BBVectorize.cpp revision ebe69fe11e48d322045d5949c83283927a0d790b
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#include "llvm/Transforms/Vectorize.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AliasSetTracker.h"
28#include "llvm/Analysis/ScalarEvolution.h"
29#include "llvm/Analysis/ScalarEvolutionExpressions.h"
30#include "llvm/Analysis/TargetTransformInfo.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/Dominators.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Metadata.h"
42#include "llvm/IR/Type.h"
43#include "llvm/IR/ValueHandle.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include <algorithm>
50using namespace llvm;
51
52#define DEBUG_TYPE BBV_NAME
53
54static cl::opt<bool>
55IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
56  cl::Hidden, cl::desc("Ignore target information"));
57
58static cl::opt<unsigned>
59ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
60  cl::desc("The required chain depth for vectorization"));
61
62static cl::opt<bool>
63UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
64  cl::Hidden, cl::desc("Use the chain depth requirement with"
65                       " target information"));
66
67static cl::opt<unsigned>
68SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
69  cl::desc("The maximum search distance for instruction pairs"));
70
71static cl::opt<bool>
72SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
73  cl::desc("Replicating one element to a pair breaks the chain"));
74
75static cl::opt<unsigned>
76VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
77  cl::desc("The size of the native vector registers"));
78
79static cl::opt<unsigned>
80MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
81  cl::desc("The maximum number of pairing iterations"));
82
83static cl::opt<bool>
84Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
85  cl::desc("Don't try to form non-2^n-length vectors"));
86
87static cl::opt<unsigned>
88MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
89  cl::desc("The maximum number of pairable instructions per group"));
90
91static cl::opt<unsigned>
92MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
93  cl::desc("The maximum number of candidate instruction pairs per group"));
94
95static cl::opt<unsigned>
96MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
97  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
98                       " a full cycle check"));
99
100static cl::opt<bool>
101NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
102  cl::desc("Don't try to vectorize boolean (i1) values"));
103
104static cl::opt<bool>
105NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
106  cl::desc("Don't try to vectorize integer values"));
107
108static cl::opt<bool>
109NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
110  cl::desc("Don't try to vectorize floating-point values"));
111
112// FIXME: This should default to false once pointer vector support works.
113static cl::opt<bool>
114NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
115  cl::desc("Don't try to vectorize pointer values"));
116
117static cl::opt<bool>
118NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
119  cl::desc("Don't try to vectorize casting (conversion) operations"));
120
121static cl::opt<bool>
122NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
123  cl::desc("Don't try to vectorize floating-point math intrinsics"));
124
125static cl::opt<bool>
126  NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
127  cl::desc("Don't try to vectorize BitManipulation intrinsics"));
128
129static cl::opt<bool>
130NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
131  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
132
133static cl::opt<bool>
134NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
135  cl::desc("Don't try to vectorize select instructions"));
136
137static cl::opt<bool>
138NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
139  cl::desc("Don't try to vectorize comparison instructions"));
140
141static cl::opt<bool>
142NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
143  cl::desc("Don't try to vectorize getelementptr instructions"));
144
145static cl::opt<bool>
146NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
147  cl::desc("Don't try to vectorize loads and stores"));
148
149static cl::opt<bool>
150AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
151  cl::desc("Only generate aligned loads and stores"));
152
153static cl::opt<bool>
154NoMemOpBoost("bb-vectorize-no-mem-op-boost",
155  cl::init(false), cl::Hidden,
156  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
157
158static cl::opt<bool>
159FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
160  cl::desc("Use a fast instruction dependency analysis"));
161
162#ifndef NDEBUG
163static cl::opt<bool>
164DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
165  cl::init(false), cl::Hidden,
166  cl::desc("When debugging is enabled, output information on the"
167           " instruction-examination process"));
168static cl::opt<bool>
169DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
170  cl::init(false), cl::Hidden,
171  cl::desc("When debugging is enabled, output information on the"
172           " candidate-selection process"));
173static cl::opt<bool>
174DebugPairSelection("bb-vectorize-debug-pair-selection",
175  cl::init(false), cl::Hidden,
176  cl::desc("When debugging is enabled, output information on the"
177           " pair-selection process"));
178static cl::opt<bool>
179DebugCycleCheck("bb-vectorize-debug-cycle-check",
180  cl::init(false), cl::Hidden,
181  cl::desc("When debugging is enabled, output information on the"
182           " cycle-checking process"));
183
184static cl::opt<bool>
185PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
186  cl::init(false), cl::Hidden,
187  cl::desc("When debugging is enabled, dump the basic block after"
188           " every pair is fused"));
189#endif
190
191STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
192
193namespace {
194  struct BBVectorize : public BasicBlockPass {
195    static char ID; // Pass identification, replacement for typeid
196
197    const VectorizeConfig Config;
198
199    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
200      : BasicBlockPass(ID), Config(C) {
201      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
202    }
203
204    BBVectorize(Pass *P, Function &F, const VectorizeConfig &C)
205      : BasicBlockPass(ID), Config(C) {
206      AA = &P->getAnalysis<AliasAnalysis>();
207      DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
208      SE = &P->getAnalysis<ScalarEvolution>();
209      DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
210      DL = DLP ? &DLP->getDataLayout() : nullptr;
211      TTI = IgnoreTargetInfo
212                ? nullptr
213                : &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
214    }
215
216    typedef std::pair<Value *, Value *> ValuePair;
217    typedef std::pair<ValuePair, int> ValuePairWithCost;
218    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
219    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
220    typedef std::pair<VPPair, unsigned> VPPairWithType;
221
222    AliasAnalysis *AA;
223    DominatorTree *DT;
224    ScalarEvolution *SE;
225    const DataLayout *DL;
226    const TargetTransformInfo *TTI;
227
228    // FIXME: const correct?
229
230    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
231
232    bool getCandidatePairs(BasicBlock &BB,
233                       BasicBlock::iterator &Start,
234                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
235                       DenseSet<ValuePair> &FixedOrderPairs,
236                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
237                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
238
239    // FIXME: The current implementation does not account for pairs that
240    // are connected in multiple ways. For example:
241    //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
242    enum PairConnectionType {
243      PairConnectionDirect,
244      PairConnectionSwap,
245      PairConnectionSplat
246    };
247
248    void computeConnectedPairs(
249             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
250             DenseSet<ValuePair> &CandidatePairsSet,
251             std::vector<Value *> &PairableInsts,
252             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
253             DenseMap<VPPair, unsigned> &PairConnectionTypes);
254
255    void buildDepMap(BasicBlock &BB,
256             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
257             std::vector<Value *> &PairableInsts,
258             DenseSet<ValuePair> &PairableInstUsers);
259
260    void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
261             DenseSet<ValuePair> &CandidatePairsSet,
262             DenseMap<ValuePair, int> &CandidatePairCostSavings,
263             std::vector<Value *> &PairableInsts,
264             DenseSet<ValuePair> &FixedOrderPairs,
265             DenseMap<VPPair, unsigned> &PairConnectionTypes,
266             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
267             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
268             DenseSet<ValuePair> &PairableInstUsers,
269             DenseMap<Value *, Value *>& ChosenPairs);
270
271    void fuseChosenPairs(BasicBlock &BB,
272             std::vector<Value *> &PairableInsts,
273             DenseMap<Value *, Value *>& ChosenPairs,
274             DenseSet<ValuePair> &FixedOrderPairs,
275             DenseMap<VPPair, unsigned> &PairConnectionTypes,
276             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
277             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
278
279
280    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
281
282    bool areInstsCompatible(Instruction *I, Instruction *J,
283                       bool IsSimpleLoadStore, bool NonPow2Len,
284                       int &CostSavings, int &FixedOrder);
285
286    bool trackUsesOfI(DenseSet<Value *> &Users,
287                      AliasSetTracker &WriteSet, Instruction *I,
288                      Instruction *J, bool UpdateUsers = true,
289                      DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
290
291  void computePairsConnectedTo(
292             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
293             DenseSet<ValuePair> &CandidatePairsSet,
294             std::vector<Value *> &PairableInsts,
295             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
296             DenseMap<VPPair, unsigned> &PairConnectionTypes,
297             ValuePair P);
298
299    bool pairsConflict(ValuePair P, ValuePair Q,
300             DenseSet<ValuePair> &PairableInstUsers,
301             DenseMap<ValuePair, std::vector<ValuePair> >
302               *PairableInstUserMap = nullptr,
303             DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
304
305    bool pairWillFormCycle(ValuePair P,
306             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
307             DenseSet<ValuePair> &CurrentPairs);
308
309    void pruneDAGFor(
310             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
311             std::vector<Value *> &PairableInsts,
312             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
313             DenseSet<ValuePair> &PairableInstUsers,
314             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
315             DenseSet<VPPair> &PairableInstUserPairSet,
316             DenseMap<Value *, Value *> &ChosenPairs,
317             DenseMap<ValuePair, size_t> &DAG,
318             DenseSet<ValuePair> &PrunedDAG, ValuePair J,
319             bool UseCycleCheck);
320
321    void buildInitialDAGFor(
322             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
323             DenseSet<ValuePair> &CandidatePairsSet,
324             std::vector<Value *> &PairableInsts,
325             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
326             DenseSet<ValuePair> &PairableInstUsers,
327             DenseMap<Value *, Value *> &ChosenPairs,
328             DenseMap<ValuePair, size_t> &DAG, ValuePair J);
329
330    void findBestDAGFor(
331             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
332             DenseSet<ValuePair> &CandidatePairsSet,
333             DenseMap<ValuePair, int> &CandidatePairCostSavings,
334             std::vector<Value *> &PairableInsts,
335             DenseSet<ValuePair> &FixedOrderPairs,
336             DenseMap<VPPair, unsigned> &PairConnectionTypes,
337             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
338             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
339             DenseSet<ValuePair> &PairableInstUsers,
340             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
341             DenseSet<VPPair> &PairableInstUserPairSet,
342             DenseMap<Value *, Value *> &ChosenPairs,
343             DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
344             int &BestEffSize, Value *II, std::vector<Value *>&JJ,
345             bool UseCycleCheck);
346
347    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
348                     Instruction *J, unsigned o);
349
350    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
351                     unsigned MaskOffset, unsigned NumInElem,
352                     unsigned NumInElem1, unsigned IdxOffset,
353                     std::vector<Constant*> &Mask);
354
355    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
356                     Instruction *J);
357
358    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
359                       unsigned o, Value *&LOp, unsigned numElemL,
360                       Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
361                       unsigned IdxOff = 0);
362
363    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
364                     Instruction *J, unsigned o, bool IBeforeJ);
365
366    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
367                     Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
368                     bool IBeforeJ);
369
370    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
371                     Instruction *J, Instruction *K,
372                     Instruction *&InsertionPt, Instruction *&K1,
373                     Instruction *&K2);
374
375    void collectPairLoadMoveSet(BasicBlock &BB,
376                     DenseMap<Value *, Value *> &ChosenPairs,
377                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
378                     DenseSet<ValuePair> &LoadMoveSetPairs,
379                     Instruction *I);
380
381    void collectLoadMoveSet(BasicBlock &BB,
382                     std::vector<Value *> &PairableInsts,
383                     DenseMap<Value *, Value *> &ChosenPairs,
384                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
385                     DenseSet<ValuePair> &LoadMoveSetPairs);
386
387    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
388                     DenseSet<ValuePair> &LoadMoveSetPairs,
389                     Instruction *I, Instruction *J);
390
391    void moveUsesOfIAfterJ(BasicBlock &BB,
392                     DenseSet<ValuePair> &LoadMoveSetPairs,
393                     Instruction *&InsertionPt,
394                     Instruction *I, Instruction *J);
395
396    bool vectorizeBB(BasicBlock &BB) {
397      if (skipOptnoneFunction(BB))
398        return false;
399      if (!DT->isReachableFromEntry(&BB)) {
400        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
401              " in " << BB.getParent()->getName() << "\n");
402        return false;
403      }
404
405      DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
406
407      bool changed = false;
408      // Iterate a sufficient number of times to merge types of size 1 bit,
409      // then 2 bits, then 4, etc. up to half of the target vector width of the
410      // target vector register.
411      unsigned n = 1;
412      for (unsigned v = 2;
413           (TTI || v <= Config.VectorBits) &&
414           (!Config.MaxIter || n <= Config.MaxIter);
415           v *= 2, ++n) {
416        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
417              " for " << BB.getName() << " in " <<
418              BB.getParent()->getName() << "...\n");
419        if (vectorizePairs(BB))
420          changed = true;
421        else
422          break;
423      }
424
425      if (changed && !Pow2LenOnly) {
426        ++n;
427        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
428          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
429                n << " for " << BB.getName() << " in " <<
430                BB.getParent()->getName() << "...\n");
431          if (!vectorizePairs(BB, true)) break;
432        }
433      }
434
435      DEBUG(dbgs() << "BBV: done!\n");
436      return changed;
437    }
438
439    bool runOnBasicBlock(BasicBlock &BB) override {
440      // OptimizeNone check deferred to vectorizeBB().
441
442      AA = &getAnalysis<AliasAnalysis>();
443      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
444      SE = &getAnalysis<ScalarEvolution>();
445      DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
446      DL = DLP ? &DLP->getDataLayout() : nullptr;
447      TTI = IgnoreTargetInfo
448                ? nullptr
449                : &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
450                      *BB.getParent());
451
452      return vectorizeBB(BB);
453    }
454
455    void getAnalysisUsage(AnalysisUsage &AU) const override {
456      BasicBlockPass::getAnalysisUsage(AU);
457      AU.addRequired<AliasAnalysis>();
458      AU.addRequired<DominatorTreeWrapperPass>();
459      AU.addRequired<ScalarEvolution>();
460      AU.addRequired<TargetTransformInfoWrapperPass>();
461      AU.addPreserved<AliasAnalysis>();
462      AU.addPreserved<DominatorTreeWrapperPass>();
463      AU.addPreserved<ScalarEvolution>();
464      AU.setPreservesCFG();
465    }
466
467    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
468      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
469             "Cannot form vector from incompatible scalar types");
470      Type *STy = ElemTy->getScalarType();
471
472      unsigned numElem;
473      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
474        numElem = VTy->getNumElements();
475      } else {
476        numElem = 1;
477      }
478
479      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
480        numElem += VTy->getNumElements();
481      } else {
482        numElem += 1;
483      }
484
485      return VectorType::get(STy, numElem);
486    }
487
488    static inline void getInstructionTypes(Instruction *I,
489                                           Type *&T1, Type *&T2) {
490      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
491        // For stores, it is the value type, not the pointer type that matters
492        // because the value is what will come from a vector register.
