1/**************************************************************************
2 *
3 * Copyright 2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38#ifndef U_MATH_H
39#define U_MATH_H
40
41
42#include "pipe/p_compiler.h"
43
44#include "c99_math.h"
45#include <assert.h>
46#include <float.h>
47#include <stdarg.h>
48
49#include "util/bitscan.h"
50
51#ifdef __cplusplus
52extern "C" {
53#endif
54
55
56#ifndef M_SQRT2
57#define M_SQRT2 1.41421356237309504880
58#endif
59
60#define POW2_TABLE_SIZE_LOG2 9
61#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
62#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
63#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
64extern float pow2_table[POW2_TABLE_SIZE];
65
66
67/**
68 * Initialize math module.  This should be called before using any
69 * other functions in this module.
70 */
71extern void
72util_init_math(void);
73
74
75union fi {
76   float f;
77   int32_t i;
78   uint32_t ui;
79};
80
81
82union di {
83   double d;
84   int64_t i;
85   uint64_t ui;
86};
87
88
89/**
90 * Extract the IEEE float32 exponent.
91 */
92static inline signed
93util_get_float32_exponent(float x)
94{
95   union fi f;
96
97   f.f = x;
98
99   return ((f.ui >> 23) & 0xff) - 127;
100}
101
102
103/**
104 * Fast version of 2^x
105 * Identity: exp2(a + b) = exp2(a) * exp2(b)
106 * Let ipart = int(x)
107 * Let fpart = x - ipart;
108 * So, exp2(x) = exp2(ipart) * exp2(fpart)
109 * Compute exp2(ipart) with i << ipart
110 * Compute exp2(fpart) with lookup table.
111 */
112static inline float
113util_fast_exp2(float x)
114{
115   int32_t ipart;
116   float fpart, mpart;
117   union fi epart;
118
119   if(x > 129.00000f)
120      return 3.402823466e+38f;
121
122   if (x < -126.99999f)
123      return 0.0f;
124
125   ipart = (int32_t) x;
126   fpart = x - (float) ipart;
127
128   /* same as
129    *   epart.f = (float) (1 << ipart)
130    * but faster and without integer overflow for ipart > 31
131    */
132   epart.i = (ipart + 127 ) << 23;
133
134   mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
135
136   return epart.f * mpart;
137}
138
139
140/**
141 * Fast approximation to exp(x).
142 */
143static inline float
144util_fast_exp(float x)
145{
146   const float k = 1.44269f; /* = log2(e) */
147   return util_fast_exp2(k * x);
148}
149
150
151#define LOG2_TABLE_SIZE_LOG2 16
152#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
153#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
154extern float log2_table[LOG2_TABLE_SIZE];
155
156
157/**
158 * Fast approximation to log2(x).
159 */
160static inline float
161util_fast_log2(float x)
162{
163   union fi num;
164   float epart, mpart;
165   num.f = x;
166   epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
167   /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
168   mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
169   return epart + mpart;
170}
171
172
173/**
174 * Fast approximation to x^y.
175 */
176static inline float
177util_fast_pow(float x, float y)
178{
179   return util_fast_exp2(util_fast_log2(x) * y);
180}
181
182/* Note that this counts zero as a power of two.
183 */
184static inline boolean
185util_is_power_of_two( unsigned v )
186{
187   return (v & (v-1)) == 0;
188}
189
190
191/**
192 * Floor(x), returned as int.
193 */
194static inline int
195util_ifloor(float f)
196{
197   int ai, bi;
198   double af, bf;
199   union fi u;
200   af = (3 << 22) + 0.5 + (double) f;
201   bf = (3 << 22) + 0.5 - (double) f;
202   u.f = (float) af;  ai = u.i;
203   u.f = (float) bf;  bi = u.i;
204   return (ai - bi) >> 1;
205}
206
207
208/**
209 * Round float to nearest int.
