SROA.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Loads.h"
32#include "llvm/Analysis/PtrUseVisitor.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DIBuilder.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DebugInfo.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/InstVisitor.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/TimeValue.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58
59#if __cplusplus >= 201103L && !defined(NDEBUG)
60// We only use this for a debug check in C++11
61#include <random>
62#endif
63
64using namespace llvm;
65
66#define DEBUG_TYPE "sroa"
67
68STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
69STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
70STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
71STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
72STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
73STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
74STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
75STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
76STATISTIC(NumDeleted, "Number of instructions deleted");
77STATISTIC(NumVectorized, "Number of vectorized aggregates");
78
79/// Hidden option to force the pass to not use DomTree and mem2reg, instead
80/// forming SSA values through the SSAUpdater infrastructure.
81static cl::opt<bool>
82ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
83
84/// Hidden option to enable randomly shuffling the slices to help uncover
85/// instability in their order.
86static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
87                                             cl::init(false), cl::Hidden);
88
89/// Hidden option to experiment with completely strict handling of inbounds
90/// GEPs.
91static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds",
92                                        cl::init(false), cl::Hidden);
93
94namespace {
95/// \brief A custom IRBuilder inserter which prefixes all names if they are
96/// preserved.
97template <bool preserveNames = true>
98class IRBuilderPrefixedInserter :
99    public IRBuilderDefaultInserter<preserveNames> {
100  std::string Prefix;
101
102public:
103  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
104
105protected:
106  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
107                    BasicBlock::iterator InsertPt) const {
108    IRBuilderDefaultInserter<preserveNames>::InsertHelper(
109        I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
110  }
111};
112
113// Specialization for not preserving the name is trivial.
114template <>
115class IRBuilderPrefixedInserter<false> :
116    public IRBuilderDefaultInserter<false> {
117public:
118  void SetNamePrefix(const Twine &P) {}
119};
120
121/// \brief Provide a typedef for IRBuilder that drops names in release builds.
122#ifndef NDEBUG
123typedef llvm::IRBuilder<true, ConstantFolder,
124                        IRBuilderPrefixedInserter<true> > IRBuilderTy;
125#else
126typedef llvm::IRBuilder<false, ConstantFolder,
127                        IRBuilderPrefixedInserter<false> > IRBuilderTy;
128#endif
129}
130
131namespace {
132/// \brief A used slice of an alloca.
133///
134/// This structure represents a slice of an alloca used by some instruction. It
135/// stores both the begin and end offsets of this use, a pointer to the use
136/// itself, and a flag indicating whether we can classify the use as splittable
137/// or not when forming partitions of the alloca.
138class Slice {
139  /// \brief The beginning offset of the range.
140  uint64_t BeginOffset;
141
142  /// \brief The ending offset, not included in the range.
143  uint64_t EndOffset;
144
145  /// \brief Storage for both the use of this slice and whether it can be
146  /// split.
147  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
148
149public:
150  Slice() : BeginOffset(), EndOffset() {}
151  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
152      : BeginOffset(BeginOffset), EndOffset(EndOffset),
153        UseAndIsSplittable(U, IsSplittable) {}
154
155  uint64_t beginOffset() const { return BeginOffset; }
156  uint64_t endOffset() const { return EndOffset; }
157
158  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
159  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
160
161  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
162
163  bool isDead() const { return getUse() == nullptr; }
164  void kill() { UseAndIsSplittable.setPointer(nullptr); }
165
166  /// \brief Support for ordering ranges.
167  ///
168  /// This provides an ordering over ranges such that start offsets are
169  /// always increasing, and within equal start offsets, the end offsets are
170  /// decreasing. Thus the spanning range comes first in a cluster with the
171  /// same start position.
172  bool operator<(const Slice &RHS) const {
173    if (beginOffset() < RHS.beginOffset()) return true;
174    if (beginOffset() > RHS.beginOffset()) return false;
175    if (isSplittable() != RHS.isSplittable()) return !isSplittable();
176    if (endOffset() > RHS.endOffset()) return true;
177    return false;
178  }
179
180  /// \brief Support comparison with a single offset to allow binary searches.
181  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
182                                              uint64_t RHSOffset) {
183    return LHS.beginOffset() < RHSOffset;
184  }
185  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
186                                              const Slice &RHS) {
187    return LHSOffset < RHS.beginOffset();
188  }
189
190  bool operator==(const Slice &RHS) const {
191    return isSplittable() == RHS.isSplittable() &&
192           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
193  }
194  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
195};
196} // end anonymous namespace
197
198namespace llvm {
199template <typename T> struct isPodLike;
200template <> struct isPodLike<Slice> {
201   static const bool value = true;
202};
203}
204
205namespace {
206/// \brief Representation of the alloca slices.
207///
208/// This class represents the slices of an alloca which are formed by its
209/// various uses. If a pointer escapes, we can't fully build a representation
210/// for the slices used and we reflect that in this structure. The uses are
211/// stored, sorted by increasing beginning offset and with unsplittable slices
212/// starting at a particular offset before splittable slices.
213class AllocaSlices {
214public:
215  /// \brief Construct the slices of a particular alloca.
216  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
217
218  /// \brief Test whether a pointer to the allocation escapes our analysis.
219  ///
220  /// If this is true, the slices are never fully built and should be
221  /// ignored.
222  bool isEscaped() const { return PointerEscapingInstr; }
223
224  /// \brief Support for iterating over the slices.
225  /// @{
226  typedef SmallVectorImpl<Slice>::iterator iterator;
227  iterator begin() { return Slices.begin(); }
228  iterator end() { return Slices.end(); }
229
230  typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
231  const_iterator begin() const { return Slices.begin(); }
232  const_iterator end() const { return Slices.end(); }
233  /// @}
234
235  /// \brief Allow iterating the dead users for this alloca.
236  ///
237  /// These are instructions which will never actually use the alloca as they
238  /// are outside the allocated range. They are safe to replace with undef and
239  /// delete.
240  /// @{
241  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
242  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
243  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
244  /// @}
245
246  /// \brief Allow iterating the dead expressions referring to this alloca.
247  ///
248  /// These are operands which have cannot actually be used to refer to the
249  /// alloca as they are outside its range and the user doesn't correct for
250  /// that. These mostly consist of PHI node inputs and the like which we just
251  /// need to replace with undef.
252  /// @{
253  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
254  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
255  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
256  /// @}
257
258#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
259  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
260  void printSlice(raw_ostream &OS, const_iterator I,
261                  StringRef Indent = "  ") const;
262  void printUse(raw_ostream &OS, const_iterator I,
263                StringRef Indent = "  ") const;
264  void print(raw_ostream &OS) const;
265  void dump(const_iterator I) const;
266  void dump() const;
267#endif
268
269private:
270  template <typename DerivedT, typename RetT = void> class BuilderBase;
271  class SliceBuilder;
272  friend class AllocaSlices::SliceBuilder;
273
274#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
275  /// \brief Handle to alloca instruction to simplify method interfaces.
276  AllocaInst &AI;
277#endif
278
279  /// \brief The instruction responsible for this alloca not having a known set
280  /// of slices.
281  ///
282  /// When an instruction (potentially) escapes the pointer to the alloca, we
283  /// store a pointer to that here and abort trying to form slices of the
284  /// alloca. This will be null if the alloca slices are analyzed successfully.
285  Instruction *PointerEscapingInstr;
286
287  /// \brief The slices of the alloca.
288  ///
289  /// We store a vector of the slices formed by uses of the alloca here. This
290  /// vector is sorted by increasing begin offset, and then the unsplittable
291  /// slices before the splittable ones. See the Slice inner class for more
292  /// details.
293  SmallVector<Slice, 8> Slices;
294
295  /// \brief Instructions which will become dead if we rewrite the alloca.
296  ///
297  /// Note that these are not separated by slice. This is because we expect an
298  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
299  /// all these instructions can simply be removed and replaced with undef as
300  /// they come from outside of the allocated space.
301  SmallVector<Instruction *, 8> DeadUsers;
302
303  /// \brief Operands which will become dead if we rewrite the alloca.
304  ///
305  /// These are operands that in their particular use can be replaced with
306  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
307  /// to PHI nodes and the like. They aren't entirely dead (there might be
308  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
309  /// want to swap this particular input for undef to simplify the use lists of
310  /// the alloca.
311  SmallVector<Use *, 8> DeadOperands;
312};
313}
314
315static Value *foldSelectInst(SelectInst &SI) {
316  // If the condition being selected on is a constant or the same value is
317  // being selected between, fold the select. Yes this does (rarely) happen
318  // early on.
319  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
320    return SI.getOperand(1+CI->isZero());
321  if (SI.getOperand(1) == SI.getOperand(2))
322    return SI.getOperand(1);
323
324  return nullptr;
325}
326
327/// \brief Builder for the alloca slices.
328///
329/// This class builds a set of alloca slices by recursively visiting the uses
330/// of an alloca and making a slice for each load and store at each offset.
331class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
332  friend class PtrUseVisitor<SliceBuilder>;
333  friend class InstVisitor<SliceBuilder>;
334  typedef PtrUseVisitor<SliceBuilder> Base;
335
336  const uint64_t AllocSize;
337  AllocaSlices &S;
338
339  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
340  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
341
342  /// \brief Set to de-duplicate dead instructions found in the use walk.
343  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
344
345public:
346  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
347      : PtrUseVisitor<SliceBuilder>(DL),
348        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
349
350private:
351  void markAsDead(Instruction &I) {
352    if (VisitedDeadInsts.insert(&I))
353      S.DeadUsers.push_back(&I);
354  }
355
356  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
357                 bool IsSplittable = false) {
358    // Completely skip uses which have a zero size or start either before or
359    // past the end of the allocation.
360    if (Size == 0 || Offset.uge(AllocSize)) {
361      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
362                   << " which has zero size or starts outside of the "
363                   << AllocSize << " byte alloca:\n"
364                   << "    alloca: " << S.AI << "\n"
365                   << "       use: " << I << "\n");
366      return markAsDead(I);
367    }
368
369    uint64_t BeginOffset = Offset.getZExtValue();
370    uint64_t EndOffset = BeginOffset + Size;
371
372    // Clamp the end offset to the end of the allocation. Note that this is
373    // formulated to handle even the case where "BeginOffset + Size" overflows.
374    // This may appear superficially to be something we could ignore entirely,
375    // but that is not so! There may be widened loads or PHI-node uses where
376    // some instructions are dead but not others. We can't completely ignore
377    // them, and so have to record at least the information here.
378    assert(AllocSize >= BeginOffset); // Established above.
379    if (Size > AllocSize - BeginOffset) {
380      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
381                   << " to remain within the " << AllocSize << " byte alloca:\n"
382                   << "    alloca: " << S.AI << "\n"
383                   << "       use: " << I << "\n");
384      EndOffset = AllocSize;
385    }
386
387    S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
388  }
389
390  void visitBitCastInst(BitCastInst &BC) {
391    if (BC.use_empty())
392      return markAsDead(BC);
393
394    return Base::visitBitCastInst(BC);
395  }
396
397  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
398    if (GEPI.use_empty())
399      return markAsDead(GEPI);
400
401    if (SROAStrictInbounds && GEPI.isInBounds()) {
402      // FIXME: This is a manually un-factored variant of the basic code inside
403      // of GEPs with checking of the inbounds invariant specified in the
404      // langref in a very strict sense. If we ever want to enable
405      // SROAStrictInbounds, this code should be factored cleanly into
406      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
407      // by writing out the code here where we have tho underlying allocation
408      // size readily available.
409      APInt GEPOffset = Offset;
410      for (gep_type_iterator GTI = gep_type_begin(GEPI),
411                             GTE = gep_type_end(GEPI);
412           GTI != GTE; ++GTI) {
413        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
414        if (!OpC)
415          break;
416
417        // Handle a struct index, which adds its field offset to the pointer.
418        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
419          unsigned ElementIdx = OpC->getZExtValue();
420          const StructLayout *SL = DL.getStructLayout(STy);
421          GEPOffset +=
422              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
423        } else {
424          // For array or vector indices, scale the index by the size of the type.
425          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
426          GEPOffset += Index * APInt(Offset.getBitWidth(),
427                                     DL.getTypeAllocSize(GTI.getIndexedType()));
428        }
429
430        // If this index has computed an intermediate pointer which is not
431        // inbounds, then the result of the GEP is a poison value and we can
432        // delete it and all uses.
433        if (GEPOffset.ugt(AllocSize))
434          return markAsDead(GEPI);
435      }
436    }
437
438    return Base::visitGetElementPtrInst(GEPI);
439  }
440
441  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
442                         uint64_t Size, bool IsVolatile) {
443    // We allow splitting of loads and stores where the type is an integer type
444    // and cover the entire alloca. This prevents us from splitting over
445    // eagerly.
446    // FIXME: In the great blue eventually, we should eagerly split all integer
447    // loads and stores, and then have a separate step that merges adjacent
448    // alloca partitions into a single partition suitable for integer widening.
449    // Or we should skip the merge step and rely on GVN and other passes to
450    // merge adjacent loads and stores that survive mem2reg.
451    bool IsSplittable =
452        Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
453
454    insertUse(I, Offset, Size, IsSplittable);
455  }
456
457  void visitLoadInst(LoadInst &LI) {
458    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
459           "All simple FCA loads should have been pre-split");
460
461    if (!IsOffsetKnown)
462      return PI.setAborted(&LI);
463
464    uint64_t Size = DL.getTypeStoreSize(LI.getType());
465    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
466  }
467
468  void visitStoreInst(StoreInst &SI) {
469    Value *ValOp = SI.getValueOperand();
470    if (ValOp == *U)
471      return PI.setEscapedAndAborted(&SI);
472    if (!IsOffsetKnown)
473      return PI.setAborted(&SI);
474
475    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
476
477    // If this memory access can be shown to *statically* extend outside the
478    // bounds of of the allocation, it's behavior is undefined, so simply
479    // ignore it. Note that this is more strict than the generic clamping
480    // behavior of insertUse. We also try to handle cases which might run the
481    // risk of overflow.
482    // FIXME: We should instead consider the pointer to have escaped if this
483    // function is being instrumented for addressing bugs or race conditions.
484    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
485      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
486                   << " which extends past the end of the " << AllocSize
487                   << " byte alloca:\n"
488                   << "    alloca: " << S.AI << "\n"
489                   << "       use: " << SI << "\n");
490      return markAsDead(SI);
491    }
492
493    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
494           "All simple FCA stores should have been pre-split");
495    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
496  }
497
498
499  void visitMemSetInst(MemSetInst &II) {
500    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
501    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
502    if ((Length && Length->getValue() == 0) ||
503        (IsOffsetKnown && Offset.uge(AllocSize)))
504      // Zero-length mem transfer intrinsics can be ignored entirely.
