1//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/ADT/SCCIterator.h"
11#include "llvm/ADT/GraphTraits.h"
12#include "gtest/gtest.h"
13#include <limits.h>
14
15using namespace llvm;
16
17namespace llvm {
18
19/// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
20template <unsigned N>
21class Graph {
22private:
23  // Disable copying.
24  Graph(const Graph&);
25  Graph& operator=(const Graph&);
26
27  static void ValidateIndex(unsigned Idx) {
28    assert(Idx < N && "Invalid node index!");
29  }
30public:
31
32  /// NodeSubset - A subset of the graph's nodes.
33  class NodeSubset {
34    typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
35    BitVector Elements;
36    NodeSubset(BitVector e) : Elements(e) {}
37  public:
38    /// NodeSubset - Default constructor, creates an empty subset.
39    NodeSubset() : Elements(0) {
40      assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
41    }
42
43    /// Comparison operators.
44    bool operator==(const NodeSubset &other) const {
45      return other.Elements == this->Elements;
46    }
47    bool operator!=(const NodeSubset &other) const {
48      return !(*this == other);
49    }
50
51    /// AddNode - Add the node with the given index to the subset.
52    void AddNode(unsigned Idx) {
53      ValidateIndex(Idx);
54      Elements |= 1U << Idx;
55    }
56
57    /// DeleteNode - Remove the node with the given index from the subset.
58    void DeleteNode(unsigned Idx) {
59      ValidateIndex(Idx);
60      Elements &= ~(1U << Idx);
61    }
62
63    /// count - Return true if the node with the given index is in the subset.
64    bool count(unsigned Idx) {
65      ValidateIndex(Idx);
66      return (Elements & (1U << Idx)) != 0;
67    }
68
69    /// isEmpty - Return true if this is the empty set.
70    bool isEmpty() const {
71      return Elements == 0;
72    }
73
74    /// isSubsetOf - Return true if this set is a subset of the given one.
75    bool isSubsetOf(const NodeSubset &other) const {
76      return (this->Elements | other.Elements) == other.Elements;
77    }
78
79    /// Complement - Return the complement of this subset.
80    NodeSubset Complement() const {
81      return ~(unsigned)this->Elements & ((1U << N) - 1);
82    }
83
84    /// Join - Return the union of this subset and the given one.
85    NodeSubset Join(const NodeSubset &other) const {
86      return this->Elements | other.Elements;
87    }
88
89    /// Meet - Return the intersection of this subset and the given one.
90    NodeSubset Meet(const NodeSubset &other) const {
91      return this->Elements & other.Elements;
92    }
93  };
94
95  /// NodeType - Node index and set of children of the node.
96  typedef std::pair<unsigned, NodeSubset> NodeType;
97
98private:
99  /// Nodes - The list of nodes for this graph.
100  NodeType Nodes[N];
101public:
102
103  /// Graph - Default constructor.  Creates an empty graph.
104  Graph() {
105    // Let each node know which node it is.  This allows us to find the start of
106    // the Nodes array given a pointer to any element of it.
107    for (unsigned i = 0; i != N; ++i)
108      Nodes[i].first = i;
109  }
110
111  /// AddEdge - Add an edge from the node with index FromIdx to the node with
112  /// index ToIdx.
113  void AddEdge(unsigned FromIdx, unsigned ToIdx) {
114    ValidateIndex(FromIdx);
115    Nodes[FromIdx].second.AddNode(ToIdx);
116  }
117
118  /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
119  /// the node with index ToIdx.
120  void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
121    ValidateIndex(FromIdx);
122    Nodes[FromIdx].second.DeleteNode(ToIdx);
123  }
124
125  /// AccessNode - Get a pointer to the node with the given index.
126  NodeType *AccessNode(unsigned Idx) const {
127    ValidateIndex(Idx);
128    // The constant cast is needed when working with GraphTraits, which insists
129    // on taking a constant Graph.
130    return const_cast<NodeType *>(&Nodes[Idx]);
131  }
132
133  /// NodesReachableFrom - Return the set of all nodes reachable from the given
134  /// node.
135  NodeSubset NodesReachableFrom(unsigned Idx) const {
136    // This algorithm doesn't scale, but that doesn't matter given the small
137    // size of our graphs.
138    NodeSubset Reachable;
139
140    // The initial node is reachable.
141    Reachable.AddNode(Idx);
142    do {
143      NodeSubset Previous(Reachable);
144
145      // Add in all nodes which are children of a reachable node.
146      for (unsigned i = 0; i != N; ++i)
147        if (Previous.count(i))
148          Reachable = Reachable.Join(Nodes[i].second);
149
150      // If nothing changed then we have found all reachable nodes.
151      if (Reachable == Previous)
152        return Reachable;
153
154      // Rinse and repeat.
155    } while (1);
156  }
157
158  /// ChildIterator - Visit all children of a node.
159  class ChildIterator {
160    friend class Graph;
161
162    /// FirstNode - Pointer to first node in the graph's Nodes array.
163    NodeType *FirstNode;
164    /// Children - Set of nodes which are children of this one and that haven't
165    /// yet been visited.
166    NodeSubset Children;
167
168    ChildIterator(); // Disable default constructor.
169  protected:
170    ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
171
172  public:
173    /// ChildIterator - Copy constructor.
174    ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
175      Children(other.Children) {}
176
177    /// Comparison operators.
178    bool operator==(const ChildIterator &other) const {
179      return other.FirstNode == this->FirstNode &&
180        other.Children == this->Children;
181    }
182    bool operator!=(const ChildIterator &other) const {
183      return !(*this == other);
184    }
185
186    /// Prefix increment operator.