493
494        Value *IVal = SI->getValueOperand();
495        T1 = IVal->getType();
496      } else {
497        T1 = I->getType();
498      }
499
500      if (CastInst *CI = dyn_cast<CastInst>(I))
501        T2 = CI->getSrcTy();
502      else
503        T2 = T1;
504
505      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
506        T2 = SI->getCondition()->getType();
507      } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
508        T2 = SI->getOperand(0)->getType();
509      } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
510        T2 = CI->getOperand(0)->getType();
511      }
512    }
513
514    // Returns the weight associated with the provided value. A chain of
515    // candidate pairs has a length given by the sum of the weights of its
516    // members (one weight per pair; the weight of each member of the pair
517    // is assumed to be the same). This length is then compared to the
518    // chain-length threshold to determine if a given chain is significant
519    // enough to be vectorized. The length is also used in comparing
520    // candidate chains where longer chains are considered to be better.
521    // Note: when this function returns 0, the resulting instructions are
522    // not actually fused.
523    inline size_t getDepthFactor(Value *V) {
524      // InsertElement and ExtractElement have a depth factor of zero. This is
525      // for two reasons: First, they cannot be usefully fused. Second, because
526      // the pass generates a lot of these, they can confuse the simple metric
527      // used to compare the dags in the next iteration. Thus, giving them a
528      // weight of zero allows the pass to essentially ignore them in
529      // subsequent iterations when looking for vectorization opportunities
530      // while still tracking dependency chains that flow through those
531      // instructions.
532      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
533        return 0;
534
535      // Give a load or store half of the required depth so that load/store
536      // pairs will vectorize.
537      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
538        return Config.ReqChainDepth/2;
539
540      return 1;
541    }
542
543    // Returns the cost of the provided instruction using TTI.
544    // This does not handle loads and stores.
545    unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2,
546                          TargetTransformInfo::OperandValueKind Op1VK =
547                              TargetTransformInfo::OK_AnyValue,
548                          TargetTransformInfo::OperandValueKind Op2VK =
549                              TargetTransformInfo::OK_AnyValue) {
550      switch (Opcode) {
551      default: break;
552      case Instruction::GetElementPtr:
553        // We mark this instruction as zero-cost because scalar GEPs are usually
554        // lowered to the instruction addressing mode. At the moment we don't
555        // generate vector GEPs.
556        return 0;
557      case Instruction::Br:
558        return TTI->getCFInstrCost(Opcode);
559      case Instruction::PHI:
560        return 0;
561      case Instruction::Add:
562      case Instruction::FAdd:
563      case Instruction::Sub:
564      case Instruction::FSub:
565      case Instruction::Mul:
566      case Instruction::FMul:
567      case Instruction::UDiv:
568      case Instruction::SDiv:
569      case Instruction::FDiv:
570      case Instruction::URem:
571      case Instruction::SRem:
572      case Instruction::FRem:
573      case Instruction::Shl:
574      case Instruction::LShr:
575      case Instruction::AShr:
576      case Instruction::And:
577      case Instruction::Or:
578      case Instruction::Xor:
579        return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK);
580      case Instruction::Select:
581      case Instruction::ICmp:
582      case Instruction::FCmp:
583        return TTI->getCmpSelInstrCost(Opcode, T1, T2);
584      case Instruction::ZExt:
585      case Instruction::SExt:
586      case Instruction::FPToUI:
587      case Instruction::FPToSI:
588      case Instruction::FPExt:
589      case Instruction::PtrToInt:
590      case Instruction::IntToPtr:
591      case Instruction::SIToFP:
592      case Instruction::UIToFP:
593      case Instruction::Trunc:
594      case Instruction::FPTrunc:
595      case Instruction::BitCast:
596      case Instruction::ShuffleVector:
597        return TTI->getCastInstrCost(Opcode, T1, T2);
598      }
599
600      return 1;
601    }
602
603    // This determines the relative offset of two loads or stores, returning
604    // true if the offset could be determined to be some constant value.
605    // For example, if OffsetInElmts == 1, then J accesses the memory directly
606    // after I; if OffsetInElmts == -1 then I accesses the memory
607    // directly after J.
608    bool getPairPtrInfo(Instruction *I, Instruction *J,
609        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
610        unsigned &IAddressSpace, unsigned &JAddressSpace,
611        int64_t &OffsetInElmts, bool ComputeOffset = true) {
612      OffsetInElmts = 0;
613      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
614        LoadInst *LJ = cast<LoadInst>(J);
615        IPtr = LI->getPointerOperand();
616        JPtr = LJ->getPointerOperand();
617        IAlignment = LI->getAlignment();
618        JAlignment = LJ->getAlignment();
619        IAddressSpace = LI->getPointerAddressSpace();
620        JAddressSpace = LJ->getPointerAddressSpace();
621      } else {
622        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
623        IPtr = SI->getPointerOperand();
624        JPtr = SJ->getPointerOperand();
625        IAlignment = SI->getAlignment();
626        JAlignment = SJ->getAlignment();
627        IAddressSpace = SI->getPointerAddressSpace();
628        JAddressSpace = SJ->getPointerAddressSpace();
629      }
630
631      if (!ComputeOffset)
632        return true;
633
634      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
635      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
636
637      // If this is a trivial offset, then we'll get something like
638      // 1*sizeof(type). With target data, which we need anyway, this will get
639      // constant folded into a number.
640      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
641      if (const SCEVConstant *ConstOffSCEV =
642            dyn_cast<SCEVConstant>(OffsetSCEV)) {
643        ConstantInt *IntOff = ConstOffSCEV->getValue();
644        int64_t Offset = IntOff->getSExtValue();
645
646        Type *VTy = IPtr->getType()->getPointerElementType();
647        int64_t VTyTSS = (int64_t) DL->getTypeStoreSize(VTy);
648
649        Type *VTy2 = JPtr->getType()->getPointerElementType();
650        if (VTy != VTy2 && Offset < 0) {
651          int64_t VTy2TSS = (int64_t) DL->getTypeStoreSize(VTy2);
652          OffsetInElmts = Offset/VTy2TSS;
653          return (abs64(Offset) % VTy2TSS) == 0;
654        }
655
656        OffsetInElmts = Offset/VTyTSS;
657        return (abs64(Offset) % VTyTSS) == 0;
658      }
659
660      return false;
661    }
662
663    // Returns true if the provided CallInst represents an intrinsic that can
664    // be vectorized.
665    bool isVectorizableIntrinsic(CallInst* I) {
666      Function *F = I->getCalledFunction();
667      if (!F) return false;
668
669      Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
670      if (!IID) return false;
671
672      switch(IID) {
673      default:
674        return false;
675      case Intrinsic::sqrt:
676      case Intrinsic::powi:
677      case Intrinsic::sin:
678      case Intrinsic::cos:
679      case Intrinsic::log:
680      case Intrinsic::log2:
681      case Intrinsic::log10:
682      case Intrinsic::exp:
683      case Intrinsic::exp2:
684      case Intrinsic::pow:
685      case Intrinsic::round:
686      case Intrinsic::copysign:
687      case Intrinsic::ceil:
688      case Intrinsic::nearbyint:
689      case Intrinsic::rint:
690      case Intrinsic::trunc:
691      case Intrinsic::floor:
692      case Intrinsic::fabs:
693      case Intrinsic::minnum:
694      case Intrinsic::maxnum:
695        return Config.VectorizeMath;
696      case Intrinsic::bswap:
697      case Intrinsic::ctpop:
698      case Intrinsic::ctlz:
699      case Intrinsic::cttz:
700        return Config.VectorizeBitManipulations;
701      case Intrinsic::fma:
702      case Intrinsic::fmuladd:
703        return Config.VectorizeFMA;
704      }
705    }
706
707    bool isPureIEChain(InsertElementInst *IE) {
708      InsertElementInst *IENext = IE;
709      do {
710        if (!isa<UndefValue>(IENext->getOperand(0)) &&
711            !isa<InsertElementInst>(IENext->getOperand(0))) {
712          return false;
713        }
714      } while ((IENext =
715                 dyn_cast<InsertElementInst>(IENext->getOperand(0))));
716
717      return true;
718    }
719  };
720
721  // This function implements one vectorization iteration on the provided
722  // basic block. It returns true if the block is changed.
723  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
724    bool ShouldContinue;
725    BasicBlock::iterator Start = BB.getFirstInsertionPt();
726
727    std::vector<Value *> AllPairableInsts;
728    DenseMap<Value *, Value *> AllChosenPairs;
729    DenseSet<ValuePair> AllFixedOrderPairs;
730    DenseMap<VPPair, unsigned> AllPairConnectionTypes;
731    DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
732                                                 AllConnectedPairDeps;
733
734    do {
735      std::vector<Value *> PairableInsts;
736      DenseMap<Value *, std::vector<Value *> > CandidatePairs;
737      DenseSet<ValuePair> FixedOrderPairs;
738      DenseMap<ValuePair, int> CandidatePairCostSavings;
739      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
740                                         FixedOrderPairs,
741                                         CandidatePairCostSavings,
742                                         PairableInsts, NonPow2Len);
743      if (PairableInsts.empty()) continue;
744
745      // Build the candidate pair set for faster lookups.
746      DenseSet<ValuePair> CandidatePairsSet;
747      for (DenseMap<Value *, std::vector<Value *> >::iterator I =
748           CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
749        for (std::vector<Value *>::iterator J = I->second.begin(),
750             JE = I->second.end(); J != JE; ++J)
751          CandidatePairsSet.insert(ValuePair(I->first, *J));
752
753      // Now we have a map of all of the pairable instructions and we need to
754      // select the best possible pairing. A good pairing is one such that the
755      // users of the pair are also paired. This defines a (directed) forest
756      // over the pairs such that two pairs are connected iff the second pair
757      // uses the first.
758
759      // Note that it only matters that both members of the second pair use some
760      // element of the first pair (to allow for splatting).
761
762      DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
763                                                   ConnectedPairDeps;
764      DenseMap<VPPair, unsigned> PairConnectionTypes;
765      computeConnectedPairs(CandidatePairs, CandidatePairsSet,
766                            PairableInsts, ConnectedPairs, PairConnectionTypes);
767      if (ConnectedPairs.empty()) continue;
768
769      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
770           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
771           I != IE; ++I)
772        for (std::vector<ValuePair>::iterator J = I->second.begin(),
773             JE = I->second.end(); J != JE; ++J)
774          ConnectedPairDeps[*J].push_back(I->first);
775
776      // Build the pairable-instruction dependency map
777      DenseSet<ValuePair> PairableInstUsers;
778      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
779
780      // There is now a graph of the connected pairs. For each variable, pick
781      // the pairing with the largest dag meeting the depth requirement on at
782      // least one branch. Then select all pairings that are part of that dag
783      // and remove them from the list of available pairings and pairable
784      // variables.
785
786      DenseMap<Value *, Value *> ChosenPairs;
787      choosePairs(CandidatePairs, CandidatePairsSet,
788        CandidatePairCostSavings,
789        PairableInsts, FixedOrderPairs, PairConnectionTypes,
790        ConnectedPairs, ConnectedPairDeps,
791        PairableInstUsers, ChosenPairs);
792
793      if (ChosenPairs.empty()) continue;
794      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
795                              PairableInsts.end());
796      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
797
798      // Only for the chosen pairs, propagate information on fixed-order pairs,
799      // pair connections, and their types to the data structures used by the
800      // pair fusion procedures.
801      for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
802           IE = ChosenPairs.end(); I != IE; ++I) {
803        if (FixedOrderPairs.count(*I))
804          AllFixedOrderPairs.insert(*I);
805        else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
806          AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
807
808        for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
809             J != IE; ++J) {
810          DenseMap<VPPair, unsigned>::iterator K =
811            PairConnectionTypes.find(VPPair(*I, *J));
812          if (K != PairConnectionTypes.end()) {
813            AllPairConnectionTypes.insert(*K);
814          } else {
815            K = PairConnectionTypes.find(VPPair(*J, *I));
816            if (K != PairConnectionTypes.end())
817              AllPairConnectionTypes.insert(*K);
818          }
819        }
820      }
821
822      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
823           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
824           I != IE; ++I)
825        for (std::vector<ValuePair>::iterator J = I->second.begin(),
826          JE = I->second.end(); J != JE; ++J)
827          if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
828            AllConnectedPairs[I->first].push_back(*J);
829            AllConnectedPairDeps[*J].push_back(I->first);
830          }
831    } while (ShouldContinue);
832
833    if (AllChosenPairs.empty()) return false;
834    NumFusedOps += AllChosenPairs.size();
835
836    // A set of pairs has now been selected. It is now necessary to replace the
837    // paired instructions with vector instructions. For this procedure each
838    // operand must be replaced with a vector operand. This vector is formed
839    // by using build_vector on the old operands. The replaced values are then
840    // replaced with a vector_extract on the result.  Subsequent optimization
841    // passes should coalesce the build/extract combinations.
842
843    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
844                    AllPairConnectionTypes,
845                    AllConnectedPairs, AllConnectedPairDeps);
846
847    // It is important to cleanup here so that future iterations of this
848    // function have less work to do.
849    (void) SimplifyInstructionsInBlock(&BB, DL, AA->getTargetLibraryInfo());
850    return true;
851  }
852
853  // This function returns true if the provided instruction is capable of being
854  // fused into a vector instruction. This determination is based only on the
855  // type and other attributes of the instruction.