505      return markAsDead(II);
506
507    if (!IsOffsetKnown)
508      return PI.setAborted(&II);
509
510    insertUse(II, Offset,
511              Length ? Length->getLimitedValue()
512                     : AllocSize - Offset.getLimitedValue(),
513              (bool)Length);
514  }
515
516  void visitMemTransferInst(MemTransferInst &II) {
517    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
518    if (Length && Length->getValue() == 0)
519      // Zero-length mem transfer intrinsics can be ignored entirely.
520      return markAsDead(II);
521
522    // Because we can visit these intrinsics twice, also check to see if the
523    // first time marked this instruction as dead. If so, skip it.
524    if (VisitedDeadInsts.count(&II))
525      return;
526
527    if (!IsOffsetKnown)
528      return PI.setAborted(&II);
529
530    // This side of the transfer is completely out-of-bounds, and so we can
531    // nuke the entire transfer. However, we also need to nuke the other side
532    // if already added to our partitions.
533    // FIXME: Yet another place we really should bypass this when
534    // instrumenting for ASan.
535    if (Offset.uge(AllocSize)) {
536      SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II);
537      if (MTPI != MemTransferSliceMap.end())
538        S.Slices[MTPI->second].kill();
539      return markAsDead(II);
540    }
541
542    uint64_t RawOffset = Offset.getLimitedValue();
543    uint64_t Size = Length ? Length->getLimitedValue()
544                           : AllocSize - RawOffset;
545
546    // Check for the special case where the same exact value is used for both
547    // source and dest.
548    if (*U == II.getRawDest() && *U == II.getRawSource()) {
549      // For non-volatile transfers this is a no-op.
550      if (!II.isVolatile())
551        return markAsDead(II);
552
553      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
554    }
555
556    // If we have seen both source and destination for a mem transfer, then
557    // they both point to the same alloca.
558    bool Inserted;
559    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
560    std::tie(MTPI, Inserted) =
561        MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
562    unsigned PrevIdx = MTPI->second;
563    if (!Inserted) {
564      Slice &PrevP = S.Slices[PrevIdx];
565
566      // Check if the begin offsets match and this is a non-volatile transfer.
567      // In that case, we can completely elide the transfer.
568      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
569        PrevP.kill();
570        return markAsDead(II);
571      }
572
573      // Otherwise we have an offset transfer within the same alloca. We can't
574      // split those.
575      PrevP.makeUnsplittable();
576    }
577
578    // Insert the use now that we've fixed up the splittable nature.
579    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
580
581    // Check that we ended up with a valid index in the map.
582    assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
583           "Map index doesn't point back to a slice with this user.");
584  }
585
586  // Disable SRoA for any intrinsics except for lifetime invariants.
587  // FIXME: What about debug intrinsics? This matches old behavior, but
588  // doesn't make sense.
589  void visitIntrinsicInst(IntrinsicInst &II) {
590    if (!IsOffsetKnown)
591      return PI.setAborted(&II);
592
593    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
594        II.getIntrinsicID() == Intrinsic::lifetime_end) {
595      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
596      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
597                               Length->getLimitedValue());
598      insertUse(II, Offset, Size, true);
599      return;
600    }
601
602    Base::visitIntrinsicInst(II);
603  }
604
605  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
606    // We consider any PHI or select that results in a direct load or store of
607    // the same offset to be a viable use for slicing purposes. These uses
608    // are considered unsplittable and the size is the maximum loaded or stored
609    // size.
610    SmallPtrSet<Instruction *, 4> Visited;
611    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
612    Visited.insert(Root);
613    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
614    // If there are no loads or stores, the access is dead. We mark that as
615    // a size zero access.
616    Size = 0;
617    do {
618      Instruction *I, *UsedI;
619      std::tie(UsedI, I) = Uses.pop_back_val();
620
621      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
622        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
623        continue;
624      }
625      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
626        Value *Op = SI->getOperand(0);
627        if (Op == UsedI)
628          return SI;
629        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
630        continue;
631      }
632
633      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
634        if (!GEP->hasAllZeroIndices())
635          return GEP;
636      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
637                 !isa<SelectInst>(I)) {
638        return I;
639      }
640
641      for (User *U : I->users())
642        if (Visited.insert(cast<Instruction>(U)))
643          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
644    } while (!Uses.empty());
645
646    return nullptr;
647  }
648
649  void visitPHINode(PHINode &PN) {
650    if (PN.use_empty())
651      return markAsDead(PN);
652    if (!IsOffsetKnown)
653      return PI.setAborted(&PN);
654
655    // See if we already have computed info on this node.
656    uint64_t &PHISize = PHIOrSelectSizes[&PN];
657    if (!PHISize) {
658      // This is a new PHI node, check for an unsafe use of the PHI node.
659      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
660        return PI.setAborted(UnsafeI);
661    }
662
663    // For PHI and select operands outside the alloca, we can't nuke the entire
664    // phi or select -- the other side might still be relevant, so we special
665    // case them here and use a separate structure to track the operands
666    // themselves which should be replaced with undef.
667    // FIXME: This should instead be escaped in the event we're instrumenting
668    // for address sanitization.
669    if (Offset.uge(AllocSize)) {
670      S.DeadOperands.push_back(U);
671      return;
672    }
673
674    insertUse(PN, Offset, PHISize);
675  }
676
677  void visitSelectInst(SelectInst &SI) {
678    if (SI.use_empty())
679      return markAsDead(SI);
680    if (Value *Result = foldSelectInst(SI)) {
681      if (Result == *U)
682        // If the result of the constant fold will be the pointer, recurse
683        // through the select as if we had RAUW'ed it.
684        enqueueUsers(SI);
685      else
686        // Otherwise the operand to the select is dead, and we can replace it
687        // with undef.
688        S.DeadOperands.push_back(U);
689
690      return;
691    }
692    if (!IsOffsetKnown)
693      return PI.setAborted(&SI);
694
695    // See if we already have computed info on this node.
696    uint64_t &SelectSize = PHIOrSelectSizes[&SI];
697    if (!SelectSize) {
698      // This is a new Select, check for an unsafe use of it.
699      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
700        return PI.setAborted(UnsafeI);
701    }
702
703    // For PHI and select operands outside the alloca, we can't nuke the entire
704    // phi or select -- the other side might still be relevant, so we special
705    // case them here and use a separate structure to track the operands
706    // themselves which should be replaced with undef.
707    // FIXME: This should instead be escaped in the event we're instrumenting
708    // for address sanitization.
709    if (Offset.uge(AllocSize)) {
710      S.DeadOperands.push_back(U);
711      return;
712    }
713
714    insertUse(SI, Offset, SelectSize);
715  }
716
717  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
718  void visitInstruction(Instruction &I) {
719    PI.setAborted(&I);
720  }
721};
722
723AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
724    :
725#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
726      AI(AI),
727#endif
728      PointerEscapingInstr(nullptr) {
729  SliceBuilder PB(DL, AI, *this);
730  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
731  if (PtrI.isEscaped() || PtrI.isAborted()) {
732    // FIXME: We should sink the escape vs. abort info into the caller nicely,
733    // possibly by just storing the PtrInfo in the AllocaSlices.
734    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
735                                                  : PtrI.getAbortingInst();
736    assert(PointerEscapingInstr && "Did not track a bad instruction");
737    return;
738  }
739
740  Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
741                              std::mem_fun_ref(&Slice::isDead)),
742               Slices.end());
743
744#if __cplusplus >= 201103L && !defined(NDEBUG)
745  if (SROARandomShuffleSlices) {
746    std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
747    std::shuffle(Slices.begin(), Slices.end(), MT);
748  }
749#endif
750
751  // Sort the uses. This arranges for the offsets to be in ascending order,
752  // and the sizes to be in descending order.
753  std::sort(Slices.begin(), Slices.end());
754}
755
756#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
757
758void AllocaSlices::print(raw_ostream &OS, const_iterator I,
759                         StringRef Indent) const {
760  printSlice(OS, I, Indent);
761  printUse(OS, I, Indent);
762}
763
764void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
765                              StringRef Indent) const {
766  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
767     << " slice #" << (I - begin())
768     << (I->isSplittable() ? " (splittable)" : "") << "\n";
769}
770
771void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
772                            StringRef Indent) const {
773  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
774}
775
776void AllocaSlices::print(raw_ostream &OS) const {
777  if (PointerEscapingInstr) {
778    OS << "Can't analyze slices for alloca: " << AI << "\n"
779       << "  A pointer to this alloca escaped by:\n"
780       << "  " << *PointerEscapingInstr << "\n";
781    return;
782  }
783
784  OS << "Slices of alloca: " << AI << "\n";
785  for (const_iterator I = begin(), E = end(); I != E; ++I)
786    print(OS, I);
787}
788
789LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
790  print(dbgs(), I);
791}
792LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
793
794#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
795
796namespace {
797/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
798///
799/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
800/// the loads and stores of an alloca instruction, as well as updating its
801/// debug information. This is used when a domtree is unavailable and thus
802/// mem2reg in its full form can't be used to handle promotion of allocas to
803/// scalar values.
804class AllocaPromoter : public LoadAndStorePromoter {
805  AllocaInst &AI;
806  DIBuilder &DIB;
807
808  SmallVector<DbgDeclareInst *, 4> DDIs;
809  SmallVector<DbgValueInst *, 4> DVIs;
810
811public:
812  AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
813                 AllocaInst &AI, DIBuilder &DIB)
814      : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
815
816  void run(const SmallVectorImpl<Instruction*> &Insts) {
817    // Retain the debug information attached to the alloca for use when
818    // rewriting loads and stores.
819    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
820      for (User *U : DebugNode->users())
821        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
822          DDIs.push_back(DDI);
823        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
824          DVIs.push_back(DVI);
825    }
826
827    LoadAndStorePromoter::run(Insts);
828
829    // While we have the debug information, clear it off of the alloca. The
830    // caller takes care of deleting the alloca.
831    while (!DDIs.empty())
832      DDIs.pop_back_val()->eraseFromParent();
833    while (!DVIs.empty())
834      DVIs.pop_back_val()->eraseFromParent();
835  }
836
837  bool isInstInList(Instruction *I,
838                    const SmallVectorImpl<Instruction*> &Insts) const override {
839    Value *Ptr;
840    if (LoadInst *LI = dyn_cast<LoadInst>(I))
841      Ptr = LI->getOperand(0);
842    else
843      Ptr = cast<StoreInst>(I)->getPointerOperand();
844
845    // Only used to detect cycles, which will be rare and quickly found as
846    // we're walking up a chain of defs rather than down through uses.
847    SmallPtrSet<Value *, 4> Visited;
848
849    do {
850      if (Ptr == &AI)
851        return true;
852
853      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
854        Ptr = BCI->getOperand(0);
855      else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
856        Ptr = GEPI->getPointerOperand();
857      else
858        return false;
859
860    } while (Visited.insert(Ptr));
861
862    return false;
863  }
864
865  void updateDebugInfo(Instruction *Inst) const override {
866    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
867           E = DDIs.end(); I != E; ++I) {
868      DbgDeclareInst *DDI = *I;
869      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
870        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
871      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
872        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
873    }
874    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
875           E = DVIs.end(); I != E; ++I) {
876      DbgValueInst *DVI = *I;
877      Value *Arg = nullptr;
878      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
879        // If an argument is zero extended then use argument directly. The ZExt
880        // may be zapped by an optimization pass in future.
881        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
882          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
883        else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
884          Arg = dyn_cast<Argument>(SExt->getOperand(0));
885        if (!Arg)
886          Arg = SI->getValueOperand();
887      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
888        Arg = LI->getPointerOperand();
889      } else {
890        continue;
891      }
892      Instruction *DbgVal =
893        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
894                                     Inst);
895      DbgVal->setDebugLoc(DVI->getDebugLoc());
896    }
897  }
898};
899} // end anon namespace
900
901
902namespace {
903/// \brief An optimization pass providing Scalar Replacement of Aggregates.
904///
905/// This pass takes allocations which can be completely analyzed (that is, they
906/// don't escape) and tries to turn them into scalar SSA values. There are
907/// a few steps to this process.
908///
909/// 1) It takes allocations of aggregates and analyzes the ways in which they
910///    are used to try to split them into smaller allocations, ideally of
911///    a single scalar data type. It will split up memcpy and memset accesses
912///    as necessary and try to isolate individual scalar accesses.
913/// 2) It will transform accesses into forms which are suitable for SSA value
914///    promotion. This can be replacing a memset with a scalar store of an
915///    integer value, or it can involve speculating operations on a PHI or
916///    select to be a PHI or select of the results.
917/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
918///    onto insert and extract operations on a vector value, and convert them to
919///    this form. By doing so, it will enable promotion of vector aggregates to
920///    SSA vector values.
921class SROA : public FunctionPass {
922  const bool RequiresDomTree;
923
924  LLVMContext *C;
925  const DataLayout *DL;
926  DominatorTree *DT;
927
928  /// \brief Worklist of alloca instructions to simplify.
929  ///
930  /// Each alloca in the function is added to this. Each new alloca formed gets
931  /// added to it as well to recursively simplify unless that alloca can be
932  /// directly promoted. Finally, each time we rewrite a use of an alloca other
933  /// the one being actively rewritten, we add it back onto the list if not
934  /// already present to ensure it is re-visited.
935  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
936
937  /// \brief A collection of instructions to delete.
938  /// We try to batch deletions to simplify code and make things a bit more
939  /// efficient.
940  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
941
942  /// \brief Post-promotion worklist.
943  ///
944  /// Sometimes we discover an alloca which has a high probability of becoming
945  /// viable for SROA after a round of promotion takes place. In those cases,
946  /// the alloca is enqueued here for re-processing.
947  ///
948  /// Note that we have to be very careful to clear allocas out of this list in
949  /// the event they are deleted.
950  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
951
952  /// \brief A collection of alloca instructions we can directly promote.
953  std::vector<AllocaInst *> PromotableAllocas;
954
955  /// \brief A worklist of PHIs to speculate prior to promoting allocas.
956  ///
957  /// All of these PHIs have been checked for the safety of speculation and by
958  /// being speculated will allow promoting allocas currently in the promotable
959  /// queue.
960  SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
961
962  /// \brief A worklist of select instructions to speculate prior to promoting
963  /// allocas.
964  ///
965  /// All of these select instructions have been checked for the safety of
966  /// speculation and by being speculated will allow promoting allocas
967  /// currently in the promotable queue.
968  SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
969
970public:
971  SROA(bool RequiresDomTree = true)
972      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
973        C(nullptr), DL(nullptr), DT(nullptr) {
974    initializeSROAPass(*PassRegistry::getPassRegistry());
975  }
976  bool runOnFunction(Function &F) override;
977  void getAnalysisUsage(AnalysisUsage &AU) const override;
978
979  const char *getPassName() const override { return "SROA"; }
980  static char ID;
981
982private:
983  friend class PHIOrSelectSpeculator;
984  friend class AllocaSliceRewriter;
985
986  bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
987                        AllocaSlices::iterator B, AllocaSlices::iterator E,
988                        int64_t BeginOffset, int64_t EndOffset,
989                        ArrayRef<AllocaSlices::iterator> SplitUses);
990  bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
991  bool runOnAlloca(AllocaInst &AI);
992  void clobberUse(Use &U);
993  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
994  bool promoteAllocas(Function &F);
995};
996}
997
998char SROA::ID = 0;
999
1000FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1001  return new SROA(RequiresDomTree);
1002}
1003
1004INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1005                      false, false)
1006INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1007INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1008                    false, false)
1009
1010/// Walk the range of a partitioning looking for a common type to cover this
1011/// sequence of slices.
