SROA.cpp revision 72bf29f45d9da6a2a6be910f55a4787d30d3d2eb
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
33#include "llvm/GlobalVariable.h"
34#include "llvm/IRBuilder.h"
35#include "llvm/Instructions.h"
36#include "llvm/IntrinsicInst.h"
37#include "llvm/LLVMContext.h"
38#include "llvm/Module.h"
39#include "llvm/Operator.h"
40#include "llvm/Pass.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/ADT/TinyPtrVector.h"
46#include "llvm/Analysis/Dominators.h"
47#include "llvm/Analysis/Loads.h"
48#include "llvm/Analysis/ValueTracking.h"
49#include "llvm/Support/CallSite.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/GetElementPtrTypeIterator.h"
54#include "llvm/Support/InstVisitor.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/ValueHandle.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Target/TargetData.h"
59#include "llvm/Transforms/Utils/Local.h"
60#include "llvm/Transforms/Utils/PromoteMemToReg.h"
61#include "llvm/Transforms/Utils/SSAUpdater.h"
62using namespace llvm;
63
64STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
65STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
66STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
67STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
68STATISTIC(NumDeleted,         "Number of instructions deleted");
69STATISTIC(NumVectorized,      "Number of vectorized aggregates");
70
71/// Hidden option to force the pass to not use DomTree and mem2reg, instead
72/// forming SSA values through the SSAUpdater infrastructure.
73static cl::opt<bool>
74ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
76namespace {
77/// \brief Alloca partitioning representation.
78///
79/// This class represents a partitioning of an alloca into slices, and
80/// information about the nature of uses of each slice of the alloca. The goal
81/// is that this information is sufficient to decide if and how to split the
82/// alloca apart and replace slices with scalars. It is also intended that this
83/// structure can capture the relevant information needed both to decide about
84/// and to enact these transformations.
85class AllocaPartitioning {
86public:
87  /// \brief A common base class for representing a half-open byte range.
88  struct ByteRange {
89    /// \brief The beginning offset of the range.
90    uint64_t BeginOffset;
91
92    /// \brief The ending offset, not included in the range.
93    uint64_t EndOffset;
94
95    ByteRange() : BeginOffset(), EndOffset() {}
96    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
97        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
98
99    /// \brief Support for ordering ranges.
100    ///
101    /// This provides an ordering over ranges such that start offsets are
102    /// always increasing, and within equal start offsets, the end offsets are
103    /// decreasing. Thus the spanning range comes first in a cluster with the
104    /// same start position.
105    bool operator<(const ByteRange &RHS) const {
106      if (BeginOffset < RHS.BeginOffset) return true;
107      if (BeginOffset > RHS.BeginOffset) return false;
108      if (EndOffset > RHS.EndOffset) return true;
109      return false;
110    }
111
112    /// \brief Support comparison with a single offset to allow binary searches.
113    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
114      return LHS.BeginOffset < RHSOffset;
115    }
116
117    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
118                                                const ByteRange &RHS) {
119      return LHSOffset < RHS.BeginOffset;
120    }
121
122    bool operator==(const ByteRange &RHS) const {
123      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
124    }
125    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
126  };
127
128  /// \brief A partition of an alloca.
129  ///
130  /// This structure represents a contiguous partition of the alloca. These are
131  /// formed by examining the uses of the alloca. During formation, they may
132  /// overlap but once an AllocaPartitioning is built, the Partitions within it
133  /// are all disjoint.
134  struct Partition : public ByteRange {
135    /// \brief Whether this partition is splittable into smaller partitions.
136    ///
137    /// We flag partitions as splittable when they are formed entirely due to
138    /// accesses by trivially splittable operations such as memset and memcpy.
139    ///
140    /// FIXME: At some point we should consider loads and stores of FCAs to be
141    /// splittable and eagerly split them into scalar values.
142    bool IsSplittable;
143
144    Partition() : ByteRange(), IsSplittable() {}
145    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
146        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
147  };
148
149  /// \brief A particular use of a partition of the alloca.
150  ///
151  /// This structure is used to associate uses of a partition with it. They
152  /// mark the range of bytes which are referenced by a particular instruction,
153  /// and includes a handle to the user itself and the pointer value in use.
154  /// The bounds of these uses are determined by intersecting the bounds of the
155  /// memory use itself with a particular partition. As a consequence there is
156  /// intentionally overlap between various uses of the same partition.
157  struct PartitionUse : public ByteRange {
158    /// \brief The user of this range of the alloca.
159    AssertingVH<Instruction> User;
160
161    /// \brief The particular pointer value derived from this alloca in use.
162    AssertingVH<Instruction> Ptr;
163
164    PartitionUse() : ByteRange(), User(), Ptr() {}
165    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset,
166                 Instruction *User, Instruction *Ptr)
167        : ByteRange(BeginOffset, EndOffset), User(User), Ptr(Ptr) {}
168  };
169
170  /// \brief Construct a partitioning of a particular alloca.
171  ///
172  /// Construction does most of the work for partitioning the alloca. This
173  /// performs the necessary walks of users and builds a partitioning from it.
174  AllocaPartitioning(const TargetData &TD, AllocaInst &AI);
175
176  /// \brief Test whether a pointer to the allocation escapes our analysis.
177  ///
178  /// If this is true, the partitioning is never fully built and should be
179  /// ignored.
180  bool isEscaped() const { return PointerEscapingInstr; }
181
182  /// \brief Support for iterating over the partitions.
183  /// @{
184  typedef SmallVectorImpl<Partition>::iterator iterator;
185  iterator begin() { return Partitions.begin(); }
186  iterator end() { return Partitions.end(); }
187
188  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
189  const_iterator begin() const { return Partitions.begin(); }
190  const_iterator end() const { return Partitions.end(); }
191  /// @}
192
193  /// \brief Support for iterating over and manipulating a particular
194  /// partition's uses.
195  ///
196  /// The iteration support provided for uses is more limited, but also
197  /// includes some manipulation routines to support rewriting the uses of
198  /// partitions during SROA.
199  /// @{
200  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
201  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
202  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
203  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
204  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
205  void use_push_back(unsigned Idx, const PartitionUse &U) {
206    Uses[Idx].push_back(U);
207  }
208  void use_push_back(const_iterator I, const PartitionUse &U) {
209    Uses[I - begin()].push_back(U);
210  }
211  void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); }
212  void use_erase(const_iterator I, use_iterator UI) {
213    Uses[I - begin()].erase(UI);
214  }
215
216  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
217  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
218  const_use_iterator use_begin(const_iterator I) const {
219    return Uses[I - begin()].begin();
220  }
221  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
222  const_use_iterator use_end(const_iterator I) const {
223    return Uses[I - begin()].end();
224  }
225  /// @}
226
227  /// \brief Allow iterating the dead users for this alloca.
228  ///
229  /// These are instructions which will never actually use the alloca as they
230  /// are outside the allocated range. They are safe to replace with undef and
231  /// delete.
232  /// @{
233  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
234  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
235  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
236  /// @}
237
238  /// \brief Allow iterating the dead expressions referring to this alloca.
239  ///
240  /// These are operands which have cannot actually be used to refer to the
241  /// alloca as they are outside its range and the user doesn't correct for
242  /// that. These mostly consist of PHI node inputs and the like which we just
243  /// need to replace with undef.
244  /// @{
245  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
246  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
247  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
248  /// @}
249
250  /// \brief MemTransferInst auxiliary data.
251  /// This struct provides some auxiliary data about memory transfer
252  /// intrinsics such as memcpy and memmove. These intrinsics can use two
253  /// different ranges within the same alloca, and provide other challenges to
254  /// correctly represent. We stash extra data to help us untangle this
255  /// after the partitioning is complete.
256  struct MemTransferOffsets {
257    uint64_t DestBegin, DestEnd;
258    uint64_t SourceBegin, SourceEnd;
259    bool IsSplittable;
260  };
261  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
262    return MemTransferInstData.lookup(&II);
263  }
264
265  /// \brief Map from a PHI or select operand back to a partition.
266  ///
267  /// When manipulating PHI nodes or selects, they can use more than one
268  /// partition of an alloca. We store a special mapping to allow finding the
269  /// partition referenced by each of these operands, if any.
270  iterator findPartitionForPHIOrSelectOperand(Instruction &I, Value *Op) {
271    SmallDenseMap<std::pair<Instruction *, Value *>,
272                  std::pair<unsigned, unsigned> >::const_iterator MapIt
273      = PHIOrSelectOpMap.find(std::make_pair(&I, Op));
274    if (MapIt == PHIOrSelectOpMap.end())
275      return end();
276
277    return begin() + MapIt->second.first;
278  }
279
280  /// \brief Map from a PHI or select operand back to the specific use of
281  /// a partition.
282  ///
283  /// Similar to mapping these operands back to the partitions, this maps
284  /// directly to the use structure of that partition.
285  use_iterator findPartitionUseForPHIOrSelectOperand(Instruction &I,
286                                                     Value *Op) {
287    SmallDenseMap<std::pair<Instruction *, Value *>,
288                  std::pair<unsigned, unsigned> >::const_iterator MapIt
289      = PHIOrSelectOpMap.find(std::make_pair(&I, Op));
290    assert(MapIt != PHIOrSelectOpMap.end());
291    return Uses[MapIt->second.first].begin() + MapIt->second.second;
292  }
293
294  /// \brief Compute a common type among the uses of a particular partition.
295  ///
296  /// This routines walks all of the uses of a particular partition and tries
297  /// to find a common type between them. Untyped operations such as memset and
298  /// memcpy are ignored.
299  Type *getCommonType(iterator I) const;
300
301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
303  void printUsers(raw_ostream &OS, const_iterator I,
304                  StringRef Indent = "  ") const;
305  void print(raw_ostream &OS) const;
306  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
307  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
308#endif
309
310private:
311  template <typename DerivedT, typename RetT = void> class BuilderBase;
312  class PartitionBuilder;
313  friend class AllocaPartitioning::PartitionBuilder;
314  class UseBuilder;
315  friend class AllocaPartitioning::UseBuilder;
316
317#ifndef NDEBUG
318  /// \brief Handle to alloca instruction to simplify method interfaces.
319  AllocaInst &AI;
320#endif
321
322  /// \brief The instruction responsible for this alloca having no partitioning.
323  ///
324  /// When an instruction (potentially) escapes the pointer to the alloca, we
325  /// store a pointer to that here and abort trying to partition the alloca.
326  /// This will be null if the alloca is partitioned successfully.
327  Instruction *PointerEscapingInstr;
328
329  /// \brief The partitions of the alloca.
330  ///
331  /// We store a vector of the partitions over the alloca here. This vector is
332  /// sorted by increasing begin offset, and then by decreasing end offset. See
333  /// the Partition inner class for more details. Initially (during
334  /// construction) there are overlaps, but we form a disjoint sequence of
335  /// partitions while finishing construction and a fully constructed object is
336  /// expected to always have this as a disjoint space.
337  SmallVector<Partition, 8> Partitions;
338
339  /// \brief The uses of the partitions.
340  ///
341  /// This is essentially a mapping from each partition to a list of uses of
342  /// that partition. The mapping is done with a Uses vector that has the exact
343  /// same number of entries as the partition vector. Each entry is itself
344  /// a vector of the uses.
345  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
346
347  /// \brief Instructions which will become dead if we rewrite the alloca.
348  ///
349  /// Note that these are not separated by partition. This is because we expect
350  /// a partitioned alloca to be completely rewritten or not rewritten at all.
351  /// If rewritten, all these instructions can simply be removed and replaced
352  /// with undef as they come from outside of the allocated space.
353  SmallVector<Instruction *, 8> DeadUsers;
354
355  /// \brief Operands which will become dead if we rewrite the alloca.
356  ///
357  /// These are operands that in their particular use can be replaced with
358  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
359  /// to PHI nodes and the like. They aren't entirely dead (there might be
360  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
361  /// want to swap this particular input for undef to simplify the use lists of
362  /// the alloca.
363  SmallVector<Use *, 8> DeadOperands;
364
365  /// \brief The underlying storage for auxiliary memcpy and memset info.
366  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
367
368  /// \brief A side datastructure used when building up the partitions and uses.
369  ///
370  /// This mapping is only really used during the initial building of the
371  /// partitioning so that we can retain information about PHI and select nodes
372  /// processed.
373  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
374
375  /// \brief Auxiliary information for particular PHI or select operands.
376  SmallDenseMap<std::pair<Instruction *, Value *>,
377                std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
378
379  /// \brief A utility routine called from the constructor.
380  ///
381  /// This does what it says on the tin. It is the key of the alloca partition
382  /// splitting and merging. After it is called we have the desired disjoint
383  /// collection of partitions.
384  void splitAndMergePartitions();
385};
386}
387
388template <typename DerivedT, typename RetT>
389class AllocaPartitioning::BuilderBase
390    : public InstVisitor<DerivedT, RetT> {
391public:
392  BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
393      : TD(TD),
394        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
395        P(P) {
396    enqueueUsers(AI, 0);
397  }
398
399protected:
400  const TargetData &TD;
401  const uint64_t AllocSize;
402  AllocaPartitioning &P;
403
404  struct OffsetUse {
405    Use *U;
406    int64_t Offset;
407  };
408  SmallVector<OffsetUse, 8> Queue;
409
410  // The active offset and use while visiting.
