evergreen_compute.c revision 257d697fb92c617161a2a90607c4cde6f7b9034a
1/*
2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 *      Adam Rak <adam.rak@streamnovation.com>
25 */
26
27#include <stdio.h>
28#include <errno.h>
29#include "pipe/p_defines.h"
30#include "pipe/p_state.h"
31#include "pipe/p_context.h"
32#include "util/u_blitter.h"
33#include "util/u_double_list.h"
34#include "util/u_transfer.h"
35#include "util/u_surface.h"
36#include "util/u_pack_color.h"
37#include "util/u_memory.h"
38#include "util/u_inlines.h"
39#include "util/u_framebuffer.h"
40#include "pipebuffer/pb_buffer.h"
41#include "evergreend.h"
42#include "r600_shader.h"
43#include "r600_pipe.h"
44#include "r600_formats.h"
45#include "evergreen_compute.h"
46#include "evergreen_compute_internal.h"
47#include "compute_memory_pool.h"
48#include "sb/sb_public.h"
49#ifdef HAVE_OPENCL
50#include "radeon_llvm_util.h"
51#endif
52
53/**
54RAT0 is for global binding write
55VTX1 is for global binding read
56
57for wrting images RAT1...
58for reading images TEX2...
59  TEX2-RAT1 is paired
60
61TEX2... consumes the same fetch resources, that VTX2... would consume
62
63CONST0 and VTX0 is for parameters
64  CONST0 is binding smaller input parameter buffer, and for constant indexing,
65  also constant cached
66  VTX0 is for indirect/non-constant indexing, or if the input is bigger than
67  the constant cache can handle
68
69RAT-s are limited to 12, so we can only bind at most 11 texture for writing
70because we reserve RAT0 for global bindings. With byteaddressing enabled,
71we should reserve another one too.=> 10 image binding for writing max.
72
73from Nvidia OpenCL:
74  CL_DEVICE_MAX_READ_IMAGE_ARGS:        128
75  CL_DEVICE_MAX_WRITE_IMAGE_ARGS:       8
76
77so 10 for writing is enough. 176 is the max for reading according to the docs
78
79writable images should be listed first < 10, so their id corresponds to RAT(id+1)
80writable images will consume TEX slots, VTX slots too because of linear indexing
81
82*/
83
84struct r600_resource* r600_compute_buffer_alloc_vram(
85       struct r600_screen *screen,
86       unsigned size)
87{
88	struct pipe_resource * buffer = NULL;
89	assert(size);
90
91	buffer = pipe_buffer_create(
92		(struct pipe_screen*) screen,
93		PIPE_BIND_CUSTOM,
94		PIPE_USAGE_IMMUTABLE,
95		size);
96
97	return (struct r600_resource *)buffer;
98}
99
100
101static void evergreen_set_rat(
102	struct r600_pipe_compute *pipe,
103	int id,
104	struct r600_resource* bo,
105	int start,
106	int size)
107{
108	struct pipe_surface rat_templ;
109	struct r600_surface *surf = NULL;
110	struct r600_context *rctx = NULL;
111
112	assert(id < 12);
113	assert((size & 3) == 0);
114	assert((start & 0xFF) == 0);
115
116	rctx = pipe->ctx;
117
118	COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id);
119
120	/* Create the RAT surface */
121	memset(&rat_templ, 0, sizeof(rat_templ));
122	rat_templ.format = PIPE_FORMAT_R32_UINT;
123	rat_templ.u.tex.level = 0;
124	rat_templ.u.tex.first_layer = 0;
125	rat_templ.u.tex.last_layer = 0;
126
127	/* Add the RAT the list of color buffers */
128	pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface(
129		(struct pipe_context *)pipe->ctx,
130		(struct pipe_resource *)bo, &rat_templ);
131
132	/* Update the number of color buffers */
133	pipe->ctx->framebuffer.state.nr_cbufs =
134		MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs);
135
136	/* Update the cb_target_mask
137	 * XXX: I think this is a potential spot for bugs once we start doing
138	 * GL interop.  cb_target_mask may be modified in the 3D sections
139	 * of this driver. */
140	pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4));
141
142	surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id];
143	evergreen_init_color_surface_rat(rctx, surf);
144}
145
146static void evergreen_cs_set_vertex_buffer(
147	struct r600_context * rctx,
148	unsigned vb_index,
149	unsigned offset,
150	struct pipe_resource * buffer)
151{
152	struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state;
153	struct pipe_vertex_buffer *vb = &state->vb[vb_index];
154	vb->stride = 1;
