SROA.cpp revision 98281a20503896349bd152e2dfe87435d3a6aada
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/PtrUseVisitor.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Constants.h"
37#include "llvm/DIBuilder.h"
38#include "llvm/DataLayout.h"
39#include "llvm/DebugInfo.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Function.h"
42#include "llvm/IRBuilder.h"
43#include "llvm/InstVisitor.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Module.h"
48#include "llvm/Operator.h"
49#include "llvm/Pass.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/GetElementPtrTypeIterator.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Transforms/Utils/Local.h"
57#include "llvm/Transforms/Utils/PromoteMemToReg.h"
58#include "llvm/Transforms/Utils/SSAUpdater.h"
59using namespace llvm;
60
61STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
62STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
63STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
64STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
65STATISTIC(NumDeleted,         "Number of instructions deleted");
66STATISTIC(NumVectorized,      "Number of vectorized aggregates");
67
68/// Hidden option to force the pass to not use DomTree and mem2reg, instead
69/// forming SSA values through the SSAUpdater infrastructure.
70static cl::opt<bool>
71ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
72
73namespace {
74/// \brief Alloca partitioning representation.
75///
76/// This class represents a partitioning of an alloca into slices, and
77/// information about the nature of uses of each slice of the alloca. The goal
78/// is that this information is sufficient to decide if and how to split the
79/// alloca apart and replace slices with scalars. It is also intended that this
80/// structure can capture the relevant information needed both to decide about
81/// and to enact these transformations.
82class AllocaPartitioning {
83public:
84  /// \brief A common base class for representing a half-open byte range.
85  struct ByteRange {
86    /// \brief The beginning offset of the range.
87    uint64_t BeginOffset;
88
89    /// \brief The ending offset, not included in the range.
90    uint64_t EndOffset;
91
92    ByteRange() : BeginOffset(), EndOffset() {}
93    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
94        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
95
96    /// \brief Support for ordering ranges.
97    ///
98    /// This provides an ordering over ranges such that start offsets are
99    /// always increasing, and within equal start offsets, the end offsets are
100    /// decreasing. Thus the spanning range comes first in a cluster with the
101    /// same start position.
102    bool operator<(const ByteRange &RHS) const {
103      if (BeginOffset < RHS.BeginOffset) return true;
104      if (BeginOffset > RHS.BeginOffset) return false;
105      if (EndOffset > RHS.EndOffset) return true;
106      return false;
107    }
108
109    /// \brief Support comparison with a single offset to allow binary searches.
110    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
111      return LHS.BeginOffset < RHSOffset;
112    }
113
114    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
115                                                const ByteRange &RHS) {
116      return LHSOffset < RHS.BeginOffset;
117    }
118
119    bool operator==(const ByteRange &RHS) const {
120      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
121    }
122    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
123  };
124
125  /// \brief A partition of an alloca.
126  ///
127  /// This structure represents a contiguous partition of the alloca. These are
128  /// formed by examining the uses of the alloca. During formation, they may
129  /// overlap but once an AllocaPartitioning is built, the Partitions within it
130  /// are all disjoint.
131  struct Partition : public ByteRange {
132    /// \brief Whether this partition is splittable into smaller partitions.
133    ///
134    /// We flag partitions as splittable when they are formed entirely due to
135    /// accesses by trivially splittable operations such as memset and memcpy.
136    bool IsSplittable;
137
138    /// \brief Test whether a partition has been marked as dead.
139    bool isDead() const {
140      if (BeginOffset == UINT64_MAX) {
141        assert(EndOffset == UINT64_MAX);
142        return true;
143      }
144      return false;
145    }
146
147    /// \brief Kill a partition.
148    /// This is accomplished by setting both its beginning and end offset to
149    /// the maximum possible value.
150    void kill() {
151      assert(!isDead() && "He's Dead, Jim!");
152      BeginOffset = EndOffset = UINT64_MAX;
153    }
154
155    Partition() : ByteRange(), IsSplittable() {}
156    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
157        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
158  };
159
160  /// \brief A particular use of a partition of the alloca.
161  ///
162  /// This structure is used to associate uses of a partition with it. They
163  /// mark the range of bytes which are referenced by a particular instruction,
164  /// and includes a handle to the user itself and the pointer value in use.
165  /// The bounds of these uses are determined by intersecting the bounds of the
166  /// memory use itself with a particular partition. As a consequence there is
167  /// intentionally overlap between various uses of the same partition.
168  struct PartitionUse : public ByteRange {
169    /// \brief The use in question. Provides access to both user and used value.
170    ///
171    /// Note that this may be null if the partition use is *dead*, that is, it
172    /// should be ignored.
173    Use *U;
174
175    PartitionUse() : ByteRange(), U() {}
176    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
177        : ByteRange(BeginOffset, EndOffset), U(U) {}
178  };
179
180  /// \brief Construct a partitioning of a particular alloca.
181  ///
182  /// Construction does most of the work for partitioning the alloca. This
183  /// performs the necessary walks of users and builds a partitioning from it.
184  AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
185
186  /// \brief Test whether a pointer to the allocation escapes our analysis.
187  ///
188  /// If this is true, the partitioning is never fully built and should be
189  /// ignored.
190  bool isEscaped() const { return PointerEscapingInstr; }
191
192  /// \brief Support for iterating over the partitions.
193  /// @{
194  typedef SmallVectorImpl<Partition>::iterator iterator;
195  iterator begin() { return Partitions.begin(); }
196  iterator end() { return Partitions.end(); }
197
198  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
199  const_iterator begin() const { return Partitions.begin(); }
200  const_iterator end() const { return Partitions.end(); }
201  /// @}
202
203  /// \brief Support for iterating over and manipulating a particular
204  /// partition's uses.
205  ///
206  /// The iteration support provided for uses is more limited, but also
207  /// includes some manipulation routines to support rewriting the uses of
208  /// partitions during SROA.
209  /// @{
210  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
211  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
212  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
213  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
214  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
215
216  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
217  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
218  const_use_iterator use_begin(const_iterator I) const {
219    return Uses[I - begin()].begin();
220  }
221  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
222  const_use_iterator use_end(const_iterator I) const {
223    return Uses[I - begin()].end();
224  }
225
226  unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
227  unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
228  const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
229    return Uses[PIdx][UIdx];
230  }
231  const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
232    return Uses[I - begin()][UIdx];
233  }
234
235  void use_push_back(unsigned Idx, const PartitionUse &PU) {
236    Uses[Idx].push_back(PU);
237  }
238  void use_push_back(const_iterator I, const PartitionUse &PU) {
239    Uses[I - begin()].push_back(PU);
240  }
241  /// @}
242
243  /// \brief Allow iterating the dead users for this alloca.
244  ///
245  /// These are instructions which will never actually use the alloca as they
246  /// are outside the allocated range. They are safe to replace with undef and
247  /// delete.
248  /// @{
249  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
250  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
251  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
252  /// @}
253
254  /// \brief Allow iterating the dead expressions referring to this alloca.
255  ///
256  /// These are operands which have cannot actually be used to refer to the
257  /// alloca as they are outside its range and the user doesn't correct for
258  /// that. These mostly consist of PHI node inputs and the like which we just
259  /// need to replace with undef.
260  /// @{
261  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
262  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
263  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
264  /// @}
265
266  /// \brief MemTransferInst auxiliary data.
267  /// This struct provides some auxiliary data about memory transfer
268  /// intrinsics such as memcpy and memmove. These intrinsics can use two
269  /// different ranges within the same alloca, and provide other challenges to
270  /// correctly represent. We stash extra data to help us untangle this
271  /// after the partitioning is complete.
272  struct MemTransferOffsets {
273    /// The destination begin and end offsets when the destination is within
274    /// this alloca. If the end offset is zero the destination is not within
275    /// this alloca.
276    uint64_t DestBegin, DestEnd;
277
278    /// The source begin and end offsets when the source is within this alloca.
279    /// If the end offset is zero, the source is not within this alloca.
280    uint64_t SourceBegin, SourceEnd;
281
282    /// Flag for whether an alloca is splittable.
283    bool IsSplittable;
284  };
285  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
286    return MemTransferInstData.lookup(&II);
287  }
288
289  /// \brief Map from a PHI or select operand back to a partition.
290  ///
291  /// When manipulating PHI nodes or selects, they can use more than one
292  /// partition of an alloca. We store a special mapping to allow finding the
293  /// partition referenced by each of these operands, if any.
294  iterator findPartitionForPHIOrSelectOperand(Use *U) {
295    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
296      = PHIOrSelectOpMap.find(U);
297    if (MapIt == PHIOrSelectOpMap.end())
298      return end();
299
300    return begin() + MapIt->second.first;
301  }
302
303  /// \brief Map from a PHI or select operand back to the specific use of
304  /// a partition.
305  ///
306  /// Similar to mapping these operands back to the partitions, this maps
307  /// directly to the use structure of that partition.
308  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
309    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
310      = PHIOrSelectOpMap.find(U);
311    assert(MapIt != PHIOrSelectOpMap.end());
312    return Uses[MapIt->second.first].begin() + MapIt->second.second;
313  }
314
315  /// \brief Compute a common type among the uses of a particular partition.
316  ///
317  /// This routines walks all of the uses of a particular partition and tries
318  /// to find a common type between them. Untyped operations such as memset and
319  /// memcpy are ignored.
320  Type *getCommonType(iterator I) const;
321
322#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
323  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
324  void printUsers(raw_ostream &OS, const_iterator I,
325                  StringRef Indent = "  ") const;
326  void print(raw_ostream &OS) const;
327  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
328  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
329#endif
330
331private:
332  template <typename DerivedT, typename RetT = void> class BuilderBase;
333  class PartitionBuilder;
334  friend class AllocaPartitioning::PartitionBuilder;
335  class UseBuilder;
336  friend class AllocaPartitioning::UseBuilder;
337
338#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
339  /// \brief Handle to alloca instruction to simplify method interfaces.
340  AllocaInst &AI;
341#endif
342
343  /// \brief The instruction responsible for this alloca having no partitioning.
344  ///
345  /// When an instruction (potentially) escapes the pointer to the alloca, we
346  /// store a pointer to that here and abort trying to partition the alloca.
347  /// This will be null if the alloca is partitioned successfully.
348  Instruction *PointerEscapingInstr;
349
350  /// \brief The partitions of the alloca.
351  ///
352  /// We store a vector of the partitions over the alloca here. This vector is
353  /// sorted by increasing begin offset, and then by decreasing end offset. See
354  /// the Partition inner class for more details. Initially (during
355  /// construction) there are overlaps, but we form a disjoint sequence of
356  /// partitions while finishing construction and a fully constructed object is
357  /// expected to always have this as a disjoint space.
358  SmallVector<Partition, 8> Partitions;
359
360  /// \brief The uses of the partitions.
361  ///
362  /// This is essentially a mapping from each partition to a list of uses of
363  /// that partition. The mapping is done with a Uses vector that has the exact
364  /// same number of entries as the partition vector. Each entry is itself
365  /// a vector of the uses.
366  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
367
368  /// \brief Instructions which will become dead if we rewrite the alloca.
369  ///
370  /// Note that these are not separated by partition. This is because we expect
371  /// a partitioned alloca to be completely rewritten or not rewritten at all.
372  /// If rewritten, all these instructions can simply be removed and replaced
373  /// with undef as they come from outside of the allocated space.
374  SmallVector<Instruction *, 8> DeadUsers;
375
376  /// \brief Operands which will become dead if we rewrite the alloca.
377  ///
378  /// These are operands that in their particular use can be replaced with
379  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
380  /// to PHI nodes and the like. They aren't entirely dead (there might be
381  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
382  /// want to swap this particular input for undef to simplify the use lists of
383  /// the alloca.
384  SmallVector<Use *, 8> DeadOperands;
385
386  /// \brief The underlying storage for auxiliary memcpy and memset info.
387  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
388
389  /// \brief A side datastructure used when building up the partitions and uses.
390  ///
391  /// This mapping is only really used during the initial building of the
392  /// partitioning so that we can retain information about PHI and select nodes
393  /// processed.
394  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
395
396  /// \brief Auxiliary information for particular PHI or select operands.
397  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
398
399  /// \brief A utility routine called from the constructor.
400  ///
401  /// This does what it says on the tin. It is the key of the alloca partition
402  /// splitting and merging. After it is called we have the desired disjoint
403  /// collection of partitions.
404  void splitAndMergePartitions();
405};
406}
407
408static Value *foldSelectInst(SelectInst &SI) {
409  // If the condition being selected on is a constant or the same value is
410  // being selected between, fold the select. Yes this does (rarely) happen
411  // early on.
412  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
413    return SI.getOperand(1+CI->isZero());
414  if (SI.getOperand(1) == SI.getOperand(2)) {
415    return SI.getOperand(1);
416  }
417  return 0;
418}
419
420/// \brief Builder for the alloca partitioning.
421///
422/// This class builds an alloca partitioning by recursively visiting the uses
423/// of an alloca and splitting the partitions for each load and store at each
424/// offset.
425class AllocaPartitioning::PartitionBuilder
426    : public PtrUseVisitor<PartitionBuilder> {
427  friend class PtrUseVisitor<PartitionBuilder>;
428  friend class InstVisitor<PartitionBuilder>;
429  typedef PtrUseVisitor<PartitionBuilder> Base;
430
431  const uint64_t AllocSize;
432  AllocaPartitioning &P;
433
434  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
435
436public:
437  PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
438      : PtrUseVisitor<PartitionBuilder>(DL),
439        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
440        P(P) {}
441
442private:
443  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
444                 bool IsSplittable = false) {
445    // Completely skip uses which have a zero size or start either before or
446    // past the end of the allocation.
447    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
448      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
449                   << " which has zero size or starts outside of the "
450                   << AllocSize << " byte alloca:\n"
451                   << "    alloca: " << P.AI << "\n"
452                   << "       use: " << I << "\n");
453      return;
454    }
455
456    uint64_t BeginOffset = Offset.getZExtValue();
457    uint64_t EndOffset = BeginOffset + Size;
458
459    // Clamp the end offset to the end of the allocation. Note that this is
460    // formulated to handle even the case where "BeginOffset + Size" overflows.
461    // NOTE! This may appear superficially to be something we could ignore
462    // entirely, but that is not so! There may be PHI-node uses where some
463    // instructions are dead but not others. We can't completely ignore the
464    // PHI node, and so have to record at least the information here.
465    assert(AllocSize >= BeginOffset); // Established above.
466    if (Size > AllocSize - BeginOffset) {
467      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
468                   << " to remain within the " << AllocSize << " byte alloca:\n"
469                   << "    alloca: " << P.AI << "\n"
470                   << "       use: " << I << "\n");
471      EndOffset = AllocSize;
472    }
473
474    Partition New(BeginOffset, EndOffset, IsSplittable);
475    P.Partitions.push_back(New);
476  }
477
478  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
479                         bool IsVolatile) {
480    uint64_t Size = DL.getTypeStoreSize(Ty);
481
482    // If this memory access can be shown to *statically* extend outside the
483    // bounds of of the allocation, it's behavior is undefined, so simply
484    // ignore it. Note that this is more strict than the generic clamping
485    // behavior of insertUse. We also try to handle cases which might run the
486    // risk of overflow.
487    // FIXME: We should instead consider the pointer to have escaped if this
488    // function is being instrumented for addressing bugs or race conditions.
