1/*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include "codegen/nv50_ir_target_nvc0.h"
24
25namespace nv50_ir {
26
27Target *getTargetNVC0(unsigned int chipset)
28{
29   return new TargetNVC0(chipset);
30}
31
32TargetNVC0::TargetNVC0(unsigned int card) :
33   Target(card < 0x110, false, card >= 0xe4)
34{
35   chipset = card;
36   initOpInfo();
37}
38
39// BULTINS / LIBRARY FUNCTIONS:
40
41// lazyness -> will just hardcode everything for the time being
42
43#include "lib/gf100.asm.h"
44#include "lib/gk104.asm.h"
45#include "lib/gk110.asm.h"
46
47void
48TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49{
50   switch (chipset & ~0xf) {
51   case 0xe0:
52      if (chipset < NVISA_GK20A_CHIPSET) {
53         *code = (const uint32_t *)&gk104_builtin_code[0];
54         *size = sizeof(gk104_builtin_code);
55         break;
56      }
57      /* fall-through for GK20A */
58   case 0xf0:
59   case 0x100:
60      *code = (const uint32_t *)&gk110_builtin_code[0];
61      *size = sizeof(gk110_builtin_code);
62      break;
63   default:
64      *code = (const uint32_t *)&gf100_builtin_code[0];
65      *size = sizeof(gf100_builtin_code);
66      break;
67   }
68}
69
70uint32_t
71TargetNVC0::getBuiltinOffset(int builtin) const
72{
73   assert(builtin < NVC0_BUILTIN_COUNT);
74
75   switch (chipset & ~0xf) {
76   case 0xe0:
77      if (chipset < NVISA_GK20A_CHIPSET)
78         return gk104_builtin_offsets[builtin];
79      /* fall-through for GK20A */
80   case 0xf0:
81   case 0x100:
82      return gk110_builtin_offsets[builtin];
83   default:
84      return gf100_builtin_offsets[builtin];
85   }
86}
87
88struct opProperties
89{
90   operation op;
91   unsigned int mNeg   : 4;
92   unsigned int mAbs   : 4;
93   unsigned int mNot   : 4;
94   unsigned int mSat   : 4;
95   unsigned int fConst : 3;
96   unsigned int fImmd  : 4; // last bit indicates if full immediate is suppoted
97};
98
99static const struct opProperties _initProps[] =
100{
101   //           neg  abs  not  sat  c[]  imm
102   { OP_ADD,    0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103   { OP_SUB,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104   { OP_MUL,    0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105   { OP_MAX,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106   { OP_MIN,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107   { OP_MAD,    0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
108   { OP_FMA,    0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // keep the same as OP_MAD
109   { OP_SHLADD, 0x5, 0x0, 0x0, 0x0, 0x4, 0x6 },
110   { OP_MADSP,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
111   { OP_ABS,    0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
112   { OP_NEG,    0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
113   { OP_CVT,    0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114   { OP_CEIL,   0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115   { OP_FLOOR,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
116   { OP_TRUNC,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
117   { OP_AND,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118   { OP_OR,     0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
119   { OP_XOR,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
120   { OP_SHL,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
121   { OP_SHR,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
122   { OP_SET,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
123   { OP_SLCT,   0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
124   { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
125   { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
126   { OP_COS,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127   { OP_SIN,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128   { OP_EX2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129   { OP_LG2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130   { OP_RCP,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
131   { OP_RSQ,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
132   { OP_DFDX,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
133   { OP_DFDY,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
134   { OP_CALL,   0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
135   { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
136   { OP_INSBF,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
137   { OP_EXTBF,  0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
138   { OP_BFIND,  0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
139   { OP_PERMT,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
140   { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
141   { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
142   { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
143   // saturate only:
144   { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
145   { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
146   // nve4 ops:
147   { OP_SULDB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
148   { OP_SUSTB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
149   { OP_SUSTP,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
150   { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
151   { OP_SUBFM,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
152   { OP_SUEAU,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
153};
154
155void TargetNVC0::initOpInfo()
156{
157   unsigned int i, j;
158
159   static const uint32_t commutative[(OP_LAST + 31) / 32] =
160   {
161      // ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN, SET_AND, SET_OR, SET_XOR,
162      // SET, SELP, SLCT
163      0x0ce0ca00, 0x0000007e, 0x00000000, 0x00000000
164   };
165
166   static const uint32_t shortForm[(OP_LAST + 31) / 32] =
167   {
168      // ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN
169      0x0ce0ca00, 0x00000000, 0x00000000, 0x00000000
170   };
171
172   static const operation noDest[] =
173   {
174      OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
175      OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
176      OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
177      OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
178      OP_SUREDB, OP_BAR
179   };
180
181   static const operation noPred[] =
182   {
183      OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
184      OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
185   };
186
187   for (i = 0; i < DATA_FILE_COUNT; ++i)
188      nativeFileMap[i] = (DataFile)i;
189   nativeFileMap[FILE_ADDRESS] = FILE_GPR;
190
191   for (i = 0; i < OP_LAST; ++i) {
192      opInfo[i].variants = NULL;
193      opInfo[i].op = (operation)i;
194      opInfo[i].srcTypes = 1 << (int)TYPE_F32;
195      opInfo[i].dstTypes = 1 << (int)TYPE_F32;
196      opInfo[i].immdBits = 0;
197      opInfo[i].srcNr = operationSrcNr[i];
198
199      for (j = 0; j < opInfo[i].srcNr; ++j) {
200         opInfo[i].srcMods[j] = 0;
201         opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
202      }
203      opInfo[i].dstMods = 0;
204      opInfo[i].dstFiles = 1 << (int)FILE_GPR;
205
206      opInfo[i].hasDest = 1;
207      opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
208      opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
209      opInfo[i].pseudo = (i < OP_MOV);
210      opInfo[i].predicate = !opInfo[i].pseudo;
211      opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
212      opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
213   }
214   for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
215      opInfo[noDest[i]].hasDest = 0;
216   for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
217      opInfo[noPred[i]].predicate = 0;
218
219   for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
220      const struct opProperties *prop = &_initProps[i];
221
222      for (int s = 0; s < 3; ++s) {
223         if (prop->mNeg & (1 << s))
224            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
225         if (prop->mAbs & (1 << s))
226            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
227         if (prop->mNot & (1 << s))
228            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
229         if (prop->fConst & (1 << s))
230            opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
231         if (prop->fImmd & (1 << s))
232            opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
233         if (prop->fImmd & 8)
234            opInfo[prop->op].immdBits = 0xffffffff;
235      }
236      if (prop->mSat & 8)
237         opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
238   }
239}
240
241unsigned int
242TargetNVC0::getFileSize(DataFile file) const
243{
244   const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
245   const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
246   switch (file) {
247   case FILE_NULL:          return 0;
248   case FILE_GPR:           return MIN2(gprs, smregs / threads);
249   case FILE_PREDICATE:     return 7;
250   case FILE_FLAGS:         return 1;
251   case FILE_ADDRESS:       return 0;
252   case FILE_IMMEDIATE:     return 0;
253   case FILE_MEMORY_CONST:  return 65536;
254   case FILE_SHADER_INPUT:  return 0x400;
255   case FILE_SHADER_OUTPUT: return 0x400;
256   case FILE_MEMORY_BUFFER: return 0xffffffff;
257   case FILE_MEMORY_GLOBAL: return 0xffffffff;
258   case FILE_MEMORY_SHARED: return 16 << 10;
259   case FILE_MEMORY_LOCAL:  return 48 << 10;
260   case FILE_SYSTEM_VALUE:  return 32;
261   default:
262      assert(!"invalid file");
263      return 0;
264   }
265}
266
267unsigned int
268TargetNVC0::getFileUnit(DataFile file) const
269{
270   if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
