1//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
18// reduction candidates in the following forms:
19//
20// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
23//
24// where S is an integer variable, and i is a constant integer. If we found two
25// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S   => X + (i' - i) * S
30//
31// S1: X = (B + i) * S
32// S2: Y = (B + i') * S => X + (i' - i) * S
33//
34// S1: X = &B[i * S]
35// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36//
37// Note: (i' - i) * S is folded to the extent possible.
38//
39// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
43//
44// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
47//
48// TODO:
49//
50// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54//   left as future work.
55//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57//   SLSR.
58#include <vector>
59
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/Analysis/ValueTracking.h"
63#include "llvm/IR/DataLayout.h"
64#include "llvm/IR/Dominators.h"
65#include "llvm/IR/IRBuilder.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/Support/raw_ostream.h"
69#include "llvm/Transforms/Scalar.h"
70#include "llvm/Transforms/Utils/Local.h"
71
72using namespace llvm;
73using namespace PatternMatch;
74
75namespace {
76
77static const unsigned UnknownAddressSpace = ~0u;
78
79class StraightLineStrengthReduce : public FunctionPass {
80public:
81  // SLSR candidate. Such a candidate must be in one of the forms described in
82  // the header comments.
83  struct Candidate : public ilist_node<Candidate> {
84    enum Kind {
85      Invalid, // reserved for the default constructor
86      Add,     // B + i * S
87      Mul,     // (B + i) * S
88      GEP,     // &B[..][i * S][..]
89    };
90
91    Candidate()
92        : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93          Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
94    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95              Instruction *I)
96        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97          Basis(nullptr) {}
98    Kind CandidateKind;
99    const SCEV *Base;
100    // Note that Index and Stride of a GEP candidate do not necessarily have the
101    // same integer type. In that case, during rewriting, Stride will be
102    // sign-extended or truncated to Index's type.
103    ConstantInt *Index;
104    Value *Stride;
105    // The instruction this candidate corresponds to. It helps us to rewrite a
106    // candidate with respect to its immediate basis. Note that one instruction
107    // can correspond to multiple candidates depending on how you associate the
108    // expression. For instance,
109    //
110    // (a + 1) * (b + 2)
111    //
112    // can be treated as
113    //
114    // <Base: a, Index: 1, Stride: b + 2>
115    //
116    // or
117    //
118    // <Base: b, Index: 2, Stride: a + 1>
119    Instruction *Ins;
120    // Points to the immediate basis of this candidate, or nullptr if we cannot
121    // find any basis for this candidate.
122    Candidate *Basis;
123  };
124
125  static char ID;
126
127  StraightLineStrengthReduce()
128      : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
129    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130  }
131
132  void getAnalysisUsage(AnalysisUsage &AU) const override {
133    AU.addRequired<DominatorTreeWrapperPass>();
134    AU.addRequired<ScalarEvolutionWrapperPass>();
135    AU.addRequired<TargetTransformInfoWrapperPass>();
136    // We do not modify the shape of the CFG.
137    AU.setPreservesCFG();
138  }
139
140  bool doInitialization(Module &M) override {
141    DL = &M.getDataLayout();
142    return false;
143  }
144
145  bool runOnFunction(Function &F) override;
146
147private:
148  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149  // share the same base and stride.
150  bool isBasisFor(const Candidate &Basis, const Candidate &C);
151  // Returns whether the candidate can be folded into an addressing mode.
152  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153                  const DataLayout *DL);
154  // Returns true if C is already in a simplest form and not worth being
155  // rewritten.
156  bool isSimplestForm(const Candidate &C);
157  // Checks whether I is in a candidate form. If so, adds all the matching forms
158  // to Candidates, and tries to find the immediate basis for each of them.
159  void allocateCandidatesAndFindBasis(Instruction *I);
160  // Allocate candidates and find bases for Add instructions.
161  void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163  // candidate.
164  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165                                            Instruction *I);
166  // Allocate candidates and find bases for Mul instructions.
167  void allocateCandidatesAndFindBasisForMul(Instruction *I);
168  // Splits LHS into Base + Index and, if succeeds, calls
169  // allocateCandidatesAndFindBasis.
170  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171                                            Instruction *I);
172  // Allocate candidates and find bases for GetElementPtr instructions.