856  bool BBVectorize::isInstVectorizable(Instruction *I,
857                                         bool &IsSimpleLoadStore) {
858    IsSimpleLoadStore = false;
859
860    if (CallInst *C = dyn_cast<CallInst>(I)) {
861      if (!isVectorizableIntrinsic(C))
862        return false;
863    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
864      // Vectorize simple loads if possbile:
865      IsSimpleLoadStore = L->isSimple();
866      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
867        return false;
868    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
869      // Vectorize simple stores if possbile:
870      IsSimpleLoadStore = S->isSimple();
871      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
872        return false;
873    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
874      // We can vectorize casts, but not casts of pointer types, etc.
875      if (!Config.VectorizeCasts)
876        return false;
877
878      Type *SrcTy = C->getSrcTy();
879      if (!SrcTy->isSingleValueType())
880        return false;
881
882      Type *DestTy = C->getDestTy();
883      if (!DestTy->isSingleValueType())
884        return false;
885    } else if (isa<SelectInst>(I)) {
886      if (!Config.VectorizeSelect)
887        return false;
888    } else if (isa<CmpInst>(I)) {
889      if (!Config.VectorizeCmp)
890        return false;
891    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
892      if (!Config.VectorizeGEP)
893        return false;
894
895      // Currently, vector GEPs exist only with one index.
896      if (G->getNumIndices() != 1)
897        return false;
898    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
899        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
900      return false;
901    }
902
903    // We can't vectorize memory operations without target data
904    if (!DL && IsSimpleLoadStore)
905      return false;
906
907    Type *T1, *T2;
908    getInstructionTypes(I, T1, T2);
909
910    // Not every type can be vectorized...
911    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
912        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
913      return false;
914
915    if (T1->getScalarSizeInBits() == 1) {
916      if (!Config.VectorizeBools)
917        return false;
918    } else {
919      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
920        return false;
921    }
922
923    if (T2->getScalarSizeInBits() == 1) {
924      if (!Config.VectorizeBools)
925        return false;
926    } else {
927      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
928        return false;
929    }
930
931    if (!Config.VectorizeFloats
932        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
933      return false;
934
935    // Don't vectorize target-specific types.
936    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
937      return false;
938    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
939      return false;
940
941    if ((!Config.VectorizePointers || !DL) &&
942        (T1->getScalarType()->isPointerTy() ||
943         T2->getScalarType()->isPointerTy()))
944      return false;
945
946    if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
947                 T2->getPrimitiveSizeInBits() >= Config.VectorBits))
948      return false;
949
950    return true;
951  }
952
953  // This function returns true if the two provided instructions are compatible
954  // (meaning that they can be fused into a vector instruction). This assumes
955  // that I has already been determined to be vectorizable and that J is not
956  // in the use dag of I.
957  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
958                       bool IsSimpleLoadStore, bool NonPow2Len,
959                       int &CostSavings, int &FixedOrder) {
960    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
961                     " <-> " << *J << "\n");
962
963    CostSavings = 0;
964    FixedOrder = 0;
965
966    // Loads and stores can be merged if they have different alignments,
967    // but are otherwise the same.
968    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
969                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
970      return false;
971
972    Type *IT1, *IT2, *JT1, *JT2;
973    getInstructionTypes(I, IT1, IT2);
974    getInstructionTypes(J, JT1, JT2);
975    unsigned MaxTypeBits = std::max(
976      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
977      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
978    if (!TTI && MaxTypeBits > Config.VectorBits)
979      return false;
980
981    // FIXME: handle addsub-type operations!
982
983    if (IsSimpleLoadStore) {
984      Value *IPtr, *JPtr;
985      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
986      int64_t OffsetInElmts = 0;
987      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
988            IAddressSpace, JAddressSpace,
989            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
990        FixedOrder = (int) OffsetInElmts;
991        unsigned BottomAlignment = IAlignment;
992        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
993
994        Type *aTypeI = isa<StoreInst>(I) ?
995          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
996        Type *aTypeJ = isa<StoreInst>(J) ?
997          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
998        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
999
1000        if (Config.AlignedOnly) {
1001          // An aligned load or store is possible only if the instruction
1002          // with the lower offset has an alignment suitable for the
1003          // vector type.
1004
1005          unsigned VecAlignment = DL->getPrefTypeAlignment(VType);
1006          if (BottomAlignment < VecAlignment)
1007            return false;
1008        }
1009
1010        if (TTI) {
1011          unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
1012                                                IAlignment, IAddressSpace);
1013          unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
1014                                                JAlignment, JAddressSpace);
1015          unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
1016                                                BottomAlignment,
1017                                                IAddressSpace);
1018
1019          ICost += TTI->getAddressComputationCost(aTypeI);
1020          JCost += TTI->getAddressComputationCost(aTypeJ);
1021          VCost += TTI->getAddressComputationCost(VType);
1022
1023          if (VCost > ICost + JCost)
1024            return false;
1025
1026          // We don't want to fuse to a type that will be split, even
1027          // if the two input types will also be split and there is no other
1028          // associated cost.
1029          unsigned VParts = TTI->getNumberOfParts(VType);
1030          if (VParts > 1)
1031            return false;
1032          else if (!VParts && VCost == ICost + JCost)
1033            return false;
1034
1035          CostSavings = ICost + JCost - VCost;
1036        }
1037      } else {
1038        return false;
1039      }
1040    } else if (TTI) {
1041      unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
1042      unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
1043      Type *VT1 = getVecTypeForPair(IT1, JT1),
1044           *VT2 = getVecTypeForPair(IT2, JT2);
1045      TargetTransformInfo::OperandValueKind Op1VK =
1046          TargetTransformInfo::OK_AnyValue;
1047      TargetTransformInfo::OperandValueKind Op2VK =
1048          TargetTransformInfo::OK_AnyValue;
1049
1050      // On some targets (example X86) the cost of a vector shift may vary
1051      // depending on whether the second operand is a Uniform or
1052      // NonUniform Constant.
1053      switch (I->getOpcode()) {
1054      default : break;
1055      case Instruction::Shl:
1056      case Instruction::LShr:
1057      case Instruction::AShr:
1058
1059        // If both I and J are scalar shifts by constant, then the
1060        // merged vector shift count would be either a constant splat value
1061        // or a non-uniform vector of constants.
1062        if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) {
1063          if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1)))
1064            Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue :
1065                               TargetTransformInfo::OK_NonUniformConstantValue;
1066        } else {
1067          // Check for a splat of a constant or for a non uniform vector
1068          // of constants.
1069          Value *IOp = I->getOperand(1);
1070          Value *JOp = J->getOperand(1);
1071          if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) &&
1072              (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
1073            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1074            Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
1075            if (SplatValue != nullptr &&
1076                SplatValue == cast<Constant>(JOp)->getSplatValue())
1077              Op2VK = TargetTransformInfo::OK_UniformConstantValue;
1078          }
1079        }
1080      }
1081
1082      // Note that this procedure is incorrect for insert and extract element
1083      // instructions (because combining these often results in a shuffle),
1084      // but this cost is ignored (because insert and extract element
1085      // instructions are assigned a zero depth factor and are not really
1086      // fused in general).
1087      unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK);
1088
1089      if (VCost > ICost + JCost)
1090        return false;
1091
1092      // We don't want to fuse to a type that will be split, even
1093      // if the two input types will also be split and there is no other
1094      // associated cost.
1095      unsigned VParts1 = TTI->getNumberOfParts(VT1),
1096               VParts2 = TTI->getNumberOfParts(VT2);
1097      if (VParts1 > 1 || VParts2 > 1)
1098        return false;
1099      else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
1100        return false;
1101
1102      CostSavings = ICost + JCost - VCost;
1103    }
1104
1105    // The powi,ctlz,cttz intrinsics are special because only the first
1106    // argument is vectorized, the second arguments must be equal.
1107    CallInst *CI = dyn_cast<CallInst>(I);
1108    Function *FI;
1109    if (CI && (FI = CI->getCalledFunction())) {
1110      Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
1111      if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
1112          IID == Intrinsic::cttz) {
1113        Value *A1I = CI->getArgOperand(1),
1114              *A1J = cast<CallInst>(J)->getArgOperand(1);
1115        const SCEV *A1ISCEV = SE->getSCEV(A1I),
1116                   *A1JSCEV = SE->getSCEV(A1J);
1117        return (A1ISCEV == A1JSCEV);
1118      }
1119
1120      if (IID && TTI) {
1121        SmallVector<Type*, 4> Tys;
1122        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
1123          Tys.push_back(CI->getArgOperand(i)->getType());
1124        unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
1125
1126        Tys.clear();
1127        CallInst *CJ = cast<CallInst>(J);
1128        for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
1129          Tys.push_back(CJ->getArgOperand(i)->getType());
1130        unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
1131
1132        Tys.clear();
1133        assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
1134               "Intrinsic argument counts differ");
1135        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
1136          if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
1137               IID == Intrinsic::cttz) && i == 1)
1138            Tys.push_back(CI->getArgOperand(i)->getType());
1139          else
1140            Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
1141                                            CJ->getArgOperand(i)->getType()));
1142        }
1143
1144        Type *RetTy = getVecTypeForPair(IT1, JT1);
1145        unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
1146
1147        if (VCost > ICost + JCost)
1148          return false;
1149
1150        // We don't want to fuse to a type that will be split, even
1151        // if the two input types will also be split and there is no other
1152        // associated cost.
1153        unsigned RetParts = TTI->getNumberOfParts(RetTy);
1154        if (RetParts > 1)
1155          return false;
1156        else if (!RetParts && VCost == ICost + JCost)
1157          return false;
1158
1159        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
1160          if (!Tys[i]->isVectorTy())
1161            continue;
1162
1163          unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
1164          if (NumParts > 1)
1165            return false;
1166          else if (!NumParts && VCost == ICost + JCost)
1167            return false;
1168        }
1169
1170        CostSavings = ICost + JCost - VCost;
1171      }
1172    }
1173
1174    return true;
1175  }
1176
1177  // Figure out whether or not J uses I and update the users and write-set
1178  // structures associated with I. Specifically, Users represents the set of
1179  // instructions that depend on I. WriteSet represents the set
1180  // of memory locations that are dependent on I. If UpdateUsers is true,
1181  // and J uses I, then Users is updated to contain J and WriteSet is updated
1182  // to contain any memory locations to which J writes. The function returns
1183  // true if J uses I. By default, alias analysis is used to determine
1184  // whether J reads from memory that overlaps with a location in WriteSet.
1185  // If LoadMoveSet is not null, then it is a previously-computed map
1186  // where the key is the memory-based user instruction and the value is
1187  // the instruction to be compared with I. So, if LoadMoveSet is provided,
1188  // then the alias analysis is not used. This is necessary because this
1189  // function is called during the process of moving instructions during
1190  // vectorization and the results of the alias analysis are not stable during
1191  // that process.
1192  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
1193                       AliasSetTracker &WriteSet, Instruction *I,
1194                       Instruction *J, bool UpdateUsers,
1195                       DenseSet<ValuePair> *LoadMoveSetPairs) {
1196    bool UsesI = false;
1197
1198    // This instruction may already be marked as a user due, for example, to
1199    // being a member of a selected pair.
1200    if (Users.count(J))
1201      UsesI = true;
1202
1203    if (!UsesI)
1204      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
1205           JU != JE; ++JU) {
1206        Value *V = *JU;
1207        if (I == V || Users.count(V)) {
1208          UsesI = true;
1209          break;
1210        }
1211      }
1212    if (!UsesI && J->mayReadFromMemory()) {
1213      if (LoadMoveSetPairs) {
1214        UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
1215      } else {
1216        for (AliasSetTracker::iterator W = WriteSet.begin(),
1217             WE = WriteSet.end(); W != WE; ++W) {
1218          if (W->aliasesUnknownInst(J, *AA)) {
1219            UsesI = true;
1220            break;
1221          }
1222        }
1223      }
1224    }
1225
1226    if (UsesI && UpdateUsers) {
1227      if (J->mayWriteToMemory()) WriteSet.add(J);
1228      Users.insert(J);
1229    }
1230
1231    return UsesI;
1232  }
1233
1234  // This function iterates over all instruction pairs in the provided
1235  // basic block and collects all candidate pairs for vectorization.
1236  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
1237                       BasicBlock::iterator &Start,
1238                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1239                       DenseSet<ValuePair> &FixedOrderPairs,
1240                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
1241                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
1242    size_t TotalPairs = 0;
1243    BasicBlock::iterator E = BB.end();
1244    if (Start == E) return false;
1245
1246    bool ShouldContinue = false, IAfterStart = false;
1247    for (BasicBlock::iterator I = Start++; I != E; ++I) {
1248      if (I == Start) IAfterStart = true;
1249
1250      bool IsSimpleLoadStore;
1251      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
1252
1253      // Look for an instruction with which to pair instruction *I...
1254      DenseSet<Value *> Users;
1255      AliasSetTracker WriteSet(*AA);
1256      if (I->mayWriteToMemory()) WriteSet.add(I);
1257
1258      bool JAfterStart = IAfterStart;
1259      BasicBlock::iterator J = std::next(I);
1260      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
1261        if (J == Start) JAfterStart = true;
1262
1263        // Determine if J uses I, if so, exit the loop.
1264        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
1265        if (Config.FastDep) {
1266          // Note: For this heuristic to be effective, independent operations
1267          // must tend to be intermixed. This is likely to be true from some
1268          // kinds of grouped loop unrolling (but not the generic LLVM pass),
1269          // but otherwise may require some kind of reordering pass.
1270
1271          // When using fast dependency analysis,
1272          // stop searching after first use:
1273          if (UsesI) break;
1274        } else {
1275          if (UsesI) continue;
1276        }
1277
1278        // J does not use I, and comes before the first use of I, so it can be
1279        // merged with I if the instructions are compatible.
1280        int CostSavings, FixedOrder;
1281        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
1282            CostSavings, FixedOrder)) continue;
1283
1284        // J is a candidate for merging with I.
1285        if (PairableInsts.empty() ||
1286             PairableInsts[PairableInsts.size()-1] != I) {
1287          PairableInsts.push_back(I);
1288        }
1289
1290        CandidatePairs[I].push_back(J);
1291        ++TotalPairs;
1292        if (TTI)
1293          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
1294                                                            CostSavings));
1295
1296        if (FixedOrder == 1)
1297          FixedOrderPairs.insert(ValuePair(I, J));
1298        else if (FixedOrder == -1)
1299          FixedOrderPairs.insert(ValuePair(J, I));
1300
1301        // The next call to this function must start after the last instruction
1302        // selected during this invocation.