271      return 2;
272   return 0;
273}
274
275uint32_t
276TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
277{
278   const int idx = sym->reg.data.sv.index;
279   const SVSemantic sv = sym->reg.data.sv.sv;
280
281   const bool isInput = shaderFile == FILE_SHADER_INPUT;
282   const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
283
284   switch (sv) {
285   case SV_POSITION:       return 0x070 + idx * 4;
286   case SV_INSTANCE_ID:    return 0x2f8;
287   case SV_VERTEX_ID:      return 0x2fc;
288   case SV_PRIMITIVE_ID:   return isInput ? 0x060 : 0x040;
289   case SV_LAYER:          return 0x064;
290   case SV_VIEWPORT_INDEX: return 0x068;
291   case SV_POINT_SIZE:     return 0x06c;
292   case SV_CLIP_DISTANCE:  return 0x2c0 + idx * 4;
293   case SV_POINT_COORD:    return 0x2e0 + idx * 4;
294   case SV_FACE:           return 0x3fc;
295   case SV_TESS_OUTER:     return 0x000 + idx * 4;
296   case SV_TESS_INNER:     return 0x010 + idx * 4;
297   case SV_TESS_COORD:     return 0x2f0 + idx * 4;
298   case SV_NTID:           return kepler ? (0x00 + idx * 4) : ~0;
299   case SV_NCTAID:         return kepler ? (0x0c + idx * 4) : ~0;
300   case SV_GRIDID:         return kepler ? 0x18 : ~0;
301   case SV_WORK_DIM:       return 0x1c;
302   case SV_SAMPLE_INDEX:   return 0;
303   case SV_SAMPLE_POS:     return 0;
304   case SV_SAMPLE_MASK:    return 0;
305   case SV_BASEVERTEX:     return 0;
306   case SV_BASEINSTANCE:   return 0;
307   case SV_DRAWID:         return 0;
308   default:
309      return 0xffffffff;
310   }
311}
312
313bool
314TargetNVC0::insnCanLoad(const Instruction *i, int s,
315                        const Instruction *ld) const
316{
317   DataFile sf = ld->src(0).getFile();
318
319   // immediate 0 can be represented by GPR $r63/$r255
320   if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
321      return (!i->isPseudo() &&
322              !i->asTex() &&
323              i->op != OP_EXPORT && i->op != OP_STORE);
324
325   if (s >= opInfo[i->op].srcNr)
326      return false;
327   if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
328      return false;
329
330   // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
331   if (ld->src(0).isIndirect(0))
332      return false;
333
334   for (int k = 0; i->srcExists(k); ++k) {
335      if (i->src(k).getFile() == FILE_IMMEDIATE) {
336         if (k == 2 && i->op == OP_SUCLAMP) // special case
337            continue;
338         if (k == 1 && i->op == OP_SHLADD) // special case
339            continue;
340         if (i->getSrc(k)->reg.data.u64 != 0)
341            return false;
342      } else
343      if (i->src(k).getFile() != FILE_GPR &&
344          i->src(k).getFile() != FILE_PREDICATE) {
345         return false;
346      }
347   }
348
349   // not all instructions support full 32 bit immediates
350   if (sf == FILE_IMMEDIATE) {
351      Storage &reg = ld->getSrc(0)->asImm()->reg;
352
353      if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
354         switch (i->sType) {
355         case TYPE_F64:
356            if (reg.data.u64 & 0x00000fffffffffffULL)
357               return false;
358            break;
359         case TYPE_F32:
360            if (reg.data.u32 & 0xfff)
361               return false;
362            break;
363         case TYPE_S32:
364         case TYPE_U32:
365            // with u32, 0xfffff counts as 0xffffffff as well
366            if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
367               return false;
368            break;
369         case TYPE_U8:
370         case TYPE_S8:
371         case TYPE_U16:
372         case TYPE_S16:
373         case TYPE_F16:
374            break;
375         default:
376            return false;
377         }
378      } else
379      if (i->op == OP_MAD || i->op == OP_FMA) {
380         // requires src == dst, cannot decide before RA
381         // (except if we implement more constraints)
382         if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
383            return false;
384      } else
385      if (i->op == OP_ADD && i->sType == TYPE_F32) {
386         // add f32 LIMM cannot saturate
387         if (i->saturate && (reg.data.u32 & 0xfff))
388            return false;
389      }
390   }
391
392   return true;
393}
394
395bool
396TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
397{
398   const ValueRef& ref = insn->src(s);
399   if (ref.getFile() == FILE_MEMORY_CONST &&
400       (insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
401      return offset >= -0x8000 && offset < 0x8000;
402   return true;
403}
404
405bool
406TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
407{
408   if (ty == TYPE_NONE)
409      return false;
410   if (file == FILE_MEMORY_CONST) {
411      if (getChipset() >= NVISA_GM107_CHIPSET)
412         return typeSizeof(ty) <= 4;
413      else
414      if (getChipset() >= NVISA_GK104_CHIPSET) // wrong encoding ?
