svga_tgsi_vgpu10.c revision a4ace98a9733b3e83d971f4871c2908749c0e5c8
1/**********************************************************
2 * Copyright 1998-2013 VMware, Inc.  All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person
5 * obtaining a copy of this software and associated documentation
6 * files (the "Software"), to deal in the Software without
7 * restriction, including without limitation the rights to use, copy,
8 * modify, merge, publish, distribute, sublicense, and/or sell copies
9 * of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 **********************************************************/
25
26/**
27 * @file svga_tgsi_vgpu10.c
28 *
29 * TGSI -> VGPU10 shader translation.
30 *
31 * \author Mingcheng Chen
32 * \author Brian Paul
33 */
34
35#include "pipe/p_compiler.h"
36#include "pipe/p_shader_tokens.h"
37#include "pipe/p_defines.h"
38#include "tgsi/tgsi_build.h"
39#include "tgsi/tgsi_dump.h"
40#include "tgsi/tgsi_info.h"
41#include "tgsi/tgsi_parse.h"
42#include "tgsi/tgsi_scan.h"
43#include "tgsi/tgsi_two_side.h"
44#include "tgsi/tgsi_aa_point.h"
45#include "tgsi/tgsi_util.h"
46#include "util/u_math.h"
47#include "util/u_memory.h"
48#include "util/u_bitmask.h"
49#include "util/u_debug.h"
50#include "util/u_pstipple.h"
51
52#include "svga_context.h"
53#include "svga_debug.h"
54#include "svga_link.h"
55#include "svga_shader.h"
56#include "svga_tgsi.h"
57
58#include "VGPU10ShaderTokens.h"
59
60
61#define INVALID_INDEX 99999
62#define MAX_INTERNAL_TEMPS 3
63#define MAX_SYSTEM_VALUES 4
64#define MAX_IMMEDIATE_COUNT \
65        (VGPU10_MAX_IMMEDIATE_CONSTANT_BUFFER_ELEMENT_COUNT/4)
66#define MAX_TEMP_ARRAYS 64  /* Enough? */
67
68
69/**
70 * Clipping is complicated.  There's four different cases which we
71 * handle during VS/GS shader translation:
72 */
73enum clipping_mode
74{
75   CLIP_NONE,     /**< No clipping enabled */
76   CLIP_LEGACY,   /**< The shader has no clipping declarations or code but
77                   * one or more user-defined clip planes are enabled.  We
78                   * generate extra code to emit clip distances.
79                   */
80   CLIP_DISTANCE, /**< The shader already declares clip distance output
81                   * registers and has code to write to them.
82                   */
83   CLIP_VERTEX    /**< The shader declares a clip vertex output register and
84                  * has code that writes to the register.  We convert the
85                  * clipvertex position into one or more clip distances.
86                  */
87};
88
89
90struct svga_shader_emitter_v10
91{
92   /* The token output buffer */
93   unsigned size;
94   char *buf;
95   char *ptr;
96
97   /* Information about the shader and state (does not change) */
98   struct svga_compile_key key;
99   struct tgsi_shader_info info;
100   unsigned unit;
101
102   unsigned inst_start_token;
103   boolean discard_instruction; /**< throw away current instruction? */
104
105   union tgsi_immediate_data immediates[MAX_IMMEDIATE_COUNT][4];
106   unsigned num_immediates;      /**< Number of immediates emitted */
107   unsigned common_immediate_pos[8];  /**< literals for common immediates */
108   unsigned num_common_immediates;
109   boolean immediates_emitted;
110
111   unsigned num_outputs;      /**< include any extra outputs */
112                              /**  The first extra output is reserved for
113                               *   non-adjusted vertex position for
114                               *   stream output purpose
115                               */
116
117   /* Temporary Registers */
118   unsigned num_shader_temps; /**< num of temps used by original shader */
119   unsigned internal_temp_count;  /**< currently allocated internal temps */
120   struct {
121      unsigned start, size;
122   } temp_arrays[MAX_TEMP_ARRAYS];
123   unsigned num_temp_arrays;
124
125   /** Map TGSI temp registers to VGPU10 temp array IDs and indexes */
126   struct {
127      unsigned arrayId, index;
128   } temp_map[VGPU10_MAX_TEMPS]; /**< arrayId, element */
129
130   /** Number of constants used by original shader for each constant buffer.
131    * The size should probably always match with that of svga_state.constbufs.
132    */
133   unsigned num_shader_consts[SVGA_MAX_CONST_BUFS];
134
135   /* Samplers */
136   unsigned num_samplers;
137   ubyte sampler_target[PIPE_MAX_SAMPLERS];  /**< TGSI_TEXTURE_x */
138   ubyte sampler_return_type[PIPE_MAX_SAMPLERS];  /**< TGSI_RETURN_TYPE_x */
139
140   /* Address regs (really implemented with temps) */
141   unsigned num_address_regs;
142   unsigned address_reg_index[MAX_VGPU10_ADDR_REGS];
143
144   /* Output register usage masks */
145   ubyte output_usage_mask[PIPE_MAX_SHADER_OUTPUTS];
146
147   /* To map TGSI system value index to VGPU shader input indexes */
148   ubyte system_value_indexes[MAX_SYSTEM_VALUES];
149
150   struct {
151      /* vertex position scale/translation */
152      unsigned out_index;  /**< the real position output reg */
153      unsigned tmp_index;  /**< the fake/temp position output reg */
154      unsigned so_index;   /**< the non-adjusted position output reg */
155      unsigned prescale_scale_index, prescale_trans_index;
156      boolean  need_prescale;
157   } vposition;
158
159   /* For vertex shaders only */
160   struct {
161      /* viewport constant */
162      unsigned viewport_index;
163
164      /* temp index of adjusted vertex attributes */
165      unsigned adjusted_input[PIPE_MAX_SHADER_INPUTS];
166   } vs;
167
168   /* For fragment shaders only */
169   struct {
170      /* apha test */
171      unsigned color_out_index[PIPE_MAX_COLOR_BUFS];  /**< the real color output regs */
172      unsigned color_tmp_index;  /**< fake/temp color output reg */
173      unsigned alpha_ref_index;  /**< immediate constant for alpha ref */
174
175      /* front-face */
176      unsigned face_input_index; /**< real fragment shader face reg (bool) */
177      unsigned face_tmp_index;   /**< temp face reg converted to -1 / +1 */
178
179      unsigned pstipple_sampler_unit;
180
181      unsigned fragcoord_input_index;  /**< real fragment position input reg */
182      unsigned fragcoord_tmp_index;    /**< 1/w modified position temp reg */
183   } fs;
184
185   /* For geometry shaders only */
186   struct {
187      VGPU10_PRIMITIVE prim_type;/**< VGPU10 primitive type */
188      VGPU10_PRIMITIVE_TOPOLOGY prim_topology; /**< VGPU10 primitive topology */
189      unsigned input_size;       /**< size of input arrays */
190      unsigned prim_id_index;    /**< primitive id register index */
191      unsigned max_out_vertices; /**< maximum number of output vertices */
192   } gs;
193
194   /* For vertex or geometry shaders */
195   enum clipping_mode clip_mode;
196   unsigned clip_dist_out_index; /**< clip distance output register index */
197   unsigned clip_dist_tmp_index; /**< clip distance temporary register */
198   unsigned clip_dist_so_index;  /**< clip distance shadow copy */
199
200   /** Index of temporary holding the clipvertex coordinate */
201   unsigned clip_vertex_out_index; /**< clip vertex output register index */
202   unsigned clip_vertex_tmp_index; /**< clip vertex temporary index */
203
204   /* user clip plane constant slot indexes */
205   unsigned clip_plane_const[PIPE_MAX_CLIP_PLANES];
206
207   unsigned num_output_writes;
208   boolean constant_color_output;
209
210   boolean uses_flat_interp;
211
212   /* For all shaders: const reg index for RECT coord scaling */
213   unsigned texcoord_scale_index[PIPE_MAX_SAMPLERS];
214
215   /* For all shaders: const reg index for texture buffer size */
216   unsigned texture_buffer_size_index[PIPE_MAX_SAMPLERS];
217
218   /* VS/GS/FS Linkage info */
219   struct shader_linkage linkage;
220
221   bool register_overflow;  /**< Set if we exceed a VGPU10 register limit */
222};
223
224
225static boolean
226emit_post_helpers(struct svga_shader_emitter_v10 *emit);
227
228static boolean
229emit_vertex(struct svga_shader_emitter_v10 *emit,
230            const struct tgsi_full_instruction *inst);
231
232static char err_buf[128];
233
234static boolean
235expand(struct svga_shader_emitter_v10 *emit)
236{
237   char *new_buf;
238   unsigned newsize = emit->size * 2;
239
240   if (emit->buf != err_buf)
241      new_buf = REALLOC(emit->buf, emit->size, newsize);
242   else
243      new_buf = NULL;
244
245   if (!new_buf) {
246      emit->ptr = err_buf;
247      emit->buf = err_buf;
248      emit->size = sizeof(err_buf);
249      return FALSE;
250   }
251
252   emit->size = newsize;
253   emit->ptr = new_buf + (emit->ptr - emit->buf);
254   emit->buf = new_buf;
255   return TRUE;
256}
257
258/**
259 * Create and initialize a new svga_shader_emitter_v10 object.
260 */
261static struct svga_shader_emitter_v10 *
262alloc_emitter(void)
263{
264   struct svga_shader_emitter_v10 *emit = CALLOC(1, sizeof(*emit));
265
266   if (!emit)
267      return NULL;
268
269   /* to initialize the output buffer */
270   emit->size = 512;
271   if (!expand(emit)) {
272      FREE(emit);
273      return NULL;
274   }
275   return emit;
276}
277
278/**
279 * Free an svga_shader_emitter_v10 object.
280 */
281static void
282free_emitter(struct svga_shader_emitter_v10 *emit)
283{
284   assert(emit);
285   FREE(emit->buf);    /* will be NULL if translation succeeded */
286   FREE(emit);
287}
288
289static inline boolean
290reserve(struct svga_shader_emitter_v10 *emit,
291        unsigned nr_dwords)
292{
293   while (emit->ptr - emit->buf + nr_dwords * sizeof(uint32) >= emit->size) {
294      if (!expand(emit))
295         return FALSE;
296   }
297
298   return TRUE;
299}
300
301static boolean
302emit_dword(struct svga_shader_emitter_v10 *emit, uint32 dword)
303{
304   if (!reserve(emit, 1))
305      return FALSE;
306
307   *(uint32 *)emit->ptr = dword;
308   emit->ptr += sizeof dword;
309   return TRUE;
310}
311
312static boolean
313emit_dwords(struct svga_shader_emitter_v10 *emit,
314            const uint32 *dwords,
315            unsigned nr)
316{
317   if (!reserve(emit, nr))
318      return FALSE;
319
320   memcpy(emit->ptr, dwords, nr * sizeof *dwords);
321   emit->ptr += nr * sizeof *dwords;
322   return TRUE;
323}
324
325/** Return the number of tokens in the emitter's buffer */
326static unsigned
327emit_get_num_tokens(const struct svga_shader_emitter_v10 *emit)
328{
329   return (emit->ptr - emit->buf) / sizeof(unsigned);
330}
331
332
333/**
334 * Check for register overflow.  If we overflow we'll set an
335 * error flag.  This function can be called for register declarations
336 * or use as src/dst instruction operands.
337 * \param type  register type.  One of VGPU10_OPERAND_TYPE_x
338                or VGPU10_OPCODE_DCL_x
339 * \param index  the register index
340 */
341static void
342check_register_index(struct svga_shader_emitter_v10 *emit,
343                     unsigned operandType, unsigned index)
344{
345   bool overflow_before = emit->register_overflow;
346
347   switch (operandType) {
348   case VGPU10_OPERAND_TYPE_TEMP:
349   case VGPU10_OPERAND_TYPE_INDEXABLE_TEMP:
350   case VGPU10_OPCODE_DCL_TEMPS:
351      if (index >= VGPU10_MAX_TEMPS) {
352         emit->register_overflow = TRUE;
353      }
354      break;
355   case VGPU10_OPERAND_TYPE_CONSTANT_BUFFER:
356   case VGPU10_OPCODE_DCL_CONSTANT_BUFFER:
357      if (index >= VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) {
358         emit->register_overflow = TRUE;
359      }
360      break;
361   case VGPU10_OPERAND_TYPE_INPUT:
362   case VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID:
363   case VGPU10_OPCODE_DCL_INPUT:
364   case VGPU10_OPCODE_DCL_INPUT_SGV:
365   case VGPU10_OPCODE_DCL_INPUT_SIV:
366   case VGPU10_OPCODE_DCL_INPUT_PS:
367   case VGPU10_OPCODE_DCL_INPUT_PS_SGV:
368   case VGPU10_OPCODE_DCL_INPUT_PS_SIV:
369      if ((emit->unit == PIPE_SHADER_VERTEX &&
370           index >= VGPU10_MAX_VS_INPUTS) ||
371          (emit->unit == PIPE_SHADER_GEOMETRY &&
372           index >= VGPU10_MAX_GS_INPUTS) ||
373          (emit->unit == PIPE_SHADER_FRAGMENT &&
374           index >= VGPU10_MAX_FS_INPUTS)) {
375         emit->register_overflow = TRUE;
376      }
377      break;
378   case VGPU10_OPERAND_TYPE_OUTPUT:
379   case VGPU10_OPCODE_DCL_OUTPUT:
380   case VGPU10_OPCODE_DCL_OUTPUT_SGV:
381   case VGPU10_OPCODE_DCL_OUTPUT_SIV:
382      if ((emit->unit == PIPE_SHADER_VERTEX &&
383           index >= VGPU10_MAX_VS_OUTPUTS) ||
384          (emit->unit == PIPE_SHADER_GEOMETRY &&
385           index >= VGPU10_MAX_GS_OUTPUTS) ||
386          (emit->unit == PIPE_SHADER_FRAGMENT &&
387           index >= VGPU10_MAX_FS_OUTPUTS)) {
388         emit->register_overflow = TRUE;
389      }
390      break;
391   case VGPU10_OPERAND_TYPE_SAMPLER:
392   case VGPU10_OPCODE_DCL_SAMPLER:
393      if (index >= VGPU10_MAX_SAMPLERS) {
394         emit->register_overflow = TRUE;
395      }
396      break;
397   case VGPU10_OPERAND_TYPE_RESOURCE:
398   case VGPU10_OPCODE_DCL_RESOURCE:
399      if (index >= VGPU10_MAX_RESOURCES) {
400         emit->register_overflow = TRUE;
401      }
402      break;
403   case VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER:
404      if (index >= MAX_IMMEDIATE_COUNT) {
405         emit->register_overflow = TRUE;
406      }
407      break;
408   default:
409      assert(0);
410      ; /* nothing */
411   }
412
413   if (emit->register_overflow && !overflow_before) {
414      debug_printf("svga: vgpu10 register overflow (reg %u, index %u)\n",
415                   operandType, index);
416   }
417}
418
419
420/**
421 * Examine misc state to determine the clipping mode.
422 */
423static void
424determine_clipping_mode(struct svga_shader_emitter_v10 *emit)
425{
426   if (emit->info.num_written_clipdistance > 0) {
427      emit->clip_mode = CLIP_DISTANCE;
428   }
429   else if (emit->info.writes_clipvertex) {
430      emit->clip_mode = CLIP_VERTEX;
431   }
432   else if (emit->key.clip_plane_enable) {
433      emit->clip_mode = CLIP_LEGACY;
434   }
435   else {
436      emit->clip_mode = CLIP_NONE;
437   }
438}
439
440
441/**
442 * For clip distance register declarations and clip distance register
443 * writes we need to mask the declaration usage or instruction writemask
444 * (respectively) against the set of the really-enabled clipping planes.
445 *
446 * The piglit test spec/glsl-1.30/execution/clipping/vs-clip-distance-enables
447 * has a VS that writes to all 8 clip distance registers, but the plane enable
448 * flags are a subset of that.
449 *
450 * This function is used to apply the plane enable flags to the register
451 * declaration or instruction writemask.
452 *
453 * \param writemask  the declaration usage mask or instruction writemask
454 * \param clip_reg_index  which clip plane register is being declared/written.
455 *                        The legal values are 0 and 1 (two clip planes per
456 *                        register, for a total of 8 clip planes)
457 */
458static unsigned
459apply_clip_plane_mask(struct svga_shader_emitter_v10 *emit,
460                      unsigned writemask, unsigned clip_reg_index)
461{
462   unsigned shift;
463
464   assert(clip_reg_index < 2);
465
466   /* four clip planes per clip register: */
467   shift = clip_reg_index * 4;
468   writemask &= ((emit->key.clip_plane_enable >> shift) & 0xf);
469
470   return writemask;
471}
472
473
474/**
475 * Translate gallium shader type into VGPU10 type.
476 */
477static VGPU10_PROGRAM_TYPE
478translate_shader_type(unsigned type)
479{
480   switch (type) {
481   case PIPE_SHADER_VERTEX:
482      return VGPU10_VERTEX_SHADER;
483   case PIPE_SHADER_GEOMETRY:
484      return VGPU10_GEOMETRY_SHADER;
485   case PIPE_SHADER_FRAGMENT:
486      return VGPU10_PIXEL_SHADER;
487   default:
488      assert(!"Unexpected shader type");
489      return VGPU10_VERTEX_SHADER;
490   }
491}
492
493
494/**
495 * Translate a TGSI_OPCODE_x into a VGPU10_OPCODE_x
496 * Note: we only need to translate the opcodes for "simple" instructions,
497 * as seen below.  All other opcodes are handled/translated specially.