411  Use *U;
412  int64_t Offset;
413
414  void enqueueUsers(Instruction &I, int64_t UserOffset) {
415    SmallPtrSet<User *, 8> UserSet;
416    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
417         UI != UE; ++UI) {
418      if (!UserSet.insert(*UI))
419        continue;
420
421      OffsetUse OU = { &UI.getUse(), UserOffset };
422      Queue.push_back(OU);
423    }
424  }
425
426  bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
427    GEPOffset = Offset;
428    for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
429         GTI != GTE; ++GTI) {
430      ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
431      if (!OpC)
432        return false;
433      if (OpC->isZero())
434        continue;
435
436      // Handle a struct index, which adds its field offset to the pointer.
437      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
438        unsigned ElementIdx = OpC->getZExtValue();
439        const StructLayout *SL = TD.getStructLayout(STy);
440        uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
441        // Check that we can continue to model this GEP in a signed 64-bit offset.
442        if (ElementOffset > INT64_MAX ||
443            (GEPOffset >= 0 &&
444             ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
445          DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
446                       << "what can be represented in an int64_t!\n"
447                       << "  alloca: " << P.AI << "\n");
448          return false;
449        }
450        if (GEPOffset < 0)
451          GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
452        else
453          GEPOffset += ElementOffset;
454        continue;
455      }
456
457      APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
458      Index *= APInt(Index.getBitWidth(),
459                     TD.getTypeAllocSize(GTI.getIndexedType()));
460      Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
461                     /*isSigned*/true);
462      // Check if the result can be stored in our int64_t offset.
463      if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
464        DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
465                     << "what can be represented in an int64_t!\n"
466                     << "  alloca: " << P.AI << "\n");
467        return false;
468      }
469
470      GEPOffset = Index.getSExtValue();
471    }
472    return true;
473  }
474
475  Value *foldSelectInst(SelectInst &SI) {
476    // If the condition being selected on is a constant or the same value is
477    // being selected between, fold the select. Yes this does (rarely) happen
478    // early on.
479    if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
480      return SI.getOperand(1+CI->isZero());
481    if (SI.getOperand(1) == SI.getOperand(2)) {
482      assert(*U == SI.getOperand(1));
483      return SI.getOperand(1);
484    }
485    return 0;
486  }
487};
488
489/// \brief Builder for the alloca partitioning.
490///
491/// This class builds an alloca partitioning by recursively visiting the uses
492/// of an alloca and splitting the partitions for each load and store at each
493/// offset.
494class AllocaPartitioning::PartitionBuilder
495    : public BuilderBase<PartitionBuilder, bool> {
496  friend class InstVisitor<PartitionBuilder, bool>;
497
498  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
499
500public:
501  PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
502      : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
503
504  /// \brief Run the builder over the allocation.
505  bool operator()() {
506    // Note that we have to re-evaluate size on each trip through the loop as
507    // the queue grows at the tail.
508    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
509      U = Queue[Idx].U;
510      Offset = Queue[Idx].Offset;
511      if (!visit(cast<Instruction>(U->getUser())))
512        return false;
513    }
514    return true;
515  }
516
517private:
518  bool markAsEscaping(Instruction &I) {
519    P.PointerEscapingInstr = &I;
520    return false;
521  }
522
523  void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
524                 bool IsSplittable = false) {
525    // Completely skip uses which don't overlap the allocation.
526    if ((Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
527        (Offset < 0 && (uint64_t)-Offset >= Size)) {
528      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
529                   << " which starts past the end of the " << AllocSize
530                   << " byte alloca:\n"
531                   << "    alloca: " << P.AI << "\n"
532                   << "       use: " << I << "\n");
533      return;
534    }
535
536    // Clamp the start to the beginning of the allocation.
537    if (Offset < 0) {
538      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
539                   << " to start at the beginning of the alloca:\n"
540                   << "    alloca: " << P.AI << "\n"
541                   << "       use: " << I << "\n");
542      Size -= (uint64_t)-Offset;
543      Offset = 0;
544    }
545
546    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
547
548    // Clamp the end offset to the end of the allocation. Note that this is
549    // formulated to handle even the case where "BeginOffset + Size" overflows.
550    assert(AllocSize >= BeginOffset); // Established above.
551    if (Size > AllocSize - BeginOffset) {
552      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
553                   << " to remain within the " << AllocSize << " byte alloca:\n"
554                   << "    alloca: " << P.AI << "\n"
555                   << "       use: " << I << "\n");
556      EndOffset = AllocSize;
557    }
558
559    // See if we can just add a user onto the last slot currently occupied.
560    if (!P.Partitions.empty() &&
561        P.Partitions.back().BeginOffset == BeginOffset &&
562        P.Partitions.back().EndOffset == EndOffset) {
563      P.Partitions.back().IsSplittable &= IsSplittable;
564      return;
565    }
566
567    Partition New(BeginOffset, EndOffset, IsSplittable);
568    P.Partitions.push_back(New);
569  }
570
571  bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
572    uint64_t Size = TD.getTypeStoreSize(Ty);
573
574    // If this memory access can be shown to *statically* extend outside the
575    // bounds of of the allocation, it's behavior is undefined, so simply
576    // ignore it. Note that this is more strict than the generic clamping
577    // behavior of insertUse. We also try to handle cases which might run the
578    // risk of overflow.
579    // FIXME: We should instead consider the pointer to have escaped if this
580    // function is being instrumented for addressing bugs or race conditions.
581    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
582        Size > (AllocSize - (uint64_t)Offset)) {
583      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
584                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
585                   << " which extends past the end of the " << AllocSize
586                   << " byte alloca:\n"
587                   << "    alloca: " << P.AI << "\n"
588                   << "       use: " << I << "\n");
589      return true;
590    }
591
592    insertUse(I, Offset, Size);
593    return true;
594  }
595
596  bool visitBitCastInst(BitCastInst &BC) {
597    enqueueUsers(BC, Offset);
598    return true;
599  }
600
601  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
602    int64_t GEPOffset;
603    if (!computeConstantGEPOffset(GEPI, GEPOffset))
604      return markAsEscaping(GEPI);
605
606    enqueueUsers(GEPI, GEPOffset);
607    return true;
608  }
609
610  bool visitLoadInst(LoadInst &LI) {
611    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
612           "All simple FCA loads should have been pre-split");
613    return handleLoadOrStore(LI.getType(), LI, Offset);
614  }
615
616  bool visitStoreInst(StoreInst &SI) {
617    Value *ValOp = SI.getValueOperand();
618    if (ValOp == *U)
619      return markAsEscaping(SI);
620
621    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
622           "All simple FCA stores should have been pre-split");
623    return handleLoadOrStore(ValOp->getType(), SI, Offset);
624  }
625
626
627  bool visitMemSetInst(MemSetInst &II) {
628    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
629    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
630    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
631    insertUse(II, Offset, Size, Length);
632    return true;
633  }
634
635  bool visitMemTransferInst(MemTransferInst &II) {
636    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
637    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
638    if (!Size)
639      // Zero-length mem transfer intrinsics can be ignored entirely.
640      return true;
641
642    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
643
644    // Only intrinsics with a constant length can be split.
645    Offsets.IsSplittable = Length;
646
647    if (*U != II.getRawDest()) {
648      assert(*U == II.getRawSource());
649      Offsets.SourceBegin = Offset;
650      Offsets.SourceEnd = Offset + Size;
651    } else {
652      Offsets.DestBegin = Offset;
653      Offsets.DestEnd = Offset + Size;
654    }
655
656    insertUse(II, Offset, Size, Offsets.IsSplittable);
657    unsigned NewIdx = P.Partitions.size() - 1;
658
659    SmallDenseMap<Instruction *, unsigned>::const_iterator PMI;
660    bool Inserted = false;
661    llvm::tie(PMI, Inserted)
662      = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx));
663    if (!Inserted && Offsets.IsSplittable) {
664      // We've found a memory transfer intrinsic which refers to the alloca as
665      // both a source and dest. We refuse to split these to simplify splitting
666      // logic. If possible, SROA will still split them into separate allocas
667      // and then re-analyze.
668      Offsets.IsSplittable = false;
669      P.Partitions[PMI->second].IsSplittable = false;
670      P.Partitions[NewIdx].IsSplittable = false;
671    }
672
673    return true;
674  }
675
676  // Disable SRoA for any intrinsics except for lifetime invariants.
677  // FIXME: What about debug instrinsics? This matches old behavior, but
678  // doesn't make sense.
679  bool visitIntrinsicInst(IntrinsicInst &II) {
680    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
681        II.getIntrinsicID() == Intrinsic::lifetime_end) {
682      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
683      uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
684      insertUse(II, Offset, Size, true);
685      return true;
686    }
687
688    return markAsEscaping(II);
689  }
690
691  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
692    // We consider any PHI or select that results in a direct load or store of
693    // the same offset to be a viable use for partitioning purposes. These uses
694    // are considered unsplittable and the size is the maximum loaded or stored
695    // size.
696    SmallPtrSet<Instruction *, 4> Visited;
697    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
698    Visited.insert(Root);
699    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
700    do {
701      Instruction *I, *UsedI;
702      llvm::tie(UsedI, I) = Uses.pop_back_val();
703
704      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
705        Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
706        continue;
707      }
708      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
709        Value *Op = SI->getOperand(0);
710        if (Op == UsedI)
711          return SI;
712        Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
713        continue;
714      }
715
716      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
717        if (!GEP->hasAllZeroIndices())
718          return GEP;
719      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
720                 !isa<SelectInst>(I)) {
721        return I;
722      }
723
724      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
725           ++UI)
726        if (Visited.insert(cast<Instruction>(*UI)))
727          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
728    } while (!Uses.empty());
729
730    return 0;
731  }
732
733  bool visitPHINode(PHINode &PN) {
734    // See if we already have computed info on this node.
735    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
736    if (PHIInfo.first) {
737      PHIInfo.second = true;
738      insertUse(PN, Offset, PHIInfo.first);
739      return true;
740    }
741
742    // Check for an unsafe use of the PHI node.
743    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
744      return markAsEscaping(*EscapingI);
745
746    insertUse(PN, Offset, PHIInfo.first);
747    return true;
748  }
749
750  bool visitSelectInst(SelectInst &SI) {
751    if (Value *Result = foldSelectInst(SI)) {
752      if (Result == *U)
753        // If the result of the constant fold will be the pointer, recurse
754        // through the select as if we had RAUW'ed it.
755        enqueueUsers(SI, Offset);
756
757      return true;
758    }
759
760    // See if we already have computed info on this node.
761    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
762    if (SelectInfo.first) {
763      SelectInfo.second = true;
764      insertUse(SI, Offset, SelectInfo.first);
765      return true;
766    }
767
768    // Check for an unsafe use of the PHI node.
769    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
770      return markAsEscaping(*EscapingI);
771
772    insertUse(SI, Offset, SelectInfo.first);
773    return true;
774  }
775
776  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
777  bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
778};
779
780
781/// \brief Use adder for the alloca partitioning.
782///
783/// This class adds the uses of an alloca to all of the partitions which they
784/// use. For splittable partitions, this can end up doing essentially a linear
785/// walk of the partitions, but the number of steps remains bounded by the
786/// total result instruction size:
787/// - The number of partitions is a result of the number unsplittable
788///   instructions using the alloca.
789/// - The number of users of each partition is at worst the total number of
790///   splittable instructions using the alloca.
791/// Thus we will produce N * M instructions in the end, where N are the number
792/// of unsplittable uses and M are the number of splittable. This visitor does
793/// the exact same number of updates to the partitioning.
794///
795/// In the more common case, this visitor will leverage the fact that the
796/// partition space is pre-sorted, and do a logarithmic search for the
797/// partition needed, making the total visit a classical ((N + M) * log(N))
798/// complexity operation.
799class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
800  friend class InstVisitor<UseBuilder>;
801
802  /// \brief Set to de-duplicate dead instructions found in the use walk.
803  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
804
805public:
806  UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
807      : BuilderBase<UseBuilder>(TD, AI, P) {}
808
809  /// \brief Run the builder over the allocation.
810  void operator()() {
811    // Note that we have to re-evaluate size on each trip through the loop as
812    // the queue grows at the tail.
813    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
814      U = Queue[Idx].U;
815      Offset = Queue[Idx].Offset;
816      this->visit(cast<Instruction>(U->getUser()));
817    }
818  }
819
820private:
821  void markAsDead(Instruction &I) {
822    if (VisitedDeadInsts.insert(&I))
823      P.DeadUsers.push_back(&I);
824  }
825
826  void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
827    // If the use extends outside of the allocation, record it as a dead use
828    // for elimination later.
829    if ((uint64_t)Offset >= AllocSize ||
830        (Offset < 0 && (uint64_t)-Offset >= Size))
831      return markAsDead(User);
832
833    // Clamp the start to the beginning of the allocation.
834    if (Offset < 0) {
835      Size -= (uint64_t)-Offset;
836      Offset = 0;
837    }
838
839    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
840
841    // Clamp the end offset to the end of the allocation. Note that this is
842    // formulated to handle even the case where "BeginOffset + Size" overflows.
843    assert(AllocSize >= BeginOffset); // Established above.
844    if (Size > AllocSize - BeginOffset)
845      EndOffset = AllocSize;
846
847    // NB: This only works if we have zero overlapping partitions.
848    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
849    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
850      B = llvm::prior(B);
851    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
852         ++I) {
853      PartitionUse NewUse(std::max(I->BeginOffset, BeginOffset),
854                          std::min(I->EndOffset, EndOffset),
855                          &User, cast<Instruction>(*U));
856      P.use_push_back(I, NewUse);
857      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
858        P.PHIOrSelectOpMap[std::make_pair(&User, U->get())]
859          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
860    }
861  }
862
863  void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
864    uint64_t Size = TD.getTypeStoreSize(Ty);
865
866    // If this memory access can be shown to *statically* extend outside the
867    // bounds of of the allocation, it's behavior is undefined, so simply
868    // ignore it. Note that this is more strict than the generic clamping
869    // behavior of insertUse.