1012static Type *findCommonType(AllocaSlices::const_iterator B,
1013                            AllocaSlices::const_iterator E,
1014                            uint64_t EndOffset) {
1015  Type *Ty = nullptr;
1016  bool TyIsCommon = true;
1017  IntegerType *ITy = nullptr;
1018
1019  // Note that we need to look at *every* alloca slice's Use to ensure we
1020  // always get consistent results regardless of the order of slices.
1021  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1022    Use *U = I->getUse();
1023    if (isa<IntrinsicInst>(*U->getUser()))
1024      continue;
1025    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1026      continue;
1027
1028    Type *UserTy = nullptr;
1029    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1030      UserTy = LI->getType();
1031    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1032      UserTy = SI->getValueOperand()->getType();
1033    }
1034
1035    if (!UserTy || (Ty && Ty != UserTy))
1036      TyIsCommon = false; // Give up on anything but an iN type.
1037    else
1038      Ty = UserTy;
1039
1040    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1041      // If the type is larger than the partition, skip it. We only encounter
1042      // this for split integer operations where we want to use the type of the
1043      // entity causing the split. Also skip if the type is not a byte width
1044      // multiple.
1045      if (UserITy->getBitWidth() % 8 != 0 ||
1046          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1047        continue;
1048
1049      // Track the largest bitwidth integer type used in this way in case there
1050      // is no common type.
1051      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1052        ITy = UserITy;
1053    }
1054  }
1055
1056  return TyIsCommon ? Ty : ITy;
1057}
1058
1059/// PHI instructions that use an alloca and are subsequently loaded can be
1060/// rewritten to load both input pointers in the pred blocks and then PHI the
1061/// results, allowing the load of the alloca to be promoted.
1062/// From this:
1063///   %P2 = phi [i32* %Alloca, i32* %Other]
1064///   %V = load i32* %P2
1065/// to:
1066///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1067///   ...
1068///   %V2 = load i32* %Other
1069///   ...
1070///   %V = phi [i32 %V1, i32 %V2]
1071///
1072/// We can do this to a select if its only uses are loads and if the operands
1073/// to the select can be loaded unconditionally.
1074///
1075/// FIXME: This should be hoisted into a generic utility, likely in
1076/// Transforms/Util/Local.h
1077static bool isSafePHIToSpeculate(PHINode &PN,
1078                                 const DataLayout *DL = nullptr) {
1079  // For now, we can only do this promotion if the load is in the same block
1080  // as the PHI, and if there are no stores between the phi and load.
1081  // TODO: Allow recursive phi users.
1082  // TODO: Allow stores.
1083  BasicBlock *BB = PN.getParent();
1084  unsigned MaxAlign = 0;
1085  bool HaveLoad = false;
1086  for (User *U : PN.users()) {
1087    LoadInst *LI = dyn_cast<LoadInst>(U);
1088    if (!LI || !LI->isSimple())
1089      return false;
1090
1091    // For now we only allow loads in the same block as the PHI.  This is
1092    // a common case that happens when instcombine merges two loads through
1093    // a PHI.
1094    if (LI->getParent() != BB)
1095      return false;
1096
1097    // Ensure that there are no instructions between the PHI and the load that
1098    // could store.
1099    for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1100      if (BBI->mayWriteToMemory())
1101        return false;
1102
1103    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1104    HaveLoad = true;
1105  }
1106
1107  if (!HaveLoad)
1108    return false;
1109
1110  // We can only transform this if it is safe to push the loads into the
1111  // predecessor blocks. The only thing to watch out for is that we can't put
1112  // a possibly trapping load in the predecessor if it is a critical edge.
1113  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1114    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1115    Value *InVal = PN.getIncomingValue(Idx);
1116
1117    // If the value is produced by the terminator of the predecessor (an
1118    // invoke) or it has side-effects, there is no valid place to put a load
1119    // in the predecessor.
1120    if (TI == InVal || TI->mayHaveSideEffects())
1121      return false;
1122
1123    // If the predecessor has a single successor, then the edge isn't
1124    // critical.
1125    if (TI->getNumSuccessors() == 1)
1126      continue;
1127
1128    // If this pointer is always safe to load, or if we can prove that there
1129    // is already a load in the block, then we can move the load to the pred
1130    // block.
1131    if (InVal->isDereferenceablePointer() ||
1132        isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1133      continue;
1134
1135    return false;
1136  }
1137
1138  return true;
1139}
1140
1141static void speculatePHINodeLoads(PHINode &PN) {
1142  DEBUG(dbgs() << "    original: " << PN << "\n");
1143
1144  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1145  IRBuilderTy PHIBuilder(&PN);
1146  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1147                                        PN.getName() + ".sroa.speculated");
1148
1149  // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1150  // matter which one we get and if any differ.
1151  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1152  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1153  unsigned Align = SomeLoad->getAlignment();
1154
1155  // Rewrite all loads of the PN to use the new PHI.
1156  while (!PN.use_empty()) {
1157    LoadInst *LI = cast<LoadInst>(PN.user_back());
1158    LI->replaceAllUsesWith(NewPN);
1159    LI->eraseFromParent();
1160  }
1161
1162  // Inject loads into all of the pred blocks.
1163  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1164    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1165    TerminatorInst *TI = Pred->getTerminator();
1166    Value *InVal = PN.getIncomingValue(Idx);
1167    IRBuilderTy PredBuilder(TI);
1168
1169    LoadInst *Load = PredBuilder.CreateLoad(
1170        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1171    ++NumLoadsSpeculated;
1172    Load->setAlignment(Align);
1173    if (TBAATag)
1174      Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1175    NewPN->addIncoming(Load, Pred);
1176  }
1177
1178  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1179  PN.eraseFromParent();
1180}
1181
1182/// Select instructions that use an alloca and are subsequently loaded can be
1183/// rewritten to load both input pointers and then select between the result,
1184/// allowing the load of the alloca to be promoted.
1185/// From this:
1186///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1187///   %V = load i32* %P2
1188/// to:
1189///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1190///   %V2 = load i32* %Other
1191///   %V = select i1 %cond, i32 %V1, i32 %V2
1192///
1193/// We can do this to a select if its only uses are loads and if the operand
1194/// to the select can be loaded unconditionally.
1195static bool isSafeSelectToSpeculate(SelectInst &SI,
1196                                    const DataLayout *DL = nullptr) {
1197  Value *TValue = SI.getTrueValue();
1198  Value *FValue = SI.getFalseValue();
1199  bool TDerefable = TValue->isDereferenceablePointer();
1200  bool FDerefable = FValue->isDereferenceablePointer();
1201
1202  for (User *U : SI.users()) {
1203    LoadInst *LI = dyn_cast<LoadInst>(U);
1204    if (!LI || !LI->isSimple())
1205      return false;
1206
1207    // Both operands to the select need to be dereferencable, either
1208    // absolutely (e.g. allocas) or at this point because we can see other
1209    // accesses to it.
1210    if (!TDerefable &&
1211        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1212      return false;
1213    if (!FDerefable &&
1214        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1215      return false;
1216  }
1217
1218  return true;
1219}
1220
1221static void speculateSelectInstLoads(SelectInst &SI) {
1222  DEBUG(dbgs() << "    original: " << SI << "\n");
1223
1224  IRBuilderTy IRB(&SI);
1225  Value *TV = SI.getTrueValue();
1226  Value *FV = SI.getFalseValue();
1227  // Replace the loads of the select with a select of two loads.
1228  while (!SI.use_empty()) {
1229    LoadInst *LI = cast<LoadInst>(SI.user_back());
1230    assert(LI->isSimple() && "We only speculate simple loads");
1231
1232    IRB.SetInsertPoint(LI);
1233    LoadInst *TL =
1234        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1235    LoadInst *FL =
1236        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1237    NumLoadsSpeculated += 2;
1238
1239    // Transfer alignment and TBAA info if present.
1240    TL->setAlignment(LI->getAlignment());
1241    FL->setAlignment(LI->getAlignment());
1242    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1243      TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1244      FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1245    }
1246
1247    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1248                                LI->getName() + ".sroa.speculated");
1249
1250    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1251    LI->replaceAllUsesWith(V);
1252    LI->eraseFromParent();
1253  }
1254  SI.eraseFromParent();
1255}
1256
1257/// \brief Build a GEP out of a base pointer and indices.
1258///
1259/// This will return the BasePtr if that is valid, or build a new GEP
1260/// instruction using the IRBuilder if GEP-ing is needed.
1261static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1262                       SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1263  if (Indices.empty())
1264    return BasePtr;
1265
1266  // A single zero index is a no-op, so check for this and avoid building a GEP
1267  // in that case.
1268  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1269    return BasePtr;
1270
1271  return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx");
1272}
1273
1274/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1275/// TargetTy without changing the offset of the pointer.
1276///
1277/// This routine assumes we've already established a properly offset GEP with
1278/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1279/// zero-indices down through type layers until we find one the same as
1280/// TargetTy. If we can't find one with the same type, we at least try to use
1281/// one with the same size. If none of that works, we just produce the GEP as
1282/// indicated by Indices to have the correct offset.
1283static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1284                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1285                                    SmallVectorImpl<Value *> &Indices,
1286                                    Twine NamePrefix) {
1287  if (Ty == TargetTy)
1288    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1289
1290  // Pointer size to use for the indices.
1291  unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1292
1293  // See if we can descend into a struct and locate a field with the correct
1294  // type.
1295  unsigned NumLayers = 0;
1296  Type *ElementTy = Ty;
1297  do {
1298    if (ElementTy->isPointerTy())
1299      break;
1300
1301    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1302      ElementTy = ArrayTy->getElementType();
1303      Indices.push_back(IRB.getIntN(PtrSize, 0));
1304    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1305      ElementTy = VectorTy->getElementType();
1306      Indices.push_back(IRB.getInt32(0));
1307    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1308      if (STy->element_begin() == STy->element_end())
1309        break; // Nothing left to descend into.
1310      ElementTy = *STy->element_begin();
1311      Indices.push_back(IRB.getInt32(0));
1312    } else {
1313      break;
1314    }
1315    ++NumLayers;
1316  } while (ElementTy != TargetTy);
1317  if (ElementTy != TargetTy)
1318    Indices.erase(Indices.end() - NumLayers, Indices.end());
1319
1320  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1321}
1322
1323/// \brief Recursively compute indices for a natural GEP.
1324///
1325/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1326/// element types adding appropriate indices for the GEP.
1327static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1328                                       Value *Ptr, Type *Ty, APInt &Offset,
1329                                       Type *TargetTy,
1330                                       SmallVectorImpl<Value *> &Indices,
1331                                       Twine NamePrefix) {
1332  if (Offset == 0)
1333    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix);
1334
1335  // We can't recurse through pointer types.
1336  if (Ty->isPointerTy())
1337    return nullptr;
1338
1339  // We try to analyze GEPs over vectors here, but note that these GEPs are
1340  // extremely poorly defined currently. The long-term goal is to remove GEPing
1341  // over a vector from the IR completely.
1342  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1343    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1344    if (ElementSizeInBits % 8 != 0) {
1345      // GEPs over non-multiple of 8 size vector elements are invalid.
1346      return nullptr;
1347    }
1348    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1349    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1350    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1351      return nullptr;
1352    Offset -= NumSkippedElements * ElementSize;
1353    Indices.push_back(IRB.getInt(NumSkippedElements));
1354    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1355                                    Offset, TargetTy, Indices, NamePrefix);
1356  }
1357
1358  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1359    Type *ElementTy = ArrTy->getElementType();
1360    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1361    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1362    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1363      return nullptr;
1364
1365    Offset -= NumSkippedElements * ElementSize;
1366    Indices.push_back(IRB.getInt(NumSkippedElements));
1367    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1368                                    Indices, NamePrefix);
1369  }
1370
1371  StructType *STy = dyn_cast<StructType>(Ty);
1372  if (!STy)
1373    return nullptr;
1374
1375  const StructLayout *SL = DL.getStructLayout(STy);
1376  uint64_t StructOffset = Offset.getZExtValue();
1377  if (StructOffset >= SL->getSizeInBytes())
1378    return nullptr;
1379  unsigned Index = SL->getElementContainingOffset(StructOffset);
1380  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1381  Type *ElementTy = STy->getElementType(Index);
1382  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1383    return nullptr; // The offset points into alignment padding.
1384
1385  Indices.push_back(IRB.getInt32(Index));
1386  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1387                                  Indices, NamePrefix);
1388}
1389
1390/// \brief Get a natural GEP from a base pointer to a particular offset and
1391/// resulting in a particular type.
1392///
1393/// The goal is to produce a "natural" looking GEP that works with the existing
1394/// composite types to arrive at the appropriate offset and element type for
1395/// a pointer. TargetTy is the element type the returned GEP should point-to if
1396/// possible. We recurse by decreasing Offset, adding the appropriate index to
1397/// Indices, and setting Ty to the result subtype.
1398///
1399/// If no natural GEP can be constructed, this function returns null.
1400static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1401                                      Value *Ptr, APInt Offset, Type *TargetTy,
1402                                      SmallVectorImpl<Value *> &Indices,
1403                                      Twine NamePrefix) {
1404  PointerType *Ty = cast<PointerType>(Ptr->getType());
1405
1406  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1407  // an i8.
1408  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1409    return nullptr;
1410
1411  Type *ElementTy = Ty->getElementType();
1412  if (!ElementTy->isSized())
1413    return nullptr; // We can't GEP through an unsized element.
1414  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1415  if (ElementSize == 0)
1416    return nullptr; // Zero-length arrays can't help us build a natural GEP.
1417  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1418
1419  Offset -= NumSkippedElements * ElementSize;
1420  Indices.push_back(IRB.getInt(NumSkippedElements));
1421  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1422                                  Indices, NamePrefix);
1423}
1424
1425/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1426/// resulting pointer has PointerTy.
1427///
1428/// This tries very hard to compute a "natural" GEP which arrives at the offset
1429/// and produces the pointer type desired. Where it cannot, it will try to use
1430/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1431/// fails, it will try to use an existing i8* and GEP to the byte offset and
1432/// bitcast to the type.
1433///
1434/// The strategy for finding the more natural GEPs is to peel off layers of the
1435/// pointer, walking back through bit casts and GEPs, searching for a base
1436/// pointer from which we can compute a natural GEP with the desired
1437/// properties. The algorithm tries to fold as many constant indices into
1438/// a single GEP as possible, thus making each GEP more independent of the
1439/// surrounding code.