498 */
499static VGPU10_OPCODE_TYPE
500translate_opcode(unsigned opcode)
501{
502   switch (opcode) {
503   case TGSI_OPCODE_MOV:
504      return VGPU10_OPCODE_MOV;
505   case TGSI_OPCODE_MUL:
506      return VGPU10_OPCODE_MUL;
507   case TGSI_OPCODE_ADD:
508      return VGPU10_OPCODE_ADD;
509   case TGSI_OPCODE_DP3:
510      return VGPU10_OPCODE_DP3;
511   case TGSI_OPCODE_DP4:
512      return VGPU10_OPCODE_DP4;
513   case TGSI_OPCODE_MIN:
514      return VGPU10_OPCODE_MIN;
515   case TGSI_OPCODE_MAX:
516      return VGPU10_OPCODE_MAX;
517   case TGSI_OPCODE_MAD:
518      return VGPU10_OPCODE_MAD;
519   case TGSI_OPCODE_SQRT:
520      return VGPU10_OPCODE_SQRT;
521   case TGSI_OPCODE_FRC:
522      return VGPU10_OPCODE_FRC;
523   case TGSI_OPCODE_FLR:
524      return VGPU10_OPCODE_ROUND_NI;
525   case TGSI_OPCODE_FSEQ:
526      return VGPU10_OPCODE_EQ;
527   case TGSI_OPCODE_FSGE:
528      return VGPU10_OPCODE_GE;
529   case TGSI_OPCODE_FSNE:
530      return VGPU10_OPCODE_NE;
531   case TGSI_OPCODE_DDX:
532      return VGPU10_OPCODE_DERIV_RTX;
533   case TGSI_OPCODE_DDY:
534      return VGPU10_OPCODE_DERIV_RTY;
535   case TGSI_OPCODE_RET:
536      return VGPU10_OPCODE_RET;
537   case TGSI_OPCODE_DIV:
538      return VGPU10_OPCODE_DIV;
539   case TGSI_OPCODE_IDIV:
540      return VGPU10_OPCODE_IDIV;
541   case TGSI_OPCODE_DP2:
542      return VGPU10_OPCODE_DP2;
543   case TGSI_OPCODE_BRK:
544      return VGPU10_OPCODE_BREAK;
545   case TGSI_OPCODE_IF:
546      return VGPU10_OPCODE_IF;
547   case TGSI_OPCODE_ELSE:
548      return VGPU10_OPCODE_ELSE;
549   case TGSI_OPCODE_ENDIF:
550      return VGPU10_OPCODE_ENDIF;
551   case TGSI_OPCODE_CEIL:
552      return VGPU10_OPCODE_ROUND_PI;
553   case TGSI_OPCODE_I2F:
554      return VGPU10_OPCODE_ITOF;
555   case TGSI_OPCODE_NOT:
556      return VGPU10_OPCODE_NOT;
557   case TGSI_OPCODE_TRUNC:
558      return VGPU10_OPCODE_ROUND_Z;
559   case TGSI_OPCODE_SHL:
560      return VGPU10_OPCODE_ISHL;
561   case TGSI_OPCODE_AND:
562      return VGPU10_OPCODE_AND;
563   case TGSI_OPCODE_OR:
564      return VGPU10_OPCODE_OR;
565   case TGSI_OPCODE_XOR:
566      return VGPU10_OPCODE_XOR;
567   case TGSI_OPCODE_CONT:
568      return VGPU10_OPCODE_CONTINUE;
569   case TGSI_OPCODE_EMIT:
570      return VGPU10_OPCODE_EMIT;
571   case TGSI_OPCODE_ENDPRIM:
572      return VGPU10_OPCODE_CUT;
573   case TGSI_OPCODE_BGNLOOP:
574      return VGPU10_OPCODE_LOOP;
575   case TGSI_OPCODE_ENDLOOP:
576      return VGPU10_OPCODE_ENDLOOP;
577   case TGSI_OPCODE_ENDSUB:
578      return VGPU10_OPCODE_RET;
579   case TGSI_OPCODE_NOP:
580      return VGPU10_OPCODE_NOP;
581   case TGSI_OPCODE_BREAKC:
582      return VGPU10_OPCODE_BREAKC;
583   case TGSI_OPCODE_END:
584      return VGPU10_OPCODE_RET;
585   case TGSI_OPCODE_F2I:
586      return VGPU10_OPCODE_FTOI;
587   case TGSI_OPCODE_IMAX:
588      return VGPU10_OPCODE_IMAX;
589   case TGSI_OPCODE_IMIN:
590      return VGPU10_OPCODE_IMIN;
591   case TGSI_OPCODE_UDIV:
592   case TGSI_OPCODE_UMOD:
593   case TGSI_OPCODE_MOD:
594      return VGPU10_OPCODE_UDIV;
595   case TGSI_OPCODE_IMUL_HI:
596      return VGPU10_OPCODE_IMUL;
597   case TGSI_OPCODE_INEG:
598      return VGPU10_OPCODE_INEG;
599   case TGSI_OPCODE_ISHR:
600      return VGPU10_OPCODE_ISHR;
601   case TGSI_OPCODE_ISGE:
602      return VGPU10_OPCODE_IGE;
603   case TGSI_OPCODE_ISLT:
604      return VGPU10_OPCODE_ILT;
605   case TGSI_OPCODE_F2U:
606      return VGPU10_OPCODE_FTOU;
607   case TGSI_OPCODE_UADD:
608      return VGPU10_OPCODE_IADD;
609   case TGSI_OPCODE_U2F:
610      return VGPU10_OPCODE_UTOF;
611   case TGSI_OPCODE_UCMP:
612      return VGPU10_OPCODE_MOVC;
613   case TGSI_OPCODE_UMAD:
614      return VGPU10_OPCODE_UMAD;
615   case TGSI_OPCODE_UMAX:
616      return VGPU10_OPCODE_UMAX;
617   case TGSI_OPCODE_UMIN:
618      return VGPU10_OPCODE_UMIN;
619   case TGSI_OPCODE_UMUL:
620   case TGSI_OPCODE_UMUL_HI:
621      return VGPU10_OPCODE_UMUL;
622   case TGSI_OPCODE_USEQ:
623      return VGPU10_OPCODE_IEQ;
624   case TGSI_OPCODE_USGE:
625      return VGPU10_OPCODE_UGE;
626   case TGSI_OPCODE_USHR:
627      return VGPU10_OPCODE_USHR;
628   case TGSI_OPCODE_USLT:
629      return VGPU10_OPCODE_ULT;
630   case TGSI_OPCODE_USNE:
631      return VGPU10_OPCODE_INE;
632   case TGSI_OPCODE_SWITCH:
633      return VGPU10_OPCODE_SWITCH;
634   case TGSI_OPCODE_CASE:
635      return VGPU10_OPCODE_CASE;
636   case TGSI_OPCODE_DEFAULT:
637      return VGPU10_OPCODE_DEFAULT;
638   case TGSI_OPCODE_ENDSWITCH:
639      return VGPU10_OPCODE_ENDSWITCH;
640   case TGSI_OPCODE_FSLT:
641      return VGPU10_OPCODE_LT;
642   case TGSI_OPCODE_ROUND:
643      return VGPU10_OPCODE_ROUND_NE;
644   default:
645      assert(!"Unexpected TGSI opcode in translate_opcode()");
646      return VGPU10_OPCODE_NOP;
647   }
648}
649
650
651/**
652 * Translate a TGSI register file type into a VGPU10 operand type.
653 * \param array  is the TGSI_FILE_TEMPORARY register an array?
654 */
655static VGPU10_OPERAND_TYPE
656translate_register_file(enum tgsi_file_type file, boolean array)
657{
658   switch (file) {
659   case TGSI_FILE_CONSTANT:
660      return VGPU10_OPERAND_TYPE_CONSTANT_BUFFER;
661   case TGSI_FILE_INPUT:
662      return VGPU10_OPERAND_TYPE_INPUT;
663   case TGSI_FILE_OUTPUT:
664      return VGPU10_OPERAND_TYPE_OUTPUT;
665   case TGSI_FILE_TEMPORARY:
666      return array ? VGPU10_OPERAND_TYPE_INDEXABLE_TEMP
667                   : VGPU10_OPERAND_TYPE_TEMP;
668   case TGSI_FILE_IMMEDIATE:
669      /* all immediates are 32-bit values at this time so
670       * VGPU10_OPERAND_TYPE_IMMEDIATE64 is not possible at this time.
671       */
672      return VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER;
673   case TGSI_FILE_SAMPLER:
674      return VGPU10_OPERAND_TYPE_SAMPLER;
675   case TGSI_FILE_SYSTEM_VALUE:
676      return VGPU10_OPERAND_TYPE_INPUT;
677
678   /* XXX TODO more cases to finish */
679
680   default:
681      assert(!"Bad tgsi register file!");
682      return VGPU10_OPERAND_TYPE_NULL;
683   }
684}
685
686
687/**
688 * Emit a null dst register
689 */
690static void
691emit_null_dst_register(struct svga_shader_emitter_v10 *emit)
692{
693   VGPU10OperandToken0 operand;
694
695   operand.value = 0;
696   operand.operandType = VGPU10_OPERAND_TYPE_NULL;
697   operand.numComponents = VGPU10_OPERAND_0_COMPONENT;
698
699   emit_dword(emit, operand.value);
700}
701
702
703/**
704 * If the given register is a temporary, return the array ID.
705 * Else return zero.
706 */
707static unsigned
708get_temp_array_id(const struct svga_shader_emitter_v10 *emit,
709                  unsigned file, unsigned index)
710{
711   if (file == TGSI_FILE_TEMPORARY) {
712      return emit->temp_map[index].arrayId;
713   }
714   else {
715      return 0;
716   }
717}
718
719
720/**
721 * If the given register is a temporary, convert the index from a TGSI
722 * TEMPORARY index to a VGPU10 temp index.
723 */
724static unsigned
725remap_temp_index(const struct svga_shader_emitter_v10 *emit,
726                 unsigned file, unsigned index)
727{
728   if (file == TGSI_FILE_TEMPORARY) {
729      return emit->temp_map[index].index;
730   }
731   else {
732      return index;
733   }
734}
735
736
737/**
738 * Setup the operand0 fields related to indexing (1D, 2D, relative, etc).
739 * Note: the operandType field must already be initialized.
740 */
741static VGPU10OperandToken0
742setup_operand0_indexing(struct svga_shader_emitter_v10 *emit,
743                        VGPU10OperandToken0 operand0,
744                        unsigned file,
745                        boolean indirect, boolean index2D,
746                        unsigned tempArrayID)
747{
748   unsigned indexDim, index0Rep, index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
749
750   /*
751    * Compute index dimensions
752    */
753   if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32 ||
754       operand0.operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) {
755      /* there's no swizzle for in-line immediates */
756      indexDim = VGPU10_OPERAND_INDEX_0D;
757      assert(operand0.selectionMode == 0);
758   }
759   else {
760      if (index2D ||
761          tempArrayID > 0 ||
762          operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) {
763         indexDim = VGPU10_OPERAND_INDEX_2D;
764      }
765      else {
766         indexDim = VGPU10_OPERAND_INDEX_1D;
767      }
768   }
769
770   /*
771    * Compute index representations (immediate, relative, etc).
772    */
773   if (tempArrayID > 0) {
774      assert(file == TGSI_FILE_TEMPORARY);
775      /* First index is the array ID, second index is the array element */
776      index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
777      if (indirect) {
778         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
779      }
780      else {
781         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
782      }
783   }
784   else if (indirect) {
785      if (file == TGSI_FILE_CONSTANT) {
786         /* index[0] indicates which constant buffer while index[1] indicates
787          * the position in the constant buffer.
788          */
789         index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
790         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
791      }
792      else {
793         /* All other register files are 1-dimensional */
794         index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
795      }
796   }
797   else {
798      index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
799      index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
800   }
801
802   operand0.indexDimension = indexDim;
803   operand0.index0Representation = index0Rep;
804   operand0.index1Representation = index1Rep;
805
806   return operand0;
807}
808
809
810/**
811 * Emit the operand for expressing an address register for indirect indexing.
812 * Note that the address register is really just a temp register.
813 * \param addr_reg_index  which address register to use
814 */
815static void
816emit_indirect_register(struct svga_shader_emitter_v10 *emit,
817                       unsigned addr_reg_index)
818{
819   unsigned tmp_reg_index;
820   VGPU10OperandToken0 operand0;
821
822   assert(addr_reg_index < MAX_VGPU10_ADDR_REGS);
823
824   tmp_reg_index = emit->address_reg_index[addr_reg_index];
825
826   /* operand0 is a simple temporary register, selecting one component */
827   operand0.value = 0;
828   operand0.operandType = VGPU10_OPERAND_TYPE_TEMP;
829   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
830   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
831   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
832   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
833   operand0.swizzleX = 0;
834   operand0.swizzleY = 1;
835   operand0.swizzleZ = 2;
836   operand0.swizzleW = 3;
837
838   emit_dword(emit, operand0.value);
839   emit_dword(emit, remap_temp_index(emit, TGSI_FILE_TEMPORARY, tmp_reg_index));
840}
841
842
843/**
844 * Translate the dst register of a TGSI instruction and emit VGPU10 tokens.
845 * \param emit  the emitter context
846 * \param reg  the TGSI dst register to translate
847 */
848static void
849emit_dst_register(struct svga_shader_emitter_v10 *emit,
850                  const struct tgsi_full_dst_register *reg)
851{
852   unsigned file = reg->Register.File;
853   unsigned index = reg->Register.Index;
854   const unsigned sem_name = emit->info.output_semantic_name[index];
855   const unsigned sem_index = emit->info.output_semantic_index[index];
856   unsigned writemask = reg->Register.WriteMask;
857   const unsigned indirect = reg->Register.Indirect;
858   const unsigned tempArrayId = get_temp_array_id(emit, file, index);
859   const unsigned index2d = reg->Register.Dimension;
860   VGPU10OperandToken0 operand0;
861
862   if (file == TGSI_FILE_OUTPUT) {
863      if (emit->unit == PIPE_SHADER_VERTEX ||
864          emit->unit == PIPE_SHADER_GEOMETRY) {
865         if (index == emit->vposition.out_index &&
866             emit->vposition.tmp_index != INVALID_INDEX) {
867            /* replace OUTPUT[POS] with TEMP[POS].  We need to store the
868             * vertex position result in a temporary so that we can modify
869             * it in the post_helper() code.
870             */
871            file = TGSI_FILE_TEMPORARY;
872            index = emit->vposition.tmp_index;
873         }
874         else if (sem_name == TGSI_SEMANTIC_CLIPDIST &&
875                  emit->clip_dist_tmp_index != INVALID_INDEX) {
876            /* replace OUTPUT[CLIPDIST] with TEMP[CLIPDIST].
877             * We store the clip distance in a temporary first, then
878             * we'll copy it to the shadow copy and to CLIPDIST with the
879             * enabled planes mask in emit_clip_distance_instructions().
880             */
881            file = TGSI_FILE_TEMPORARY;
882            index = emit->clip_dist_tmp_index + sem_index;
883         }
884         else if (sem_name == TGSI_SEMANTIC_CLIPVERTEX &&
885                  emit->clip_vertex_tmp_index != INVALID_INDEX) {
886            /* replace the CLIPVERTEX output register with a temporary */
887            assert(emit->clip_mode == CLIP_VERTEX);
888            assert(sem_index == 0);
889            file = TGSI_FILE_TEMPORARY;
890            index = emit->clip_vertex_tmp_index;
891         }
892      }
893      else if (emit->unit == PIPE_SHADER_FRAGMENT) {
894         if (sem_name == TGSI_SEMANTIC_POSITION) {
895            /* Fragment depth output register */
896            operand0.value = 0;
897            operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH;
898            operand0.indexDimension = VGPU10_OPERAND_INDEX_0D;
899            operand0.numComponents = VGPU10_OPERAND_1_COMPONENT;
900            emit_dword(emit, operand0.value);
901            return;
902         }
903         else if (index == emit->fs.color_out_index[0] &&
904             emit->fs.color_tmp_index != INVALID_INDEX) {
905            /* replace OUTPUT[COLOR] with TEMP[COLOR].  We need to store the
906             * fragment color result in a temporary so that we can read it
907             * it in the post_helper() code.
908             */
909            file = TGSI_FILE_TEMPORARY;
910            index = emit->fs.color_tmp_index;
911         }
912         else {
913            /* Typically, for fragment shaders, the output register index
914             * matches the color semantic index.  But not when we write to
915             * the fragment depth register.  In that case, OUT[0] will be
916             * fragdepth and OUT[1] will be the 0th color output.  We need
917             * to use the semantic index for color outputs.
918             */
919            assert(sem_name == TGSI_SEMANTIC_COLOR);
920            index = emit->info.output_semantic_index[index];
921
922            emit->num_output_writes++;
923         }
924      }
925   }
926
927   /* init operand tokens to all zero */
928   operand0.value = 0;
929
930   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
931
932   /* the operand has a writemask */
933   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
934
935   /* Which of the four dest components to write to. Note that we can use a
936    * simple assignment here since TGSI writemasks match VGPU10 writemasks.
937    */
938   STATIC_ASSERT(TGSI_WRITEMASK_X == VGPU10_OPERAND_4_COMPONENT_MASK_X);
939   operand0.mask = writemask;
940
941   /* translate TGSI register file type to VGPU10 operand type */
942   operand0.operandType = translate_register_file(file, tempArrayId > 0);
943
944   check_register_index(emit, operand0.operandType, index);
945
946   operand0 = setup_operand0_indexing(emit, operand0, file, indirect,
947                                      index2d, tempArrayId);
948
949   /* Emit tokens */
950   emit_dword(emit, operand0.value);
951   if (tempArrayId > 0) {
952      emit_dword(emit, tempArrayId);
953   }
954
955   emit_dword(emit, remap_temp_index(emit, file, index));
956
957   if (indirect) {
958      emit_indirect_register(emit, reg->Indirect.Index);
959   }
960}
961
962
963/**
964 * Translate a src register of a TGSI instruction and emit VGPU10 tokens.
965 */
966static void
967emit_src_register(struct svga_shader_emitter_v10 *emit,
968                  const struct tgsi_full_src_register *reg)
969{
970   unsigned file = reg->Register.File;
971   unsigned index = reg->Register.Index;
972   const unsigned indirect = reg->Register.Indirect;
973   const unsigned tempArrayId = get_temp_array_id(emit, file, index);
974   const unsigned index2d = reg->Register.Dimension;
975   const unsigned swizzleX = reg->Register.SwizzleX;
976   const unsigned swizzleY = reg->Register.SwizzleY;
977   const unsigned swizzleZ = reg->Register.SwizzleZ;
978   const unsigned swizzleW = reg->Register.SwizzleW;
979   const unsigned absolute = reg->Register.Absolute;
980   const unsigned negate = reg->Register.Negate;
981   bool is_prim_id = FALSE;
982
983   VGPU10OperandToken0 operand0;
984   VGPU10OperandToken1 operand1;
985
986   if (emit->unit == PIPE_SHADER_FRAGMENT &&
987      file == TGSI_FILE_INPUT) {
988      if (index == emit->fs.face_input_index) {
989         /* Replace INPUT[FACE] with TEMP[FACE] */
990         file = TGSI_FILE_TEMPORARY;
991         index = emit->fs.face_tmp_index;
992      }
993      else if (index == emit->fs.fragcoord_input_index) {
994         /* Replace INPUT[POSITION] with TEMP[POSITION] */
995         file = TGSI_FILE_TEMPORARY;
996         index = emit->fs.fragcoord_tmp_index;
997      }
998      else {
999         /* We remap fragment shader inputs to that FS input indexes
1000          * match up with VS/GS output indexes.