1303        if (JAfterStart) {
1304          Start = std::next(J);
1305          IAfterStart = JAfterStart = false;
1306        }
1307
1308        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
1309                     << *I << " <-> " << *J << " (cost savings: " <<
1310                     CostSavings << ")\n");
1311
1312        // If we have already found too many pairs, break here and this function
1313        // will be called again starting after the last instruction selected
1314        // during this invocation.
1315        if (PairableInsts.size() >= Config.MaxInsts ||
1316            TotalPairs >= Config.MaxPairs) {
1317          ShouldContinue = true;
1318          break;
1319        }
1320      }
1321
1322      if (ShouldContinue)
1323        break;
1324    }
1325
1326    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1327           << " instructions with candidate pairs\n");
1328
1329    return ShouldContinue;
1330  }
1331
1332  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1333  // it looks for pairs such that both members have an input which is an
1334  // output of PI or PJ.
1335  void BBVectorize::computePairsConnectedTo(
1336                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1337                  DenseSet<ValuePair> &CandidatePairsSet,
1338                  std::vector<Value *> &PairableInsts,
1339                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1340                  DenseMap<VPPair, unsigned> &PairConnectionTypes,
1341                  ValuePair P) {
1342    StoreInst *SI, *SJ;
1343
1344    // For each possible pairing for this variable, look at the uses of
1345    // the first value...
1346    for (Value::user_iterator I = P.first->user_begin(),
1347                              E = P.first->user_end();
1348         I != E; ++I) {
1349      User *UI = *I;
1350      if (isa<LoadInst>(UI)) {
1351        // A pair cannot be connected to a load because the load only takes one
1352        // operand (the address) and it is a scalar even after vectorization.
1353        continue;
1354      } else if ((SI = dyn_cast<StoreInst>(UI)) &&
1355                 P.first == SI->getPointerOperand()) {
1356        // Similarly, a pair cannot be connected to a store through its
1357        // pointer operand.
1358        continue;
1359      }
1360
1361      // For each use of the first variable, look for uses of the second
1362      // variable...
1363      for (User *UJ : P.second->users()) {
1364        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
1365            P.second == SJ->getPointerOperand())
1366          continue;
1367
1368        // Look for <I, J>:
1369        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
1370          VPPair VP(P, ValuePair(UI, UJ));
1371          ConnectedPairs[VP.first].push_back(VP.second);
1372          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
1373        }
1374
1375        // Look for <J, I>:
1376        if (CandidatePairsSet.count(ValuePair(UJ, UI))) {
1377          VPPair VP(P, ValuePair(UJ, UI));
1378          ConnectedPairs[VP.first].push_back(VP.second);
1379          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
1380        }
1381      }
1382
1383      if (Config.SplatBreaksChain) continue;
1384      // Look for cases where just the first value in the pair is used by
1385      // both members of another pair (splatting).
1386      for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) {
1387        User *UJ = *J;
1388        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
1389            P.first == SJ->getPointerOperand())
1390          continue;
1391
1392        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
1393          VPPair VP(P, ValuePair(UI, UJ));
1394          ConnectedPairs[VP.first].push_back(VP.second);
1395          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1396        }
1397      }
1398    }
1399
1400    if (Config.SplatBreaksChain) return;
1401    // Look for cases where just the second value in the pair is used by
1402    // both members of another pair (splatting).
1403    for (Value::user_iterator I = P.second->user_begin(),
1404                              E = P.second->user_end();
1405         I != E; ++I) {
1406      User *UI = *I;
1407      if (isa<LoadInst>(UI))
1408        continue;
1409      else if ((SI = dyn_cast<StoreInst>(UI)) &&
1410               P.second == SI->getPointerOperand())
1411        continue;
1412
1413      for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) {
1414        User *UJ = *J;
1415        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
1416            P.second == SJ->getPointerOperand())
1417          continue;
1418
1419        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
1420          VPPair VP(P, ValuePair(UI, UJ));
1421          ConnectedPairs[VP.first].push_back(VP.second);
1422          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1423        }
1424      }
1425    }
1426  }
1427
1428  // This function figures out which pairs are connected.  Two pairs are
1429  // connected if some output of the first pair forms an input to both members
1430  // of the second pair.
1431  void BBVectorize::computeConnectedPairs(
1432                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1433                  DenseSet<ValuePair> &CandidatePairsSet,
1434                  std::vector<Value *> &PairableInsts,
1435                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1436                  DenseMap<VPPair, unsigned> &PairConnectionTypes) {
1437    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1438         PE = PairableInsts.end(); PI != PE; ++PI) {
1439      DenseMap<Value *, std::vector<Value *> >::iterator PP =
1440        CandidatePairs.find(*PI);
1441      if (PP == CandidatePairs.end())
1442        continue;
1443
1444      for (std::vector<Value *>::iterator P = PP->second.begin(),
1445           E = PP->second.end(); P != E; ++P)
1446        computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
1447                                PairableInsts, ConnectedPairs,
1448                                PairConnectionTypes, ValuePair(*PI, *P));
1449    }
1450
1451    DEBUG(size_t TotalPairs = 0;
1452          for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
1453               ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
1454            TotalPairs += I->second.size();
1455          dbgs() << "BBV: found " << TotalPairs
1456                 << " pair connections.\n");
1457  }
1458
1459  // This function builds a set of use tuples such that <A, B> is in the set
1460  // if B is in the use dag of A. If B is in the use dag of A, then B
1461  // depends on the output of A.
1462  void BBVectorize::buildDepMap(
1463                      BasicBlock &BB,
1464                      DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1465                      std::vector<Value *> &PairableInsts,
1466                      DenseSet<ValuePair> &PairableInstUsers) {
1467    DenseSet<Value *> IsInPair;
1468    for (DenseMap<Value *, std::vector<Value *> >::iterator C =
1469         CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
1470      IsInPair.insert(C->first);
1471      IsInPair.insert(C->second.begin(), C->second.end());
1472    }
1473
1474    // Iterate through the basic block, recording all users of each
1475    // pairable instruction.
1476
1477    BasicBlock::iterator E = BB.end(), EL =
1478      BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
1479    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1480      if (IsInPair.find(I) == IsInPair.end()) continue;
1481
1482      DenseSet<Value *> Users;
1483      AliasSetTracker WriteSet(*AA);
1484      if (I->mayWriteToMemory()) WriteSet.add(I);
1485
1486      for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
1487        (void) trackUsesOfI(Users, WriteSet, I, J);
1488
1489        if (J == EL)
1490          break;
1491      }
1492
1493      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1494           U != E; ++U) {
1495        if (IsInPair.find(*U) == IsInPair.end()) continue;
1496        PairableInstUsers.insert(ValuePair(I, *U));
1497      }
1498
1499      if (I == EL)
1500        break;
1501    }
1502  }
1503
1504  // Returns true if an input to pair P is an output of pair Q and also an
1505  // input of pair Q is an output of pair P. If this is the case, then these
1506  // two pairs cannot be simultaneously fused.
1507  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1508             DenseSet<ValuePair> &PairableInstUsers,
1509             DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
1510             DenseSet<VPPair> *PairableInstUserPairSet) {
1511    // Two pairs are in conflict if they are mutual Users of eachother.
1512    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1513                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1514                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1515                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1516    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1517                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1518                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1519                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1520    if (PairableInstUserMap) {
1521      // FIXME: The expensive part of the cycle check is not so much the cycle
1522      // check itself but this edge insertion procedure. This needs some
1523      // profiling and probably a different data structure.
1524      if (PUsesQ) {
1525        if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
1526          (*PairableInstUserMap)[Q].push_back(P);
1527      }
1528      if (QUsesP) {
1529        if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
1530          (*PairableInstUserMap)[P].push_back(Q);
1531      }
1532    }
1533
1534    return (QUsesP && PUsesQ);
1535  }
1536
1537  // This function walks the use graph of current pairs to see if, starting
1538  // from P, the walk returns to P.
1539  bool BBVectorize::pairWillFormCycle(ValuePair P,
1540             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1541             DenseSet<ValuePair> &CurrentPairs) {
1542    DEBUG(if (DebugCycleCheck)
1543            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1544                   << *P.second << "\n");
1545    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1546    // contains non-direct associations.
1547    DenseSet<ValuePair> Visited;
1548    SmallVector<ValuePair, 32> Q;
1549    // General depth-first post-order traversal:
1550    Q.push_back(P);
1551    do {
1552      ValuePair QTop = Q.pop_back_val();
1553      Visited.insert(QTop);
1554
1555      DEBUG(if (DebugCycleCheck)
1556              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1557                     << *QTop.second << "\n");
1558      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1559        PairableInstUserMap.find(QTop);
1560      if (QQ == PairableInstUserMap.end())
1561        continue;
1562
1563      for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
1564           CE = QQ->second.end(); C != CE; ++C) {
1565        if (*C == P) {
1566          DEBUG(dbgs()
1567                 << "BBV: rejected to prevent non-trivial cycle formation: "
1568                 << QTop.first << " <-> " << C->second << "\n");
1569          return true;
1570        }
1571
1572        if (CurrentPairs.count(*C) && !Visited.count(*C))
1573          Q.push_back(*C);
1574      }
1575    } while (!Q.empty());
1576
1577    return false;
1578  }
1579
1580  // This function builds the initial dag of connected pairs with the
1581  // pair J at the root.
1582  void BBVectorize::buildInitialDAGFor(
1583                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1584                  DenseSet<ValuePair> &CandidatePairsSet,
1585                  std::vector<Value *> &PairableInsts,
1586                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1587                  DenseSet<ValuePair> &PairableInstUsers,
1588                  DenseMap<Value *, Value *> &ChosenPairs,
1589                  DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
1590    // Each of these pairs is viewed as the root node of a DAG. The DAG
1591    // is then walked (depth-first). As this happens, we keep track of
1592    // the pairs that compose the DAG and the maximum depth of the DAG.
1593    SmallVector<ValuePairWithDepth, 32> Q;
1594    // General depth-first post-order traversal:
1595    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1596    do {
1597      ValuePairWithDepth QTop = Q.back();
1598
1599      // Push each child onto the queue:
1600      bool MoreChildren = false;
1601      size_t MaxChildDepth = QTop.second;
1602      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1603        ConnectedPairs.find(QTop.first);
1604      if (QQ != ConnectedPairs.end())
1605        for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
1606             ke = QQ->second.end(); k != ke; ++k) {
1607          // Make sure that this child pair is still a candidate:
1608          if (CandidatePairsSet.count(*k)) {
1609            DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
1610            if (C == DAG.end()) {
1611              size_t d = getDepthFactor(k->first);
1612              Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
1613              MoreChildren = true;
1614            } else {
1615              MaxChildDepth = std::max(MaxChildDepth, C->second);
1616            }
1617          }
1618        }
1619
1620      if (!MoreChildren) {
1621        // Record the current pair as part of the DAG:
1622        DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1623        Q.pop_back();
1624      }
1625    } while (!Q.empty());
1626  }
1627
1628  // Given some initial dag, prune it by removing conflicting pairs (pairs
1629  // that cannot be simultaneously chosen for vectorization).
1630  void BBVectorize::pruneDAGFor(
1631              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1632              std::vector<Value *> &PairableInsts,
1633              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1634              DenseSet<ValuePair> &PairableInstUsers,
1635              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1636              DenseSet<VPPair> &PairableInstUserPairSet,
1637              DenseMap<Value *, Value *> &ChosenPairs,
1638              DenseMap<ValuePair, size_t> &DAG,
1639              DenseSet<ValuePair> &PrunedDAG, ValuePair J,
1640              bool UseCycleCheck) {
1641    SmallVector<ValuePairWithDepth, 32> Q;
1642    // General depth-first post-order traversal:
1643    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1644    do {
1645      ValuePairWithDepth QTop = Q.pop_back_val();
1646      PrunedDAG.insert(QTop.first);
1647
1648      // Visit each child, pruning as necessary...
1649      SmallVector<ValuePairWithDepth, 8> BestChildren;
1650      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1651        ConnectedPairs.find(QTop.first);
1652      if (QQ == ConnectedPairs.end())
1653        continue;
1654
1655      for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
1656           KE = QQ->second.end(); K != KE; ++K) {
1657        DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
1658        if (C == DAG.end()) continue;
1659
1660        // This child is in the DAG, now we need to make sure it is the
1661        // best of any conflicting children. There could be multiple
1662        // conflicting children, so first, determine if we're keeping
1663        // this child, then delete conflicting children as necessary.
1664
1665        // It is also necessary to guard against pairing-induced
1666        // dependencies. Consider instructions a .. x .. y .. b
1667        // such that (a,b) are to be fused and (x,y) are to be fused
1668        // but a is an input to x and b is an output from y. This
1669        // means that y cannot be moved after b but x must be moved
1670        // after b for (a,b) to be fused. In other words, after
1671        // fusing (a,b) we have y .. a/b .. x where y is an input
1672        // to a/b and x is an output to a/b: x and y can no longer
1673        // be legally fused. To prevent this condition, we must
1674        // make sure that a child pair added to the DAG is not
1675        // both an input and output of an already-selected pair.
1676
1677        // Pairing-induced dependencies can also form from more complicated
1678        // cycles. The pair vs. pair conflicts are easy to check, and so
1679        // that is done explicitly for "fast rejection", and because for
1680        // child vs. child conflicts, we may prefer to keep the current
1681        // pair in preference to the already-selected child.