1440static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1441                             APInt Offset, Type *PointerTy,
1442                             Twine NamePrefix) {
1443  // Even though we don't look through PHI nodes, we could be called on an
1444  // instruction in an unreachable block, which may be on a cycle.
1445  SmallPtrSet<Value *, 4> Visited;
1446  Visited.insert(Ptr);
1447  SmallVector<Value *, 4> Indices;
1448
1449  // We may end up computing an offset pointer that has the wrong type. If we
1450  // never are able to compute one directly that has the correct type, we'll
1451  // fall back to it, so keep it around here.
1452  Value *OffsetPtr = nullptr;
1453
1454  // Remember any i8 pointer we come across to re-use if we need to do a raw
1455  // byte offset.
1456  Value *Int8Ptr = nullptr;
1457  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1458
1459  Type *TargetTy = PointerTy->getPointerElementType();
1460
1461  do {
1462    // First fold any existing GEPs into the offset.
1463    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1464      APInt GEPOffset(Offset.getBitWidth(), 0);
1465      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1466        break;
1467      Offset += GEPOffset;
1468      Ptr = GEP->getPointerOperand();
1469      if (!Visited.insert(Ptr))
1470        break;
1471    }
1472
1473    // See if we can perform a natural GEP here.
1474    Indices.clear();
1475    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1476                                           Indices, NamePrefix)) {
1477      if (P->getType() == PointerTy) {
1478        // Zap any offset pointer that we ended up computing in previous rounds.
1479        if (OffsetPtr && OffsetPtr->use_empty())
1480          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1481            I->eraseFromParent();
1482        return P;
1483      }
1484      if (!OffsetPtr) {
1485        OffsetPtr = P;
1486      }
1487    }
1488
1489    // Stash this pointer if we've found an i8*.
1490    if (Ptr->getType()->isIntegerTy(8)) {
1491      Int8Ptr = Ptr;
1492      Int8PtrOffset = Offset;
1493    }
1494
1495    // Peel off a layer of the pointer and update the offset appropriately.
1496    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1497      Ptr = cast<Operator>(Ptr)->getOperand(0);
1498    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1499      if (GA->mayBeOverridden())
1500        break;
1501      Ptr = GA->getAliasee();
1502    } else {
1503      break;
1504    }
1505    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1506  } while (Visited.insert(Ptr));
1507
1508  if (!OffsetPtr) {
1509    if (!Int8Ptr) {
1510      Int8Ptr = IRB.CreateBitCast(
1511          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1512          NamePrefix + "sroa_raw_cast");
1513      Int8PtrOffset = Offset;
1514    }
1515
1516    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1517      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1518                            NamePrefix + "sroa_raw_idx");
1519  }
1520  Ptr = OffsetPtr;
1521
1522  // On the off chance we were targeting i8*, guard the bitcast here.
1523  if (Ptr->getType() != PointerTy)
1524    Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1525
1526  return Ptr;
1527}
1528
1529/// \brief Test whether we can convert a value from the old to the new type.
1530///
1531/// This predicate should be used to guard calls to convertValue in order to
1532/// ensure that we only try to convert viable values. The strategy is that we
1533/// will peel off single element struct and array wrappings to get to an
1534/// underlying value, and convert that value.
1535static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1536  if (OldTy == NewTy)
1537    return true;
1538  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1539    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1540      if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1541        return true;
1542  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1543    return false;
1544  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1545    return false;
1546
1547  // We can convert pointers to integers and vice-versa. Same for vectors
1548  // of pointers and integers.
1549  OldTy = OldTy->getScalarType();
1550  NewTy = NewTy->getScalarType();
1551  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1552    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1553      return true;
1554    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1555      return true;
1556    return false;
1557  }
1558
1559  return true;
1560}
1561
1562/// \brief Generic routine to convert an SSA value to a value of a different
1563/// type.
1564///
1565/// This will try various different casting techniques, such as bitcasts,
1566/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1567/// two types for viability with this routine.
1568static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1569                           Type *NewTy) {
1570  Type *OldTy = V->getType();
1571  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1572
1573  if (OldTy == NewTy)
1574    return V;
1575
1576  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1577    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1578      if (NewITy->getBitWidth() > OldITy->getBitWidth())
1579        return IRB.CreateZExt(V, NewITy);
1580
1581  // See if we need inttoptr for this type pair. A cast involving both scalars
1582  // and vectors requires and additional bitcast.
1583  if (OldTy->getScalarType()->isIntegerTy() &&
1584      NewTy->getScalarType()->isPointerTy()) {
1585    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1586    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1587      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1588                                NewTy);
1589
1590    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1591    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1592      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1593                                NewTy);
1594
1595    return IRB.CreateIntToPtr(V, NewTy);
1596  }
1597
1598  // See if we need ptrtoint for this type pair. A cast involving both scalars
1599  // and vectors requires and additional bitcast.
1600  if (OldTy->getScalarType()->isPointerTy() &&
1601      NewTy->getScalarType()->isIntegerTy()) {
1602    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1603    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1604      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1605                               NewTy);
1606
1607    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1608    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1609      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1610                               NewTy);
1611
1612    return IRB.CreatePtrToInt(V, NewTy);
1613  }
1614
1615  return IRB.CreateBitCast(V, NewTy);
1616}
1617
1618/// \brief Test whether the given slice use can be promoted to a vector.
1619///
1620/// This function is called to test each entry in a partioning which is slated
1621/// for a single slice.
1622static bool isVectorPromotionViableForSlice(
1623    const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1624    uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1625    AllocaSlices::const_iterator I) {
1626  // First validate the slice offsets.
1627  uint64_t BeginOffset =
1628      std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
1629  uint64_t BeginIndex = BeginOffset / ElementSize;
1630  if (BeginIndex * ElementSize != BeginOffset ||
1631      BeginIndex >= Ty->getNumElements())
1632    return false;
1633  uint64_t EndOffset =
1634      std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
1635  uint64_t EndIndex = EndOffset / ElementSize;
1636  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1637    return false;
1638
1639  assert(EndIndex > BeginIndex && "Empty vector!");
1640  uint64_t NumElements = EndIndex - BeginIndex;
1641  Type *SliceTy =
1642      (NumElements == 1) ? Ty->getElementType()
1643                         : VectorType::get(Ty->getElementType(), NumElements);
1644
1645  Type *SplitIntTy =
1646      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1647
1648  Use *U = I->getUse();
1649
1650  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1651    if (MI->isVolatile())
1652      return false;
1653    if (!I->isSplittable())
1654      return false; // Skip any unsplittable intrinsics.
1655  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1656    // Disable vector promotion when there are loads or stores of an FCA.
1657    return false;
1658  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1659    if (LI->isVolatile())
1660      return false;
1661    Type *LTy = LI->getType();
1662    if (SliceBeginOffset > I->beginOffset() ||
1663        SliceEndOffset < I->endOffset()) {
1664      assert(LTy->isIntegerTy());
1665      LTy = SplitIntTy;
1666    }
1667    if (!canConvertValue(DL, SliceTy, LTy))
1668      return false;
1669  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1670    if (SI->isVolatile())
1671      return false;
1672    Type *STy = SI->getValueOperand()->getType();
1673    if (SliceBeginOffset > I->beginOffset() ||
1674        SliceEndOffset < I->endOffset()) {
1675      assert(STy->isIntegerTy());
1676      STy = SplitIntTy;
1677    }
1678    if (!canConvertValue(DL, STy, SliceTy))
1679      return false;
1680  } else {
1681    return false;
1682  }
1683
1684  return true;
1685}
1686
1687/// \brief Test whether the given alloca partitioning and range of slices can be
1688/// promoted to a vector.
1689///
1690/// This is a quick test to check whether we can rewrite a particular alloca
1691/// partition (and its newly formed alloca) into a vector alloca with only
1692/// whole-vector loads and stores such that it could be promoted to a vector
1693/// SSA value. We only can ensure this for a limited set of operations, and we
1694/// don't want to do the rewrites unless we are confident that the result will
1695/// be promotable, so we have an early test here.
1696static bool
1697isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1698                        uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1699                        AllocaSlices::const_iterator I,
1700                        AllocaSlices::const_iterator E,
1701                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1702  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1703  if (!Ty)
1704    return false;
1705
1706  uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
1707
1708  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1709  // that aren't byte sized.
1710  if (ElementSize % 8)
1711    return false;
1712  assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
1713         "vector size not a multiple of element size?");
1714  ElementSize /= 8;
1715
1716  for (; I != E; ++I)
1717    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1718                                         SliceEndOffset, Ty, ElementSize, I))
1719      return false;
1720
1721  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1722                                                        SUE = SplitUses.end();
1723       SUI != SUE; ++SUI)
1724    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1725                                         SliceEndOffset, Ty, ElementSize, *SUI))
1726      return false;
1727
1728  return true;
1729}
1730
1731/// \brief Test whether a slice of an alloca is valid for integer widening.
1732///
1733/// This implements the necessary checking for the \c isIntegerWideningViable
1734/// test below on a single slice of the alloca.
1735static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1736                                            Type *AllocaTy,
1737                                            uint64_t AllocBeginOffset,
1738                                            uint64_t Size, AllocaSlices &S,
1739                                            AllocaSlices::const_iterator I,
1740                                            bool &WholeAllocaOp) {
1741  uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1742  uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1743
1744  // We can't reasonably handle cases where the load or store extends past
1745  // the end of the aloca's type and into its padding.
1746  if (RelEnd > Size)
1747    return false;
1748
1749  Use *U = I->getUse();
1750
1751  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1752    if (LI->isVolatile())
1753      return false;
1754    if (RelBegin == 0 && RelEnd == Size)
1755      WholeAllocaOp = true;
1756    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1757      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1758        return false;
1759    } else if (RelBegin != 0 || RelEnd != Size ||
1760               !canConvertValue(DL, AllocaTy, LI->getType())) {
1761      // Non-integer loads need to be convertible from the alloca type so that
1762      // they are promotable.
1763      return false;
1764    }
1765  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1766    Type *ValueTy = SI->getValueOperand()->getType();
1767    if (SI->isVolatile())
1768      return false;
1769    if (RelBegin == 0 && RelEnd == Size)
1770      WholeAllocaOp = true;
1771    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1772      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1773        return false;
1774    } else if (RelBegin != 0 || RelEnd != Size ||
1775               !canConvertValue(DL, ValueTy, AllocaTy)) {
1776      // Non-integer stores need to be convertible to the alloca type so that
1777      // they are promotable.
1778      return false;
1779    }
1780  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1781    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1782      return false;
1783    if (!I->isSplittable())
1784      return false; // Skip any unsplittable intrinsics.
1785  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1786    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1787        II->getIntrinsicID() != Intrinsic::lifetime_end)
1788      return false;
1789  } else {
1790    return false;
1791  }
1792
1793  return true;
1794}
1795
1796/// \brief Test whether the given alloca partition's integer operations can be
1797/// widened to promotable ones.
1798///
1799/// This is a quick test to check whether we can rewrite the integer loads and
1800/// stores to a particular alloca into wider loads and stores and be able to
1801/// promote the resulting alloca.
1802static bool
1803isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
1804                        uint64_t AllocBeginOffset, AllocaSlices &S,
1805                        AllocaSlices::const_iterator I,
1806                        AllocaSlices::const_iterator E,
1807                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1808  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1809  // Don't create integer types larger than the maximum bitwidth.
1810  if (SizeInBits > IntegerType::MAX_INT_BITS)
1811    return false;
1812
1813  // Don't try to handle allocas with bit-padding.
1814  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1815    return false;
1816
1817  // We need to ensure that an integer type with the appropriate bitwidth can
1818  // be converted to the alloca type, whatever that is. We don't want to force
1819  // the alloca itself to have an integer type if there is a more suitable one.
1820  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
1821  if (!canConvertValue(DL, AllocaTy, IntTy) ||
1822      !canConvertValue(DL, IntTy, AllocaTy))
1823    return false;
1824
1825  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1826
1827  // While examining uses, we ensure that the alloca has a covering load or
1828  // store. We don't want to widen the integer operations only to fail to
1829  // promote due to some other unsplittable entry (which we may make splittable
1830  // later). However, if there are only splittable uses, go ahead and assume
1831  // that we cover the alloca.
1832  bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
1833
1834  for (; I != E; ++I)
1835    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1836                                         S, I, WholeAllocaOp))
1837      return false;
1838
1839  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1840                                                        SUE = SplitUses.end();
1841       SUI != SUE; ++SUI)
1842    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1843                                         S, *SUI, WholeAllocaOp))
1844      return false;
1845
1846  return WholeAllocaOp;
1847}
1848
1849static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1850                             IntegerType *Ty, uint64_t Offset,
1851                             const Twine &Name) {
1852  DEBUG(dbgs() << "       start: " << *V << "\n");
1853  IntegerType *IntTy = cast<IntegerType>(V->getType());
1854  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1855         "Element extends past full value");
1856  uint64_t ShAmt = 8*Offset;
1857  if (DL.isBigEndian())
1858    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1859  if (ShAmt) {
1860    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
1861    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1862  }
1863  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1864         "Cannot extract to a larger integer!");
1865  if (Ty != IntTy) {
1866    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
1867    DEBUG(dbgs() << "     trunced: " << *V << "\n");
1868  }
1869  return V;
1870}
1871
1872static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
1873                            Value *V, uint64_t Offset, const Twine &Name) {
1874  IntegerType *IntTy = cast<IntegerType>(Old->getType());
1875  IntegerType *Ty = cast<IntegerType>(V->getType());
1876  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1877         "Cannot insert a larger integer!");
1878  DEBUG(dbgs() << "       start: " << *V << "\n");
1879  if (Ty != IntTy) {
1880    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
1881    DEBUG(dbgs() << "    extended: " << *V << "\n");
1882  }
1883  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1884         "Element store outside of alloca store");
1885  uint64_t ShAmt = 8*Offset;
1886  if (DL.isBigEndian())
1887    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1888  if (ShAmt) {
1889    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
1890    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1891  }
1892
1893  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1894    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1895    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
1896    DEBUG(dbgs() << "      masked: " << *Old << "\n");
1897    V = IRB.CreateOr(Old, V, Name + ".insert");
1898    DEBUG(dbgs() << "    inserted: " << *V << "\n");
1899  }
1900  return V;
1901}
1902
1903static Value *extractVector(IRBuilderTy &IRB, Value *V,
1904                            unsigned BeginIndex, unsigned EndIndex,
1905                            const Twine &Name) {
1906  VectorType *VecTy = cast<VectorType>(V->getType());
1907  unsigned NumElements = EndIndex - BeginIndex;
1908  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1909
1910  if (NumElements == VecTy->getNumElements())
1911    return V;
1912
1913  if (NumElements == 1) {
1914    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1915                                 Name + ".extract");
1916    DEBUG(dbgs() << "     extract: " << *V << "\n");
1917    return V;
1918  }
1919
1920  SmallVector<Constant*, 8> Mask;
1921  Mask.reserve(NumElements);
1922  for (unsigned i = BeginIndex; i != EndIndex; ++i)
1923    Mask.push_back(IRB.getInt32(i));
1924  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1925                              ConstantVector::get(Mask),
1926                              Name + ".extract");
1927  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
1928  return V;
1929}
1930
1931static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
1932                           unsigned BeginIndex, const Twine &Name) {
1933  VectorType *VecTy = cast<VectorType>(Old->getType());
1934  assert(VecTy && "Can only insert a vector into a vector");
1935
1936  VectorType *Ty = dyn_cast<VectorType>(V->getType());
1937  if (!Ty) {
1938    // Single element to insert.