1001          */
1002         index = emit->linkage.input_map[index];
1003      }
1004   }
1005   else if (emit->unit == PIPE_SHADER_GEOMETRY &&
1006            file == TGSI_FILE_INPUT) {
1007      is_prim_id = (index == emit->gs.prim_id_index);
1008      index = emit->linkage.input_map[index];
1009   }
1010   else if (emit->unit == PIPE_SHADER_VERTEX) {
1011      if (file == TGSI_FILE_INPUT) {
1012         /* if input is adjusted... */
1013         if ((emit->key.vs.adjust_attrib_w_1 |
1014              emit->key.vs.adjust_attrib_itof |
1015              emit->key.vs.adjust_attrib_utof |
1016              emit->key.vs.attrib_is_bgra |
1017              emit->key.vs.attrib_puint_to_snorm |
1018              emit->key.vs.attrib_puint_to_uscaled |
1019              emit->key.vs.attrib_puint_to_sscaled) & (1 << index)) {
1020            file = TGSI_FILE_TEMPORARY;
1021            index = emit->vs.adjusted_input[index];
1022         }
1023      }
1024      else if (file == TGSI_FILE_SYSTEM_VALUE) {
1025         assert(index < ARRAY_SIZE(emit->system_value_indexes));
1026         index = emit->system_value_indexes[index];
1027      }
1028   }
1029
1030   operand0.value = operand1.value = 0;
1031
1032   if (is_prim_id) {
1033      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
1034      operand0.operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID;
1035   }
1036   else {
1037      operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1038      operand0.operandType = translate_register_file(file, tempArrayId > 0);
1039   }
1040
1041   operand0 = setup_operand0_indexing(emit, operand0, file, indirect,
1042                                      index2d, tempArrayId);
1043
1044   if (operand0.operandType != VGPU10_OPERAND_TYPE_IMMEDIATE32 &&
1045       operand0.operandType != VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) {
1046      /* there's no swizzle for in-line immediates */
1047      if (swizzleX == swizzleY &&
1048          swizzleX == swizzleZ &&
1049          swizzleX == swizzleW) {
1050         operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
1051      }
1052      else {
1053         operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
1054      }
1055
1056      operand0.swizzleX = swizzleX;
1057      operand0.swizzleY = swizzleY;
1058      operand0.swizzleZ = swizzleZ;
1059      operand0.swizzleW = swizzleW;
1060
1061      if (absolute || negate) {
1062         operand0.extended = 1;
1063         operand1.extendedOperandType = VGPU10_EXTENDED_OPERAND_MODIFIER;
1064         if (absolute && !negate)
1065            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABS;
1066         if (!absolute && negate)
1067            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_NEG;
1068         if (absolute && negate)
1069            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABSNEG;
1070      }
1071   }
1072
1073   /* Emit the operand tokens */
1074   emit_dword(emit, operand0.value);
1075   if (operand0.extended)
1076      emit_dword(emit, operand1.value);
1077
1078   if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32) {
1079      /* Emit the four float/int in-line immediate values */
1080      unsigned *c;
1081      assert(index < ARRAY_SIZE(emit->immediates));
1082      assert(file == TGSI_FILE_IMMEDIATE);
1083      assert(swizzleX < 4);
1084      assert(swizzleY < 4);
1085      assert(swizzleZ < 4);
1086      assert(swizzleW < 4);
1087      c = (unsigned *) emit->immediates[index];
1088      emit_dword(emit, c[swizzleX]);
1089      emit_dword(emit, c[swizzleY]);
1090      emit_dword(emit, c[swizzleZ]);
1091      emit_dword(emit, c[swizzleW]);
1092   }
1093   else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_1D) {
1094      /* Emit the register index(es) */
1095      if (index2d ||
1096          operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) {
1097         emit_dword(emit, reg->Dimension.Index);
1098      }
1099
1100      if (tempArrayId > 0) {
1101         emit_dword(emit, tempArrayId);
1102      }
1103
1104      emit_dword(emit, remap_temp_index(emit, file, index));
1105
1106      if (indirect) {
1107         emit_indirect_register(emit, reg->Indirect.Index);
1108      }
1109   }
1110}
1111
1112
1113/**
1114 * Emit a resource operand (for use with a SAMPLE instruction).
1115 */
1116static void
1117emit_resource_register(struct svga_shader_emitter_v10 *emit,
1118                       unsigned resource_number)
1119{
1120   VGPU10OperandToken0 operand0;
1121
1122   check_register_index(emit, VGPU10_OPERAND_TYPE_RESOURCE, resource_number);
1123
1124   /* init */
1125   operand0.value = 0;
1126
1127   operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE;
1128   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1129   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1130   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
1131   operand0.swizzleX = VGPU10_COMPONENT_X;
1132   operand0.swizzleY = VGPU10_COMPONENT_Y;
1133   operand0.swizzleZ = VGPU10_COMPONENT_Z;
1134   operand0.swizzleW = VGPU10_COMPONENT_W;
1135
1136   emit_dword(emit, operand0.value);
1137   emit_dword(emit, resource_number);
1138}
1139
1140
1141/**
1142 * Emit a sampler operand (for use with a SAMPLE instruction).
1143 */
1144static void
1145emit_sampler_register(struct svga_shader_emitter_v10 *emit,
1146                      unsigned sampler_number)
1147{
1148   VGPU10OperandToken0 operand0;
1149
1150   check_register_index(emit, VGPU10_OPERAND_TYPE_SAMPLER, sampler_number);
1151
1152   /* init */
1153   operand0.value = 0;
1154
1155   operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER;
1156   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1157
1158   emit_dword(emit, operand0.value);
1159   emit_dword(emit, sampler_number);
1160}
1161
1162
1163/**
1164 * Emit an operand which reads the IS_FRONT_FACING register.
1165 */
1166static void
1167emit_face_register(struct svga_shader_emitter_v10 *emit)
1168{
1169   VGPU10OperandToken0 operand0;
1170   unsigned index = emit->linkage.input_map[emit->fs.face_input_index];
1171
1172   /* init */
1173   operand0.value = 0;
1174
1175   operand0.operandType = VGPU10_OPERAND_TYPE_INPUT;
1176   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1177   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
1178   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1179
1180   operand0.swizzleX = VGPU10_COMPONENT_X;
1181   operand0.swizzleY = VGPU10_COMPONENT_X;
1182   operand0.swizzleZ = VGPU10_COMPONENT_X;
1183   operand0.swizzleW = VGPU10_COMPONENT_X;
1184
1185   emit_dword(emit, operand0.value);
1186   emit_dword(emit, index);
1187}
1188
1189
1190/**
1191 * Emit the token for a VGPU10 opcode.
1192 * \param saturate   clamp result to [0,1]?
1193 */
1194static void
1195emit_opcode(struct svga_shader_emitter_v10 *emit,
1196            unsigned vgpu10_opcode, boolean saturate)
1197{
1198   VGPU10OpcodeToken0 token0;
1199
1200   token0.value = 0;  /* init all fields to zero */
1201   token0.opcodeType = vgpu10_opcode;
1202   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1203   token0.saturate = saturate;
1204
1205   emit_dword(emit, token0.value);
1206}
1207
1208
1209/**
1210 * Emit the token for a VGPU10 resinfo instruction.
1211 * \param modifier   return type modifier, _uint or _rcpFloat.
1212 *                   TODO: We may want to remove this parameter if it will
1213 *                   only ever be used as _uint.
1214 */
1215static void
1216emit_opcode_resinfo(struct svga_shader_emitter_v10 *emit,
1217                    VGPU10_RESINFO_RETURN_TYPE modifier)
1218{
1219   VGPU10OpcodeToken0 token0;
1220
1221   token0.value = 0;  /* init all fields to zero */
1222   token0.opcodeType = VGPU10_OPCODE_RESINFO;
1223   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1224   token0.resinfoReturnType = modifier;
1225
1226   emit_dword(emit, token0.value);
1227}
1228
1229
1230/**
1231 * Emit opcode tokens for a texture sample instruction.  Texture instructions
1232 * can be rather complicated (texel offsets, etc) so we have this specialized
1233 * function.
1234 */
1235static void
1236emit_sample_opcode(struct svga_shader_emitter_v10 *emit,
1237                   unsigned vgpu10_opcode, boolean saturate,
1238                   const int offsets[3])
1239{
1240   VGPU10OpcodeToken0 token0;
1241   VGPU10OpcodeToken1 token1;
1242
1243   token0.value = 0;  /* init all fields to zero */
1244   token0.opcodeType = vgpu10_opcode;
1245   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1246   token0.saturate = saturate;
1247
1248   if (offsets[0] || offsets[1] || offsets[2]) {
1249      assert(offsets[0] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1250      assert(offsets[1] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1251      assert(offsets[2] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1252      assert(offsets[0] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1253      assert(offsets[1] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1254      assert(offsets[2] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1255
1256      token0.extended = 1;
1257      token1.value = 0;
1258      token1.opcodeType = VGPU10_EXTENDED_OPCODE_SAMPLE_CONTROLS;
1259      token1.offsetU = offsets[0];
1260      token1.offsetV = offsets[1];
1261      token1.offsetW = offsets[2];
1262   }
1263
1264   emit_dword(emit, token0.value);
1265   if (token0.extended) {
1266      emit_dword(emit, token1.value);
1267   }
1268}
1269
1270
1271/**
1272 * Emit a DISCARD opcode token.
1273 * If nonzero is set, we'll discard the fragment if the X component is not 0.
1274 * Otherwise, we'll discard the fragment if the X component is 0.
1275 */
1276static void
1277emit_discard_opcode(struct svga_shader_emitter_v10 *emit, boolean nonzero)
1278{
1279   VGPU10OpcodeToken0 opcode0;
1280
1281   opcode0.value = 0;
1282   opcode0.opcodeType = VGPU10_OPCODE_DISCARD;
1283   if (nonzero)
1284      opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO;
1285
1286   emit_dword(emit, opcode0.value);
1287}
1288
1289
1290/**
1291 * We need to call this before we begin emitting a VGPU10 instruction.
1292 */
1293static void
1294begin_emit_instruction(struct svga_shader_emitter_v10 *emit)
1295{
1296   assert(emit->inst_start_token == 0);
1297   /* Save location of the instruction's VGPU10OpcodeToken0 token.
1298    * Note, we can't save a pointer because it would become invalid if
1299    * we have to realloc the output buffer.
1300    */
1301   emit->inst_start_token = emit_get_num_tokens(emit);
1302}
1303
1304
1305/**
1306 * We need to call this after we emit the last token of a VGPU10 instruction.
1307 * This function patches in the opcode token's instructionLength field.
1308 */
1309static void
1310end_emit_instruction(struct svga_shader_emitter_v10 *emit)
1311{
1312   VGPU10OpcodeToken0 *tokens = (VGPU10OpcodeToken0 *) emit->buf;
1313   unsigned inst_length;
1314
1315   assert(emit->inst_start_token > 0);
1316
1317   if (emit->discard_instruction) {
1318      /* Back up the emit->ptr to where this instruction started so
1319       * that we discard the current instruction.
1320       */
1321      emit->ptr = (char *) (tokens + emit->inst_start_token);
1322   }
1323   else {
1324      /* Compute instruction length and patch that into the start of
1325       * the instruction.
1326       */
1327      inst_length = emit_get_num_tokens(emit) - emit->inst_start_token;
1328
1329      assert(inst_length > 0);
1330
1331      tokens[emit->inst_start_token].instructionLength = inst_length;
1332   }
1333
1334   emit->inst_start_token = 0; /* reset to zero for error checking */
1335   emit->discard_instruction = FALSE;
1336}
1337
1338
1339/**
1340 * Return index for a free temporary register.
1341 */
1342static unsigned
1343get_temp_index(struct svga_shader_emitter_v10 *emit)
1344{
1345   assert(emit->internal_temp_count < MAX_INTERNAL_TEMPS);
1346   return emit->num_shader_temps + emit->internal_temp_count++;
1347}
1348
1349
1350/**
1351 * Release the temporaries which were generated by get_temp_index().
1352 */
1353static void
1354free_temp_indexes(struct svga_shader_emitter_v10 *emit)
1355{
1356   emit->internal_temp_count = 0;
1357}
1358
1359
1360/**
1361 * Create a tgsi_full_src_register.
1362 */
1363static struct tgsi_full_src_register
1364make_src_reg(unsigned file, unsigned index)
1365{
1366   struct tgsi_full_src_register reg;
1367
1368   memset(&reg, 0, sizeof(reg));
1369   reg.Register.File = file;
1370   reg.Register.Index = index;
1371   reg.Register.SwizzleX = TGSI_SWIZZLE_X;
1372   reg.Register.SwizzleY = TGSI_SWIZZLE_Y;
1373   reg.Register.SwizzleZ = TGSI_SWIZZLE_Z;
1374   reg.Register.SwizzleW = TGSI_SWIZZLE_W;
1375   return reg;
1376}
1377
1378
1379/**
1380 * Create a tgsi_full_src_register for a temporary.
1381 */
1382static struct tgsi_full_src_register
1383make_src_temp_reg(unsigned index)
1384{
1385   return make_src_reg(TGSI_FILE_TEMPORARY, index);
1386}
1387
1388
1389/**
1390 * Create a tgsi_full_src_register for a constant.
1391 */
1392static struct tgsi_full_src_register
1393make_src_const_reg(unsigned index)
1394{
1395   return make_src_reg(TGSI_FILE_CONSTANT, index);
1396}
1397
1398
1399/**
1400 * Create a tgsi_full_src_register for an immediate constant.
1401 */
1402static struct tgsi_full_src_register
1403make_src_immediate_reg(unsigned index)
1404{
1405   return make_src_reg(TGSI_FILE_IMMEDIATE, index);
1406}
1407
1408
1409/**
1410 * Create a tgsi_full_dst_register.
1411 */
1412static struct tgsi_full_dst_register
1413make_dst_reg(unsigned file, unsigned index)
1414{
1415   struct tgsi_full_dst_register reg;
1416
1417   memset(&reg, 0, sizeof(reg));
1418   reg.Register.File = file;
1419   reg.Register.Index = index;
1420   reg.Register.WriteMask = TGSI_WRITEMASK_XYZW;
1421   return reg;
1422}
1423
1424
1425/**
1426 * Create a tgsi_full_dst_register for a temporary.
1427 */
1428static struct tgsi_full_dst_register
1429make_dst_temp_reg(unsigned index)
1430{
1431   return make_dst_reg(TGSI_FILE_TEMPORARY, index);
1432}
1433
1434
1435/**
1436 * Create a tgsi_full_dst_register for an output.
1437 */
1438static struct tgsi_full_dst_register
1439make_dst_output_reg(unsigned index)
1440{
1441   return make_dst_reg(TGSI_FILE_OUTPUT, index);
1442}
1443
1444
1445/**
1446 * Create negated tgsi_full_src_register.
1447 */
1448static struct tgsi_full_src_register
1449negate_src(const struct tgsi_full_src_register *reg)
1450{
1451   struct tgsi_full_src_register neg = *reg;
1452   neg.Register.Negate = !reg->Register.Negate;
1453   return neg;
1454}
1455
1456/**
1457 * Create absolute value of a tgsi_full_src_register.
1458 */
1459static struct tgsi_full_src_register
1460absolute_src(const struct tgsi_full_src_register *reg)
1461{
1462   struct tgsi_full_src_register absolute = *reg;
1463   absolute.Register.Absolute = 1;
1464   return absolute;
1465}
1466
1467
1468/** Return the named swizzle term from the src register */
1469static inline unsigned
1470get_swizzle(const struct tgsi_full_src_register *reg, unsigned term)
1471{
1472   switch (term) {
1473   case TGSI_SWIZZLE_X:
1474      return reg->Register.SwizzleX;
1475   case TGSI_SWIZZLE_Y:
1476      return reg->Register.SwizzleY;
1477   case TGSI_SWIZZLE_Z:
1478      return reg->Register.SwizzleZ;
1479   case TGSI_SWIZZLE_W:
1480      return reg->Register.SwizzleW;
1481   default:
1482      assert(!"Bad swizzle");
1483      return TGSI_SWIZZLE_X;
1484   }
1485}
1486
1487
1488/**
1489 * Create swizzled tgsi_full_src_register.
1490 */
1491static struct tgsi_full_src_register
1492swizzle_src(const struct tgsi_full_src_register *reg,
1493            unsigned swizzleX, unsigned swizzleY,
1494            unsigned swizzleZ, unsigned swizzleW)
1495{
1496   struct tgsi_full_src_register swizzled = *reg;
1497   /* Note: we swizzle the current swizzle */
1498   swizzled.Register.SwizzleX = get_swizzle(reg, swizzleX);
1499   swizzled.Register.SwizzleY = get_swizzle(reg, swizzleY);
1500   swizzled.Register.SwizzleZ = get_swizzle(reg, swizzleZ);
1501   swizzled.Register.SwizzleW = get_swizzle(reg, swizzleW);
1502   return swizzled;
1503}
1504
1505
1506/**
1507 * Create swizzled tgsi_full_src_register where all the swizzle
1508 * terms are the same.
1509 */
1510static struct tgsi_full_src_register
1511scalar_src(const struct tgsi_full_src_register *reg, unsigned swizzle)
1512{
1513   struct tgsi_full_src_register swizzled = *reg;
1514   /* Note: we swizzle the current swizzle */
1515   swizzled.Register.SwizzleX =
1516   swizzled.Register.SwizzleY =
1517   swizzled.Register.SwizzleZ =
1518   swizzled.Register.SwizzleW = get_swizzle(reg, swizzle);
1519   return swizzled;
1520}
1521
1522
1523/**
1524 * Create new tgsi_full_dst_register with writemask.
1525 * \param mask  bitmask of TGSI_WRITEMASK_[XYZW]
1526 */
1527static struct tgsi_full_dst_register
1528writemask_dst(const struct tgsi_full_dst_register *reg, unsigned mask)
1529{
1530   struct tgsi_full_dst_register masked = *reg;
1531   masked.Register.WriteMask = mask;
1532   return masked;
1533}
1534
1535
1536/**
1537 * Check if the register's swizzle is XXXX, YYYY, ZZZZ, or WWWW.
1538 */
1539static boolean
1540same_swizzle_terms(const struct tgsi_full_src_register *reg)
1541{
1542   return (reg->Register.SwizzleX == reg->Register.SwizzleY &&
1543           reg->Register.SwizzleY == reg->Register.SwizzleZ &&
1544           reg->Register.SwizzleZ == reg->Register.SwizzleW);
1545}
1546
1547
1548/**
1549 * Search the vector for the value 'x' and return its position.
1550 */
1551static int
1552find_imm_in_vec4(const union tgsi_immediate_data vec[4],
1553                 union tgsi_immediate_data x)
1554{
1555   unsigned i;
1556   for (i = 0; i < 4; i++) {
1557      if (vec[i].Int == x.Int)
1558         return i;
1559   }
1560   return -1;
1561}
1562
1563
1564/**
1565 * Helper used by make_immediate_reg(), make_immediate_reg_4().