155	vb->buffer_offset = offset;
156	vb->buffer = buffer;
157	vb->user_buffer = NULL;
158
159	/* The vertex instructions in the compute shaders use the texture cache,
160	 * so we need to invalidate it. */
161	rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE;
162	state->enabled_mask |= 1 << vb_index;
163	state->dirty_mask |= 1 << vb_index;
164	state->atom.dirty = true;
165}
166
167static void evergreen_cs_set_constant_buffer(
168	struct r600_context * rctx,
169	unsigned cb_index,
170	unsigned offset,
171	unsigned size,
172	struct pipe_resource * buffer)
173{
174	struct pipe_constant_buffer cb;
175	cb.buffer_size = size;
176	cb.buffer_offset = offset;
177	cb.buffer = buffer;
178	cb.user_buffer = NULL;
179
180	rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, &cb);
181}
182
183static const struct u_resource_vtbl r600_global_buffer_vtbl =
184{
185	u_default_resource_get_handle, /* get_handle */
186	r600_compute_global_buffer_destroy, /* resource_destroy */
187	r600_compute_global_transfer_map, /* transfer_map */
188	r600_compute_global_transfer_flush_region,/* transfer_flush_region */
189	r600_compute_global_transfer_unmap, /* transfer_unmap */
190	r600_compute_global_transfer_inline_write /* transfer_inline_write */
191};
192
193
194void *evergreen_create_compute_state(
195	struct pipe_context *ctx_,
196	const const struct pipe_compute_state *cso)
197{
198	struct r600_context *ctx = (struct r600_context *)ctx_;
199	struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute);
200
201#ifdef HAVE_OPENCL
202	const struct pipe_llvm_program_header * header;
203	const unsigned char * code;
204	unsigned i;
205
206	shader->llvm_ctx = LLVMContextCreate();
207
208	COMPUTE_DBG(ctx->screen, "*** evergreen_create_compute_state\n");
209
210	header = cso->prog;
211	code = cso->prog + sizeof(struct pipe_llvm_program_header);
212#endif
213
214	shader->ctx = (struct r600_context*)ctx;
215	shader->local_size = cso->req_local_mem;
216	shader->private_size = cso->req_private_mem;
217	shader->input_size = cso->req_input_mem;
218
219#ifdef HAVE_OPENCL
220	shader->num_kernels = radeon_llvm_get_num_kernels(shader->llvm_ctx, code,
221							header->num_bytes);
222	shader->kernels = CALLOC(sizeof(struct r600_kernel), shader->num_kernels);
223
224	for (i = 0; i < shader->num_kernels; i++) {
225		struct r600_kernel *kernel = &shader->kernels[i];
226		kernel->llvm_module = radeon_llvm_get_kernel_module(shader->llvm_ctx, i,
227							code, header->num_bytes);
228	}
229#endif
230	return shader;
231}
232
233void evergreen_delete_compute_state(struct pipe_context *ctx, void* state)
234{
235	struct r600_pipe_compute *shader = (struct r600_pipe_compute *)state;
236
237	if (!shader)
238		return;
239
240	FREE(shader->kernels);
241
242#ifdef HAVE_OPENCL
243	if (shader->llvm_ctx){
244		LLVMContextDispose(shader->llvm_ctx);
245	}
246#endif
247
248	FREE(shader);
249}
250
251static void evergreen_bind_compute_state(struct pipe_context *ctx_, void *state)
252{
253	struct r600_context *ctx = (struct r600_context *)ctx_;
254
255	COMPUTE_DBG(ctx->screen, "*** evergreen_bind_compute_state\n");
256
257	ctx->cs_shader_state.shader = (struct r600_pipe_compute *)state;
258}
259
260/* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit
261 * kernel parameters there are implicit parameters that need to be stored
262 * in the vertex buffer as well.  Here is how these parameters are organized in
263 * the buffer:
264 *
265 * DWORDS 0-2: Number of work groups in each dimension (x,y,z)
266 * DWORDS 3-5: Number of global work items in each dimension (x,y,z)
267 * DWORDS 6-8: Number of work items within each work group in each dimension
268 *             (x,y,z)
269 * DWORDS 9+ : Kernel parameters
270 */
271void evergreen_compute_upload_input(
272	struct pipe_context *ctx_,
273	const uint *block_layout,
274	const uint *grid_layout,
275	const void *input)
276{
277	struct r600_context *ctx = (struct r600_context *)ctx_;
278	struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
279	int i;
280	/* We need to reserve 9 dwords (36 bytes) for implicit kernel
281	 * parameters.