489    if (Offset.isNegative() || Size > AllocSize ||
490        Offset.ugt(AllocSize - Size)) {
491      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
492                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
493                   << " which extends past the end of the " << AllocSize
494                   << " byte alloca:\n"
495                   << "    alloca: " << P.AI << "\n"
496                   << "       use: " << I << "\n");
497      return;
498    }
499
500    // We allow splitting of loads and stores where the type is an integer type
501    // and which cover the entire alloca. Such integer loads and stores
502    // often require decomposition into fine grained loads and stores.
503    bool IsSplittable = false;
504    if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
505      IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
506
507    insertUse(I, Offset, Size, IsSplittable);
508  }
509
510  void visitLoadInst(LoadInst &LI) {
511    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
512           "All simple FCA loads should have been pre-split");
513
514    if (!IsOffsetKnown)
515      return PI.setAborted(&LI);
516
517    return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
518  }
519
520  void visitStoreInst(StoreInst &SI) {
521    Value *ValOp = SI.getValueOperand();
522    if (ValOp == *U)
523      return PI.setEscapedAndAborted(&SI);
524    if (!IsOffsetKnown)
525      return PI.setAborted(&SI);
526
527    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
528           "All simple FCA stores should have been pre-split");
529    handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
530  }
531
532
533  void visitMemSetInst(MemSetInst &II) {
534    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
535    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
536    if ((Length && Length->getValue() == 0) ||
537        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
538      // Zero-length mem transfer intrinsics can be ignored entirely.
539      return;
540
541    if (!IsOffsetKnown)
542      return PI.setAborted(&II);
543
544    insertUse(II, Offset,
545              Length ? Length->getLimitedValue()
546                     : AllocSize - Offset.getLimitedValue(),
547              (bool)Length);
548  }
549
550  void visitMemTransferInst(MemTransferInst &II) {
551    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
552    if ((Length && Length->getValue() == 0) ||
553        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
554      // Zero-length mem transfer intrinsics can be ignored entirely.
555      return;
556
557    if (!IsOffsetKnown)
558      return PI.setAborted(&II);
559
560    uint64_t RawOffset = Offset.getLimitedValue();
561    uint64_t Size = Length ? Length->getLimitedValue()
562                           : AllocSize - RawOffset;
563
564    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
565
566    // Only intrinsics with a constant length can be split.
567    Offsets.IsSplittable = Length;
568
569    if (*U == II.getRawDest()) {
570      Offsets.DestBegin = RawOffset;
571      Offsets.DestEnd = RawOffset + Size;
572    }
573    if (*U == II.getRawSource()) {
574      Offsets.SourceBegin = RawOffset;
575      Offsets.SourceEnd = RawOffset + Size;
576    }
577
578    // If we have set up end offsets for both the source and the destination,
579    // we have found both sides of this transfer pointing at the same alloca.
580    bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
581    if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
582      unsigned PrevIdx = MemTransferPartitionMap[&II];
583
584      // Check if the begin offsets match and this is a non-volatile transfer.
585      // In that case, we can completely elide the transfer.
586      if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
587        P.Partitions[PrevIdx].kill();
588        return;
589      }
590
591      // Otherwise we have an offset transfer within the same alloca. We can't
592      // split those.
593      P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
594    } else if (SeenBothEnds) {
595      // Handle the case where this exact use provides both ends of the
596      // operation.
597      assert(II.getRawDest() == II.getRawSource());
598
599      // For non-volatile transfers this is a no-op.
600      if (!II.isVolatile())
601        return;
602
603      // Otherwise just suppress splitting.
604      Offsets.IsSplittable = false;
605    }
606
607
608    // Insert the use now that we've fixed up the splittable nature.
609    insertUse(II, Offset, Size, Offsets.IsSplittable);
610
611    // Setup the mapping from intrinsic to partition of we've not seen both
612    // ends of this transfer.
613    if (!SeenBothEnds) {
614      unsigned NewIdx = P.Partitions.size() - 1;
615      bool Inserted
616        = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
617      assert(Inserted &&
618             "Already have intrinsic in map but haven't seen both ends");
619      (void)Inserted;
620    }
621  }
622
623  // Disable SRoA for any intrinsics except for lifetime invariants.
624  // FIXME: What about debug instrinsics? This matches old behavior, but
625  // doesn't make sense.
626  void visitIntrinsicInst(IntrinsicInst &II) {
627    if (!IsOffsetKnown)
628      return PI.setAborted(&II);
629
630    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
631        II.getIntrinsicID() == Intrinsic::lifetime_end) {
632      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
633      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
634                               Length->getLimitedValue());
635      insertUse(II, Offset, Size, true);
636      return;
637    }
638
639    Base::visitIntrinsicInst(II);
640  }
641
642  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
643    // We consider any PHI or select that results in a direct load or store of
644    // the same offset to be a viable use for partitioning purposes. These uses
645    // are considered unsplittable and the size is the maximum loaded or stored
646    // size.
647    SmallPtrSet<Instruction *, 4> Visited;
648    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
649    Visited.insert(Root);
650    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
651    // If there are no loads or stores, the access is dead. We mark that as
652    // a size zero access.
653    Size = 0;
654    do {
655      Instruction *I, *UsedI;
656      llvm::tie(UsedI, I) = Uses.pop_back_val();
657
658      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
659        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
660        continue;
661      }
662      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
663        Value *Op = SI->getOperand(0);
664        if (Op == UsedI)
665          return SI;
666        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
667        continue;
668      }
669
670      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
671        if (!GEP->hasAllZeroIndices())
672          return GEP;
673      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
674                 !isa<SelectInst>(I)) {
675        return I;
676      }
677
678      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
679           ++UI)
680        if (Visited.insert(cast<Instruction>(*UI)))
681          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
682    } while (!Uses.empty());
683
684    return 0;
685  }
686
687  void visitPHINode(PHINode &PN) {
688    if (PN.use_empty())
689      return;
690    if (!IsOffsetKnown)
691      return PI.setAborted(&PN);
692
693    // See if we already have computed info on this node.
694    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
695    if (PHIInfo.first) {
696      PHIInfo.second = true;
697      insertUse(PN, Offset, PHIInfo.first);
698      return;
699    }
700
701    // Check for an unsafe use of the PHI node.
702    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
703      return PI.setAborted(UnsafeI);
704
705    insertUse(PN, Offset, PHIInfo.first);
706  }
707
708  void visitSelectInst(SelectInst &SI) {
709    if (SI.use_empty())
710      return;
711    if (Value *Result = foldSelectInst(SI)) {
712      if (Result == *U)
713        // If the result of the constant fold will be the pointer, recurse
714        // through the select as if we had RAUW'ed it.
715        enqueueUsers(SI);
716
717      return;
718    }
719    if (!IsOffsetKnown)
720      return PI.setAborted(&SI);
721
722    // See if we already have computed info on this node.
723    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
724    if (SelectInfo.first) {
725      SelectInfo.second = true;
726      insertUse(SI, Offset, SelectInfo.first);
727      return;
728    }
729
730    // Check for an unsafe use of the PHI node.
731    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
732      return PI.setAborted(UnsafeI);
733
734    insertUse(SI, Offset, SelectInfo.first);
735  }
736
737  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
738  void visitInstruction(Instruction &I) {
739    PI.setAborted(&I);
740  }
741};
742
743/// \brief Use adder for the alloca partitioning.
744///
745/// This class adds the uses of an alloca to all of the partitions which they
746/// use. For splittable partitions, this can end up doing essentially a linear
747/// walk of the partitions, but the number of steps remains bounded by the
748/// total result instruction size:
749/// - The number of partitions is a result of the number unsplittable
750///   instructions using the alloca.
751/// - The number of users of each partition is at worst the total number of
752///   splittable instructions using the alloca.
753/// Thus we will produce N * M instructions in the end, where N are the number
754/// of unsplittable uses and M are the number of splittable. This visitor does
755/// the exact same number of updates to the partitioning.
756///
757/// In the more common case, this visitor will leverage the fact that the
758/// partition space is pre-sorted, and do a logarithmic search for the
759/// partition needed, making the total visit a classical ((N + M) * log(N))
760/// complexity operation.
761class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
762  friend class PtrUseVisitor<UseBuilder>;
763  friend class InstVisitor<UseBuilder>;
764  typedef PtrUseVisitor<UseBuilder> Base;
765
766  const uint64_t AllocSize;
767  AllocaPartitioning &P;
768
769  /// \brief Set to de-duplicate dead instructions found in the use walk.
770  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
771
772public:
773  UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
774      : PtrUseVisitor<UseBuilder>(TD),
775        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
776        P(P) {}
777
778private:
779  void markAsDead(Instruction &I) {
780    if (VisitedDeadInsts.insert(&I))
781      P.DeadUsers.push_back(&I);
782  }
783
784  void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
785    // If the use has a zero size or extends outside of the allocation, record
786    // it as a dead use for elimination later.
787    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
788      return markAsDead(User);
789
790    uint64_t BeginOffset = Offset.getZExtValue();
791    uint64_t EndOffset = BeginOffset + Size;
792
793    // Clamp the end offset to the end of the allocation. Note that this is
794    // formulated to handle even the case where "BeginOffset + Size" overflows.
795    assert(AllocSize >= BeginOffset); // Established above.
796    if (Size > AllocSize - BeginOffset)
797      EndOffset = AllocSize;
798
799    // NB: This only works if we have zero overlapping partitions.
800    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
801    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
802      B = llvm::prior(B);
803    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
804         ++I) {
805      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
806                         std::min(I->EndOffset, EndOffset), U);
807      P.use_push_back(I, NewPU);
808      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
809        P.PHIOrSelectOpMap[U]
810          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
811    }
812  }
813
814  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset) {
815    uint64_t Size = DL.getTypeStoreSize(Ty);
816
817    // If this memory access can be shown to *statically* extend outside the
818    // bounds of of the allocation, it's behavior is undefined, so simply
819    // ignore it. Note that this is more strict than the generic clamping
820    // behavior of insertUse.
821    if (Offset.isNegative() || Size > AllocSize ||
822        Offset.ugt(AllocSize - Size))
823      return markAsDead(I);
824
825    insertUse(I, Offset, Size);
826  }
827
828  void visitBitCastInst(BitCastInst &BC) {
829    if (BC.use_empty())
830      return markAsDead(BC);
831
832    return Base::visitBitCastInst(BC);
833  }
834
835  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
836    if (GEPI.use_empty())
837      return markAsDead(GEPI);
838
839    return Base::visitGetElementPtrInst(GEPI);
840  }
841
842  void visitLoadInst(LoadInst &LI) {
843    assert(IsOffsetKnown);
844    handleLoadOrStore(LI.getType(), LI, Offset);
845  }
846
847  void visitStoreInst(StoreInst &SI) {
848    assert(IsOffsetKnown);
849    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
850  }
851
852  void visitMemSetInst(MemSetInst &II) {
853    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
854    if ((Length && Length->getValue() == 0) ||
855        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
856      return markAsDead(II);
857
858    assert(IsOffsetKnown);
859    insertUse(II, Offset, Length ? Length->getLimitedValue()
860                                 : AllocSize - Offset.getLimitedValue());
861  }
862
863  void visitMemTransferInst(MemTransferInst &II) {
864    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
865    if ((Length && Length->getValue() == 0) ||
866        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
867      return markAsDead(II);
868
869    assert(IsOffsetKnown);
870    uint64_t Size = Length ? Length->getLimitedValue()
871                           : AllocSize - Offset.getLimitedValue();
872
873    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
874    if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
875        Offsets.DestBegin == Offsets.SourceBegin)
876      return markAsDead(II); // Skip identity transfers without side-effects.
877
878    insertUse(II, Offset, Size);
879  }
880
881  void visitIntrinsicInst(IntrinsicInst &II) {
882    assert(IsOffsetKnown);
883    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
884           II.getIntrinsicID() == Intrinsic::lifetime_end);
885
886    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
887    insertUse(II, Offset, std::min(Length->getLimitedValue(),
888                                   AllocSize - Offset.getLimitedValue()));
889  }
890
891  void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
892    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
893
894    // For PHI and select operands outside the alloca, we can't nuke the entire
895    // phi or select -- the other side might still be relevant, so we special
896    // case them here and use a separate structure to track the operands
897    // themselves which should be replaced with undef.
898    if ((Offset.isNegative() && Offset.uge(Size)) ||
899        (!Offset.isNegative() && Offset.uge(AllocSize))) {
900      P.DeadOperands.push_back(U);
901      return;
902    }
903
904    insertUse(User, Offset, Size);
905  }
906
907  void visitPHINode(PHINode &PN) {
908    if (PN.use_empty())
909      return markAsDead(PN);
910
911    assert(IsOffsetKnown);
912    insertPHIOrSelect(PN, Offset);
913  }
914
915  void visitSelectInst(SelectInst &SI) {
916    if (SI.use_empty())
917      return markAsDead(SI);
918
919    if (Value *Result = foldSelectInst(SI)) {
920      if (Result == *U)
921        // If the result of the constant fold will be the pointer, recurse
922        // through the select as if we had RAUW'ed it.
923        enqueueUsers(SI);
924      else
925        // Otherwise the operand to the select is dead, and we can replace it
926        // with undef.
927        P.DeadOperands.push_back(U);
928
929      return;
930    }
931
932    assert(IsOffsetKnown);
933    insertPHIOrSelect(SI, Offset);
934  }
935
936  /// \brief Unreachable, we've already visited the alloca once.
937  void visitInstruction(Instruction &I) {
938    llvm_unreachable("Unhandled instruction in use builder.");
939  }
940};
941
942void AllocaPartitioning::splitAndMergePartitions() {
943  size_t NumDeadPartitions = 0;
944
945  // Track the range of splittable partitions that we pass when accumulating
946  // overlapping unsplittable partitions.
947  uint64_t SplitEndOffset = 0ull;
948
949  Partition New(0ull, 0ull, false);
950
951  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
952    ++j;
953
954    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
955      assert(New.BeginOffset == New.EndOffset);
956      New = Partitions[i];
957    } else {
958      assert(New.IsSplittable);
959      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
960    }
961    assert(New.BeginOffset != New.EndOffset);
962
963    // Scan the overlapping partitions.
964    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
965      // If the new partition we are forming is splittable, stop at the first
966      // unsplittable partition.
967      if (New.IsSplittable && !Partitions[j].IsSplittable)
968        break;
969
970      // Grow the new partition to include any equally splittable range. 'j' is
971      // always equally splittable when New is splittable, but when New is not
972      // splittable, we may subsume some (or part of some) splitable partition
973      // without growing the new one.
974      if (New.IsSplittable == Partitions[j].IsSplittable) {
975        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
976      } else {
977        assert(!New.IsSplittable);
978        assert(Partitions[j].IsSplittable);
979        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
980      }
981
982      Partitions[j].kill();
983      ++NumDeadPartitions;
984      ++j;
985    }
986
987    // If the new partition is splittable, chop off the end as soon as the
988    // unsplittable subsequent partition starts and ensure we eventually cover
989    // the splittable area.
990    if (j != e && New.IsSplittable) {
991      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
992      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
993    }
994
995    // Add the new partition if it differs from the original one and is
996    // non-empty. We can end up with an empty partition here if it was
997    // splittable but there is an unsplittable one that starts at the same
998    // offset.