870    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
871        Size > (AllocSize - (uint64_t)Offset))
872      return markAsDead(I);
873
874    insertUse(I, Offset, Size);
875  }
876
877  void visitBitCastInst(BitCastInst &BC) {
878    if (BC.use_empty())
879      return markAsDead(BC);
880
881    enqueueUsers(BC, Offset);
882  }
883
884  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
885    if (GEPI.use_empty())
886      return markAsDead(GEPI);
887
888    int64_t GEPOffset;
889    if (!computeConstantGEPOffset(GEPI, GEPOffset))
890      llvm_unreachable("Unable to compute constant offset for use");
891
892    enqueueUsers(GEPI, GEPOffset);
893  }
894
895  void visitLoadInst(LoadInst &LI) {
896    handleLoadOrStore(LI.getType(), LI, Offset);
897  }
898
899  void visitStoreInst(StoreInst &SI) {
900    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
901  }
902
903  void visitMemSetInst(MemSetInst &II) {
904    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
905    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
906    insertUse(II, Offset, Size);
907  }
908
909  void visitMemTransferInst(MemTransferInst &II) {
910    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
911    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
912    insertUse(II, Offset, Size);
913  }
914
915  void visitIntrinsicInst(IntrinsicInst &II) {
916    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
917           II.getIntrinsicID() == Intrinsic::lifetime_end);
918
919    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
920    insertUse(II, Offset,
921              std::min(AllocSize - Offset, Length->getLimitedValue()));
922  }
923
924  void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
925    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
926
927    // For PHI and select operands outside the alloca, we can't nuke the entire
928    // phi or select -- the other side might still be relevant, so we special
929    // case them here and use a separate structure to track the operands
930    // themselves which should be replaced with undef.
931    if (Offset >= AllocSize) {
932      P.DeadOperands.push_back(U);
933      return;
934    }
935
936    insertUse(User, Offset, Size);
937  }
938  void visitPHINode(PHINode &PN) {
939    if (PN.use_empty())
940      return markAsDead(PN);
941
942    insertPHIOrSelect(PN, Offset);
943  }
944  void visitSelectInst(SelectInst &SI) {
945    if (SI.use_empty())
946      return markAsDead(SI);
947
948    if (Value *Result = foldSelectInst(SI)) {
949      if (Result == *U)
950        // If the result of the constant fold will be the pointer, recurse
951        // through the select as if we had RAUW'ed it.
952        enqueueUsers(SI, Offset);
953      else
954        // Otherwise the operand to the select is dead, and we can replace it
955        // with undef.
956        P.DeadOperands.push_back(U);
957
958      return;
959    }
960
961    insertPHIOrSelect(SI, Offset);
962  }
963
964  /// \brief Unreachable, we've already visited the alloca once.
965  void visitInstruction(Instruction &I) {
966    llvm_unreachable("Unhandled instruction in use builder.");
967  }
968};
969
970void AllocaPartitioning::splitAndMergePartitions() {
971  size_t NumDeadPartitions = 0;
972
973  // Track the range of splittable partitions that we pass when accumulating
974  // overlapping unsplittable partitions.
975  uint64_t SplitEndOffset = 0ull;
976
977  Partition New(0ull, 0ull, false);
978
979  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
980    ++j;
981
982    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
983      assert(New.BeginOffset == New.EndOffset);
984      New = Partitions[i];
985    } else {
986      assert(New.IsSplittable);
987      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
988    }
989    assert(New.BeginOffset != New.EndOffset);
990
991    // Scan the overlapping partitions.
992    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
993      // If the new partition we are forming is splittable, stop at the first
994      // unsplittable partition.
995      if (New.IsSplittable && !Partitions[j].IsSplittable)
996        break;
997
998      // Grow the new partition to include any equally splittable range. 'j' is
999      // always equally splittable when New is splittable, but when New is not
1000      // splittable, we may subsume some (or part of some) splitable partition
1001      // without growing the new one.
1002      if (New.IsSplittable == Partitions[j].IsSplittable) {
1003        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1004      } else {
1005        assert(!New.IsSplittable);
1006        assert(Partitions[j].IsSplittable);
1007        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1008      }
1009
1010      Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX;
1011      ++NumDeadPartitions;
1012      ++j;
1013    }
1014
1015    // If the new partition is splittable, chop off the end as soon as the
1016    // unsplittable subsequent partition starts and ensure we eventually cover
1017    // the splittable area.
1018    if (j != e && New.IsSplittable) {
1019      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1020      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1021    }
1022
1023    // Add the new partition if it differs from the original one and is
1024    // non-empty. We can end up with an empty partition here if it was
1025    // splittable but there is an unsplittable one that starts at the same
1026    // offset.
1027    if (New != Partitions[i]) {
1028      if (New.BeginOffset != New.EndOffset)
1029        Partitions.push_back(New);
1030      // Mark the old one for removal.
1031      Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX;
1032      ++NumDeadPartitions;
1033    }
1034
1035    New.BeginOffset = New.EndOffset;
1036    if (!New.IsSplittable) {
1037      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1038      if (j != e && !Partitions[j].IsSplittable)
1039        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1040      New.IsSplittable = true;
1041      // If there is a trailing splittable partition which won't be fused into
1042      // the next splittable partition go ahead and add it onto the partitions
1043      // list.
1044      if (New.BeginOffset < New.EndOffset &&
1045          (j == e || !Partitions[j].IsSplittable ||
1046           New.EndOffset < Partitions[j].BeginOffset)) {
1047        Partitions.push_back(New);
1048        New.BeginOffset = New.EndOffset = 0ull;
1049      }
1050    }
1051  }
1052
1053  // Re-sort the partitions now that they have been split and merged into
1054  // disjoint set of partitions. Also remove any of the dead partitions we've
1055  // replaced in the process.
1056  std::sort(Partitions.begin(), Partitions.end());
1057  if (NumDeadPartitions) {
1058    assert(Partitions.back().BeginOffset == UINT64_MAX);
1059    assert(Partitions.back().EndOffset == UINT64_MAX);
1060    assert((ptrdiff_t)NumDeadPartitions ==
1061           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1062  }
1063  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1064}
1065
1066AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI)
1067    :
1068#ifndef NDEBUG
1069      AI(AI),
1070#endif
1071      PointerEscapingInstr(0) {
1072  PartitionBuilder PB(TD, AI, *this);
1073  if (!PB())
1074    return;
1075
1076  if (Partitions.size() > 1) {
1077    // Sort the uses. This arranges for the offsets to be in ascending order,
1078    // and the sizes to be in descending order.
1079    std::sort(Partitions.begin(), Partitions.end());
1080
1081    // Intersect splittability for all partitions with equal offsets and sizes.
1082    // Then remove all but the first so that we have a sequence of non-equal but
1083    // potentially overlapping partitions.
1084    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1085         I = J) {
1086      ++J;
1087      while (J != E && *I == *J) {
1088        I->IsSplittable &= J->IsSplittable;
1089        ++J;
1090      }
1091    }
1092    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1093                     Partitions.end());
1094
1095    // Split splittable and merge unsplittable partitions into a disjoint set
1096    // of partitions over the used space of the allocation.
1097    splitAndMergePartitions();
1098  }
1099
1100  // Now build up the user lists for each of these disjoint partitions by
1101  // re-walking the recursive users of the alloca.
1102  Uses.resize(Partitions.size());
1103  UseBuilder UB(TD, AI, *this);
1104  UB();
1105}
1106
1107Type *AllocaPartitioning::getCommonType(iterator I) const {
1108  Type *Ty = 0;
1109  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1110    if (isa<IntrinsicInst>(*UI->User))
1111      continue;
1112    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1113      continue;
1114
1115    Type *UserTy = 0;
1116    if (LoadInst *LI = dyn_cast<LoadInst>(&*UI->User)) {
1117      UserTy = LI->getType();
1118    } else if (StoreInst *SI = dyn_cast<StoreInst>(&*UI->User)) {
1119      UserTy = SI->getValueOperand()->getType();
1120    } else if (SelectInst *SI = dyn_cast<SelectInst>(&*UI->User)) {
1121      if (PointerType *PtrTy = dyn_cast<PointerType>(SI->getType()))
1122        UserTy = PtrTy->getElementType();
1123    } else if (PHINode *PN = dyn_cast<PHINode>(&*UI->User)) {
1124      if (PointerType *PtrTy = dyn_cast<PointerType>(PN->getType()))
1125        UserTy = PtrTy->getElementType();
1126    }
1127
1128    if (Ty && Ty != UserTy)
1129      return 0;
1130
1131    Ty = UserTy;
1132  }
1133  return Ty;
1134}
1135
1136#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1137
1138void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1139                               StringRef Indent) const {
1140  OS << Indent << "partition #" << (I - begin())
1141     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1142     << (I->IsSplittable ? " (splittable)" : "")
1143     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1144     << "\n";
1145}
1146
1147void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1148                                    StringRef Indent) const {
1149  for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1150       UI != UE; ++UI) {
1151    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1152       << "used by: " << *UI->User << "\n";
1153    if (MemTransferInst *II = dyn_cast<MemTransferInst>(&*UI->User)) {
1154      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1155      bool IsDest;
1156      if (!MTO.IsSplittable)
1157        IsDest = UI->BeginOffset == MTO.DestBegin;
1158      else
1159        IsDest = MTO.DestBegin != 0u;
1160      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1161         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1162         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1163    }
1164  }
1165}
1166
1167void AllocaPartitioning::print(raw_ostream &OS) const {
1168  if (PointerEscapingInstr) {
1169    OS << "No partitioning for alloca: " << AI << "\n"
1170       << "  A pointer to this alloca escaped by:\n"
1171       << "  " << *PointerEscapingInstr << "\n";
1172    return;
1173  }
1174
1175  OS << "Partitioning of alloca: " << AI << "\n";
1176  unsigned Num = 0;
1177  for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1178    print(OS, I);
1179    printUsers(OS, I);
1180  }
1181}
1182
1183void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1184void AllocaPartitioning::dump() const { print(dbgs()); }
1185
1186#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1187
1188
1189namespace {
1190/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1191///
1192/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1193/// the loads and stores of an alloca instruction, as well as updating its
1194/// debug information. This is used when a domtree is unavailable and thus
1195/// mem2reg in its full form can't be used to handle promotion of allocas to
1196/// scalar values.
1197class AllocaPromoter : public LoadAndStorePromoter {
1198  AllocaInst &AI;
1199  DIBuilder &DIB;
1200
1201  SmallVector<DbgDeclareInst *, 4> DDIs;
1202  SmallVector<DbgValueInst *, 4> DVIs;
1203
1204public:
1205  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1206                 AllocaInst &AI, DIBuilder &DIB)
1207    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1208
1209  void run(const SmallVectorImpl<Instruction*> &Insts) {
1210    // Remember which alloca we're promoting (for isInstInList).
1211    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1212      for (Value::use_iterator UI = DebugNode->use_begin(),
1213                               UE = DebugNode->use_end();
1214           UI != UE; ++UI)
1215        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1216          DDIs.push_back(DDI);
1217        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1218          DVIs.push_back(DVI);
1219    }
1220
1221    LoadAndStorePromoter::run(Insts);
1222    AI.eraseFromParent();
1223    while (!DDIs.empty())
1224      DDIs.pop_back_val()->eraseFromParent();
1225    while (!DVIs.empty())
1226      DVIs.pop_back_val()->eraseFromParent();
1227  }
1228
1229  virtual bool isInstInList(Instruction *I,
1230                            const SmallVectorImpl<Instruction*> &Insts) const {
1231    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1232      return LI->getOperand(0) == &AI;
1233    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1234  }
1235
1236  virtual void updateDebugInfo(Instruction *Inst) const {
1237    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1238           E = DDIs.end(); I != E; ++I) {
1239      DbgDeclareInst *DDI = *I;
1240      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1241        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1242      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1243        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1244    }
1245    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1246           E = DVIs.end(); I != E; ++I) {
1247      DbgValueInst *DVI = *I;
1248      Value *Arg = NULL;
1249      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1250        // If an argument is zero extended then use argument directly. The ZExt
1251        // may be zapped by an optimization pass in future.
1252        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1253          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1254        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1255          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1256        if (!Arg)
1257          Arg = SI->getOperand(0);
1258      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1259        Arg = LI->getOperand(0);
1260      } else {
1261        continue;
1262      }
1263      Instruction *DbgVal =
1264        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1265                                     Inst);
1266      DbgVal->setDebugLoc(DVI->getDebugLoc());
1267    }
1268  }
1269};
1270} // end anon namespace
1271
1272
1273namespace {
1274/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1275///
1276/// This pass takes allocations which can be completely analyzed (that is, they
1277/// don't escape) and tries to turn them into scalar SSA values. There are
1278/// a few steps to this process.
1279///
1280/// 1) It takes allocations of aggregates and analyzes the ways in which they
1281///    are used to try to split them into smaller allocations, ideally of
1282///    a single scalar data type. It will split up memcpy and memset accesses
1283///    as necessary and try to isolate invidual scalar accesses.
1284/// 2) It will transform accesses into forms which are suitable for SSA value
1285///    promotion. This can be replacing a memset with a scalar store of an
1286///    integer value, or it can involve speculating operations on a PHI or
1287///    select to be a PHI or select of the results.
1288/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1289///    onto insert and extract operations on a vector value, and convert them to
1290///    this form. By doing so, it will enable promotion of vector aggregates to
1291///    SSA vector values.