282	 */
283	unsigned input_size = shader->input_size + 36;
284	uint32_t * num_work_groups_start;
285	uint32_t * global_size_start;
286	uint32_t * local_size_start;
287	uint32_t * kernel_parameters_start;
288	struct pipe_box box;
289	struct pipe_transfer *transfer = NULL;
290
291	if (shader->input_size == 0) {
292		return;
293	}
294
295	if (!shader->kernel_param) {
296		/* Add space for the grid dimensions */
297		shader->kernel_param = (struct r600_resource *)
298			pipe_buffer_create(ctx_->screen, PIPE_BIND_CUSTOM,
299					PIPE_USAGE_IMMUTABLE, input_size);
300	}
301
302	u_box_1d(0, input_size, &box);
303	num_work_groups_start = ctx_->transfer_map(ctx_,
304			(struct pipe_resource*)shader->kernel_param,
305			0, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE,
306			&box, &transfer);
307	global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4));
308	local_size_start = global_size_start + (3 * (sizeof(uint)) / 4);
309	kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4);
310
311	/* Copy the work group size */
312	memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint));
313
314	/* Copy the global size */
315	for (i = 0; i < 3; i++) {
316		global_size_start[i] = grid_layout[i] * block_layout[i];
317	}
318
319	/* Copy the local dimensions */
320	memcpy(local_size_start, block_layout, 3 * sizeof(uint));
321
322	/* Copy the kernel inputs */
323	memcpy(kernel_parameters_start, input, shader->input_size);
324
325	for (i = 0; i < (input_size / 4); i++) {
326		COMPUTE_DBG(ctx->screen, "input %i : %u\n", i,
327			((unsigned*)num_work_groups_start)[i]);
328	}
329
330	ctx_->transfer_unmap(ctx_, transfer);
331
332	/* ID=0 is reserved for the parameters */
333	evergreen_cs_set_constant_buffer(ctx, 0, 0, input_size,
334			(struct pipe_resource*)shader->kernel_param);
335}
336
337static void evergreen_emit_direct_dispatch(
338		struct r600_context *rctx,
339		const uint *block_layout, const uint *grid_layout)
340{
341	int i;
342	struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
343	struct r600_pipe_compute *shader = rctx->cs_shader_state.shader;
344	unsigned num_waves;
345	unsigned num_pipes = rctx->screen->b.info.r600_max_pipes;
346	unsigned wave_divisor = (16 * num_pipes);
347	int group_size = 1;
348	int grid_size = 1;
349	unsigned lds_size = shader->local_size / 4 + shader->active_kernel->bc.nlds_dw;
350
351	/* Calculate group_size/grid_size */
352	for (i = 0; i < 3; i++) {
353		group_size *= block_layout[i];
354	}
355
356	for (i = 0; i < 3; i++)	{
357		grid_size *= grid_layout[i];
358	}
359
360	/* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */
361	num_waves = (block_layout[0] * block_layout[1] * block_layout[2] +
362			wave_divisor - 1) / wave_divisor;
363
364	COMPUTE_DBG(rctx->screen, "Using %u pipes, "
365				"%u wavefronts per thread block, "
366				"allocating %u dwords lds.\n",
367				num_pipes, num_waves, lds_size);
368
369	r600_write_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size);
370
371	r600_write_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3);
372	radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */
373	radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */
374	radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */
375
376	r600_write_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE,
377								group_size);
378
379	r600_write_compute_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3);
380	radeon_emit(cs, block_layout[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */
381	radeon_emit(cs, block_layout[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */
382	radeon_emit(cs, block_layout[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */
383
384	if (rctx->b.chip_class < CAYMAN) {
385		assert(lds_size <= 8192);
386	} else {
387		/* Cayman appears to have a slightly smaller limit, see the
388		 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */
389		assert(lds_size <= 8160);
390	}
391
392	r600_write_compute_context_reg(cs, CM_R_0288E8_SQ_LDS_ALLOC,
393					lds_size | (num_waves << 14));
394
395	/* Dispatch packet */
396	radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, 0));
397	radeon_emit(cs, grid_layout[0]);
398	radeon_emit(cs, grid_layout[1]);
399	radeon_emit(cs, grid_layout[2]);
400	/* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */
401	radeon_emit(cs, 1);
402}
403
404static void compute_emit_cs(struct r600_context *ctx, const uint *block_layout,
405		const uint *grid_layout)
406{
407	struct radeon_winsys_cs *cs = ctx->b.rings.gfx.cs;
408	int i;
409
410	/* make sure that the gfx ring is only one active */
411	if (ctx->b.rings.dma.cs && ctx->b.rings.dma.cs->cdw) {
412		ctx->b.rings.dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
413	}
414
415	/* Initialize all the compute-related registers.
416	 *
417	 * See evergreen_init_atom_start_compute_cs() in this file for the list
418	 * of registers initialized by the start_compute_cs_cmd atom.
