1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/Analysis/GlobalsModRef.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/CaptureTracking.h"
61#include "llvm/Analysis/InlineCost.h"
62#include "llvm/Analysis/InstructionSimplify.h"
63#include "llvm/Analysis/Loads.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/DiagnosticInfo.h"
71#include "llvm/IR/Function.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/Module.h"
75#include "llvm/IR/ValueHandle.h"
76#include "llvm/Pass.h"
77#include "llvm/Support/Debug.h"
78#include "llvm/Support/raw_ostream.h"
79#include "llvm/Transforms/Utils/BasicBlockUtils.h"
80#include "llvm/Transforms/Utils/Local.h"
81using namespace llvm;
82
83#define DEBUG_TYPE "tailcallelim"
84
85STATISTIC(NumEliminated, "Number of tail calls removed");
86STATISTIC(NumRetDuped,   "Number of return duplicated");
87STATISTIC(NumAccumAdded, "Number of accumulators introduced");
88
89/// \brief Scan the specified function for alloca instructions.
90/// If it contains any dynamic allocas, returns false.
91static bool canTRE(Function &F) {
92  // Because of PR962, we don't TRE dynamic allocas.
93  for (auto &BB : F) {
94    for (auto &I : BB) {
95      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
96        if (!AI->isStaticAlloca())
97          return false;
98      }
99    }
100  }
101
102  return true;
103}
104
105namespace {
106struct AllocaDerivedValueTracker {
107  // Start at a root value and walk its use-def chain to mark calls that use the
108  // value or a derived value in AllocaUsers, and places where it may escape in
109  // EscapePoints.
110  void walk(Value *Root) {
111    SmallVector<Use *, 32> Worklist;
112    SmallPtrSet<Use *, 32> Visited;
113
114    auto AddUsesToWorklist = [&](Value *V) {
115      for (auto &U : V->uses()) {
116        if (!Visited.insert(&U).second)
117          continue;
118        Worklist.push_back(&U);
119      }
120    };
121
122    AddUsesToWorklist(Root);
123
124    while (!Worklist.empty()) {
125      Use *U = Worklist.pop_back_val();
126      Instruction *I = cast<Instruction>(U->getUser());
127
128      switch (I->getOpcode()) {
129      case Instruction::Call:
130      case Instruction::Invoke: {
131        CallSite CS(I);
132        bool IsNocapture =
133            CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
134        callUsesLocalStack(CS, IsNocapture);
135        if (IsNocapture) {
136          // If the alloca-derived argument is passed in as nocapture, then it
137          // can't propagate to the call's return. That would be capturing.
138          continue;
139        }
140        break;
141      }
142      case Instruction::Load: {
143        // The result of a load is not alloca-derived (unless an alloca has
144        // otherwise escaped, but this is a local analysis).
145        continue;
146      }
147      case Instruction::Store: {
148        if (U->getOperandNo() == 0)
149          EscapePoints.insert(I);
150        continue;  // Stores have no users to analyze.
151      }
152      case Instruction::BitCast:
153      case Instruction::GetElementPtr:
154      case Instruction::PHI:
155      case Instruction::Select:
156      case Instruction::AddrSpaceCast:
157        break;
158      default:
159        EscapePoints.insert(I);
160        break;
161      }
162
163      AddUsesToWorklist(I);
164    }
165  }
166
167  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
168    // Add it to the list of alloca users.
169    AllocaUsers.insert(CS.getInstruction());
170
171    // If it's nocapture then it can't capture this alloca.
172    if (IsNocapture)
173      return;
174
175    // If it can write to memory, it can leak the alloca value.
176    if (!CS.onlyReadsMemory())
177      EscapePoints.insert(CS.getInstruction());
178  }
179
180  SmallPtrSet<Instruction *, 32> AllocaUsers;
181  SmallPtrSet<Instruction *, 32> EscapePoints;
182};
183}
184
185static bool markTails(Function &F, bool &AllCallsAreTailCalls) {
186  if (F.callsFunctionThatReturnsTwice())
187    return false;
188  AllCallsAreTailCalls = true;
189
190  // The local stack holds all alloca instructions and all byval arguments.