1566 */
1567static int
1568find_immediate(struct svga_shader_emitter_v10 *emit,
1569               union tgsi_immediate_data x, unsigned startIndex)
1570{
1571   const unsigned endIndex = emit->num_immediates;
1572   unsigned i;
1573
1574   assert(emit->immediates_emitted);
1575
1576   /* Search immediates for x, y, z, w */
1577   for (i = startIndex; i < endIndex; i++) {
1578      if (x.Int == emit->immediates[i][0].Int ||
1579          x.Int == emit->immediates[i][1].Int ||
1580          x.Int == emit->immediates[i][2].Int ||
1581          x.Int == emit->immediates[i][3].Int) {
1582         return i;
1583      }
1584   }
1585   /* Should never try to use an immediate value that wasn't pre-declared */
1586   assert(!"find_immediate() failed!");
1587   return -1;
1588}
1589
1590
1591/**
1592 * Return a tgsi_full_src_register for an immediate/literal
1593 * union tgsi_immediate_data[4] value.
1594 * Note: the values must have been previously declared/allocated in
1595 * emit_pre_helpers().  And, all of x,y,z,w must be located in the same
1596 * vec4 immediate.
1597 */
1598static struct tgsi_full_src_register
1599make_immediate_reg_4(struct svga_shader_emitter_v10 *emit,
1600                     const union tgsi_immediate_data imm[4])
1601{
1602   struct tgsi_full_src_register reg;
1603   unsigned i;
1604
1605   for (i = 0; i < emit->num_common_immediates; i++) {
1606      /* search for first component value */
1607      int immpos = find_immediate(emit, imm[0], i);
1608      int x, y, z, w;
1609
1610      assert(immpos >= 0);
1611
1612      /* find remaining components within the immediate vector */
1613      x = find_imm_in_vec4(emit->immediates[immpos], imm[0]);
1614      y = find_imm_in_vec4(emit->immediates[immpos], imm[1]);
1615      z = find_imm_in_vec4(emit->immediates[immpos], imm[2]);
1616      w = find_imm_in_vec4(emit->immediates[immpos], imm[3]);
1617
1618      if (x >=0 &&  y >= 0 && z >= 0 && w >= 0) {
1619         /* found them all */
1620         memset(&reg, 0, sizeof(reg));
1621         reg.Register.File = TGSI_FILE_IMMEDIATE;
1622         reg.Register.Index = immpos;
1623         reg.Register.SwizzleX = x;
1624         reg.Register.SwizzleY = y;
1625         reg.Register.SwizzleZ = z;
1626         reg.Register.SwizzleW = w;
1627         return reg;
1628      }
1629      /* else, keep searching */
1630   }
1631
1632   assert(!"Failed to find immediate register!");
1633
1634   /* Just return IMM[0].xxxx */
1635   memset(&reg, 0, sizeof(reg));
1636   reg.Register.File = TGSI_FILE_IMMEDIATE;
1637   return reg;
1638}
1639
1640
1641/**
1642 * Return a tgsi_full_src_register for an immediate/literal
1643 * union tgsi_immediate_data value of the form {value, value, value, value}.
1644 * \sa make_immediate_reg_4() regarding allowed values.
1645 */
1646static struct tgsi_full_src_register
1647make_immediate_reg(struct svga_shader_emitter_v10 *emit,
1648                   union tgsi_immediate_data value)
1649{
1650   struct tgsi_full_src_register reg;
1651   int immpos = find_immediate(emit, value, 0);
1652
1653   assert(immpos >= 0);
1654
1655   memset(&reg, 0, sizeof(reg));
1656   reg.Register.File = TGSI_FILE_IMMEDIATE;
1657   reg.Register.Index = immpos;
1658   reg.Register.SwizzleX =
1659   reg.Register.SwizzleY =
1660   reg.Register.SwizzleZ =
1661   reg.Register.SwizzleW = find_imm_in_vec4(emit->immediates[immpos], value);
1662
1663   return reg;
1664}
1665
1666
1667/**
1668 * Return a tgsi_full_src_register for an immediate/literal float[4] value.
1669 * \sa make_immediate_reg_4() regarding allowed values.
1670 */
1671static struct tgsi_full_src_register
1672make_immediate_reg_float4(struct svga_shader_emitter_v10 *emit,
1673                          float x, float y, float z, float w)
1674{
1675   union tgsi_immediate_data imm[4];
1676   imm[0].Float = x;
1677   imm[1].Float = y;
1678   imm[2].Float = z;
1679   imm[3].Float = w;
1680   return make_immediate_reg_4(emit, imm);
1681}
1682
1683
1684/**
1685 * Return a tgsi_full_src_register for an immediate/literal float value
1686 * of the form {value, value, value, value}.
1687 * \sa make_immediate_reg_4() regarding allowed values.
1688 */
1689static struct tgsi_full_src_register
1690make_immediate_reg_float(struct svga_shader_emitter_v10 *emit, float value)
1691{
1692   union tgsi_immediate_data imm;
1693   imm.Float = value;
1694   return make_immediate_reg(emit, imm);
1695}
1696
1697
1698/**
1699 * Return a tgsi_full_src_register for an immediate/literal int[4] vector.
1700 */
1701static struct tgsi_full_src_register
1702make_immediate_reg_int4(struct svga_shader_emitter_v10 *emit,
1703                        int x, int y, int z, int w)
1704{
1705   union tgsi_immediate_data imm[4];
1706   imm[0].Int = x;
1707   imm[1].Int = y;
1708   imm[2].Int = z;
1709   imm[3].Int = w;
1710   return make_immediate_reg_4(emit, imm);
1711}
1712
1713
1714/**
1715 * Return a tgsi_full_src_register for an immediate/literal int value
1716 * of the form {value, value, value, value}.
1717 * \sa make_immediate_reg_4() regarding allowed values.
1718 */
1719static struct tgsi_full_src_register
1720make_immediate_reg_int(struct svga_shader_emitter_v10 *emit, int value)
1721{
1722   union tgsi_immediate_data imm;
1723   imm.Int = value;
1724   return make_immediate_reg(emit, imm);
1725}
1726
1727
1728/**
1729 * Allocate space for a union tgsi_immediate_data[4] immediate.
1730 * \return  the index/position of the immediate.
1731 */
1732static unsigned
1733alloc_immediate_4(struct svga_shader_emitter_v10 *emit,
1734                  const union tgsi_immediate_data imm[4])
1735{
1736   unsigned n = emit->num_immediates++;
1737   assert(!emit->immediates_emitted);
1738   assert(n < ARRAY_SIZE(emit->immediates));
1739   emit->immediates[n][0] = imm[0];
1740   emit->immediates[n][1] = imm[1];
1741   emit->immediates[n][2] = imm[2];
1742   emit->immediates[n][3] = imm[3];
1743   return n;
1744}
1745
1746
1747/**
1748 * Allocate space for a float[4] immediate.
1749 * \return  the index/position of the immediate.
1750 */
1751static unsigned
1752alloc_immediate_float4(struct svga_shader_emitter_v10 *emit,
1753                       float x, float y, float z, float w)
1754{
1755   union tgsi_immediate_data imm[4];
1756   imm[0].Float = x;
1757   imm[1].Float = y;
1758   imm[2].Float = z;
1759   imm[3].Float = w;
1760   return alloc_immediate_4(emit, imm);
1761}
1762
1763
1764/**
1765 * Allocate space for an int[4] immediate.
1766 * \return  the index/position of the immediate.
1767 */
1768static unsigned
1769alloc_immediate_int4(struct svga_shader_emitter_v10 *emit,
1770                       int x, int y, int z, int w)
1771{
1772   union tgsi_immediate_data imm[4];
1773   imm[0].Int = x;
1774   imm[1].Int = y;
1775   imm[2].Int = z;
1776   imm[3].Int = w;
1777   return alloc_immediate_4(emit, imm);
1778}
1779
1780
1781/**
1782 * Allocate a shader input to store a system value.
1783 */
1784static unsigned
1785alloc_system_value_index(struct svga_shader_emitter_v10 *emit, unsigned index)
1786{
1787   const unsigned n = emit->info.file_max[TGSI_FILE_INPUT] + 1 + index;
1788   assert(index < ARRAY_SIZE(emit->system_value_indexes));
1789   emit->system_value_indexes[index] = n;
1790   return n;
1791}
1792
1793
1794/**
1795 * Translate a TGSI immediate value (union tgsi_immediate_data[4]) to VGPU10.
1796 */
1797static boolean
1798emit_vgpu10_immediate(struct svga_shader_emitter_v10 *emit,
1799                      const struct tgsi_full_immediate *imm)
1800{
1801   /* We don't actually emit any code here.  We just save the
1802    * immediate values and emit them later.
1803    */
1804   alloc_immediate_4(emit, imm->u);
1805   return TRUE;
1806}
1807
1808
1809/**
1810 * Emit a VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER block
1811 * containing all the immediate values previously allocated
1812 * with alloc_immediate_4().
1813 */
1814static boolean
1815emit_vgpu10_immediates_block(struct svga_shader_emitter_v10 *emit)
1816{
1817   VGPU10OpcodeToken0 token;
1818
1819   assert(!emit->immediates_emitted);
1820
1821   token.value = 0;
1822   token.opcodeType = VGPU10_OPCODE_CUSTOMDATA;
1823   token.customDataClass = VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER;
1824
1825   /* Note: no begin/end_emit_instruction() calls */
1826   emit_dword(emit, token.value);
1827   emit_dword(emit, 2 + 4 * emit->num_immediates);
1828   emit_dwords(emit, (unsigned *) emit->immediates, 4 * emit->num_immediates);
1829
1830   emit->immediates_emitted = TRUE;
1831
1832   return TRUE;
1833}
1834
1835
1836/**
1837 * Translate a fragment shader's TGSI_INTERPOLATE_x mode to a vgpu10
1838 * interpolation mode.
1839 * \return a VGPU10_INTERPOLATION_x value
1840 */
1841static unsigned
1842translate_interpolation(const struct svga_shader_emitter_v10 *emit,
1843                        unsigned interp, unsigned interpolate_loc)
1844{
1845   if (interp == TGSI_INTERPOLATE_COLOR) {
1846      interp = emit->key.fs.flatshade ?
1847         TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
1848   }
1849
1850   switch (interp) {
1851   case TGSI_INTERPOLATE_CONSTANT:
1852      return VGPU10_INTERPOLATION_CONSTANT;
1853   case TGSI_INTERPOLATE_LINEAR:
1854      return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ?
1855             VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID :
1856             VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE;
1857   case TGSI_INTERPOLATE_PERSPECTIVE:
1858      return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ?
1859             VGPU10_INTERPOLATION_LINEAR_CENTROID :
1860             VGPU10_INTERPOLATION_LINEAR;
1861   default:
1862      assert(!"Unexpected interpolation mode");
1863      return VGPU10_INTERPOLATION_CONSTANT;
1864   }
1865}
1866
1867
1868/**
1869 * Translate a TGSI property to VGPU10.
1870 * Don't emit any instructions yet, only need to gather the primitive property information.
1871 * The output primitive topology might be changed later. The final property instructions
1872 * will be emitted as part of the pre-helper code.
1873 */
1874static boolean
1875emit_vgpu10_property(struct svga_shader_emitter_v10 *emit,
1876                     const struct tgsi_full_property *prop)
1877{
1878   static const VGPU10_PRIMITIVE primType[] = {
1879      VGPU10_PRIMITIVE_POINT,           /* PIPE_PRIM_POINTS */
1880      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINES */
1881      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINE_LOOP */
1882      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINE_STRIP */
1883      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLES */
1884      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLE_STRIP */
1885      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLE_FAN */
1886      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_QUADS */
1887      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_QUAD_STRIP */
1888      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_POLYGON */
1889      VGPU10_PRIMITIVE_LINE_ADJ,        /* PIPE_PRIM_LINES_ADJACENCY */
1890      VGPU10_PRIMITIVE_LINE_ADJ,        /* PIPE_PRIM_LINE_STRIP_ADJACENCY */
1891      VGPU10_PRIMITIVE_TRIANGLE_ADJ,    /* PIPE_PRIM_TRIANGLES_ADJACENCY */
1892      VGPU10_PRIMITIVE_TRIANGLE_ADJ     /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */
1893   };
1894
1895   static const VGPU10_PRIMITIVE_TOPOLOGY primTopology[] = {
1896      VGPU10_PRIMITIVE_TOPOLOGY_POINTLIST,     /* PIPE_PRIM_POINTS */
1897      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST,      /* PIPE_PRIM_LINES */
1898      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST,      /* PIPE_PRIM_LINE_LOOP */
1899      VGPU10_PRIMITIVE_TOPOLOGY_LINESTRIP,     /* PIPE_PRIM_LINE_STRIP */
1900      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST,  /* PIPE_PRIM_TRIANGLES */
1901      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_STRIP */
1902      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_FAN */
1903      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_QUADS */
1904      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_QUAD_STRIP */
1905      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_POLYGON */
1906      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ,  /* PIPE_PRIM_LINES_ADJACENCY */
1907      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ,  /* PIPE_PRIM_LINE_STRIP_ADJACENCY */
1908      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ, /* PIPE_PRIM_TRIANGLES_ADJACENCY */
1909      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */
1910   };
1911
1912   static const unsigned inputArraySize[] = {
1913      0,       /* VGPU10_PRIMITIVE_UNDEFINED */
1914      1,       /* VGPU10_PRIMITIVE_POINT */
1915      2,       /* VGPU10_PRIMITIVE_LINE */
1916      3,       /* VGPU10_PRIMITIVE_TRIANGLE */
1917      0,
1918      0,
1919      4,       /* VGPU10_PRIMITIVE_LINE_ADJ */
1920      6        /* VGPU10_PRIMITIVE_TRIANGLE_ADJ */
1921   };
1922
1923   switch (prop->Property.PropertyName) {
1924   case TGSI_PROPERTY_GS_INPUT_PRIM:
1925      assert(prop->u[0].Data < ARRAY_SIZE(primType));
1926      emit->gs.prim_type = primType[prop->u[0].Data];
1927      assert(emit->gs.prim_type != VGPU10_PRIMITIVE_UNDEFINED);
1928      emit->gs.input_size = inputArraySize[emit->gs.prim_type];
1929      break;
1930
1931   case TGSI_PROPERTY_GS_OUTPUT_PRIM:
1932      assert(prop->u[0].Data < ARRAY_SIZE(primTopology));
1933      emit->gs.prim_topology = primTopology[prop->u[0].Data];
1934      assert(emit->gs.prim_topology != VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED);
1935      break;
1936
1937   case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
1938      emit->gs.max_out_vertices = prop->u[0].Data;
1939      break;
1940
1941   default:
1942      break;
1943   }
1944
1945   return TRUE;
1946}
1947
1948
1949static void
1950emit_property_instruction(struct svga_shader_emitter_v10 *emit,
1951                          VGPU10OpcodeToken0 opcode0, unsigned nData,
1952                          unsigned data)
1953{
1954   begin_emit_instruction(emit);
1955   emit_dword(emit, opcode0.value);
1956   if (nData)
1957      emit_dword(emit, data);
1958   end_emit_instruction(emit);
1959}
1960
1961
1962/**
1963 * Emit property instructions
1964 */
1965static void
1966emit_property_instructions(struct svga_shader_emitter_v10 *emit)
1967{
1968   VGPU10OpcodeToken0 opcode0;
1969
1970   assert(emit->unit == PIPE_SHADER_GEOMETRY);
1971
1972   /* emit input primitive type declaration */
1973   opcode0.value = 0;
1974   opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_INPUT_PRIMITIVE;
1975   opcode0.primitive = emit->gs.prim_type;
1976   emit_property_instruction(emit, opcode0, 0, 0);
1977
1978   /* emit output primitive topology declaration */
1979   opcode0.value = 0;
1980   opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_OUTPUT_PRIMITIVE_TOPOLOGY;
1981   opcode0.primitiveTopology = emit->gs.prim_topology;
1982   emit_property_instruction(emit, opcode0, 0, 0);
1983
1984   /* emit max output vertices */
1985   opcode0.value = 0;
1986   opcode0.opcodeType = VGPU10_OPCODE_DCL_MAX_OUTPUT_VERTEX_COUNT;
1987   emit_property_instruction(emit, opcode0, 1, emit->gs.max_out_vertices);
1988}
1989
1990
1991/**
1992 * Emit a vgpu10 declaration "instruction".
1993 * \param index  the register index
1994 * \param size   array size of the operand. In most cases, it is 1,
1995 *               but for inputs to geometry shader, the array size varies
1996 *               depending on the primitive type.
1997 */
1998static void
1999emit_decl_instruction(struct svga_shader_emitter_v10 *emit,
2000                      VGPU10OpcodeToken0 opcode0,
2001                      VGPU10OperandToken0 operand0,
2002                      VGPU10NameToken name_token,
2003                      unsigned index, unsigned size)
2004{
2005   assert(opcode0.opcodeType);
2006   assert(operand0.mask);
2007
2008   begin_emit_instruction(emit);
2009   emit_dword(emit, opcode0.value);
2010
2011   emit_dword(emit, operand0.value);
2012
2013   if (operand0.indexDimension == VGPU10_OPERAND_INDEX_1D) {
2014      /* Next token is the index of the register to declare */
2015      emit_dword(emit, index);
2016   }
2017   else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_2D) {
2018      /* Next token is the size of the register */
2019      emit_dword(emit, size);
2020
2021      /* Followed by the index of the register */
2022      emit_dword(emit, index);
2023   }
2024
2025   if (name_token.value) {
2026      emit_dword(emit, name_token.value);
2027   }
2028
2029   end_emit_instruction(emit);
2030}
2031
2032
2033/**
2034 * Emit the declaration for a shader input.
2035 * \param opcodeType  opcode type, one of VGPU10_OPCODE_DCL_INPUTx
2036 * \param operandType operand type, one of VGPU10_OPERAND_TYPE_INPUT_x
2037 * \param dim         index dimension
2038 * \param index       the input register index
2039 * \param size        array size of the operand. In most cases, it is 1,
2040 *                    but for inputs to geometry shader, the array size varies
2041 *                    depending on the primitive type.