187    ChildIterator& operator++() {
188      // Find the next unvisited child node.
189      for (unsigned i = 0; i != N; ++i)
190        if (Children.count(i)) {
191          // Remove that child - it has been visited.  This is the increment!
192          Children.DeleteNode(i);
193          return *this;
194        }
195      assert(false && "Incrementing end iterator!");
196      return *this; // Avoid compiler warnings.
197    }
198
199    /// Postfix increment operator.
200    ChildIterator operator++(int) {
201      ChildIterator Result(*this);
202      ++(*this);
203      return Result;
204    }
205
206    /// Dereference operator.
207    NodeType *operator*() {
208      // Find the next unvisited child node.
209      for (unsigned i = 0; i != N; ++i)
210        if (Children.count(i))
211          // Return a pointer to it.
212          return FirstNode + i;
213      assert(false && "Dereferencing end iterator!");
214      return nullptr; // Avoid compiler warning.
215    }
216  };
217
218  /// child_begin - Return an iterator pointing to the first child of the given
219  /// node.
220  static ChildIterator child_begin(NodeType *Parent) {
221    return ChildIterator(Parent - Parent->first, Parent->second);
222  }
223
224  /// child_end - Return the end iterator for children of the given node.
225  static ChildIterator child_end(NodeType *Parent) {
226    return ChildIterator(Parent - Parent->first, NodeSubset());
227  }
228};
229
230template <unsigned N>
231struct GraphTraits<Graph<N> > {
232  typedef typename Graph<N>::NodeType NodeType;
233  typedef typename Graph<N>::ChildIterator ChildIteratorType;
234
235 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
236 static inline ChildIteratorType child_begin(NodeType *Node) {
237   return Graph<N>::child_begin(Node);
238 }
239 static inline ChildIteratorType child_end(NodeType *Node) {
240   return Graph<N>::child_end(Node);
241 }
242};
243
244TEST(SCCIteratorTest, AllSmallGraphs) {
245  // Test SCC computation against every graph with NUM_NODES nodes or less.
246  // Since SCC considers every node to have an implicit self-edge, we only
247  // create graphs for which every node has a self-edge.
248#define NUM_NODES 4
249#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
250  typedef Graph<NUM_NODES> GT;
251
252  /// Enumerate all graphs using NUM_GRAPHS bits.
253  static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
254  for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
255       ++GraphDescriptor) {
256    GT G;
257
258    // Add edges as specified by the descriptor.
259    unsigned DescriptorCopy = GraphDescriptor;
260    for (unsigned i = 0; i != NUM_NODES; ++i)
261      for (unsigned j = 0; j != NUM_NODES; ++j) {
262        // Always add a self-edge.
263        if (i == j) {
264          G.AddEdge(i, j);
265          continue;
266        }
267        if (DescriptorCopy & 1)
268          G.AddEdge(i, j);
269        DescriptorCopy >>= 1;
270      }
271
272    // Test the SCC logic on this graph.
273
274    /// NodesInSomeSCC - Those nodes which are in some SCC.
275    GT::NodeSubset NodesInSomeSCC;
276
277    for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
278      const std::vector<GT::NodeType *> &SCC = *I;
279
280      // Get the nodes in this SCC as a NodeSubset rather than a vector.
281      GT::NodeSubset NodesInThisSCC;
282      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
283        NodesInThisSCC.AddNode(SCC[i]->first);
284
285      // There should be at least one node in every SCC.
286      EXPECT_FALSE(NodesInThisSCC.isEmpty());
287
288      // Check that every node in the SCC is reachable from every other node in
289      // the SCC.
290      for (unsigned i = 0; i != NUM_NODES; ++i)
291        if (NodesInThisSCC.count(i))
292          EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
293
294      // OK, now that we now that every node in the SCC is reachable from every
295      // other, this means that the set of nodes reachable from any node in the
296      // SCC is the same as the set of nodes reachable from every node in the
297      // SCC.  Check that for every node N not in the SCC but reachable from the
298      // SCC, no element of the SCC is reachable from N.
299      for (unsigned i = 0; i != NUM_NODES; ++i)
300        if (NodesInThisSCC.count(i)) {
301          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
302          GT::NodeSubset ReachableButNotInSCC =
303            NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
304
305          for (unsigned j = 0; j != NUM_NODES; ++j)
306            if (ReachableButNotInSCC.count(j))
307              EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
308
309          // The result must be the same for all other nodes in this SCC, so
310          // there is no point in checking them.
311          break;
312        }
313
314      // This is indeed a SCC: a maximal set of nodes for which each node is
315      // reachable from every other.
316
317      // Check that we didn't already see this SCC.
318      EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
319
320      NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
321
322      // Check a property that is specific to the LLVM SCC iterator and
323      // guaranteed by it: if a node in SCC S1 has an edge to a node in
324      // SCC S2, then S1 is visited *after* S2.  This means that the set
325      // of nodes reachable from this SCC must be contained either in the
326      // union of this SCC and all previously visited SCC's.
327
328      for (unsigned i = 0; i != NUM_NODES; ++i)
329        if (NodesInThisSCC.count(i)) {
330          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
331          EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
332          // The result must be the same for all other nodes in this SCC, so
333          // there is no point in checking them.
334          break;
335        }
336    }
337
338    // Finally, check that the nodes in some SCC are exactly those that are
339    // reachable from the initial node.
340    EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
341  }
342}
343
344}
345