191  AllocaDerivedValueTracker Tracker;
192  for (Argument &Arg : F.args()) {
193    if (Arg.hasByValAttr())
194      Tracker.walk(&Arg);
195  }
196  for (auto &BB : F) {
197    for (auto &I : BB)
198      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
199        Tracker.walk(AI);
200  }
201
202  bool Modified = false;
203
204  // Track whether a block is reachable after an alloca has escaped. Blocks that
205  // contain the escaping instruction will be marked as being visited without an
206  // escaped alloca, since that is how the block began.
207  enum VisitType {
208    UNVISITED,
209    UNESCAPED,
210    ESCAPED
211  };
212  DenseMap<BasicBlock *, VisitType> Visited;
213
214  // We propagate the fact that an alloca has escaped from block to successor.
215  // Visit the blocks that are propagating the escapedness first. To do this, we
216  // maintain two worklists.
217  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
218
219  // We may enter a block and visit it thinking that no alloca has escaped yet,
220  // then see an escape point and go back around a loop edge and come back to
221  // the same block twice. Because of this, we defer setting tail on calls when
222  // we first encounter them in a block. Every entry in this list does not
223  // statically use an alloca via use-def chain analysis, but may find an alloca
224  // through other means if the block turns out to be reachable after an escape
225  // point.
226  SmallVector<CallInst *, 32> DeferredTails;
227
228  BasicBlock *BB = &F.getEntryBlock();
229  VisitType Escaped = UNESCAPED;
230  do {
231    for (auto &I : *BB) {
232      if (Tracker.EscapePoints.count(&I))
233        Escaped = ESCAPED;
234
235      CallInst *CI = dyn_cast<CallInst>(&I);
236      if (!CI || CI->isTailCall())
237        continue;
238
239      bool IsNoTail = CI->isNoTailCall();
240
241      if (!IsNoTail && CI->doesNotAccessMemory()) {
242        // A call to a readnone function whose arguments are all things computed
243        // outside this function can be marked tail. Even if you stored the
244        // alloca address into a global, a readnone function can't load the
245        // global anyhow.
246        //
247        // Note that this runs whether we know an alloca has escaped or not. If
248        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
249        bool SafeToTail = true;
250        for (auto &Arg : CI->arg_operands()) {
251          if (isa<Constant>(Arg.getUser()))
252            continue;
253          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
254            if (!A->hasByValAttr())
255              continue;
256          SafeToTail = false;
257          break;
258        }
259        if (SafeToTail) {
260          emitOptimizationRemark(
261              F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
262              "marked this readnone call a tail call candidate");
263          CI->setTailCall();
264          Modified = true;
265          continue;
266        }
267      }
268
269      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
270        DeferredTails.push_back(CI);
271      } else {
272        AllCallsAreTailCalls = false;
273      }
274    }
275
276    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
277      auto &State = Visited[SuccBB];
278      if (State < Escaped) {
279        State = Escaped;
280        if (State == ESCAPED)
281          WorklistEscaped.push_back(SuccBB);
282        else
283          WorklistUnescaped.push_back(SuccBB);
284      }
285    }
286
287    if (!WorklistEscaped.empty()) {
288      BB = WorklistEscaped.pop_back_val();
289      Escaped = ESCAPED;
290    } else {
291      BB = nullptr;
292      while (!WorklistUnescaped.empty()) {
293        auto *NextBB = WorklistUnescaped.pop_back_val();
294        if (Visited[NextBB] == UNESCAPED) {
295          BB = NextBB;
296          Escaped = UNESCAPED;
297          break;
298        }
299      }
300    }
301  } while (BB);
302
303  for (CallInst *CI : DeferredTails) {
304    if (Visited[CI->getParent()] != ESCAPED) {
305      // If the escape point was part way through the block, calls after the
306      // escape point wouldn't have been put into DeferredTails.