999    if (New != Partitions[i]) {
1000      if (New.BeginOffset != New.EndOffset)
1001        Partitions.push_back(New);
1002      // Mark the old one for removal.
1003      Partitions[i].kill();
1004      ++NumDeadPartitions;
1005    }
1006
1007    New.BeginOffset = New.EndOffset;
1008    if (!New.IsSplittable) {
1009      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1010      if (j != e && !Partitions[j].IsSplittable)
1011        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1012      New.IsSplittable = true;
1013      // If there is a trailing splittable partition which won't be fused into
1014      // the next splittable partition go ahead and add it onto the partitions
1015      // list.
1016      if (New.BeginOffset < New.EndOffset &&
1017          (j == e || !Partitions[j].IsSplittable ||
1018           New.EndOffset < Partitions[j].BeginOffset)) {
1019        Partitions.push_back(New);
1020        New.BeginOffset = New.EndOffset = 0ull;
1021      }
1022    }
1023  }
1024
1025  // Re-sort the partitions now that they have been split and merged into
1026  // disjoint set of partitions. Also remove any of the dead partitions we've
1027  // replaced in the process.
1028  std::sort(Partitions.begin(), Partitions.end());
1029  if (NumDeadPartitions) {
1030    assert(Partitions.back().isDead());
1031    assert((ptrdiff_t)NumDeadPartitions ==
1032           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1033  }
1034  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1035}
1036
1037AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
1038    :
1039#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1040      AI(AI),
1041#endif
1042      PointerEscapingInstr(0) {
1043  PartitionBuilder PB(TD, AI, *this);
1044  PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1045  if (PtrI.isEscaped() || PtrI.isAborted()) {
1046    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1047    // possibly by just storing the PtrInfo in the AllocaPartitioning.
1048    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1049                                                  : PtrI.getAbortingInst();
1050    assert(PointerEscapingInstr && "Did not track a bad instruction");
1051    return;
1052  }
1053
1054  // Sort the uses. This arranges for the offsets to be in ascending order,
1055  // and the sizes to be in descending order.
1056  std::sort(Partitions.begin(), Partitions.end());
1057
1058  // Remove any partitions from the back which are marked as dead.
1059  while (!Partitions.empty() && Partitions.back().isDead())
1060    Partitions.pop_back();
1061
1062  if (Partitions.size() > 1) {
1063    // Intersect splittability for all partitions with equal offsets and sizes.
1064    // Then remove all but the first so that we have a sequence of non-equal but
1065    // potentially overlapping partitions.
1066    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1067         I = J) {
1068      ++J;
1069      while (J != E && *I == *J) {
1070        I->IsSplittable &= J->IsSplittable;
1071        ++J;
1072      }
1073    }
1074    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1075                     Partitions.end());
1076
1077    // Split splittable and merge unsplittable partitions into a disjoint set
1078    // of partitions over the used space of the allocation.
1079    splitAndMergePartitions();
1080  }
1081
1082  // Now build up the user lists for each of these disjoint partitions by
1083  // re-walking the recursive users of the alloca.
1084  Uses.resize(Partitions.size());
1085  UseBuilder UB(TD, AI, *this);
1086  PtrI = UB.visitPtr(AI);
1087  assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
1088  assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
1089}
1090
1091Type *AllocaPartitioning::getCommonType(iterator I) const {
1092  Type *Ty = 0;
1093  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1094    if (!UI->U)
1095      continue; // Skip dead uses.
1096    if (isa<IntrinsicInst>(*UI->U->getUser()))
1097      continue;
1098    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1099      continue;
1100
1101    Type *UserTy = 0;
1102    if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
1103      UserTy = LI->getType();
1104    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
1105      UserTy = SI->getValueOperand()->getType();
1106    } else {
1107      return 0; // Bail if we have weird uses.
1108    }
1109
1110    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
1111      // If the type is larger than the partition, skip it. We only encounter
1112      // this for split integer operations where we want to use the type of the
1113      // entity causing the split.
1114      if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
1115        continue;
1116
1117      // If we have found an integer type use covering the alloca, use that
1118      // regardless of the other types, as integers are often used for a "bucket
1119      // of bits" type.
1120      return ITy;
1121    }
1122
1123    if (Ty && Ty != UserTy)
1124      return 0;
1125
1126    Ty = UserTy;
1127  }
1128  return Ty;
1129}
1130
1131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1132
1133void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1134                               StringRef Indent) const {
1135  OS << Indent << "partition #" << (I - begin())
1136     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1137     << (I->IsSplittable ? " (splittable)" : "")
1138     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1139     << "\n";
1140}
1141
1142void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1143                                    StringRef Indent) const {
1144  for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1145       UI != UE; ++UI) {
1146    if (!UI->U)
1147      continue; // Skip dead uses.
1148    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1149       << "used by: " << *UI->U->getUser() << "\n";
1150    if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
1151      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1152      bool IsDest;
1153      if (!MTO.IsSplittable)
1154        IsDest = UI->BeginOffset == MTO.DestBegin;
1155      else
1156        IsDest = MTO.DestBegin != 0u;
1157      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1158         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1159         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1160    }
1161  }
1162}
1163
1164void AllocaPartitioning::print(raw_ostream &OS) const {
1165  if (PointerEscapingInstr) {
1166    OS << "No partitioning for alloca: " << AI << "\n"
1167       << "  A pointer to this alloca escaped by:\n"
1168       << "  " << *PointerEscapingInstr << "\n";
1169    return;
1170  }
1171
1172  OS << "Partitioning of alloca: " << AI << "\n";
1173  unsigned Num = 0;
1174  for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1175    print(OS, I);
1176    printUsers(OS, I);
1177  }
1178}
1179
1180void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1181void AllocaPartitioning::dump() const { print(dbgs()); }
1182
1183#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1184
1185
1186namespace {
1187/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1188///
1189/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1190/// the loads and stores of an alloca instruction, as well as updating its
1191/// debug information. This is used when a domtree is unavailable and thus
1192/// mem2reg in its full form can't be used to handle promotion of allocas to
1193/// scalar values.
1194class AllocaPromoter : public LoadAndStorePromoter {
1195  AllocaInst &AI;
1196  DIBuilder &DIB;
1197
1198  SmallVector<DbgDeclareInst *, 4> DDIs;
1199  SmallVector<DbgValueInst *, 4> DVIs;
1200
1201public:
1202  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1203                 AllocaInst &AI, DIBuilder &DIB)
1204    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1205
1206  void run(const SmallVectorImpl<Instruction*> &Insts) {
1207    // Remember which alloca we're promoting (for isInstInList).
1208    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1209      for (Value::use_iterator UI = DebugNode->use_begin(),
1210                               UE = DebugNode->use_end();
1211           UI != UE; ++UI)
1212        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1213          DDIs.push_back(DDI);
1214        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1215          DVIs.push_back(DVI);
1216    }
1217
1218    LoadAndStorePromoter::run(Insts);
1219    AI.eraseFromParent();
1220    while (!DDIs.empty())
1221      DDIs.pop_back_val()->eraseFromParent();
1222    while (!DVIs.empty())
1223      DVIs.pop_back_val()->eraseFromParent();
1224  }
1225
1226  virtual bool isInstInList(Instruction *I,
1227                            const SmallVectorImpl<Instruction*> &Insts) const {
1228    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1229      return LI->getOperand(0) == &AI;
1230    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1231  }
1232
1233  virtual void updateDebugInfo(Instruction *Inst) const {
1234    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1235           E = DDIs.end(); I != E; ++I) {
1236      DbgDeclareInst *DDI = *I;
1237      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1238        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1239      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1240        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1241    }
1242    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1243           E = DVIs.end(); I != E; ++I) {
1244      DbgValueInst *DVI = *I;
1245      Value *Arg = NULL;
1246      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1247        // If an argument is zero extended then use argument directly. The ZExt
1248        // may be zapped by an optimization pass in future.
1249        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1250          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1251        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1252          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1253        if (!Arg)
1254          Arg = SI->getOperand(0);
1255      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1256        Arg = LI->getOperand(0);
1257      } else {
1258        continue;
1259      }
1260      Instruction *DbgVal =
1261        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1262                                     Inst);
1263      DbgVal->setDebugLoc(DVI->getDebugLoc());
1264    }
1265  }
1266};
1267} // end anon namespace
1268
1269
1270namespace {
1271/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1272///
1273/// This pass takes allocations which can be completely analyzed (that is, they
1274/// don't escape) and tries to turn them into scalar SSA values. There are
1275/// a few steps to this process.
1276///
1277/// 1) It takes allocations of aggregates and analyzes the ways in which they
1278///    are used to try to split them into smaller allocations, ideally of
1279///    a single scalar data type. It will split up memcpy and memset accesses
1280///    as necessary and try to isolate invidual scalar accesses.
1281/// 2) It will transform accesses into forms which are suitable for SSA value
1282///    promotion. This can be replacing a memset with a scalar store of an
1283///    integer value, or it can involve speculating operations on a PHI or
1284///    select to be a PHI or select of the results.
1285/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1286///    onto insert and extract operations on a vector value, and convert them to
1287///    this form. By doing so, it will enable promotion of vector aggregates to
1288///    SSA vector values.
1289class SROA : public FunctionPass {
1290  const bool RequiresDomTree;
1291
1292  LLVMContext *C;
1293  const DataLayout *TD;
1294  DominatorTree *DT;
1295
1296  /// \brief Worklist of alloca instructions to simplify.
1297  ///
1298  /// Each alloca in the function is added to this. Each new alloca formed gets
1299  /// added to it as well to recursively simplify unless that alloca can be
1300  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1301  /// the one being actively rewritten, we add it back onto the list if not
1302  /// already present to ensure it is re-visited.
1303  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1304
1305  /// \brief A collection of instructions to delete.
1306  /// We try to batch deletions to simplify code and make things a bit more
1307  /// efficient.
1308  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
1309
1310  /// \brief Post-promotion worklist.
1311  ///
1312  /// Sometimes we discover an alloca which has a high probability of becoming
1313  /// viable for SROA after a round of promotion takes place. In those cases,
1314  /// the alloca is enqueued here for re-processing.
1315  ///
1316  /// Note that we have to be very careful to clear allocas out of this list in
1317  /// the event they are deleted.
1318  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1319
1320  /// \brief A collection of alloca instructions we can directly promote.
1321  std::vector<AllocaInst *> PromotableAllocas;
1322
1323public:
1324  SROA(bool RequiresDomTree = true)
1325      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1326        C(0), TD(0), DT(0) {
1327    initializeSROAPass(*PassRegistry::getPassRegistry());
1328  }
1329  bool runOnFunction(Function &F);
1330  void getAnalysisUsage(AnalysisUsage &AU) const;
1331
1332  const char *getPassName() const { return "SROA"; }
1333  static char ID;
1334
1335private:
1336  friend class PHIOrSelectSpeculator;
1337  friend class AllocaPartitionRewriter;
1338  friend class AllocaPartitionVectorRewriter;
1339
1340  bool rewriteAllocaPartition(AllocaInst &AI,
1341                              AllocaPartitioning &P,
1342                              AllocaPartitioning::iterator PI);
1343  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1344  bool runOnAlloca(AllocaInst &AI);
1345  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1346  bool promoteAllocas(Function &F);
1347};
1348}
1349
1350char SROA::ID = 0;
1351
1352FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1353  return new SROA(RequiresDomTree);
1354}
1355
1356INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1357                      false, false)
1358INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1359INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1360                    false, false)
1361
1362namespace {
1363/// \brief Visitor to speculate PHIs and Selects where possible.
1364class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1365  // Befriend the base class so it can delegate to private visit methods.
1366  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1367
1368  const DataLayout &TD;
1369  AllocaPartitioning &P;
1370  SROA &Pass;
1371
1372public:
1373  PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
1374    : TD(TD), P(P), Pass(Pass) {}
1375
1376  /// \brief Visit the users of an alloca partition and rewrite them.
1377  void visitUsers(AllocaPartitioning::const_iterator PI) {
1378    // Note that we need to use an index here as the underlying vector of uses
1379    // may be grown during speculation. However, we never need to re-visit the
1380    // new uses, and so we can use the initial size bound.
1381    for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1382      const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1383      if (!PU.U)
1384        continue; // Skip dead use.
1385
1386      visit(cast<Instruction>(PU.U->getUser()));
1387    }
1388  }
1389
1390private:
1391  // By default, skip this instruction.
1392  void visitInstruction(Instruction &I) {}
1393
1394  /// PHI instructions that use an alloca and are subsequently loaded can be
1395  /// rewritten to load both input pointers in the pred blocks and then PHI the
1396  /// results, allowing the load of the alloca to be promoted.
1397  /// From this:
1398  ///   %P2 = phi [i32* %Alloca, i32* %Other]
1399  ///   %V = load i32* %P2
1400  /// to:
1401  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1402  ///   ...
1403  ///   %V2 = load i32* %Other
1404  ///   ...
1405  ///   %V = phi [i32 %V1, i32 %V2]
1406  ///
1407  /// We can do this to a select if its only uses are loads and if the operands
1408  /// to the select can be loaded unconditionally.
1409  ///
1410  /// FIXME: This should be hoisted into a generic utility, likely in
1411  /// Transforms/Util/Local.h
1412  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1413    // For now, we can only do this promotion if the load is in the same block
1414    // as the PHI, and if there are no stores between the phi and load.
1415    // TODO: Allow recursive phi users.
1416    // TODO: Allow stores.
1417    BasicBlock *BB = PN.getParent();
1418    unsigned MaxAlign = 0;
1419    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1420         UI != UE; ++UI) {
1421      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1422      if (LI == 0 || !LI->isSimple()) return false;
1423
1424      // For now we only allow loads in the same block as the PHI.  This is
1425      // a common case that happens when instcombine merges two loads through
1426      // a PHI.
1427      if (LI->getParent() != BB) return false;
1428
1429      // Ensure that there are no instructions between the PHI and the load that
1430      // could store.
1431      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1432        if (BBI->mayWriteToMemory())
1433          return false;
1434
1435      MaxAlign = std::max(MaxAlign, LI->getAlignment());
1436      Loads.push_back(LI);
1437    }
1438
1439    // We can only transform this if it is safe to push the loads into the
1440    // predecessor blocks. The only thing to watch out for is that we can't put
1441    // a possibly trapping load in the predecessor if it is a critical edge.
1442    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1443         ++Idx) {
1444      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1445      Value *InVal = PN.getIncomingValue(Idx);
1446
1447      // If the value is produced by the terminator of the predecessor (an
1448      // invoke) or it has side-effects, there is no valid place to put a load
1449      // in the predecessor.
1450      if (TI == InVal || TI->mayHaveSideEffects())
1451        return false;
1452
1453      // If the predecessor has a single successor, then the edge isn't
1454      // critical.
1455      if (TI->getNumSuccessors() == 1)
1456        continue;
1457
1458      // If this pointer is always safe to load, or if we can prove that there
1459      // is already a load in the block, then we can move the load to the pred
1460      // block.
1461      if (InVal->isDereferenceablePointer() ||
1462          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1463        continue;
1464
1465      return false;
1466    }
1467
1468    return true;
1469  }
1470
1471  void visitPHINode(PHINode &PN) {
1472    DEBUG(dbgs() << "    original: " << PN << "\n");
1473
1474    SmallVector<LoadInst *, 4> Loads;
1475    if (!isSafePHIToSpeculate(PN, Loads))
1476      return;
1477
1478    assert(!Loads.empty());
1479
1480    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1481    IRBuilder<> PHIBuilder(&PN);
1482    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1483                                          PN.getName() + ".sroa.speculated");
1484
1485    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1486    // matter which one we get and if any differ, it doesn't matter.