415         return typeSizeof(ty) <= 8;
416   }
417   if (ty == TYPE_B96)
418      return false;
419   return true;
420}
421
422bool
423TargetNVC0::isOpSupported(operation op, DataType ty) const
424{
425   if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
426      return false;
427   if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
428      return false;
429   return true;
430}
431
432bool
433TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
434{
435   if (!isFloatType(insn->dType)) {
436      switch (insn->op) {
437      case OP_ABS:
438      case OP_NEG:
439      case OP_CVT:
440      case OP_CEIL:
441      case OP_FLOOR:
442      case OP_TRUNC:
443      case OP_AND:
444      case OP_OR:
445      case OP_XOR:
446      case OP_POPCNT:
447      case OP_BFIND:
448         break;
449      case OP_SET:
450         if (insn->sType != TYPE_F32)
451            return false;
452         break;
453      case OP_ADD:
454         if (mod.abs())
455            return false;
456         if (insn->src(s ? 0 : 1).mod.neg())
457            return false;
458         break;
459      case OP_SUB:
460         if (s == 0)
461            return insn->src(1).mod.neg() ? false : true;
462         break;
463      case OP_SHLADD:
464         if (s == 1)
465            return false;
466         if (insn->src(s ? 0 : 2).mod.neg())
467            return false;
468         break;
469      default:
470         return false;
471      }
472   }
473   if (s >= opInfo[insn->op].srcNr || s >= 3)
474      return false;
475   return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
476}
477
478bool
479TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
480{
481   if (insn->getPredicate())
482      return false;
483   return opInfo[insn->op].predicate;
484}
485
486bool
487TargetNVC0::isSatSupported(const Instruction *insn) const
488{
489   if (insn->op == OP_CVT)
490      return true;
491   if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
492      return false;
493
494   if (insn->dType == TYPE_U32)
495      return (insn->op == OP_ADD) || (insn->op == OP_MAD);
496
497   // add f32 LIMM cannot saturate
498   if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
499      if (insn->getSrc(1)->asImm() &&
500          insn->getSrc(1)->reg.data.u32 & 0xfff)
501         return false;
502   }
503
504   return insn->dType == TYPE_F32;
505}
506
507bool
508TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
509{
510   if (op != OP_MUL)
511      return false;
512   f = fabsf(f);
513   e = static_cast<int>(log2f(f));
514   if (e < -3 || e > 3)
515      return false;
516   return f == exp2f(static_cast<float>(e));
517}
518
519// TODO: better values
520// this could be more precise, e.g. depending on the issue-to-read/write delay
521// of the depending instruction, but it's good enough
522int TargetNVC0::getLatency(const Instruction *i) const
523{
524   if (chipset >= 0xe4) {
525      if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
526         return 20;
527      switch (i->op) {
528      case OP_LINTERP:
529      case OP_PINTERP:
530         return 15;
531      case OP_LOAD:
532         if (i->src(0).getFile() == FILE_MEMORY_CONST)
533            return 9;
534         // fall through
535      case OP_VFETCH:
536         return 24;
537      default:
538         if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
539            return 17;
540         if (i->op == OP_MUL && i->dType != TYPE_F32)
541            return 15;
542         return 9;
543      }
544   } else {
545      if (i->op == OP_LOAD) {
546         if (i->cache == CACHE_CV)
547            return 700;
548         return 48;
549      }
550      return 24;
551   }
552   return 32;
553}
554
555// These are "inverse" throughput values, i.e. the number of cycles required
556// to issue a specific instruction for a full warp (32 threads).