2042 * \param name        one of VGPU10_NAME_x
2043 * \parma numComp     number of components
2044 * \param selMode     component selection mode
2045 * \param usageMask   bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values
2046 * \param interpMode  interpolation mode
2047 */
2048static void
2049emit_input_declaration(struct svga_shader_emitter_v10 *emit,
2050                       unsigned opcodeType, unsigned operandType,
2051                       unsigned dim, unsigned index, unsigned size,
2052                       unsigned name, unsigned numComp,
2053                       unsigned selMode, unsigned usageMask,
2054                       unsigned interpMode)
2055{
2056   VGPU10OpcodeToken0 opcode0;
2057   VGPU10OperandToken0 operand0;
2058   VGPU10NameToken name_token;
2059
2060   assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2061   assert(opcodeType == VGPU10_OPCODE_DCL_INPUT ||
2062          opcodeType == VGPU10_OPCODE_DCL_INPUT_SIV ||
2063          opcodeType == VGPU10_OPCODE_DCL_INPUT_PS ||
2064          opcodeType == VGPU10_OPCODE_DCL_INPUT_PS_SGV);
2065   assert(operandType == VGPU10_OPERAND_TYPE_INPUT ||
2066          operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID);
2067   assert(numComp <= VGPU10_OPERAND_4_COMPONENT);
2068   assert(selMode <= VGPU10_OPERAND_4_COMPONENT_MASK_MODE);
2069   assert(dim <= VGPU10_OPERAND_INDEX_3D);
2070   assert(name == VGPU10_NAME_UNDEFINED ||
2071          name == VGPU10_NAME_POSITION ||
2072          name == VGPU10_NAME_INSTANCE_ID ||
2073          name == VGPU10_NAME_VERTEX_ID ||
2074          name == VGPU10_NAME_PRIMITIVE_ID ||
2075          name == VGPU10_NAME_IS_FRONT_FACE);
2076   assert(interpMode == VGPU10_INTERPOLATION_UNDEFINED ||
2077          interpMode == VGPU10_INTERPOLATION_CONSTANT ||
2078          interpMode == VGPU10_INTERPOLATION_LINEAR ||
2079          interpMode == VGPU10_INTERPOLATION_LINEAR_CENTROID ||
2080          interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE ||
2081          interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID);
2082
2083   check_register_index(emit, opcodeType, index);
2084
2085   opcode0.value = operand0.value = name_token.value = 0;
2086
2087   opcode0.opcodeType = opcodeType;
2088   opcode0.interpolationMode = interpMode;
2089
2090   operand0.operandType = operandType;
2091   operand0.numComponents = numComp;
2092   operand0.selectionMode = selMode;
2093   operand0.mask = usageMask;
2094   operand0.indexDimension = dim;
2095   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2096   if (dim == VGPU10_OPERAND_INDEX_2D)
2097      operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2098
2099   name_token.name = name;
2100
2101   emit_decl_instruction(emit, opcode0, operand0, name_token, index, size);
2102}
2103
2104
2105/**
2106 * Emit the declaration for a shader output.
2107 * \param type  one of VGPU10_OPCODE_DCL_OUTPUTx
2108 * \param index  the output register index
2109 * \param name  one of VGPU10_NAME_x
2110 * \param usageMask  bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values
2111 */
2112static void
2113emit_output_declaration(struct svga_shader_emitter_v10 *emit,
2114                        unsigned type, unsigned index,
2115                        unsigned name, unsigned usageMask)
2116{
2117   VGPU10OpcodeToken0 opcode0;
2118   VGPU10OperandToken0 operand0;
2119   VGPU10NameToken name_token;
2120
2121   assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2122   assert(type == VGPU10_OPCODE_DCL_OUTPUT ||
2123          type == VGPU10_OPCODE_DCL_OUTPUT_SGV ||
2124          type == VGPU10_OPCODE_DCL_OUTPUT_SIV);
2125   assert(name == VGPU10_NAME_UNDEFINED ||
2126          name == VGPU10_NAME_POSITION ||
2127          name == VGPU10_NAME_PRIMITIVE_ID ||
2128          name == VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX ||
2129          name == VGPU10_NAME_CLIP_DISTANCE);
2130
2131   check_register_index(emit, type, index);
2132
2133   opcode0.value = operand0.value = name_token.value = 0;
2134
2135   opcode0.opcodeType = type;
2136   operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT;
2137   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
2138   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
2139   operand0.mask = usageMask;
2140   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
2141   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2142
2143   name_token.name = name;
2144
2145   emit_decl_instruction(emit, opcode0, operand0, name_token, index, 1);
2146}
2147
2148
2149/**
2150 * Emit the declaration for the fragment depth output.
2151 */
2152static void
2153emit_fragdepth_output_declaration(struct svga_shader_emitter_v10 *emit)
2154{
2155   VGPU10OpcodeToken0 opcode0;
2156   VGPU10OperandToken0 operand0;
2157   VGPU10NameToken name_token;
2158
2159   assert(emit->unit == PIPE_SHADER_FRAGMENT);
2160
2161   opcode0.value = operand0.value = name_token.value = 0;
2162
2163   opcode0.opcodeType = VGPU10_OPCODE_DCL_OUTPUT;
2164   operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH;
2165   operand0.numComponents = VGPU10_OPERAND_1_COMPONENT;
2166   operand0.indexDimension = VGPU10_OPERAND_INDEX_0D;
2167   operand0.mask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
2168
2169   emit_decl_instruction(emit, opcode0, operand0, name_token, 0, 1);
2170}
2171
2172
2173/**
2174 * Emit the declaration for a system value input/output.
2175 */
2176static void
2177emit_system_value_declaration(struct svga_shader_emitter_v10 *emit,
2178                              unsigned semantic_name, unsigned index)
2179{
2180   switch (semantic_name) {
2181   case TGSI_SEMANTIC_INSTANCEID:
2182      index = alloc_system_value_index(emit, index);
2183      emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV,
2184                             VGPU10_OPERAND_TYPE_INPUT,
2185                             VGPU10_OPERAND_INDEX_1D,
2186                             index, 1,
2187                             VGPU10_NAME_INSTANCE_ID,
2188                             VGPU10_OPERAND_4_COMPONENT,
2189                             VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2190                             VGPU10_OPERAND_4_COMPONENT_MASK_X,
2191                             VGPU10_INTERPOLATION_UNDEFINED);
2192      break;
2193   case TGSI_SEMANTIC_VERTEXID:
2194      index = alloc_system_value_index(emit, index);
2195      emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV,
2196                             VGPU10_OPERAND_TYPE_INPUT,
2197                             VGPU10_OPERAND_INDEX_1D,
2198                             index, 1,
2199                             VGPU10_NAME_VERTEX_ID,
2200                             VGPU10_OPERAND_4_COMPONENT,
2201                             VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2202                             VGPU10_OPERAND_4_COMPONENT_MASK_X,
2203                             VGPU10_INTERPOLATION_UNDEFINED);
2204      break;
2205   default:
2206      ; /* XXX */
2207   }
2208}
2209
2210/**
2211 * Translate a TGSI declaration to VGPU10.
2212 */
2213static boolean
2214emit_vgpu10_declaration(struct svga_shader_emitter_v10 *emit,
2215                        const struct tgsi_full_declaration *decl)
2216{
2217   switch (decl->Declaration.File) {
2218   case TGSI_FILE_INPUT:
2219      /* do nothing - see emit_input_declarations() */
2220      return TRUE;
2221
2222   case TGSI_FILE_OUTPUT:
2223      assert(decl->Range.First == decl->Range.Last);
2224      emit->output_usage_mask[decl->Range.First] = decl->Declaration.UsageMask;
2225      return TRUE;
2226
2227   case TGSI_FILE_TEMPORARY:
2228      /* Don't declare the temps here.  Just keep track of how many
2229       * and emit the declaration later.
2230       */
2231      if (decl->Declaration.Array) {
2232         /* Indexed temporary array.  Save the start index of the array
2233          * and the size of the array.
2234          */
2235         const unsigned arrayID = MIN2(decl->Array.ArrayID, MAX_TEMP_ARRAYS);
2236         unsigned i;
2237
2238         assert(arrayID < ARRAY_SIZE(emit->temp_arrays));
2239
2240         /* Save this array so we can emit the declaration for it later */
2241         emit->temp_arrays[arrayID].start = decl->Range.First;
2242         emit->temp_arrays[arrayID].size =
2243            decl->Range.Last - decl->Range.First + 1;
2244
2245         emit->num_temp_arrays = MAX2(emit->num_temp_arrays, arrayID + 1);
2246         assert(emit->num_temp_arrays <= MAX_TEMP_ARRAYS);
2247         emit->num_temp_arrays = MIN2(emit->num_temp_arrays, MAX_TEMP_ARRAYS);
2248
2249         /* Fill in the temp_map entries for this array */
2250         for (i = decl->Range.First; i <= decl->Range.Last; i++) {
2251            emit->temp_map[i].arrayId = arrayID;
2252            emit->temp_map[i].index = i - decl->Range.First;
2253         }
2254      }
2255
2256      /* for all temps, indexed or not, keep track of highest index */
2257      emit->num_shader_temps = MAX2(emit->num_shader_temps,
2258                                    decl->Range.Last + 1);
2259      return TRUE;
2260
2261   case TGSI_FILE_CONSTANT:
2262      /* Don't declare constants here.  Just keep track and emit later. */
2263      {
2264         unsigned constbuf = 0, num_consts;
2265         if (decl->Declaration.Dimension) {
2266            constbuf = decl->Dim.Index2D;
2267         }
2268         /* We throw an assertion here when, in fact, the shader should never
2269          * have linked due to constbuf index out of bounds, so we shouldn't
2270          * have reached here.
2271          */
2272         assert(constbuf < ARRAY_SIZE(emit->num_shader_consts));
2273
2274         num_consts = MAX2(emit->num_shader_consts[constbuf],
2275                           decl->Range.Last + 1);
2276
2277         if (num_consts > VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) {
2278            debug_printf("Warning: constant buffer is declared to size [%u]"
2279                         " but [%u] is the limit.\n",
2280                         num_consts,
2281                         VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT);
2282         }
2283         /* The linker doesn't enforce the max UBO size so we clamp here */
2284         emit->num_shader_consts[constbuf] =
2285            MIN2(num_consts, VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT);
2286      }
2287      return TRUE;
2288
2289   case TGSI_FILE_IMMEDIATE:
2290      assert(!"TGSI_FILE_IMMEDIATE not handled yet!");
2291      return FALSE;
2292
2293   case TGSI_FILE_SYSTEM_VALUE:
2294      emit_system_value_declaration(emit, decl->Semantic.Name,
2295                                    decl->Range.First);
2296      return TRUE;
2297
2298   case TGSI_FILE_SAMPLER:
2299      /* Don't declare samplers here.  Just keep track and emit later. */
2300      emit->num_samplers = MAX2(emit->num_samplers, decl->Range.Last + 1);
2301      return TRUE;
2302
2303#if 0
2304   case TGSI_FILE_RESOURCE:
2305      /*opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE;*/
2306      /* XXX more, VGPU10_RETURN_TYPE_FLOAT */
2307      assert(!"TGSI_FILE_RESOURCE not handled yet");
2308      return FALSE;
2309#endif
2310
2311   case TGSI_FILE_ADDRESS:
2312      emit->num_address_regs = MAX2(emit->num_address_regs,
2313                                    decl->Range.Last + 1);
2314      return TRUE;
2315
2316   case TGSI_FILE_SAMPLER_VIEW:
2317      {
2318         unsigned unit = decl->Range.First;
2319         assert(decl->Range.First == decl->Range.Last);
2320         emit->sampler_target[unit] = decl->SamplerView.Resource;
2321         /* Note: we can ignore YZW return types for now */
2322         emit->sampler_return_type[unit] = decl->SamplerView.ReturnTypeX;
2323      }
2324      return TRUE;
2325
2326   default:
2327      assert(!"Unexpected type of declaration");
2328      return FALSE;
2329   }
2330}
2331
2332
2333
2334/**
2335 * Emit all input declarations.
2336 */
2337static boolean
2338emit_input_declarations(struct svga_shader_emitter_v10 *emit)
2339{
2340   unsigned i;
2341
2342   if (emit->unit == PIPE_SHADER_FRAGMENT) {
2343
2344      for (i = 0; i < emit->linkage.num_inputs; i++) {
2345         unsigned semantic_name = emit->info.input_semantic_name[i];
2346         unsigned usage_mask = emit->info.input_usage_mask[i];
2347         unsigned index = emit->linkage.input_map[i];
2348         unsigned type, interpolationMode, name;
2349
2350         if (usage_mask == 0)
2351            continue;  /* register is not actually used */
2352
2353         if (semantic_name == TGSI_SEMANTIC_POSITION) {
2354            /* fragment position input */
2355            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2356            interpolationMode = VGPU10_INTERPOLATION_LINEAR;
2357            name = VGPU10_NAME_POSITION;
2358            if (usage_mask & TGSI_WRITEMASK_W) {
2359               /* we need to replace use of 'w' with '1/w' */
2360               emit->fs.fragcoord_input_index = i;
2361            }
2362         }
2363         else if (semantic_name == TGSI_SEMANTIC_FACE) {
2364            /* fragment front-facing input */
2365            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2366            interpolationMode = VGPU10_INTERPOLATION_CONSTANT;
2367            name = VGPU10_NAME_IS_FRONT_FACE;
2368            emit->fs.face_input_index = i;
2369         }
2370         else if (semantic_name == TGSI_SEMANTIC_PRIMID) {
2371            /* primitive ID */
2372            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2373            interpolationMode = VGPU10_INTERPOLATION_CONSTANT;
2374            name = VGPU10_NAME_PRIMITIVE_ID;
2375         }
2376         else {
2377            /* general fragment input */
2378            type = VGPU10_OPCODE_DCL_INPUT_PS;
2379            interpolationMode =
2380               translate_interpolation(emit,
2381                                       emit->info.input_interpolate[i],
2382                                       emit->info.input_interpolate_loc[i]);
2383
2384            /* keeps track if flat interpolation mode is being used */
2385            emit->uses_flat_interp = emit->uses_flat_interp ||
2386               (interpolationMode == VGPU10_INTERPOLATION_CONSTANT);
2387
2388            name = VGPU10_NAME_UNDEFINED;
2389         }
2390
2391         emit_input_declaration(emit, type,
2392                                VGPU10_OPERAND_TYPE_INPUT,
2393                                VGPU10_OPERAND_INDEX_1D, index, 1,
2394                                name,
2395                                VGPU10_OPERAND_4_COMPONENT,
2396                                VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2397                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2398                                interpolationMode);
2399      }
2400   }
2401   else if (emit->unit == PIPE_SHADER_GEOMETRY) {
2402
2403      for (i = 0; i < emit->info.num_inputs; i++) {
2404         unsigned semantic_name = emit->info.input_semantic_name[i];
2405         unsigned usage_mask = emit->info.input_usage_mask[i];
2406         unsigned index = emit->linkage.input_map[i];
2407         unsigned opcodeType, operandType;
2408         unsigned numComp, selMode;
2409         unsigned name;
2410         unsigned dim;
2411
2412         if (usage_mask == 0)
2413            continue;  /* register is not actually used */
2414
2415         opcodeType = VGPU10_OPCODE_DCL_INPUT;
2416         operandType = VGPU10_OPERAND_TYPE_INPUT;
2417         numComp = VGPU10_OPERAND_4_COMPONENT;
2418         selMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
2419         name = VGPU10_NAME_UNDEFINED;
2420
2421         /* all geometry shader inputs are two dimensional except gl_PrimitiveID */
2422         dim = VGPU10_OPERAND_INDEX_2D;
2423
2424         if (semantic_name == TGSI_SEMANTIC_PRIMID) {
2425            /* Primitive ID */
2426            operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID;
2427            dim = VGPU10_OPERAND_INDEX_0D;
2428            numComp = VGPU10_OPERAND_0_COMPONENT;
2429            selMode = 0;
2430
2431            /* also save the register index so we can check for
2432             * primitive id when emit src register. We need to modify the
2433             * operand type, index dimension when emit primitive id src reg.
2434             */
2435            emit->gs.prim_id_index = i;
2436         }
2437         else if (semantic_name == TGSI_SEMANTIC_POSITION) {
2438            /* vertex position input */
2439            opcodeType = VGPU10_OPCODE_DCL_INPUT_SIV;
2440            name = VGPU10_NAME_POSITION;
2441         }
2442
2443         emit_input_declaration(emit, opcodeType, operandType,
2444                                dim, index,
2445                                emit->gs.input_size,
2446                                name,
2447                                numComp, selMode,
2448                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2449                                VGPU10_INTERPOLATION_UNDEFINED);
2450      }
2451   }
2452   else {
2453      assert(emit->unit == PIPE_SHADER_VERTEX);
2454
2455      for (i = 0; i < emit->info.file_max[TGSI_FILE_INPUT] + 1; i++) {
2456         unsigned usage_mask = emit->info.input_usage_mask[i];
2457         unsigned index = i;
2458
2459         if (usage_mask == 0)
2460            continue;  /* register is not actually used */
2461
2462         emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT,
2463                                VGPU10_OPERAND_TYPE_INPUT,
2464                                VGPU10_OPERAND_INDEX_1D, index, 1,
2465                                VGPU10_NAME_UNDEFINED,
2466                                VGPU10_OPERAND_4_COMPONENT,
2467                                VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2468                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2469                                VGPU10_INTERPOLATION_UNDEFINED);
2470      }
2471   }
2472
2473   return TRUE;
2474}
2475
2476
2477/**
2478 * Emit all output declarations.
2479 */
2480static boolean
2481emit_output_declarations(struct svga_shader_emitter_v10 *emit)
2482{
2483   unsigned i;
2484
2485   for (i = 0; i < emit->info.num_outputs; i++) {
2486      /*const unsigned usage_mask = emit->info.output_usage_mask[i];*/
2487      const unsigned semantic_name = emit->info.output_semantic_name[i];
2488      const unsigned semantic_index = emit->info.output_semantic_index[i];
2489      unsigned index = i;
2490
2491      if (emit->unit == PIPE_SHADER_FRAGMENT) {
2492         if (semantic_name == TGSI_SEMANTIC_COLOR) {
2493            assert(semantic_index < ARRAY_SIZE(emit->fs.color_out_index));
2494
2495            emit->fs.color_out_index[semantic_index] = index;
2496
2497            /* The semantic index is the shader's color output/buffer index */
2498            emit_output_declaration(emit,
2499                                    VGPU10_OPCODE_DCL_OUTPUT, semantic_index,
2500                                    VGPU10_NAME_UNDEFINED,
2501                                    VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2502
2503            if (semantic_index == 0) {
2504               if (emit->key.fs.write_color0_to_n_cbufs > 1) {
2505                  /* Emit declarations for the additional color outputs
2506                   * for broadcasting.