1487    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1488    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1489    unsigned Align = SomeLoad->getAlignment();
1490
1491    // Rewrite all loads of the PN to use the new PHI.
1492    do {
1493      LoadInst *LI = Loads.pop_back_val();
1494      LI->replaceAllUsesWith(NewPN);
1495      Pass.DeadInsts.insert(LI);
1496    } while (!Loads.empty());
1497
1498    // Inject loads into all of the pred blocks.
1499    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1500      BasicBlock *Pred = PN.getIncomingBlock(Idx);
1501      TerminatorInst *TI = Pred->getTerminator();
1502      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1503      Value *InVal = PN.getIncomingValue(Idx);
1504      IRBuilder<> PredBuilder(TI);
1505
1506      LoadInst *Load
1507        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1508                                         Pred->getName()));
1509      ++NumLoadsSpeculated;
1510      Load->setAlignment(Align);
1511      if (TBAATag)
1512        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1513      NewPN->addIncoming(Load, Pred);
1514
1515      Instruction *Ptr = dyn_cast<Instruction>(InVal);
1516      if (!Ptr)
1517        // No uses to rewrite.
1518        continue;
1519
1520      // Try to lookup and rewrite any partition uses corresponding to this phi
1521      // input.
1522      AllocaPartitioning::iterator PI
1523        = P.findPartitionForPHIOrSelectOperand(InUse);
1524      if (PI == P.end())
1525        continue;
1526
1527      // Replace the Use in the PartitionUse for this operand with the Use
1528      // inside the load.
1529      AllocaPartitioning::use_iterator UI
1530        = P.findPartitionUseForPHIOrSelectOperand(InUse);
1531      assert(isa<PHINode>(*UI->U->getUser()));
1532      UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1533    }
1534    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1535  }
1536
1537  /// Select instructions that use an alloca and are subsequently loaded can be
1538  /// rewritten to load both input pointers and then select between the result,
1539  /// allowing the load of the alloca to be promoted.
1540  /// From this:
1541  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1542  ///   %V = load i32* %P2
1543  /// to:
1544  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1545  ///   %V2 = load i32* %Other
1546  ///   %V = select i1 %cond, i32 %V1, i32 %V2
1547  ///
1548  /// We can do this to a select if its only uses are loads and if the operand
1549  /// to the select can be loaded unconditionally.
1550  bool isSafeSelectToSpeculate(SelectInst &SI,
1551                               SmallVectorImpl<LoadInst *> &Loads) {
1552    Value *TValue = SI.getTrueValue();
1553    Value *FValue = SI.getFalseValue();
1554    bool TDerefable = TValue->isDereferenceablePointer();
1555    bool FDerefable = FValue->isDereferenceablePointer();
1556
1557    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1558         UI != UE; ++UI) {
1559      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1560      if (LI == 0 || !LI->isSimple()) return false;
1561
1562      // Both operands to the select need to be dereferencable, either
1563      // absolutely (e.g. allocas) or at this point because we can see other
1564      // accesses to it.
1565      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1566                                                      LI->getAlignment(), &TD))
1567        return false;
1568      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1569                                                      LI->getAlignment(), &TD))
1570        return false;
1571      Loads.push_back(LI);
1572    }
1573
1574    return true;
1575  }
1576
1577  void visitSelectInst(SelectInst &SI) {
1578    DEBUG(dbgs() << "    original: " << SI << "\n");
1579    IRBuilder<> IRB(&SI);
1580
1581    // If the select isn't safe to speculate, just use simple logic to emit it.
1582    SmallVector<LoadInst *, 4> Loads;
1583    if (!isSafeSelectToSpeculate(SI, Loads))
1584      return;
1585
1586    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1587    AllocaPartitioning::iterator PIs[2];
1588    AllocaPartitioning::PartitionUse PUs[2];
1589    for (unsigned i = 0, e = 2; i != e; ++i) {
1590      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1591      if (PIs[i] != P.end()) {
1592        // If the pointer is within the partitioning, remove the select from
1593        // its uses. We'll add in the new loads below.
1594        AllocaPartitioning::use_iterator UI
1595          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1596        PUs[i] = *UI;
1597        // Clear out the use here so that the offsets into the use list remain
1598        // stable but this use is ignored when rewriting.
1599        UI->U = 0;
1600      }
1601    }
1602
1603    Value *TV = SI.getTrueValue();
1604    Value *FV = SI.getFalseValue();
1605    // Replace the loads of the select with a select of two loads.
1606    while (!Loads.empty()) {
1607      LoadInst *LI = Loads.pop_back_val();
1608
1609      IRB.SetInsertPoint(LI);
1610      LoadInst *TL =
1611        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1612      LoadInst *FL =
1613        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1614      NumLoadsSpeculated += 2;
1615
1616      // Transfer alignment and TBAA info if present.
1617      TL->setAlignment(LI->getAlignment());
1618      FL->setAlignment(LI->getAlignment());
1619      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1620        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1621        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1622      }
1623
1624      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1625                                  LI->getName() + ".sroa.speculated");
1626
1627      LoadInst *Loads[2] = { TL, FL };
1628      for (unsigned i = 0, e = 2; i != e; ++i) {
1629        if (PIs[i] != P.end()) {
1630          Use *LoadUse = &Loads[i]->getOperandUse(0);
1631          assert(PUs[i].U->get() == LoadUse->get());
1632          PUs[i].U = LoadUse;
1633          P.use_push_back(PIs[i], PUs[i]);
1634        }
1635      }
1636
1637      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1638      LI->replaceAllUsesWith(V);
1639      Pass.DeadInsts.insert(LI);
1640    }
1641  }
1642};
1643}
1644
1645/// \brief Build a GEP out of a base pointer and indices.
1646///
1647/// This will return the BasePtr if that is valid, or build a new GEP
1648/// instruction using the IRBuilder if GEP-ing is needed.
1649static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1650                       SmallVectorImpl<Value *> &Indices,
1651                       const Twine &Prefix) {
1652  if (Indices.empty())
1653    return BasePtr;
1654
1655  // A single zero index is a no-op, so check for this and avoid building a GEP
1656  // in that case.
1657  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1658    return BasePtr;
1659
1660  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1661}
1662
1663/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1664/// TargetTy without changing the offset of the pointer.
1665///
1666/// This routine assumes we've already established a properly offset GEP with
1667/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1668/// zero-indices down through type layers until we find one the same as
1669/// TargetTy. If we can't find one with the same type, we at least try to use
1670/// one with the same size. If none of that works, we just produce the GEP as
1671/// indicated by Indices to have the correct offset.
1672static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
1673                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1674                                    SmallVectorImpl<Value *> &Indices,
1675                                    const Twine &Prefix) {
1676  if (Ty == TargetTy)
1677    return buildGEP(IRB, BasePtr, Indices, Prefix);
1678
1679  // See if we can descend into a struct and locate a field with the correct
1680  // type.
1681  unsigned NumLayers = 0;
1682  Type *ElementTy = Ty;
1683  do {
1684    if (ElementTy->isPointerTy())
1685      break;
1686    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1687      ElementTy = SeqTy->getElementType();
1688      // Note that we use the default address space as this index is over an
1689      // array or a vector, not a pointer.
1690      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
1691    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1692      if (STy->element_begin() == STy->element_end())
1693        break; // Nothing left to descend into.
1694      ElementTy = *STy->element_begin();
1695      Indices.push_back(IRB.getInt32(0));
1696    } else {
1697      break;
1698    }
1699    ++NumLayers;
1700  } while (ElementTy != TargetTy);
1701  if (ElementTy != TargetTy)
1702    Indices.erase(Indices.end() - NumLayers, Indices.end());
1703
1704  return buildGEP(IRB, BasePtr, Indices, Prefix);
1705}
1706
1707/// \brief Recursively compute indices for a natural GEP.
1708///
1709/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1710/// element types adding appropriate indices for the GEP.
1711static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
1712                                       Value *Ptr, Type *Ty, APInt &Offset,
1713                                       Type *TargetTy,
1714                                       SmallVectorImpl<Value *> &Indices,
1715                                       const Twine &Prefix) {
1716  if (Offset == 0)
1717    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1718
1719  // We can't recurse through pointer types.
1720  if (Ty->isPointerTy())
1721    return 0;
1722
1723  // We try to analyze GEPs over vectors here, but note that these GEPs are
1724  // extremely poorly defined currently. The long-term goal is to remove GEPing
1725  // over a vector from the IR completely.
1726  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1727    unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
1728    if (ElementSizeInBits % 8)
1729      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1730    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1731    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1732    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1733      return 0;
1734    Offset -= NumSkippedElements * ElementSize;
1735    Indices.push_back(IRB.getInt(NumSkippedElements));
1736    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1737                                    Offset, TargetTy, Indices, Prefix);
1738  }
1739
1740  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1741    Type *ElementTy = ArrTy->getElementType();
1742    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1743    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1744    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1745      return 0;
1746
1747    Offset -= NumSkippedElements * ElementSize;
1748    Indices.push_back(IRB.getInt(NumSkippedElements));
1749    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1750                                    Indices, Prefix);
1751  }
1752
1753  StructType *STy = dyn_cast<StructType>(Ty);
1754  if (!STy)
1755    return 0;
1756
1757  const StructLayout *SL = TD.getStructLayout(STy);
1758  uint64_t StructOffset = Offset.getZExtValue();
1759  if (StructOffset >= SL->getSizeInBytes())
1760    return 0;
1761  unsigned Index = SL->getElementContainingOffset(StructOffset);
1762  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1763  Type *ElementTy = STy->getElementType(Index);
1764  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1765    return 0; // The offset points into alignment padding.
1766
1767  Indices.push_back(IRB.getInt32(Index));
1768  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1769                                  Indices, Prefix);
1770}
1771
1772/// \brief Get a natural GEP from a base pointer to a particular offset and
1773/// resulting in a particular type.
1774///
1775/// The goal is to produce a "natural" looking GEP that works with the existing
1776/// composite types to arrive at the appropriate offset and element type for
1777/// a pointer. TargetTy is the element type the returned GEP should point-to if
1778/// possible. We recurse by decreasing Offset, adding the appropriate index to
1779/// Indices, and setting Ty to the result subtype.
1780///
1781/// If no natural GEP can be constructed, this function returns null.
1782static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
1783                                      Value *Ptr, APInt Offset, Type *TargetTy,
1784                                      SmallVectorImpl<Value *> &Indices,
1785                                      const Twine &Prefix) {
1786  PointerType *Ty = cast<PointerType>(Ptr->getType());
1787
1788  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1789  // an i8.
1790  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1791    return 0;
1792
1793  Type *ElementTy = Ty->getElementType();
1794  if (!ElementTy->isSized())
1795    return 0; // We can't GEP through an unsized element.
1796  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1797  if (ElementSize == 0)
1798    return 0; // Zero-length arrays can't help us build a natural GEP.
1799  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1800
1801  Offset -= NumSkippedElements * ElementSize;
1802  Indices.push_back(IRB.getInt(NumSkippedElements));
1803  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1804                                  Indices, Prefix);
1805}
1806
1807/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1808/// resulting pointer has PointerTy.
1809///
1810/// This tries very hard to compute a "natural" GEP which arrives at the offset
1811/// and produces the pointer type desired. Where it cannot, it will try to use
1812/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1813/// fails, it will try to use an existing i8* and GEP to the byte offset and
1814/// bitcast to the type.
1815///
1816/// The strategy for finding the more natural GEPs is to peel off layers of the
1817/// pointer, walking back through bit casts and GEPs, searching for a base
1818/// pointer from which we can compute a natural GEP with the desired
1819/// properities. The algorithm tries to fold as many constant indices into
1820/// a single GEP as possible, thus making each GEP more independent of the
1821/// surrounding code.
1822static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
1823                             Value *Ptr, APInt Offset, Type *PointerTy,
1824                             const Twine &Prefix) {
1825  // Even though we don't look through PHI nodes, we could be called on an
1826  // instruction in an unreachable block, which may be on a cycle.
1827  SmallPtrSet<Value *, 4> Visited;
1828  Visited.insert(Ptr);
1829  SmallVector<Value *, 4> Indices;
1830
1831  // We may end up computing an offset pointer that has the wrong type. If we
1832  // never are able to compute one directly that has the correct type, we'll
1833  // fall back to it, so keep it around here.
1834  Value *OffsetPtr = 0;
1835
1836  // Remember any i8 pointer we come across to re-use if we need to do a raw
1837  // byte offset.
1838  Value *Int8Ptr = 0;
1839  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1840
1841  Type *TargetTy = PointerTy->getPointerElementType();
1842
1843  do {
1844    // First fold any existing GEPs into the offset.
1845    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1846      APInt GEPOffset(Offset.getBitWidth(), 0);
1847      if (!GEP->accumulateConstantOffset(TD, GEPOffset))
1848        break;
1849      Offset += GEPOffset;
1850      Ptr = GEP->getPointerOperand();
1851      if (!Visited.insert(Ptr))
1852        break;
1853    }
1854
1855    // See if we can perform a natural GEP here.
1856    Indices.clear();
1857    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1858                                           Indices, Prefix)) {
1859      if (P->getType() == PointerTy) {
1860        // Zap any offset pointer that we ended up computing in previous rounds.
1861        if (OffsetPtr && OffsetPtr->use_empty())
1862          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1863            I->eraseFromParent();
1864        return P;
1865      }
1866      if (!OffsetPtr) {
1867        OffsetPtr = P;
1868      }
1869    }
1870
1871    // Stash this pointer if we've found an i8*.
1872    if (Ptr->getType()->isIntegerTy(8)) {
1873      Int8Ptr = Ptr;
1874      Int8PtrOffset = Offset;
1875    }
1876
1877    // Peel off a layer of the pointer and update the offset appropriately.
1878    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1879      Ptr = cast<Operator>(Ptr)->getOperand(0);
1880    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1881      if (GA->mayBeOverridden())
1882        break;
1883      Ptr = GA->getAliasee();
1884    } else {
1885      break;
1886    }
1887    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1888  } while (Visited.insert(Ptr));
1889
1890  if (!OffsetPtr) {
1891    if (!Int8Ptr) {
1892      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1893                                  Prefix + ".raw_cast");
1894      Int8PtrOffset = Offset;
1895    }
1896
1897    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1898      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1899                            Prefix + ".raw_idx");
1900  }
1901  Ptr = OffsetPtr;
1902
1903  // On the off chance we were targeting i8*, guard the bitcast here.
1904  if (Ptr->getType() != PointerTy)
1905    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1906
1907  return Ptr;
1908}
1909
1910/// \brief Test whether we can convert a value from the old to the new type.
1911///
1912/// This predicate should be used to guard calls to convertValue in order to
1913/// ensure that we only try to convert viable values. The strategy is that we
1914/// will peel off single element struct and array wrappings to get to an
1915/// underlying value, and convert that value.
1916static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1917  if (OldTy == NewTy)
1918    return true;
1919  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1920    return false;
1921  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1922    return false;
1923
1924  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1925    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1926      return true;
1927    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1928      return true;
1929    return false;
1930  }
1931
1932  return true;
1933}
1934
1935/// \brief Generic routine to convert an SSA value to a value of a different
1936/// type.