1682        DenseSet<ValuePair> CurrentPairs;
1683
1684        bool CanAdd = true;
1685        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
1686              = BestChildren.begin(), E2 = BestChildren.end();
1687             C2 != E2; ++C2) {
1688          if (C2->first.first == C->first.first ||
1689              C2->first.first == C->first.second ||
1690              C2->first.second == C->first.first ||
1691              C2->first.second == C->first.second ||
1692              pairsConflict(C2->first, C->first, PairableInstUsers,
1693                            UseCycleCheck ? &PairableInstUserMap : nullptr,
1694                            UseCycleCheck ? &PairableInstUserPairSet
1695                                          : nullptr)) {
1696            if (C2->second >= C->second) {
1697              CanAdd = false;
1698              break;
1699            }
1700
1701            CurrentPairs.insert(C2->first);
1702          }
1703        }
1704        if (!CanAdd) continue;
1705
1706        // Even worse, this child could conflict with another node already
1707        // selected for the DAG. If that is the case, ignore this child.
1708        for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
1709             E2 = PrunedDAG.end(); T != E2; ++T) {
1710          if (T->first == C->first.first ||
1711              T->first == C->first.second ||
1712              T->second == C->first.first ||
1713              T->second == C->first.second ||
1714              pairsConflict(*T, C->first, PairableInstUsers,
1715                            UseCycleCheck ? &PairableInstUserMap : nullptr,
1716                            UseCycleCheck ? &PairableInstUserPairSet
1717                                          : nullptr)) {
1718            CanAdd = false;
1719            break;
1720          }
1721
1722          CurrentPairs.insert(*T);
1723        }
1724        if (!CanAdd) continue;
1725
1726        // And check the queue too...
1727        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
1728             E2 = Q.end(); C2 != E2; ++C2) {
1729          if (C2->first.first == C->first.first ||
1730              C2->first.first == C->first.second ||
1731              C2->first.second == C->first.first ||
1732              C2->first.second == C->first.second ||
1733              pairsConflict(C2->first, C->first, PairableInstUsers,
1734                            UseCycleCheck ? &PairableInstUserMap : nullptr,
1735                            UseCycleCheck ? &PairableInstUserPairSet
1736                                          : nullptr)) {
1737            CanAdd = false;
1738            break;
1739          }
1740
1741          CurrentPairs.insert(C2->first);
1742        }
1743        if (!CanAdd) continue;
1744
1745        // Last but not least, check for a conflict with any of the
1746        // already-chosen pairs.
1747        for (DenseMap<Value *, Value *>::iterator C2 =
1748              ChosenPairs.begin(), E2 = ChosenPairs.end();
1749             C2 != E2; ++C2) {
1750          if (pairsConflict(*C2, C->first, PairableInstUsers,
1751                            UseCycleCheck ? &PairableInstUserMap : nullptr,
1752                            UseCycleCheck ? &PairableInstUserPairSet
1753                                          : nullptr)) {
1754            CanAdd = false;
1755            break;
1756          }
1757
1758          CurrentPairs.insert(*C2);
1759        }
1760        if (!CanAdd) continue;
1761
1762        // To check for non-trivial cycles formed by the addition of the
1763        // current pair we've formed a list of all relevant pairs, now use a
1764        // graph walk to check for a cycle. We start from the current pair and
1765        // walk the use dag to see if we again reach the current pair. If we
1766        // do, then the current pair is rejected.
1767
1768        // FIXME: It may be more efficient to use a topological-ordering
1769        // algorithm to improve the cycle check. This should be investigated.
1770        if (UseCycleCheck &&
1771            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1772          continue;
1773
1774        // This child can be added, but we may have chosen it in preference
1775        // to an already-selected child. Check for this here, and if a
1776        // conflict is found, then remove the previously-selected child
1777        // before adding this one in its place.
1778        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
1779              = BestChildren.begin(); C2 != BestChildren.end();) {
1780          if (C2->first.first == C->first.first ||
1781              C2->first.first == C->first.second ||
1782              C2->first.second == C->first.first ||
1783              C2->first.second == C->first.second ||
1784              pairsConflict(C2->first, C->first, PairableInstUsers))
1785            C2 = BestChildren.erase(C2);
1786          else
1787            ++C2;
1788        }
1789
1790        BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
1791      }
1792
1793      for (SmallVectorImpl<ValuePairWithDepth>::iterator C
1794            = BestChildren.begin(), E2 = BestChildren.end();
1795           C != E2; ++C) {
1796        size_t DepthF = getDepthFactor(C->first.first);
1797        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1798      }
1799    } while (!Q.empty());
1800  }
1801
1802  // This function finds the best dag of mututally-compatible connected
1803  // pairs, given the choice of root pairs as an iterator range.
1804  void BBVectorize::findBestDAGFor(
1805              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1806              DenseSet<ValuePair> &CandidatePairsSet,
1807              DenseMap<ValuePair, int> &CandidatePairCostSavings,
1808              std::vector<Value *> &PairableInsts,
1809              DenseSet<ValuePair> &FixedOrderPairs,
1810              DenseMap<VPPair, unsigned> &PairConnectionTypes,
1811              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1812              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
1813              DenseSet<ValuePair> &PairableInstUsers,
1814              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1815              DenseSet<VPPair> &PairableInstUserPairSet,
1816              DenseMap<Value *, Value *> &ChosenPairs,
1817              DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
1818              int &BestEffSize, Value *II, std::vector<Value *>&JJ,
1819              bool UseCycleCheck) {
1820    for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
1821         J != JE; ++J) {
1822      ValuePair IJ(II, *J);
1823      if (!CandidatePairsSet.count(IJ))
1824        continue;
1825
1826      // Before going any further, make sure that this pair does not
1827      // conflict with any already-selected pairs (see comment below
1828      // near the DAG pruning for more details).
1829      DenseSet<ValuePair> ChosenPairSet;
1830      bool DoesConflict = false;
1831      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1832           E = ChosenPairs.end(); C != E; ++C) {
1833        if (pairsConflict(*C, IJ, PairableInstUsers,
1834                          UseCycleCheck ? &PairableInstUserMap : nullptr,
1835                          UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
1836          DoesConflict = true;
1837          break;
1838        }
1839
1840        ChosenPairSet.insert(*C);
1841      }
1842      if (DoesConflict) continue;
1843
1844      if (UseCycleCheck &&
1845          pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
1846        continue;
1847
1848      DenseMap<ValuePair, size_t> DAG;
1849      buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
1850                          PairableInsts, ConnectedPairs,
1851                          PairableInstUsers, ChosenPairs, DAG, IJ);
1852
1853      // Because we'll keep the child with the largest depth, the largest
1854      // depth is still the same in the unpruned DAG.
1855      size_t MaxDepth = DAG.lookup(IJ);
1856
1857      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
1858                   << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
1859                   MaxDepth << " and size " << DAG.size() << "\n");
1860
1861      // At this point the DAG has been constructed, but, may contain
1862      // contradictory children (meaning that different children of
1863      // some dag node may be attempting to fuse the same instruction).
1864      // So now we walk the dag again, in the case of a conflict,
1865      // keep only the child with the largest depth. To break a tie,
1866      // favor the first child.
1867
1868      DenseSet<ValuePair> PrunedDAG;
1869      pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
1870                   PairableInstUsers, PairableInstUserMap,
1871                   PairableInstUserPairSet,
1872                   ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
1873
1874      int EffSize = 0;
1875      if (TTI) {
1876        DenseSet<Value *> PrunedDAGInstrs;
1877        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
1878             E = PrunedDAG.end(); S != E; ++S) {
1879          PrunedDAGInstrs.insert(S->first);
1880          PrunedDAGInstrs.insert(S->second);
1881        }
1882
1883        // The set of pairs that have already contributed to the total cost.
1884        DenseSet<ValuePair> IncomingPairs;
1885
1886        // If the cost model were perfect, this might not be necessary; but we
1887        // need to make sure that we don't get stuck vectorizing our own
1888        // shuffle chains.
1889        bool HasNontrivialInsts = false;
1890
1891        // The node weights represent the cost savings associated with
1892        // fusing the pair of instructions.
1893        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
1894             E = PrunedDAG.end(); S != E; ++S) {
1895          if (!isa<ShuffleVectorInst>(S->first) &&
1896              !isa<InsertElementInst>(S->first) &&
1897              !isa<ExtractElementInst>(S->first))
1898            HasNontrivialInsts = true;
1899
1900          bool FlipOrder = false;
1901
1902          if (getDepthFactor(S->first)) {
1903            int ESContrib = CandidatePairCostSavings.find(*S)->second;
1904            DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
1905                   << *S->first << " <-> " << *S->second << "} = " <<
1906                   ESContrib << "\n");
1907            EffSize += ESContrib;
1908          }
1909
1910          // The edge weights contribute in a negative sense: they represent
1911          // the cost of shuffles.
1912          DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
1913            ConnectedPairDeps.find(*S);
1914          if (SS != ConnectedPairDeps.end()) {
1915            unsigned NumDepsDirect = 0, NumDepsSwap = 0;
1916            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
1917                 TE = SS->second.end(); T != TE; ++T) {
1918              VPPair Q(*S, *T);
1919              if (!PrunedDAG.count(Q.second))
1920                continue;
1921              DenseMap<VPPair, unsigned>::iterator R =
1922                PairConnectionTypes.find(VPPair(Q.second, Q.first));
1923              assert(R != PairConnectionTypes.end() &&
1924                     "Cannot find pair connection type");
1925              if (R->second == PairConnectionDirect)
1926                ++NumDepsDirect;
1927              else if (R->second == PairConnectionSwap)
1928                ++NumDepsSwap;
1929            }
1930
1931            // If there are more swaps than direct connections, then
1932            // the pair order will be flipped during fusion. So the real
1933            // number of swaps is the minimum number.
1934            FlipOrder = !FixedOrderPairs.count(*S) &&
1935              ((NumDepsSwap > NumDepsDirect) ||
1936                FixedOrderPairs.count(ValuePair(S->second, S->first)));
1937
1938            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
1939                 TE = SS->second.end(); T != TE; ++T) {
1940              VPPair Q(*S, *T);
1941              if (!PrunedDAG.count(Q.second))
1942                continue;
1943              DenseMap<VPPair, unsigned>::iterator R =
1944                PairConnectionTypes.find(VPPair(Q.second, Q.first));
1945              assert(R != PairConnectionTypes.end() &&
1946                     "Cannot find pair connection type");
1947              Type *Ty1 = Q.second.first->getType(),
1948                   *Ty2 = Q.second.second->getType();
1949              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1950              if ((R->second == PairConnectionDirect && FlipOrder) ||
1951                  (R->second == PairConnectionSwap && !FlipOrder)  ||
1952                  R->second == PairConnectionSplat) {
1953                int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1954                                                   VTy, VTy);
1955
1956                if (VTy->getVectorNumElements() == 2) {
1957                  if (R->second == PairConnectionSplat)
1958                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1959                      TargetTransformInfo::SK_Broadcast, VTy));
1960                  else
1961                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1962                      TargetTransformInfo::SK_Reverse, VTy));
1963                }
1964
1965                DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1966                  *Q.second.first << " <-> " << *Q.second.second <<
1967                    "} -> {" <<
1968                  *S->first << " <-> " << *S->second << "} = " <<
1969                   ESContrib << "\n");
1970                EffSize -= ESContrib;
1971              }
1972            }
1973          }
1974
1975          // Compute the cost of outgoing edges. We assume that edges outgoing
1976          // to shuffles, inserts or extracts can be merged, and so contribute
1977          // no additional cost.
1978          if (!S->first->getType()->isVoidTy()) {
1979            Type *Ty1 = S->first->getType(),
1980                 *Ty2 = S->second->getType();
1981            Type *VTy = getVecTypeForPair(Ty1, Ty2);
1982
1983            bool NeedsExtraction = false;
1984            for (User *U : S->first->users()) {
1985              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
1986                // Shuffle can be folded if it has no other input
1987                if (isa<UndefValue>(SI->getOperand(1)))
1988                  continue;
1989              }
1990              if (isa<ExtractElementInst>(U))
1991                continue;
1992              if (PrunedDAGInstrs.count(U))
1993                continue;
1994              NeedsExtraction = true;
1995              break;
1996            }
1997
1998            if (NeedsExtraction) {
1999              int ESContrib;
2000              if (Ty1->isVectorTy()) {
2001                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2002                                               Ty1, VTy);
2003                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
2004                  TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
2005              } else
2006                ESContrib = (int) TTI->getVectorInstrCost(
2007                                    Instruction::ExtractElement, VTy, 0);
2008
2009              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
2010                *S->first << "} = " << ESContrib << "\n");
2011              EffSize -= ESContrib;
2012            }
2013
2014            NeedsExtraction = false;
2015            for (User *U : S->second->users()) {
2016              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
2017                // Shuffle can be folded if it has no other input
2018                if (isa<UndefValue>(SI->getOperand(1)))
2019                  continue;
2020              }
2021              if (isa<ExtractElementInst>(U))
2022                continue;
2023              if (PrunedDAGInstrs.count(U))
2024                continue;
2025              NeedsExtraction = true;
2026              break;
2027            }
2028
2029            if (NeedsExtraction) {
2030              int ESContrib;
2031              if (Ty2->isVectorTy()) {
2032                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2033                                               Ty2, VTy);
2034                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
2035                  TargetTransformInfo::SK_ExtractSubvector, VTy,
2036                  Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
2037              } else
2038                ESContrib = (int) TTI->getVectorInstrCost(
2039                                    Instruction::ExtractElement, VTy, 1);
2040              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
2041                *S->second << "} = " << ESContrib << "\n");
2042              EffSize -= ESContrib;
2043            }
2044          }
2045
2046          // Compute the cost of incoming edges.
2047          if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
2048            Instruction *S1 = cast<Instruction>(S->first),
2049                        *S2 = cast<Instruction>(S->second);
2050            for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
2051              Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
2052
2053              // Combining constants into vector constants (or small vector
2054              // constants into larger ones are assumed free).
2055              if (isa<Constant>(O1) && isa<Constant>(O2))
2056                continue;
2057
2058              if (FlipOrder)
2059                std::swap(O1, O2);
2060
2061              ValuePair VP  = ValuePair(O1, O2);
2062              ValuePair VPR = ValuePair(O2, O1);
2063
2064              // Internal edges are not handled here.
2065              if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
2066                continue;
2067
2068              Type *Ty1 = O1->getType(),
2069                   *Ty2 = O2->getType();
2070              Type *VTy = getVecTypeForPair(Ty1, Ty2);
2071
2072              // Combining vector operations of the same type is also assumed
2073              // folded with other operations.