307      emitOptimizationRemark(F.getContext(), "tailcallelim", F,
308                             CI->getDebugLoc(),
309                             "marked this call a tail call candidate");
310      CI->setTailCall();
311      Modified = true;
312    } else {
313      AllCallsAreTailCalls = false;
314    }
315  }
316
317  return Modified;
318}
319
320/// Return true if it is safe to move the specified
321/// instruction from after the call to before the call, assuming that all
322/// instructions between the call and this instruction are movable.
323///
324static bool canMoveAboveCall(Instruction *I, CallInst *CI) {
325  // FIXME: We can move load/store/call/free instructions above the call if the
326  // call does not mod/ref the memory location being processed.
327  if (I->mayHaveSideEffects())  // This also handles volatile loads.
328    return false;
329
330  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
331    // Loads may always be moved above calls without side effects.
332    if (CI->mayHaveSideEffects()) {
333      // Non-volatile loads may be moved above a call with side effects if it
334      // does not write to memory and the load provably won't trap.
335      // FIXME: Writes to memory only matter if they may alias the pointer
336      // being loaded from.
337      const DataLayout &DL = L->getModule()->getDataLayout();
338      if (CI->mayWriteToMemory() ||
339          !isSafeToLoadUnconditionally(L->getPointerOperand(),
340                                       L->getAlignment(), DL, L))
341        return false;
342    }
343  }
344
345  // Otherwise, if this is a side-effect free instruction, check to make sure
346  // that it does not use the return value of the call.  If it doesn't use the
347  // return value of the call, it must only use things that are defined before
348  // the call, or movable instructions between the call and the instruction
349  // itself.
350  return std::find(I->op_begin(), I->op_end(), CI) == I->op_end();
351}
352
353/// Return true if the specified value is the same when the return would exit
354/// as it was when the initial iteration of the recursive function was executed.
355///
356/// We currently handle static constants and arguments that are not modified as
357/// part of the recursion.
358static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
359  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
360
361  // Check to see if this is an immutable argument, if so, the value
362  // will be available to initialize the accumulator.
363  if (Argument *Arg = dyn_cast<Argument>(V)) {
364    // Figure out which argument number this is...
365    unsigned ArgNo = 0;
366    Function *F = CI->getParent()->getParent();
367    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
368      ++ArgNo;
369
370    // If we are passing this argument into call as the corresponding
371    // argument operand, then the argument is dynamically constant.
372    // Otherwise, we cannot transform this function safely.
373    if (CI->getArgOperand(ArgNo) == Arg)
374      return true;
375  }
376
377  // Switch cases are always constant integers. If the value is being switched
378  // on and the return is only reachable from one of its cases, it's
379  // effectively constant.
380  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
381    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
382      if (SI->getCondition() == V)
383        return SI->getDefaultDest() != RI->getParent();
384
385  // Not a constant or immutable argument, we can't safely transform.
386  return false;
387}
388
389/// Check to see if the function containing the specified tail call consistently
390/// returns the same runtime-constant value at all exit points except for
391/// IgnoreRI. If so, return the returned value.
392static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
393  Function *F = CI->getParent()->getParent();
394  Value *ReturnedValue = nullptr;
395
396  for (BasicBlock &BBI : *F) {
397    ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
398    if (RI == nullptr || RI == IgnoreRI) continue;
399
400    // We can only perform this transformation if the value returned is
401    // evaluatable at the start of the initial invocation of the function,
402    // instead of at the end of the evaluation.
403    //
404    Value *RetOp = RI->getOperand(0);
405    if (!isDynamicConstant(RetOp, CI, RI))
406      return nullptr;
407
408    if (ReturnedValue && RetOp != ReturnedValue)
409      return nullptr;     // Cannot transform if differing values are returned.