1937///
1938/// This will try various different casting techniques, such as bitcasts,
1939/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1940/// two types for viability with this routine.
1941static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
1942                           Type *Ty) {
1943  assert(canConvertValue(DL, V->getType(), Ty) &&
1944         "Value not convertable to type");
1945  if (V->getType() == Ty)
1946    return V;
1947  if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1948    return IRB.CreateIntToPtr(V, Ty);
1949  if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1950    return IRB.CreatePtrToInt(V, Ty);
1951
1952  return IRB.CreateBitCast(V, Ty);
1953}
1954
1955/// \brief Test whether the given alloca partition can be promoted to a vector.
1956///
1957/// This is a quick test to check whether we can rewrite a particular alloca
1958/// partition (and its newly formed alloca) into a vector alloca with only
1959/// whole-vector loads and stores such that it could be promoted to a vector
1960/// SSA value. We only can ensure this for a limited set of operations, and we
1961/// don't want to do the rewrites unless we are confident that the result will
1962/// be promotable, so we have an early test here.
1963static bool isVectorPromotionViable(const DataLayout &TD,
1964                                    Type *AllocaTy,
1965                                    AllocaPartitioning &P,
1966                                    uint64_t PartitionBeginOffset,
1967                                    uint64_t PartitionEndOffset,
1968                                    AllocaPartitioning::const_use_iterator I,
1969                                    AllocaPartitioning::const_use_iterator E) {
1970  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1971  if (!Ty)
1972    return false;
1973
1974  uint64_t VecSize = TD.getTypeSizeInBits(Ty);
1975  uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
1976
1977  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1978  // that aren't byte sized.
1979  if (ElementSize % 8)
1980    return false;
1981  assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
1982  VecSize /= 8;
1983  ElementSize /= 8;
1984
1985  for (; I != E; ++I) {
1986    if (!I->U)
1987      continue; // Skip dead use.
1988
1989    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
1990    uint64_t BeginIndex = BeginOffset / ElementSize;
1991    if (BeginIndex * ElementSize != BeginOffset ||
1992        BeginIndex >= Ty->getNumElements())
1993      return false;
1994    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
1995    uint64_t EndIndex = EndOffset / ElementSize;
1996    if (EndIndex * ElementSize != EndOffset ||
1997        EndIndex > Ty->getNumElements())
1998      return false;
1999
2000    assert(EndIndex > BeginIndex && "Empty vector!");
2001    uint64_t NumElements = EndIndex - BeginIndex;
2002    Type *PartitionTy
2003      = (NumElements == 1) ? Ty->getElementType()
2004                           : VectorType::get(Ty->getElementType(), NumElements);
2005
2006    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2007      if (MI->isVolatile())
2008        return false;
2009      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2010        const AllocaPartitioning::MemTransferOffsets &MTO
2011          = P.getMemTransferOffsets(*MTI);
2012        if (!MTO.IsSplittable)
2013          return false;
2014      }
2015    } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
2016      // Disable vector promotion when there are loads or stores of an FCA.
2017      return false;
2018    } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2019      if (LI->isVolatile())
2020        return false;
2021      if (!canConvertValue(TD, PartitionTy, LI->getType()))
2022        return false;
2023    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2024      if (SI->isVolatile())
2025        return false;
2026      if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
2027        return false;
2028    } else {
2029      return false;
2030    }
2031  }
2032  return true;
2033}
2034
2035/// \brief Test whether the given alloca partition's integer operations can be
2036/// widened to promotable ones.
2037///
2038/// This is a quick test to check whether we can rewrite the integer loads and
2039/// stores to a particular alloca into wider loads and stores and be able to
2040/// promote the resulting alloca.
2041static bool isIntegerWideningViable(const DataLayout &TD,
2042                                    Type *AllocaTy,
2043                                    uint64_t AllocBeginOffset,
2044                                    AllocaPartitioning &P,
2045                                    AllocaPartitioning::const_use_iterator I,
2046                                    AllocaPartitioning::const_use_iterator E) {
2047  uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
2048  // Don't create integer types larger than the maximum bitwidth.
2049  if (SizeInBits > IntegerType::MAX_INT_BITS)
2050    return false;
2051
2052  // Don't try to handle allocas with bit-padding.
2053  if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
2054    return false;
2055
2056  // We need to ensure that an integer type with the appropriate bitwidth can
2057  // be converted to the alloca type, whatever that is. We don't want to force
2058  // the alloca itself to have an integer type if there is a more suitable one.
2059  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2060  if (!canConvertValue(TD, AllocaTy, IntTy) ||
2061      !canConvertValue(TD, IntTy, AllocaTy))
2062    return false;
2063
2064  uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2065
2066  // Check the uses to ensure the uses are (likely) promoteable integer uses.
2067  // Also ensure that the alloca has a covering load or store. We don't want
2068  // to widen the integer operotains only to fail to promote due to some other
2069  // unsplittable entry (which we may make splittable later).
2070  bool WholeAllocaOp = false;
2071  for (; I != E; ++I) {
2072    if (!I->U)
2073      continue; // Skip dead use.
2074
2075    uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2076    uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2077
2078    // We can't reasonably handle cases where the load or store extends past
2079    // the end of the aloca's type and into its padding.
2080    if (RelEnd > Size)
2081      return false;
2082
2083    if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2084      if (LI->isVolatile())
2085        return false;
2086      if (RelBegin == 0 && RelEnd == Size)
2087        WholeAllocaOp = true;
2088      if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2089        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2090          return false;
2091        continue;
2092      }
2093      // Non-integer loads need to be convertible from the alloca type so that
2094      // they are promotable.
2095      if (RelBegin != 0 || RelEnd != Size ||
2096          !canConvertValue(TD, AllocaTy, LI->getType()))
2097        return false;
2098    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2099      Type *ValueTy = SI->getValueOperand()->getType();
2100      if (SI->isVolatile())
2101        return false;
2102      if (RelBegin == 0 && RelEnd == Size)
2103        WholeAllocaOp = true;
2104      if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2105        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2106          return false;
2107        continue;
2108      }
2109      // Non-integer stores need to be convertible to the alloca type so that
2110      // they are promotable.
2111      if (RelBegin != 0 || RelEnd != Size ||
2112          !canConvertValue(TD, ValueTy, AllocaTy))
2113        return false;
2114    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2115      if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2116        return false;
2117      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2118        const AllocaPartitioning::MemTransferOffsets &MTO
2119          = P.getMemTransferOffsets(*MTI);
2120        if (!MTO.IsSplittable)
2121          return false;
2122      }
2123    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2124      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2125          II->getIntrinsicID() != Intrinsic::lifetime_end)
2126        return false;
2127    } else {
2128      return false;
2129    }
2130  }
2131  return WholeAllocaOp;
2132}
2133
2134static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2135                             IntegerType *Ty, uint64_t Offset,
2136                             const Twine &Name) {
2137  DEBUG(dbgs() << "       start: " << *V << "\n");
2138  IntegerType *IntTy = cast<IntegerType>(V->getType());
2139  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2140         "Element extends past full value");
2141  uint64_t ShAmt = 8*Offset;
2142  if (DL.isBigEndian())
2143    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2144  if (ShAmt) {
2145    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2146    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2147  }
2148  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2149         "Cannot extract to a larger integer!");
2150  if (Ty != IntTy) {
2151    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2152    DEBUG(dbgs() << "     trunced: " << *V << "\n");
2153  }
2154  return V;
2155}
2156
2157static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
2158                            Value *V, uint64_t Offset, const Twine &Name) {
2159  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2160  IntegerType *Ty = cast<IntegerType>(V->getType());
2161  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2162         "Cannot insert a larger integer!");
2163  DEBUG(dbgs() << "       start: " << *V << "\n");
2164  if (Ty != IntTy) {
2165    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2166    DEBUG(dbgs() << "    extended: " << *V << "\n");
2167  }
2168  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2169         "Element store outside of alloca store");
2170  uint64_t ShAmt = 8*Offset;
2171  if (DL.isBigEndian())
2172    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2173  if (ShAmt) {
2174    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2175    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2176  }
2177
2178  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2179    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2180    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2181    DEBUG(dbgs() << "      masked: " << *Old << "\n");
2182    V = IRB.CreateOr(Old, V, Name + ".insert");
2183    DEBUG(dbgs() << "    inserted: " << *V << "\n");
2184  }
2185  return V;
2186}
2187
2188static Value *extractVector(IRBuilder<> &IRB, Value *V,
2189                            unsigned BeginIndex, unsigned EndIndex,
2190                            const Twine &Name) {
2191  VectorType *VecTy = cast<VectorType>(V->getType());
2192  unsigned NumElements = EndIndex - BeginIndex;
2193  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2194
2195  if (NumElements == VecTy->getNumElements())
2196    return V;
2197
2198  if (NumElements == 1) {
2199    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2200                                 Name + ".extract");
2201    DEBUG(dbgs() << "     extract: " << *V << "\n");
2202    return V;
2203  }
2204
2205  SmallVector<Constant*, 8> Mask;
2206  Mask.reserve(NumElements);
2207  for (unsigned i = BeginIndex; i != EndIndex; ++i)
2208    Mask.push_back(IRB.getInt32(i));
2209  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2210                              ConstantVector::get(Mask),
2211                              Name + ".extract");
2212  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2213  return V;
2214}
2215
2216static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V,
2217                           unsigned BeginIndex, const Twine &Name) {
2218  VectorType *VecTy = cast<VectorType>(Old->getType());
2219  assert(VecTy && "Can only insert a vector into a vector");
2220
2221  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2222  if (!Ty) {
2223    // Single element to insert.
2224    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2225                                Name + ".insert");
2226    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
2227    return V;
2228  }
2229
2230  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2231         "Too many elements!");
2232  if (Ty->getNumElements() == VecTy->getNumElements()) {
2233    assert(V->getType() == VecTy && "Vector type mismatch");
2234    return V;
2235  }
2236  unsigned EndIndex = BeginIndex + Ty->getNumElements();
2237
2238  // When inserting a smaller vector into the larger to store, we first
2239  // use a shuffle vector to widen it with undef elements, and then
2240  // a second shuffle vector to select between the loaded vector and the
2241  // incoming vector.
2242  SmallVector<Constant*, 8> Mask;
2243  Mask.reserve(VecTy->getNumElements());
2244  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2245    if (i >= BeginIndex && i < EndIndex)
2246      Mask.push_back(IRB.getInt32(i - BeginIndex));
2247    else
2248      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2249  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2250                              ConstantVector::get(Mask),
2251                              Name + ".expand");
2252  DEBUG(dbgs() << "    shuffle1: " << *V << "\n");
2253
2254  Mask.clear();
2255  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2256    if (i >= BeginIndex && i < EndIndex)
2257      Mask.push_back(IRB.getInt32(i));
2258    else
2259      Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
2260  V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
2261                              Name + "insert");
2262  DEBUG(dbgs() << "    shuffle2: " << *V << "\n");
2263  return V;
2264}
2265
2266namespace {
2267/// \brief Visitor to rewrite instructions using a partition of an alloca to
2268/// use a new alloca.
2269///
2270/// Also implements the rewriting to vector-based accesses when the partition
2271/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2272/// lives here.
2273class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2274                                                   bool> {
2275  // Befriend the base class so it can delegate to private visit methods.
2276  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2277
2278  const DataLayout &TD;
2279  AllocaPartitioning &P;
2280  SROA &Pass;
2281  AllocaInst &OldAI, &NewAI;
2282  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2283  Type *NewAllocaTy;
2284
2285  // If we are rewriting an alloca partition which can be written as pure
2286  // vector operations, we stash extra information here. When VecTy is
2287  // non-null, we have some strict guarantees about the rewriten alloca:
2288  //   - The new alloca is exactly the size of the vector type here.
2289  //   - The accesses all either map to the entire vector or to a single
2290  //     element.
2291  //   - The set of accessing instructions is only one of those handled above
2292  //     in isVectorPromotionViable. Generally these are the same access kinds
2293  //     which are promotable via mem2reg.
2294  VectorType *VecTy;
2295  Type *ElementTy;
2296  uint64_t ElementSize;
2297
2298  // This is a convenience and flag variable that will be null unless the new
2299  // alloca's integer operations should be widened to this integer type due to
2300  // passing isIntegerWideningViable above. If it is non-null, the desired
2301  // integer type will be stored here for easy access during rewriting.
2302  IntegerType *IntTy;
2303
2304  // The offset of the partition user currently being rewritten.
2305  uint64_t BeginOffset, EndOffset;
2306  Use *OldUse;
2307  Instruction *OldPtr;
2308
2309  // The name prefix to use when rewriting instructions for this alloca.
2310  std::string NamePrefix;
2311
2312public:
2313  AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
2314                          AllocaPartitioning::iterator PI,
2315                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2316                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
2317    : TD(TD), P(P), Pass(Pass),
2318      OldAI(OldAI), NewAI(NewAI),
2319      NewAllocaBeginOffset(NewBeginOffset),
2320      NewAllocaEndOffset(NewEndOffset),
2321      NewAllocaTy(NewAI.getAllocatedType()),
2322      VecTy(), ElementTy(), ElementSize(), IntTy(),
2323      BeginOffset(), EndOffset() {
2324  }
2325
2326  /// \brief Visit the users of the alloca partition and rewrite them.
2327  bool visitUsers(AllocaPartitioning::const_use_iterator I,
2328                  AllocaPartitioning::const_use_iterator E) {
2329    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2330                                NewAllocaBeginOffset, NewAllocaEndOffset,
2331                                I, E)) {
2332      ++NumVectorized;
2333      VecTy = cast<VectorType>(NewAI.getAllocatedType());
2334      ElementTy = VecTy->getElementType();
2335      assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
2336             "Only multiple-of-8 sized vector elements are viable");
2337      ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
2338    } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2339                                       NewAllocaBeginOffset, P, I, E)) {
2340      IntTy = Type::getIntNTy(NewAI.getContext(),
2341                              TD.getTypeSizeInBits(NewAI.getAllocatedType()));
2342    }
2343    bool CanSROA = true;
2344    for (; I != E; ++I) {
2345      if (!I->U)
2346        continue; // Skip dead uses.
2347      BeginOffset = I->BeginOffset;
2348      EndOffset = I->EndOffset;
2349      OldUse = I->U;
2350      OldPtr = cast<Instruction>(I->U->get());
2351      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
2352      CanSROA &= visit(cast<Instruction>(I->U->getUser()));
2353    }
2354    if (VecTy) {
2355      assert(CanSROA);
2356      VecTy = 0;
2357      ElementTy = 0;
2358      ElementSize = 0;
2359    }
2360    if (IntTy) {
2361      assert(CanSROA);
2362      IntTy = 0;
2363    }
2364    return CanSROA;
2365  }
2366
2367private:
2368  // Every instruction which can end up as a user must have a rewrite rule.
2369  bool visitInstruction(Instruction &I) {
2370    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2371    llvm_unreachable("No rewrite rule for this instruction!");
2372  }
2373
2374  Twine getName(const Twine &Suffix) {
2375    return NamePrefix + Suffix;
2376  }
2377
2378  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2379    assert(BeginOffset >= NewAllocaBeginOffset);
2380    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2381    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2382  }
2383
2384  /// \brief Compute suitable alignment to access an offset into the new alloca.