173  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
174  // A helper function that scales Idx with ElementSize before invoking
175  // allocateCandidatesAndFindBasis.
176  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177                                            Value *S, uint64_t ElementSize,
178                                            Instruction *I);
179  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180  // basis.
181  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182                                      ConstantInt *Idx, Value *S,
183                                      Instruction *I);
184  // Rewrites candidate C with respect to Basis.
185  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
186  // A helper function that factors ArrayIdx to a product of a stride and a
187  // constant index, and invokes allocateCandidatesAndFindBasis with the
188  // factorings.
189  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190                        GetElementPtrInst *GEP);
191  // Emit code that computes the "bump" from Basis to C. If the candidate is a
192  // GEP and the bump is not divisible by the element size of the GEP, this
193  // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194  // basis using an ugly GEP.
195  static Value *emitBump(const Candidate &Basis, const Candidate &C,
196                         IRBuilder<> &Builder, const DataLayout *DL,
197                         bool &BumpWithUglyGEP);
198
199  const DataLayout *DL;
200  DominatorTree *DT;
201  ScalarEvolution *SE;
202  TargetTransformInfo *TTI;
203  ilist<Candidate> Candidates;
204  // Temporarily holds all instructions that are unlinked (but not deleted) by
205  // rewriteCandidateWithBasis. These instructions will be actually removed
206  // after all rewriting finishes.
207  std::vector<Instruction *> UnlinkedInstructions;
208};
209}  // anonymous namespace
210
211char StraightLineStrengthReduce::ID = 0;
212INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213                      "Straight line strength reduction", false, false)
214INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
215INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
216INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
217INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218                    "Straight line strength reduction", false, false)
219
220FunctionPass *llvm::createStraightLineStrengthReducePass() {
221  return new StraightLineStrengthReduce();
222}
223
224bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225                                            const Candidate &C) {
226  return (Basis.Ins != C.Ins && // skip the same instruction
227          // They must have the same type too. Basis.Base == C.Base doesn't
228          // guarantee their types are the same (PR23975).
229          Basis.Ins->getType() == C.Ins->getType() &&
230          // Basis must dominate C in order to rewrite C with respect to Basis.
231          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
232          // They share the same base, stride, and candidate kind.
233          Basis.Base == C.Base && Basis.Stride == C.Stride &&
234          Basis.CandidateKind == C.CandidateKind);
235}
236
237static bool isGEPFoldable(GetElementPtrInst *GEP,
238                          const TargetTransformInfo *TTI) {
239  SmallVector<const Value*, 4> Indices;
240  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
241    Indices.push_back(*I);
242  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
243                         Indices) == TargetTransformInfo::TCC_Free;
244}
245
246// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
247static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
248                          TargetTransformInfo *TTI) {
249  // Index->getSExtValue() may crash if Index is wider than 64-bit.
250  return Index->getBitWidth() <= 64 &&
251         TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
252                                    Index->getSExtValue(), UnknownAddressSpace);
253}
254
255bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
256                                            TargetTransformInfo *TTI,
257                                            const DataLayout *DL) {
258  if (C.CandidateKind == Candidate::Add)
259    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
260  if (C.CandidateKind == Candidate::GEP)
261    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
262  return false;
263}
264
265// Returns true if GEP has zero or one non-zero index.
266static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
267  unsigned NumNonZeroIndices = 0;
268  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
269    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
270    if (ConstIdx == nullptr || !ConstIdx->isZero())
271      ++NumNonZeroIndices;
272  }
273  return NumNonZeroIndices <= 1;
274}
275
276bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
277  if (C.CandidateKind == Candidate::Add) {
278    // B + 1 * S or B + (-1) * S
279    return C.Index->isOne() || C.Index->isMinusOne();
280  }
281  if (C.CandidateKind == Candidate::Mul) {
282    // (B + 0) * S
283    return C.Index->isZero();
284  }
285  if (C.CandidateKind == Candidate::GEP) {
286    // (char*)B + S or (char*)B - S
287    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
288            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
289  }
290  return false;
291}
292
293// TODO: We currently implement an algorithm whose time complexity is linear in
294// the number of existing candidates. However, we could do better by using
295// ScopedHashTable. Specifically, while traversing the dominator tree, we could
296// maintain all the candidates that dominate the basic block being traversed in
297// a ScopedHashTable. This hash table is indexed by the base and the stride of
298// a candidate. Therefore, finding the immediate basis of a candidate boils down
299// to one hash-table look up.