1292class SROA : public FunctionPass {
1293  const bool RequiresDomTree;
1294
1295  LLVMContext *C;
1296  const TargetData *TD;
1297  DominatorTree *DT;
1298
1299  /// \brief Worklist of alloca instructions to simplify.
1300  ///
1301  /// Each alloca in the function is added to this. Each new alloca formed gets
1302  /// added to it as well to recursively simplify unless that alloca can be
1303  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1304  /// the one being actively rewritten, we add it back onto the list if not
1305  /// already present to ensure it is re-visited.
1306  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1307
1308  /// \brief A collection of instructions to delete.
1309  /// We try to batch deletions to simplify code and make things a bit more
1310  /// efficient.
1311  SmallVector<Instruction *, 8> DeadInsts;
1312
1313  /// \brief A set to prevent repeatedly marking an instruction split into many
1314  /// uses as dead. Only used to guard insertion into DeadInsts.
1315  SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1316
1317  /// \brief A collection of alloca instructions we can directly promote.
1318  std::vector<AllocaInst *> PromotableAllocas;
1319
1320public:
1321  SROA(bool RequiresDomTree = true)
1322      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1323        C(0), TD(0), DT(0) {
1324    initializeSROAPass(*PassRegistry::getPassRegistry());
1325  }
1326  bool runOnFunction(Function &F);
1327  void getAnalysisUsage(AnalysisUsage &AU) const;
1328
1329  const char *getPassName() const { return "SROA"; }
1330  static char ID;
1331
1332private:
1333  friend class AllocaPartitionRewriter;
1334  friend class AllocaPartitionVectorRewriter;
1335
1336  bool rewriteAllocaPartition(AllocaInst &AI,
1337                              AllocaPartitioning &P,
1338                              AllocaPartitioning::iterator PI);
1339  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1340  bool runOnAlloca(AllocaInst &AI);
1341  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1342  bool promoteAllocas(Function &F);
1343};
1344}
1345
1346char SROA::ID = 0;
1347
1348FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1349  return new SROA(RequiresDomTree);
1350}
1351
1352INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1353                      false, false)
1354INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1355INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1356                    false, false)
1357
1358/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1359///
1360/// If the provided GEP is all-constant, the total byte offset formed by the
1361/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1362/// operands, the function returns false and the value of Offset is unmodified.
1363static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP,
1364                                 APInt &Offset) {
1365  APInt GEPOffset(Offset.getBitWidth(), 0);
1366  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1367       GTI != GTE; ++GTI) {
1368    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1369    if (!OpC)
1370      return false;
1371    if (OpC->isZero()) continue;
1372
1373    // Handle a struct index, which adds its field offset to the pointer.
1374    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1375      unsigned ElementIdx = OpC->getZExtValue();
1376      const StructLayout *SL = TD.getStructLayout(STy);
1377      GEPOffset += APInt(Offset.getBitWidth(),
1378                         SL->getElementOffset(ElementIdx));
1379      continue;
1380    }
1381
1382    APInt TypeSize(Offset.getBitWidth(),
1383                   TD.getTypeAllocSize(GTI.getIndexedType()));
1384    if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1385      assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1386             "vector element size is not a multiple of 8, cannot GEP over it");
1387      TypeSize = VTy->getScalarSizeInBits() / 8;
1388    }
1389
1390    GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1391  }
1392  Offset = GEPOffset;
1393  return true;
1394}
1395
1396/// \brief Build a GEP out of a base pointer and indices.
1397///
1398/// This will return the BasePtr if that is valid, or build a new GEP
1399/// instruction using the IRBuilder if GEP-ing is needed.
1400static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1401                       SmallVectorImpl<Value *> &Indices,
1402                       const Twine &Prefix) {
1403  if (Indices.empty())
1404    return BasePtr;
1405
1406  // A single zero index is a no-op, so check for this and avoid building a GEP
1407  // in that case.
1408  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1409    return BasePtr;
1410
1411  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1412}
1413
1414/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1415/// TargetTy without changing the offset of the pointer.
1416///
1417/// This routine assumes we've already established a properly offset GEP with
1418/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1419/// zero-indices down through type layers until we find one the same as
1420/// TargetTy. If we can't find one with the same type, we at least try to use
1421/// one with the same size. If none of that works, we just produce the GEP as
1422/// indicated by Indices to have the correct offset.
1423static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD,
1424                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1425                                    SmallVectorImpl<Value *> &Indices,
1426                                    const Twine &Prefix) {
1427  if (Ty == TargetTy)
1428    return buildGEP(IRB, BasePtr, Indices, Prefix);
1429
1430  // See if we can descend into a struct and locate a field with the correct
1431  // type.
1432  unsigned NumLayers = 0;
1433  Type *ElementTy = Ty;
1434  do {
1435    if (ElementTy->isPointerTy())
1436      break;
1437    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1438      ElementTy = SeqTy->getElementType();
1439      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0)));
1440    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1441      ElementTy = *STy->element_begin();
1442      Indices.push_back(IRB.getInt32(0));
1443    } else {
1444      break;
1445    }
1446    ++NumLayers;
1447  } while (ElementTy != TargetTy);
1448  if (ElementTy != TargetTy)
1449    Indices.erase(Indices.end() - NumLayers, Indices.end());
1450
1451  return buildGEP(IRB, BasePtr, Indices, Prefix);
1452}
1453
1454/// \brief Recursively compute indices for a natural GEP.
1455///
1456/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1457/// element types adding appropriate indices for the GEP.
1458static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD,
1459                                       Value *Ptr, Type *Ty, APInt &Offset,
1460                                       Type *TargetTy,
1461                                       SmallVectorImpl<Value *> &Indices,
1462                                       const Twine &Prefix) {
1463  if (Offset == 0)
1464    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1465
1466  // We can't recurse through pointer types.
1467  if (Ty->isPointerTy())
1468    return 0;
1469
1470  // We try to analyze GEPs over vectors here, but note that these GEPs are
1471  // extremely poorly defined currently. The long-term goal is to remove GEPing
1472  // over a vector from the IR completely.
1473  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1474    unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1475    if (ElementSizeInBits % 8)
1476      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1477    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1478    APInt NumSkippedElements = Offset.udiv(ElementSize);
1479    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1480      return 0;
1481    Offset -= NumSkippedElements * ElementSize;
1482    Indices.push_back(IRB.getInt(NumSkippedElements));
1483    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1484                                    Offset, TargetTy, Indices, Prefix);
1485  }
1486
1487  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1488    Type *ElementTy = ArrTy->getElementType();
1489    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1490    APInt NumSkippedElements = Offset.udiv(ElementSize);
1491    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1492      return 0;
1493
1494    Offset -= NumSkippedElements * ElementSize;
1495    Indices.push_back(IRB.getInt(NumSkippedElements));
1496    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1497                                    Indices, Prefix);
1498  }
1499
1500  StructType *STy = dyn_cast<StructType>(Ty);
1501  if (!STy)
1502    return 0;
1503
1504  const StructLayout *SL = TD.getStructLayout(STy);
1505  uint64_t StructOffset = Offset.getZExtValue();
1506  if (StructOffset >= SL->getSizeInBytes())
1507    return 0;
1508  unsigned Index = SL->getElementContainingOffset(StructOffset);
1509  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1510  Type *ElementTy = STy->getElementType(Index);
1511  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1512    return 0; // The offset points into alignment padding.
1513
1514  Indices.push_back(IRB.getInt32(Index));
1515  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1516                                  Indices, Prefix);
1517}
1518
1519/// \brief Get a natural GEP from a base pointer to a particular offset and
1520/// resulting in a particular type.
1521///
1522/// The goal is to produce a "natural" looking GEP that works with the existing
1523/// composite types to arrive at the appropriate offset and element type for
1524/// a pointer. TargetTy is the element type the returned GEP should point-to if
1525/// possible. We recurse by decreasing Offset, adding the appropriate index to
1526/// Indices, and setting Ty to the result subtype.
1527///
1528/// If no natural GEP can be constructed, this function returns null.
1529static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD,
1530                                      Value *Ptr, APInt Offset, Type *TargetTy,
1531                                      SmallVectorImpl<Value *> &Indices,
1532                                      const Twine &Prefix) {
1533  PointerType *Ty = cast<PointerType>(Ptr->getType());
1534
1535  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1536  // an i8.
1537  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1538    return 0;
1539
1540  Type *ElementTy = Ty->getElementType();
1541  if (!ElementTy->isSized())
1542    return 0; // We can't GEP through an unsized element.
1543  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1544  if (ElementSize == 0)
1545    return 0; // Zero-length arrays can't help us build a natural GEP.
1546  APInt NumSkippedElements = Offset.udiv(ElementSize);
1547
1548  Offset -= NumSkippedElements * ElementSize;
1549  Indices.push_back(IRB.getInt(NumSkippedElements));
1550  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1551                                  Indices, Prefix);
1552}
1553
1554/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1555/// resulting pointer has PointerTy.
1556///
1557/// This tries very hard to compute a "natural" GEP which arrives at the offset
1558/// and produces the pointer type desired. Where it cannot, it will try to use
1559/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1560/// fails, it will try to use an existing i8* and GEP to the byte offset and
1561/// bitcast to the type.
1562///
1563/// The strategy for finding the more natural GEPs is to peel off layers of the
1564/// pointer, walking back through bit casts and GEPs, searching for a base
1565/// pointer from which we can compute a natural GEP with the desired
1566/// properities. The algorithm tries to fold as many constant indices into
1567/// a single GEP as possible, thus making each GEP more independent of the
1568/// surrounding code.
1569static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD,
1570                             Value *Ptr, APInt Offset, Type *PointerTy,
1571                             const Twine &Prefix) {
1572  // Even though we don't look through PHI nodes, we could be called on an
1573  // instruction in an unreachable block, which may be on a cycle.
1574  SmallPtrSet<Value *, 4> Visited;
1575  Visited.insert(Ptr);
1576  SmallVector<Value *, 4> Indices;
1577
1578  // We may end up computing an offset pointer that has the wrong type. If we
1579  // never are able to compute one directly that has the correct type, we'll
1580  // fall back to it, so keep it around here.
1581  Value *OffsetPtr = 0;
1582
1583  // Remember any i8 pointer we come across to re-use if we need to do a raw
1584  // byte offset.
1585  Value *Int8Ptr = 0;
1586  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1587
1588  Type *TargetTy = PointerTy->getPointerElementType();
1589
1590  do {
1591    // First fold any existing GEPs into the offset.
1592    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1593      APInt GEPOffset(Offset.getBitWidth(), 0);
1594      if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1595        break;
1596      Offset += GEPOffset;
1597      Ptr = GEP->getPointerOperand();
1598      if (!Visited.insert(Ptr))
1599        break;
1600    }
1601
1602    // See if we can perform a natural GEP here.
1603    Indices.clear();
1604    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1605                                           Indices, Prefix)) {
1606      if (P->getType() == PointerTy) {
1607        // Zap any offset pointer that we ended up computing in previous rounds.
1608        if (OffsetPtr && OffsetPtr->use_empty())
1609          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1610            I->eraseFromParent();
1611        return P;
1612      }
1613      if (!OffsetPtr) {
1614        OffsetPtr = P;
1615      }
1616    }
1617
1618    // Stash this pointer if we've found an i8*.
1619    if (Ptr->getType()->isIntegerTy(8)) {
1620      Int8Ptr = Ptr;
1621      Int8PtrOffset = Offset;
1622    }
1623
1624    // Peel off a layer of the pointer and update the offset appropriately.
1625    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1626      Ptr = cast<Operator>(Ptr)->getOperand(0);
1627    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1628      if (GA->mayBeOverridden())
1629        break;
1630      Ptr = GA->getAliasee();
1631    } else {
1632      break;
1633    }
1634    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1635  } while (Visited.insert(Ptr));
1636
1637  if (!OffsetPtr) {
1638    if (!Int8Ptr) {
1639      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1640                                  Prefix + ".raw_cast");
1641      Int8PtrOffset = Offset;
1642    }
1643
1644    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1645      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1646                            Prefix + ".raw_idx");
1647  }
1648  Ptr = OffsetPtr;
1649
1650  // On the off chance we were targeting i8*, guard the bitcast here.
1651  if (Ptr->getType() != PointerTy)
1652    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1653
1654  return Ptr;
1655}
1656
1657/// \brief Test whether the given alloca partition can be promoted to a vector.
1658///
1659/// This is a quick test to check whether we can rewrite a particular alloca
1660/// partition (and its newly formed alloca) into a vector alloca with only
1661/// whole-vector loads and stores such that it could be promoted to a vector
1662/// SSA value. We only can ensure this for a limited set of operations, and we
1663/// don't want to do the rewrites unless we are confident that the result will
1664/// be promotable, so we have an early test here.
1665static bool isVectorPromotionViable(const TargetData &TD,
1666                                    Type *AllocaTy,
1667                                    AllocaPartitioning &P,
1668                                    uint64_t PartitionBeginOffset,
1669                                    uint64_t PartitionEndOffset,
1670                                    AllocaPartitioning::const_use_iterator I,
1671                                    AllocaPartitioning::const_use_iterator E) {
1672  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1673  if (!Ty)
1674    return false;
1675
1676  uint64_t VecSize = TD.getTypeSizeInBits(Ty);
1677  uint64_t ElementSize = Ty->getScalarSizeInBits();
1678
1679  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1680  // that aren't byte sized.