2385  unsigned getOffsetAlign(uint64_t Offset) {
2386    unsigned NewAIAlign = NewAI.getAlignment();
2387    if (!NewAIAlign)
2388      NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2389    return MinAlign(NewAIAlign, Offset);
2390  }
2391
2392  /// \brief Compute suitable alignment to access this partition of the new
2393  /// alloca.
2394  unsigned getPartitionAlign() {
2395    return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
2396  }
2397
2398  /// \brief Compute suitable alignment to access a type at an offset of the
2399  /// new alloca.
2400  ///
2401  /// \returns zero if the type's ABI alignment is a suitable alignment,
2402  /// otherwise returns the maximal suitable alignment.
2403  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2404    unsigned Align = getOffsetAlign(Offset);
2405    return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2406  }
2407
2408  /// \brief Compute suitable alignment to access a type at the beginning of
2409  /// this partition of the new alloca.
2410  ///
2411  /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2412  unsigned getPartitionTypeAlign(Type *Ty) {
2413    return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
2414  }
2415
2416  unsigned getIndex(uint64_t Offset) {
2417    assert(VecTy && "Can only call getIndex when rewriting a vector");
2418    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2419    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2420    uint32_t Index = RelOffset / ElementSize;
2421    assert(Index * ElementSize == RelOffset);
2422    return Index;
2423  }
2424
2425  void deleteIfTriviallyDead(Value *V) {
2426    Instruction *I = cast<Instruction>(V);
2427    if (isInstructionTriviallyDead(I))
2428      Pass.DeadInsts.insert(I);
2429  }
2430
2431  Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) {
2432    unsigned BeginIndex = getIndex(BeginOffset);
2433    unsigned EndIndex = getIndex(EndOffset);
2434    assert(EndIndex > BeginIndex && "Empty vector!");
2435
2436    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2437                                     getName(".load"));
2438    return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec"));
2439  }
2440
2441  Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2442    assert(IntTy && "We cannot insert an integer to the alloca");
2443    assert(!LI.isVolatile());
2444    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2445                                     getName(".load"));
2446    V = convertValue(TD, IRB, V, IntTy);
2447    assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2448    uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2449    if (Offset > 0 || EndOffset < NewAllocaEndOffset)
2450      V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2451                         getName(".extract"));
2452    return V;
2453  }
2454
2455  bool visitLoadInst(LoadInst &LI) {
2456    DEBUG(dbgs() << "    original: " << LI << "\n");
2457    Value *OldOp = LI.getOperand(0);
2458    assert(OldOp == OldPtr);
2459    IRBuilder<> IRB(&LI);
2460
2461    uint64_t Size = EndOffset - BeginOffset;
2462    bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
2463
2464    // If this memory access can be shown to *statically* extend outside the
2465    // bounds of the original allocation it's behavior is undefined. Rather
2466    // than trying to transform it, just replace it with undef.
2467    // FIXME: We should do something more clever for functions being
2468    // instrumented by asan.
2469    // FIXME: Eventually, once ASan and friends can flush out bugs here, this
2470    // should be transformed to a load of null making it unreachable.
2471    uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
2472    if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
2473      LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
2474      Pass.DeadInsts.insert(&LI);
2475      deleteIfTriviallyDead(OldOp);
2476      DEBUG(dbgs() << "          to: undef!!\n");
2477      return true;
2478    }
2479
2480    Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
2481                                    : LI.getType();
2482    bool IsPtrAdjusted = false;
2483    Value *V;
2484    if (VecTy) {
2485      V = rewriteVectorizedLoadInst(IRB);
2486    } else if (IntTy && LI.getType()->isIntegerTy()) {
2487      V = rewriteIntegerLoad(IRB, LI);
2488    } else if (BeginOffset == NewAllocaBeginOffset &&
2489               canConvertValue(TD, NewAllocaTy, LI.getType())) {
2490      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2491                                LI.isVolatile(), getName(".load"));
2492    } else {
2493      Type *LTy = TargetTy->getPointerTo();
2494      V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
2495                                getPartitionTypeAlign(TargetTy),
2496                                LI.isVolatile(), getName(".load"));
2497      IsPtrAdjusted = true;
2498    }
2499    V = convertValue(TD, IRB, V, TargetTy);
2500
2501    if (IsSplitIntLoad) {
2502      assert(!LI.isVolatile());
2503      assert(LI.getType()->isIntegerTy() &&
2504             "Only integer type loads and stores are split");
2505      assert(LI.getType()->getIntegerBitWidth() ==
2506             TD.getTypeStoreSizeInBits(LI.getType()) &&
2507             "Non-byte-multiple bit width");
2508      assert(LI.getType()->getIntegerBitWidth() ==
2509             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2510             "Only alloca-wide loads can be split and recomposed");
2511      // Move the insertion point just past the load so that we can refer to it.
2512      IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2513      // Create a placeholder value with the same type as LI to use as the
2514      // basis for the new value. This allows us to replace the uses of LI with
2515      // the computed value, and then replace the placeholder with LI, leaving
2516      // LI only used for this computation.
2517      Value *Placeholder
2518        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2519      V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
2520                        getName(".insert"));
2521      LI.replaceAllUsesWith(V);
2522      Placeholder->replaceAllUsesWith(&LI);
2523      delete Placeholder;
2524    } else {
2525      LI.replaceAllUsesWith(V);
2526    }
2527
2528    Pass.DeadInsts.insert(&LI);
2529    deleteIfTriviallyDead(OldOp);
2530    DEBUG(dbgs() << "          to: " << *V << "\n");
2531    return !LI.isVolatile() && !IsPtrAdjusted;
2532  }
2533
2534  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
2535                                  StoreInst &SI, Value *OldOp) {
2536    unsigned BeginIndex = getIndex(BeginOffset);
2537    unsigned EndIndex = getIndex(EndOffset);
2538    assert(EndIndex > BeginIndex && "Empty vector!");
2539    unsigned NumElements = EndIndex - BeginIndex;
2540    assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2541    Type *PartitionTy
2542      = (NumElements == 1) ? ElementTy
2543                           : VectorType::get(ElementTy, NumElements);
2544    if (V->getType() != PartitionTy)
2545      V = convertValue(TD, IRB, V, PartitionTy);
2546
2547    // Mix in the existing elements.
2548    Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2549                                       getName(".load"));
2550    V = insertVector(IRB, Old, V, BeginIndex, getName(".vec"));
2551
2552    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2553    Pass.DeadInsts.insert(&SI);
2554
2555    (void)Store;
2556    DEBUG(dbgs() << "          to: " << *Store << "\n");
2557    return true;
2558  }
2559
2560  bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
2561    assert(IntTy && "We cannot extract an integer from the alloca");
2562    assert(!SI.isVolatile());
2563    if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2564      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2565                                         getName(".oldload"));
2566      Old = convertValue(TD, IRB, Old, IntTy);
2567      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2568      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2569      V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
2570                        getName(".insert"));
2571    }
2572    V = convertValue(TD, IRB, V, NewAllocaTy);
2573    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2574    Pass.DeadInsts.insert(&SI);
2575    (void)Store;
2576    DEBUG(dbgs() << "          to: " << *Store << "\n");
2577    return true;
2578  }
2579
2580  bool visitStoreInst(StoreInst &SI) {
2581    DEBUG(dbgs() << "    original: " << SI << "\n");
2582    Value *OldOp = SI.getOperand(1);
2583    assert(OldOp == OldPtr);
2584    IRBuilder<> IRB(&SI);
2585
2586    Value *V = SI.getValueOperand();
2587
2588    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2589    // alloca that should be re-examined after promoting this alloca.
2590    if (V->getType()->isPointerTy())
2591      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2592        Pass.PostPromotionWorklist.insert(AI);
2593
2594    uint64_t Size = EndOffset - BeginOffset;
2595    if (Size < TD.getTypeStoreSize(V->getType())) {
2596      assert(!SI.isVolatile());
2597      assert(V->getType()->isIntegerTy() &&
2598             "Only integer type loads and stores are split");
2599      assert(V->getType()->getIntegerBitWidth() ==
2600             TD.getTypeStoreSizeInBits(V->getType()) &&
2601             "Non-byte-multiple bit width");
2602      assert(V->getType()->getIntegerBitWidth() ==
2603             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2604             "Only alloca-wide stores can be split and recomposed");
2605      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2606      V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
2607                         getName(".extract"));
2608    }
2609
2610    if (VecTy)
2611      return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
2612    if (IntTy && V->getType()->isIntegerTy())
2613      return rewriteIntegerStore(IRB, V, SI);
2614
2615    StoreInst *NewSI;
2616    if (BeginOffset == NewAllocaBeginOffset &&
2617        canConvertValue(TD, V->getType(), NewAllocaTy)) {
2618      V = convertValue(TD, IRB, V, NewAllocaTy);
2619      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2620                                     SI.isVolatile());
2621    } else {
2622      Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
2623      NewSI = IRB.CreateAlignedStore(V, NewPtr,
2624                                     getPartitionTypeAlign(V->getType()),
2625                                     SI.isVolatile());
2626    }
2627    (void)NewSI;
2628    Pass.DeadInsts.insert(&SI);
2629    deleteIfTriviallyDead(OldOp);
2630
2631    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2632    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2633  }
2634
2635  /// \brief Compute an integer value from splatting an i8 across the given
2636  /// number of bytes.
2637  ///
2638  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2639  /// call this routine.
2640  /// FIXME: Heed the abvice above.
2641  ///
2642  /// \param V The i8 value to splat.
2643  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2644  Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
2645    assert(Size > 0 && "Expected a positive number of bytes.");
2646    IntegerType *VTy = cast<IntegerType>(V->getType());
2647    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2648    if (Size == 1)
2649      return V;
2650
2651    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2652    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
2653                      ConstantExpr::getUDiv(
2654                        Constant::getAllOnesValue(SplatIntTy),
2655                        ConstantExpr::getZExt(
2656                          Constant::getAllOnesValue(V->getType()),
2657                          SplatIntTy)),
2658                      getName(".isplat"));
2659    return V;
2660  }
2661
2662  /// \brief Compute a vector splat for a given element value.
2663  Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) {
2664    assert(NumElements > 0 && "Cannot splat to an empty vector.");
2665
2666    // First insert it into a one-element vector so we can shuffle it. It is
2667    // really silly that LLVM's IR requires this in order to form a splat.
2668    Value *Undef = UndefValue::get(VectorType::get(V->getType(), 1));
2669    V = IRB.CreateInsertElement(Undef, V, IRB.getInt32(0),
2670                                getName(".splatinsert"));
2671
2672    // Shuffle the value across the desired number of elements.
2673    SmallVector<Constant*, 8> Mask(NumElements, IRB.getInt32(0));
2674    V = IRB.CreateShuffleVector(V, Undef, ConstantVector::get(Mask),
2675                                getName(".splat"));
2676    DEBUG(dbgs() << "       splat: " << *V << "\n");
2677    return V;
2678  }
2679
2680  bool visitMemSetInst(MemSetInst &II) {
2681    DEBUG(dbgs() << "    original: " << II << "\n");
2682    IRBuilder<> IRB(&II);
2683    assert(II.getRawDest() == OldPtr);
2684
2685    // If the memset has a variable size, it cannot be split, just adjust the
2686    // pointer to the new alloca.
2687    if (!isa<Constant>(II.getLength())) {
2688      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2689      Type *CstTy = II.getAlignmentCst()->getType();
2690      II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
2691
2692      deleteIfTriviallyDead(OldPtr);
2693      return false;
2694    }
2695
2696    // Record this instruction for deletion.
2697    Pass.DeadInsts.insert(&II);
2698
2699    Type *AllocaTy = NewAI.getAllocatedType();
2700    Type *ScalarTy = AllocaTy->getScalarType();
2701
2702    // If this doesn't map cleanly onto the alloca type, and that type isn't
2703    // a single value type, just emit a memset.
2704    if (!VecTy && !IntTy &&
2705        (BeginOffset != NewAllocaBeginOffset ||
2706         EndOffset != NewAllocaEndOffset ||
2707         !AllocaTy->isSingleValueType() ||
2708         !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
2709         TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2710      Type *SizeTy = II.getLength()->getType();
2711      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2712      CallInst *New
2713        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2714                                                II.getRawDest()->getType()),
2715                           II.getValue(), Size, getPartitionAlign(),
2716                           II.isVolatile());
2717      (void)New;
2718      DEBUG(dbgs() << "          to: " << *New << "\n");
2719      return false;
2720    }
2721
2722    // If we can represent this as a simple value, we have to build the actual
2723    // value to store, which requires expanding the byte present in memset to
2724    // a sensible representation for the alloca type. This is essentially
2725    // splatting the byte to a sufficiently wide integer, splatting it across
2726    // any desired vector width, and bitcasting to the final type.
2727    uint64_t Size = EndOffset - BeginOffset;
2728    Value *V = getIntegerSplat(IRB, II.getValue(), Size);
2729
2730    if (VecTy) {
2731      // If this is a memset of a vectorized alloca, insert it.
2732      assert(ElementTy == ScalarTy);
2733
2734      unsigned BeginIndex = getIndex(BeginOffset);
2735      unsigned EndIndex = getIndex(EndOffset);
2736      assert(EndIndex > BeginIndex && "Empty vector!");
2737      unsigned NumElements = EndIndex - BeginIndex;
2738      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2739
2740      Value *Splat = getIntegerSplat(IRB, II.getValue(),
2741                                     TD.getTypeSizeInBits(ElementTy)/8);
2742      Splat = convertValue(TD, IRB, Splat, ElementTy);
2743      if (NumElements > 1)
2744        Splat = getVectorSplat(IRB, Splat, NumElements);
2745
2746      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2747                                         getName(".oldload"));
2748      V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec"));
2749    } else if (IntTy) {
2750      // If this is a memset on an alloca where we can widen stores, insert the
2751      // set integer.
2752      assert(!II.isVolatile());
2753
2754      V = getIntegerSplat(IRB, II.getValue(), Size);
2755
2756      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2757                    EndOffset != NewAllocaBeginOffset)) {
2758        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2759                                           getName(".oldload"));
2760        Old = convertValue(TD, IRB, Old, IntTy);
2761        assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2762        uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2763        V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
2764      } else {
2765        assert(V->getType() == IntTy &&
2766               "Wrong type for an alloca wide integer!");
2767      }
2768      V = convertValue(TD, IRB, V, AllocaTy);
2769    } else {
2770      // Established these invariants above.
2771      assert(BeginOffset == NewAllocaBeginOffset);
2772      assert(EndOffset == NewAllocaEndOffset);
2773
2774      V = getIntegerSplat(IRB, II.getValue(),
2775                          TD.getTypeSizeInBits(ScalarTy)/8);
2776      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2777        V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements());
2778
2779      V = convertValue(TD, IRB, V, AllocaTy);
2780    }
2781
2782    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2783                                        II.isVolatile());
2784    (void)New;
2785    DEBUG(dbgs() << "          to: " << *New << "\n");
2786    return !II.isVolatile();
2787  }
2788
2789  bool visitMemTransferInst(MemTransferInst &II) {
2790    // Rewriting of memory transfer instructions can be a bit tricky. We break
2791    // them into two categories: split intrinsics and unsplit intrinsics.