1939    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1940                                Name + ".insert");
1941    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
1942    return V;
1943  }
1944
1945  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1946         "Too many elements!");
1947  if (Ty->getNumElements() == VecTy->getNumElements()) {
1948    assert(V->getType() == VecTy && "Vector type mismatch");
1949    return V;
1950  }
1951  unsigned EndIndex = BeginIndex + Ty->getNumElements();
1952
1953  // When inserting a smaller vector into the larger to store, we first
1954  // use a shuffle vector to widen it with undef elements, and then
1955  // a second shuffle vector to select between the loaded vector and the
1956  // incoming vector.
1957  SmallVector<Constant*, 8> Mask;
1958  Mask.reserve(VecTy->getNumElements());
1959  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1960    if (i >= BeginIndex && i < EndIndex)
1961      Mask.push_back(IRB.getInt32(i - BeginIndex));
1962    else
1963      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1964  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1965                              ConstantVector::get(Mask),
1966                              Name + ".expand");
1967  DEBUG(dbgs() << "    shuffle: " << *V << "\n");
1968
1969  Mask.clear();
1970  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1971    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1972
1973  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1974
1975  DEBUG(dbgs() << "    blend: " << *V << "\n");
1976  return V;
1977}
1978
1979namespace {
1980/// \brief Visitor to rewrite instructions using p particular slice of an alloca
1981/// to use a new alloca.
1982///
1983/// Also implements the rewriting to vector-based accesses when the partition
1984/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1985/// lives here.
1986class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
1987  // Befriend the base class so it can delegate to private visit methods.
1988  friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1989  typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
1990
1991  const DataLayout &DL;
1992  AllocaSlices &S;
1993  SROA &Pass;
1994  AllocaInst &OldAI, &NewAI;
1995  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1996  Type *NewAllocaTy;
1997
1998  // If we are rewriting an alloca partition which can be written as pure
1999  // vector operations, we stash extra information here. When VecTy is
2000  // non-null, we have some strict guarantees about the rewritten alloca:
2001  //   - The new alloca is exactly the size of the vector type here.
2002  //   - The accesses all either map to the entire vector or to a single
2003  //     element.
2004  //   - The set of accessing instructions is only one of those handled above
2005  //     in isVectorPromotionViable. Generally these are the same access kinds
2006  //     which are promotable via mem2reg.
2007  VectorType *VecTy;
2008  Type *ElementTy;
2009  uint64_t ElementSize;
2010
2011  // This is a convenience and flag variable that will be null unless the new
2012  // alloca's integer operations should be widened to this integer type due to
2013  // passing isIntegerWideningViable above. If it is non-null, the desired
2014  // integer type will be stored here for easy access during rewriting.
2015  IntegerType *IntTy;
2016
2017  // The original offset of the slice currently being rewritten relative to
2018  // the original alloca.
2019  uint64_t BeginOffset, EndOffset;
2020  // The new offsets of the slice currently being rewritten relative to the
2021  // original alloca.
2022  uint64_t NewBeginOffset, NewEndOffset;
2023
2024  uint64_t SliceSize;
2025  bool IsSplittable;
2026  bool IsSplit;
2027  Use *OldUse;
2028  Instruction *OldPtr;
2029
2030  // Track post-rewrite users which are PHI nodes and Selects.
2031  SmallPtrSetImpl<PHINode *> &PHIUsers;
2032  SmallPtrSetImpl<SelectInst *> &SelectUsers;
2033
2034  // Utility IR builder, whose name prefix is setup for each visited use, and
2035  // the insertion point is set to point to the user.
2036  IRBuilderTy IRB;
2037
2038public:
2039  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
2040                      AllocaInst &OldAI, AllocaInst &NewAI,
2041                      uint64_t NewAllocaBeginOffset,
2042                      uint64_t NewAllocaEndOffset, bool IsVectorPromotable,
2043                      bool IsIntegerPromotable,
2044                      SmallPtrSetImpl<PHINode *> &PHIUsers,
2045                      SmallPtrSetImpl<SelectInst *> &SelectUsers)
2046      : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2047        NewAllocaBeginOffset(NewAllocaBeginOffset),
2048        NewAllocaEndOffset(NewAllocaEndOffset),
2049        NewAllocaTy(NewAI.getAllocatedType()),
2050        VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr),
2051        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2052        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2053        IntTy(IsIntegerPromotable
2054                  ? Type::getIntNTy(
2055                        NewAI.getContext(),
2056                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2057                  : nullptr),
2058        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
2059        OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2060        IRB(NewAI.getContext(), ConstantFolder()) {
2061    if (VecTy) {
2062      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2063             "Only multiple-of-8 sized vector elements are viable");
2064      ++NumVectorized;
2065    }
2066    assert((!IsVectorPromotable && !IsIntegerPromotable) ||
2067           IsVectorPromotable != IsIntegerPromotable);
2068  }
2069
2070  bool visit(AllocaSlices::const_iterator I) {
2071    bool CanSROA = true;
2072    BeginOffset = I->beginOffset();
2073    EndOffset = I->endOffset();
2074    IsSplittable = I->isSplittable();
2075    IsSplit =
2076        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2077
2078    // Compute the intersecting offset range.
2079    assert(BeginOffset < NewAllocaEndOffset);
2080    assert(EndOffset > NewAllocaBeginOffset);
2081    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2082    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2083
2084    SliceSize = NewEndOffset - NewBeginOffset;
2085
2086    OldUse = I->getUse();
2087    OldPtr = cast<Instruction>(OldUse->get());
2088
2089    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2090    IRB.SetInsertPoint(OldUserI);
2091    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2092    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2093
2094    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2095    if (VecTy || IntTy)
2096      assert(CanSROA);
2097    return CanSROA;
2098  }
2099
2100private:
2101  // Make sure the other visit overloads are visible.
2102  using Base::visit;
2103
2104  // Every instruction which can end up as a user must have a rewrite rule.
2105  bool visitInstruction(Instruction &I) {
2106    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2107    llvm_unreachable("No rewrite rule for this instruction!");
2108  }
2109
2110  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2111    // Note that the offset computation can use BeginOffset or NewBeginOffset
2112    // interchangeably for unsplit slices.
2113    assert(IsSplit || BeginOffset == NewBeginOffset);
2114    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2115
2116#ifndef NDEBUG
2117    StringRef OldName = OldPtr->getName();
2118    // Skip through the last '.sroa.' component of the name.
2119    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2120    if (LastSROAPrefix != StringRef::npos) {
2121      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2122      // Look for an SROA slice index.
2123      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2124      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2125        // Strip the index and look for the offset.
2126        OldName = OldName.substr(IndexEnd + 1);
2127        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2128        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2129          // Strip the offset.
2130          OldName = OldName.substr(OffsetEnd + 1);
2131      }
2132    }
2133    // Strip any SROA suffixes as well.
2134    OldName = OldName.substr(0, OldName.find(".sroa_"));
2135#endif
2136
2137    return getAdjustedPtr(IRB, DL, &NewAI,
2138                          APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
2139#ifndef NDEBUG
2140                          Twine(OldName) + "."
2141#else
2142                          Twine()
2143#endif
2144                          );
2145  }
2146
2147  /// \brief Compute suitable alignment to access this slice of the *new* alloca.
2148  ///
2149  /// You can optionally pass a type to this routine and if that type's ABI
2150  /// alignment is itself suitable, this will return zero.
2151  unsigned getSliceAlign(Type *Ty = nullptr) {
2152    unsigned NewAIAlign = NewAI.getAlignment();
2153    if (!NewAIAlign)
2154      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2155    unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2156    return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2157  }
2158
2159  unsigned getIndex(uint64_t Offset) {
2160    assert(VecTy && "Can only call getIndex when rewriting a vector");
2161    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2162    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2163    uint32_t Index = RelOffset / ElementSize;
2164    assert(Index * ElementSize == RelOffset);
2165    return Index;
2166  }
2167
2168  void deleteIfTriviallyDead(Value *V) {
2169    Instruction *I = cast<Instruction>(V);
2170    if (isInstructionTriviallyDead(I))
2171      Pass.DeadInsts.insert(I);
2172  }
2173
2174  Value *rewriteVectorizedLoadInst() {
2175    unsigned BeginIndex = getIndex(NewBeginOffset);
2176    unsigned EndIndex = getIndex(NewEndOffset);
2177    assert(EndIndex > BeginIndex && "Empty vector!");
2178
2179    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2180                                     "load");
2181    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2182  }
2183
2184  Value *rewriteIntegerLoad(LoadInst &LI) {
2185    assert(IntTy && "We cannot insert an integer to the alloca");
2186    assert(!LI.isVolatile());
2187    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2188                                     "load");
2189    V = convertValue(DL, IRB, V, IntTy);
2190    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2191    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2192    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2193      V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2194                         "extract");
2195    return V;
2196  }
2197
2198  bool visitLoadInst(LoadInst &LI) {
2199    DEBUG(dbgs() << "    original: " << LI << "\n");
2200    Value *OldOp = LI.getOperand(0);
2201    assert(OldOp == OldPtr);
2202
2203    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2204                             : LI.getType();
2205    bool IsPtrAdjusted = false;
2206    Value *V;
2207    if (VecTy) {
2208      V = rewriteVectorizedLoadInst();
2209    } else if (IntTy && LI.getType()->isIntegerTy()) {
2210      V = rewriteIntegerLoad(LI);
2211    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2212               canConvertValue(DL, NewAllocaTy, LI.getType())) {
2213      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2214                                LI.isVolatile(), LI.getName());
2215    } else {
2216      Type *LTy = TargetTy->getPointerTo();
2217      V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2218                                getSliceAlign(TargetTy), LI.isVolatile(),
2219                                LI.getName());
2220      IsPtrAdjusted = true;
2221    }
2222    V = convertValue(DL, IRB, V, TargetTy);
2223
2224    if (IsSplit) {
2225      assert(!LI.isVolatile());
2226      assert(LI.getType()->isIntegerTy() &&
2227             "Only integer type loads and stores are split");
2228      assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2229             "Split load isn't smaller than original load");
2230      assert(LI.getType()->getIntegerBitWidth() ==
2231             DL.getTypeStoreSizeInBits(LI.getType()) &&
2232             "Non-byte-multiple bit width");
2233      // Move the insertion point just past the load so that we can refer to it.
2234      IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
2235      // Create a placeholder value with the same type as LI to use as the
2236      // basis for the new value. This allows us to replace the uses of LI with
2237      // the computed value, and then replace the placeholder with LI, leaving
2238      // LI only used for this computation.
2239      Value *Placeholder
2240        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2241      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
2242                        "insert");
2243      LI.replaceAllUsesWith(V);
2244      Placeholder->replaceAllUsesWith(&LI);
2245      delete Placeholder;
2246    } else {
2247      LI.replaceAllUsesWith(V);
2248    }
2249
2250    Pass.DeadInsts.insert(&LI);
2251    deleteIfTriviallyDead(OldOp);
2252    DEBUG(dbgs() << "          to: " << *V << "\n");
2253    return !LI.isVolatile() && !IsPtrAdjusted;
2254  }
2255
2256  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
2257    if (V->getType() != VecTy) {
2258      unsigned BeginIndex = getIndex(NewBeginOffset);
2259      unsigned EndIndex = getIndex(NewEndOffset);
2260      assert(EndIndex > BeginIndex && "Empty vector!");
2261      unsigned NumElements = EndIndex - BeginIndex;
2262      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2263      Type *SliceTy =
2264          (NumElements == 1) ? ElementTy
2265                             : VectorType::get(ElementTy, NumElements);
2266      if (V->getType() != SliceTy)
2267        V = convertValue(DL, IRB, V, SliceTy);
2268
2269      // Mix in the existing elements.
2270      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2271                                         "load");
2272      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2273    }
2274    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2275    Pass.DeadInsts.insert(&SI);
2276
2277    (void)Store;
2278    DEBUG(dbgs() << "          to: " << *Store << "\n");
2279    return true;
2280  }
2281
2282  bool rewriteIntegerStore(Value *V, StoreInst &SI) {
2283    assert(IntTy && "We cannot extract an integer from the alloca");
2284    assert(!SI.isVolatile());
2285    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2286      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2287                                         "oldload");
2288      Old = convertValue(DL, IRB, Old, IntTy);
2289      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2290      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2291      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
2292                        "insert");
2293    }
2294    V = convertValue(DL, IRB, V, NewAllocaTy);
2295    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2296    Pass.DeadInsts.insert(&SI);
2297    (void)Store;
2298    DEBUG(dbgs() << "          to: " << *Store << "\n");
2299    return true;
2300  }
2301
2302  bool visitStoreInst(StoreInst &SI) {
2303    DEBUG(dbgs() << "    original: " << SI << "\n");
2304    Value *OldOp = SI.getOperand(1);
2305    assert(OldOp == OldPtr);
2306
2307    Value *V = SI.getValueOperand();
2308
2309    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2310    // alloca that should be re-examined after promoting this alloca.
2311    if (V->getType()->isPointerTy())
2312      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2313        Pass.PostPromotionWorklist.insert(AI);
2314
2315    if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2316      assert(!SI.isVolatile());
2317      assert(V->getType()->isIntegerTy() &&
2318             "Only integer type loads and stores are split");
2319      assert(V->getType()->getIntegerBitWidth() ==
2320             DL.getTypeStoreSizeInBits(V->getType()) &&
2321             "Non-byte-multiple bit width");
2322      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2323      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
2324                         "extract");
2325    }
2326
2327    if (VecTy)
2328      return rewriteVectorizedStoreInst(V, SI, OldOp);
2329    if (IntTy && V->getType()->isIntegerTy())
2330      return rewriteIntegerStore(V, SI);
2331
2332    StoreInst *NewSI;
2333    if (NewBeginOffset == NewAllocaBeginOffset &&
2334        NewEndOffset == NewAllocaEndOffset &&
2335        canConvertValue(DL, V->getType(), NewAllocaTy)) {
2336      V = convertValue(DL, IRB, V, NewAllocaTy);
2337      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2338                                     SI.isVolatile());
2339    } else {
2340      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
2341      NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2342                                     SI.isVolatile());
2343    }
2344    (void)NewSI;
2345    Pass.DeadInsts.insert(&SI);
2346    deleteIfTriviallyDead(OldOp);
2347
2348    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2349    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2350  }
2351
2352  /// \brief Compute an integer value from splatting an i8 across the given
2353  /// number of bytes.