1681  if (ElementSize % 8)
1682    return false;
1683  assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
1684  VecSize /= 8;
1685  ElementSize /= 8;
1686
1687  for (; I != E; ++I) {
1688    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
1689    uint64_t BeginIndex = BeginOffset / ElementSize;
1690    if (BeginIndex * ElementSize != BeginOffset ||
1691        BeginIndex >= Ty->getNumElements())
1692      return false;
1693    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
1694    uint64_t EndIndex = EndOffset / ElementSize;
1695    if (EndIndex * ElementSize != EndOffset ||
1696        EndIndex > Ty->getNumElements())
1697      return false;
1698
1699    // FIXME: We should build shuffle vector instructions to handle
1700    // non-element-sized accesses.
1701    if ((EndOffset - BeginOffset) != ElementSize &&
1702        (EndOffset - BeginOffset) != VecSize)
1703      return false;
1704
1705    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) {
1706      if (MI->isVolatile())
1707        return false;
1708      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) {
1709        const AllocaPartitioning::MemTransferOffsets &MTO
1710          = P.getMemTransferOffsets(*MTI);
1711        if (!MTO.IsSplittable)
1712          return false;
1713      }
1714    } else if (I->Ptr->getType()->getPointerElementType()->isStructTy()) {
1715      // Disable vector promotion when there are loads or stores of an FCA.
1716      return false;
1717    } else if (!isa<LoadInst>(*I->User) && !isa<StoreInst>(*I->User)) {
1718      return false;
1719    }
1720  }
1721  return true;
1722}
1723
1724/// \brief Test whether the given alloca partition can be promoted to an int.
1725///
1726/// This is a quick test to check whether we can rewrite a particular alloca
1727/// partition (and its newly formed alloca) into an integer alloca suitable for
1728/// promotion to an SSA value. We only can ensure this for a limited set of
1729/// operations, and we don't want to do the rewrites unless we are confident
1730/// that the result will be promotable, so we have an early test here.
1731static bool isIntegerPromotionViable(const TargetData &TD,
1732                                     Type *AllocaTy,
1733                                     AllocaPartitioning &P,
1734                                     AllocaPartitioning::const_use_iterator I,
1735                                     AllocaPartitioning::const_use_iterator E) {
1736  IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy);
1737  if (!Ty)
1738    return false;
1739
1740  // Check the uses to ensure the uses are (likely) promoteable integer uses.
1741  // Also ensure that the alloca has a covering load or store. We don't want
1742  // promote because of some other unsplittable entry (which we may make
1743  // splittable later) and lose the ability to promote each element access.
1744  bool WholeAllocaOp = false;
1745  for (; I != E; ++I) {
1746    if (LoadInst *LI = dyn_cast<LoadInst>(&*I->User)) {
1747      if (LI->isVolatile() || !LI->getType()->isIntegerTy())
1748        return false;
1749      if (LI->getType() == Ty)
1750        WholeAllocaOp = true;
1751    } else if (StoreInst *SI = dyn_cast<StoreInst>(&*I->User)) {
1752      if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy())
1753        return false;
1754      if (SI->getValueOperand()->getType() == Ty)
1755        WholeAllocaOp = true;
1756    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) {
1757      if (MI->isVolatile())
1758        return false;
1759      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) {
1760        const AllocaPartitioning::MemTransferOffsets &MTO
1761          = P.getMemTransferOffsets(*MTI);
1762        if (!MTO.IsSplittable)
1763          return false;
1764      }
1765    } else {
1766      return false;
1767    }
1768  }
1769  return WholeAllocaOp;
1770}
1771
1772namespace {
1773/// \brief Visitor to rewrite instructions using a partition of an alloca to
1774/// use a new alloca.
1775///
1776/// Also implements the rewriting to vector-based accesses when the partition
1777/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1778/// lives here.
1779class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
1780                                                   bool> {
1781  // Befriend the base class so it can delegate to private visit methods.
1782  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
1783
1784  const TargetData &TD;
1785  AllocaPartitioning &P;
1786  SROA &Pass;
1787  AllocaInst &OldAI, &NewAI;
1788  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1789
1790  // If we are rewriting an alloca partition which can be written as pure
1791  // vector operations, we stash extra information here. When VecTy is
1792  // non-null, we have some strict guarantees about the rewriten alloca:
1793  //   - The new alloca is exactly the size of the vector type here.
1794  //   - The accesses all either map to the entire vector or to a single
1795  //     element.
1796  //   - The set of accessing instructions is only one of those handled above
1797  //     in isVectorPromotionViable. Generally these are the same access kinds
1798  //     which are promotable via mem2reg.
1799  VectorType *VecTy;
1800  Type *ElementTy;
1801  uint64_t ElementSize;
1802
1803  // This is a convenience and flag variable that will be null unless the new
1804  // alloca has a promotion-targeted integer type due to passing
1805  // isIntegerPromotionViable above. If it is non-null does, the desired
1806  // integer type will be stored here for easy access during rewriting.
1807  IntegerType *IntPromotionTy;
1808
1809  // The offset of the partition user currently being rewritten.
1810  uint64_t BeginOffset, EndOffset;
1811  Instruction *OldPtr;
1812
1813  // The name prefix to use when rewriting instructions for this alloca.
1814  std::string NamePrefix;
1815
1816public:
1817  AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P,
1818                          AllocaPartitioning::iterator PI,
1819                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
1820                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
1821    : TD(TD), P(P), Pass(Pass),
1822      OldAI(OldAI), NewAI(NewAI),
1823      NewAllocaBeginOffset(NewBeginOffset),
1824      NewAllocaEndOffset(NewEndOffset),
1825      VecTy(), ElementTy(), ElementSize(), IntPromotionTy(),
1826      BeginOffset(), EndOffset() {
1827  }
1828
1829  /// \brief Visit the users of the alloca partition and rewrite them.
1830  bool visitUsers(AllocaPartitioning::const_use_iterator I,
1831                  AllocaPartitioning::const_use_iterator E) {
1832    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
1833                                NewAllocaBeginOffset, NewAllocaEndOffset,
1834                                I, E)) {
1835      ++NumVectorized;
1836      VecTy = cast<VectorType>(NewAI.getAllocatedType());
1837      ElementTy = VecTy->getElementType();
1838      assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
1839             "Only multiple-of-8 sized vector elements are viable");
1840      ElementSize = VecTy->getScalarSizeInBits() / 8;
1841    } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(),
1842                                        P, I, E)) {
1843      IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType());
1844    }
1845    bool CanSROA = true;
1846    for (; I != E; ++I) {
1847      BeginOffset = I->BeginOffset;
1848      EndOffset = I->EndOffset;
1849      OldPtr = I->Ptr;
1850      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
1851      CanSROA &= visit(I->User);
1852    }
1853    if (VecTy) {
1854      assert(CanSROA);
1855      VecTy = 0;
1856      ElementTy = 0;
1857      ElementSize = 0;
1858    }
1859    return CanSROA;
1860  }
1861
1862private:
1863  // Every instruction which can end up as a user must have a rewrite rule.
1864  bool visitInstruction(Instruction &I) {
1865    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
1866    llvm_unreachable("No rewrite rule for this instruction!");
1867  }
1868
1869  Twine getName(const Twine &Suffix) {
1870    return NamePrefix + Suffix;
1871  }
1872
1873  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
1874    assert(BeginOffset >= NewAllocaBeginOffset);
1875    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
1876    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
1877  }
1878
1879  ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
1880    assert(VecTy && "Can only call getIndex when rewriting a vector");
1881    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1882    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
1883    uint32_t Index = RelOffset / ElementSize;
1884    assert(Index * ElementSize == RelOffset);
1885    return IRB.getInt32(Index);
1886  }
1887
1888  Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
1889                        uint64_t Offset) {
1890    assert(IntPromotionTy && "Alloca is not an integer we can extract from");
1891    Value *V = IRB.CreateLoad(&NewAI, getName(".load"));
1892    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
1893    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1894    if (RelOffset)
1895      V = IRB.CreateLShr(V, RelOffset*8, getName(".shift"));
1896    if (TargetTy != IntPromotionTy) {
1897      assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() &&
1898             "Cannot extract to a larger integer!");
1899      V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
1900    }
1901    return V;
1902  }
1903
1904  StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
1905    IntegerType *Ty = cast<IntegerType>(V->getType());
1906    if (Ty == IntPromotionTy)
1907      return IRB.CreateStore(V, &NewAI);
1908
1909    assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() &&
1910           "Cannot insert a larger integer!");
1911    V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext"));
1912    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
1913    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1914    if (RelOffset)
1915      V = IRB.CreateShl(V, RelOffset*8, getName(".shift"));
1916
1917    APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth())
1918                               .shl(RelOffset*8);
1919    Value *Old = IRB.CreateAnd(IRB.CreateLoad(&NewAI, getName(".oldload")),
1920                               Mask, getName(".mask"));
1921    return IRB.CreateStore(IRB.CreateOr(Old, V, getName(".insert")),
1922                           &NewAI);
1923  }
1924
1925  void deleteIfTriviallyDead(Value *V) {
1926    Instruction *I = cast<Instruction>(V);
1927    if (isInstructionTriviallyDead(I))
1928      Pass.DeadInsts.push_back(I);
1929  }
1930
1931  Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
1932    if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1933      return IRB.CreateIntToPtr(V, Ty);
1934    if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1935      return IRB.CreatePtrToInt(V, Ty);
1936
1937    return IRB.CreateBitCast(V, Ty);
1938  }
1939
1940  bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
1941    Value *Result;
1942    if (LI.getType() == VecTy->getElementType() ||
1943        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
1944      Result
1945        = IRB.CreateExtractElement(IRB.CreateLoad(&NewAI, getName(".load")),
1946                                   getIndex(IRB, BeginOffset),
1947                                   getName(".extract"));
1948    } else {
1949      Result = IRB.CreateLoad(&NewAI, getName(".load"));
1950    }
1951    if (Result->getType() != LI.getType())
1952      Result = getValueCast(IRB, Result, LI.getType());
1953    LI.replaceAllUsesWith(Result);
1954    Pass.DeadInsts.push_back(&LI);
1955
1956    DEBUG(dbgs() << "          to: " << *Result << "\n");
1957    return true;
1958  }
1959
1960  bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
1961    assert(!LI.isVolatile());
1962    Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
1963                                   BeginOffset);
1964    LI.replaceAllUsesWith(Result);
1965    Pass.DeadInsts.push_back(&LI);
1966    DEBUG(dbgs() << "          to: " << *Result << "\n");
1967    return true;
1968  }
1969
1970  bool visitLoadInst(LoadInst &LI) {
1971    DEBUG(dbgs() << "    original: " << LI << "\n");
1972    Value *OldOp = LI.getOperand(0);
1973    assert(OldOp == OldPtr);
1974    IRBuilder<> IRB(&LI);
1975
1976    if (VecTy)
1977      return rewriteVectorizedLoadInst(IRB, LI, OldOp);
1978    if (IntPromotionTy)
1979      return rewriteIntegerLoad(IRB, LI);
1980
1981    Value *NewPtr = getAdjustedAllocaPtr(IRB,
1982                                         LI.getPointerOperand()->getType());
1983    LI.setOperand(0, NewPtr);
1984    DEBUG(dbgs() << "          to: " << LI << "\n");
1985
1986    deleteIfTriviallyDead(OldOp);
1987    return NewPtr == &NewAI && !LI.isVolatile();
1988  }
1989
1990  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
1991                                  Value *OldOp) {
1992    Value *V = SI.getValueOperand();
1993    if (V->getType() == ElementTy ||
1994        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
1995      if (V->getType() != ElementTy)
1996        V = getValueCast(IRB, V, ElementTy);
1997      V = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V,
1998                                  getIndex(IRB, BeginOffset),
1999                                  getName(".insert"));
2000    } else if (V->getType() != VecTy) {
2001      V = getValueCast(IRB, V, VecTy);
2002    }
2003    StoreInst *Store = IRB.CreateStore(V, &NewAI);
2004    Pass.DeadInsts.push_back(&SI);
2005
2006    (void)Store;
2007    DEBUG(dbgs() << "          to: " << *Store << "\n");
2008    return true;
2009  }
2010
2011  bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2012    assert(!SI.isVolatile());
2013    StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2014    Pass.DeadInsts.push_back(&SI);
2015    (void)Store;
2016    DEBUG(dbgs() << "          to: " << *Store << "\n");
2017    return true;
2018  }
2019
2020  bool visitStoreInst(StoreInst &SI) {
2021    DEBUG(dbgs() << "    original: " << SI << "\n");
2022    Value *OldOp = SI.getOperand(1);
2023    assert(OldOp == OldPtr);
2024    IRBuilder<> IRB(&SI);
2025
2026    if (VecTy)
2027      return rewriteVectorizedStoreInst(IRB, SI, OldOp);
2028    if (IntPromotionTy)
2029      return rewriteIntegerStore(IRB, SI);
2030
2031    Value *NewPtr = getAdjustedAllocaPtr(IRB,
2032                                         SI.getPointerOperand()->getType());
2033    SI.setOperand(1, NewPtr);
2034    DEBUG(dbgs() << "          to: " << SI << "\n");
2035
2036    deleteIfTriviallyDead(OldOp);
2037    return NewPtr == &NewAI && !SI.isVolatile();
2038  }
2039
2040  bool visitMemSetInst(MemSetInst &II) {
2041    DEBUG(dbgs() << "    original: " << II << "\n");
2042    IRBuilder<> IRB(&II);
2043    assert(II.getRawDest() == OldPtr);
2044
2045    // If the memset has a variable size, it cannot be split, just adjust the
2046    // pointer to the new alloca.
2047    if (!isa<Constant>(II.getLength())) {
2048      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2049      deleteIfTriviallyDead(OldPtr);
2050      return false;
2051    }
2052
2053    // Record this instruction for deletion.