2507                   */
2508                  unsigned j;
2509                  for (j = 1; j < emit->key.fs.write_color0_to_n_cbufs; j++) {
2510                     /* Allocate a new output index */
2511                     unsigned idx = emit->info.num_outputs + j - 1;
2512                     emit->fs.color_out_index[j] = idx;
2513                     emit_output_declaration(emit,
2514                                        VGPU10_OPCODE_DCL_OUTPUT, idx,
2515                                        VGPU10_NAME_UNDEFINED,
2516                                        VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2517                     emit->info.output_semantic_index[idx] = j;
2518                  }
2519               }
2520            }
2521            else {
2522               assert(!emit->key.fs.write_color0_to_n_cbufs);
2523            }
2524         }
2525         else if (semantic_name == TGSI_SEMANTIC_POSITION) {
2526            /* Fragment depth output */
2527            emit_fragdepth_output_declaration(emit);
2528         }
2529         else {
2530            assert(!"Bad output semantic name");
2531         }
2532      }
2533      else {
2534         /* VS or GS */
2535         unsigned name, type;
2536         unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
2537
2538         switch (semantic_name) {
2539         case TGSI_SEMANTIC_POSITION:
2540            assert(emit->unit != PIPE_SHADER_FRAGMENT);
2541            type = VGPU10_OPCODE_DCL_OUTPUT_SIV;
2542            name = VGPU10_NAME_POSITION;
2543            /* Save the index of the vertex position output register */
2544            emit->vposition.out_index = index;
2545            break;
2546         case TGSI_SEMANTIC_CLIPDIST:
2547            type = VGPU10_OPCODE_DCL_OUTPUT_SIV;
2548            name = VGPU10_NAME_CLIP_DISTANCE;
2549            /* save the starting index of the clip distance output register */
2550            if (semantic_index == 0)
2551               emit->clip_dist_out_index = index;
2552            writemask = emit->output_usage_mask[index];
2553            writemask = apply_clip_plane_mask(emit, writemask, semantic_index);
2554            if (writemask == 0x0) {
2555               continue; /* discard this do-nothing declaration */
2556            }
2557            break;
2558         case TGSI_SEMANTIC_PRIMID:
2559            assert(emit->unit == PIPE_SHADER_GEOMETRY);
2560            type = VGPU10_OPCODE_DCL_OUTPUT_SGV;
2561            name = VGPU10_NAME_PRIMITIVE_ID;
2562            break;
2563         case TGSI_SEMANTIC_LAYER:
2564            assert(emit->unit == PIPE_SHADER_GEOMETRY);
2565            type = VGPU10_OPCODE_DCL_OUTPUT_SGV;
2566            name = VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX;
2567            break;
2568         case TGSI_SEMANTIC_CLIPVERTEX:
2569            type = VGPU10_OPCODE_DCL_OUTPUT;
2570            name = VGPU10_NAME_UNDEFINED;
2571            emit->clip_vertex_out_index = index;
2572            break;
2573         default:
2574            /* generic output */
2575            type = VGPU10_OPCODE_DCL_OUTPUT;
2576            name = VGPU10_NAME_UNDEFINED;
2577         }
2578
2579         emit_output_declaration(emit, type, index, name, writemask);
2580      }
2581   }
2582
2583   if (emit->vposition.so_index != INVALID_INDEX &&
2584       emit->vposition.out_index != INVALID_INDEX) {
2585
2586      assert(emit->unit != PIPE_SHADER_FRAGMENT);
2587
2588      /* Emit the declaration for the non-adjusted vertex position
2589       * for stream output purpose
2590       */
2591      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2592                              emit->vposition.so_index,
2593                              VGPU10_NAME_UNDEFINED,
2594                              VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2595   }
2596
2597   if (emit->clip_dist_so_index != INVALID_INDEX &&
2598       emit->clip_dist_out_index != INVALID_INDEX) {
2599
2600      assert(emit->unit != PIPE_SHADER_FRAGMENT);
2601
2602      /* Emit the declaration for the clip distance shadow copy which
2603       * will be used for stream output purpose and for clip distance
2604       * varying variable
2605       */
2606      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2607                              emit->clip_dist_so_index,
2608                              VGPU10_NAME_UNDEFINED,
2609                              emit->output_usage_mask[emit->clip_dist_out_index]);
2610
2611      if (emit->info.num_written_clipdistance > 4) {
2612         /* for the second clip distance register, each handles 4 planes */
2613         emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2614                                 emit->clip_dist_so_index + 1,
2615                                 VGPU10_NAME_UNDEFINED,
2616                                 emit->output_usage_mask[emit->clip_dist_out_index+1]);
2617      }
2618   }
2619
2620   return TRUE;
2621}
2622
2623
2624/**
2625 * Emit the declaration for the temporary registers.
2626 */
2627static boolean
2628emit_temporaries_declaration(struct svga_shader_emitter_v10 *emit)
2629{
2630   unsigned total_temps, reg, i;
2631
2632   total_temps = emit->num_shader_temps;
2633
2634   /* If there is indirect access to non-indexable temps in the shader,
2635    * convert those temps to indexable temps. This works around a bug
2636    * in the GLSL->TGSI translator exposed in piglit test
2637    * glsl-1.20/execution/fs-const-array-of-struct-of-array.shader_test.
2638    * Internal temps added by the driver remain as non-indexable temps.
2639    */
2640   if ((emit->info.indirect_files & (1 << TGSI_FILE_TEMPORARY)) &&
2641       emit->num_temp_arrays == 0) {
2642      unsigned arrayID;
2643
2644      arrayID = 1;
2645      emit->num_temp_arrays = arrayID + 1;
2646      emit->temp_arrays[arrayID].start = 0;
2647      emit->temp_arrays[arrayID].size = total_temps;
2648
2649      /* Fill in the temp_map entries for this temp array */
2650      for (i = 0; i < total_temps; i++) {
2651         emit->temp_map[i].arrayId = arrayID;
2652         emit->temp_map[i].index = i;
2653      }
2654   }
2655
2656   /* Allocate extra temps for specially-implemented instructions,
2657    * such as LIT.
2658    */
2659   total_temps += MAX_INTERNAL_TEMPS;
2660
2661   if (emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY) {
2662      if (emit->vposition.need_prescale || emit->key.vs.undo_viewport ||
2663          emit->key.clip_plane_enable ||
2664          emit->vposition.so_index != INVALID_INDEX) {
2665         emit->vposition.tmp_index = total_temps;
2666         total_temps += 1;
2667      }
2668
2669      if (emit->unit == PIPE_SHADER_VERTEX) {
2670         unsigned attrib_mask = (emit->key.vs.adjust_attrib_w_1 |
2671                                 emit->key.vs.adjust_attrib_itof |
2672                                 emit->key.vs.adjust_attrib_utof |
2673                                 emit->key.vs.attrib_is_bgra |
2674                                 emit->key.vs.attrib_puint_to_snorm |
2675                                 emit->key.vs.attrib_puint_to_uscaled |
2676                                 emit->key.vs.attrib_puint_to_sscaled);
2677         while (attrib_mask) {
2678            unsigned index = u_bit_scan(&attrib_mask);
2679            emit->vs.adjusted_input[index] = total_temps++;
2680         }
2681      }
2682
2683      if (emit->clip_mode == CLIP_DISTANCE) {
2684         /* We need to write the clip distance to a temporary register
2685          * first. Then it will be copied to the shadow copy for
2686          * the clip distance varying variable and stream output purpose.
2687          * It will also be copied to the actual CLIPDIST register
2688          * according to the enabled clip planes
2689          */
2690         emit->clip_dist_tmp_index = total_temps++;
2691         if (emit->info.num_written_clipdistance > 4)
2692            total_temps++; /* second clip register */
2693      }
2694      else if (emit->clip_mode == CLIP_VERTEX) {
2695         /* We need to convert the TGSI CLIPVERTEX output to one or more
2696          * clip distances.  Allocate a temp reg for the clipvertex here.
2697          */
2698         assert(emit->info.writes_clipvertex > 0);
2699         emit->clip_vertex_tmp_index = total_temps;
2700         total_temps++;
2701      }
2702   }
2703   else if (emit->unit == PIPE_SHADER_FRAGMENT) {
2704      if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS ||
2705          emit->key.fs.white_fragments ||
2706          emit->key.fs.write_color0_to_n_cbufs > 1) {
2707         /* Allocate a temp to hold the output color */
2708         emit->fs.color_tmp_index = total_temps;
2709         total_temps += 1;
2710      }
2711
2712      if (emit->fs.face_input_index != INVALID_INDEX) {
2713         /* Allocate a temp for the +/-1 face register */
2714         emit->fs.face_tmp_index = total_temps;
2715         total_temps += 1;
2716      }
2717
2718      if (emit->fs.fragcoord_input_index != INVALID_INDEX) {
2719         /* Allocate a temp for modified fragment position register */
2720         emit->fs.fragcoord_tmp_index = total_temps;
2721         total_temps += 1;
2722      }
2723   }
2724
2725   for (i = 0; i < emit->num_address_regs; i++) {
2726      emit->address_reg_index[i] = total_temps++;
2727   }
2728
2729   /* Initialize the temp_map array which maps TGSI temp indexes to VGPU10
2730    * temp indexes.  Basically, we compact all the non-array temp register
2731    * indexes into a consecutive series.
2732    *
2733    * Before, we may have some TGSI declarations like:
2734    *   DCL TEMP[0..1], LOCAL
2735    *   DCL TEMP[2..4], ARRAY(1), LOCAL
2736    *   DCL TEMP[5..7], ARRAY(2), LOCAL
2737    *   plus, some extra temps, like TEMP[8], TEMP[9] for misc things
2738    *
2739    * After, we'll have a map like this:
2740    *   temp_map[0] = { array 0, index 0 }
2741    *   temp_map[1] = { array 0, index 1 }
2742    *   temp_map[2] = { array 1, index 0 }
2743    *   temp_map[3] = { array 1, index 1 }
2744    *   temp_map[4] = { array 1, index 2 }
2745    *   temp_map[5] = { array 2, index 0 }
2746    *   temp_map[6] = { array 2, index 1 }
2747    *   temp_map[7] = { array 2, index 2 }
2748    *   temp_map[8] = { array 0, index 2 }
2749    *   temp_map[9] = { array 0, index 3 }
2750    *
2751    * We'll declare two arrays of 3 elements, plus a set of four non-indexed
2752    * temps numbered 0..3
2753    *
2754    * Any time we emit a temporary register index, we'll have to use the
2755    * temp_map[] table to convert the TGSI index to the VGPU10 index.
2756    *
2757    * Finally, we recompute the total_temps value here.
2758    */
2759   reg = 0;
2760   for (i = 0; i < total_temps; i++) {
2761      if (emit->temp_map[i].arrayId == 0) {
2762         emit->temp_map[i].index = reg++;
2763      }
2764   }
2765
2766   if (0) {
2767      debug_printf("total_temps %u\n", total_temps);
2768      for (i = 0; i < total_temps; i++) {
2769         debug_printf("temp %u ->  array %u  index %u\n",
2770                      i, emit->temp_map[i].arrayId, emit->temp_map[i].index);
2771      }
2772   }
2773
2774   total_temps = reg;
2775
2776   /* Emit declaration of ordinary temp registers */
2777   if (total_temps > 0) {
2778      VGPU10OpcodeToken0 opcode0;
2779
2780      opcode0.value = 0;
2781      opcode0.opcodeType = VGPU10_OPCODE_DCL_TEMPS;
2782
2783      begin_emit_instruction(emit);
2784      emit_dword(emit, opcode0.value);
2785      emit_dword(emit, total_temps);
2786      end_emit_instruction(emit);
2787   }
2788
2789   /* Emit declarations for indexable temp arrays.  Skip 0th entry since
2790    * it's unused.
2791    */
2792   for (i = 1; i < emit->num_temp_arrays; i++) {
2793      unsigned num_temps = emit->temp_arrays[i].size;
2794
2795      if (num_temps > 0) {
2796         VGPU10OpcodeToken0 opcode0;
2797
2798         opcode0.value = 0;
2799         opcode0.opcodeType = VGPU10_OPCODE_DCL_INDEXABLE_TEMP;
2800
2801         begin_emit_instruction(emit);
2802         emit_dword(emit, opcode0.value);
2803         emit_dword(emit, i); /* which array */
2804         emit_dword(emit, num_temps);
2805         emit_dword(emit, 4); /* num components */
2806         end_emit_instruction(emit);
2807
2808         total_temps += num_temps;
2809      }
2810   }
2811
2812   /* Check that the grand total of all regular and indexed temps is
2813    * under the limit.
2814    */
2815   check_register_index(emit, VGPU10_OPCODE_DCL_TEMPS, total_temps - 1);
2816
2817   return TRUE;
2818}
2819
2820
2821static boolean
2822emit_constant_declaration(struct svga_shader_emitter_v10 *emit)
2823{
2824   VGPU10OpcodeToken0 opcode0;
2825   VGPU10OperandToken0 operand0;
2826   unsigned total_consts, i;
2827
2828   opcode0.value = 0;
2829   opcode0.opcodeType = VGPU10_OPCODE_DCL_CONSTANT_BUFFER;
2830   opcode0.accessPattern = VGPU10_CB_IMMEDIATE_INDEXED;
2831   /* XXX or, access pattern = VGPU10_CB_DYNAMIC_INDEXED */
2832
2833   operand0.value = 0;
2834   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
2835   operand0.indexDimension = VGPU10_OPERAND_INDEX_2D;
2836   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2837   operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2838   operand0.operandType = VGPU10_OPERAND_TYPE_CONSTANT_BUFFER;
2839   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
2840   operand0.swizzleX = 0;
2841   operand0.swizzleY = 1;
2842   operand0.swizzleZ = 2;
2843   operand0.swizzleW = 3;
2844
2845   /**
2846    * Emit declaration for constant buffer [0].  We also allocate
2847    * room for the extra constants here.
2848    */
2849   total_consts = emit->num_shader_consts[0];
2850
2851   /* Now, allocate constant slots for the "extra" constants */
2852
2853   /* Vertex position scale/translation */
2854   if (emit->vposition.need_prescale) {
2855      emit->vposition.prescale_scale_index = total_consts++;
2856      emit->vposition.prescale_trans_index = total_consts++;
2857   }
2858
2859   if (emit->unit == PIPE_SHADER_VERTEX) {
2860      if (emit->key.vs.undo_viewport) {
2861         emit->vs.viewport_index = total_consts++;
2862      }
2863   }
2864
2865   /* user-defined clip planes */
2866   if (emit->key.clip_plane_enable) {
2867      unsigned n = util_bitcount(emit->key.clip_plane_enable);
2868      assert(emit->unit == PIPE_SHADER_VERTEX ||
2869             emit->unit == PIPE_SHADER_GEOMETRY);
2870      for (i = 0; i < n; i++) {
2871         emit->clip_plane_const[i] = total_consts++;
2872      }
2873   }
2874
2875   /* Texcoord scale factors for RECT textures */
2876   {
2877      for (i = 0; i < emit->num_samplers; i++) {
2878         if (emit->key.tex[i].unnormalized) {
2879            emit->texcoord_scale_index[i] = total_consts++;
2880         }
2881      }
2882   }
2883
2884   /* Texture buffer sizes */
2885   for (i = 0; i < emit->num_samplers; i++) {
2886      if (emit->sampler_target[i] == TGSI_TEXTURE_BUFFER) {
2887         emit->texture_buffer_size_index[i] = total_consts++;
2888      }
2889   }
2890
2891   if (total_consts > 0) {
2892      begin_emit_instruction(emit);
2893      emit_dword(emit, opcode0.value);
2894      emit_dword(emit, operand0.value);
2895      emit_dword(emit, 0);  /* which const buffer slot */
2896      emit_dword(emit, total_consts);
2897      end_emit_instruction(emit);
2898   }
2899
2900   /* Declare remaining constant buffers (UBOs) */
2901   for (i = 1; i < ARRAY_SIZE(emit->num_shader_consts); i++) {
2902      if (emit->num_shader_consts[i] > 0) {
2903         begin_emit_instruction(emit);
2904         emit_dword(emit, opcode0.value);
2905         emit_dword(emit, operand0.value);
2906         emit_dword(emit, i);  /* which const buffer slot */
2907         emit_dword(emit, emit->num_shader_consts[i]);
2908         end_emit_instruction(emit);
2909      }
2910   }
2911
2912   return TRUE;
2913}
2914
2915
2916/**
2917 * Emit declarations for samplers.
2918 */
2919static boolean
2920emit_sampler_declarations(struct svga_shader_emitter_v10 *emit)
2921{
2922   unsigned i;
2923
2924   for (i = 0; i < emit->num_samplers; i++) {
2925      VGPU10OpcodeToken0 opcode0;
2926      VGPU10OperandToken0 operand0;
2927
2928      opcode0.value = 0;
2929      opcode0.opcodeType = VGPU10_OPCODE_DCL_SAMPLER;
2930      opcode0.samplerMode = VGPU10_SAMPLER_MODE_DEFAULT;
2931
2932      operand0.value = 0;
2933      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
2934      operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER;
2935      operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
2936      operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2937
2938      begin_emit_instruction(emit);
2939      emit_dword(emit, opcode0.value);
2940      emit_dword(emit, operand0.value);
2941      emit_dword(emit, i);
2942      end_emit_instruction(emit);
2943   }
2944
2945   return TRUE;
2946}
2947
2948
2949/**
2950 * Translate TGSI_TEXTURE_x to VGAPU10_RESOURCE_DIMENSION_x.
2951 */
2952static unsigned
2953tgsi_texture_to_resource_dimension(unsigned target, boolean is_array)
2954{
2955   switch (target) {
2956   case TGSI_TEXTURE_BUFFER:
2957      return VGPU10_RESOURCE_DIMENSION_BUFFER;
2958   case TGSI_TEXTURE_1D:
2959      return VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2960   case TGSI_TEXTURE_2D:
2961   case TGSI_TEXTURE_RECT:
2962      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2963   case TGSI_TEXTURE_3D:
2964      return VGPU10_RESOURCE_DIMENSION_TEXTURE3D;
2965   case TGSI_TEXTURE_CUBE:
2966      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE;
2967   case TGSI_TEXTURE_SHADOW1D:
2968      return VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2969   case TGSI_TEXTURE_SHADOW2D:
2970   case TGSI_TEXTURE_SHADOWRECT:
2971      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2972   case TGSI_TEXTURE_1D_ARRAY:
2973   case TGSI_TEXTURE_SHADOW1D_ARRAY:
2974      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE1DARRAY
2975         : VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2976   case TGSI_TEXTURE_2D_ARRAY:
2977   case TGSI_TEXTURE_SHADOW2D_ARRAY:
2978      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DARRAY
2979         : VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2980   case TGSI_TEXTURE_SHADOWCUBE:
2981      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE;
2982   case TGSI_TEXTURE_2D_MSAA:
2983      return VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS;
2984   case TGSI_TEXTURE_2D_ARRAY_MSAA:
2985      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DMSARRAY
2986         : VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS;
2987   case TGSI_TEXTURE_CUBE_ARRAY:
2988      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBEARRAY;
2989   default:
2990      assert(!"Unexpected resource type");
2991      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2992   }
2993}
2994
2995
2996/**
2997 * Given a tgsi_return_type, return true iff it is an integer type.
2998 */
2999static boolean
3000is_integer_type(enum tgsi_return_type type)
3001{
3002   switch (type) {
3003      case TGSI_RETURN_TYPE_SINT:
3004      case TGSI_RETURN_TYPE_UINT:
3005         return TRUE;
3006      case TGSI_RETURN_TYPE_FLOAT:
3007      case TGSI_RETURN_TYPE_UNORM:
3008      case TGSI_RETURN_TYPE_SNORM:
3009         return FALSE;
3010      case TGSI_RETURN_TYPE_COUNT:
3011      default:
3012         assert(!"is_integer_type: Unknown tgsi_return_type");
3013         return FALSE;
3014   }
3015}
3016
3017
3018/**
3019 * Emit declarations for resources.