2074              if (Ty1 == Ty2) {
2075                // If both are insert elements, then both can be widened.
2076                InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
2077                                  *IEO2 = dyn_cast<InsertElementInst>(O2);
2078                if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
2079                  continue;
2080                // If both are extract elements, and both have the same input
2081                // type, then they can be replaced with a shuffle
2082                ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
2083                                   *EIO2 = dyn_cast<ExtractElementInst>(O2);
2084                if (EIO1 && EIO2 &&
2085                    EIO1->getOperand(0)->getType() ==
2086                      EIO2->getOperand(0)->getType())
2087                  continue;
2088                // If both are a shuffle with equal operand types and only two
2089                // unqiue operands, then they can be replaced with a single
2090                // shuffle
2091                ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
2092                                  *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
2093                if (SIO1 && SIO2 &&
2094                    SIO1->getOperand(0)->getType() ==
2095                      SIO2->getOperand(0)->getType()) {
2096                  SmallSet<Value *, 4> SIOps;
2097                  SIOps.insert(SIO1->getOperand(0));
2098                  SIOps.insert(SIO1->getOperand(1));
2099                  SIOps.insert(SIO2->getOperand(0));
2100                  SIOps.insert(SIO2->getOperand(1));
2101                  if (SIOps.size() <= 2)
2102                    continue;
2103                }
2104              }
2105
2106              int ESContrib;
2107              // This pair has already been formed.
2108              if (IncomingPairs.count(VP)) {
2109                continue;
2110              } else if (IncomingPairs.count(VPR)) {
2111                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2112                                               VTy, VTy);
2113
2114                if (VTy->getVectorNumElements() == 2)
2115                  ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
2116                    TargetTransformInfo::SK_Reverse, VTy));
2117              } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
2118                ESContrib = (int) TTI->getVectorInstrCost(
2119                                    Instruction::InsertElement, VTy, 0);
2120                ESContrib += (int) TTI->getVectorInstrCost(
2121                                     Instruction::InsertElement, VTy, 1);
2122              } else if (!Ty1->isVectorTy()) {
2123                // O1 needs to be inserted into a vector of size O2, and then
2124                // both need to be shuffled together.
2125                ESContrib = (int) TTI->getVectorInstrCost(
2126                                    Instruction::InsertElement, Ty2, 0);
2127                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2128                                                VTy, Ty2);
2129              } else if (!Ty2->isVectorTy()) {
2130                // O2 needs to be inserted into a vector of size O1, and then
2131                // both need to be shuffled together.
2132                ESContrib = (int) TTI->getVectorInstrCost(
2133                                    Instruction::InsertElement, Ty1, 0);
2134                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2135                                                VTy, Ty1);
2136              } else {
2137                Type *TyBig = Ty1, *TySmall = Ty2;
2138                if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
2139                  std::swap(TyBig, TySmall);
2140
2141                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2142                                               VTy, TyBig);
2143                if (TyBig != TySmall)
2144                  ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2145                                                  TyBig, TySmall);
2146              }
2147
2148              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
2149                     << *O1 << " <-> " << *O2 << "} = " <<
2150                     ESContrib << "\n");
2151              EffSize -= ESContrib;
2152              IncomingPairs.insert(VP);
2153            }
2154          }
2155        }
2156
2157        if (!HasNontrivialInsts) {
2158          DEBUG(if (DebugPairSelection) dbgs() <<
2159                "\tNo non-trivial instructions in DAG;"
2160                " override to zero effective size\n");
2161          EffSize = 0;
2162        }
2163      } else {
2164        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
2165             E = PrunedDAG.end(); S != E; ++S)
2166          EffSize += (int) getDepthFactor(S->first);
2167      }
2168
2169      DEBUG(if (DebugPairSelection)
2170             dbgs() << "BBV: found pruned DAG for pair {"
2171             << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
2172             MaxDepth << " and size " << PrunedDAG.size() <<
2173            " (effective size: " << EffSize << ")\n");
2174      if (((TTI && !UseChainDepthWithTI) ||
2175            MaxDepth >= Config.ReqChainDepth) &&
2176          EffSize > 0 && EffSize > BestEffSize) {
2177        BestMaxDepth = MaxDepth;
2178        BestEffSize = EffSize;
2179        BestDAG = PrunedDAG;
2180      }
2181    }
2182  }
2183
2184  // Given the list of candidate pairs, this function selects those
2185  // that will be fused into vector instructions.
2186  void BBVectorize::choosePairs(
2187                DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
2188                DenseSet<ValuePair> &CandidatePairsSet,
2189                DenseMap<ValuePair, int> &CandidatePairCostSavings,
2190                std::vector<Value *> &PairableInsts,
2191                DenseSet<ValuePair> &FixedOrderPairs,
2192                DenseMap<VPPair, unsigned> &PairConnectionTypes,
2193                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
2194                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
2195                DenseSet<ValuePair> &PairableInstUsers,
2196                DenseMap<Value *, Value *>& ChosenPairs) {
2197    bool UseCycleCheck =
2198     CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
2199
2200    DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
2201    for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
2202         E = CandidatePairsSet.end(); I != E; ++I) {
2203      std::vector<Value *> &JJ = CandidatePairs2[I->second];
2204      if (JJ.empty()) JJ.reserve(32);
2205      JJ.push_back(I->first);
2206    }
2207
2208    DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
2209    DenseSet<VPPair> PairableInstUserPairSet;
2210    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
2211         E = PairableInsts.end(); I != E; ++I) {
2212      // The number of possible pairings for this variable:
2213      size_t NumChoices = CandidatePairs.lookup(*I).size();
2214      if (!NumChoices) continue;
2215
2216      std::vector<Value *> &JJ = CandidatePairs[*I];
2217
2218      // The best pair to choose and its dag:
2219      size_t BestMaxDepth = 0;
2220      int BestEffSize = 0;
2221      DenseSet<ValuePair> BestDAG;
2222      findBestDAGFor(CandidatePairs, CandidatePairsSet,
2223                      CandidatePairCostSavings,
2224                      PairableInsts, FixedOrderPairs, PairConnectionTypes,
2225                      ConnectedPairs, ConnectedPairDeps,
2226                      PairableInstUsers, PairableInstUserMap,
2227                      PairableInstUserPairSet, ChosenPairs,
2228                      BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
2229                      UseCycleCheck);
2230
2231      if (BestDAG.empty())
2232        continue;
2233
2234      // A dag has been chosen (or not) at this point. If no dag was
2235      // chosen, then this instruction, I, cannot be paired (and is no longer
2236      // considered).
2237
2238      DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
2239                   << *cast<Instruction>(*I) << "\n");
2240
2241      for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
2242           SE2 = BestDAG.end(); S != SE2; ++S) {
2243        // Insert the members of this dag into the list of chosen pairs.
2244        ChosenPairs.insert(ValuePair(S->first, S->second));
2245        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
2246               *S->second << "\n");
2247
2248        // Remove all candidate pairs that have values in the chosen dag.
2249        std::vector<Value *> &KK = CandidatePairs[S->first];
2250        for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
2251             K != KE; ++K) {
2252          if (*K == S->second)
2253            continue;
2254
2255          CandidatePairsSet.erase(ValuePair(S->first, *K));
2256        }
2257
2258        std::vector<Value *> &LL = CandidatePairs2[S->second];
2259        for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
2260             L != LE; ++L) {
2261          if (*L == S->first)
2262            continue;
2263
2264          CandidatePairsSet.erase(ValuePair(*L, S->second));
2265        }
2266
2267        std::vector<Value *> &MM = CandidatePairs[S->second];
2268        for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
2269             M != ME; ++M) {
2270          assert(*M != S->first && "Flipped pair in candidate list?");
2271          CandidatePairsSet.erase(ValuePair(S->second, *M));
2272        }
2273
2274        std::vector<Value *> &NN = CandidatePairs2[S->first];
2275        for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
2276             N != NE; ++N) {
2277          assert(*N != S->second && "Flipped pair in candidate list?");
2278          CandidatePairsSet.erase(ValuePair(*N, S->first));
2279        }
2280      }
2281    }
2282
2283    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
2284  }
2285
2286  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
2287                     unsigned n = 0) {
2288    if (!I->hasName())
2289      return "";
2290
2291    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
2292             (n > 0 ? "." + utostr(n) : "")).str();
2293  }
2294
2295  // Returns the value that is to be used as the pointer input to the vector
2296  // instruction that fuses I with J.
2297  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
2298                     Instruction *I, Instruction *J, unsigned o) {
2299    Value *IPtr, *JPtr;
2300    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2301    int64_t OffsetInElmts;
2302
2303    // Note: the analysis might fail here, that is why the pair order has
2304    // been precomputed (OffsetInElmts must be unused here).
2305    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2306                          IAddressSpace, JAddressSpace,
2307                          OffsetInElmts, false);
2308
2309    // The pointer value is taken to be the one with the lowest offset.
2310    Value *VPtr = IPtr;
2311
2312    Type *ArgTypeI = IPtr->getType()->getPointerElementType();
2313    Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
2314    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2315    Type *VArgPtrType
2316      = PointerType::get(VArgType,
2317                         IPtr->getType()->getPointerAddressSpace());
2318    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
2319                        /* insert before */ I);
2320  }
2321
2322  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
2323                     unsigned MaskOffset, unsigned NumInElem,
2324                     unsigned NumInElem1, unsigned IdxOffset,
2325                     std::vector<Constant*> &Mask) {
2326    unsigned NumElem1 = J->getType()->getVectorNumElements();
2327    for (unsigned v = 0; v < NumElem1; ++v) {
2328      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
2329      if (m < 0) {
2330        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
2331      } else {
2332        unsigned mm = m + (int) IdxOffset;
2333        if (m >= (int) NumInElem1)
2334          mm += (int) NumInElem;
2335
2336        Mask[v+MaskOffset] =
2337          ConstantInt::get(Type::getInt32Ty(Context), mm);
2338      }
2339    }
2340  }
2341
2342  // Returns the value that is to be used as the vector-shuffle mask to the
2343  // vector instruction that fuses I with J.
2344  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
2345                     Instruction *I, Instruction *J) {
2346    // This is the shuffle mask. We need to append the second
2347    // mask to the first, and the numbers need to be adjusted.
2348
2349    Type *ArgTypeI = I->getType();
2350    Type *ArgTypeJ = J->getType();
2351    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2352
2353    unsigned NumElemI = ArgTypeI->getVectorNumElements();
2354
2355    // Get the total number of elements in the fused vector type.
2356    // By definition, this must equal the number of elements in
2357    // the final mask.
2358    unsigned NumElem = VArgType->getVectorNumElements();
2359    std::vector<Constant*> Mask(NumElem);
2360
2361    Type *OpTypeI = I->getOperand(0)->getType();
2362    unsigned NumInElemI = OpTypeI->getVectorNumElements();
2363    Type *OpTypeJ = J->getOperand(0)->getType();
2364    unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
2365
2366    // The fused vector will be:
2367    // -----------------------------------------------------
2368    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
2369    // -----------------------------------------------------
2370    // from which we'll extract NumElem total elements (where the first NumElemI
2371    // of them come from the mask in I and the remainder come from the mask
2372    // in J.
2373
2374    // For the mask from the first pair...
2375    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
2376                       0,          Mask);
2377
2378    // For the mask from the second pair...
2379    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
2380                       NumInElemI, Mask);
2381
2382    return ConstantVector::get(Mask);
2383  }
2384
2385  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
2386                                  Instruction *J, unsigned o, Value *&LOp,
2387                                  unsigned numElemL,
2388                                  Type *ArgTypeL, Type *ArgTypeH,
2389                                  bool IBeforeJ, unsigned IdxOff) {
2390    bool ExpandedIEChain = false;
2391    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
2392      // If we have a pure insertelement chain, then this can be rewritten
2393      // into a chain that directly builds the larger type.
2394      if (isPureIEChain(LIE)) {
2395        SmallVector<Value *, 8> VectElemts(numElemL,
2396          UndefValue::get(ArgTypeL->getScalarType()));
2397        InsertElementInst *LIENext = LIE;
2398        do {
2399          unsigned Idx =
2400            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
2401          VectElemts[Idx] = LIENext->getOperand(1);
2402        } while ((LIENext =
2403                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
2404
2405        LIENext = nullptr;
2406        Value *LIEPrev = UndefValue::get(ArgTypeH);
2407        for (unsigned i = 0; i < numElemL; ++i) {
2408          if (isa<UndefValue>(VectElemts[i])) continue;
2409          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
2410                             ConstantInt::get(Type::getInt32Ty(Context),
2411                                              i + IdxOff),
2412                             getReplacementName(IBeforeJ ? I : J,
2413                                                true, o, i+1));
2414          LIENext->insertBefore(IBeforeJ ? J : I);
2415          LIEPrev = LIENext;
2416        }
2417
2418        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
2419        ExpandedIEChain = true;
2420      }
2421    }
2422
2423    return ExpandedIEChain;
2424  }
2425
2426  static unsigned getNumScalarElements(Type *Ty) {
2427    if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
2428      return VecTy->getNumElements();
2429    return 1;
2430  }
2431
2432  // Returns the value to be used as the specified operand of the vector
2433  // instruction that fuses I with J.
2434  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
2435                     Instruction *J, unsigned o, bool IBeforeJ) {
2436    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2437    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
2438
2439    // Compute the fused vector type for this operand
2440    Type *ArgTypeI = I->getOperand(o)->getType();
2441    Type *ArgTypeJ = J->getOperand(o)->getType();
2442    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2443
2444    Instruction *L = I, *H = J;
2445    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
2446
2447    unsigned numElemL = getNumScalarElements(ArgTypeL);
2448    unsigned numElemH = getNumScalarElements(ArgTypeH);
2449
2450    Value *LOp = L->getOperand(o);
2451    Value *HOp = H->getOperand(o);
2452    unsigned numElem = VArgType->getNumElements();
2453
2454    // First, we check if we can reuse the "original" vector outputs (if these
2455    // exist). We might need a shuffle.