2792
2793    DEBUG(dbgs() << "    original: " << II << "\n");
2794    IRBuilder<> IRB(&II);
2795
2796    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2797    bool IsDest = II.getRawDest() == OldPtr;
2798
2799    const AllocaPartitioning::MemTransferOffsets &MTO
2800      = P.getMemTransferOffsets(II);
2801
2802    // Compute the relative offset within the transfer.
2803    unsigned IntPtrWidth = TD.getPointerSizeInBits();
2804    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2805                                                       : MTO.SourceBegin));
2806
2807    unsigned Align = II.getAlignment();
2808    if (Align > 1)
2809      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2810                       MinAlign(II.getAlignment(), getPartitionAlign()));
2811
2812    // For unsplit intrinsics, we simply modify the source and destination
2813    // pointers in place. This isn't just an optimization, it is a matter of
2814    // correctness. With unsplit intrinsics we may be dealing with transfers
2815    // within a single alloca before SROA ran, or with transfers that have
2816    // a variable length. We may also be dealing with memmove instead of
2817    // memcpy, and so simply updating the pointers is the necessary for us to
2818    // update both source and dest of a single call.
2819    if (!MTO.IsSplittable) {
2820      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2821      if (IsDest)
2822        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2823      else
2824        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2825
2826      Type *CstTy = II.getAlignmentCst()->getType();
2827      II.setAlignment(ConstantInt::get(CstTy, Align));
2828
2829      DEBUG(dbgs() << "          to: " << II << "\n");
2830      deleteIfTriviallyDead(OldOp);
2831      return false;
2832    }
2833    // For split transfer intrinsics we have an incredibly useful assurance:
2834    // the source and destination do not reside within the same alloca, and at
2835    // least one of them does not escape. This means that we can replace
2836    // memmove with memcpy, and we don't need to worry about all manner of
2837    // downsides to splitting and transforming the operations.
2838
2839    // If this doesn't map cleanly onto the alloca type, and that type isn't
2840    // a single value type, just emit a memcpy.
2841    bool EmitMemCpy
2842      = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2843                             EndOffset != NewAllocaEndOffset ||
2844                             !NewAI.getAllocatedType()->isSingleValueType());
2845
2846    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2847    // size hasn't been shrunk based on analysis of the viable range, this is
2848    // a no-op.
2849    if (EmitMemCpy && &OldAI == &NewAI) {
2850      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2851      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2852      // Ensure the start lines up.
2853      assert(BeginOffset == OrigBegin);
2854      (void)OrigBegin;
2855
2856      // Rewrite the size as needed.
2857      if (EndOffset != OrigEnd)
2858        II.setLength(ConstantInt::get(II.getLength()->getType(),
2859                                      EndOffset - BeginOffset));
2860      return false;
2861    }
2862    // Record this instruction for deletion.
2863    Pass.DeadInsts.insert(&II);
2864
2865    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2866    // alloca that should be re-examined after rewriting this instruction.
2867    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2868    if (AllocaInst *AI
2869          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2870      Pass.Worklist.insert(AI);
2871
2872    if (EmitMemCpy) {
2873      Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2874                                : II.getRawDest()->getType();
2875
2876      // Compute the other pointer, folding as much as possible to produce
2877      // a single, simple GEP in most cases.
2878      OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2879                                getName("." + OtherPtr->getName()));
2880
2881      Value *OurPtr
2882        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2883                                           : II.getRawSource()->getType());
2884      Type *SizeTy = II.getLength()->getType();
2885      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2886
2887      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2888                                       IsDest ? OtherPtr : OurPtr,
2889                                       Size, Align, II.isVolatile());
2890      (void)New;
2891      DEBUG(dbgs() << "          to: " << *New << "\n");
2892      return false;
2893    }
2894
2895    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2896    // is equivalent to 1, but that isn't true if we end up rewriting this as
2897    // a load or store.
2898    if (!Align)
2899      Align = 1;
2900
2901    bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2902                         EndOffset == NewAllocaEndOffset;
2903    uint64_t Size = EndOffset - BeginOffset;
2904    unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
2905    unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
2906    unsigned NumElements = EndIndex - BeginIndex;
2907    IntegerType *SubIntTy
2908      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2909
2910    Type *OtherPtrTy = NewAI.getType();
2911    if (VecTy && !IsWholeAlloca) {
2912      if (NumElements == 1)
2913        OtherPtrTy = VecTy->getElementType();
2914      else
2915        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2916
2917      OtherPtrTy = OtherPtrTy->getPointerTo();
2918    } else if (IntTy && !IsWholeAlloca) {
2919      OtherPtrTy = SubIntTy->getPointerTo();
2920    }
2921
2922    Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2923                                   getName("." + OtherPtr->getName()));
2924    Value *DstPtr = &NewAI;
2925    if (!IsDest)
2926      std::swap(SrcPtr, DstPtr);
2927
2928    Value *Src;
2929    if (VecTy && !IsWholeAlloca && !IsDest) {
2930      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2931                                  getName(".load"));
2932      Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec"));
2933    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2934      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2935                                  getName(".load"));
2936      Src = convertValue(TD, IRB, Src, IntTy);
2937      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2938      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2939      Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
2940    } else {
2941      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2942                                  getName(".copyload"));
2943    }
2944
2945    if (VecTy && !IsWholeAlloca && IsDest) {
2946      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2947                                         getName(".oldload"));
2948      Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec"));
2949    } else if (IntTy && !IsWholeAlloca && IsDest) {
2950      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2951                                         getName(".oldload"));
2952      Old = convertValue(TD, IRB, Old, IntTy);
2953      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2954      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2955      Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
2956      Src = convertValue(TD, IRB, Src, NewAllocaTy);
2957    }
2958
2959    StoreInst *Store = cast<StoreInst>(
2960      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2961    (void)Store;
2962    DEBUG(dbgs() << "          to: " << *Store << "\n");
2963    return !II.isVolatile();
2964  }
2965
2966  bool visitIntrinsicInst(IntrinsicInst &II) {
2967    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2968           II.getIntrinsicID() == Intrinsic::lifetime_end);
2969    DEBUG(dbgs() << "    original: " << II << "\n");
2970    IRBuilder<> IRB(&II);
2971    assert(II.getArgOperand(1) == OldPtr);
2972
2973    // Record this instruction for deletion.
2974    Pass.DeadInsts.insert(&II);
2975
2976    ConstantInt *Size
2977      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2978                         EndOffset - BeginOffset);
2979    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2980    Value *New;
2981    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2982      New = IRB.CreateLifetimeStart(Ptr, Size);
2983    else
2984      New = IRB.CreateLifetimeEnd(Ptr, Size);
2985
2986    DEBUG(dbgs() << "          to: " << *New << "\n");
2987    return true;
2988  }
2989
2990  bool visitPHINode(PHINode &PN) {
2991    DEBUG(dbgs() << "    original: " << PN << "\n");
2992
2993    // We would like to compute a new pointer in only one place, but have it be
2994    // as local as possible to the PHI. To do that, we re-use the location of
2995    // the old pointer, which necessarily must be in the right position to
2996    // dominate the PHI.
2997    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2998
2999    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
3000    // Replace the operands which were using the old pointer.
3001    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3002
3003    DEBUG(dbgs() << "          to: " << PN << "\n");
3004    deleteIfTriviallyDead(OldPtr);
3005    return false;
3006  }
3007
3008  bool visitSelectInst(SelectInst &SI) {
3009    DEBUG(dbgs() << "    original: " << SI << "\n");
3010    IRBuilder<> IRB(&SI);
3011
3012    // Find the operand we need to rewrite here.
3013    bool IsTrueVal = SI.getTrueValue() == OldPtr;
3014    if (IsTrueVal)
3015      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
3016    else
3017      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
3018
3019    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
3020    SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
3021    DEBUG(dbgs() << "          to: " << SI << "\n");
3022    deleteIfTriviallyDead(OldPtr);
3023    return false;
3024  }
3025
3026};
3027}
3028
3029namespace {
3030/// \brief Visitor to rewrite aggregate loads and stores as scalar.
3031///
3032/// This pass aggressively rewrites all aggregate loads and stores on
3033/// a particular pointer (or any pointer derived from it which we can identify)
3034/// with scalar loads and stores.
3035class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3036  // Befriend the base class so it can delegate to private visit methods.
3037  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3038
3039  const DataLayout &TD;
3040
3041  /// Queue of pointer uses to analyze and potentially rewrite.
3042  SmallVector<Use *, 8> Queue;
3043
3044  /// Set to prevent us from cycling with phi nodes and loops.
3045  SmallPtrSet<User *, 8> Visited;
3046
3047  /// The current pointer use being rewritten. This is used to dig up the used
3048  /// value (as opposed to the user).
3049  Use *U;
3050
3051public:
3052  AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
3053
3054  /// Rewrite loads and stores through a pointer and all pointers derived from
3055  /// it.
3056  bool rewrite(Instruction &I) {
3057    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3058    enqueueUsers(I);
3059    bool Changed = false;
3060    while (!Queue.empty()) {
3061      U = Queue.pop_back_val();
3062      Changed |= visit(cast<Instruction>(U->getUser()));
3063    }
3064    return Changed;
3065  }
3066
3067private:
3068  /// Enqueue all the users of the given instruction for further processing.
3069  /// This uses a set to de-duplicate users.
3070  void enqueueUsers(Instruction &I) {
3071    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3072         ++UI)
3073      if (Visited.insert(*UI))
3074        Queue.push_back(&UI.getUse());
3075  }
3076
3077  // Conservative default is to not rewrite anything.
3078  bool visitInstruction(Instruction &I) { return false; }
3079
3080  /// \brief Generic recursive split emission class.
3081  template <typename Derived>
3082  class OpSplitter {
3083  protected:
3084    /// The builder used to form new instructions.
3085    IRBuilder<> IRB;
3086    /// The indices which to be used with insert- or extractvalue to select the
3087    /// appropriate value within the aggregate.
3088    SmallVector<unsigned, 4> Indices;
3089    /// The indices to a GEP instruction which will move Ptr to the correct slot
3090    /// within the aggregate.
3091    SmallVector<Value *, 4> GEPIndices;
3092    /// The base pointer of the original op, used as a base for GEPing the
3093    /// split operations.
3094    Value *Ptr;
3095
3096    /// Initialize the splitter with an insertion point, Ptr and start with a
3097    /// single zero GEP index.
3098    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3099      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3100
3101  public:
3102    /// \brief Generic recursive split emission routine.
3103    ///
3104    /// This method recursively splits an aggregate op (load or store) into
3105    /// scalar or vector ops. It splits recursively until it hits a single value
3106    /// and emits that single value operation via the template argument.
3107    ///
3108    /// The logic of this routine relies on GEPs and insertvalue and
3109    /// extractvalue all operating with the same fundamental index list, merely
3110    /// formatted differently (GEPs need actual values).
3111    ///
3112    /// \param Ty  The type being split recursively into smaller ops.
3113    /// \param Agg The aggregate value being built up or stored, depending on
3114    /// whether this is splitting a load or a store respectively.
3115    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3116      if (Ty->isSingleValueType())
3117        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3118
3119      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3120        unsigned OldSize = Indices.size();
3121        (void)OldSize;
3122        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3123             ++Idx) {
3124          assert(Indices.size() == OldSize && "Did not return to the old size");
3125          Indices.push_back(Idx);
3126          GEPIndices.push_back(IRB.getInt32(Idx));
3127          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3128          GEPIndices.pop_back();
3129          Indices.pop_back();
3130        }
3131        return;
3132      }
3133
3134      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3135        unsigned OldSize = Indices.size();
3136        (void)OldSize;
3137        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3138             ++Idx) {
3139          assert(Indices.size() == OldSize && "Did not return to the old size");
3140          Indices.push_back(Idx);
3141          GEPIndices.push_back(IRB.getInt32(Idx));
3142          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3143          GEPIndices.pop_back();
3144          Indices.pop_back();
3145        }
3146        return;
3147      }
3148
3149      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3150    }
3151  };
3152
3153  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3154    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3155      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3156
3157    /// Emit a leaf load of a single value. This is called at the leaves of the
3158    /// recursive emission to actually load values.
3159    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3160      assert(Ty->isSingleValueType());
3161      // Load the single value and insert it using the indices.
3162      Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
3163                                                         Name + ".gep"),
3164                                   Name + ".load");
3165      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3166      DEBUG(dbgs() << "          to: " << *Load << "\n");
3167    }
3168  };
3169
3170  bool visitLoadInst(LoadInst &LI) {
3171    assert(LI.getPointerOperand() == *U);
3172    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3173      return false;
3174
3175    // We have an aggregate being loaded, split it apart.
3176    DEBUG(dbgs() << "    original: " << LI << "\n");
3177    LoadOpSplitter Splitter(&LI, *U);
3178    Value *V = UndefValue::get(LI.getType());
3179    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3180    LI.replaceAllUsesWith(V);
3181    LI.eraseFromParent();
3182    return true;
3183  }
3184
3185  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3186    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3187      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3188
3189    /// Emit a leaf store of a single value. This is called at the leaves of the
3190    /// recursive emission to actually produce stores.
3191    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3192      assert(Ty->isSingleValueType());
3193      // Extract the single value and store it using the indices.
3194      Value *Store = IRB.CreateStore(
3195        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3196        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3197      (void)Store;
3198      DEBUG(dbgs() << "          to: " << *Store << "\n");
3199    }
3200  };
3201
3202  bool visitStoreInst(StoreInst &SI) {
3203    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3204      return false;
3205    Value *V = SI.getValueOperand();
3206    if (V->getType()->isSingleValueType())
3207      return false;
3208
3209    // We have an aggregate being stored, split it apart.
3210    DEBUG(dbgs() << "    original: " << SI << "\n");
3211    StoreOpSplitter Splitter(&SI, *U);
3212    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3213    SI.eraseFromParent();
3214    return true;
3215  }
3216
3217  bool visitBitCastInst(BitCastInst &BC) {
3218    enqueueUsers(BC);
3219    return false;
3220  }
3221
3222  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3223    enqueueUsers(GEPI);
3224    return false;
3225  }
3226
3227  bool visitPHINode(PHINode &PN) {
3228    enqueueUsers(PN);
3229    return false;
3230  }
3231
3232  bool visitSelectInst(SelectInst &SI) {
3233    enqueueUsers(SI);
3234    return false;
3235  }
3236};
3237}
3238
3239/// \brief Strip aggregate type wrapping.
3240///
3241/// This removes no-op aggregate types wrapping an underlying type. It will
3242/// strip as many layers of types as it can without changing either the type
3243/// size or the allocated size.
3244static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3245  if (Ty->isSingleValueType())
3246    return Ty;
3247
3248  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3249  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3250
3251  Type *InnerTy;
3252  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3253    InnerTy = ArrTy->getElementType();
3254  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3255    const StructLayout *SL = DL.getStructLayout(STy);
3256    unsigned Index = SL->getElementContainingOffset(0);
3257    InnerTy = STy->getElementType(Index);
3258  } else {
3259    return Ty;
3260  }
3261
3262  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3263      TypeSize > DL.getTypeSizeInBits(InnerTy))
3264    return Ty;
3265
3266  return stripAggregateTypeWrapping(DL, InnerTy);
3267}
3268
3269/// \brief Try to find a partition of the aggregate type passed in for a given
3270/// offset and size.