2054    if (Pass.DeadSplitInsts.insert(&II))
2055      Pass.DeadInsts.push_back(&II);
2056
2057    Type *AllocaTy = NewAI.getAllocatedType();
2058    Type *ScalarTy = AllocaTy->getScalarType();
2059
2060    // If this doesn't map cleanly onto the alloca type, and that type isn't
2061    // a single value type, just emit a memset.
2062    if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
2063                   EndOffset != NewAllocaEndOffset ||
2064                   !AllocaTy->isSingleValueType() ||
2065                   !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2066      Type *SizeTy = II.getLength()->getType();
2067      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2068
2069      CallInst *New
2070        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2071                                                II.getRawDest()->getType()),
2072                           II.getValue(), Size, II.getAlignment(),
2073                           II.isVolatile());
2074      (void)New;
2075      DEBUG(dbgs() << "          to: " << *New << "\n");
2076      return false;
2077    }
2078
2079    // If we can represent this as a simple value, we have to build the actual
2080    // value to store, which requires expanding the byte present in memset to
2081    // a sensible representation for the alloca type. This is essentially
2082    // splatting the byte to a sufficiently wide integer, bitcasting to the
2083    // desired scalar type, and splatting it across any desired vector type.
2084    Value *V = II.getValue();
2085    IntegerType *VTy = cast<IntegerType>(V->getType());
2086    Type *IntTy = Type::getIntNTy(VTy->getContext(),
2087                                  TD.getTypeSizeInBits(ScalarTy));
2088    if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
2089      V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
2090                        ConstantExpr::getUDiv(
2091                          Constant::getAllOnesValue(IntTy),
2092                          ConstantExpr::getZExt(
2093                            Constant::getAllOnesValue(V->getType()),
2094                            IntTy)),
2095                        getName(".isplat"));
2096    if (V->getType() != ScalarTy) {
2097      if (ScalarTy->isPointerTy())
2098        V = IRB.CreateIntToPtr(V, ScalarTy);
2099      else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
2100        V = IRB.CreateBitCast(V, ScalarTy);
2101      else if (ScalarTy->isIntegerTy())
2102        llvm_unreachable("Computed different integer types with equal widths");
2103      else
2104        llvm_unreachable("Invalid scalar type");
2105    }
2106
2107    // If this is an element-wide memset of a vectorizable alloca, insert it.
2108    if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2109                  EndOffset < NewAllocaEndOffset)) {
2110      StoreInst *Store = IRB.CreateStore(
2111        IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V,
2112                                getIndex(IRB, BeginOffset),
2113                                getName(".insert")),
2114        &NewAI);
2115      (void)Store;
2116      DEBUG(dbgs() << "          to: " << *Store << "\n");
2117      return true;
2118    }
2119
2120    // Splat to a vector if needed.
2121    if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
2122      VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
2123      V = IRB.CreateShuffleVector(
2124        IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
2125                                IRB.getInt32(0), getName(".vsplat.insert")),
2126        UndefValue::get(SplatSourceTy),
2127        ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
2128        getName(".vsplat.shuffle"));
2129      assert(V->getType() == VecTy);
2130    }
2131
2132    Value *New = IRB.CreateStore(V, &NewAI, II.isVolatile());
2133    (void)New;
2134    DEBUG(dbgs() << "          to: " << *New << "\n");
2135    return !II.isVolatile();
2136  }
2137
2138  bool visitMemTransferInst(MemTransferInst &II) {
2139    // Rewriting of memory transfer instructions can be a bit tricky. We break
2140    // them into two categories: split intrinsics and unsplit intrinsics.
2141
2142    DEBUG(dbgs() << "    original: " << II << "\n");
2143    IRBuilder<> IRB(&II);
2144
2145    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2146    bool IsDest = II.getRawDest() == OldPtr;
2147
2148    const AllocaPartitioning::MemTransferOffsets &MTO
2149      = P.getMemTransferOffsets(II);
2150
2151    // For unsplit intrinsics, we simply modify the source and destination
2152    // pointers in place. This isn't just an optimization, it is a matter of
2153    // correctness. With unsplit intrinsics we may be dealing with transfers
2154    // within a single alloca before SROA ran, or with transfers that have
2155    // a variable length. We may also be dealing with memmove instead of
2156    // memcpy, and so simply updating the pointers is the necessary for us to
2157    // update both source and dest of a single call.
2158    if (!MTO.IsSplittable) {
2159      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2160      if (IsDest)
2161        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2162      else
2163        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2164
2165      DEBUG(dbgs() << "          to: " << II << "\n");
2166      deleteIfTriviallyDead(OldOp);
2167      return false;
2168    }
2169    // For split transfer intrinsics we have an incredibly useful assurance:
2170    // the source and destination do not reside within the same alloca, and at
2171    // least one of them does not escape. This means that we can replace
2172    // memmove with memcpy, and we don't need to worry about all manner of
2173    // downsides to splitting and transforming the operations.
2174
2175    // Compute the relative offset within the transfer.
2176    unsigned IntPtrWidth = TD.getPointerSizeInBits();
2177    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2178                                                       : MTO.SourceBegin));
2179
2180    // If this doesn't map cleanly onto the alloca type, and that type isn't
2181    // a single value type, just emit a memcpy.
2182    bool EmitMemCpy
2183      = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
2184                   EndOffset != NewAllocaEndOffset ||
2185                   !NewAI.getAllocatedType()->isSingleValueType());
2186
2187    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2188    // size hasn't been shrunk based on analysis of the viable range, this is
2189    // a no-op.
2190    if (EmitMemCpy && &OldAI == &NewAI) {
2191      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2192      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2193      // Ensure the start lines up.
2194      assert(BeginOffset == OrigBegin);
2195      (void)OrigBegin;
2196
2197      // Rewrite the size as needed.
2198      if (EndOffset != OrigEnd)
2199        II.setLength(ConstantInt::get(II.getLength()->getType(),
2200                                      EndOffset - BeginOffset));
2201      return false;
2202    }
2203    // Record this instruction for deletion.
2204    if (Pass.DeadSplitInsts.insert(&II))
2205      Pass.DeadInsts.push_back(&II);
2206
2207    bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
2208                                     EndOffset < NewAllocaEndOffset);
2209
2210    Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2211                              : II.getRawDest()->getType();
2212    if (!EmitMemCpy)
2213      OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
2214                                   : NewAI.getType();
2215
2216    // Compute the other pointer, folding as much as possible to produce
2217    // a single, simple GEP in most cases.
2218    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2219    OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2220                              getName("." + OtherPtr->getName()));
2221
2222    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2223    // alloca that should be re-examined after rewriting this instruction.
2224    if (AllocaInst *AI
2225          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2226      Pass.Worklist.insert(AI);
2227
2228    if (EmitMemCpy) {
2229      Value *OurPtr
2230        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2231                                           : II.getRawSource()->getType());
2232      Type *SizeTy = II.getLength()->getType();
2233      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2234
2235      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2236                                       IsDest ? OtherPtr : OurPtr,
2237                                       Size, II.getAlignment(),
2238                                       II.isVolatile());
2239      (void)New;
2240      DEBUG(dbgs() << "          to: " << *New << "\n");
2241      return false;
2242    }
2243
2244    Value *SrcPtr = OtherPtr;
2245    Value *DstPtr = &NewAI;
2246    if (!IsDest)
2247      std::swap(SrcPtr, DstPtr);
2248
2249    Value *Src;
2250    if (IsVectorElement && !IsDest) {
2251      // We have to extract rather than load.
2252      Src = IRB.CreateExtractElement(IRB.CreateLoad(SrcPtr,
2253                                                    getName(".copyload")),
2254                                     getIndex(IRB, BeginOffset),
2255                                     getName(".copyextract"));
2256    } else {
2257      Src = IRB.CreateLoad(SrcPtr, II.isVolatile(), getName(".copyload"));
2258    }
2259
2260    if (IsVectorElement && IsDest) {
2261      // We have to insert into a loaded copy before storing.
2262      Src = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")),
2263                                    Src, getIndex(IRB, BeginOffset),
2264                                    getName(".insert"));
2265    }
2266
2267    Value *Store = IRB.CreateStore(Src, DstPtr, II.isVolatile());
2268    (void)Store;
2269    DEBUG(dbgs() << "          to: " << *Store << "\n");
2270    return !II.isVolatile();
2271  }
2272
2273  bool visitIntrinsicInst(IntrinsicInst &II) {
2274    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2275           II.getIntrinsicID() == Intrinsic::lifetime_end);
2276    DEBUG(dbgs() << "    original: " << II << "\n");
2277    IRBuilder<> IRB(&II);
2278    assert(II.getArgOperand(1) == OldPtr);
2279
2280    // Record this instruction for deletion.
2281    if (Pass.DeadSplitInsts.insert(&II))
2282      Pass.DeadInsts.push_back(&II);
2283
2284    ConstantInt *Size
2285      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2286                         EndOffset - BeginOffset);
2287    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2288    Value *New;
2289    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2290      New = IRB.CreateLifetimeStart(Ptr, Size);
2291    else
2292      New = IRB.CreateLifetimeEnd(Ptr, Size);
2293
2294    DEBUG(dbgs() << "          to: " << *New << "\n");
2295    return true;
2296  }
2297
2298  /// PHI instructions that use an alloca and are subsequently loaded can be
2299  /// rewritten to load both input pointers in the pred blocks and then PHI the
2300  /// results, allowing the load of the alloca to be promoted.
2301  /// From this:
2302  ///   %P2 = phi [i32* %Alloca, i32* %Other]
2303  ///   %V = load i32* %P2
2304  /// to:
2305  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
2306  ///   ...
2307  ///   %V2 = load i32* %Other
2308  ///   ...
2309  ///   %V = phi [i32 %V1, i32 %V2]
2310  ///
2311  /// We can do this to a select if its only uses are loads and if the operand
2312  /// to the select can be loaded unconditionally.
2313  ///
2314  /// FIXME: This should be hoisted into a generic utility, likely in
2315  /// Transforms/Util/Local.h
2316  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
2317    // For now, we can only do this promotion if the load is in the same block
2318    // as the PHI, and if there are no stores between the phi and load.
2319    // TODO: Allow recursive phi users.
2320    // TODO: Allow stores.
2321    BasicBlock *BB = PN.getParent();
2322    unsigned MaxAlign = 0;
2323    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
2324         UI != UE; ++UI) {
2325      LoadInst *LI = dyn_cast<LoadInst>(*UI);
2326      if (LI == 0 || !LI->isSimple()) return false;
2327
2328      // For now we only allow loads in the same block as the PHI.  This is
2329      // a common case that happens when instcombine merges two loads through
2330      // a PHI.
2331      if (LI->getParent() != BB) return false;
2332
2333      // Ensure that there are no instructions between the PHI and the load that
2334      // could store.
2335      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
2336        if (BBI->mayWriteToMemory())
2337          return false;
2338
2339      MaxAlign = std::max(MaxAlign, LI->getAlignment());
2340      Loads.push_back(LI);
2341    }
2342
2343    // We can only transform this if it is safe to push the loads into the
2344    // predecessor blocks. The only thing to watch out for is that we can't put
2345    // a possibly trapping load in the predecessor if it is a critical edge.
2346    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
2347         ++Idx) {
2348      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
2349      Value *InVal = PN.getIncomingValue(Idx);
2350
2351      // If the value is produced by the terminator of the predecessor (an
2352      // invoke) or it has side-effects, there is no valid place to put a load
2353      // in the predecessor.
2354      if (TI == InVal || TI->mayHaveSideEffects())
2355        return false;
2356
2357      // If the predecessor has a single successor, then the edge isn't
2358      // critical.
2359      if (TI->getNumSuccessors() == 1)
2360        continue;
2361
2362      // If this pointer is always safe to load, or if we can prove that there
2363      // is already a load in the block, then we can move the load to the pred
2364      // block.
2365      if (InVal->isDereferenceablePointer() ||
2366          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
2367        continue;
2368
2369      return false;
2370    }
2371
2372    return true;
2373  }
2374
2375  bool visitPHINode(PHINode &PN) {
2376    DEBUG(dbgs() << "    original: " << PN << "\n");
2377    // We would like to compute a new pointer in only one place, but have it be
2378    // as local as possible to the PHI. To do that, we re-use the location of
2379    // the old pointer, which necessarily must be in the right position to
2380    // dominate the PHI.
2381    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2382
2383    SmallVector<LoadInst *, 4> Loads;
2384    if (!isSafePHIToSpeculate(PN, Loads)) {
2385      Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2386      // Replace the operands which were using the old pointer.
2387      User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2388      for (; OI != OE; ++OI)
2389        if (*OI == OldPtr)
2390          *OI = NewPtr;
2391
2392      DEBUG(dbgs() << "          to: " << PN << "\n");
2393      deleteIfTriviallyDead(OldPtr);
2394      return false;
2395    }
2396    assert(!Loads.empty());
2397
2398    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
2399    IRBuilder<> PHIBuilder(&PN);
2400    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues());
2401    NewPN->takeName(&PN);
2402
2403    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
2404    // matter which one we get and if any differ, it doesn't matter.
2405    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
2406    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
2407    unsigned Align = SomeLoad->getAlignment();
2408    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2409
2410    // Rewrite all loads of the PN to use the new PHI.
2411    do {
2412      LoadInst *LI = Loads.pop_back_val();
2413      LI->replaceAllUsesWith(NewPN);
2414      Pass.DeadInsts.push_back(LI);
2415    } while (!Loads.empty());
2416
2417    // Inject loads into all of the pred blocks.
