdjusted = false;
2458    Value *V;
2459    if (VecTy) {
2460      V = rewriteVectorizedLoadInst(IRB, LI, OldOp);
2461    } else if (IntTy && LI.getType()->isIntegerTy()) {
2462      V = rewriteIntegerLoad(IRB, LI);
2463    } else if (BeginOffset == NewAllocaBeginOffset &&
2464               canConvertValue(TD, NewAllocaTy, LI.getType())) {
2465      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2466                                LI.isVolatile(), getName(".load"));
2467    } else {
2468      Type *LTy = TargetTy->getPointerTo();
2469      V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
2470                                getPartitionTypeAlign(TargetTy),
2471                                LI.isVolatile(), getName(".load"));
2472      IsPtrAdjusted = true;
2473    }
2474    V = convertValue(TD, IRB, V, TargetTy);
2475
2476    if (IsSplitIntLoad) {
2477      assert(!LI.isVolatile());
2478      assert(LI.getType()->isIntegerTy() &&
2479             "Only integer type loads and stores are split");
2480      assert(LI.getType()->getIntegerBitWidth() ==
2481             TD.getTypeStoreSizeInBits(LI.getType()) &&
2482             "Non-byte-multiple bit width");
2483      assert(LI.getType()->getIntegerBitWidth() ==
2484             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2485             "Only alloca-wide loads can be split and recomposed");
2486      // Move the insertion point just past the load so that we can refer to it.
2487      IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2488      // Create a placeholder value with the same type as LI to use as the
2489      // basis for the new value. This allows us to replace the uses of LI with
2490      // the computed value, and then replace the placeholder with LI, leaving
2491      // LI only used for this computation.
2492      Value *Placeholder
2493        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2494      V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
2495                        getName(".insert"));
2496      LI.replaceAllUsesWith(V);
2497      Placeholder->replaceAllUsesWith(&LI);
2498      delete Placeholder;
2499    } else {
2500      LI.replaceAllUsesWith(V);
2501    }
2502
2503    Pass.DeadInsts.insert(&LI);
2504    deleteIfTriviallyDead(OldOp);
2505    DEBUG(dbgs() << "          to: " << *V << "\n");
2506    return !LI.isVolatile() && !IsPtrAdjusted;
2507  }
2508
2509  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
2510                                  StoreInst &SI, Value *OldOp) {
2511    unsigned BeginIndex = getIndex(BeginOffset);
2512    unsigned EndIndex = getIndex(EndOffset);
2513    assert(EndIndex > BeginIndex && "Empty vector!");
2514    unsigned NumElements = EndIndex - BeginIndex;
2515    assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2516    Type *PartitionTy
2517      = (NumElements == 1) ? ElementTy
2518                           : VectorType::get(ElementTy, NumElements);
2519    if (V->getType() != PartitionTy)
2520      V = convertValue(TD, IRB, V, PartitionTy);
2521    if (NumElements < VecTy->getNumElements()) {
2522      // We need to mix in the existing elements.
2523      LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2524                                           getName(".load"));
2525      if (NumElements == 1) {
2526        V = IRB.CreateInsertElement(LI, V, IRB.getInt32(BeginIndex),
2527                                    getName(".insert"));
2528        DEBUG(dbgs() <<  "     insert: " << *V << "\n");
2529      } else {
2530        // When inserting a smaller vector into the larger to store, we first
2531        // use a shuffle vector to widen it with undef elements, and then
2532        // a second shuffle vector to select between the loaded vector and the
2533        // incoming vector.
2534        SmallVector<Constant*, 8> Mask;
2535        Mask.reserve(VecTy->getNumElements());
2536        for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2537          if (i >= BeginIndex && i < EndIndex)
2538            Mask.push_back(IRB.getInt32(i - BeginIndex));
2539          else
2540            Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2541        V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2542                                    ConstantVector::get(Mask),
2543                                    getName(".expand"));
2544        DEBUG(dbgs() << "    shuffle1: " << *V << "\n");
2545
2546        Mask.clear();
2547        for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2548          if (i >= BeginIndex && i < EndIndex)
2549            Mask.push_back(IRB.getInt32(i));
2550          else
2551            Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
2552        V = IRB.CreateShuffleVector(V, LI, ConstantVector::get(Mask),
2553                                    getName("insert"));
2554        DEBUG(dbgs() << "    shuffle2: " << *V << "\n");
2555      }
2556    } else {
2557      V = convertValue(TD, IRB, V, VecTy);
2558    }
2559    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2560    Pass.DeadInsts.insert(&SI);
2561
2562    (void)Store;
2563    DEBUG(dbgs() << "          to: " << *Store << "\n");
2564    return true;
2565  }
2566
2567  bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
2568    assert(IntTy && "We cannot extract an integer from the alloca");
2569    assert(!SI.isVolatile());
2570    if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2571      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2572                                         getName(".oldload"));
2573      Old = convertValue(TD, IRB, Old, IntTy);
2574      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2575      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2576      V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
2577                        getName(".insert"));
2578    }
2579    V = convertValue(TD, IRB, V, NewAllocaTy);
2580    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2581    Pass.DeadInsts.insert(&SI);
2582    (void)Store;
2583    DEBUG(dbgs() << "          to: " << *Store << "\n");
2584    return true;
2585  }
2586
2587  bool visitStoreInst(StoreInst &SI) {
2588    DEBUG(dbgs() << "    original: " << SI << "\n");
2589    Value *OldOp = SI.getOperand(1);
2590    assert(OldOp == OldPtr);
2591    IRBuilder<> IRB(&SI);
2592
2593    Value *V = SI.getValueOperand();
2594
2595    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2596    // alloca that should be re-examined after promoting this alloca.