3271///
3272/// This recurses through the aggregate type and tries to compute a subtype
3273/// based on the offset and size. When the offset and size span a sub-section
3274/// of an array, it will even compute a new array type for that sub-section,
3275/// and the same for structs.
3276///
3277/// Note that this routine is very strict and tries to find a partition of the
3278/// type which produces the *exact* right offset and size. It is not forgiving
3279/// when the size or offset cause either end of type-based partition to be off.
3280/// Also, this is a best-effort routine. It is reasonable to give up and not
3281/// return a type if necessary.
3282static Type *getTypePartition(const DataLayout &TD, Type *Ty,
3283                              uint64_t Offset, uint64_t Size) {
3284  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3285    return stripAggregateTypeWrapping(TD, Ty);
3286  if (Offset > TD.getTypeAllocSize(Ty) ||
3287      (TD.getTypeAllocSize(Ty) - Offset) < Size)
3288    return 0;
3289
3290  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3291    // We can't partition pointers...
3292    if (SeqTy->isPointerTy())
3293      return 0;
3294
3295    Type *ElementTy = SeqTy->getElementType();
3296    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3297    uint64_t NumSkippedElements = Offset / ElementSize;
3298    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3299      if (NumSkippedElements >= ArrTy->getNumElements())
3300        return 0;
3301    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3302      if (NumSkippedElements >= VecTy->getNumElements())
3303        return 0;
3304    Offset -= NumSkippedElements * ElementSize;
3305
3306    // First check if we need to recurse.
3307    if (Offset > 0 || Size < ElementSize) {
3308      // Bail if the partition ends in a different array element.
3309      if ((Offset + Size) > ElementSize)
3310        return 0;
3311      // Recurse through the element type trying to peel off offset bytes.
3312      return getTypePartition(TD, ElementTy, Offset, Size);
3313    }
3314    assert(Offset == 0);
3315
3316    if (Size == ElementSize)
3317      return stripAggregateTypeWrapping(TD, ElementTy);
3318    assert(Size > ElementSize);
3319    uint64_t NumElements = Size / ElementSize;
3320    if (NumElements * ElementSize != Size)
3321      return 0;
3322    return ArrayType::get(ElementTy, NumElements);
3323  }
3324
3325  StructType *STy = dyn_cast<StructType>(Ty);
3326  if (!STy)
3327    return 0;
3328
3329  const StructLayout *SL = TD.getStructLayout(STy);
3330  if (Offset >= SL->getSizeInBytes())
3331    return 0;
3332  uint64_t EndOffset = Offset + Size;
3333  if (EndOffset > SL->getSizeInBytes())
3334    return 0;
3335
3336  unsigned Index = SL->getElementContainingOffset(Offset);
3337  Offset -= SL->getElementOffset(Index);
3338
3339  Type *ElementTy = STy->getElementType(Index);
3340  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3341  if (Offset >= ElementSize)
3342    return 0; // The offset points into alignment padding.
3343
3344  // See if any partition must be contained by the element.
3345  if (Offset > 0 || Size < ElementSize) {
3346    if ((Offset + Size) > ElementSize)
3347      return 0;
3348    return getTypePartition(TD, ElementTy, Offset, Size);
3349  }
3350  assert(Offset == 0);
3351
3352  if (Size == ElementSize)
3353    return stripAggregateTypeWrapping(TD, ElementTy);
3354
3355  StructType::element_iterator EI = STy->element_begin() + Index,
3356                               EE = STy->element_end();
3357  if (EndOffset < SL->getSizeInBytes()) {
3358    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3359    if (Index == EndIndex)
3360      return 0; // Within a single element and its padding.
3361
3362    // Don't try to form "natural" types if the elements don't line up with the
3363    // expected size.
3364    // FIXME: We could potentially recurse down through the last element in the
3365    // sub-struct to find a natural end point.
3366    if (SL->getElementOffset(EndIndex) != EndOffset)
3367      return 0;
3368
3369    assert(Index < EndIndex);
3370    EE = STy->element_begin() + EndIndex;
3371  }
3372
3373  // Try to build up a sub-structure.
3374  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3375                                      STy->isPacked());
3376  const StructLayout *SubSL = TD.getStructLayout(SubTy);
3377  if (Size != SubSL->getSizeInBytes())
3378    return 0; // The sub-struct doesn't have quite the size needed.
3379
3380  return SubTy;
3381}
3382
3383/// \brief Rewrite an alloca partition's users.
3384///
3385/// This routine drives both of the rewriting goals of the SROA pass. It tries
3386/// to rewrite uses of an alloca partition to be conducive for SSA value
3387/// promotion. If the partition needs a new, more refined alloca, this will
3388/// build that new alloca, preserving as much type information as possible, and
3389/// rewrite the uses of the old alloca to point at the new one and have the
3390/// appropriate new offsets. It also evaluates how successful the rewrite was
3391/// at enabling promotion and if it was successful queues the alloca to be
3392/// promoted.
3393bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3394                                  AllocaPartitioning &P,
3395                                  AllocaPartitioning::iterator PI) {
3396  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
3397  bool IsLive = false;
3398  for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3399                                        UE = P.use_end(PI);
3400       UI != UE && !IsLive; ++UI)
3401    if (UI->U)
3402      IsLive = true;
3403  if (!IsLive)
3404    return false; // No live uses left of this partition.
3405
3406  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3407               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3408
3409  PHIOrSelectSpeculator Speculator(*TD, P, *this);
3410  DEBUG(dbgs() << "  speculating ");
3411  DEBUG(P.print(dbgs(), PI, ""));
3412  Speculator.visitUsers(PI);
3413
3414  // Try to compute a friendly type for this partition of the alloca. This
3415  // won't always succeed, in which case we fall back to a legal integer type
3416  // or an i8 array of an appropriate size.
3417  Type *AllocaTy = 0;
3418  if (Type *PartitionTy = P.getCommonType(PI))
3419    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3420      AllocaTy = PartitionTy;
3421  if (!AllocaTy)
3422    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3423                                             PI->BeginOffset, AllocaSize))
3424      AllocaTy = PartitionTy;
3425  if ((!AllocaTy ||
3426       (AllocaTy->isArrayTy() &&
3427        AllocaTy->getArrayElementType()->isIntegerTy())) &&
3428      TD->isLegalInteger(AllocaSize * 8))
3429    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3430  if (!AllocaTy)
3431    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
3432  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
3433
3434  // Check for the case where we're going to rewrite to a new alloca of the
3435  // exact same type as the original, and with the same access offsets. In that
3436  // case, re-use the existing alloca, but still run through the rewriter to
3437  // performe phi and select speculation.
3438  AllocaInst *NewAI;
3439  if (AllocaTy == AI.getAllocatedType()) {
3440    assert(PI->BeginOffset == 0 &&
3441           "Non-zero begin offset but same alloca type");
3442    assert(PI == P.begin() && "Begin offset is zero on later partition");
3443    NewAI = &AI;
3444  } else {
3445    unsigned Alignment = AI.getAlignment();
3446    if (!Alignment) {
3447      // The minimum alignment which users can rely on when the explicit
3448      // alignment is omitted or zero is that required by the ABI for this
3449      // type.
3450      Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3451    }
3452    Alignment = MinAlign(Alignment, PI->BeginOffset);
3453    // If we will get at least this much alignment from the type alone, leave
3454    // the alloca's alignment unconstrained.
3455    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3456      Alignment = 0;
3457    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
3458                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
3459                           &AI);
3460    ++NumNewAllocas;
3461  }
3462
3463  DEBUG(dbgs() << "Rewriting alloca partition "
3464               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3465               << *NewAI << "\n");
3466
3467  // Track the high watermark of the post-promotion worklist. We will reset it
3468  // to this point if the alloca is not in fact scheduled for promotion.
3469  unsigned PPWOldSize = PostPromotionWorklist.size();
3470
3471  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3472                                   PI->BeginOffset, PI->EndOffset);
3473  DEBUG(dbgs() << "  rewriting ");
3474  DEBUG(P.print(dbgs(), PI, ""));
3475  bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3476  if (Promotable) {
3477    DEBUG(dbgs() << "  and queuing for promotion\n");
3478    PromotableAllocas.push_back(NewAI);
3479  } else if (NewAI != &AI) {
3480    // If we can't promote the alloca, iterate on it to check for new
3481    // refinements exposed by splitting the current alloca. Don't iterate on an
3482    // alloca which didn't actually change and didn't get promoted.
3483    Worklist.insert(NewAI);
3484  }
3485
3486  // Drop any post-promotion work items if promotion didn't happen.
3487  if (!Promotable)
3488    while (PostPromotionWorklist.size() > PPWOldSize)
3489      PostPromotionWorklist.pop_back();
3490
3491  return true;
3492}
3493
3494/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3495bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3496  bool Changed = false;
3497  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3498       ++PI)
3499    Changed |= rewriteAllocaPartition(AI, P, PI);
3500
3501  return Changed;
3502}
3503
3504/// \brief Analyze an alloca for SROA.
3505///
3506/// This analyzes the alloca to ensure we can reason about it, builds
3507/// a partitioning of the alloca, and then hands it off to be split and
3508/// rewritten as needed.
3509bool SROA::runOnAlloca(AllocaInst &AI) {
3510  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3511  ++NumAllocasAnalyzed;
3512
3513  // Special case dead allocas, as they're trivial.
3514  if (AI.use_empty()) {
3515    AI.eraseFromParent();
3516    return true;
3517  }
3518
3519  // Skip alloca forms that this analysis can't handle.
3520  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3521      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3522    return false;
3523
3524  bool Changed = false;
3525
3526  // First, split any FCA loads and stores touching this alloca to promote
3527  // better splitting and promotion opportunities.
3528  AggLoadStoreRewriter AggRewriter(*TD);
3529  Changed |= AggRewriter.rewrite(AI);
3530
3531  // Build the partition set using a recursive instruction-visiting builder.
3532  AllocaPartitioning P(*TD, AI);
3533  DEBUG(P.print(dbgs()));
3534  if (P.isEscaped())
3535    return Changed;
3536
3537  // Delete all the dead users of this alloca before splitting and rewriting it.
3538  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3539                                              DE = P.dead_user_end();
3540       DI != DE; ++DI) {
3541    Changed = true;
3542    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3543    DeadInsts.insert(*DI);
3544  }
3545  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3546                                            DE = P.dead_op_end();
3547       DO != DE; ++DO) {
3548    Value *OldV = **DO;
3549    // Clobber the use with an undef value.
3550    **DO = UndefValue::get(OldV->getType());
3551    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3552      if (isInstructionTriviallyDead(OldI)) {
3553        Changed = true;
3554        DeadInsts.insert(OldI);
3555      }
3556  }
3557
3558  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3559  if (P.begin() == P.end())
3560    return Changed;
3561
3562  return splitAlloca(AI, P) || Changed;
3563}
3564
3565/// \brief Delete the dead instructions accumulated in this run.
3566///
3567/// Recursively deletes the dead instructions we've accumulated. This is done
3568/// at the very end to maximize locality of the recursive delete and to
3569/// minimize the problems of invalidated instruction pointers as such pointers
3570/// are used heavily in the intermediate stages of the algorithm.
3571///
3572/// We also record the alloca instructions deleted here so that they aren't
3573/// subsequently handed to mem2reg to promote.
3574void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3575  while (!DeadInsts.empty()) {
3576    Instruction *I = DeadInsts.pop_back_val();
3577    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3578
3579    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3580
3581    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3582      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3583        // Zero out the operand and see if it becomes trivially dead.
3584        *OI = 0;
3585        if (isInstructionTriviallyDead(U))
3586          DeadInsts.insert(U);
3587      }
3588
3589    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3590      DeletedAllocas.insert(AI);
3591
3592    ++NumDeleted;
3593    I->eraseFromParent();
3594  }
3595}
3596
3597/// \brief Promote the allocas, using the best available technique.
3598///
3599/// This attempts to promote whatever allocas have been identified as viable in
3600/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3601/// If there is a domtree available, we attempt to promote using the full power
3602/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3603/// based on the SSAUpdater utilities. This function returns whether any
3604/// promotion occured.
3605bool SROA::promoteAllocas(Function &F) {
3606  if (PromotableAllocas.empty())
3607    return false;
3608
3609  NumPromoted += PromotableAllocas.size();
3610
3611  if (DT && !ForceSSAUpdater) {
3612    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3613    PromoteMemToReg(PromotableAllocas, *DT);
3614    PromotableAllocas.clear();
3615    return true;
3616  }
3617
3618  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3619  SSAUpdater SSA;
3620  DIBuilder DIB(*F.getParent());
3621  SmallVector<Instruction*, 64> Insts;
3622
3623  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3624    AllocaInst *AI = PromotableAllocas[Idx];
3625    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3626         UI != UE;) {
3627      Instruction *I = cast<Instruction>(*UI++);
3628      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3629      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3630      // leading to them) here. Eventually it should use them to optimize the
3631      // scalar values produced.
3632      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3633        assert(onlyUsedByLifetimeMarkers(I) &&
3634               "Found a bitcast used outside of a lifetime marker.");
3635        while (!I->use_empty())
3636          cast<Instruction>(*I->use_begin())->eraseFromParent();
3637        I->eraseFromParent();
3638        continue;
3639      }
3640      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3641        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3642               II->getIntrinsicID() == Intrinsic::lifetime_end);
3643        II->eraseFromParent();
3644        continue;
3645      }
3646
3647      Insts.push_back(I);
3648    }
3649    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3650    Insts.clear();
3651  }
3652
3653  PromotableAllocas.clear();
3654  return true;
3655}
3656
3657namespace {
3658  /// \brief A predicate to test whether an alloca belongs to a set.
3659  class IsAllocaInSet {
3660    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3661    const SetType &Set;
3662
3663  public:
3664    typedef AllocaInst *argument_type;
3665
3666    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3667    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3668  };
3669}
3670
3671bool SROA::runOnFunction(Function &F) {
3672  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3673  C = &F.getContext();
3674  TD = getAnalysisIfAvailable<DataLayout>();
3675  if (!TD) {
3676    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3677    return false;
3678  }
3679  DT = getAnalysisIfAvailable<DominatorTree>();
3680
3681  BasicBlock &EntryBB = F.getEntryBlock();
3682  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3683       I != E; ++I)
3684    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3685      Worklist.insert(AI);
3686
3687  bool Changed = false;
3688  // A set of deleted alloca instruction pointers which should be removed from
3689  // the list of promotable allocas.
3690  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3691
3692  do {
3693    while (!Worklist.empty()) {
3694      Changed |= runOnAlloca(*Worklist.pop_back_val());
3695      deleteDeadInstructions(DeletedAllocas);
3696
3697      // Remove the deleted allocas from various lists so that we don't try to
3698      // continue processing them.
3699      if (!DeletedAllocas.empty()) {
3700        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3701        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3702        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3703                                               PromotableAllocas.end(),
3704                                               IsAllocaInSet(DeletedAllocas)),
3705                                PromotableAllocas.end());
3706        DeletedAllocas.clear();
3707      }
3708    }
3709
3710    Changed |= promoteAllocas(F);
3711
3712    Worklist = PostPromotionWorklist;
3713    PostPromotionWorklist.clear();
3714  } while (!Worklist.empty());
3715
3716  return Changed;
3717}
3718
3719void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3720  if (RequiresDomTree)
3721    AU.addRequired<DominatorTree>();
3722  AU.setPreservesCFG();
3723}
3724