419	 */
420	r600_emit_command_buffer(cs, &ctx->start_compute_cs_cmd);
421
422	ctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV;
423	r600_flush_emit(ctx);
424
425	/* Emit colorbuffers. */
426	/* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */
427	for (i = 0; i < 8 && i < ctx->framebuffer.state.nr_cbufs; i++) {
428		struct r600_surface *cb = (struct r600_surface*)ctx->framebuffer.state.cbufs[i];
429		unsigned reloc = r600_context_bo_reloc(&ctx->b, &ctx->b.rings.gfx,
430						       (struct r600_resource*)cb->base.texture,
431						       RADEON_USAGE_READWRITE,
432						       RADEON_PRIO_SHADER_RESOURCE_RW);
433
434		r600_write_compute_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7);
435		radeon_emit(cs, cb->cb_color_base);	/* R_028C60_CB_COLOR0_BASE */
436		radeon_emit(cs, cb->cb_color_pitch);	/* R_028C64_CB_COLOR0_PITCH */
437		radeon_emit(cs, cb->cb_color_slice);	/* R_028C68_CB_COLOR0_SLICE */
438		radeon_emit(cs, cb->cb_color_view);	/* R_028C6C_CB_COLOR0_VIEW */
439		radeon_emit(cs, cb->cb_color_info);	/* R_028C70_CB_COLOR0_INFO */
440		radeon_emit(cs, cb->cb_color_attrib);	/* R_028C74_CB_COLOR0_ATTRIB */
441		radeon_emit(cs, cb->cb_color_dim);		/* R_028C78_CB_COLOR0_DIM */
442
443		radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */
444		radeon_emit(cs, reloc);
445
446		if (!ctx->keep_tiling_flags) {
447			radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C70_CB_COLOR0_INFO */
448			radeon_emit(cs, reloc);
449		}
450
451		radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */
452		radeon_emit(cs, reloc);
453	}
454	if (ctx->keep_tiling_flags) {
455		for (; i < 8 ; i++) {
456			r600_write_compute_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
457						       S_028C70_FORMAT(V_028C70_COLOR_INVALID));
458		}
459		for (; i < 12; i++) {
460			r600_write_compute_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C,
461						       S_028C70_FORMAT(V_028C70_COLOR_INVALID));
462		}
463	}
464
465	/* Set CB_TARGET_MASK  XXX: Use cb_misc_state */
466	r600_write_compute_context_reg(cs, R_028238_CB_TARGET_MASK,
467					ctx->compute_cb_target_mask);
468
469
470	/* Emit vertex buffer state */
471	ctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(ctx->cs_vertex_buffer_state.dirty_mask);
472	r600_emit_atom(ctx, &ctx->cs_vertex_buffer_state.atom);
473
474	/* Emit constant buffer state */
475	r600_emit_atom(ctx, &ctx->constbuf_state[PIPE_SHADER_COMPUTE].atom);
476
477	/* Emit compute shader state */
478	r600_emit_atom(ctx, &ctx->cs_shader_state.atom);
479
480	/* Emit dispatch state and dispatch packet */
481	evergreen_emit_direct_dispatch(ctx, block_layout, grid_layout);
482
483	/* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff
484	 */
485	ctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE |
486		      R600_CONTEXT_INV_VERTEX_CACHE |
487	              R600_CONTEXT_INV_TEX_CACHE;
488	r600_flush_emit(ctx);
489	ctx->b.flags = 0;
490
491	if (ctx->b.chip_class >= CAYMAN) {
492		cs->buf[cs->cdw++] = PKT3(PKT3_EVENT_WRITE, 0, 0);
493		cs->buf[cs->cdw++] = EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4);
494		/* DEALLOC_STATE prevents the GPU from hanging when a
495		 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT
496		 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set.
497		 */
498		cs->buf[cs->cdw++] = PKT3C(PKT3_DEALLOC_STATE, 0, 0);
499		cs->buf[cs->cdw++] = 0;
500	}
501
502#if 0
503	COMPUTE_DBG(ctx->screen, "cdw: %i\n", cs->cdw);
504	for (i = 0; i < cs->cdw; i++) {
505		COMPUTE_DBG(ctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]);
506	}
507#endif
508
509}
510
511
512/**
513 * Emit function for r600_cs_shader_state atom
514 */
515void evergreen_emit_cs_shader(
516		struct r600_context *rctx,
517		struct r600_atom *atom)
518{
519	struct r600_cs_shader_state *state =
520					(struct r600_cs_shader_state*)atom;
521	struct r600_pipe_compute *shader = state->shader;
522	struct r600_kernel *kernel = &shader->kernels[state->kernel_index];
523	struct radeon_winsys_cs *cs = rctx->b.rings.gfx.cs;
524	uint64_t va;
525
526	va = r600_resource_va(&rctx->screen->b.b, &kernel->code_bo->b.b);
527
528	r600_write_compute_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3);
529	radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */
530	radeon_emit(cs,           /* R_0288D4_SQ_PGM_RESOURCES_LS */
531			S_0288D4_NUM_GPRS(kernel->bc.ngpr)
532			| S_0288D4_STACK_SIZE(kernel->bc.nstack));
533	radeon_emit(cs, 0);	/* R_0288D8_SQ_PGM_RESOURCES_LS_2 */
534
535	radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0));
536	radeon_emit(cs, r600_context_bo_reloc(&rctx->b, &rctx->b.rings.gfx,
537					      kernel->code_bo, RADEON_USAGE_READ,
538					      RADEON_PRIO_SHADER_DATA));
539}
540
541static void evergreen_launch_grid(
542		struct pipe_context *ctx_,
543		const uint *block_layout, const uint *grid_layout,
544		uint32_t pc, const void *input)
545{
546	struct r600_context *ctx = (struct r600_context *)ctx_;
547
548	struct r600_pipe_compute *shader = ctx->cs_shader_state.shader;
549	struct r600_kernel *kernel = &shader->kernels[pc];
550
551	COMPUTE_DBG(ctx->screen, "*** evergreen_launch_grid: pc = %u\n", pc);
552
553#ifdef HAVE_OPENCL
554
555	if (!kernel->code_bo) {
556		void *p;
557		struct r600_bytecode *bc = &kernel->bc;
558		LLVMModuleRef mod = kernel->llvm_module;
559		boolean use_kill = false;
560		bool dump = (ctx->screen->b.debug_flags & DBG_CS) != 0;
561		unsigned use_sb = ctx->screen->b.debug_flags & DBG_SB_CS;
562		unsigned sb_disasm = use_sb ||
563			(ctx->screen->b.debug_flags & DBG_SB_DISASM);
564
565		r600_bytecode_init(bc, ctx->b.chip_class, ctx->b.family,
566			   ctx->screen->has_compressed_msaa_texturing);
567		bc->type = TGSI_PROCESSOR_COMPUTE;
568		bc->isa = ctx->isa;
569		r600_llvm_compile(mod, ctx->b.family, bc, &use_kill, dump);
570
571		if (dump && !sb_disasm) {
572			r600_bytecode_disasm(bc);
573		} else if ((dump && sb_disasm) || use_sb) {
574			if (r600_sb_bytecode_process(ctx, bc, NULL, dump, use_sb))
575				R600_ERR("r600_sb_bytecode_process failed!\n");
576		}
577
578		kernel->code_bo = r600_compute_buffer_alloc_vram(ctx->screen,
579							kernel->bc.ndw * 4);
580		p = r600_buffer_map_sync_with_rings(&ctx->b, kernel->code_bo, PIPE_TRANSFER_WRITE);
581		memcpy(p, kernel->bc.bytecode, kernel->bc.ndw * 4);
582		ctx->b.ws->buffer_unmap(kernel->code_bo->cs_buf);
583	}
584#endif
585	shader->active_kernel = kernel;
586	ctx->cs_shader_state.kernel_index = pc;
587	evergreen_compute_upload_input(ctx_, block_layout, grid_layout, input);
588	compute_emit_cs(ctx, block_layout, grid_layout);
589}
590
591static void evergreen_set_compute_resources(struct pipe_context * ctx_,
592		unsigned start, unsigned count,
593		struct pipe_surface ** surfaces)
594{
595	struct r600_context *ctx = (struct r600_context *)ctx_;
596	struct r600_surface **resources = (struct r600_surface **)surfaces;
597
598	COMPUTE_DBG(ctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n",
599			start, count);
600
601	for (int i = 0; i < count; i++)	{
602		/* The First two vertex buffers are reserved for parameters and
603		 * global buffers. */
604		unsigned vtx_id = 2 + i;
605		if (resources[i]) {
606			struct r600_resource_global *buffer =
607				(struct r600_resource_global*)
608				resources[i]->base.texture;
609			if (resources[i]->base.writable) {
610				assert(i+1 < 12);
611
612				evergreen_set_rat(ctx->cs_shader_state.shader, i+1,
613				(struct r600_resource *)resources[i]->base.texture,
614				buffer->chunk->start_in_dw*4,
615				resources[i]->base.texture->width0);
616			}
617
618			evergreen_cs_set_vertex_buffer(ctx, vtx_id,
619					buffer->chunk->start_in_dw * 4,
620					resources[i]->base.texture);
621		}
622	}
623}
624
625void evergreen_set_cs_sampler_view(struct pipe_context *ctx_,
626		unsigned start_slot, unsigned count,
627		struct pipe_sampler_view **views)
628{
629	struct r600_pipe_sampler_view **resource =
630		(struct r600_pipe_sampler_view **)views;
631
632	for (int i = 0; i < count; i++)	{
633		if (resource[i]) {
634			assert(i+1 < 12);
635			/* XXX: Implement */
636			assert(!"Compute samplers not implemented.");
637			///FETCH0 = VTX0 (param buffer),
638			//FETCH1 = VTX1 (global buffer pool), FETCH2... = TEX
639		}
640	}
641}
642
643
644static void evergreen_set_global_binding(
645	struct pipe_context *ctx_, unsigned first, unsigned n,
646	struct pipe_resource **resources,
647	uint32_t **handles)
648{
649	struct r600_context *ctx = (struct r600_context *)ctx_;
650	struct compute_memory_pool *pool = ctx->screen->global_pool;
651	struct r600_resource_global **buffers =