2597    if (V->getType()->isPointerTy())
2598      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2599        Pass.PostPromotionWorklist.insert(AI);
2600
2601    uint64_t Size = EndOffset - BeginOffset;
2602    if (Size < TD.getTypeStoreSize(V->getType())) {
2603      assert(!SI.isVolatile());
2604      assert(V->getType()->isIntegerTy() &&
2605             "Only integer type loads and stores are split");
2606      assert(V->getType()->getIntegerBitWidth() ==
2607             TD.getTypeStoreSizeInBits(V->getType()) &&
2608             "Non-byte-multiple bit width");
2609      assert(V->getType()->getIntegerBitWidth() ==
2610             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2611             "Only alloca-wide stores can be split and recomposed");
2612      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2613      V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
2614                         getName(".extract"));
2615    }
2616
2617    if (VecTy)
2618      return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
2619    if (IntTy && V->getType()->isIntegerTy())
2620      return rewriteIntegerStore(IRB, V, SI);
2621
2622    StoreInst *NewSI;
2623    if (BeginOffset == NewAllocaBeginOffset &&
2624        canConvertValue(TD, V->getType(), NewAllocaTy)) {
2625      V = convertValue(TD, IRB, V, NewAllocaTy);
2626      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2627                                     SI.isVolatile());
2628    } else {
2629      Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
2630      NewSI = IRB.CreateAlignedStore(V, NewPtr,
2631                                     getPartitionTypeAlign(V->getType()),
2632                                     SI.isVolatile());
2633    }
2634    (void)NewSI;
2635    Pass.DeadInsts.insert(&SI);
2636    deleteIfTriviallyDead(OldOp);
2637
2638    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2639    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2640  }
2641
2642  /// \brief Compute an integer value from splatting an i8 across the given
2643  /// number of bytes.
2644  ///
2645  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2646  /// call this routine.
2647  /// FIXME: Heed the abvice above.
2648  ///
2649  /// \param V The i8 value to splat.
2650  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2651  Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
2652    assert(Size > 0 && "Expected a positive number of bytes.");
2653    IntegerType *VTy = cast<IntegerType>(V->getType());
2654    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2655    if (Size == 1)
2656      return V;
2657
2658    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2659    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
2660                      ConstantExpr::getUDiv(
2661                        Constant::getAllOnesValue(SplatIntTy),
2662                        ConstantExpr::getZExt(
2663                          Constant::getAllOnesValue(V->getType()),
2664                          SplatIntTy)),
2665                      getName(".isplat"));
2666    return V;
2667  }
2668
2669  bool visitMemSetInst(MemSetInst &II) {
2670    DEBUG(dbgs() << "    original: " << II << "\n");
2671    IRBuilder<> IRB(&II);
2672    assert(II.getRawDest() == OldPtr);
2673
2674    // If the memset has a variable size, it cannot be split, just adjust the
2675    // pointer to the new alloca.
2676    if (!isa<Constant>(II.getLength())) {
2677      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2678      Type *CstTy = II.getAlignmentCst()->getType();
2679      II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
2680
2681      deleteIfTriviallyDead(OldPtr);
2682      return false;
2683    }
2684
2685    // Record this instruction for deletion.
2686    Pass.DeadInsts.insert(&II);
2687
2688    Type *AllocaTy = NewAI.getAllocatedType();
2689    Type *ScalarTy = AllocaTy->getScalarType();
2690
2691    // If this doesn't map cleanly onto the alloca type, and that type isn't
2692    // a single value type, just emit a memset.
2693    if (!VecTy && !IntTy &&
2694        (BeginOffset != NewAllocaBeginOffset ||
2695         EndOffset != NewAllocaEndOffset ||
2696         !AllocaTy->isSingleValueType() ||
2697         !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2698      Type *SizeTy = II.getLength()->getType();
2699      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2700      CallInst *New
2701        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2702                                                II.getRawDest()->getType()),
2703                           II.getValue(), Size, getPartitionAlign(),
2704                           II.isVolatile());
2705      (void)New;
2706      DEBUG(dbgs() << "          to: " << *New << "\n");
2707      return false;
2708    }
2709
2710    // If we can represent this as a simple value, we have to build the actual
2711    // value to store, which requires expanding the byte present in memset to
2712    // a sensible representation for the alloca type. This is essentially
2713    // splatting the byte to a sufficiently wide integer, bitcasting to the
2714    // desired scalar type, and splatting it across any desired vector type.
2715    uint64_t Size = EndOffset - BeginOffset;
2716    Value *V = getIntegerSplat(IRB, II.getValue(), Size);
2717
2718    // If this is an element-wide memset of a vectorizable alloca, insert it.
2719    if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2720                  EndOffset < NewAllocaEndOffset)) {
2721      if (V->getType() != ScalarTy)
2722        V = convertValue(TD, IRB, V, ScalarTy);
2723      StoreInst *Store = IRB.CreateAlignedStore(
2724        IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2725                                                      NewAI.getAlignment(),
2726                                                      getName(".load")),
2727                                V, IRB.getInt32(getIndex(BeginOffset)),
2728                                getName(".insert")),
2729        &NewAI, NewAI.getAlignment());
2730      (void)Store;
2731      DEBUG(dbgs() << "          to: " << *Store << "\n");
2732      return true;
2733    }
2734
2735    // If this is a memset on an alloca where we can widen stores, insert the
2736    // set integer.