2456    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
2457    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
2458    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
2459    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
2460
2461    // FIXME: If we're fusing shuffle instructions, then we can't apply this
2462    // optimization. The input vectors to the shuffle might be a different
2463    // length from the shuffle outputs. Unfortunately, the replacement
2464    // shuffle mask has already been formed, and the mask entries are sensitive
2465    // to the sizes of the inputs.
2466    bool IsSizeChangeShuffle =
2467      isa<ShuffleVectorInst>(L) &&
2468        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
2469
2470    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
2471      // We can have at most two unique vector inputs.
2472      bool CanUseInputs = true;
2473      Value *I1, *I2 = nullptr;
2474      if (LEE) {
2475        I1 = LEE->getOperand(0);
2476      } else {
2477        I1 = LSV->getOperand(0);
2478        I2 = LSV->getOperand(1);
2479        if (I2 == I1 || isa<UndefValue>(I2))
2480          I2 = nullptr;
2481      }
2482
2483      if (HEE) {
2484        Value *I3 = HEE->getOperand(0);
2485        if (!I2 && I3 != I1)
2486          I2 = I3;
2487        else if (I3 != I1 && I3 != I2)
2488          CanUseInputs = false;
2489      } else {
2490        Value *I3 = HSV->getOperand(0);
2491        if (!I2 && I3 != I1)
2492          I2 = I3;
2493        else if (I3 != I1 && I3 != I2)
2494          CanUseInputs = false;
2495
2496        if (CanUseInputs) {
2497          Value *I4 = HSV->getOperand(1);
2498          if (!isa<UndefValue>(I4)) {
2499            if (!I2 && I4 != I1)
2500              I2 = I4;
2501            else if (I4 != I1 && I4 != I2)
2502              CanUseInputs = false;
2503          }
2504        }
2505      }
2506
2507      if (CanUseInputs) {
2508        unsigned LOpElem =
2509          cast<Instruction>(LOp)->getOperand(0)->getType()
2510            ->getVectorNumElements();
2511
2512        unsigned HOpElem =
2513          cast<Instruction>(HOp)->getOperand(0)->getType()
2514            ->getVectorNumElements();
2515
2516        // We have one or two input vectors. We need to map each index of the
2517        // operands to the index of the original vector.
2518        SmallVector<std::pair<int, int>, 8>  II(numElem);
2519        for (unsigned i = 0; i < numElemL; ++i) {
2520          int Idx, INum;
2521          if (LEE) {
2522            Idx =
2523              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
2524            INum = LEE->getOperand(0) == I1 ? 0 : 1;
2525          } else {
2526            Idx = LSV->getMaskValue(i);
2527            if (Idx < (int) LOpElem) {
2528              INum = LSV->getOperand(0) == I1 ? 0 : 1;
2529            } else {
2530              Idx -= LOpElem;
2531              INum = LSV->getOperand(1) == I1 ? 0 : 1;
2532            }
2533          }
2534
2535          II[i] = std::pair<int, int>(Idx, INum);
2536        }
2537        for (unsigned i = 0; i < numElemH; ++i) {
2538          int Idx, INum;
2539          if (HEE) {
2540            Idx =
2541              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
2542            INum = HEE->getOperand(0) == I1 ? 0 : 1;
2543          } else {
2544            Idx = HSV->getMaskValue(i);
2545            if (Idx < (int) HOpElem) {
2546              INum = HSV->getOperand(0) == I1 ? 0 : 1;
2547            } else {
2548              Idx -= HOpElem;
2549              INum = HSV->getOperand(1) == I1 ? 0 : 1;
2550            }
2551          }
2552
2553          II[i + numElemL] = std::pair<int, int>(Idx, INum);
2554        }
2555
2556        // We now have an array which tells us from which index of which
2557        // input vector each element of the operand comes.
2558        VectorType *I1T = cast<VectorType>(I1->getType());
2559        unsigned I1Elem = I1T->getNumElements();
2560
2561        if (!I2) {
2562          // In this case there is only one underlying vector input. Check for
2563          // the trivial case where we can use the input directly.
2564          if (I1Elem == numElem) {
2565            bool ElemInOrder = true;
2566            for (unsigned i = 0; i < numElem; ++i) {
2567              if (II[i].first != (int) i && II[i].first != -1) {
2568                ElemInOrder = false;
2569                break;
2570              }
2571            }
2572
2573            if (ElemInOrder)
2574              return I1;
2575          }
2576
2577          // A shuffle is needed.
2578          std::vector<Constant *> Mask(numElem);
2579          for (unsigned i = 0; i < numElem; ++i) {
2580            int Idx = II[i].first;
2581            if (Idx == -1)
2582              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
2583            else
2584              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2585          }
2586
2587          Instruction *S =
2588            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2589                                  ConstantVector::get(Mask),
2590                                  getReplacementName(IBeforeJ ? I : J,
2591                                                     true, o));
2592          S->insertBefore(IBeforeJ ? J : I);
2593          return S;
2594        }
2595
2596        VectorType *I2T = cast<VectorType>(I2->getType());
2597        unsigned I2Elem = I2T->getNumElements();
2598
2599        // This input comes from two distinct vectors. The first step is to
2600        // make sure that both vectors are the same length. If not, the
2601        // smaller one will need to grow before they can be shuffled together.
2602        if (I1Elem < I2Elem) {
2603          std::vector<Constant *> Mask(I2Elem);
2604          unsigned v = 0;
2605          for (; v < I1Elem; ++v)
2606            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2607          for (; v < I2Elem; ++v)
2608            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2609
2610          Instruction *NewI1 =
2611            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2612                                  ConstantVector::get(Mask),
2613                                  getReplacementName(IBeforeJ ? I : J,
2614                                                     true, o, 1));
2615          NewI1->insertBefore(IBeforeJ ? J : I);
2616          I1 = NewI1;
2617          I1Elem = I2Elem;
2618        } else if (I1Elem > I2Elem) {
2619          std::vector<Constant *> Mask(I1Elem);
2620          unsigned v = 0;
2621          for (; v < I2Elem; ++v)
2622            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2623          for (; v < I1Elem; ++v)
2624            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2625
2626          Instruction *NewI2 =
2627            new ShuffleVectorInst(I2, UndefValue::get(I2T),
2628                                  ConstantVector::get(Mask),
2629                                  getReplacementName(IBeforeJ ? I : J,
2630                                                     true, o, 1));
2631          NewI2->insertBefore(IBeforeJ ? J : I);
2632          I2 = NewI2;
2633        }
2634
2635        // Now that both I1 and I2 are the same length we can shuffle them
2636        // together (and use the result).
2637        std::vector<Constant *> Mask(numElem);
2638        for (unsigned v = 0; v < numElem; ++v) {
2639          if (II[v].first == -1) {
2640            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2641          } else {
2642            int Idx = II[v].first + II[v].second * I1Elem;
2643            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2644          }
2645        }
2646
2647        Instruction *NewOp =
2648          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
2649                                getReplacementName(IBeforeJ ? I : J, true, o));
2650        NewOp->insertBefore(IBeforeJ ? J : I);
2651        return NewOp;
2652      }
2653    }
2654
2655    Type *ArgType = ArgTypeL;
2656    if (numElemL < numElemH) {
2657      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
2658                                         ArgTypeL, VArgType, IBeforeJ, 1)) {
2659        // This is another short-circuit case: we're combining a scalar into
2660        // a vector that is formed by an IE chain. We've just expanded the IE
2661        // chain, now insert the scalar and we're done.
2662
2663        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
2664                           getReplacementName(IBeforeJ ? I : J, true, o));
2665        S->insertBefore(IBeforeJ ? J : I);
2666        return S;
2667      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
2668                                ArgTypeH, IBeforeJ)) {
2669        // The two vector inputs to the shuffle must be the same length,
2670        // so extend the smaller vector to be the same length as the larger one.
2671        Instruction *NLOp;
2672        if (numElemL > 1) {
2673
2674          std::vector<Constant *> Mask(numElemH);
2675          unsigned v = 0;
2676          for (; v < numElemL; ++v)
2677            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2678          for (; v < numElemH; ++v)
2679            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2680
2681          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
2682                                       ConstantVector::get(Mask),
2683                                       getReplacementName(IBeforeJ ? I : J,
2684                                                          true, o, 1));
2685        } else {
2686          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
2687                                           getReplacementName(IBeforeJ ? I : J,
2688                                                              true, o, 1));
2689        }
2690
2691        NLOp->insertBefore(IBeforeJ ? J : I);
2692        LOp = NLOp;
2693      }
2694
2695      ArgType = ArgTypeH;
2696    } else if (numElemL > numElemH) {
2697      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
2698                                         ArgTypeH, VArgType, IBeforeJ)) {
2699        Instruction *S =
2700          InsertElementInst::Create(LOp, HOp,
2701                                    ConstantInt::get(Type::getInt32Ty(Context),
2702                                                     numElemL),
2703                                    getReplacementName(IBeforeJ ? I : J,
2704                                                       true, o));
2705        S->insertBefore(IBeforeJ ? J : I);
2706        return S;
2707      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
2708                                ArgTypeL, IBeforeJ)) {
2709        Instruction *NHOp;
2710        if (numElemH > 1) {
2711          std::vector<Constant *> Mask(numElemL);
2712          unsigned v = 0;
2713          for (; v < numElemH; ++v)
2714            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2715          for (; v < numElemL; ++v)
2716            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2717
2718          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
2719                                       ConstantVector::get(Mask),
2720                                       getReplacementName(IBeforeJ ? I : J,
2721                                                          true, o, 1));
2722        } else {
2723          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
2724                                           getReplacementName(IBeforeJ ? I : J,
2725                                                              true, o, 1));
2726        }
2727
2728        NHOp->insertBefore(IBeforeJ ? J : I);
2729        HOp = NHOp;
2730      }
2731    }
2732
2733    if (ArgType->isVectorTy()) {
2734      unsigned numElem = VArgType->getVectorNumElements();
2735      std::vector<Constant*> Mask(numElem);
2736      for (unsigned v = 0; v < numElem; ++v) {
2737        unsigned Idx = v;
2738        // If the low vector was expanded, we need to skip the extra
2739        // undefined entries.
2740        if (v >= numElemL && numElemH > numElemL)
2741          Idx += (numElemH - numElemL);
2742        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2743      }
2744
2745      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
2746                          ConstantVector::get(Mask),
2747                          getReplacementName(IBeforeJ ? I : J, true, o));
2748      BV->insertBefore(IBeforeJ ? J : I);
2749      return BV;
2750    }
2751
2752    Instruction *BV1 = InsertElementInst::Create(
2753                                          UndefValue::get(VArgType), LOp, CV0,
2754                                          getReplacementName(IBeforeJ ? I : J,
2755                                                             true, o, 1));
2756    BV1->insertBefore(IBeforeJ ? J : I);
2757    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2758                                          getReplacementName(IBeforeJ ? I : J,
2759                                                             true, o, 2));
2760    BV2->insertBefore(IBeforeJ ? J : I);
2761    return BV2;
2762  }
2763
2764  // This function creates an array of values that will be used as the inputs
2765  // to the vector instruction that fuses I with J.
2766  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2767                     Instruction *I, Instruction *J,
2768                     SmallVectorImpl<Value *> &ReplacedOperands,
2769                     bool IBeforeJ) {
2770    unsigned NumOperands = I->getNumOperands();
2771
2772    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2773      // Iterate backward so that we look at the store pointer
2774      // first and know whether or not we need to flip the inputs.
2775
2776      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2777        // This is the pointer for a load/store instruction.
2778        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
2779        continue;
2780      } else if (isa<CallInst>(I)) {
2781        Function *F = cast<CallInst>(I)->getCalledFunction();
2782        Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
2783        if (o == NumOperands-1) {
2784          BasicBlock &BB = *I->getParent();
2785
2786          Module *M = BB.getParent()->getParent();
2787          Type *ArgTypeI = I->getType();
2788          Type *ArgTypeJ = J->getType();
2789          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2790
2791          ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
2792          continue;
2793        } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
2794                    IID == Intrinsic::cttz) && o == 1) {
2795          // The second argument of powi/ctlz/cttz is a single integer/constant
2796          // and we've already checked that both arguments are equal.
2797          // As a result, we just keep I's second argument.
2798          ReplacedOperands[o] = I->getOperand(o);
2799          continue;
2800        }
2801      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2802        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2803        continue;
2804      }
2805
2806      ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
2807    }
2808  }
2809
2810  // This function creates two values that represent the outputs of the
2811  // original I and J instructions. These are generally vector shuffles
2812  // or extracts. In many cases, these will end up being unused and, thus,
2813  // eliminated by later passes.
2814  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2815                     Instruction *J, Instruction *K,
2816                     Instruction *&InsertionPt,
2817                     Instruction *&K1, Instruction *&K2) {
2818    if (isa<StoreInst>(I)) {
2819      AA->replaceWithNewValue(I, K);
2820      AA->replaceWithNewValue(J, K);
2821    } else {
2822      Type *IType = I->getType();
2823      Type *JType = J->getType();
2824
2825      VectorType *VType = getVecTypeForPair(IType, JType);
2826      unsigned numElem = VType->getNumElements();
2827
2828      unsigned numElemI = getNumScalarElements(IType);
2829      unsigned numElemJ = getNumScalarElements(JType);
2830
2831      if (IType->isVectorTy()) {
2832        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
2833        for (unsigned v = 0; v < numElemI; ++v) {
2834          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2835          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
2836        }
2837
2838        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
2839                                   ConstantVector::get( Mask1),
2840                                   getReplacementName(K, false, 1));
2841      } else {
2842        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2843        K1 = ExtractElementInst::Create(K, CV0,
2844                                          getReplacementName(K, false, 1));
2845      }
2846
2847      if (JType->isVectorTy()) {
2848        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
2849        for (unsigned v = 0; v < numElemJ; ++v) {
2850          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2851          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
2852        }
2853
2854        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
2855                                   ConstantVector::get( Mask2),
2856                                   getReplacementName(K, false, 2));
2857      } else {
2858        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2859        K2 = ExtractElementInst::Create(K, CV1,
2860                                          getReplacementName(K, false, 2));
2861      }
2862
2863      K1->insertAfter(K);
2864      K2->insertAfter(K1);
2865      InsertionPt = K2;
2866    }
2867  }
2868
2869  // Move all uses of the function I (including pairing-induced uses) after J.