300void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
301    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
302    Instruction *I) {
303  Candidate C(CT, B, Idx, S, I);
304  // SLSR can complicate an instruction in two cases:
305  //
306  // 1. If we can fold I into an addressing mode, computing I is likely free or
307  // takes only one instruction.
308  //
309  // 2. I is already in a simplest form. For example, when
310  //      X = B + 8 * S
311  //      Y = B + S,
312  //    rewriting Y to X - 7 * S is probably a bad idea.
313  //
314  // In the above cases, we still add I to the candidate list so that I can be
315  // the basis of other candidates, but we leave I's basis blank so that I
316  // won't be rewritten.
317  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
318    // Try to compute the immediate basis of C.
319    unsigned NumIterations = 0;
320    // Limit the scan radius to avoid running in quadratice time.
321    static const unsigned MaxNumIterations = 50;
322    for (auto Basis = Candidates.rbegin();
323         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
324         ++Basis, ++NumIterations) {
325      if (isBasisFor(*Basis, C)) {
326        C.Basis = &(*Basis);
327        break;
328      }
329    }
330  }
331  // Regardless of whether we find a basis for C, we need to push C to the
332  // candidate list so that it can be the basis of other candidates.
333  Candidates.push_back(C);
334}
335
336void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337    Instruction *I) {
338  switch (I->getOpcode()) {
339  case Instruction::Add:
340    allocateCandidatesAndFindBasisForAdd(I);
341    break;
342  case Instruction::Mul:
343    allocateCandidatesAndFindBasisForMul(I);
344    break;
345  case Instruction::GetElementPtr:
346    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
347    break;
348  }
349}
350
351void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
352    Instruction *I) {
353  // Try matching B + i * S.
354  if (!isa<IntegerType>(I->getType()))
355    return;
356
357  assert(I->getNumOperands() == 2 && "isn't I an add?");
358  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
359  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
360  if (LHS != RHS)
361    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
362}
363
364void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
365    Value *LHS, Value *RHS, Instruction *I) {
366  Value *S = nullptr;
367  ConstantInt *Idx = nullptr;
368  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
369    // I = LHS + RHS = LHS + Idx * S
370    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
371  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
372    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
373    APInt One(Idx->getBitWidth(), 1);
374    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
375    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
376  } else {
377    // At least, I = LHS + 1 * RHS
378    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
379    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
380                                   I);
381  }
382}
383
384// Returns true if A matches B + C where C is constant.
385static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
386  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
387          match(A, m_Add(m_ConstantInt(C), m_Value(B))));
388}
389
390// Returns true if A matches B | C where C is constant.
391static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
392  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
393          match(A, m_Or(m_ConstantInt(C), m_Value(B))));
394}
395
396void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
397    Value *LHS, Value *RHS, Instruction *I) {
398  Value *B = nullptr;
399  ConstantInt *Idx = nullptr;
400  if (matchesAdd(LHS, B, Idx)) {
401    // If LHS is in the form of "Base + Index", then I is in the form of
402    // "(Base + Index) * RHS".
403    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
404  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
405    // If LHS is in the form of "Base | Index" and Base and Index have no common
406    // bits set, then
407    //   Base | Index = Base + Index
408    // and I is thus in the form of "(Base + Index) * RHS".
409    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
410  } else {
411    // Otherwise, at least try the form (LHS + 0) * RHS.
412    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
413    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
414                                   I);
415  }
416}
417
418void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
419    Instruction *I) {
420  // Try matching (B + i) * S.
421  // TODO: we could extend SLSR to float and vector types.
422  if (!isa<IntegerType>(I->getType()))
423    return;
424
425  assert(I->getNumOperands() == 2 && "isn't I a mul?");
426  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
427  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
428  if (LHS != RHS) {
429    // Symmetrically, try to split RHS to Base + Index.
430    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
431  }
432}
433
434void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
435    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
436    Instruction *I) {
437  // I = B + sext(Idx *nsw S) * ElementSize
438  //   = B + (sext(Idx) * sext(S)) * ElementSize
439  //   = B + (sext(Idx) * ElementSize) * sext(S)
440  // Casting to IntegerType is safe because we skipped vector GEPs.