2737    if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
2738                  EndOffset < NewAllocaEndOffset)) {
2739      assert(!II.isVolatile());
2740      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2741                                         getName(".oldload"));
2742      Old = convertValue(TD, IRB, Old, IntTy);
2743      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2744      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2745      V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
2746    }
2747
2748    if (V->getType() != AllocaTy)
2749      V = convertValue(TD, IRB, V, AllocaTy);
2750
2751    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2752                                        II.isVolatile());
2753    (void)New;
2754    DEBUG(dbgs() << "          to: " << *New << "\n");
2755    return !II.isVolatile();
2756  }
2757
2758  bool visitMemTransferInst(MemTransferInst &II) {
2759    // Rewriting of memory transfer instructions can be a bit tricky. We break
2760    // them into two categories: split intrinsics and unsplit intrinsics.
2761
2762    DEBUG(dbgs() << "    original: " << II << "\n");
2763    IRBuilder<> IRB(&II);
2764
2765    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2766    bool IsDest = II.getRawDest() == OldPtr;
2767
2768    const AllocaPartitioning::MemTransferOffsets &MTO
2769      = P.getMemTransferOffsets(II);
2770
2771    // Compute the relative offset within the transfer.
2772    unsigned IntPtrWidth = TD.getPointerSizeInBits();
2773    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2774                                                       : MTO.SourceBegin));
2775
2776    unsigned Align = II.getAlignment();
2777    if (Align > 1)
2778      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2779                       MinAlign(II.getAlignment(), getPartitionAlign()));
2780
2781    // For unsplit intrinsics, we simply modify the source and destination
2782    // pointers in place. This isn't just an optimization, it is a matter of
2783    // correctness. With unsplit intrinsics we may be dealing with transfers
2784    // within a single alloca before SROA ran, or with transfers that have
2785    // a variable length. We may also be dealing with memmove instead of
2786    // memcpy, and so simply updating the pointers is the necessary for us to
2787    // update both source and dest of a single call.
2788    if (!MTO.IsSplittable) {
2789      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2790      if (IsDest)
2791        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2792      else
2793        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2794
2795      Type *CstTy = II.getAlignmentCst()->getType();
2796      II.setAlignment(ConstantInt::get(CstTy, Align));
2797
2798      DEBUG(dbgs() << "          to: " << II << "\n");
2799      deleteIfTriviallyDead(OldOp);
2800      return false;
2801    }
2802    // For split transfer intrinsics we have an incredibly useful assurance:
2803    // the source and destination do not reside within the same alloca, and at
2804    // least one of them does not escape. This means that we can replace
2805    // memmove with memcpy, and we don't need to worry about all manner of
2806    // downsides to splitting and transforming the operations.
2807
2808    // If this doesn't map cleanly onto the alloca type, and that type isn't
2809    // a single value type, just emit a memcpy.
2810    bool EmitMemCpy
2811      = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2812                             EndOffset != NewAllocaEndOffset ||
2813                             !NewAI.getAllocatedType()->isSingleValueType());
2814
2815    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2816    // size hasn't been shrunk based on analysis of the viable range, this is
2817    // a no-op.
2818    if (EmitMemCpy && &OldAI == &NewAI) {
2819      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2820      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2821      // Ensure the start lines up.
2822      assert(BeginOffset == OrigBegin);
2823      (void)OrigBegin;
2824
2825      // Rewrite the size as needed.
2826      if (EndOffset != OrigEnd)
2827        II.setLength(ConstantInt::get(II.getLength()->getType(),
2828                                      EndOffset - BeginOffset));
2829      return false;
2830    }
2831    // Record this instruction for deletion.
2832    Pass.DeadInsts.insert(&II);
2833
2834    bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2835                         EndOffset == NewAllocaEndOffset;
2836    bool IsVectorElement = VecTy && !IsWholeAlloca;
2837    uint64_t Size = EndOffset - BeginOffset;
2838    IntegerType *SubIntTy
2839      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2840
2841    Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2842                              : II.getRawDest()->getType();
2843    if (!EmitMemCpy) {
2844      if (IsVectorElement)
2845        OtherPtrTy = VecTy->getElementType()->getPointerTo();
2846      else if (IntTy && !IsWholeAlloca)
2847        OtherPtrTy = SubIntTy->getPointerTo();
2848      else
2849        OtherPtrTy = NewAI.getType();
2850    }
2851
2852    // Compute the other pointer, folding as much as possible to produce
2853    // a single, simple GEP in most cases.
2854    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2855    OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2856                              getName("." + OtherPtr->getName()));
2857
2858    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2859    // alloca that should be re-examined after rewriting this instruction.
2860    if (AllocaInst *AI
2861          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2862      Pass.Worklist.insert(AI);
2863
2864    if (EmitMemCpy) {
2865      Value *OurPtr
2866        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2867                                           : II.getRawSource()->getType());
2868      Type *SizeTy = II.getLength()->getType();
2869      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2870
2871      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2872                                       IsDest ? OtherPtr : OurPtr,
2873                                       Size, Align, II.isVolatile());
2874      (void)New;
2875      DEBUG(dbgs() << "          to: " << *New << "\n");
2876      return false;
2877    }
2878
2879    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2880    // is equivalent to 1, but that isn't true if we end up rewriting this as
2881    // a load or store.