3020 * XXX When we're sure that all TGSI shaders will be generated with
3021 * sampler view declarations (Ex: DCL SVIEW[n], 2D, UINT) we may
3022 * rework this code.
3023 */
3024static boolean
3025emit_resource_declarations(struct svga_shader_emitter_v10 *emit)
3026{
3027   unsigned i;
3028
3029   /* Emit resource decl for each sampler */
3030   for (i = 0; i < emit->num_samplers; i++) {
3031      VGPU10OpcodeToken0 opcode0;
3032      VGPU10OperandToken0 operand0;
3033      VGPU10ResourceReturnTypeToken return_type;
3034      VGPU10_RESOURCE_RETURN_TYPE rt;
3035
3036      opcode0.value = 0;
3037      opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE;
3038      opcode0.resourceDimension =
3039         tgsi_texture_to_resource_dimension(emit->sampler_target[i],
3040                                            emit->key.tex[i].is_array);
3041      operand0.value = 0;
3042      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
3043      operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE;
3044      operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
3045      operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
3046
3047#if 1
3048      /* convert TGSI_RETURN_TYPE_x to VGPU10_RETURN_TYPE_x */
3049      STATIC_ASSERT(VGPU10_RETURN_TYPE_UNORM == TGSI_RETURN_TYPE_UNORM + 1);
3050      STATIC_ASSERT(VGPU10_RETURN_TYPE_SNORM == TGSI_RETURN_TYPE_SNORM + 1);
3051      STATIC_ASSERT(VGPU10_RETURN_TYPE_SINT == TGSI_RETURN_TYPE_SINT + 1);
3052      STATIC_ASSERT(VGPU10_RETURN_TYPE_UINT == TGSI_RETURN_TYPE_UINT + 1);
3053      STATIC_ASSERT(VGPU10_RETURN_TYPE_FLOAT == TGSI_RETURN_TYPE_FLOAT + 1);
3054      assert(emit->sampler_return_type[i] <= TGSI_RETURN_TYPE_FLOAT);
3055      rt = emit->sampler_return_type[i] + 1;
3056#else
3057      switch (emit->sampler_return_type[i]) {
3058         case TGSI_RETURN_TYPE_UNORM: rt = VGPU10_RETURN_TYPE_UNORM; break;
3059         case TGSI_RETURN_TYPE_SNORM: rt = VGPU10_RETURN_TYPE_SNORM; break;
3060         case TGSI_RETURN_TYPE_SINT:  rt = VGPU10_RETURN_TYPE_SINT;  break;
3061         case TGSI_RETURN_TYPE_UINT:  rt = VGPU10_RETURN_TYPE_UINT;  break;
3062         case TGSI_RETURN_TYPE_FLOAT: rt = VGPU10_RETURN_TYPE_FLOAT; break;
3063         case TGSI_RETURN_TYPE_COUNT:
3064         default:
3065            rt = VGPU10_RETURN_TYPE_FLOAT;
3066            assert(!"emit_resource_declarations: Unknown tgsi_return_type");
3067      }
3068#endif
3069
3070      return_type.value = 0;
3071      return_type.component0 = rt;
3072      return_type.component1 = rt;
3073      return_type.component2 = rt;
3074      return_type.component3 = rt;
3075
3076      begin_emit_instruction(emit);
3077      emit_dword(emit, opcode0.value);
3078      emit_dword(emit, operand0.value);
3079      emit_dword(emit, i);
3080      emit_dword(emit, return_type.value);
3081      end_emit_instruction(emit);
3082   }
3083
3084   return TRUE;
3085}
3086
3087static void
3088emit_instruction_op1(struct svga_shader_emitter_v10 *emit,
3089                     unsigned opcode,
3090                     const struct tgsi_full_dst_register *dst,
3091                     const struct tgsi_full_src_register *src,
3092                     boolean saturate)
3093{
3094   begin_emit_instruction(emit);
3095   emit_opcode(emit, opcode, saturate);
3096   emit_dst_register(emit, dst);
3097   emit_src_register(emit, src);
3098   end_emit_instruction(emit);
3099}
3100
3101static void
3102emit_instruction_op2(struct svga_shader_emitter_v10 *emit,
3103                     unsigned opcode,
3104                     const struct tgsi_full_dst_register *dst,
3105                     const struct tgsi_full_src_register *src1,
3106                     const struct tgsi_full_src_register *src2,
3107                     boolean saturate)
3108{
3109   begin_emit_instruction(emit);
3110   emit_opcode(emit, opcode, saturate);
3111   emit_dst_register(emit, dst);
3112   emit_src_register(emit, src1);
3113   emit_src_register(emit, src2);
3114   end_emit_instruction(emit);
3115}
3116
3117static void
3118emit_instruction_op3(struct svga_shader_emitter_v10 *emit,
3119                     unsigned opcode,
3120                     const struct tgsi_full_dst_register *dst,
3121                     const struct tgsi_full_src_register *src1,
3122                     const struct tgsi_full_src_register *src2,
3123                     const struct tgsi_full_src_register *src3,
3124                     boolean saturate)
3125{
3126   begin_emit_instruction(emit);
3127   emit_opcode(emit, opcode, saturate);
3128   emit_dst_register(emit, dst);
3129   emit_src_register(emit, src1);
3130   emit_src_register(emit, src2);
3131   emit_src_register(emit, src3);
3132   end_emit_instruction(emit);
3133}
3134
3135/**
3136 * Emit the actual clip distance instructions to be used for clipping
3137 * by copying the clip distance from the temporary registers to the
3138 * CLIPDIST registers written with the enabled planes mask.
3139 * Also copy the clip distance from the temporary to the clip distance
3140 * shadow copy register which will be referenced by the input shader
3141 */
3142static void
3143emit_clip_distance_instructions(struct svga_shader_emitter_v10 *emit)
3144{
3145   struct tgsi_full_src_register tmp_clip_dist_src;
3146   struct tgsi_full_dst_register clip_dist_dst;
3147
3148   unsigned i;
3149   unsigned clip_plane_enable = emit->key.clip_plane_enable;
3150   unsigned clip_dist_tmp_index = emit->clip_dist_tmp_index;
3151   int num_written_clipdist = emit->info.num_written_clipdistance;
3152
3153   assert(emit->clip_dist_out_index != INVALID_INDEX);
3154   assert(emit->clip_dist_tmp_index != INVALID_INDEX);
3155
3156   /**
3157    * Temporary reset the temporary clip dist register index so
3158    * that the copy to the real clip dist register will not
3159    * attempt to copy to the temporary register again
3160    */
3161   emit->clip_dist_tmp_index = INVALID_INDEX;
3162
3163   for (i = 0; i < 2 && num_written_clipdist > 0; i++, num_written_clipdist-=4) {
3164
3165      tmp_clip_dist_src = make_src_temp_reg(clip_dist_tmp_index + i);
3166
3167      /**
3168       * copy to the shadow copy for use by varying variable and
3169       * stream output. All clip distances
3170       * will be written regardless of the enabled clipping planes.
3171       */
3172      clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT,
3173                                   emit->clip_dist_so_index + i);
3174
3175      /* MOV clip_dist_so, tmp_clip_dist */
3176      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst,
3177                           &tmp_clip_dist_src, FALSE);
3178
3179      /**
3180       * copy those clip distances to enabled clipping planes
3181       * to CLIPDIST registers for clipping
3182       */
3183      if (clip_plane_enable & 0xf) {
3184         clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT,
3185                                      emit->clip_dist_out_index + i);
3186         clip_dist_dst = writemask_dst(&clip_dist_dst, clip_plane_enable & 0xf);
3187
3188         /* MOV CLIPDIST, tmp_clip_dist */
3189         emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst,
3190                              &tmp_clip_dist_src, FALSE);
3191      }
3192      /* four clip planes per clip register */
3193      clip_plane_enable >>= 4;
3194   }
3195   /**
3196    * set the temporary clip dist register index back to the
3197    * temporary index for the next vertex
3198    */
3199   emit->clip_dist_tmp_index = clip_dist_tmp_index;
3200}
3201
3202/* Declare clip distance output registers for user-defined clip planes
3203 * or the TGSI_CLIPVERTEX output.
3204 */
3205static void
3206emit_clip_distance_declarations(struct svga_shader_emitter_v10 *emit)
3207{
3208   unsigned num_clip_planes = util_bitcount(emit->key.clip_plane_enable);
3209   unsigned index = emit->num_outputs;
3210   unsigned plane_mask;
3211
3212   assert(emit->unit == PIPE_SHADER_VERTEX ||
3213          emit->unit == PIPE_SHADER_GEOMETRY);
3214   assert(num_clip_planes <= 8);
3215
3216   if (emit->clip_mode != CLIP_LEGACY &&
3217       emit->clip_mode != CLIP_VERTEX) {
3218      return;
3219   }
3220
3221   if (num_clip_planes == 0)
3222      return;
3223
3224   /* Declare one or two clip output registers.  The number of components
3225    * in the mask reflects the number of clip planes.  For example, if 5
3226    * clip planes are needed, we'll declare outputs similar to:
3227    * dcl_output_siv o2.xyzw, clip_distance
3228    * dcl_output_siv o3.x, clip_distance
3229    */
3230   emit->clip_dist_out_index = index; /* save the starting clip dist reg index */
3231
3232   plane_mask = (1 << num_clip_planes) - 1;
3233   if (plane_mask & 0xf) {
3234      unsigned cmask = plane_mask & VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
3235      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index,
3236                              VGPU10_NAME_CLIP_DISTANCE, cmask);
3237      emit->num_outputs++;
3238   }
3239   if (plane_mask & 0xf0) {
3240      unsigned cmask = (plane_mask >> 4) & VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
3241      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index + 1,
3242                              VGPU10_NAME_CLIP_DISTANCE, cmask);
3243      emit->num_outputs++;
3244   }
3245}
3246
3247
3248/**
3249 * Emit the instructions for writing to the clip distance registers
3250 * to handle legacy/automatic clip planes.
3251 * For each clip plane, the distance is the dot product of the vertex
3252 * position (found in TEMP[vpos_tmp_index]) and the clip plane coefficients.
3253 * This is not used when the shader has an explicit CLIPVERTEX or CLIPDISTANCE
3254 * output registers already declared.
3255 */
3256static void
3257emit_clip_distance_from_vpos(struct svga_shader_emitter_v10 *emit,
3258                             unsigned vpos_tmp_index)
3259{
3260   unsigned i, num_clip_planes = util_bitcount(emit->key.clip_plane_enable);
3261
3262   assert(emit->clip_mode == CLIP_LEGACY);
3263   assert(num_clip_planes <= 8);
3264
3265   assert(emit->unit == PIPE_SHADER_VERTEX ||
3266          emit->unit == PIPE_SHADER_GEOMETRY);
3267
3268   for (i = 0; i < num_clip_planes; i++) {
3269      struct tgsi_full_dst_register dst;
3270      struct tgsi_full_src_register plane_src, vpos_src;
3271      unsigned reg_index = emit->clip_dist_out_index + i / 4;
3272      unsigned comp = i % 4;
3273      unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp;
3274
3275      /* create dst, src regs */
3276      dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index);
3277      dst = writemask_dst(&dst, writemask);
3278
3279      plane_src = make_src_const_reg(emit->clip_plane_const[i]);
3280      vpos_src = make_src_temp_reg(vpos_tmp_index);
3281
3282      /* DP4 clip_dist, plane, vpos */
3283      emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst,
3284                           &plane_src, &vpos_src, FALSE);
3285   }
3286}
3287
3288
3289/**
3290 * Emit the instructions for computing the clip distance results from
3291 * the clip vertex temporary.
3292 * For each clip plane, the distance is the dot product of the clip vertex
3293 * position (found in a temp reg) and the clip plane coefficients.
3294 */
3295static void
3296emit_clip_vertex_instructions(struct svga_shader_emitter_v10 *emit)
3297{
3298   const unsigned num_clip = util_bitcount(emit->key.clip_plane_enable);
3299   unsigned i;
3300   struct tgsi_full_dst_register dst;
3301   struct tgsi_full_src_register clipvert_src;
3302   const unsigned clip_vertex_tmp = emit->clip_vertex_tmp_index;
3303
3304   assert(emit->unit == PIPE_SHADER_VERTEX ||
3305          emit->unit == PIPE_SHADER_GEOMETRY);
3306
3307   assert(emit->clip_mode == CLIP_VERTEX);
3308
3309   clipvert_src = make_src_temp_reg(clip_vertex_tmp);
3310
3311   for (i = 0; i < num_clip; i++) {
3312      struct tgsi_full_src_register plane_src;
3313      unsigned reg_index = emit->clip_dist_out_index + i / 4;
3314      unsigned comp = i % 4;
3315      unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp;
3316
3317      /* create dst, src regs */
3318      dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index);
3319      dst = writemask_dst(&dst, writemask);
3320
3321      plane_src = make_src_const_reg(emit->clip_plane_const[i]);
3322
3323      /* DP4 clip_dist, plane, vpos */
3324      emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst,
3325                           &plane_src, &clipvert_src, FALSE);
3326   }
3327
3328   /* copy temporary clip vertex register to the clip vertex register */
3329
3330   assert(emit->clip_vertex_out_index != INVALID_INDEX);
3331
3332   /**
3333    * temporary reset the temporary clip vertex register index so
3334    * that copy to the clip vertex register will not attempt
3335    * to copy to the temporary register again
3336    */
3337   emit->clip_vertex_tmp_index = INVALID_INDEX;
3338
3339   /* MOV clip_vertex, clip_vertex_tmp */
3340   dst = make_dst_reg(TGSI_FILE_OUTPUT, emit->clip_vertex_out_index);
3341   emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
3342                        &dst, &clipvert_src, FALSE);
3343
3344   /**
3345    * set the temporary clip vertex register index back to the
3346    * temporary index for the next vertex
3347    */
3348   emit->clip_vertex_tmp_index = clip_vertex_tmp;
3349}
3350
3351/**
3352 * Emit code to convert RGBA to BGRA
3353 */
3354static void
3355emit_swap_r_b(struct svga_shader_emitter_v10 *emit,
3356                     const struct tgsi_full_dst_register *dst,
3357                     const struct tgsi_full_src_register *src)
3358{
3359   struct tgsi_full_src_register bgra_src =
3360      swizzle_src(src, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_Y, TGSI_SWIZZLE_X, TGSI_SWIZZLE_W);
3361
3362   begin_emit_instruction(emit);
3363   emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
3364   emit_dst_register(emit, dst);
3365   emit_src_register(emit, &bgra_src);
3366   end_emit_instruction(emit);
3367}
3368
3369
3370/** Convert from 10_10_10_2 normalized to 10_10_10_2_snorm */
3371static void
3372emit_puint_to_snorm(struct svga_shader_emitter_v10 *emit,
3373                    const struct tgsi_full_dst_register *dst,
3374                    const struct tgsi_full_src_register *src)
3375{
3376   struct tgsi_full_src_register half = make_immediate_reg_float(emit, 0.5f);
3377   struct tgsi_full_src_register two =
3378      make_immediate_reg_float4(emit, 2.0f, 2.0f, 2.0f, 3.0f);
3379   struct tgsi_full_src_register neg_two =
3380      make_immediate_reg_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f);
3381
3382   unsigned val_tmp = get_temp_index(emit);
3383   struct tgsi_full_dst_register val_dst = make_dst_temp_reg(val_tmp);
3384   struct tgsi_full_src_register val_src = make_src_temp_reg(val_tmp);
3385
3386   unsigned bias_tmp = get_temp_index(emit);
3387   struct tgsi_full_dst_register bias_dst = make_dst_temp_reg(bias_tmp);
3388   struct tgsi_full_src_register bias_src = make_src_temp_reg(bias_tmp);
3389
3390   /* val = src * 2.0 */
3391   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &val_dst,
3392                        src, &two, FALSE);
3393
3394   /* bias = src > 0.5 */
3395   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &bias_dst,
3396                        src, &half, FALSE);
3397
3398   /* bias = bias & -2.0 */
3399   emit_instruction_op2(emit, VGPU10_OPCODE_AND, &bias_dst,
3400                        &bias_src, &neg_two, FALSE);
3401
3402   /* dst = val + bias */
3403   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, dst,
3404                        &val_src, &bias_src, FALSE);
3405
3406   free_temp_indexes(emit);
3407}
3408
3409
3410/** Convert from 10_10_10_2_unorm to 10_10_10_2_uscaled */
3411static void
3412emit_puint_to_uscaled(struct svga_shader_emitter_v10 *emit,
3413                      const struct tgsi_full_dst_register *dst,
3414                      const struct tgsi_full_src_register *src)
3415{
3416   struct tgsi_full_src_register scale =
3417      make_immediate_reg_float4(emit, 1023.0f, 1023.0f, 1023.0f, 3.0f);
3418
3419   /* dst = src * scale */
3420   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, dst, src, &scale, FALSE);
3421}
3422
3423
3424/** Convert from R32_UINT to 10_10_10_2_sscaled */
3425static void
3426emit_puint_to_sscaled(struct svga_shader_emitter_v10 *emit,
3427                      const struct tgsi_full_dst_register *dst,
3428                      const struct tgsi_full_src_register *src)
3429{
3430   struct tgsi_full_src_register lshift =
3431      make_immediate_reg_int4(emit, 22, 12, 2, 0);
3432   struct tgsi_full_src_register rshift =
3433      make_immediate_reg_int4(emit, 22, 22, 22, 30);
3434
3435   struct tgsi_full_src_register src_xxxx = scalar_src(src, TGSI_SWIZZLE_X);
3436
3437   unsigned tmp = get_temp_index(emit);
3438   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3439   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3440
3441   /*
3442    * r = (pixel << 22) >> 22;   # signed int in [511, -512]
3443    * g = (pixel << 12) >> 22;   # signed int in [511, -512]
3444    * b = (pixel <<  2) >> 22;   # signed int in [511, -512]
3445    * a = (pixel <<  0) >> 30;   # signed int in [1, -2]
3446    * dst = i_to_f(r,g,b,a);     # convert to float
3447    */
3448   emit_instruction_op2(emit, VGPU10_OPCODE_ISHL, &tmp_dst,
3449                        &src_xxxx, &lshift, FALSE);
3450   emit_instruction_op2(emit, VGPU10_OPCODE_ISHR, &tmp_dst,
3451                        &tmp_src, &rshift, FALSE);
3452   emit_instruction_op1(emit, VGPU10_OPCODE_ITOF, dst, &tmp_src, FALSE);
3453
3454   free_temp_indexes(emit);
3455}
3456
3457
3458/**
3459 * Emit code for TGSI_OPCODE_ARL or TGSI_OPCODE_UARL instruction.