2870  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2871                     DenseSet<ValuePair> &LoadMoveSetPairs,
2872                     Instruction *I, Instruction *J) {
2873    // Skip to the first instruction past I.
2874    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
2875
2876    DenseSet<Value *> Users;
2877    AliasSetTracker WriteSet(*AA);
2878    if (I->mayWriteToMemory()) WriteSet.add(I);
2879
2880    for (; cast<Instruction>(L) != J; ++L)
2881      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
2882
2883    assert(cast<Instruction>(L) == J &&
2884      "Tracking has not proceeded far enough to check for dependencies");
2885    // If J is now in the use set of I, then trackUsesOfI will return true
2886    // and we have a dependency cycle (and the fusing operation must abort).
2887    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
2888  }
2889
2890  // Move all uses of the function I (including pairing-induced uses) after J.
2891  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2892                     DenseSet<ValuePair> &LoadMoveSetPairs,
2893                     Instruction *&InsertionPt,
2894                     Instruction *I, Instruction *J) {
2895    // Skip to the first instruction past I.
2896    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
2897
2898    DenseSet<Value *> Users;
2899    AliasSetTracker WriteSet(*AA);
2900    if (I->mayWriteToMemory()) WriteSet.add(I);
2901
2902    for (; cast<Instruction>(L) != J;) {
2903      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
2904        // Move this instruction
2905        Instruction *InstToMove = L; ++L;
2906
2907        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2908                        " to after " << *InsertionPt << "\n");
2909        InstToMove->removeFromParent();
2910        InstToMove->insertAfter(InsertionPt);
2911        InsertionPt = InstToMove;
2912      } else {
2913        ++L;
2914      }
2915    }
2916  }
2917
2918  // Collect all load instruction that are in the move set of a given first
2919  // pair member.  These loads depend on the first instruction, I, and so need
2920  // to be moved after J (the second instruction) when the pair is fused.
2921  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2922                     DenseMap<Value *, Value *> &ChosenPairs,
2923                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
2924                     DenseSet<ValuePair> &LoadMoveSetPairs,
2925                     Instruction *I) {
2926    // Skip to the first instruction past I.
2927    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
2928
2929    DenseSet<Value *> Users;
2930    AliasSetTracker WriteSet(*AA);
2931    if (I->mayWriteToMemory()) WriteSet.add(I);
2932
2933    // Note: We cannot end the loop when we reach J because J could be moved
2934    // farther down the use chain by another instruction pairing. Also, J
2935    // could be before I if this is an inverted input.
2936    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2937      if (trackUsesOfI(Users, WriteSet, I, L)) {
2938        if (L->mayReadFromMemory()) {
2939          LoadMoveSet[L].push_back(I);
2940          LoadMoveSetPairs.insert(ValuePair(L, I));
2941        }
2942      }
2943    }
2944  }
2945
2946  // In cases where both load/stores and the computation of their pointers
2947  // are chosen for vectorization, we can end up in a situation where the
2948  // aliasing analysis starts returning different query results as the
2949  // process of fusing instruction pairs continues. Because the algorithm
2950  // relies on finding the same use dags here as were found earlier, we'll
2951  // need to precompute the necessary aliasing information here and then
2952  // manually update it during the fusion process.
2953  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2954                     std::vector<Value *> &PairableInsts,
2955                     DenseMap<Value *, Value *> &ChosenPairs,
2956                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
2957                     DenseSet<ValuePair> &LoadMoveSetPairs) {
2958    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2959         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2960      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2961      if (P == ChosenPairs.end()) continue;
2962
2963      Instruction *I = cast<Instruction>(P->first);
2964      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
2965                             LoadMoveSetPairs, I);
2966    }
2967  }
2968
2969  // This function fuses the chosen instruction pairs into vector instructions,
2970  // taking care preserve any needed scalar outputs and, then, it reorders the
2971  // remaining instructions as needed (users of the first member of the pair
2972  // need to be moved to after the location of the second member of the pair
2973  // because the vector instruction is inserted in the location of the pair's
2974  // second member).
2975  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2976             std::vector<Value *> &PairableInsts,
2977             DenseMap<Value *, Value *> &ChosenPairs,
2978             DenseSet<ValuePair> &FixedOrderPairs,
2979             DenseMap<VPPair, unsigned> &PairConnectionTypes,
2980             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
2981             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
2982    LLVMContext& Context = BB.getContext();
2983
2984    // During the vectorization process, the order of the pairs to be fused
2985    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2986    // list. After a pair is fused, the flipped pair is removed from the list.
2987    DenseSet<ValuePair> FlippedPairs;
2988    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2989         E = ChosenPairs.end(); P != E; ++P)
2990      FlippedPairs.insert(ValuePair(P->second, P->first));
2991    for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
2992         E = FlippedPairs.end(); P != E; ++P)
2993      ChosenPairs.insert(*P);
2994
2995    DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
2996    DenseSet<ValuePair> LoadMoveSetPairs;
2997    collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
2998                       LoadMoveSet, LoadMoveSetPairs);
2999
3000    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
3001
3002    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
3003      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
3004      if (P == ChosenPairs.end()) {
3005        ++PI;
3006        continue;
3007      }
3008
3009      if (getDepthFactor(P->first) == 0) {
3010        // These instructions are not really fused, but are tracked as though
3011        // they are. Any case in which it would be interesting to fuse them
3012        // will be taken care of by InstCombine.
3013        --NumFusedOps;
3014        ++PI;
3015        continue;
3016      }
3017
3018      Instruction *I = cast<Instruction>(P->first),
3019        *J = cast<Instruction>(P->second);
3020
3021      DEBUG(dbgs() << "BBV: fusing: " << *I <<
3022             " <-> " << *J << "\n");
3023
3024      // Remove the pair and flipped pair from the list.
3025      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
3026      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
3027      ChosenPairs.erase(FP);
3028      ChosenPairs.erase(P);
3029
3030      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
3031        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
3032               " <-> " << *J <<
3033               " aborted because of non-trivial dependency cycle\n");
3034        --NumFusedOps;
3035        ++PI;
3036        continue;
3037      }
3038
3039      // If the pair must have the other order, then flip it.
3040      bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
3041      if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
3042        // This pair does not have a fixed order, and so we might want to
3043        // flip it if that will yield fewer shuffles. We count the number
3044        // of dependencies connected via swaps, and those directly connected,
3045        // and flip the order if the number of swaps is greater.
3046        bool OrigOrder = true;
3047        DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
3048          ConnectedPairDeps.find(ValuePair(I, J));
3049        if (IJ == ConnectedPairDeps.end()) {
3050          IJ = ConnectedPairDeps.find(ValuePair(J, I));
3051          OrigOrder = false;
3052        }
3053
3054        if (IJ != ConnectedPairDeps.end()) {
3055          unsigned NumDepsDirect = 0, NumDepsSwap = 0;
3056          for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
3057               TE = IJ->second.end(); T != TE; ++T) {
3058            VPPair Q(IJ->first, *T);
3059            DenseMap<VPPair, unsigned>::iterator R =
3060              PairConnectionTypes.find(VPPair(Q.second, Q.first));
3061            assert(R != PairConnectionTypes.end() &&
3062                   "Cannot find pair connection type");
3063            if (R->second == PairConnectionDirect)
3064              ++NumDepsDirect;
3065            else if (R->second == PairConnectionSwap)
3066              ++NumDepsSwap;
3067          }
3068
3069          if (!OrigOrder)
3070            std::swap(NumDepsDirect, NumDepsSwap);
3071
3072          if (NumDepsSwap > NumDepsDirect) {
3073            FlipPairOrder = true;
3074            DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
3075                            " <-> " << *J << "\n");
3076          }
3077        }
3078      }
3079
3080      Instruction *L = I, *H = J;
3081      if (FlipPairOrder)
3082        std::swap(H, L);
3083
3084      // If the pair being fused uses the opposite order from that in the pair
3085      // connection map, then we need to flip the types.
3086      DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
3087        ConnectedPairs.find(ValuePair(H, L));
3088      if (HL != ConnectedPairs.end())
3089        for (std::vector<ValuePair>::iterator T = HL->second.begin(),
3090             TE = HL->second.end(); T != TE; ++T) {
3091          VPPair Q(HL->first, *T);
3092          DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
3093          assert(R != PairConnectionTypes.end() &&
3094                 "Cannot find pair connection type");
3095          if (R->second == PairConnectionDirect)
3096            R->second = PairConnectionSwap;
3097          else if (R->second == PairConnectionSwap)
3098            R->second = PairConnectionDirect;
3099        }
3100
3101      bool LBeforeH = !FlipPairOrder;
3102      unsigned NumOperands = I->getNumOperands();
3103      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
3104      getReplacementInputsForPair(Context, L, H, ReplacedOperands,
3105                                  LBeforeH);
3106
3107      // Make a copy of the original operation, change its type to the vector
3108      // type and replace its operands with the vector operands.
3109      Instruction *K = L->clone();
3110      if (L->hasName())
3111        K->takeName(L);
3112      else if (H->hasName())
3113        K->takeName(H);
3114
3115      if (!isa<StoreInst>(K))
3116        K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
3117
3118      unsigned KnownIDs[] = {
3119        LLVMContext::MD_tbaa,
3120        LLVMContext::MD_alias_scope,
3121        LLVMContext::MD_noalias,
3122        LLVMContext::MD_fpmath
3123      };
3124      combineMetadata(K, H, KnownIDs);
3125      K->intersectOptionalDataWith(H);
3126
3127      for (unsigned o = 0; o < NumOperands; ++o)
3128        K->setOperand(o, ReplacedOperands[o]);
3129
3130      K->insertAfter(J);
3131
3132      // Instruction insertion point:
3133      Instruction *InsertionPt = K;
3134      Instruction *K1 = nullptr, *K2 = nullptr;
3135      replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
3136
3137      // The use dag of the first original instruction must be moved to after
3138      // the location of the second instruction. The entire use dag of the
3139      // first instruction is disjoint from the input dag of the second
3140      // (by definition), and so commutes with it.
3141
3142      moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
3143
3144      if (!isa<StoreInst>(I)) {
3145        L->replaceAllUsesWith(K1);
3146        H->replaceAllUsesWith(K2);
3147        AA->replaceWithNewValue(L, K1);
3148        AA->replaceWithNewValue(H, K2);
3149      }
3150
3151      // Instructions that may read from memory may be in the load move set.
3152      // Once an instruction is fused, we no longer need its move set, and so
3153      // the values of the map never need to be updated. However, when a load
3154      // is fused, we need to merge the entries from both instructions in the
3155      // pair in case those instructions were in the move set of some other
3156      // yet-to-be-fused pair. The loads in question are the keys of the map.
3157      if (I->mayReadFromMemory()) {
3158        std::vector<ValuePair> NewSetMembers;
3159        DenseMap<Value *, std::vector<Value *> >::iterator II =
3160          LoadMoveSet.find(I);
3161        if (II != LoadMoveSet.end())
3162          for (std::vector<Value *>::iterator N = II->second.begin(),
3163               NE = II->second.end(); N != NE; ++N)
3164            NewSetMembers.push_back(ValuePair(K, *N));
3165        DenseMap<Value *, std::vector<Value *> >::iterator JJ =
3166          LoadMoveSet.find(J);
3167        if (JJ != LoadMoveSet.end())
3168          for (std::vector<Value *>::iterator N = JJ->second.begin(),
3169               NE = JJ->second.end(); N != NE; ++N)
3170            NewSetMembers.push_back(ValuePair(K, *N));
3171        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
3172             AE = NewSetMembers.end(); A != AE; ++A) {
3173          LoadMoveSet[A->first].push_back(A->second);
3174          LoadMoveSetPairs.insert(*A);
3175        }
3176      }
3177
3178      // Before removing I, set the iterator to the next instruction.
3179      PI = std::next(BasicBlock::iterator(I));
3180      if (cast<Instruction>(PI) == J)
3181        ++PI;
3182
3183      SE->forgetValue(I);
3184      SE->forgetValue(J);
3185      I->eraseFromParent();
3186      J->eraseFromParent();
3187
3188      DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
3189                                               BB << "\n");
3190    }
3191
3192    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
3193  }
3194}
3195
3196char BBVectorize::ID = 0;
3197static const char bb_vectorize_name[] = "Basic-Block Vectorization";
3198INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
3199INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3200INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3201INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3202INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3203INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
3204
3205BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
3206  return new BBVectorize(C);
3207}
3208
3209bool
3210llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
3211  BBVectorize BBVectorizer(P, *BB.getParent(), C);
3212  return BBVectorizer.vectorizeBB(BB);
3213}
3214
3215//===----------------------------------------------------------------------===//
3216VectorizeConfig::VectorizeConfig() {
3217  VectorBits = ::VectorBits;
3218  VectorizeBools = !::NoBools;
3219  VectorizeInts = !::NoInts;
3220  VectorizeFloats = !::NoFloats;
3221  VectorizePointers = !::NoPointers;
3222  VectorizeCasts = !::NoCasts;
3223  VectorizeMath = !::NoMath;
3224  VectorizeBitManipulations = !::NoBitManipulation;
3225  VectorizeFMA = !::NoFMA;
3226  VectorizeSelect = !::NoSelect;
3227  VectorizeCmp = !::NoCmp;
3228  VectorizeGEP = !::NoGEP;
3229  VectorizeMemOps = !::NoMemOps;
3230  AlignedOnly = ::AlignedOnly;
3231  ReqChainDepth= ::ReqChainDepth;
3232  SearchLimit = ::SearchLimit;
3233  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
3234  SplatBreaksChain = ::SplatBreaksChain;
3235  MaxInsts = ::MaxInsts;
3236  MaxPairs = ::MaxPairs;
3237  MaxIter = ::MaxIter;
3238  Pow2LenOnly = ::Pow2LenOnly;
3239  NoMemOpBoost = ::NoMemOpBoost;
3240  FastDep = ::FastDep;
3241}
3242