410    ReturnedValue = RetOp;
411  }
412  return ReturnedValue;
413}
414
415/// If the specified instruction can be transformed using accumulator recursion
416/// elimination, return the constant which is the start of the accumulator
417/// value.  Otherwise return null.
418static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
419  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
420  assert(I->getNumOperands() == 2 &&
421         "Associative/commutative operations should have 2 args!");
422
423  // Exactly one operand should be the result of the call instruction.
424  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
425      (I->getOperand(0) != CI && I->getOperand(1) != CI))
426    return nullptr;
427
428  // The only user of this instruction we allow is a single return instruction.
429  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
430    return nullptr;
431
432  // Ok, now we have to check all of the other return instructions in this
433  // function.  If they return non-constants or differing values, then we cannot
434  // transform the function safely.
435  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
436}
437
438static Instruction *firstNonDbg(BasicBlock::iterator I) {
439  while (isa<DbgInfoIntrinsic>(I))
440    ++I;
441  return &*I;
442}
443
444static CallInst *findTRECandidate(Instruction *TI,
445                                  bool CannotTailCallElimCallsMarkedTail,
446                                  const TargetTransformInfo *TTI) {
447  BasicBlock *BB = TI->getParent();
448  Function *F = BB->getParent();
449
450  if (&BB->front() == TI) // Make sure there is something before the terminator.
451    return nullptr;
452
453  // Scan backwards from the return, checking to see if there is a tail call in
454  // this block.  If so, set CI to it.
455  CallInst *CI = nullptr;
456  BasicBlock::iterator BBI(TI);
457  while (true) {
458    CI = dyn_cast<CallInst>(BBI);
459    if (CI && CI->getCalledFunction() == F)
460      break;
461
462    if (BBI == BB->begin())
463      return nullptr;          // Didn't find a potential tail call.
464    --BBI;
465  }
466
467  // If this call is marked as a tail call, and if there are dynamic allocas in
468  // the function, we cannot perform this optimization.
469  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
470    return nullptr;
471
472  // As a special case, detect code like this:
473  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
474  // and disable this xform in this case, because the code generator will
475  // lower the call to fabs into inline code.
476  if (BB == &F->getEntryBlock() &&
477      firstNonDbg(BB->front().getIterator()) == CI &&
478      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
479      !TTI->isLoweredToCall(CI->getCalledFunction())) {
480    // A single-block function with just a call and a return. Check that
481    // the arguments match.
482    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
483                           E = CallSite(CI).arg_end();
484    Function::arg_iterator FI = F->arg_begin(),
485                           FE = F->arg_end();
486    for (; I != E && FI != FE; ++I, ++FI)
487      if (*I != &*FI) break;
488    if (I == E && FI == FE)
489      return nullptr;
490  }
491
492  return CI;
493}
494
495static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
496                                       BasicBlock *&OldEntry,
497                                       bool &TailCallsAreMarkedTail,
498                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
499                                       bool CannotTailCallElimCallsMarkedTail) {
500  // If we are introducing accumulator recursion to eliminate operations after
501  // the call instruction that are both associative and commutative, the initial
502  // value for the accumulator is placed in this variable.  If this value is set
503  // then we actually perform accumulator recursion elimination instead of
504  // simple tail recursion elimination.  If the operation is an LLVM instruction
505  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
506  // we are handling the case when the return instruction returns a constant C
507  // which is different to the constant returned by other return instructions
508  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
509  // special case of accumulator recursion, the operation being "return C".
510  Value *AccumulatorRecursionEliminationInitVal = nullptr;
511  Instruction *AccumulatorRecursionInstr = nullptr;
512
513  // Ok, we found a potential tail call.  We can currently only transform the
514  // tail call if all of the instructions between the call and the return are
515  // movable to above the call itself, leaving the call next to the return.
516  // Check that this is the case now.