210 */
211static inline int
212util_iround(float f)
213{
214#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
215   int r;
216   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
217   return r;
218#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
219   int r;
220   _asm {
221      fld f
222      fistp r
223   }
224   return r;
225#else
226   if (f >= 0.0f)
227      return (int) (f + 0.5f);
228   else
229      return (int) (f - 0.5f);
230#endif
231}
232
233
234/**
235 * Approximate floating point comparison
236 */
237static inline boolean
238util_is_approx(float a, float b, float tol)
239{
240   return fabsf(b - a) <= tol;
241}
242
243
244/**
245 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
246 * util_is_X_nan        = test if x is NaN
247 * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
248 *
249 * NaN can be checked with x != x, however this fails with the fast math flag
250 **/
251
252
253/**
254 * Single-float
255 */
256static inline boolean
257util_is_inf_or_nan(float x)
258{
259   union fi tmp;
260   tmp.f = x;
261   return (tmp.ui & 0x7f800000) == 0x7f800000;
262}
263
264
265static inline boolean
266util_is_nan(float x)
267{
268   union fi tmp;
269   tmp.f = x;
270   return (tmp.ui & 0x7fffffff) > 0x7f800000;
271}
272
273
274static inline int
275util_inf_sign(float x)
276{
277   union fi tmp;
278   tmp.f = x;
279   if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
280      return 0;
281   }
282
283   return (x < 0) ? -1 : 1;
284}
285
286
287/**
288 * Double-float
289 */
290static inline boolean
291util_is_double_inf_or_nan(double x)
292{
293   union di tmp;
294   tmp.d = x;
295   return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
296}
297
298
299static inline boolean
300util_is_double_nan(double x)
301{
302   union di tmp;
303   tmp.d = x;
304   return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
305}
306
307
308static inline int
309util_double_inf_sign(double x)
310{
311   union di tmp;
312   tmp.d = x;
313   if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
314      return 0;
315   }
316
317   return (x < 0) ? -1 : 1;
318}
319
320
321/**
322 * Half-float
323 */
324static inline boolean
325util_is_half_inf_or_nan(int16_t x)
326{
327   return (x & 0x7c00) == 0x7c00;
328}
329
330
331static inline boolean
332util_is_half_nan(int16_t x)
333{
334   return (x & 0x7fff) > 0x7c00;
335}
336
337
338static inline int
339util_half_inf_sign(int16_t x)
340{
341   if ((x & 0x7fff) != 0x7c00) {
342      return 0;
343   }
344
345   return (x < 0) ? -1 : 1;
346}
347
348
349/**
350 * Return float bits.
351 */
352static inline unsigned
353fui( float f )
354{
355   union fi fi;
356   fi.f = f;
357   return fi.ui;
358}
359
360static inline float
361uif(uint32_t ui)
362{
363   union fi fi;
364   fi.ui = ui;
365   return fi.f;
366}
367
368
369/**
370 * Convert ubyte to float in [0, 1].
371 * XXX a 256-entry lookup table would be slightly faster.
372 */
373static inline float
374ubyte_to_float(ubyte ub)
375{
376   return (float) ub * (1.0f / 255.0f);
377}
378
379
380/**
381 * Convert float in [0,1] to ubyte in [0,255] with clamping.
382 */
383static inline ubyte
384float_to_ubyte(float f)
385{
386   union fi tmp;
387
388   tmp.f = f;
389   if (tmp.i < 0) {
390      return (ubyte) 0;
391   }
392   else if (tmp.i >= 0x3f800000 /* 1.0f */) {
393      return (ubyte) 255;
394   }
395   else {
396      tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
397      return (ubyte) tmp.i;
398   }
399}
400
401static inline float
402byte_to_float_tex(int8_t b)
403{
404   return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
405}
406
407static inline int8_t
408float_to_byte_tex(float f)
409{
410   return (int8_t) (127.0F * f);
411}
412
413/**
414 * Calc log base 2
415 */
416static inline unsigned
417util_logbase2(unsigned n)
418{
419#if defined(HAVE___BUILTIN_CLZ)
420   return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
421#else
422   unsigned pos = 0;
423   if (n >= 1<<16) { n >>= 16; pos += 16; }
424   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
425   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
426   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
427   if (n >= 1<< 1) {           pos +=  1; }
428   return pos;
429#endif
430}
431
432/**
433 * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
434 * returns the smallest x such that n <= 2**x.
435 */
436static inline unsigned
437util_logbase2_ceil(unsigned n)
438{
439   if (n <= 1)
440      return 0;
441
442   return 1 + util_logbase2(n - 1);
443}
444
445/**
446 * Returns the smallest power of two >= x
447 */
448static inline unsigned
449util_next_power_of_two(unsigned x)
450{
451#if defined(HAVE___BUILTIN_CLZ)
452   if (x <= 1)
453       return 1;
454
455   return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
456#else
457   unsigned val = x;
458
459   if (x <= 1)
460      return 1;
461
462   if (util_is_power_of_two(x))
463      return x;
464
465   val--;
466   val = (val >> 1) | val;
467   val = (val >> 2) | val;
468   val = (val >> 4) | val;
469   val = (val >> 8) | val;
470   val = (val >> 16) | val;
471   val++;
472   return val;
473#endif
474}
475
476
477/**
478 * Return number of bits set in n.
479 */
480static inline unsigned
481util_bitcount(unsigned n)
482{
483#if defined(HAVE___BUILTIN_POPCOUNT)
484   return __builtin_popcount(n);
485#else
486   /* K&R classic bitcount.
487    *
488    * For each iteration, clear the LSB from the bitfield.
489    * Requires only one iteration per set bit, instead of
490    * one iteration per bit less than highest set bit.