2882    if (!Align)
2883      Align = 1;
2884
2885    Value *SrcPtr = OtherPtr;
2886    Value *DstPtr = &NewAI;
2887    if (!IsDest)
2888      std::swap(SrcPtr, DstPtr);
2889
2890    Value *Src;
2891    if (IsVectorElement && !IsDest) {
2892      // We have to extract rather than load.
2893      Src = IRB.CreateExtractElement(
2894        IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2895        IRB.getInt32(getIndex(BeginOffset)),
2896        getName(".copyextract"));
2897    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2898      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2899                                  getName(".load"));
2900      Src = convertValue(TD, IRB, Src, IntTy);
2901      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2902      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2903      Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
2904    } else {
2905      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2906                                  getName(".copyload"));
2907    }
2908
2909    if (IntTy && !IsWholeAlloca && IsDest) {
2910      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2911                                         getName(".oldload"));
2912      Old = convertValue(TD, IRB, Old, IntTy);
2913      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2914      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2915      Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
2916      Src = convertValue(TD, IRB, Src, NewAllocaTy);
2917    }
2918
2919    if (IsVectorElement && IsDest) {
2920      // We have to insert into a loaded copy before storing.
2921      Src = IRB.CreateInsertElement(
2922        IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2923        Src, IRB.getInt32(getIndex(BeginOffset)),
2924        getName(".insert"));
2925    }
2926
2927    StoreInst *Store = cast<StoreInst>(
2928      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2929    (void)Store;
2930    DEBUG(dbgs() << "          to: " << *Store << "\n");
2931    return !II.isVolatile();
2932  }
2933
2934  bool visitIntrinsicInst(IntrinsicInst &II) {
2935    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2936           II.getIntrinsicID() == Intrinsic::lifetime_end);
2937    DEBUG(dbgs() << "    original: " << II << "\n");
2938    IRBuilder<> IRB(&II);
2939    assert(II.getArgOperand(1) == OldPtr);
2940
2941    // Record this instruction for deletion.
2942    Pass.DeadInsts.insert(&II);
2943
2944    ConstantInt *Size
2945      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2946                         EndOffset - BeginOffset);
2947    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2948    Value *New;
2949    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2950      New = IRB.CreateLifetimeStart(Ptr, Size);
2951    else
2952      New = IRB.CreateLifetimeEnd(Ptr, Size);
2953
2954    DEBUG(dbgs() << "          to: " << *New << "\n");
2955    return true;
2956  }
2957
2958  bool visitPHINode(PHINode &PN) {
2959    DEBUG(dbgs() << "    original: " << PN << "\n");
2960
2961    // We would like to compute a new pointer in only one place, but have it be
2962    // as local as possible to the PHI. To do that, we re-use the location of
2963    // the old pointer, which necessarily must be in the right position to
2964    // dominate the PHI.
2965    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2966
2967    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2968    // Replace the operands which were using the old pointer.
2969    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2970
2971    DEBUG(dbgs() << "          to: " << PN << "\n");
2972    deleteIfTriviallyDead(OldPtr);
2973    return false;
2974  }
2975
2976  bool visitSelectInst(SelectInst &SI) {
2977    DEBUG(dbgs() << "    original: " << SI << "\n");
2978    IRBuilder<> IRB(&SI);
2979
2980    // Find the operand we need to rewrite here.
2981    bool IsTrueVal = SI.getTrueValue() == OldPtr;
2982    if (IsTrueVal)
2983      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2984    else
2985      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
2986
2987    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
2988    SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2989    DEBUG(dbgs() << "          to: " << SI << "\n");
2990    deleteIfTriviallyDead(OldPtr);
2991    return false;
2992  }
2993
2994};
2995}
2996
2997namespace {
2998/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2999///
3000/// This pass aggressively rewrites all aggregate loads and stores on
3001/// a particular pointer (or any pointer derived from it which we can identify)
3002/// with scalar loads and stores.
3003class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3004  // Befriend the base class so it can delegate to private visit methods.
3005  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3006
3007  const DataLayout &TD;
3008
3009  /// Queue of pointer uses to analyze and potentially rewrite.
3010  SmallVector<Use *, 8> Queue;
3011
3012  /// Set to prevent us from cycling with phi nodes and loops.
3013  SmallPtrSet<User *, 8> Visited;
3014
3015  /// The current pointer use being rewritten. This is used to dig up the used
3016  /// value (as opposed to the user).
3017  Use *U;
3018
3019public:
3020  AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
3021
3022  /// Rewrite loads and stores through a pointer and all pointers derived from
3023  /// it.
3024  bool rewrite(Instruction &I) {
3025    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3026    enqueueUsers(I);
3027    bool Changed = false;
3028    while (!Queue.empty()) {
3029      U = Queue.pop_back_val();
3030      Changed |= visit(cast<Instruction>(U->getUser()));
3031    }
3032    return Changed;
3033  }
3034
3035private:
3036  /// Enqueue all the users of the given instruction for further processing.
3037  /// This uses a set to de-duplicate users.
3038  void enqueueUsers(Instruction &I) {
3039    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3040         ++UI)
3041      if (Visited.insert(*UI))
3042        Queue.push_back(&UI.getUse());
3043  }
3044
3045  // Conservative default is to not rewrite anything.