517  BasicBlock::iterator BBI(CI);
518  for (++BBI; &*BBI != Ret; ++BBI) {
519    if (canMoveAboveCall(&*BBI, CI)) continue;
520
521    // If we can't move the instruction above the call, it might be because it
522    // is an associative and commutative operation that could be transformed
523    // using accumulator recursion elimination.  Check to see if this is the
524    // case, and if so, remember the initial accumulator value for later.
525    if ((AccumulatorRecursionEliminationInitVal =
526             canTransformAccumulatorRecursion(&*BBI, CI))) {
527      // Yes, this is accumulator recursion.  Remember which instruction
528      // accumulates.
529      AccumulatorRecursionInstr = &*BBI;
530    } else {
531      return false;   // Otherwise, we cannot eliminate the tail recursion!
532    }
533  }
534
535  // We can only transform call/return pairs that either ignore the return value
536  // of the call and return void, ignore the value of the call and return a
537  // constant, return the value returned by the tail call, or that are being
538  // accumulator recursion variable eliminated.
539  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
540      !isa<UndefValue>(Ret->getReturnValue()) &&
541      AccumulatorRecursionEliminationInitVal == nullptr &&
542      !getCommonReturnValue(nullptr, CI)) {
543    // One case remains that we are able to handle: the current return
544    // instruction returns a constant, and all other return instructions
545    // return a different constant.
546    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
547      return false; // Current return instruction does not return a constant.
548    // Check that all other return instructions return a common constant.  If
549    // so, record it in AccumulatorRecursionEliminationInitVal.
550    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
551    if (!AccumulatorRecursionEliminationInitVal)
552      return false;
553  }
554
555  BasicBlock *BB = Ret->getParent();
556  Function *F = BB->getParent();
557
558  emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
559                         "transforming tail recursion to loop");
560
561  // OK! We can transform this tail call.  If this is the first one found,
562  // create the new entry block, allowing us to branch back to the old entry.
563  if (!OldEntry) {
564    OldEntry = &F->getEntryBlock();
565    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
566    NewEntry->takeName(OldEntry);
567    OldEntry->setName("tailrecurse");
568    BranchInst::Create(OldEntry, NewEntry);
569
570    // If this tail call is marked 'tail' and if there are any allocas in the
571    // entry block, move them up to the new entry block.
572    TailCallsAreMarkedTail = CI->isTailCall();
573    if (TailCallsAreMarkedTail)
574      // Move all fixed sized allocas from OldEntry to NewEntry.
575      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
576             NEBI = NewEntry->begin(); OEBI != E; )
577        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
578          if (isa<ConstantInt>(AI->getArraySize()))
579            AI->moveBefore(&*NEBI);
580
581    // Now that we have created a new block, which jumps to the entry
582    // block, insert a PHI node for each argument of the function.
583    // For now, we initialize each PHI to only have the real arguments
584    // which are passed in.
585    Instruction *InsertPos = &OldEntry->front();
586    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
587         I != E; ++I) {
588      PHINode *PN = PHINode::Create(I->getType(), 2,
589                                    I->getName() + ".tr", InsertPos);
590      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
591      PN->addIncoming(&*I, NewEntry);
592      ArgumentPHIs.push_back(PN);
593    }
594  }
595
596  // If this function has self recursive calls in the tail position where some
597  // are marked tail and some are not, only transform one flavor or another.  We
598  // have to choose whether we move allocas in the entry block to the new entry
599  // block or not, so we can't make a good choice for both.  NOTE: We could do
600  // slightly better here in the case that the function has no entry block
601  // allocas.
602  if (TailCallsAreMarkedTail && !CI->isTailCall())
603    return false;
604
605  // Ok, now that we know we have a pseudo-entry block WITH all of the
606  // required PHI nodes, add entries into the PHI node for the actual
607  // parameters passed into the tail-recursive call.
608  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
609    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
610
611  // If we are introducing an accumulator variable to eliminate the recursion,
612  // do so now.  Note that we _know_ that no subsequent tail recursion
613  // eliminations will happen on this function because of the way the
614  // accumulator recursion predicate is set up.