652		(struct r600_resource_global **)resources;
653
654	COMPUTE_DBG(ctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n",
655			first, n);
656
657	if (!resources) {
658		/* XXX: Unset */
659		return;
660	}
661
662	/* We mark these items for promotion to the pool if they
663	 * aren't already there */
664	for (int i = 0; i < n; i++) {
665		struct compute_memory_item *item = buffers[i]->chunk;
666
667		if (!is_item_in_pool(item))
668			buffers[i]->chunk->status |= ITEM_FOR_PROMOTING;
669	}
670
671	compute_memory_finalize_pending(pool, ctx_);
672
673	for (int i = 0; i < n; i++)
674	{
675		uint32_t buffer_offset;
676		uint32_t handle;
677		assert(resources[i]->target == PIPE_BUFFER);
678		assert(resources[i]->bind & PIPE_BIND_GLOBAL);
679
680		buffer_offset = util_le32_to_cpu(*(handles[i]));
681		handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4;
682
683		*(handles[i]) = util_cpu_to_le32(handle);
684	}
685
686	evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4);
687	evergreen_cs_set_vertex_buffer(ctx, 1, 0,
688				(struct pipe_resource*)pool->bo);
689}
690
691/**
692 * This function initializes all the compute specific registers that need to
693 * be initialized for each compute command stream.  Registers that are common
694 * to both compute and 3D will be initialized at the beginning of each compute
695 * command stream by the start_cs_cmd atom.  However, since the SET_CONTEXT_REG
696 * packet requires that the shader type bit be set, we must initialize all
697 * context registers needed for compute in this function.  The registers
698 * intialized by the start_cs_cmd atom can be found in evereen_state.c in the
699 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending
700 * on the GPU family.
701 */
702void evergreen_init_atom_start_compute_cs(struct r600_context *ctx)
703{
704	struct r600_command_buffer *cb = &ctx->start_compute_cs_cmd;
705	int num_threads;
706	int num_stack_entries;
707
708	/* since all required registers are initialised in the
709	 * start_compute_cs_cmd atom, we can EMIT_EARLY here.
710	 */
711	r600_init_command_buffer(cb, 256);
712	cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE;
713
714	/* This must be first. */
715	r600_store_value(cb, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
716	r600_store_value(cb, 0x80000000);
717	r600_store_value(cb, 0x80000000);
718
719	/* We're setting config registers here. */
720	r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0));
721	r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
722
723	switch (ctx->b.family) {
724	case CHIP_CEDAR:
725	default:
726		num_threads = 128;
727		num_stack_entries = 256;
728		break;
729	case CHIP_REDWOOD:
730		num_threads = 128;
731		num_stack_entries = 256;
732		break;
733	case CHIP_JUNIPER:
734		num_threads = 128;
735		num_stack_entries = 512;
736		break;
737	case CHIP_CYPRESS:
738	case CHIP_HEMLOCK:
739		num_threads = 128;
740		num_stack_entries = 512;
741		break;
742	case CHIP_PALM:
743		num_threads = 128;
744		num_stack_entries = 256;
745		break;
746	case CHIP_SUMO:
747		num_threads = 128;
748		num_stack_entries = 256;
749		break;
750	case CHIP_SUMO2:
751		num_threads = 128;
752		num_stack_entries = 512;
753		break;
754	case CHIP_BARTS:
755		num_threads = 128;
756		num_stack_entries = 512;
757		break;
758	case CHIP_TURKS:
759		num_threads = 128;
760		num_stack_entries = 256;
761		break;
762	case CHIP_CAICOS:
763		num_threads = 128;
764		num_stack_entries = 256;
765		break;
766	}
767
768	/* Config Registers */
769	if (ctx->b.chip_class < CAYMAN)
770		evergreen_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
771					   ctx->screen->b.info.drm_minor);
772	else
773		cayman_init_common_regs(cb, ctx->b.chip_class, ctx->b.family,
774					ctx->screen->b.info.drm_minor);
775
776	/* The primitive type always needs to be POINTLIST for compute. */
777	r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE,
778						V_008958_DI_PT_POINTLIST);
779
780	if (ctx->b.chip_class < CAYMAN) {
781
782		/* These registers control which simds can be used by each stage.
783		 * The default for these registers is 0xffffffff, which means
784		 * all simds are available for each stage.  It's possible we may
785		 * want to play around with these in the future, but for now
786		 * the default value is fine.