557//
558// Assuming we have more than 1 warp in flight, a higher issue latency results
559// in a lower result latency since the MP will have spent more time with other
560// warps.
561// This also helps to determine the number of cycles between instructions in
562// a single warp.
563//
564int TargetNVC0::getThroughput(const Instruction *i) const
565{
566   // TODO: better values
567   if (i->dType == TYPE_F32) {
568      switch (i->op) {
569      case OP_ADD:
570      case OP_MUL:
571      case OP_MAD:
572      case OP_FMA:
573         return 1;
574      case OP_CVT:
575      case OP_CEIL:
576      case OP_FLOOR:
577      case OP_TRUNC:
578      case OP_SET:
579      case OP_SLCT:
580      case OP_MIN:
581      case OP_MAX:
582         return 2;
583      case OP_RCP:
584      case OP_RSQ:
585      case OP_LG2:
586      case OP_SIN:
587      case OP_COS:
588      case OP_PRESIN:
589      case OP_PREEX2:
590      default:
591         return 8;
592      }
593   } else
594   if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
595      switch (i->op) {
596      case OP_ADD:
597      case OP_AND:
598      case OP_OR:
599      case OP_XOR:
600      case OP_NOT:
601         return 1;
602      case OP_MUL:
603      case OP_MAD:
604      case OP_CVT:
605      case OP_SET:
606      case OP_SLCT:
607      case OP_SHL:
608      case OP_SHR:
609      case OP_NEG:
610      case OP_ABS:
611      case OP_MIN:
612      case OP_MAX:
613      default:
614         return 2;
615      }
616   } else
617   if (i->dType == TYPE_F64) {
618      return 2;
619   } else {
620      return 1;
621   }
622}
623
624bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
625{
626   const OpClass clA = operationClass[a->op];
627   const OpClass clB = operationClass[b->op];
628
629   if (getChipset() >= 0xe4) {
630      // not texturing
631      // not if the 2nd instruction isn't necessarily executed
632      if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
633         return false;
634
635      // Check that a and b don't write to the same sources, nor that b reads
636      // anything that a writes.
637      if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
638         return false;
639
640      // anything with MOV
641      if (a->op == OP_MOV || b->op == OP_MOV)
642         return true;
643      if (clA == clB) {
644         switch (clA) {
645         // there might be more
646         case OPCLASS_COMPARE:
647            if ((a->op == OP_MIN || a->op == OP_MAX) &&
648                (b->op == OP_MIN || b->op == OP_MAX))
649               break;
650            return false;
651         case OPCLASS_ARITH:
652            break;
653         default:
654            return false;
655         }
656         // only F32 arith or integer additions
657         return (a->dType == TYPE_F32 || a->op == OP_ADD ||
658                 b->dType == TYPE_F32 || b->op == OP_ADD);
659      }
660      // nothing with TEXBAR
661      if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
662         return false;
663      // no loads and stores accessing the same space
664      if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
665          (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
666         if (a->src(0).getFile() == b->src(0).getFile())
667            return false;
668      // no > 32-bit ops
669      if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
670          typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
671         return false;
672      return true;
673   } else {
674      return false; // info not needed (yet)
675   }
676}
677
678} // namespace nv50_ir
679