3046  bool visitInstruction(Instruction &I) { return false; }
3047
3048  /// \brief Generic recursive split emission class.
3049  template <typename Derived>
3050  class OpSplitter {
3051  protected:
3052    /// The builder used to form new instructions.
3053    IRBuilder<> IRB;
3054    /// The indices which to be used with insert- or extractvalue to select the
3055    /// appropriate value within the aggregate.
3056    SmallVector<unsigned, 4> Indices;
3057    /// The indices to a GEP instruction which will move Ptr to the correct slot
3058    /// within the aggregate.
3059    SmallVector<Value *, 4> GEPIndices;
3060    /// The base pointer of the original op, used as a base for GEPing the
3061    /// split operations.
3062    Value *Ptr;
3063
3064    /// Initialize the splitter with an insertion point, Ptr and start with a
3065    /// single zero GEP index.
3066    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3067      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3068
3069  public:
3070    /// \brief Generic recursive split emission routine.
3071    ///
3072    /// This method recursively splits an aggregate op (load or store) into
3073    /// scalar or vector ops. It splits recursively until it hits a single value
3074    /// and emits that single value operation via the template argument.
3075    ///
3076    /// The logic of this routine relies on GEPs and insertvalue and
3077    /// extractvalue all operating with the same fundamental index list, merely
3078    /// formatted differently (GEPs need actual values).
3079    ///
3080    /// \param Ty  The type being split recursively into smaller ops.
3081    /// \param Agg The aggregate value being built up or stored, depending on
3082    /// whether this is splitting a load or a store respectively.
3083    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3084      if (Ty->isSingleValueType())
3085        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3086
3087      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3088        unsigned OldSize = Indices.size();
3089        (void)OldSize;
3090        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3091             ++Idx) {
3092          assert(Indices.size() == OldSize && "Did not return to the old size");
3093          Indices.push_back(Idx);
3094          GEPIndices.push_back(IRB.getInt32(Idx));
3095          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3096          GEPIndices.pop_back();
3097          Indices.pop_back();
3098        }
3099        return;
3100      }
3101
3102      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3103        unsigned OldSize = Indices.size();
3104        (void)OldSize;
3105        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3106             ++Idx) {
3107          assert(Indices.size() == OldSize && "Did not return to the old size");
3108          Indices.push_back(Idx);
3109          GEPIndices.push_back(IRB.getInt32(Idx));
3110          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3111          GEPIndices.pop_back();
3112          Indices.pop_back();
3113        }
3114        return;
3115      }
3116
3117      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3118    }
3119  };
3120
3121  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3122    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3123      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3124
3125    /// Emit a leaf load of a single value. This is called at the leaves of the
3126    /// recursive emission to actually load values.
3127    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3128      assert(Ty->isSingleValueType());
3129      // Load the single value and insert it using the indices.
3130      Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
3131                                                         Name + ".gep"),
3132                                   Name + ".load");
3133      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3134      DEBUG(dbgs() << "          to: " << *Load << "\n");
3135    }
3136  };
3137
3138  bool visitLoadInst(LoadInst &LI) {
3139    assert(LI.getPointerOperand() == *U);
3140    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3141      return false;
3142
3143    // We have an aggregate being loaded, split it apart.
3144    DEBUG(dbgs() << "    original: " << LI << "\n");
3145    LoadOpSplitter Splitter(&LI, *U);
3146    Value *V = UndefValue::get(LI.getType());
3147    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3148    LI.replaceAllUsesWith(V);
3149    LI.eraseFromParent();
3150    return true;
3151  }
3152
3153  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3154    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3155      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3156
3157    /// Emit a leaf store of a single value. This is called at the leaves of the
3158    /// recursive emission to actually produce stores.
3159    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3160      assert(Ty->isSingleValueType());
3161      // Extract the single value and store it using the indices.
3162      Value *Store = IRB.CreateStore(
3163        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3164        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3165      (void)Store;
3166      DEBUG(dbgs() << "          to: " << *Store << "\n");
3167    }
3168  };
3169
3170  bool visitStoreInst(StoreInst &SI) {
3171    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3172      return false;
3173    Value *V = SI.getValueOperand();
3174    if (V->getType()->isSingleValueType())
3175      return false;
3176
3177    // We have an aggregate being stored, split it apart.
3178    DEBUG(dbgs() << "    original: " << SI << "\n");
3179    StoreOpSplitter Splitter(&SI, *U);
3180    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3181    SI.eraseFromParent();
3182    return true;
3183  }
3184
3185  bool visitBitCastInst(BitCastInst &BC) {
3186    enqueueUsers(BC);
3187    return false;
3188  }
3189
3190  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3191    enqueueUsers(GEPI);
3192    return false;
3193  }
3194
3195  bool visitPHINode(PHINode &PN) {
3196    enqueueUsers(PN);
3197    return false;
3198  }
3199
3200  bool visitSelectInst(SelectInst &SI) {
3201    enqueueUsers(SI);
3202    return false;
3203  }
3204};
3205}
3206
3207/// \brief Strip aggregate type wrapping.
3208///
3209/// This removes no-op aggregate types wrapping an underlying type. It will
3210/// strip as many layers of types as it can without changing either the type
3211/// size or the allocated size.