787		 *
788		 * R_008E20_SQ_STATIC_THREAD_MGMT1
789		 * R_008E24_SQ_STATIC_THREAD_MGMT2
790		 * R_008E28_SQ_STATIC_THREAD_MGMT3
791		 */
792
793		/* XXX: We may need to adjust the thread and stack resouce
794		 * values for 3D/compute interop */
795
796		r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5);
797
798		/* R_008C18_SQ_THREAD_RESOURCE_MGMT_1
799		 * Set the number of threads used by the PS/VS/GS/ES stage to
800		 * 0.
801		 */
802		r600_store_value(cb, 0);
803
804		/* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2
805		 * Set the number of threads used by the CS (aka LS) stage to
806		 * the maximum number of threads and set the number of threads
807		 * for the HS stage to 0. */
808		r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads));
809
810		/* R_008C20_SQ_STACK_RESOURCE_MGMT_1
811		 * Set the Control Flow stack entries to 0 for PS/VS stages */
812		r600_store_value(cb, 0);
813
814		/* R_008C24_SQ_STACK_RESOURCE_MGMT_2
815		 * Set the Control Flow stack entries to 0 for GS/ES stages */
816		r600_store_value(cb, 0);
817
818		/* R_008C28_SQ_STACK_RESOURCE_MGMT_3
819		 * Set the Contol Flow stack entries to 0 for the HS stage, and
820		 * set it to the maximum value for the CS (aka LS) stage. */
821		r600_store_value(cb,
822			S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries));
823	}
824	/* Give the compute shader all the available LDS space.
825	 * NOTE: This only sets the maximum number of dwords that a compute
826	 * shader can allocate.  When a shader is executed, we still need to
827	 * allocate the appropriate amount of LDS dwords using the
828	 * CM_R_0288E8_SQ_LDS_ALLOC register.
829	 */
830	if (ctx->b.chip_class < CAYMAN) {
831		r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT,
832			S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192));
833	} else {
834		r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT,
835			S_0286FC_NUM_PS_LDS(0) |
836			S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */
837	}
838
839	/* Context Registers */
840
841	if (ctx->b.chip_class < CAYMAN) {
842		/* workaround for hw issues with dyn gpr - must set all limits
843		 * to 240 instead of 0, 0x1e == 240 / 8
844		 */
845		r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1,
846				S_028838_PS_GPRS(0x1e) |
847				S_028838_VS_GPRS(0x1e) |
848				S_028838_GS_GPRS(0x1e) |
849				S_028838_ES_GPRS(0x1e) |
850				S_028838_HS_GPRS(0x1e) |
851				S_028838_LS_GPRS(0x1e));
852	}
853
854	/* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */
855	r600_store_context_reg(cb, R_028A40_VGT_GS_MODE,
856		S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1));
857
858	r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/);
859
860	r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL,
861						S_0286E8_TID_IN_GROUP_ENA
862						| S_0286E8_TGID_ENA
863						| S_0286E8_DISABLE_INDEX_PACK)
864						;
865
866	/* The LOOP_CONST registers are an optimizations for loops that allows
867	 * you to store the initial counter, increment value, and maximum
868	 * counter value in a register so that hardware can calculate the
869	 * correct number of iterations for the loop, so that you don't need
870	 * to have the loop counter in your shader code.  We don't currently use
871	 * this optimization, so we must keep track of the counter in the
872	 * shader and use a break instruction to exit loops.  However, the
873	 * hardware will still uses this register to determine when to exit a
874	 * loop, so we need to initialize the counter to 0, set the increment
875	 * value to 1 and the maximum counter value to the 4095 (0xfff) which
876	 * is the maximum value allowed.  This gives us a maximum of 4096
877	 * iterations for our loops, but hopefully our break instruction will
878	 * execute before some time before the 4096th iteration.