2354  ///
2355  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2356  /// call this routine.
2357  /// FIXME: Heed the advice above.
2358  ///
2359  /// \param V The i8 value to splat.
2360  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2361  Value *getIntegerSplat(Value *V, unsigned Size) {
2362    assert(Size > 0 && "Expected a positive number of bytes.");
2363    IntegerType *VTy = cast<IntegerType>(V->getType());
2364    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2365    if (Size == 1)
2366      return V;
2367
2368    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2369    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
2370                      ConstantExpr::getUDiv(
2371                        Constant::getAllOnesValue(SplatIntTy),
2372                        ConstantExpr::getZExt(
2373                          Constant::getAllOnesValue(V->getType()),
2374                          SplatIntTy)),
2375                      "isplat");
2376    return V;
2377  }
2378
2379  /// \brief Compute a vector splat for a given element value.
2380  Value *getVectorSplat(Value *V, unsigned NumElements) {
2381    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2382    DEBUG(dbgs() << "       splat: " << *V << "\n");
2383    return V;
2384  }
2385
2386  bool visitMemSetInst(MemSetInst &II) {
2387    DEBUG(dbgs() << "    original: " << II << "\n");
2388    assert(II.getRawDest() == OldPtr);
2389
2390    // If the memset has a variable size, it cannot be split, just adjust the
2391    // pointer to the new alloca.
2392    if (!isa<Constant>(II.getLength())) {
2393      assert(!IsSplit);
2394      assert(NewBeginOffset == BeginOffset);
2395      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2396      Type *CstTy = II.getAlignmentCst()->getType();
2397      II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
2398
2399      deleteIfTriviallyDead(OldPtr);
2400      return false;
2401    }
2402
2403    // Record this instruction for deletion.
2404    Pass.DeadInsts.insert(&II);
2405
2406    Type *AllocaTy = NewAI.getAllocatedType();
2407    Type *ScalarTy = AllocaTy->getScalarType();
2408
2409    // If this doesn't map cleanly onto the alloca type, and that type isn't
2410    // a single value type, just emit a memset.
2411    if (!VecTy && !IntTy &&
2412        (BeginOffset > NewAllocaBeginOffset ||
2413         EndOffset < NewAllocaEndOffset ||
2414         !AllocaTy->isSingleValueType() ||
2415         !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2416         DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2417      Type *SizeTy = II.getLength()->getType();
2418      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2419      CallInst *New = IRB.CreateMemSet(
2420          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2421          getSliceAlign(), II.isVolatile());
2422      (void)New;
2423      DEBUG(dbgs() << "          to: " << *New << "\n");
2424      return false;
2425    }
2426
2427    // If we can represent this as a simple value, we have to build the actual
2428    // value to store, which requires expanding the byte present in memset to
2429    // a sensible representation for the alloca type. This is essentially
2430    // splatting the byte to a sufficiently wide integer, splatting it across
2431    // any desired vector width, and bitcasting to the final type.
2432    Value *V;
2433
2434    if (VecTy) {
2435      // If this is a memset of a vectorized alloca, insert it.
2436      assert(ElementTy == ScalarTy);
2437
2438      unsigned BeginIndex = getIndex(NewBeginOffset);
2439      unsigned EndIndex = getIndex(NewEndOffset);
2440      assert(EndIndex > BeginIndex && "Empty vector!");
2441      unsigned NumElements = EndIndex - BeginIndex;
2442      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2443
2444      Value *Splat =
2445          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2446      Splat = convertValue(DL, IRB, Splat, ElementTy);
2447      if (NumElements > 1)
2448        Splat = getVectorSplat(Splat, NumElements);
2449
2450      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2451                                         "oldload");
2452      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2453    } else if (IntTy) {
2454      // If this is a memset on an alloca where we can widen stores, insert the
2455      // set integer.
2456      assert(!II.isVolatile());
2457
2458      uint64_t Size = NewEndOffset - NewBeginOffset;
2459      V = getIntegerSplat(II.getValue(), Size);
2460
2461      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2462                    EndOffset != NewAllocaBeginOffset)) {
2463        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2464                                           "oldload");
2465        Old = convertValue(DL, IRB, Old, IntTy);
2466        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2467        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2468      } else {
2469        assert(V->getType() == IntTy &&
2470               "Wrong type for an alloca wide integer!");
2471      }
2472      V = convertValue(DL, IRB, V, AllocaTy);
2473    } else {
2474      // Established these invariants above.
2475      assert(NewBeginOffset == NewAllocaBeginOffset);
2476      assert(NewEndOffset == NewAllocaEndOffset);
2477
2478      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2479      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2480        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2481
2482      V = convertValue(DL, IRB, V, AllocaTy);
2483    }
2484
2485    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2486                                        II.isVolatile());
2487    (void)New;
2488    DEBUG(dbgs() << "          to: " << *New << "\n");
2489    return !II.isVolatile();
2490  }
2491
2492  bool visitMemTransferInst(MemTransferInst &II) {
2493    // Rewriting of memory transfer instructions can be a bit tricky. We break
2494    // them into two categories: split intrinsics and unsplit intrinsics.
2495
2496    DEBUG(dbgs() << "    original: " << II << "\n");
2497
2498    bool IsDest = &II.getRawDestUse() == OldUse;
2499    assert((IsDest && II.getRawDest() == OldPtr) ||
2500           (!IsDest && II.getRawSource() == OldPtr));
2501
2502    unsigned SliceAlign = getSliceAlign();
2503
2504    // For unsplit intrinsics, we simply modify the source and destination
2505    // pointers in place. This isn't just an optimization, it is a matter of
2506    // correctness. With unsplit intrinsics we may be dealing with transfers
2507    // within a single alloca before SROA ran, or with transfers that have
2508    // a variable length. We may also be dealing with memmove instead of
2509    // memcpy, and so simply updating the pointers is the necessary for us to
2510    // update both source and dest of a single call.
2511    if (!IsSplittable) {
2512      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2513      if (IsDest)
2514        II.setDest(AdjustedPtr);
2515      else
2516        II.setSource(AdjustedPtr);
2517
2518      if (II.getAlignment() > SliceAlign) {
2519        Type *CstTy = II.getAlignmentCst()->getType();
2520        II.setAlignment(
2521            ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
2522      }
2523
2524      DEBUG(dbgs() << "          to: " << II << "\n");
2525      deleteIfTriviallyDead(OldPtr);
2526      return false;
2527    }
2528    // For split transfer intrinsics we have an incredibly useful assurance:
2529    // the source and destination do not reside within the same alloca, and at
2530    // least one of them does not escape. This means that we can replace
2531    // memmove with memcpy, and we don't need to worry about all manner of
2532    // downsides to splitting and transforming the operations.
2533
2534    // If this doesn't map cleanly onto the alloca type, and that type isn't
2535    // a single value type, just emit a memcpy.
2536    bool EmitMemCpy
2537      = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2538                             EndOffset < NewAllocaEndOffset ||
2539                             !NewAI.getAllocatedType()->isSingleValueType());
2540
2541    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2542    // size hasn't been shrunk based on analysis of the viable range, this is
2543    // a no-op.
2544    if (EmitMemCpy && &OldAI == &NewAI) {
2545      // Ensure the start lines up.
2546      assert(NewBeginOffset == BeginOffset);
2547
2548      // Rewrite the size as needed.
2549      if (NewEndOffset != EndOffset)
2550        II.setLength(ConstantInt::get(II.getLength()->getType(),
2551                                      NewEndOffset - NewBeginOffset));
2552      return false;
2553    }
2554    // Record this instruction for deletion.
2555    Pass.DeadInsts.insert(&II);
2556
2557    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2558    // alloca that should be re-examined after rewriting this instruction.
2559    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2560    if (AllocaInst *AI
2561          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2562      assert(AI != &OldAI && AI != &NewAI &&
2563             "Splittable transfers cannot reach the same alloca on both ends.");
2564      Pass.Worklist.insert(AI);
2565    }
2566
2567    Type *OtherPtrTy = OtherPtr->getType();
2568    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2569
2570    // Compute the relative offset for the other pointer within the transfer.
2571    unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2572    APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2573    unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
2574                                   OtherOffset.zextOrTrunc(64).getZExtValue());
2575
2576    if (EmitMemCpy) {
2577      // Compute the other pointer, folding as much as possible to produce
2578      // a single, simple GEP in most cases.
2579      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2580                                OtherPtr->getName() + ".");
2581
2582      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2583      Type *SizeTy = II.getLength()->getType();
2584      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2585
2586      CallInst *New = IRB.CreateMemCpy(
2587          IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
2588          MinAlign(SliceAlign, OtherAlign), II.isVolatile());
2589      (void)New;
2590      DEBUG(dbgs() << "          to: " << *New << "\n");
2591      return false;
2592    }
2593
2594    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2595                         NewEndOffset == NewAllocaEndOffset;
2596    uint64_t Size = NewEndOffset - NewBeginOffset;
2597    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2598    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2599    unsigned NumElements = EndIndex - BeginIndex;
2600    IntegerType *SubIntTy
2601      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr;
2602
2603    // Reset the other pointer type to match the register type we're going to
2604    // use, but using the address space of the original other pointer.
2605    if (VecTy && !IsWholeAlloca) {
2606      if (NumElements == 1)
2607        OtherPtrTy = VecTy->getElementType();
2608      else
2609        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2610
2611      OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2612    } else if (IntTy && !IsWholeAlloca) {
2613      OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2614    } else {
2615      OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2616    }
2617
2618    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2619                                   OtherPtr->getName() + ".");
2620    unsigned SrcAlign = OtherAlign;
2621    Value *DstPtr = &NewAI;
2622    unsigned DstAlign = SliceAlign;
2623    if (!IsDest) {
2624      std::swap(SrcPtr, DstPtr);
2625      std::swap(SrcAlign, DstAlign);
2626    }
2627
2628    Value *Src;
2629    if (VecTy && !IsWholeAlloca && !IsDest) {
2630      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2631                                  "load");
2632      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2633    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2634      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2635                                  "load");
2636      Src = convertValue(DL, IRB, Src, IntTy);
2637      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2638      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2639    } else {
2640      Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
2641                                  "copyload");
2642    }
2643
2644    if (VecTy && !IsWholeAlloca && IsDest) {
2645      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2646                                         "oldload");
2647      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2648    } else if (IntTy && !IsWholeAlloca && IsDest) {
2649      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2650                                         "oldload");
2651      Old = convertValue(DL, IRB, Old, IntTy);
2652      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2653      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2654      Src = convertValue(DL, IRB, Src, NewAllocaTy);
2655    }
2656
2657    StoreInst *Store = cast<StoreInst>(
2658        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
2659    (void)Store;
2660    DEBUG(dbgs() << "          to: " << *Store << "\n");
2661    return !II.isVolatile();
2662  }
2663
2664  bool visitIntrinsicInst(IntrinsicInst &II) {
2665    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2666           II.getIntrinsicID() == Intrinsic::lifetime_end);
2667    DEBUG(dbgs() << "    original: " << II << "\n");
2668    assert(II.getArgOperand(1) == OldPtr);
2669
2670    // Record this instruction for deletion.
2671    Pass.DeadInsts.insert(&II);
2672
2673    ConstantInt *Size
2674      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2675                         NewEndOffset - NewBeginOffset);
2676    Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2677    Value *New;
2678    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2679      New = IRB.CreateLifetimeStart(Ptr, Size);
2680    else
2681      New = IRB.CreateLifetimeEnd(Ptr, Size);
2682
2683    (void)New;
2684    DEBUG(dbgs() << "          to: " << *New << "\n");
2685    return true;
2686  }
2687
2688  bool visitPHINode(PHINode &PN) {
2689    DEBUG(dbgs() << "    original: " << PN << "\n");
2690    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2691    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2692
2693    // We would like to compute a new pointer in only one place, but have it be
2694    // as local as possible to the PHI. To do that, we re-use the location of
2695    // the old pointer, which necessarily must be in the right position to
2696    // dominate the PHI.
2697    IRBuilderTy PtrBuilder(IRB);
2698    PtrBuilder.SetInsertPoint(OldPtr);
2699    PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
2700
2701    Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
2702    // Replace the operands which were using the old pointer.
2703    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2704
2705    DEBUG(dbgs() << "          to: " << PN << "\n");
2706    deleteIfTriviallyDead(OldPtr);
2707
2708    // PHIs can't be promoted on their own, but often can be speculated. We
2709    // check the speculation outside of the rewriter so that we see the
2710    // fully-rewritten alloca.
2711    PHIUsers.insert(&PN);
2712    return true;
2713  }
2714
2715  bool visitSelectInst(SelectInst &SI) {
2716    DEBUG(dbgs() << "    original: " << SI << "\n");
2717    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2718           "Pointer isn't an operand!");
2719    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2720    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2721
2722    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2723    // Replace the operands which were using the old pointer.
2724    if (SI.getOperand(1) == OldPtr)
2725      SI.setOperand(1, NewPtr);
2726    if (SI.getOperand(2) == OldPtr)
2727      SI.setOperand(2, NewPtr);
2728
2729    DEBUG(dbgs() << "          to: " << SI << "\n");
2730    deleteIfTriviallyDead(OldPtr);
2731
2732    // Selects can't be promoted on their own, but often can be speculated. We
2733    // check the speculation outside of the rewriter so that we see the
2734    // fully-rewritten alloca.
2735    SelectUsers.insert(&SI);
2736    return true;
2737  }
2738
2739};
2740}
2741
2742namespace {
2743/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2744///
2745/// This pass aggressively rewrites all aggregate loads and stores on
2746/// a particular pointer (or any pointer derived from it which we can identify)
2747/// with scalar loads and stores.
2748class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2749  // Befriend the base class so it can delegate to private visit methods.
2750  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2751
2752  const DataLayout &DL;
2753
2754  /// Queue of pointer uses to analyze and potentially rewrite.
2755  SmallVector<Use *, 8> Queue;
2756
2757  /// Set to prevent us from cycling with phi nodes and loops.
2758  SmallPtrSet<User *, 8> Visited;
2759
2760  /// The current pointer use being rewritten. This is used to dig up the used
2761  /// value (as opposed to the user).
2762  Use *U;
2763
2764public:
2765  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
2766
2767  /// Rewrite loads and stores through a pointer and all pointers derived from
2768  /// it.
2769  bool rewrite(Instruction &I) {
2770    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2771    enqueueUsers(I);
2772    bool Changed = false;
2773    while (!Queue.empty()) {
2774      U = Queue.pop_back_val();
2775      Changed |= visit(cast<Instruction>(U->getUser()));
2776    }
2777    return Changed;
2778  }
2779
2780private:
2781  /// Enqueue all the users of the given instruction for further processing.
2782  /// This uses a set to de-duplicate users.