491    */
492   unsigned bits;
493   for (bits = 0; n; bits++) {
494      n &= n - 1;
495   }
496   return bits;
497#endif
498}
499
500
501static inline unsigned
502util_bitcount64(uint64_t n)
503{
504#ifdef HAVE___BUILTIN_POPCOUNTLL
505   return __builtin_popcountll(n);
506#else
507   return util_bitcount(n) + util_bitcount(n >> 32);
508#endif
509}
510
511
512/**
513 * Reverse bits in n
514 * Algorithm taken from:
515 * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
516 */
517static inline unsigned
518util_bitreverse(unsigned n)
519{
520    n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
521    n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
522    n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
523    n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
524    n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
525    return n;
526}
527
528/**
529 * Convert from little endian to CPU byte order.
530 */
531
532#ifdef PIPE_ARCH_BIG_ENDIAN
533#define util_le64_to_cpu(x) util_bswap64(x)
534#define util_le32_to_cpu(x) util_bswap32(x)
535#define util_le16_to_cpu(x) util_bswap16(x)
536#else
537#define util_le64_to_cpu(x) (x)
538#define util_le32_to_cpu(x) (x)
539#define util_le16_to_cpu(x) (x)
540#endif
541
542#define util_cpu_to_le64(x) util_le64_to_cpu(x)
543#define util_cpu_to_le32(x) util_le32_to_cpu(x)
544#define util_cpu_to_le16(x) util_le16_to_cpu(x)
545
546/**
547 * Reverse byte order of a 32 bit word.
548 */
549static inline uint32_t
550util_bswap32(uint32_t n)
551{
552#if defined(HAVE___BUILTIN_BSWAP32)
553   return __builtin_bswap32(n);
554#else
555   return (n >> 24) |
556          ((n >> 8) & 0x0000ff00) |
557          ((n << 8) & 0x00ff0000) |
558          (n << 24);
559#endif
560}
561
562/**
563 * Reverse byte order of a 64bit word.
564 */
565static inline uint64_t
566util_bswap64(uint64_t n)
567{
568#if defined(HAVE___BUILTIN_BSWAP64)
569   return __builtin_bswap64(n);
570#else
571   return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
572          util_bswap32((n >> 32));
573#endif
574}
575
576
577/**
578 * Reverse byte order of a 16 bit word.
579 */
580static inline uint16_t
581util_bswap16(uint16_t n)
582{
583   return (n >> 8) |
584          (n << 8);
585}
586
587static inline void*
588util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
589{
590#ifdef PIPE_ARCH_BIG_ENDIAN
591   size_t i, e;
592   assert(n % 4 == 0);
593
594   for (i = 0, e = n / 4; i < e; i++) {
595      uint32_t * restrict d = (uint32_t* restrict)dest;
596      const uint32_t * restrict s = (const uint32_t* restrict)src;
597      d[i] = util_bswap32(s[i]);
598   }
599   return dest;
600#else
601   return memcpy(dest, src, n);
602#endif
603}
604
605/**
606 * Clamp X to [MIN, MAX].
607 * This is a macro to allow float, int, uint, etc. types.
608 */
609#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
610
611#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
612#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
613
614#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
615#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
616
617#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
618#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
619
620
621/**
622 * Align a value, only works pot alignemnts.
623 */
624static inline int
625align(int value, int alignment)
626{
627   return (value + alignment - 1) & ~(alignment - 1);
628}
629
630static inline uint64_t
631align64(uint64_t value, unsigned alignment)
632{
633   return (value + alignment - 1) & ~((uint64_t)alignment - 1);
634}
635
636/**
637 * Works like align but on npot alignments.
638 */
639static inline size_t
640util_align_npot(size_t value, size_t alignment)
641{
642   if (value % alignment)
643      return value + (alignment - (value % alignment));
644   return value;
645}
646
647static inline unsigned
648u_minify(unsigned value, unsigned levels)
649{
650    return MAX2(1, value >> levels);
651}
652
653#ifndef COPY_4V
654#define COPY_4V( DST, SRC )         \
655do {                                \
656   (DST)[0] = (SRC)[0];             \
657   (DST)[1] = (SRC)[1];             \
658   (DST)[2] = (SRC)[2];             \
659   (DST)[3] = (SRC)[3];             \
660} while (0)
661#endif
662
663
664#ifndef COPY_4FV
665#define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
666#endif
667
668
669#ifndef ASSIGN_4V
670#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
671do {                                     \
672   (DST)[0] = (V0);                      \
673   (DST)[1] = (V1);                      \
674   (DST)[2] = (V2);                      \
675   (DST)[3] = (V3);                      \
676} while (0)
677#endif
678
679
680static inline uint32_t
681util_unsigned_fixed(float value, unsigned frac_bits)
682{
683   return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
684}
685
686static inline int32_t
687util_signed_fixed(float value, unsigned frac_bits)
688{
689   return (int32_t)(value * (1<<frac_bits));
690}
691
692unsigned
693util_fpstate_get(void);
694unsigned
695util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
696void
697util_fpstate_set(unsigned fpstate);
698
699
700
701#ifdef __cplusplus
702}
703#endif
704
705#endif /* U_MATH_H */
706