879	 */
880	eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF);
881}
882
883void evergreen_init_compute_state_functions(struct r600_context *ctx)
884{
885	ctx->b.b.create_compute_state = evergreen_create_compute_state;
886	ctx->b.b.delete_compute_state = evergreen_delete_compute_state;
887	ctx->b.b.bind_compute_state = evergreen_bind_compute_state;
888//	 ctx->context.create_sampler_view = evergreen_compute_create_sampler_view;
889	ctx->b.b.set_compute_resources = evergreen_set_compute_resources;
890	ctx->b.b.set_global_binding = evergreen_set_global_binding;
891	ctx->b.b.launch_grid = evergreen_launch_grid;
892
893	/* We always use at least one vertex buffer for parameters (id = 1)*/
894	ctx->cs_vertex_buffer_state.enabled_mask =
895	ctx->cs_vertex_buffer_state.dirty_mask = 0x2;
896}
897
898struct pipe_resource *r600_compute_global_buffer_create(
899	struct pipe_screen *screen,
900	const struct pipe_resource *templ)
901{
902	struct r600_resource_global* result = NULL;
903	struct r600_screen* rscreen = NULL;
904	int size_in_dw = 0;
905
906	assert(templ->target == PIPE_BUFFER);
907	assert(templ->bind & PIPE_BIND_GLOBAL);
908	assert(templ->array_size == 1 || templ->array_size == 0);
909	assert(templ->depth0 == 1 || templ->depth0 == 0);
910	assert(templ->height0 == 1 || templ->height0 == 0);
911
912	result = (struct r600_resource_global*)
913	CALLOC(sizeof(struct r600_resource_global), 1);
914	rscreen = (struct r600_screen*)screen;
915
916	COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n");
917	COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0,
918			templ->array_size);
919
920	result->base.b.vtbl = &r600_global_buffer_vtbl;
921	result->base.b.b.screen = screen;
922	result->base.b.b = *templ;
923	pipe_reference_init(&result->base.b.b.reference, 1);
924
925	size_in_dw = (templ->width0+3) / 4;
926
927	result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw);
928
929	if (result->chunk == NULL)
930	{
931		free(result);
932		return NULL;
933	}
934
935	return &result->base.b.b;
936}
937
938void r600_compute_global_buffer_destroy(
939	struct pipe_screen *screen,
940	struct pipe_resource *res)
941{
942	struct r600_resource_global* buffer = NULL;
943	struct r600_screen* rscreen = NULL;
944
945	assert(res->target == PIPE_BUFFER);
946	assert(res->bind & PIPE_BIND_GLOBAL);
947
948	buffer = (struct r600_resource_global*)res;
949	rscreen = (struct r600_screen*)screen;
950
951	compute_memory_free(rscreen->global_pool, buffer->chunk->id);
952
953	buffer->chunk = NULL;
954	free(res);
955}
956
957void *r600_compute_global_transfer_map(
958	struct pipe_context *ctx_,
959	struct pipe_resource *resource,
960	unsigned level,
961	unsigned usage,
962	const struct pipe_box *box,
963	struct pipe_transfer **ptransfer)
964{
965	struct r600_context *rctx = (struct r600_context*)ctx_;
966	struct compute_memory_pool *pool = rctx->screen->global_pool;
967	struct r600_resource_global* buffer =
968		(struct r600_resource_global*)resource;
969
970	struct pipe_resource *dst;
971	unsigned offset = box->x;
972
973	if (is_item_in_pool(buffer->chunk)) {
974		compute_memory_demote_item(pool, buffer->chunk, ctx_);
975	}
976
977	dst = (struct pipe_resource*)buffer->chunk->real_buffer;
978
979	if (usage & PIPE_TRANSFER_READ)
980		buffer->chunk->status |= ITEM_MAPPED_FOR_READING;
981
982	COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n"
983			"level = %u, usage = %u, box(x = %u, y = %u, z = %u "
984			"width = %u, height = %u, depth = %u)\n", level, usage,
985			box->x, box->y, box->z, box->width, box->height,
986			box->depth);
987	COMPUTE_DBG(rctx->screen, "Buffer id = %u offset = "
988		"%u (box.x)\n", buffer->chunk->id, box->x);
989
990
991	assert(resource->target == PIPE_BUFFER);
992	assert(resource->bind & PIPE_BIND_GLOBAL);
993	assert(box->x >= 0);
994	assert(box->y == 0);
995	assert(box->z == 0);
996
997	///TODO: do it better, mapping is not possible if the pool is too big
998	return pipe_buffer_map_range(ctx_, dst,
999			offset, box->width, usage, ptransfer);
1000}
1001
1002void r600_compute_global_transfer_unmap(
1003	struct pipe_context *ctx_,
1004	struct pipe_transfer* transfer)
1005{
1006	/* struct r600_resource_global are not real resources, they just map
1007	 * to an offset within the compute memory pool.  The function
1008	 * r600_compute_global_transfer_map() maps the memory pool
1009	 * resource rather than the struct r600_resource_global passed to
1010	 * it as an argument and then initalizes ptransfer->resource with
1011	 * the memory pool resource (via pipe_buffer_map_range).
1012	 * When transfer_unmap is called it uses the memory pool's
1013	 * vtable which calls r600_buffer_transfer_map() rather than
1014	 * this function.
1015	 */
1016	assert (!"This function should not be called");
1017}
1018
1019void r600_compute_global_transfer_flush_region(
1020	struct pipe_context *ctx_,
1021	struct pipe_transfer *transfer,
1022	const struct pipe_box *box)
1023{
1024	assert(0 && "TODO");
1025}
1026
1027void r600_compute_global_transfer_inline_write(
1028	struct pipe_context *pipe,
1029	struct pipe_resource *resource,
1030	unsigned level,
1031	unsigned usage,
1032	const struct pipe_box *box,
1033	const void *data,
1034	unsigned stride,
1035	unsigned layer_stride)
1036{
1037	assert(0 && "TODO");
1038}
1039