441  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
442  ConstantInt *ScaledIdx = ConstantInt::get(
443      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
444  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
445}
446
447void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
448                                                  const SCEV *Base,
449                                                  uint64_t ElementSize,
450                                                  GetElementPtrInst *GEP) {
451  // At least, ArrayIdx = ArrayIdx *nsw 1.
452  allocateCandidatesAndFindBasisForGEP(
453      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
454      ArrayIdx, ElementSize, GEP);
455  Value *LHS = nullptr;
456  ConstantInt *RHS = nullptr;
457  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
458  // itself. This would allow us to handle the shl case for free. However,
459  // matching SCEVs has two issues:
460  //
461  // 1. this would complicate rewriting because the rewriting procedure
462  // would have to translate SCEVs back to IR instructions. This translation
463  // is difficult when LHS is further evaluated to a composite SCEV.
464  //
465  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
466  // to strip nsw/nuw flags which are critical for SLSR to trace into
467  // sext'ed multiplication.
468  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
469    // SLSR is currently unsafe if i * S may overflow.
470    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
471    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
472  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
473    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
474    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
475    APInt One(RHS->getBitWidth(), 1);
476    ConstantInt *PowerOf2 =
477        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
478    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
479  }
480}
481
482void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
483    GetElementPtrInst *GEP) {
484  // TODO: handle vector GEPs
485  if (GEP->getType()->isVectorTy())
486    return;
487
488  SmallVector<const SCEV *, 4> IndexExprs;
489  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
490    IndexExprs.push_back(SE->getSCEV(*I));
491
492  gep_type_iterator GTI = gep_type_begin(GEP);
493  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
494    if (!isa<SequentialType>(*GTI++))
495      continue;
496
497    const SCEV *OrigIndexExpr = IndexExprs[I - 1];
498    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
499
500    // The base of this candidate is GEP's base plus the offsets of all
501    // indices except this current one.
502    const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
503                                          SE->getSCEV(GEP->getPointerOperand()),
504                                          IndexExprs, GEP->isInBounds());
505    Value *ArrayIdx = GEP->getOperand(I);
506    uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
507    if (ArrayIdx->getType()->getIntegerBitWidth() <=
508        DL->getPointerSizeInBits(GEP->getAddressSpace())) {
509      // Skip factoring if ArrayIdx is wider than the pointer size, because
510      // ArrayIdx is implicitly truncated to the pointer size.
511      factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
512    }
513    // When ArrayIdx is the sext of a value, we try to factor that value as
514    // well.  Handling this case is important because array indices are
515    // typically sign-extended to the pointer size.
516    Value *TruncatedArrayIdx = nullptr;
517    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
518        TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
519            DL->getPointerSizeInBits(GEP->getAddressSpace())) {
520      // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
521      // because TruncatedArrayIdx is implicitly truncated to the pointer size.
522      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
523    }
524
525    IndexExprs[I - 1] = OrigIndexExpr;
526  }
527}
528
529// A helper function that unifies the bitwidth of A and B.
530static void unifyBitWidth(APInt &A, APInt &B) {
531  if (A.getBitWidth() < B.getBitWidth())
532    A = A.sext(B.getBitWidth());
533  else if (A.getBitWidth() > B.getBitWidth())
534    B = B.sext(A.getBitWidth());
535}
536
537Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
538                                            const Candidate &C,
539                                            IRBuilder<> &Builder,
540                                            const DataLayout *DL,
541                                            bool &BumpWithUglyGEP) {
542  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
543  unifyBitWidth(Idx, BasisIdx);
544  APInt IndexOffset = Idx - BasisIdx;
545
546  BumpWithUglyGEP = false;
547  if (Basis.CandidateKind == Candidate::GEP) {
548    APInt ElementSize(
549        IndexOffset.getBitWidth(),
550        DL->getTypeAllocSize(
551            cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
552    APInt Q, R;
553    APInt::sdivrem(IndexOffset, ElementSize, Q, R);
554    if (R == 0)
555      IndexOffset = Q;
556    else
557      BumpWithUglyGEP = true;
558  }
559
560  // Compute Bump = C - Basis = (i' - i) * S.
561  // Common case 1: if (i' - i) is 1, Bump = S.
562  if (IndexOffset == 1)
563    return C.Stride;
564  // Common case 2: if (i' - i) is -1, Bump = -S.