3212static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3213  if (Ty->isSingleValueType())
3214    return Ty;
3215
3216  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3217  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3218
3219  Type *InnerTy;
3220  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3221    InnerTy = ArrTy->getElementType();
3222  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3223    const StructLayout *SL = DL.getStructLayout(STy);
3224    unsigned Index = SL->getElementContainingOffset(0);
3225    InnerTy = STy->getElementType(Index);
3226  } else {
3227    return Ty;
3228  }
3229
3230  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3231      TypeSize > DL.getTypeSizeInBits(InnerTy))
3232    return Ty;
3233
3234  return stripAggregateTypeWrapping(DL, InnerTy);
3235}
3236
3237/// \brief Try to find a partition of the aggregate type passed in for a given
3238/// offset and size.
3239///
3240/// This recurses through the aggregate type and tries to compute a subtype
3241/// based on the offset and size. When the offset and size span a sub-section
3242/// of an array, it will even compute a new array type for that sub-section,
3243/// and the same for structs.
3244///
3245/// Note that this routine is very strict and tries to find a partition of the
3246/// type which produces the *exact* right offset and size. It is not forgiving
3247/// when the size or offset cause either end of type-based partition to be off.
3248/// Also, this is a best-effort routine. It is reasonable to give up and not
3249/// return a type if necessary.
3250static Type *getTypePartition(const DataLayout &TD, Type *Ty,
3251                              uint64_t Offset, uint64_t Size) {
3252  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3253    return stripAggregateTypeWrapping(TD, Ty);
3254  if (Offset > TD.getTypeAllocSize(Ty) ||
3255      (TD.getTypeAllocSize(Ty) - Offset) < Size)
3256    return 0;
3257
3258  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3259    // We can't partition pointers...
3260    if (SeqTy->isPointerTy())
3261      return 0;
3262
3263    Type *ElementTy = SeqTy->getElementType();
3264    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3265    uint64_t NumSkippedElements = Offset / ElementSize;
3266    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3267      if (NumSkippedElements >= ArrTy->getNumElements())
3268        return 0;
3269    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3270      if (NumSkippedElements >= VecTy->getNumElements())
3271        return 0;
3272    Offset -= NumSkippedElements * ElementSize;
3273
3274    // First check if we need to recurse.
3275    if (Offset > 0 || Size < ElementSize) {
3276      // Bail if the partition ends in a different array element.
3277      if ((Offset + Size) > ElementSize)
3278        return 0;
3279      // Recurse through the element type trying to peel off offset bytes.
3280      return getTypePartition(TD, ElementTy, Offset, Size);
3281    }
3282    assert(Offset == 0);
3283
3284    if (Size == ElementSize)
3285      return stripAggregateTypeWrapping(TD, ElementTy);
3286    assert(Size > ElementSize);
3287    uint64_t NumElements = Size / ElementSize;
3288    if (NumElements * ElementSize != Size)
3289      return 0;
3290    return ArrayType::get(ElementTy, NumElements);
3291  }
3292
3293  StructType *STy = dyn_cast<StructType>(Ty);
3294  if (!STy)
3295    return 0;
3296
3297  const StructLayout *SL = TD.getStructLayout(STy);
3298  if (Offset >= SL->getSizeInBytes())
3299    return 0;
3300  uint64_t EndOffset = Offset + Size;
3301  if (EndOffset > SL->getSizeInBytes())
3302    return 0;
3303
3304  unsigned Index = SL->getElementContainingOffset(Offset);
3305  Offset -= SL->getElementOffset(Index);
3306
3307  Type *ElementTy = STy->getElementType(Index);
3308  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3309  if (Offset >= ElementSize)
3310    return 0; // The offset points into alignment padding.
3311
3312  // See if any partition must be contained by the element.
3313  if (Offset > 0 || Size < ElementSize) {
3314    if ((Offset + Size) > ElementSize)
3315      return 0;
3316    return getTypePartition(TD, ElementTy, Offset, Size);
3317  }
3318  assert(Offset == 0);
3319
3320  if (Size == ElementSize)
3321    return stripAggregateTypeWrapping(TD, ElementTy);
3322
3323  StructType::element_iterator EI = STy->element_begin() + Index,
3324                               EE = STy->element_end();
3325  if (EndOffset < SL->getSizeInBytes()) {
3326    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3327    if (Index == EndIndex)
3328      return 0; // Within a single element and its padding.
3329
3330    // Don't try to form "natural" types if the elements don't line up with the
3331    // expected size.
3332    // FIXME: We could potentially recurse down through the last element in the
3333    // sub-struct to find a natural end point.
3334    if (SL->getElementOffset(EndIndex) != EndOffset)
3335      return 0;
3336
3337    assert(Index < EndIndex);
3338    EE = STy->element_begin() + EndIndex;
3339  }
3340
3341  // Try to build up a sub-structure.
3342  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3343                                      STy->isPacked());
3344  const StructLayout *SubSL = TD.getStructLayout(SubTy);
3345  if (Size != SubSL->getSizeInBytes())
3346    return 0; // The sub-struct doesn't have quite the size needed.
3347
3348  return SubTy;
3349}
3350
3351/// \brief Rewrite an alloca partition's users.
3352///
3353/// This routine drives both of the rewriting goals of the SROA pass. It tries
3354/// to rewrite uses of an alloca partition to be conducive for SSA value
3355/// promotion. If the partition needs a new, more refined alloca, this will
3356/// build that new alloca, preserving as much type information as possible, and
3357/// rewrite the uses of the old alloca to point at the new one and have the
3358/// appropriate new offsets. It also evaluates how successful the rewrite was
3359/// at enabling promotion and if it was successful queues the alloca to be
3360/// promoted.