2783  void enqueueUsers(Instruction &I) {
2784    for (Use &U : I.uses())
2785      if (Visited.insert(U.getUser()))
2786        Queue.push_back(&U);
2787  }
2788
2789  // Conservative default is to not rewrite anything.
2790  bool visitInstruction(Instruction &I) { return false; }
2791
2792  /// \brief Generic recursive split emission class.
2793  template <typename Derived>
2794  class OpSplitter {
2795  protected:
2796    /// The builder used to form new instructions.
2797    IRBuilderTy IRB;
2798    /// The indices which to be used with insert- or extractvalue to select the
2799    /// appropriate value within the aggregate.
2800    SmallVector<unsigned, 4> Indices;
2801    /// The indices to a GEP instruction which will move Ptr to the correct slot
2802    /// within the aggregate.
2803    SmallVector<Value *, 4> GEPIndices;
2804    /// The base pointer of the original op, used as a base for GEPing the
2805    /// split operations.
2806    Value *Ptr;
2807
2808    /// Initialize the splitter with an insertion point, Ptr and start with a
2809    /// single zero GEP index.
2810    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2811      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2812
2813  public:
2814    /// \brief Generic recursive split emission routine.
2815    ///
2816    /// This method recursively splits an aggregate op (load or store) into
2817    /// scalar or vector ops. It splits recursively until it hits a single value
2818    /// and emits that single value operation via the template argument.
2819    ///
2820    /// The logic of this routine relies on GEPs and insertvalue and
2821    /// extractvalue all operating with the same fundamental index list, merely
2822    /// formatted differently (GEPs need actual values).
2823    ///
2824    /// \param Ty  The type being split recursively into smaller ops.
2825    /// \param Agg The aggregate value being built up or stored, depending on
2826    /// whether this is splitting a load or a store respectively.
2827    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2828      if (Ty->isSingleValueType())
2829        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2830
2831      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2832        unsigned OldSize = Indices.size();
2833        (void)OldSize;
2834        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2835             ++Idx) {
2836          assert(Indices.size() == OldSize && "Did not return to the old size");
2837          Indices.push_back(Idx);
2838          GEPIndices.push_back(IRB.getInt32(Idx));
2839          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2840          GEPIndices.pop_back();
2841          Indices.pop_back();
2842        }
2843        return;
2844      }
2845
2846      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2847        unsigned OldSize = Indices.size();
2848        (void)OldSize;
2849        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2850             ++Idx) {
2851          assert(Indices.size() == OldSize && "Did not return to the old size");
2852          Indices.push_back(Idx);
2853          GEPIndices.push_back(IRB.getInt32(Idx));
2854          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2855          GEPIndices.pop_back();
2856          Indices.pop_back();
2857        }
2858        return;
2859      }
2860
2861      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2862    }
2863  };
2864
2865  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2866    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2867      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2868
2869    /// Emit a leaf load of a single value. This is called at the leaves of the
2870    /// recursive emission to actually load values.
2871    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2872      assert(Ty->isSingleValueType());
2873      // Load the single value and insert it using the indices.
2874      Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2875      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
2876      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2877      DEBUG(dbgs() << "          to: " << *Load << "\n");
2878    }
2879  };
2880
2881  bool visitLoadInst(LoadInst &LI) {
2882    assert(LI.getPointerOperand() == *U);
2883    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2884      return false;
2885
2886    // We have an aggregate being loaded, split it apart.
2887    DEBUG(dbgs() << "    original: " << LI << "\n");
2888    LoadOpSplitter Splitter(&LI, *U);
2889    Value *V = UndefValue::get(LI.getType());
2890    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2891    LI.replaceAllUsesWith(V);
2892    LI.eraseFromParent();
2893    return true;
2894  }
2895
2896  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2897    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2898      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2899
2900    /// Emit a leaf store of a single value. This is called at the leaves of the
2901    /// recursive emission to actually produce stores.
2902    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2903      assert(Ty->isSingleValueType());
2904      // Extract the single value and store it using the indices.
2905      Value *Store = IRB.CreateStore(
2906        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2907        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2908      (void)Store;
2909      DEBUG(dbgs() << "          to: " << *Store << "\n");
2910    }
2911  };
2912
2913  bool visitStoreInst(StoreInst &SI) {
2914    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2915      return false;
2916    Value *V = SI.getValueOperand();
2917    if (V->getType()->isSingleValueType())
2918      return false;
2919
2920    // We have an aggregate being stored, split it apart.
2921    DEBUG(dbgs() << "    original: " << SI << "\n");
2922    StoreOpSplitter Splitter(&SI, *U);
2923    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2924    SI.eraseFromParent();
2925    return true;
2926  }
2927
2928  bool visitBitCastInst(BitCastInst &BC) {
2929    enqueueUsers(BC);
2930    return false;
2931  }
2932
2933  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2934    enqueueUsers(GEPI);
2935    return false;
2936  }
2937
2938  bool visitPHINode(PHINode &PN) {
2939    enqueueUsers(PN);
2940    return false;
2941  }
2942
2943  bool visitSelectInst(SelectInst &SI) {
2944    enqueueUsers(SI);
2945    return false;
2946  }
2947};
2948}
2949
2950/// \brief Strip aggregate type wrapping.
2951///
2952/// This removes no-op aggregate types wrapping an underlying type. It will
2953/// strip as many layers of types as it can without changing either the type
2954/// size or the allocated size.
2955static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2956  if (Ty->isSingleValueType())
2957    return Ty;
2958
2959  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2960  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2961
2962  Type *InnerTy;
2963  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2964    InnerTy = ArrTy->getElementType();
2965  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2966    const StructLayout *SL = DL.getStructLayout(STy);
2967    unsigned Index = SL->getElementContainingOffset(0);
2968    InnerTy = STy->getElementType(Index);
2969  } else {
2970    return Ty;
2971  }
2972
2973  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2974      TypeSize > DL.getTypeSizeInBits(InnerTy))
2975    return Ty;
2976
2977  return stripAggregateTypeWrapping(DL, InnerTy);
2978}
2979
2980/// \brief Try to find a partition of the aggregate type passed in for a given
2981/// offset and size.
2982///
2983/// This recurses through the aggregate type and tries to compute a subtype
2984/// based on the offset and size. When the offset and size span a sub-section
2985/// of an array, it will even compute a new array type for that sub-section,
2986/// and the same for structs.
2987///
2988/// Note that this routine is very strict and tries to find a partition of the
2989/// type which produces the *exact* right offset and size. It is not forgiving
2990/// when the size or offset cause either end of type-based partition to be off.
2991/// Also, this is a best-effort routine. It is reasonable to give up and not
2992/// return a type if necessary.
2993static Type *getTypePartition(const DataLayout &DL, Type *Ty,
2994                              uint64_t Offset, uint64_t Size) {
2995  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2996    return stripAggregateTypeWrapping(DL, Ty);
2997  if (Offset > DL.getTypeAllocSize(Ty) ||
2998      (DL.getTypeAllocSize(Ty) - Offset) < Size)
2999    return nullptr;
3000
3001  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3002    // We can't partition pointers...
3003    if (SeqTy->isPointerTy())
3004      return nullptr;
3005
3006    Type *ElementTy = SeqTy->getElementType();
3007    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3008    uint64_t NumSkippedElements = Offset / ElementSize;
3009    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
3010      if (NumSkippedElements >= ArrTy->getNumElements())
3011        return nullptr;
3012    } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
3013      if (NumSkippedElements >= VecTy->getNumElements())
3014        return nullptr;
3015    }
3016    Offset -= NumSkippedElements * ElementSize;
3017
3018    // First check if we need to recurse.
3019    if (Offset > 0 || Size < ElementSize) {
3020      // Bail if the partition ends in a different array element.
3021      if ((Offset + Size) > ElementSize)
3022        return nullptr;
3023      // Recurse through the element type trying to peel off offset bytes.
3024      return getTypePartition(DL, ElementTy, Offset, Size);
3025    }
3026    assert(Offset == 0);
3027
3028    if (Size == ElementSize)
3029      return stripAggregateTypeWrapping(DL, ElementTy);
3030    assert(Size > ElementSize);
3031    uint64_t NumElements = Size / ElementSize;
3032    if (NumElements * ElementSize != Size)
3033      return nullptr;
3034    return ArrayType::get(ElementTy, NumElements);
3035  }
3036
3037  StructType *STy = dyn_cast<StructType>(Ty);
3038  if (!STy)
3039    return nullptr;
3040
3041  const StructLayout *SL = DL.getStructLayout(STy);
3042  if (Offset >= SL->getSizeInBytes())
3043    return nullptr;
3044  uint64_t EndOffset = Offset + Size;
3045  if (EndOffset > SL->getSizeInBytes())
3046    return nullptr;
3047
3048  unsigned Index = SL->getElementContainingOffset(Offset);
3049  Offset -= SL->getElementOffset(Index);
3050
3051  Type *ElementTy = STy->getElementType(Index);
3052  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3053  if (Offset >= ElementSize)
3054    return nullptr; // The offset points into alignment padding.
3055
3056  // See if any partition must be contained by the element.
3057  if (Offset > 0 || Size < ElementSize) {
3058    if ((Offset + Size) > ElementSize)
3059      return nullptr;
3060    return getTypePartition(DL, ElementTy, Offset, Size);
3061  }
3062  assert(Offset == 0);
3063
3064  if (Size == ElementSize)
3065    return stripAggregateTypeWrapping(DL, ElementTy);
3066
3067  StructType::element_iterator EI = STy->element_begin() + Index,
3068                               EE = STy->element_end();
3069  if (EndOffset < SL->getSizeInBytes()) {
3070    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3071    if (Index == EndIndex)
3072      return nullptr; // Within a single element and its padding.
3073
3074    // Don't try to form "natural" types if the elements don't line up with the
3075    // expected size.
3076    // FIXME: We could potentially recurse down through the last element in the
3077    // sub-struct to find a natural end point.
3078    if (SL->getElementOffset(EndIndex) != EndOffset)
3079      return nullptr;
3080
3081    assert(Index < EndIndex);
3082    EE = STy->element_begin() + EndIndex;
3083  }
3084
3085  // Try to build up a sub-structure.
3086  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3087                                      STy->isPacked());
3088  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3089  if (Size != SubSL->getSizeInBytes())
3090    return nullptr; // The sub-struct doesn't have quite the size needed.
3091
3092  return SubTy;
3093}
3094
3095/// \brief Rewrite an alloca partition's users.
3096///
3097/// This routine drives both of the rewriting goals of the SROA pass. It tries
3098/// to rewrite uses of an alloca partition to be conducive for SSA value
3099/// promotion. If the partition needs a new, more refined alloca, this will
3100/// build that new alloca, preserving as much type information as possible, and
3101/// rewrite the uses of the old alloca to point at the new one and have the
3102/// appropriate new offsets. It also evaluates how successful the rewrite was
3103/// at enabling promotion and if it was successful queues the alloca to be
3104/// promoted.
3105bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
3106                            AllocaSlices::iterator B, AllocaSlices::iterator E,
3107                            int64_t BeginOffset, int64_t EndOffset,
3108                            ArrayRef<AllocaSlices::iterator> SplitUses) {
3109  assert(BeginOffset < EndOffset);
3110  uint64_t SliceSize = EndOffset - BeginOffset;
3111
3112  // Try to compute a friendly type for this partition of the alloca. This
3113  // won't always succeed, in which case we fall back to a legal integer type
3114  // or an i8 array of an appropriate size.
3115  Type *SliceTy = nullptr;
3116  if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
3117    if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
3118      SliceTy = CommonUseTy;
3119  if (!SliceTy)
3120    if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3121                                                 BeginOffset, SliceSize))
3122      SliceTy = TypePartitionTy;
3123  if ((!SliceTy || (SliceTy->isArrayTy() &&
3124                    SliceTy->getArrayElementType()->isIntegerTy())) &&
3125      DL->isLegalInteger(SliceSize * 8))
3126    SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3127  if (!SliceTy)
3128    SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3129  assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
3130
3131  bool IsVectorPromotable = isVectorPromotionViable(
3132      *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
3133
3134  bool IsIntegerPromotable =
3135      !IsVectorPromotable &&
3136      isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
3137
3138  // Check for the case where we're going to rewrite to a new alloca of the
3139  // exact same type as the original, and with the same access offsets. In that
3140  // case, re-use the existing alloca, but still run through the rewriter to
3141  // perform phi and select speculation.
3142  AllocaInst *NewAI;
3143  if (SliceTy == AI.getAllocatedType()) {
3144    assert(BeginOffset == 0 &&
3145           "Non-zero begin offset but same alloca type");
3146    NewAI = &AI;
3147    // FIXME: We should be able to bail at this point with "nothing changed".
3148    // FIXME: We might want to defer PHI speculation until after here.
3149  } else {
3150    unsigned Alignment = AI.getAlignment();
3151    if (!Alignment) {
3152      // The minimum alignment which users can rely on when the explicit
3153      // alignment is omitted or zero is that required by the ABI for this
3154      // type.
3155      Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
3156    }
3157    Alignment = MinAlign(Alignment, BeginOffset);
3158    // If we will get at least this much alignment from the type alone, leave
3159    // the alloca's alignment unconstrained.
3160    if (Alignment <= DL->getABITypeAlignment(SliceTy))
3161      Alignment = 0;
3162    NewAI = new AllocaInst(SliceTy, nullptr, Alignment,
3163                           AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
3164    ++NumNewAllocas;
3165  }
3166
3167  DEBUG(dbgs() << "Rewriting alloca partition "
3168               << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3169               << "\n");
3170
3171  // Track the high watermark on the worklist as it is only relevant for
3172  // promoted allocas. We will reset it to this point if the alloca is not in
3173  // fact scheduled for promotion.
3174  unsigned PPWOldSize = PostPromotionWorklist.size();
3175  unsigned NumUses = 0;
3176  SmallPtrSet<PHINode *, 8> PHIUsers;
3177  SmallPtrSet<SelectInst *, 8> SelectUsers;
3178
3179  AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3180                               EndOffset, IsVectorPromotable,
3181                               IsIntegerPromotable, PHIUsers, SelectUsers);
3182  bool Promotable = true;
3183  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3184                                                        SUE = SplitUses.end();
3185       SUI != SUE; ++SUI) {
3186    DEBUG(dbgs() << "  rewriting split ");
3187    DEBUG(S.printSlice(dbgs(), *SUI, ""));
3188    Promotable &= Rewriter.visit(*SUI);
3189    ++NumUses;
3190  }
3191  for (AllocaSlices::iterator I = B; I != E; ++I) {
3192    DEBUG(dbgs() << "  rewriting ");
3193    DEBUG(S.printSlice(dbgs(), I, ""));
3194    Promotable &= Rewriter.visit(I);
3195    ++NumUses;
3196  }
3197
3198  NumAllocaPartitionUses += NumUses;
3199  MaxUsesPerAllocaPartition =
3200      std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3201
3202  // Now that we've processed all the slices in the new partition, check if any
3203  // PHIs or Selects would block promotion.