2418    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
2419      BasicBlock *Pred = PN.getIncomingBlock(Idx);
2420      TerminatorInst *TI = Pred->getTerminator();
2421      Value *InVal = PN.getIncomingValue(Idx);
2422      IRBuilder<> PredBuilder(TI);
2423
2424      // Map the value to the new alloca pointer if this was the old alloca
2425      // pointer.
2426      bool ThisOperand = InVal == OldPtr;
2427      if (ThisOperand)
2428        InVal = NewPtr;
2429
2430      LoadInst *Load
2431        = PredBuilder.CreateLoad(InVal, getName(".sroa.speculate." +
2432                                                Pred->getName()));
2433      ++NumLoadsSpeculated;
2434      Load->setAlignment(Align);
2435      if (TBAATag)
2436        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
2437      NewPN->addIncoming(Load, Pred);
2438
2439      if (ThisOperand)
2440        continue;
2441      Instruction *OtherPtr = dyn_cast<Instruction>(InVal);
2442      if (!OtherPtr)
2443        // No uses to rewrite.
2444        continue;
2445
2446      // Try to lookup and rewrite any partition uses corresponding to this phi
2447      // input.
2448      AllocaPartitioning::iterator PI
2449        = P.findPartitionForPHIOrSelectOperand(PN, OtherPtr);
2450      if (PI != P.end()) {
2451        // If the other pointer is within the partitioning, replace the PHI in
2452        // its uses with the load we just speculated, or add another load for
2453        // it to rewrite if we've already replaced the PHI.
2454        AllocaPartitioning::use_iterator UI
2455          = P.findPartitionUseForPHIOrSelectOperand(PN, OtherPtr);
2456        if (isa<PHINode>(*UI->User))
2457          UI->User = Load;
2458        else {
2459          AllocaPartitioning::PartitionUse OtherUse = *UI;
2460          OtherUse.User = Load;
2461          P.use_push_back(PI, OtherUse);
2462        }
2463      }
2464    }
2465    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
2466    return NewPtr == &NewAI;
2467  }
2468
2469  /// Select instructions that use an alloca and are subsequently loaded can be
2470  /// rewritten to load both input pointers and then select between the result,
2471  /// allowing the load of the alloca to be promoted.
2472  /// From this:
2473  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
2474  ///   %V = load i32* %P2
2475  /// to:
2476  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
2477  ///   %V2 = load i32* %Other
2478  ///   %V = select i1 %cond, i32 %V1, i32 %V2
2479  ///
2480  /// We can do this to a select if its only uses are loads and if the operand
2481  /// to the select can be loaded unconditionally.
2482  bool isSafeSelectToSpeculate(SelectInst &SI,
2483                               SmallVectorImpl<LoadInst *> &Loads) {
2484    Value *TValue = SI.getTrueValue();
2485    Value *FValue = SI.getFalseValue();
2486    bool TDerefable = TValue->isDereferenceablePointer();
2487    bool FDerefable = FValue->isDereferenceablePointer();
2488
2489    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
2490         UI != UE; ++UI) {
2491      LoadInst *LI = dyn_cast<LoadInst>(*UI);
2492      if (LI == 0 || !LI->isSimple()) return false;
2493
2494      // Both operands to the select need to be dereferencable, either
2495      // absolutely (e.g. allocas) or at this point because we can see other
2496      // accesses to it.
2497      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
2498                                                      LI->getAlignment(), &TD))
2499        return false;
2500      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
2501                                                      LI->getAlignment(), &TD))
2502        return false;
2503      Loads.push_back(LI);
2504    }
2505
2506    return true;
2507  }
2508
2509  bool visitSelectInst(SelectInst &SI) {
2510    DEBUG(dbgs() << "    original: " << SI << "\n");
2511    IRBuilder<> IRB(&SI);
2512
2513    // Find the operand we need to rewrite here.
2514    bool IsTrueVal = SI.getTrueValue() == OldPtr;
2515    if (IsTrueVal)
2516      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2517    else
2518      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
2519    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
2520
2521    // If the select isn't safe to speculate, just use simple logic to emit it.
2522    SmallVector<LoadInst *, 4> Loads;
2523    if (!isSafeSelectToSpeculate(SI, Loads)) {
2524      SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2525      DEBUG(dbgs() << "          to: " << SI << "\n");
2526      deleteIfTriviallyDead(OldPtr);
2527      return false;
2528    }
2529
2530    Value *OtherPtr = IsTrueVal ? SI.getFalseValue() : SI.getTrueValue();
2531    AllocaPartitioning::iterator PI
2532      = P.findPartitionForPHIOrSelectOperand(SI, OtherPtr);
2533    AllocaPartitioning::PartitionUse OtherUse;
2534    if (PI != P.end()) {
2535      // If the other pointer is within the partitioning, remove the select
2536      // from its uses. We'll add in the new loads below.
2537      AllocaPartitioning::use_iterator UI
2538        = P.findPartitionUseForPHIOrSelectOperand(SI, OtherPtr);
2539      OtherUse = *UI;
2540      P.use_erase(PI, UI);
2541    }
2542
2543    Value *TV = IsTrueVal ? NewPtr : SI.getTrueValue();
2544    Value *FV = IsTrueVal ? SI.getFalseValue() : NewPtr;
2545    // Replace the loads of the select with a select of two loads.
2546    while (!Loads.empty()) {
2547      LoadInst *LI = Loads.pop_back_val();
2548
2549      IRB.SetInsertPoint(LI);
2550      LoadInst *TL =
2551        IRB.CreateLoad(TV, getName("." + LI->getName() + ".true"));
2552      LoadInst *FL =
2553        IRB.CreateLoad(FV, getName("." + LI->getName() + ".false"));
2554      NumLoadsSpeculated += 2;
2555      if (PI != P.end()) {
2556        LoadInst *OtherLoad = IsTrueVal ? FL : TL;
2557        assert(OtherUse.Ptr == OtherLoad->getOperand(0));
2558        OtherUse.User = OtherLoad;
2559        P.use_push_back(PI, OtherUse);
2560      }
2561
2562      // Transfer alignment and TBAA info if present.
2563      TL->setAlignment(LI->getAlignment());
2564      FL->setAlignment(LI->getAlignment());
2565      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
2566        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
2567        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
2568      }
2569
2570      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL);
2571      V->takeName(LI);
2572      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
2573      LI->replaceAllUsesWith(V);
2574      Pass.DeadInsts.push_back(LI);
2575    }
2576
2577    deleteIfTriviallyDead(OldPtr);
2578    return NewPtr == &NewAI;
2579  }
2580
2581};
2582}
2583
2584namespace {
2585/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2586///
2587/// This pass aggressively rewrites all aggregate loads and stores on
2588/// a particular pointer (or any pointer derived from it which we can identify)
2589/// with scalar loads and stores.
2590class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2591  // Befriend the base class so it can delegate to private visit methods.
2592  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2593
2594  const TargetData &TD;
2595
2596  /// Queue of pointer uses to analyze and potentially rewrite.
2597  SmallVector<Use *, 8> Queue;
2598
2599  /// Set to prevent us from cycling with phi nodes and loops.
2600  SmallPtrSet<User *, 8> Visited;
2601
2602  /// The current pointer use being rewritten. This is used to dig up the used
2603  /// value (as opposed to the user).
2604  Use *U;
2605
2606public:
2607  AggLoadStoreRewriter(const TargetData &TD) : TD(TD) {}
2608
2609  /// Rewrite loads and stores through a pointer and all pointers derived from
2610  /// it.
2611  bool rewrite(Instruction &I) {
2612    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2613    enqueueUsers(I);
2614    bool Changed = false;
2615    while (!Queue.empty()) {
2616      U = Queue.pop_back_val();
2617      Changed |= visit(cast<Instruction>(U->getUser()));
2618    }
2619    return Changed;
2620  }
2621
2622private:
2623  /// Enqueue all the users of the given instruction for further processing.
2624  /// This uses a set to de-duplicate users.
2625  void enqueueUsers(Instruction &I) {
2626    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2627         ++UI)
2628      if (Visited.insert(*UI))
2629        Queue.push_back(&UI.getUse());
2630  }
2631
2632  // Conservative default is to not rewrite anything.
2633  bool visitInstruction(Instruction &I) { return false; }
2634
2635  /// \brief Generic recursive split emission class.
2636  template <typename Derived>
2637  class OpSplitter {
2638  protected:
2639    /// The builder used to form new instructions.
2640    IRBuilder<> IRB;
2641    /// The indices which to be used with insert- or extractvalue to select the
2642    /// appropriate value within the aggregate.
2643    SmallVector<unsigned, 4> Indices;
2644    /// The indices to a GEP instruction which will move Ptr to the correct slot
2645    /// within the aggregate.
2646    SmallVector<Value *, 4> GEPIndices;
2647    /// The base pointer of the original op, used as a base for GEPing the
2648    /// split operations.
2649    Value *Ptr;
2650
2651    /// Initialize the splitter with an insertion point, Ptr and start with a
2652    /// single zero GEP index.
2653    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2654      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2655
2656  public:
2657    /// \brief Generic recursive split emission routine.
2658    ///
2659    /// This method recursively splits an aggregate op (load or store) into
2660    /// scalar or vector ops. It splits recursively until it hits a single value
2661    /// and emits that single value operation via the template argument.
2662    ///
2663    /// The logic of this routine relies on GEPs and insertvalue and
2664    /// extractvalue all operating with the same fundamental index list, merely
2665    /// formatted differently (GEPs need actual values).
2666    ///
2667    /// \param Ty  The type being split recursively into smaller ops.
2668    /// \param Agg The aggregate value being built up or stored, depending on
2669    /// whether this is splitting a load or a store respectively.
2670    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2671      if (Ty->isSingleValueType())
2672        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2673
2674      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2675        unsigned OldSize = Indices.size();
2676        (void)OldSize;
2677        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2678             ++Idx) {
2679          assert(Indices.size() == OldSize && "Did not return to the old size");
2680          Indices.push_back(Idx);
2681          GEPIndices.push_back(IRB.getInt32(Idx));
2682          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2683          GEPIndices.pop_back();
2684          Indices.pop_back();
2685        }
2686        return;
2687      }
2688
2689      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2690        unsigned OldSize = Indices.size();
2691        (void)OldSize;
2692        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2693             ++Idx) {
2694          assert(Indices.size() == OldSize && "Did not return to the old size");
2695          Indices.push_back(Idx);
2696          GEPIndices.push_back(IRB.getInt32(Idx));
2697          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2698          GEPIndices.pop_back();
2699          Indices.pop_back();
2700        }
2701        return;
2702      }
2703
2704      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2705    }
2706  };
2707
2708  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2709    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2710      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2711
2712    /// Emit a leaf load of a single value. This is called at the leaves of the
2713    /// recursive emission to actually load values.
2714    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2715      assert(Ty->isSingleValueType());
2716      // Load the single value and insert it using the indices.
2717      Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
2718                                                         Name + ".gep"),
2719                                   Name + ".load");
2720      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2721      DEBUG(dbgs() << "          to: " << *Load << "\n");
2722    }
2723  };
2724
2725  bool visitLoadInst(LoadInst &LI) {
2726    assert(LI.getPointerOperand() == *U);
2727    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2728      return false;
2729
2730    // We have an aggregate being loaded, split it apart.
2731    DEBUG(dbgs() << "    original: " << LI << "\n");
2732    LoadOpSplitter Splitter(&LI, *U);
2733    Value *V = UndefValue::get(LI.getType());
2734    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2735    LI.replaceAllUsesWith(V);
2736    LI.eraseFromParent();
2737    return true;
2738  }
2739
2740  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2741    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2742      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2743
2744    /// Emit a leaf store of a single value. This is called at the leaves of the
2745    /// recursive emission to actually produce stores.
2746    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2747      assert(Ty->isSingleValueType());
2748      // Extract the single value and store it using the indices.
2749      Value *Store = IRB.CreateStore(
2750        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2751        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2752      (void)Store;
2753      DEBUG(dbgs() << "          to: " << *Store << "\n");
2754    }
2755  };
2756
2757  bool visitStoreInst(StoreInst &SI) {
2758    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2759      return false;
2760    Value *V = SI.getValueOperand();
2761    if (V->getType()->isSingleValueType())
2762      return false;
2763
2764    // We have an aggregate being stored, split it apart.
2765    DEBUG(dbgs() << "    original: " << SI << "\n");
2766    StoreOpSplitter Splitter(&SI, *U);
2767    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2768    SI.eraseFromParent();
2769    return true;
2770  }
2771
2772  bool visitBitCastInst(BitCastInst &BC) {
2773    enqueueUsers(BC);
2774    return false;
2775  }
2776
2777  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2778    enqueueUsers(GEPI);
2779    return false;
2780  }
2781
2782  bool visitPHINode(PHINode &PN) {
2783    enqueueUsers(PN);
2784    return false;
2785  }
2786
2787  bool visitSelectInst(SelectInst &SI) {
2788    enqueueUsers(SI);
2789    return false;
2790  }
2791};
2792}
2793
2794/// \brief Try to find a partition of the aggregate type passed in for a given
2795/// offset and size.
2796///
2797/// This recurses through the aggregate type and tries to compute a subtype
2798/// based on the offset and size. When the offset and size span a sub-section
2799/// of an array, it will even compute a new array type for that sub-section,
2800/// and the same for structs.
2801///
2802/// Note that this routine is very strict and tries to find a partition of the
2803/// type which produces the *exact* right offset and size. It is not forgiving
2804/// when the size or offset cause either end of type-based partition to be off.
2805/// Also, this is a best-effort routine. It is reasonable to give up and not
2806/// return a type if necessary.
2807static Type *getTypePartition(const TargetData &TD, Type *Ty,
2808                              uint64_t Offset, uint64_t Size) {
2809  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
2810    return Ty;
2811
2812  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2813    // We can't partition pointers...