565  if (IndexOffset.isAllOnesValue())
566    return Builder.CreateNeg(C.Stride);
567
568  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
569  // have different bit widths.
570  IntegerType *DeltaType =
571      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
572  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
573  if (IndexOffset.isPowerOf2()) {
574    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
575    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
576    return Builder.CreateShl(ExtendedStride, Exponent);
577  }
578  if ((-IndexOffset).isPowerOf2()) {
579    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
580    ConstantInt *Exponent =
581        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
582    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
583  }
584  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
585  return Builder.CreateMul(ExtendedStride, Delta);
586}
587
588void StraightLineStrengthReduce::rewriteCandidateWithBasis(
589    const Candidate &C, const Candidate &Basis) {
590  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
591         C.Stride == Basis.Stride);
592  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
593  // basis of a candidate cannot be unlinked before the candidate.
594  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
595
596  // An instruction can correspond to multiple candidates. Therefore, instead of
597  // simply deleting an instruction when we rewrite it, we mark its parent as
598  // nullptr (i.e. unlink it) so that we can skip the candidates whose
599  // instruction is already rewritten.
600  if (!C.Ins->getParent())
601    return;
602
603  IRBuilder<> Builder(C.Ins);
604  bool BumpWithUglyGEP;
605  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
606  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
607  switch (C.CandidateKind) {
608  case Candidate::Add:
609  case Candidate::Mul:
610    // C = Basis + Bump
611    if (BinaryOperator::isNeg(Bump)) {
612      // If Bump is a neg instruction, emit C = Basis - (-Bump).
613      Reduced =
614          Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
615      // We only use the negative argument of Bump, and Bump itself may be
616      // trivially dead.
617      RecursivelyDeleteTriviallyDeadInstructions(Bump);
618    } else {
619      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
620      // usually unsound, e.g.,
621      //
622      // X = (-2 +nsw 1) *nsw INT_MAX
623      // Y = (-2 +nsw 3) *nsw INT_MAX
624      //   =>
625      // Y = X + 2 * INT_MAX
626      //
627      // Neither + and * in the resultant expression are nsw.
628      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
629    }
630    break;
631  case Candidate::GEP:
632    {
633      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
634      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
635      if (BumpWithUglyGEP) {
636        // C = (char *)Basis + Bump
637        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
638        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
639        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
640        if (InBounds)
641          Reduced =
642              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
643        else
644          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
645        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
646      } else {
647        // C = gep Basis, Bump
648        // Canonicalize bump to pointer size.
649        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
650        if (InBounds)
651          Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
652        else
653          Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
654      }
655    }
656    break;
657  default:
658    llvm_unreachable("C.CandidateKind is invalid");
659  };
660  Reduced->takeName(C.Ins);
661  C.Ins->replaceAllUsesWith(Reduced);
662  // Unlink C.Ins so that we can skip other candidates also corresponding to
663  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
664  C.Ins->removeFromParent();
665  UnlinkedInstructions.push_back(C.Ins);
666}
667
668bool StraightLineStrengthReduce::runOnFunction(Function &F) {
669  if (skipFunction(F))
670    return false;
671
672  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
673  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
674  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
675  // Traverse the dominator tree in the depth-first order. This order makes sure
676  // all bases of a candidate are in Candidates when we process it.
677  for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
678       node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
679    for (auto &I : *node->getBlock())
680      allocateCandidatesAndFindBasis(&I);
681  }
682
683  // Rewrite candidates in the reverse depth-first order. This order makes sure
684  // a candidate being rewritten is not a basis for any other candidate.
685  while (!Candidates.empty()) {
686    const Candidate &C = Candidates.back();
687    if (C.Basis != nullptr) {
688      rewriteCandidateWithBasis(C, *C.Basis);
689    }
690    Candidates.pop_back();
691  }
692
693  // Delete all unlink instructions.
694  for (auto *UnlinkedInst : UnlinkedInstructions) {
695    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
696      Value *Op = UnlinkedInst->getOperand(I);
697      UnlinkedInst->setOperand(I, nullptr);
698      RecursivelyDeleteTriviallyDeadInstructions(Op);
699    }
700    delete UnlinkedInst;
701  }
702  bool Ret = !UnlinkedInstructions.empty();
703  UnlinkedInstructions.clear();
704  return Ret;
705}
706