3204  for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3205                                            E = PHIUsers.end();
3206       I != E; ++I)
3207    if (!isSafePHIToSpeculate(**I, DL)) {
3208      Promotable = false;
3209      PHIUsers.clear();
3210      SelectUsers.clear();
3211      break;
3212    }
3213  for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3214                                               E = SelectUsers.end();
3215       I != E; ++I)
3216    if (!isSafeSelectToSpeculate(**I, DL)) {
3217      Promotable = false;
3218      PHIUsers.clear();
3219      SelectUsers.clear();
3220      break;
3221    }
3222
3223  if (Promotable) {
3224    if (PHIUsers.empty() && SelectUsers.empty()) {
3225      // Promote the alloca.
3226      PromotableAllocas.push_back(NewAI);
3227    } else {
3228      // If we have either PHIs or Selects to speculate, add them to those
3229      // worklists and re-queue the new alloca so that we promote in on the
3230      // next iteration.
3231      for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3232                                                E = PHIUsers.end();
3233           I != E; ++I)
3234        SpeculatablePHIs.insert(*I);
3235      for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3236                                                   E = SelectUsers.end();
3237           I != E; ++I)
3238        SpeculatableSelects.insert(*I);
3239      Worklist.insert(NewAI);
3240    }
3241  } else {
3242    // If we can't promote the alloca, iterate on it to check for new
3243    // refinements exposed by splitting the current alloca. Don't iterate on an
3244    // alloca which didn't actually change and didn't get promoted.
3245    if (NewAI != &AI)
3246      Worklist.insert(NewAI);
3247
3248    // Drop any post-promotion work items if promotion didn't happen.
3249    while (PostPromotionWorklist.size() > PPWOldSize)
3250      PostPromotionWorklist.pop_back();
3251  }
3252
3253  return true;
3254}
3255
3256static void
3257removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3258                        uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3259  if (Offset >= MaxSplitUseEndOffset) {
3260    SplitUses.clear();
3261    MaxSplitUseEndOffset = 0;
3262    return;
3263  }
3264
3265  size_t SplitUsesOldSize = SplitUses.size();
3266  SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3267                                 [Offset](const AllocaSlices::iterator &I) {
3268                    return I->endOffset() <= Offset;
3269                  }),
3270                  SplitUses.end());
3271  if (SplitUsesOldSize == SplitUses.size())
3272    return;
3273
3274  // Recompute the max. While this is linear, so is remove_if.
3275  MaxSplitUseEndOffset = 0;
3276  for (SmallVectorImpl<AllocaSlices::iterator>::iterator
3277           SUI = SplitUses.begin(),
3278           SUE = SplitUses.end();
3279       SUI != SUE; ++SUI)
3280    MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3281}
3282
3283/// \brief Walks the slices of an alloca and form partitions based on them,
3284/// rewriting each of their uses.
3285bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3286  if (S.begin() == S.end())
3287    return false;
3288
3289  unsigned NumPartitions = 0;
3290  bool Changed = false;
3291  SmallVector<AllocaSlices::iterator, 4> SplitUses;
3292  uint64_t MaxSplitUseEndOffset = 0;
3293
3294  uint64_t BeginOffset = S.begin()->beginOffset();
3295
3296  for (AllocaSlices::iterator SI = S.begin(), SJ = std::next(SI), SE = S.end();
3297       SI != SE; SI = SJ) {
3298    uint64_t MaxEndOffset = SI->endOffset();
3299
3300    if (!SI->isSplittable()) {
3301      // When we're forming an unsplittable region, it must always start at the
3302      // first slice and will extend through its end.
3303      assert(BeginOffset == SI->beginOffset());
3304
3305      // Form a partition including all of the overlapping slices with this
3306      // unsplittable slice.
3307      while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3308        if (!SJ->isSplittable())
3309          MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3310        ++SJ;
3311      }
3312    } else {
3313      assert(SI->isSplittable()); // Established above.
3314
3315      // Collect all of the overlapping splittable slices.
3316      while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3317             SJ->isSplittable()) {
3318        MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3319        ++SJ;
3320      }
3321
3322      // Back up MaxEndOffset and SJ if we ended the span early when
3323      // encountering an unsplittable slice.
3324      if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3325        assert(!SJ->isSplittable());
3326        MaxEndOffset = SJ->beginOffset();
3327      }
3328    }
3329
3330    // Check if we have managed to move the end offset forward yet. If so,
3331    // we'll have to rewrite uses and erase old split uses.
3332    if (BeginOffset < MaxEndOffset) {
3333      // Rewrite a sequence of overlapping slices.
3334      Changed |=
3335          rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
3336      ++NumPartitions;
3337
3338      removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3339    }
3340
3341    // Accumulate all the splittable slices from the [SI,SJ) region which
3342    // overlap going forward.
3343    for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3344      if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3345        SplitUses.push_back(SK);
3346        MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
3347      }
3348
3349    // If we're already at the end and we have no split uses, we're done.
3350    if (SJ == SE && SplitUses.empty())
3351      break;
3352
3353    // If we have no split uses or no gap in offsets, we're ready to move to
3354    // the next slice.
3355    if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3356      BeginOffset = SJ->beginOffset();
3357      continue;
3358    }
3359
3360    // Even if we have split slices, if the next slice is splittable and the
3361    // split slices reach it, we can simply set up the beginning offset of the
3362    // next iteration to bridge between them.
3363    if (SJ != SE && SJ->isSplittable() &&
3364        MaxSplitUseEndOffset > SJ->beginOffset()) {
3365      BeginOffset = MaxEndOffset;
3366      continue;
3367    }
3368
3369    // Otherwise, we have a tail of split slices. Rewrite them with an empty
3370    // range of slices.
3371    uint64_t PostSplitEndOffset =
3372        SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
3373
3374    Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3375                                SplitUses);
3376    ++NumPartitions;
3377
3378    if (SJ == SE)
3379      break; // Skip the rest, we don't need to do any cleanup.
3380
3381    removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3382                            PostSplitEndOffset);
3383
3384    // Now just reset the begin offset for the next iteration.
3385    BeginOffset = SJ->beginOffset();
3386  }
3387
3388  NumAllocaPartitions += NumPartitions;
3389  MaxPartitionsPerAlloca =
3390      std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
3391
3392  return Changed;
3393}
3394
3395/// \brief Clobber a use with undef, deleting the used value if it becomes dead.
3396void SROA::clobberUse(Use &U) {
3397  Value *OldV = U;
3398  // Replace the use with an undef value.
3399  U = UndefValue::get(OldV->getType());
3400
3401  // Check for this making an instruction dead. We have to garbage collect
3402  // all the dead instructions to ensure the uses of any alloca end up being
3403  // minimal.
3404  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3405    if (isInstructionTriviallyDead(OldI)) {
3406      DeadInsts.insert(OldI);
3407    }
3408}
3409
3410/// \brief Analyze an alloca for SROA.
3411///
3412/// This analyzes the alloca to ensure we can reason about it, builds
3413/// the slices of the alloca, and then hands it off to be split and
3414/// rewritten as needed.
3415bool SROA::runOnAlloca(AllocaInst &AI) {
3416  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3417  ++NumAllocasAnalyzed;
3418
3419  // Special case dead allocas, as they're trivial.
3420  if (AI.use_empty()) {
3421    AI.eraseFromParent();
3422    return true;
3423  }
3424
3425  // Skip alloca forms that this analysis can't handle.
3426  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3427      DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
3428    return false;
3429
3430  bool Changed = false;
3431
3432  // First, split any FCA loads and stores touching this alloca to promote
3433  // better splitting and promotion opportunities.
3434  AggLoadStoreRewriter AggRewriter(*DL);
3435  Changed |= AggRewriter.rewrite(AI);
3436
3437  // Build the slices using a recursive instruction-visiting builder.
3438  AllocaSlices S(*DL, AI);
3439  DEBUG(S.print(dbgs()));
3440  if (S.isEscaped())
3441    return Changed;
3442
3443  // Delete all the dead users of this alloca before splitting and rewriting it.
3444  for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3445                                        DE = S.dead_user_end();
3446       DI != DE; ++DI) {
3447    // Free up everything used by this instruction.
3448    for (Use &DeadOp : (*DI)->operands())
3449      clobberUse(DeadOp);
3450
3451    // Now replace the uses of this instruction.
3452    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3453
3454    // And mark it for deletion.
3455    DeadInsts.insert(*DI);
3456    Changed = true;
3457  }
3458  for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3459                                      DE = S.dead_op_end();
3460       DO != DE; ++DO) {
3461    clobberUse(**DO);
3462    Changed = true;
3463  }
3464
3465  // No slices to split. Leave the dead alloca for a later pass to clean up.
3466  if (S.begin() == S.end())
3467    return Changed;
3468
3469  Changed |= splitAlloca(AI, S);
3470
3471  DEBUG(dbgs() << "  Speculating PHIs\n");
3472  while (!SpeculatablePHIs.empty())
3473    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3474
3475  DEBUG(dbgs() << "  Speculating Selects\n");
3476  while (!SpeculatableSelects.empty())
3477    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3478
3479  return Changed;
3480}
3481
3482/// \brief Delete the dead instructions accumulated in this run.
3483///
3484/// Recursively deletes the dead instructions we've accumulated. This is done
3485/// at the very end to maximize locality of the recursive delete and to
3486/// minimize the problems of invalidated instruction pointers as such pointers
3487/// are used heavily in the intermediate stages of the algorithm.
3488///
3489/// We also record the alloca instructions deleted here so that they aren't
3490/// subsequently handed to mem2reg to promote.
3491void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3492  while (!DeadInsts.empty()) {
3493    Instruction *I = DeadInsts.pop_back_val();
3494    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3495
3496    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3497
3498    for (Use &Operand : I->operands())
3499      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
3500        // Zero out the operand and see if it becomes trivially dead.
3501        Operand = nullptr;
3502        if (isInstructionTriviallyDead(U))
3503          DeadInsts.insert(U);
3504      }
3505
3506    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3507      DeletedAllocas.insert(AI);
3508
3509    ++NumDeleted;
3510    I->eraseFromParent();
3511  }
3512}
3513
3514static void enqueueUsersInWorklist(Instruction &I,
3515                                   SmallVectorImpl<Instruction *> &Worklist,
3516                                   SmallPtrSet<Instruction *, 8> &Visited) {
3517  for (User *U : I.users())
3518    if (Visited.insert(cast<Instruction>(U)))
3519      Worklist.push_back(cast<Instruction>(U));
3520}
3521
3522/// \brief Promote the allocas, using the best available technique.
3523///
3524/// This attempts to promote whatever allocas have been identified as viable in
3525/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3526/// If there is a domtree available, we attempt to promote using the full power
3527/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3528/// based on the SSAUpdater utilities. This function returns whether any
3529/// promotion occurred.
3530bool SROA::promoteAllocas(Function &F) {
3531  if (PromotableAllocas.empty())
3532    return false;
3533
3534  NumPromoted += PromotableAllocas.size();
3535
3536  if (DT && !ForceSSAUpdater) {
3537    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3538    PromoteMemToReg(PromotableAllocas, *DT);
3539    PromotableAllocas.clear();
3540    return true;
3541  }
3542
3543  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3544  SSAUpdater SSA;
3545  DIBuilder DIB(*F.getParent());
3546  SmallVector<Instruction *, 64> Insts;
3547
3548  // We need a worklist to walk the uses of each alloca.
3549  SmallVector<Instruction *, 8> Worklist;
3550  SmallPtrSet<Instruction *, 8> Visited;
3551  SmallVector<Instruction *, 32> DeadInsts;
3552
3553  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3554    AllocaInst *AI = PromotableAllocas[Idx];
3555    Insts.clear();
3556    Worklist.clear();
3557    Visited.clear();
3558
3559    enqueueUsersInWorklist(*AI, Worklist, Visited);
3560
3561    while (!Worklist.empty()) {
3562      Instruction *I = Worklist.pop_back_val();
3563
3564      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3565      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3566      // leading to them) here. Eventually it should use them to optimize the
3567      // scalar values produced.
3568      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3569        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3570               II->getIntrinsicID() == Intrinsic::lifetime_end);
3571        II->eraseFromParent();
3572        continue;
3573      }
3574
3575      // Push the loads and stores we find onto the list. SROA will already
3576      // have validated that all loads and stores are viable candidates for
3577      // promotion.
3578      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3579        assert(LI->getType() == AI->getAllocatedType());
3580        Insts.push_back(LI);
3581        continue;
3582      }
3583      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3584        assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3585        Insts.push_back(SI);
3586        continue;
3587      }
3588
3589      // For everything else, we know that only no-op bitcasts and GEPs will
3590      // make it this far, just recurse through them and recall them for later
3591      // removal.
3592      DeadInsts.push_back(I);
3593      enqueueUsersInWorklist(*I, Worklist, Visited);
3594    }
3595    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3596    while (!DeadInsts.empty())
3597      DeadInsts.pop_back_val()->eraseFromParent();
3598    AI->eraseFromParent();
3599  }
3600
3601  PromotableAllocas.clear();
3602  return true;
3603}
3604
3605bool SROA::runOnFunction(Function &F) {
3606  if (skipOptnoneFunction(F))
3607    return false;
3608
3609  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3610  C = &F.getContext();
3611  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
3612  if (!DLP) {
3613    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3614    return false;
3615  }
3616  DL = &DLP->getDataLayout();
3617  DominatorTreeWrapperPass *DTWP =
3618      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
3619  DT = DTWP ? &DTWP->getDomTree() : nullptr;
3620
3621  BasicBlock &EntryBB = F.getEntryBlock();
3622  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
3623       I != E; ++I)
3624    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3625      Worklist.insert(AI);
3626
3627  bool Changed = false;
3628  // A set of deleted alloca instruction pointers which should be removed from
3629  // the list of promotable allocas.
3630  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3631
3632  do {
3633    while (!Worklist.empty()) {
3634      Changed |= runOnAlloca(*Worklist.pop_back_val());
3635      deleteDeadInstructions(DeletedAllocas);
3636
3637      // Remove the deleted allocas from various lists so that we don't try to
3638      // continue processing them.
3639      if (!DeletedAllocas.empty()) {
3640        auto IsInSet = [&](AllocaInst *AI) {
3641          return DeletedAllocas.count(AI);
3642        };
3643        Worklist.remove_if(IsInSet);
3644        PostPromotionWorklist.remove_if(IsInSet);
3645        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3646                                               PromotableAllocas.end(),
3647                                               IsInSet),
3648                                PromotableAllocas.end());
3649        DeletedAllocas.clear();
3650      }
3651    }
3652
3653    Changed |= promoteAllocas(F);
3654
3655    Worklist = PostPromotionWorklist;
3656    PostPromotionWorklist.clear();
3657  } while (!Worklist.empty());
3658
3659  return Changed;
3660}
3661
3662void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3663  if (RequiresDomTree)
3664    AU.addRequired<DominatorTreeWrapperPass>();
3665  AU.setPreservesCFG();
3666}
3667