3361bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3362                                  AllocaPartitioning &P,
3363                                  AllocaPartitioning::iterator PI) {
3364  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
3365  bool IsLive = false;
3366  for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3367                                        UE = P.use_end(PI);
3368       UI != UE && !IsLive; ++UI)
3369    if (UI->U)
3370      IsLive = true;
3371  if (!IsLive)
3372    return false; // No live uses left of this partition.
3373
3374  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3375               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3376
3377  PHIOrSelectSpeculator Speculator(*TD, P, *this);
3378  DEBUG(dbgs() << "  speculating ");
3379  DEBUG(P.print(dbgs(), PI, ""));
3380  Speculator.visitUsers(PI);
3381
3382  // Try to compute a friendly type for this partition of the alloca. This
3383  // won't always succeed, in which case we fall back to a legal integer type
3384  // or an i8 array of an appropriate size.
3385  Type *AllocaTy = 0;
3386  if (Type *PartitionTy = P.getCommonType(PI))
3387    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3388      AllocaTy = PartitionTy;
3389  if (!AllocaTy)
3390    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3391                                             PI->BeginOffset, AllocaSize))
3392      AllocaTy = PartitionTy;
3393  if ((!AllocaTy ||
3394       (AllocaTy->isArrayTy() &&
3395        AllocaTy->getArrayElementType()->isIntegerTy())) &&
3396      TD->isLegalInteger(AllocaSize * 8))
3397    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3398  if (!AllocaTy)
3399    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
3400  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
3401
3402  // Check for the case where we're going to rewrite to a new alloca of the
3403  // exact same type as the original, and with the same access offsets. In that
3404  // case, re-use the existing alloca, but still run through the rewriter to
3405  // performe phi and select speculation.
3406  AllocaInst *NewAI;
3407  if (AllocaTy == AI.getAllocatedType()) {
3408    assert(PI->BeginOffset == 0 &&
3409           "Non-zero begin offset but same alloca type");
3410    assert(PI == P.begin() && "Begin offset is zero on later partition");
3411    NewAI = &AI;
3412  } else {
3413    unsigned Alignment = AI.getAlignment();
3414    if (!Alignment) {
3415      // The minimum alignment which users can rely on when the explicit
3416      // alignment is omitted or zero is that required by the ABI for this
3417      // type.
3418      Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3419    }
3420    Alignment = MinAlign(Alignment, PI->BeginOffset);
3421    // If we will get at least this much alignment from the type alone, leave
3422    // the alloca's alignment unconstrained.
3423    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3424      Alignment = 0;
3425    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
3426                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
3427                           &AI);
3428    ++NumNewAllocas;
3429  }
3430
3431  DEBUG(dbgs() << "Rewriting alloca partition "
3432               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3433               << *NewAI << "\n");
3434
3435  // Track the high watermark of the post-promotion worklist. We will reset it
3436  // to this point if the alloca is not in fact scheduled for promotion.
3437  unsigned PPWOldSize = PostPromotionWorklist.size();
3438
3439  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3440                                   PI->BeginOffset, PI->EndOffset);
3441  DEBUG(dbgs() << "  rewriting ");
3442  DEBUG(P.print(dbgs(), PI, ""));
3443  bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3444  if (Promotable) {
3445    DEBUG(dbgs() << "  and queuing for promotion\n");
3446    PromotableAllocas.push_back(NewAI);
3447  } else if (NewAI != &AI) {
3448    // If we can't promote the alloca, iterate on it to check for new
3449    // refinements exposed by splitting the current alloca. Don't iterate on an
3450    // alloca which didn't actually change and didn't get promoted.
3451    Worklist.insert(NewAI);
3452  }
3453
3454  // Drop any post-promotion work items if promotion didn't happen.
3455  if (!Promotable)
3456    while (PostPromotionWorklist.size() > PPWOldSize)
3457      PostPromotionWorklist.pop_back();
3458
3459  return true;
3460}
3461
3462/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3463bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3464  bool Changed = false;
3465  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3466       ++PI)
3467    Changed |= rewriteAllocaPartition(AI, P, PI);
3468
3469  return Changed;
3470}
3471
3472/// \brief Analyze an alloca for SROA.
3473///
3474/// This analyzes the alloca to ensure we can reason about it, builds
3475/// a partitioning of the alloca, and then hands it off to be split and
3476/// rewritten as needed.
3477bool SROA::runOnAlloca(AllocaInst &AI) {
3478  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3479  ++NumAllocasAnalyzed;
3480
3481  // Special case dead allocas, as they're trivial.
3482  if (AI.use_empty()) {
3483    AI.eraseFromParent();
3484    return true;
3485  }
3486
3487  // Skip alloca forms that this analysis can't handle.
3488  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3489      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3490    return false;
3491
3492  bool Changed = false;
3493
3494  // First, split any FCA loads and stores touching this alloca to promote
3495  // better splitting and promotion opportunities.
3496  AggLoadStoreRewriter AggRewriter(*TD);
3497  Changed |= AggRewriter.rewrite(AI);
3498
3499  // Build the partition set using a recursive instruction-visiting builder.
3500  AllocaPartitioning P(*TD, AI);
3501  DEBUG(P.print(dbgs()));
3502  if (P.isEscaped())
3503    return Changed;
3504
3505  // Delete all the dead users of this alloca before splitting and rewriting it.