615  //
616  if (AccumulatorRecursionEliminationInitVal) {
617    Instruction *AccRecInstr = AccumulatorRecursionInstr;
618    // Start by inserting a new PHI node for the accumulator.
619    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
620    PHINode *AccPN = PHINode::Create(
621        AccumulatorRecursionEliminationInitVal->getType(),
622        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
623
624    // Loop over all of the predecessors of the tail recursion block.  For the
625    // real entry into the function we seed the PHI with the initial value,
626    // computed earlier.  For any other existing branches to this block (due to
627    // other tail recursions eliminated) the accumulator is not modified.
628    // Because we haven't added the branch in the current block to OldEntry yet,
629    // it will not show up as a predecessor.
630    for (pred_iterator PI = PB; PI != PE; ++PI) {
631      BasicBlock *P = *PI;
632      if (P == &F->getEntryBlock())
633        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
634      else
635        AccPN->addIncoming(AccPN, P);
636    }
637
638    if (AccRecInstr) {
639      // Add an incoming argument for the current block, which is computed by
640      // our associative and commutative accumulator instruction.
641      AccPN->addIncoming(AccRecInstr, BB);
642
643      // Next, rewrite the accumulator recursion instruction so that it does not
644      // use the result of the call anymore, instead, use the PHI node we just
645      // inserted.
646      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
647    } else {
648      // Add an incoming argument for the current block, which is just the
649      // constant returned by the current return instruction.
650      AccPN->addIncoming(Ret->getReturnValue(), BB);
651    }
652
653    // Finally, rewrite any return instructions in the program to return the PHI
654    // node instead of the "initval" that they do currently.  This loop will
655    // actually rewrite the return value we are destroying, but that's ok.
656    for (BasicBlock &BBI : *F)
657      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
658        RI->setOperand(0, AccPN);
659    ++NumAccumAdded;
660  }
661
662  // Now that all of the PHI nodes are in place, remove the call and
663  // ret instructions, replacing them with an unconditional branch.
664  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
665  NewBI->setDebugLoc(CI->getDebugLoc());
666
667  BB->getInstList().erase(Ret);  // Remove return.
668  BB->getInstList().erase(CI);   // Remove call.
669  ++NumEliminated;
670  return true;
671}
672
673static bool foldReturnAndProcessPred(BasicBlock *BB, ReturnInst *Ret,
674                                     BasicBlock *&OldEntry,
675                                     bool &TailCallsAreMarkedTail,
676                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
677                                     bool CannotTailCallElimCallsMarkedTail,
678                                     const TargetTransformInfo *TTI) {
679  bool Change = false;
680
681  // If the return block contains nothing but the return and PHI's,
682  // there might be an opportunity to duplicate the return in its
683  // predecessors and perform TRC there. Look for predecessors that end
684  // in unconditional branch and recursive call(s).
685  SmallVector<BranchInst*, 8> UncondBranchPreds;
686  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
687    BasicBlock *Pred = *PI;
688    TerminatorInst *PTI = Pred->getTerminator();
689    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
690      if (BI->isUnconditional())
691        UncondBranchPreds.push_back(BI);
692  }
693
694  while (!UncondBranchPreds.empty()) {
695    BranchInst *BI = UncondBranchPreds.pop_back_val();
696    BasicBlock *Pred = BI->getParent();
697    if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
698      DEBUG(dbgs() << "FOLDING: " << *BB
699            << "INTO UNCOND BRANCH PRED: " << *Pred);
700      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
701
702      // Cleanup: if all predecessors of BB have been eliminated by
703      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
704      // because the ret instruction in there is still using a value which
705      // eliminateRecursiveTailCall will attempt to remove.