2814    if (SeqTy->isPointerTy())
2815      return 0;
2816
2817    Type *ElementTy = SeqTy->getElementType();
2818    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
2819    uint64_t NumSkippedElements = Offset / ElementSize;
2820    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
2821      if (NumSkippedElements >= ArrTy->getNumElements())
2822        return 0;
2823    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
2824      if (NumSkippedElements >= VecTy->getNumElements())
2825        return 0;
2826    Offset -= NumSkippedElements * ElementSize;
2827
2828    // First check if we need to recurse.
2829    if (Offset > 0 || Size < ElementSize) {
2830      // Bail if the partition ends in a different array element.
2831      if ((Offset + Size) > ElementSize)
2832        return 0;
2833      // Recurse through the element type trying to peel off offset bytes.
2834      return getTypePartition(TD, ElementTy, Offset, Size);
2835    }
2836    assert(Offset == 0);
2837
2838    if (Size == ElementSize)
2839      return ElementTy;
2840    assert(Size > ElementSize);
2841    uint64_t NumElements = Size / ElementSize;
2842    if (NumElements * ElementSize != Size)
2843      return 0;
2844    return ArrayType::get(ElementTy, NumElements);
2845  }
2846
2847  StructType *STy = dyn_cast<StructType>(Ty);
2848  if (!STy)
2849    return 0;
2850
2851  const StructLayout *SL = TD.getStructLayout(STy);
2852  if (Offset >= SL->getSizeInBytes())
2853    return 0;
2854  uint64_t EndOffset = Offset + Size;
2855  if (EndOffset > SL->getSizeInBytes())
2856    return 0;
2857
2858  unsigned Index = SL->getElementContainingOffset(Offset);
2859  Offset -= SL->getElementOffset(Index);
2860
2861  Type *ElementTy = STy->getElementType(Index);
2862  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
2863  if (Offset >= ElementSize)
2864    return 0; // The offset points into alignment padding.
2865
2866  // See if any partition must be contained by the element.
2867  if (Offset > 0 || Size < ElementSize) {
2868    if ((Offset + Size) > ElementSize)
2869      return 0;
2870    return getTypePartition(TD, ElementTy, Offset, Size);
2871  }
2872  assert(Offset == 0);
2873
2874  if (Size == ElementSize)
2875    return ElementTy;
2876
2877  StructType::element_iterator EI = STy->element_begin() + Index,
2878                               EE = STy->element_end();
2879  if (EndOffset < SL->getSizeInBytes()) {
2880    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
2881    if (Index == EndIndex)
2882      return 0; // Within a single element and its padding.
2883
2884    // Don't try to form "natural" types if the elements don't line up with the
2885    // expected size.
2886    // FIXME: We could potentially recurse down through the last element in the
2887    // sub-struct to find a natural end point.
2888    if (SL->getElementOffset(EndIndex) != EndOffset)
2889      return 0;
2890
2891    assert(Index < EndIndex);
2892    EE = STy->element_begin() + EndIndex;
2893  }
2894
2895  // Try to build up a sub-structure.
2896  SmallVector<Type *, 4> ElementTys;
2897  do {
2898    ElementTys.push_back(*EI++);
2899  } while (EI != EE);
2900  StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
2901                                      STy->isPacked());
2902  const StructLayout *SubSL = TD.getStructLayout(SubTy);
2903  if (Size != SubSL->getSizeInBytes())
2904    return 0; // The sub-struct doesn't have quite the size needed.
2905
2906  return SubTy;
2907}
2908
2909/// \brief Rewrite an alloca partition's users.
2910///
2911/// This routine drives both of the rewriting goals of the SROA pass. It tries
2912/// to rewrite uses of an alloca partition to be conducive for SSA value
2913/// promotion. If the partition needs a new, more refined alloca, this will
2914/// build that new alloca, preserving as much type information as possible, and
2915/// rewrite the uses of the old alloca to point at the new one and have the
2916/// appropriate new offsets. It also evaluates how successful the rewrite was
2917/// at enabling promotion and if it was successful queues the alloca to be
2918/// promoted.
2919bool SROA::rewriteAllocaPartition(AllocaInst &AI,
2920                                  AllocaPartitioning &P,
2921                                  AllocaPartitioning::iterator PI) {
2922  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
2923  if (P.use_begin(PI) == P.use_end(PI))
2924    return false; // No live uses left of this partition.
2925
2926  // Try to compute a friendly type for this partition of the alloca. This
2927  // won't always succeed, in which case we fall back to a legal integer type
2928  // or an i8 array of an appropriate size.
2929  Type *AllocaTy = 0;
2930  if (Type *PartitionTy = P.getCommonType(PI))
2931    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
2932      AllocaTy = PartitionTy;
2933  if (!AllocaTy)
2934    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
2935                                             PI->BeginOffset, AllocaSize))
2936      AllocaTy = PartitionTy;
2937  if ((!AllocaTy ||
2938       (AllocaTy->isArrayTy() &&
2939        AllocaTy->getArrayElementType()->isIntegerTy())) &&
2940      TD->isLegalInteger(AllocaSize * 8))
2941    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
2942  if (!AllocaTy)
2943    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
2944  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
2945
2946  // Check for the case where we're going to rewrite to a new alloca of the
2947  // exact same type as the original, and with the same access offsets. In that
2948  // case, re-use the existing alloca, but still run through the rewriter to
2949  // performe phi and select speculation.
2950  AllocaInst *NewAI;
2951  if (AllocaTy == AI.getAllocatedType()) {
2952    assert(PI->BeginOffset == 0 &&
2953           "Non-zero begin offset but same alloca type");
2954    assert(PI == P.begin() && "Begin offset is zero on later partition");
2955    NewAI = &AI;
2956  } else {
2957    // FIXME: The alignment here is overly conservative -- we could in many
2958    // cases get away with much weaker alignment constraints.
2959    NewAI = new AllocaInst(AllocaTy, 0, AI.getAlignment(),
2960                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
2961                           &AI);
2962    ++NumNewAllocas;
2963  }
2964
2965  DEBUG(dbgs() << "Rewriting alloca partition "
2966               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
2967               << *NewAI << "\n");
2968
2969  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
2970                                   PI->BeginOffset, PI->EndOffset);
2971  DEBUG(dbgs() << "  rewriting ");
2972  DEBUG(P.print(dbgs(), PI, ""));
2973  if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) {
2974    DEBUG(dbgs() << "  and queuing for promotion\n");
2975    PromotableAllocas.push_back(NewAI);
2976  } else if (NewAI != &AI) {
2977    // If we can't promote the alloca, iterate on it to check for new
2978    // refinements exposed by splitting the current alloca. Don't iterate on an
2979    // alloca which didn't actually change and didn't get promoted.
2980    Worklist.insert(NewAI);
2981  }
2982  return true;
2983}
2984
2985/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
2986bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
2987  bool Changed = false;
2988  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
2989       ++PI)
2990    Changed |= rewriteAllocaPartition(AI, P, PI);
2991
2992  return Changed;
2993}
2994
2995/// \brief Analyze an alloca for SROA.
2996///
2997/// This analyzes the alloca to ensure we can reason about it, builds
2998/// a partitioning of the alloca, and then hands it off to be split and
2999/// rewritten as needed.
3000bool SROA::runOnAlloca(AllocaInst &AI) {
3001  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3002  ++NumAllocasAnalyzed;
3003
3004  // Special case dead allocas, as they're trivial.
3005  if (AI.use_empty()) {
3006    AI.eraseFromParent();
3007    return true;
3008  }
3009
3010  // Skip alloca forms that this analysis can't handle.
3011  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3012      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3013    return false;
3014
3015  // First check if this is a non-aggregate type that we should simply promote.
3016  if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) {
3017    DEBUG(dbgs() << "  Trivially scalar type, queuing for promotion...\n");
3018    PromotableAllocas.push_back(&AI);
3019    return false;
3020  }
3021
3022  bool Changed = false;
3023
3024  // First, split any FCA loads and stores touching this alloca to promote
3025  // better splitting and promotion opportunities.
3026  AggLoadStoreRewriter AggRewriter(*TD);
3027  Changed |= AggRewriter.rewrite(AI);
3028
3029  // Build the partition set using a recursive instruction-visiting builder.
3030  AllocaPartitioning P(*TD, AI);
3031  DEBUG(P.print(dbgs()));
3032  if (P.isEscaped())
3033    return Changed;
3034
3035  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3036  if (P.begin() == P.end())
3037    return Changed;
3038
3039  // Delete all the dead users of this alloca before splitting and rewriting it.
3040  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3041                                              DE = P.dead_user_end();
3042       DI != DE; ++DI) {
3043    Changed = true;
3044    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3045    DeadInsts.push_back(*DI);
3046  }
3047  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3048                                            DE = P.dead_op_end();
3049       DO != DE; ++DO) {
3050    Value *OldV = **DO;
3051    // Clobber the use with an undef value.
3052    **DO = UndefValue::get(OldV->getType());
3053    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3054      if (isInstructionTriviallyDead(OldI)) {
3055        Changed = true;
3056        DeadInsts.push_back(OldI);
3057      }
3058  }
3059
3060  return splitAlloca(AI, P) || Changed;
3061}
3062
3063/// \brief Delete the dead instructions accumulated in this run.
3064///
3065/// Recursively deletes the dead instructions we've accumulated. This is done
3066/// at the very end to maximize locality of the recursive delete and to
3067/// minimize the problems of invalidated instruction pointers as such pointers
3068/// are used heavily in the intermediate stages of the algorithm.
3069///
3070/// We also record the alloca instructions deleted here so that they aren't
3071/// subsequently handed to mem2reg to promote.
3072void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3073  DeadSplitInsts.clear();
3074  while (!DeadInsts.empty()) {
3075    Instruction *I = DeadInsts.pop_back_val();
3076    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3077
3078    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3079      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3080        // Zero out the operand and see if it becomes trivially dead.
3081        *OI = 0;
3082        if (isInstructionTriviallyDead(U))
3083          DeadInsts.push_back(U);
3084      }
3085
3086    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3087      DeletedAllocas.insert(AI);
3088
3089    ++NumDeleted;
3090    I->eraseFromParent();
3091  }
3092}
3093
3094/// \brief Promote the allocas, using the best available technique.
3095///
3096/// This attempts to promote whatever allocas have been identified as viable in
3097/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3098/// If there is a domtree available, we attempt to promote using the full power
3099/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3100/// based on the SSAUpdater utilities. This function returns whether any
3101/// promotion occured.
3102bool SROA::promoteAllocas(Function &F) {
3103  if (PromotableAllocas.empty())
3104    return false;
3105
3106  NumPromoted += PromotableAllocas.size();
3107
3108  if (DT && !ForceSSAUpdater) {
3109    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3110    PromoteMemToReg(PromotableAllocas, *DT);
3111    PromotableAllocas.clear();
3112    return true;
3113  }
3114
3115  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3116  SSAUpdater SSA;
3117  DIBuilder DIB(*F.getParent());
3118  SmallVector<Instruction*, 64> Insts;
3119
3120  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3121    AllocaInst *AI = PromotableAllocas[Idx];
3122    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3123         UI != UE;) {
3124      Instruction *I = cast<Instruction>(*UI++);
3125      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3126      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3127      // leading to them) here. Eventually it should use them to optimize the
3128      // scalar values produced.
3129      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3130        assert(onlyUsedByLifetimeMarkers(I) &&
3131               "Found a bitcast used outside of a lifetime marker.");
3132        while (!I->use_empty())
3133          cast<Instruction>(*I->use_begin())->eraseFromParent();
3134        I->eraseFromParent();
3135        continue;
3136      }
3137      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3138        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3139               II->getIntrinsicID() == Intrinsic::lifetime_end);
3140        II->eraseFromParent();
3141        continue;
3142      }
3143
3144      Insts.push_back(I);
3145    }
3146    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3147    Insts.clear();
3148  }
3149
3150  PromotableAllocas.clear();
3151  return true;
3152}
3153
3154namespace {
3155  /// \brief A predicate to test whether an alloca belongs to a set.
3156  class IsAllocaInSet {
3157    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3158    const SetType &Set;
3159
3160  public:
3161    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3162    bool operator()(AllocaInst *AI) { return Set.count(AI); }
3163  };
3164}
3165
3166bool SROA::runOnFunction(Function &F) {
3167  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3168  C = &F.getContext();
3169  TD = getAnalysisIfAvailable<TargetData>();
3170  if (!TD) {
3171    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3172    return false;
3173  }
3174  DT = getAnalysisIfAvailable<DominatorTree>();
3175
3176  BasicBlock &EntryBB = F.getEntryBlock();
3177  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3178       I != E; ++I)
3179    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3180      Worklist.insert(AI);
3181
3182  bool Changed = false;
3183  // A set of deleted alloca instruction pointers which should be removed from
3184  // the list of promotable allocas.
3185  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3186
3187  while (!Worklist.empty()) {
3188    Changed |= runOnAlloca(*Worklist.pop_back_val());
3189    deleteDeadInstructions(DeletedAllocas);
3190    if (!DeletedAllocas.empty()) {
3191      PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3192                                             PromotableAllocas.end(),
3193                                             IsAllocaInSet(DeletedAllocas)),
3194                              PromotableAllocas.end());
3195      DeletedAllocas.clear();
3196    }
3197  }
3198
3199  Changed |= promoteAllocas(F);
3200
3201  return Changed;
3202}
3203
3204void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3205  if (RequiresDomTree)
3206    AU.addRequired<DominatorTree>();
3207  AU.setPreservesCFG();
3208}
3209