3506  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3507                                              DE = P.dead_user_end();
3508       DI != DE; ++DI) {
3509    Changed = true;
3510    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3511    DeadInsts.insert(*DI);
3512  }
3513  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3514                                            DE = P.dead_op_end();
3515       DO != DE; ++DO) {
3516    Value *OldV = **DO;
3517    // Clobber the use with an undef value.
3518    **DO = UndefValue::get(OldV->getType());
3519    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3520      if (isInstructionTriviallyDead(OldI)) {
3521        Changed = true;
3522        DeadInsts.insert(OldI);
3523      }
3524  }
3525
3526  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3527  if (P.begin() == P.end())
3528    return Changed;
3529
3530  return splitAlloca(AI, P) || Changed;
3531}
3532
3533/// \brief Delete the dead instructions accumulated in this run.
3534///
3535/// Recursively deletes the dead instructions we've accumulated. This is done
3536/// at the very end to maximize locality of the recursive delete and to
3537/// minimize the problems of invalidated instruction pointers as such pointers
3538/// are used heavily in the intermediate stages of the algorithm.
3539///
3540/// We also record the alloca instructions deleted here so that they aren't
3541/// subsequently handed to mem2reg to promote.
3542void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3543  while (!DeadInsts.empty()) {
3544    Instruction *I = DeadInsts.pop_back_val();
3545    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3546
3547    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3548
3549    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3550      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3551        // Zero out the operand and see if it becomes trivially dead.
3552        *OI = 0;
3553        if (isInstructionTriviallyDead(U))
3554          DeadInsts.insert(U);
3555      }
3556
3557    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3558      DeletedAllocas.insert(AI);
3559
3560    ++NumDeleted;
3561    I->eraseFromParent();
3562  }
3563}
3564
3565/// \brief Promote the allocas, using the best available technique.
3566///
3567/// This attempts to promote whatever allocas have been identified as viable in
3568/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3569/// If there is a domtree available, we attempt to promote using the full power
3570/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3571/// based on the SSAUpdater utilities. This function returns whether any
3572/// promotion occured.
3573bool SROA::promoteAllocas(Function &F) {
3574  if (PromotableAllocas.empty())
3575    return false;
3576
3577  NumPromoted += PromotableAllocas.size();
3578
3579  if (DT && !ForceSSAUpdater) {
3580    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3581    PromoteMemToReg(PromotableAllocas, *DT);
3582    PromotableAllocas.clear();
3583    return true;
3584  }
3585
3586  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3587  SSAUpdater SSA;
3588  DIBuilder DIB(*F.getParent());
3589  SmallVector<Instruction*, 64> Insts;
3590
3591  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3592    AllocaInst *AI = PromotableAllocas[Idx];
3593    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3594         UI != UE;) {
3595      Instruction *I = cast<Instruction>(*UI++);
3596      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3597      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3598      // leading to them) here. Eventually it should use them to optimize the
3599      // scalar values produced.
3600      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3601        assert(onlyUsedByLifetimeMarkers(I) &&
3602               "Found a bitcast used outside of a lifetime marker.");
3603        while (!I->use_empty())
3604          cast<Instruction>(*I->use_begin())->eraseFromParent();
3605        I->eraseFromParent();
3606        continue;
3607      }
3608      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3609        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3610               II->getIntrinsicID() == Intrinsic::lifetime_end);
3611        II->eraseFromParent();
3612        continue;
3613      }
3614
3615      Insts.push_back(I);
3616    }
3617    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3618    Insts.clear();
3619  }
3620
3621  PromotableAllocas.clear();
3622  return true;
3623}
3624
3625namespace {
3626  /// \brief A predicate to test whether an alloca belongs to a set.
3627  class IsAllocaInSet {
3628    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3629    const SetType &Set;
3630
3631  public:
3632    typedef AllocaInst *argument_type;
3633
3634    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3635    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3636  };
3637}
3638
3639bool SROA::runOnFunction(Function &F) {
3640  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3641  C = &F.getContext();
3642  TD = getAnalysisIfAvailable<DataLayout>();
3643  if (!TD) {
3644    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3645    return false;
3646  }
3647  DT = getAnalysisIfAvailable<DominatorTree>();
3648
3649  BasicBlock &EntryBB = F.getEntryBlock();
3650  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3651       I != E; ++I)
3652    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3653      Worklist.insert(AI);
3654
3655  bool Changed = false;
3656  // A set of deleted alloca instruction pointers which should be removed from
3657  // the list of promotable allocas.
3658  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3659
3660  do {
3661    while (!Worklist.empty()) {
3662      Changed |= runOnAlloca(*Worklist.pop_back_val());
3663      deleteDeadInstructions(DeletedAllocas);
3664
3665      // Remove the deleted allocas from various lists so that we don't try to
3666      // continue processing them.
3667      if (!DeletedAllocas.empty()) {
3668        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3669        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3670        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3671                                               PromotableAllocas.end(),
3672                                               IsAllocaInSet(DeletedAllocas)),
3673                                PromotableAllocas.end());
3674        DeletedAllocas.clear();
3675      }
3676    }
3677
3678    Changed |= promoteAllocas(F);
3679
3680    Worklist = PostPromotionWorklist;
3681    PostPromotionWorklist.clear();
3682  } while (!Worklist.empty());
3683
3684  return Changed;
3685}
3686
3687void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3688  if (RequiresDomTree)
3689    AU.addRequired<DominatorTree>();
3690  AU.setPreservesCFG();
3691}
3692