706      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
707        BB->eraseFromParent();
708
709      eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
710                                 ArgumentPHIs,
711                                 CannotTailCallElimCallsMarkedTail);
712      ++NumRetDuped;
713      Change = true;
714    }
715  }
716
717  return Change;
718}
719
720static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
721                                  bool &TailCallsAreMarkedTail,
722                                  SmallVectorImpl<PHINode *> &ArgumentPHIs,
723                                  bool CannotTailCallElimCallsMarkedTail,
724                                  const TargetTransformInfo *TTI) {
725  CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
726  if (!CI)
727    return false;
728
729  return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
730                                    ArgumentPHIs,
731                                    CannotTailCallElimCallsMarkedTail);
732}
733
734static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI) {
735  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
736    return false;
737
738  bool MadeChange = false;
739  bool AllCallsAreTailCalls = false;
740  MadeChange |= markTails(F, AllCallsAreTailCalls);
741  if (!AllCallsAreTailCalls)
742    return MadeChange;
743
744  // If this function is a varargs function, we won't be able to PHI the args
745  // right, so don't even try to convert it...
746  if (F.getFunctionType()->isVarArg())
747    return false;
748
749  BasicBlock *OldEntry = nullptr;
750  bool TailCallsAreMarkedTail = false;
751  SmallVector<PHINode*, 8> ArgumentPHIs;
752
753  // If false, we cannot perform TRE on tail calls marked with the 'tail'
754  // attribute, because doing so would cause the stack size to increase (real
755  // TRE would deallocate variable sized allocas, TRE doesn't).
756  bool CanTRETailMarkedCall = canTRE(F);
757
758  // Change any tail recursive calls to loops.
759  //
760  // FIXME: The code generator produces really bad code when an 'escaping
761  // alloca' is changed from being a static alloca to being a dynamic alloca.
762  // Until this is resolved, disable this transformation if that would ever
763  // happen.  This bug is PR962.
764  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
765    BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
766    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
767      bool Change =
768          processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
769                                ArgumentPHIs, !CanTRETailMarkedCall, TTI);
770      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
771        Change =
772            foldReturnAndProcessPred(BB, Ret, OldEntry, TailCallsAreMarkedTail,
773                                     ArgumentPHIs, !CanTRETailMarkedCall, TTI);
774      MadeChange |= Change;
775    }
776  }
777
778  // If we eliminated any tail recursions, it's possible that we inserted some
779  // silly PHI nodes which just merge an initial value (the incoming operand)
780  // with themselves.  Check to see if we did and clean up our mess if so.  This
781  // occurs when a function passes an argument straight through to its tail
782  // call.
783  for (PHINode *PN : ArgumentPHIs) {
784    // If the PHI Node is a dynamic constant, replace it with the value it is.
785    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
786      PN->replaceAllUsesWith(PNV);
787      PN->eraseFromParent();
788    }
789  }
790
791  return MadeChange;
792}
793
794namespace {
795struct TailCallElim : public FunctionPass {
796  static char ID; // Pass identification, replacement for typeid
797  TailCallElim() : FunctionPass(ID) {
798    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
799  }
800
801  void getAnalysisUsage(AnalysisUsage &AU) const override {
802    AU.addRequired<TargetTransformInfoWrapperPass>();
803    AU.addPreserved<GlobalsAAWrapperPass>();
804  }
805
806  bool runOnFunction(Function &F) override {
807    if (skipFunction(F))
808      return false;
809
810    return eliminateTailRecursion(
811        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F));
812  }
813};
814}
815
816char TailCallElim::ID = 0;
817INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
818                      false, false)
819INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
820INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
821                    false, false)
822
823// Public interface to the TailCallElimination pass
824FunctionPass *llvm::createTailCallEliminationPass() {
825  return new TailCallElim();
826}
827
828PreservedAnalyses TailCallElimPass::run(Function &F,
829                                        FunctionAnalysisManager &AM) {
830
831  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
832
833  bool Changed = eliminateTailRecursion(F, &TTI);
834
835  if (!Changed)
836    return PreservedAnalyses::all();
837  PreservedAnalyses PA;
838  PA.preserve<GlobalsAA>();
839  return PA;
840}
841