3460 */
3461static boolean
3462emit_arl_uarl(struct svga_shader_emitter_v10 *emit,
3463              const struct tgsi_full_instruction *inst)
3464{
3465   unsigned index = inst->Dst[0].Register.Index;
3466   struct tgsi_full_dst_register dst;
3467   unsigned opcode;
3468
3469   assert(index < MAX_VGPU10_ADDR_REGS);
3470   dst = make_dst_temp_reg(emit->address_reg_index[index]);
3471
3472   /* ARL dst, s0
3473    * Translates into:
3474    * FTOI address_tmp, s0
3475    *
3476    * UARL dst, s0
3477    * Translates into:
3478    * MOV address_tmp, s0
3479    */
3480   if (inst->Instruction.Opcode == TGSI_OPCODE_ARL)
3481      opcode = VGPU10_OPCODE_FTOI;
3482   else
3483      opcode = VGPU10_OPCODE_MOV;
3484
3485   emit_instruction_op1(emit, opcode, &dst, &inst->Src[0], FALSE);
3486
3487   return TRUE;
3488}
3489
3490
3491/**
3492 * Emit code for TGSI_OPCODE_CAL instruction.
3493 */
3494static boolean
3495emit_cal(struct svga_shader_emitter_v10 *emit,
3496         const struct tgsi_full_instruction *inst)
3497{
3498   unsigned label = inst->Label.Label;
3499   VGPU10OperandToken0 operand;
3500   operand.value = 0;
3501   operand.operandType = VGPU10_OPERAND_TYPE_LABEL;
3502
3503   begin_emit_instruction(emit);
3504   emit_dword(emit, operand.value);
3505   emit_dword(emit, label);
3506   end_emit_instruction(emit);
3507
3508   return TRUE;
3509}
3510
3511
3512/**
3513 * Emit code for TGSI_OPCODE_IABS instruction.
3514 */
3515static boolean
3516emit_iabs(struct svga_shader_emitter_v10 *emit,
3517          const struct tgsi_full_instruction *inst)
3518{
3519   /* dst.x = (src0.x < 0) ? -src0.x : src0.x
3520    * dst.y = (src0.y < 0) ? -src0.y : src0.y
3521    * dst.z = (src0.z < 0) ? -src0.z : src0.z
3522    * dst.w = (src0.w < 0) ? -src0.w : src0.w
3523    *
3524    * Translates into
3525    *   IMAX dst, src, neg(src)
3526    */
3527   struct tgsi_full_src_register neg_src = negate_src(&inst->Src[0]);
3528   emit_instruction_op2(emit, VGPU10_OPCODE_IMAX, &inst->Dst[0],
3529                        &inst->Src[0], &neg_src, FALSE);
3530
3531   return TRUE;
3532}
3533
3534
3535/**
3536 * Emit code for TGSI_OPCODE_CMP instruction.
3537 */
3538static boolean
3539emit_cmp(struct svga_shader_emitter_v10 *emit,
3540         const struct tgsi_full_instruction *inst)
3541{
3542   /* dst.x = (src0.x < 0) ? src1.x : src2.x
3543    * dst.y = (src0.y < 0) ? src1.y : src2.y
3544    * dst.z = (src0.z < 0) ? src1.z : src2.z
3545    * dst.w = (src0.w < 0) ? src1.w : src2.w
3546    *
3547    * Translates into
3548    *   LT tmp, src0, 0.0
3549    *   MOVC dst, tmp, src1, src2
3550    */
3551   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3552   unsigned tmp = get_temp_index(emit);
3553   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3554   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3555
3556   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst,
3557                        &inst->Src[0], &zero, FALSE);
3558   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0],
3559                        &tmp_src, &inst->Src[1], &inst->Src[2],
3560                        inst->Instruction.Saturate);
3561
3562   free_temp_indexes(emit);
3563
3564   return TRUE;
3565}
3566
3567
3568/**
3569 * Emit code for TGSI_OPCODE_DP2A instruction.
3570 */
3571static boolean
3572emit_dp2a(struct svga_shader_emitter_v10 *emit,
3573          const struct tgsi_full_instruction *inst)
3574{
3575   /* dst.x = src0.x * src1.x + src0.y * src1.y + src2.x
3576    * dst.y = src0.x * src1.x + src0.y * src1.y + src2.x
3577    * dst.z = src0.x * src1.x + src0.y * src1.y + src2.x
3578    * dst.w = src0.x * src1.x + src0.y * src1.y + src2.x
3579    * Translate into
3580    *   MAD tmp.x, s0.y, s1.y, s2.x
3581    *   MAD tmp.x, s0.x, s1.x, tmp.x
3582    *   MOV dst.xyzw, tmp.xxxx
3583    */
3584   unsigned tmp = get_temp_index(emit);
3585   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3586   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3587
3588   struct tgsi_full_src_register tmp_src_xxxx =
3589      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3590   struct tgsi_full_dst_register tmp_dst_x =
3591      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3592
3593   struct tgsi_full_src_register src0_xxxx =
3594      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
3595   struct tgsi_full_src_register src0_yyyy =
3596      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
3597   struct tgsi_full_src_register src1_xxxx =
3598      scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
3599   struct tgsi_full_src_register src1_yyyy =
3600      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
3601   struct tgsi_full_src_register src2_xxxx =
3602      scalar_src(&inst->Src[2], TGSI_SWIZZLE_X);
3603
3604   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_yyyy,
3605                        &src1_yyyy, &src2_xxxx, FALSE);
3606   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_xxxx,
3607                        &src1_xxxx, &tmp_src_xxxx, FALSE);
3608   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
3609                        &tmp_src_xxxx, inst->Instruction.Saturate);
3610
3611   free_temp_indexes(emit);
3612
3613   return TRUE;
3614}
3615
3616
3617/**
3618 * Emit code for TGSI_OPCODE_DPH instruction.
3619 */
3620static boolean
3621emit_dph(struct svga_shader_emitter_v10 *emit,
3622         const struct tgsi_full_instruction *inst)
3623{
3624   /*
3625    * DP3 tmp, s0, s1
3626    * ADD dst, tmp, s1.wwww
3627    */
3628
3629   struct tgsi_full_src_register s1_wwww =
3630      swizzle_src(&inst->Src[1], TGSI_SWIZZLE_W, TGSI_SWIZZLE_W,
3631                  TGSI_SWIZZLE_W, TGSI_SWIZZLE_W);
3632
3633   unsigned tmp = get_temp_index(emit);
3634   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3635   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3636
3637   /* DP3 tmp, s0, s1 */
3638   emit_instruction_op2(emit, VGPU10_OPCODE_DP3, &tmp_dst, &inst->Src[0],
3639                        &inst->Src[1], FALSE);
3640
3641   /* ADD dst, tmp, s1.wwww */
3642   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0], &tmp_src,
3643                        &s1_wwww, inst->Instruction.Saturate);
3644
3645   free_temp_indexes(emit);
3646
3647   return TRUE;
3648}
3649
3650
3651/**
3652 * Emit code for TGSI_OPCODE_DST instruction.
3653 */
3654static boolean
3655emit_dst(struct svga_shader_emitter_v10 *emit,
3656         const struct tgsi_full_instruction *inst)
3657{
3658   /*
3659    * dst.x = 1
3660    * dst.y = src0.y * src1.y
3661    * dst.z = src0.z
3662    * dst.w = src1.w
3663    */
3664
3665   struct tgsi_full_src_register s0_yyyy =
3666      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
3667   struct tgsi_full_src_register s0_zzzz =
3668      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z);
3669   struct tgsi_full_src_register s1_yyyy =
3670      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
3671   struct tgsi_full_src_register s1_wwww =
3672      scalar_src(&inst->Src[1], TGSI_SWIZZLE_W);
3673
3674   /*
3675    * If dst and either src0 and src1 are the same we need
3676    * to create a temporary for it and insert a extra move.
3677    */
3678   unsigned tmp_move = get_temp_index(emit);
3679   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
3680   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
3681
3682   /* MOV dst.x, 1.0 */
3683   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3684      struct tgsi_full_dst_register dst_x =
3685         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
3686      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3687
3688      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE);
3689   }
3690
3691   /* MUL dst.y, s0.y, s1.y */
3692   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3693      struct tgsi_full_dst_register dst_y =
3694         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
3695
3696      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &dst_y, &s0_yyyy,
3697                           &s1_yyyy, inst->Instruction.Saturate);
3698   }
3699
3700   /* MOV dst.z, s0.z */
3701   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3702      struct tgsi_full_dst_register dst_z =
3703         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
3704
3705      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z, &s0_zzzz,
3706                           inst->Instruction.Saturate);
3707  }
3708
3709   /* MOV dst.w, s1.w */
3710   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3711      struct tgsi_full_dst_register dst_w =
3712         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
3713
3714      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &s1_wwww,
3715                           inst->Instruction.Saturate);
3716   }
3717
3718   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
3719                        FALSE);
3720   free_temp_indexes(emit);
3721
3722   return TRUE;
3723}
3724
3725
3726
3727/**
3728 * Emit code for TGSI_OPCODE_ENDPRIM (GS only)
3729 */
3730static boolean
3731emit_endprim(struct svga_shader_emitter_v10 *emit,
3732             const struct tgsi_full_instruction *inst)
3733{
3734   assert(emit->unit == PIPE_SHADER_GEOMETRY);
3735
3736   /* We can't use emit_simple() because the TGSI instruction has one
3737    * operand (vertex stream number) which we must ignore for VGPU10.
3738    */
3739   begin_emit_instruction(emit);
3740   emit_opcode(emit, VGPU10_OPCODE_CUT, FALSE);
3741   end_emit_instruction(emit);
3742   return TRUE;
3743}
3744
3745
3746/**
3747 * Emit code for TGSI_OPCODE_EX2 (2^x) instruction.
3748 */
3749static boolean
3750emit_ex2(struct svga_shader_emitter_v10 *emit,
3751         const struct tgsi_full_instruction *inst)
3752{
3753   /* Note that TGSI_OPCODE_EX2 computes only one value from src.x
3754    * while VGPU10 computes four values.
3755    *
3756    * dst = EX2(src):
3757    *   dst.xyzw = 2.0 ^ src.x
3758    */
3759
3760   struct tgsi_full_src_register src_xxxx =
3761      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
3762                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
3763
3764   /* EXP tmp, s0.xxxx */
3765   emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0], &src_xxxx,
3766                        inst->Instruction.Saturate);
3767
3768   return TRUE;
3769}
3770
3771
3772/**
3773 * Emit code for TGSI_OPCODE_EXP instruction.
3774 */
3775static boolean
3776emit_exp(struct svga_shader_emitter_v10 *emit,
3777         const struct tgsi_full_instruction *inst)
3778{
3779   /*
3780    * dst.x = 2 ^ floor(s0.x)
3781    * dst.y = s0.x - floor(s0.x)
3782    * dst.z = 2 ^ s0.x
3783    * dst.w = 1.0
3784    */
3785
3786   struct tgsi_full_src_register src_xxxx =
3787      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
3788   unsigned tmp = get_temp_index(emit);
3789   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3790   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3791
3792   /*
3793    * If dst and src are the same we need to create
3794    * a temporary for it and insert a extra move.
3795    */
3796   unsigned tmp_move = get_temp_index(emit);
3797   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
3798   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
3799
3800   /* only use X component of temp reg */
3801   tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3802   tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3803
3804   /* ROUND_NI tmp.x, s0.x */
3805   emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst,
3806                        &src_xxxx, FALSE); /* round to -infinity */
3807
3808   /* EXP dst.x, tmp.x */
3809   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3810      struct tgsi_full_dst_register dst_x =
3811         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
3812
3813      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_x, &tmp_src,
3814                           inst->Instruction.Saturate);
3815   }
3816
3817   /* ADD dst.y, s0.x, -tmp */
3818   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3819      struct tgsi_full_dst_register dst_y =
3820         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
3821      struct tgsi_full_src_register neg_tmp_src = negate_src(&tmp_src);
3822
3823      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_y, &src_xxxx,
3824                           &neg_tmp_src, inst->Instruction.Saturate);
3825   }
3826
3827   /* EXP dst.z, s0.x */
3828   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3829      struct tgsi_full_dst_register dst_z =
3830         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
3831
3832      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_z, &src_xxxx,
3833                           inst->Instruction.Saturate);
3834   }
3835
3836   /* MOV dst.w, 1.0 */
3837   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3838      struct tgsi_full_dst_register dst_w =
3839         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
3840      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3841
3842      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one,
3843                           FALSE);
3844   }
3845
3846   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
3847                        FALSE);
3848
3849   free_temp_indexes(emit);
3850
3851   return TRUE;
3852}
3853
3854
3855/**
3856 * Emit code for TGSI_OPCODE_IF instruction.
3857 */
3858static boolean
3859emit_if(struct svga_shader_emitter_v10 *emit,
3860        const struct tgsi_full_instruction *inst)
3861{
3862   VGPU10OpcodeToken0 opcode0;
3863
3864   /* The src register should be a scalar */
3865   assert(inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleY &&
3866          inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleZ &&
3867          inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleW);
3868
3869   /* The only special thing here is that we need to set the
3870    * VGPU10_INSTRUCTION_TEST_NONZERO flag since we want to test if
3871    * src.x is non-zero.
3872    */
3873   opcode0.value = 0;
3874   opcode0.opcodeType = VGPU10_OPCODE_IF;
3875   opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO;
3876
3877   begin_emit_instruction(emit);
3878   emit_dword(emit, opcode0.value);
3879   emit_src_register(emit, &inst->Src[0]);
3880   end_emit_instruction(emit);
3881
3882   return TRUE;
3883}
3884
3885
3886/**
3887 * Emit code for TGSI_OPCODE_KILL_IF instruction (kill fragment if any of
3888 * the register components are negative).
3889 */
3890static boolean
3891emit_kill_if(struct svga_shader_emitter_v10 *emit,
3892             const struct tgsi_full_instruction *inst)
3893{
3894   unsigned tmp = get_temp_index(emit);
3895   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3896   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3897
3898   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3899
3900   struct tgsi_full_dst_register tmp_dst_x =
3901      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3902   struct tgsi_full_src_register tmp_src_xxxx =
3903      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3904
3905   /* tmp = src[0] < 0.0 */
3906   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0],
3907                        &zero, FALSE);
3908
3909   if (!same_swizzle_terms(&inst->Src[0])) {
3910      /* If the swizzle is not XXXX, YYYY, ZZZZ or WWWW we need to
3911       * logically OR the swizzle terms.  Most uses of KILL_IF only
3912       * test one channel so it's good to avoid these extra steps.
3913       */
3914      struct tgsi_full_src_register tmp_src_yyyy =
3915         scalar_src(&tmp_src, TGSI_SWIZZLE_Y);
3916      struct tgsi_full_src_register tmp_src_zzzz =
3917         scalar_src(&tmp_src, TGSI_SWIZZLE_Z);
3918      struct tgsi_full_src_register tmp_src_wwww =
3919         scalar_src(&tmp_src, TGSI_SWIZZLE_W);
3920
3921      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3922                           &tmp_src_yyyy, FALSE);
3923      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3924                           &tmp_src_zzzz, FALSE);
3925      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3926                           &tmp_src_wwww, FALSE);
3927   }
3928
3929   begin_emit_instruction(emit);
3930   emit_discard_opcode(emit, TRUE); /* discard if src0.x is non-zero */
3931   emit_src_register(emit, &tmp_src_xxxx);
3932   end_emit_instruction(emit);
3933
3934   free_temp_indexes(emit);
3935
3936   return TRUE;
3937}
3938
3939
3940/**
3941 * Emit code for TGSI_OPCODE_KILL instruction (unconditional discard).
3942 */
3943static boolean
3944emit_kill(struct svga_shader_emitter_v10 *emit,
3945          const struct tgsi_full_instruction *inst)
3946{
3947   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3948
3949   /* DISCARD if 0.0 is zero */
3950   begin_emit_instruction(emit);
3951   emit_discard_opcode(emit, FALSE);
3952   emit_src_register(emit, &zero);
3953   end_emit_instruction(emit);
3954
3955   return TRUE;
3956}
3957
3958
3959/**
3960 * Emit code for TGSI_OPCODE_LG2 instruction.
3961 */
3962static boolean
3963emit_lg2(struct svga_shader_emitter_v10 *emit,
3964         const struct tgsi_full_instruction *inst)
3965{
3966   /* Note that TGSI_OPCODE_LG2 computes only one value from src.x
3967    * while VGPU10 computes four values.
3968    *
3969    * dst = LG2(src):
3970    *   dst.xyzw = log2(src.x)
3971    */
3972
3973   struct tgsi_full_src_register src_xxxx =
3974      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
3975                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
3976
3977   /* LOG tmp, s0.xxxx */
3978   emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &inst->Dst[0], &src_xxxx,
3979                        inst->Instruction.Saturate);
3980
3981   return TRUE;
3982}
3983
3984
3985/**
3986 * Emit code for TGSI_OPCODE_LIT instruction.
3987 */
3988static boolean
3989emit_lit(struct svga_shader_emitter_v10 *emit,
3990         const struct tgsi_full_instruction *inst)
3991{
3992   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3993
3994   /*
3995    * If dst and src are the same we need to create
3996    * a temporary for it and insert a extra move.
3997    */
3998   unsigned tmp_move = get_temp_index(emit);
3999   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
4000   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
4001
4002   /*
4003    * dst.x = 1
4004    * dst.y = max(src.x, 0)
4005    * dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
4006    * dst.w = 1
4007    */
4008
4009   /* MOV dst.x, 1.0 */
4010   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
4011      struct tgsi_full_dst_register dst_x =
4012         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
4013      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE);
4014   }
4015
4016   /* MOV dst.w, 1.0 */
4017   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
4018      struct tgsi_full_dst_register dst_w =
4019         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
4020      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE);
4021   }
4022
4023   /* MAX dst.y, src.x, 0.0 */
4024   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
4025      struct tgsi_full_dst_register dst_y =
4026         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
4027      struct tgsi_full_src_register zero =
4028         make_immediate_reg_float(emit, 0.0f);
4029      struct tgsi_full_src_register src_xxxx =
4030         swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4031                     TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4032
4033      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &dst_y, &src_xxxx,
4034                           &zero, inst->Instruction.Saturate);
4035   }
4036
4037   /*
4038    * tmp1 = clamp(src.w, -128, 128);
4039    *   MAX tmp1, src.w, -128
4040    *   MIN tmp1, tmp1, 128
4041    *
4042    * tmp2 = max(tmp2, 0);
4043    *   MAX tmp2, src.y, 0
4044    *
4045    * tmp1 = pow(tmp2, tmp1);
4046    *   LOG tmp2, tmp2
4047    *   MUL tmp1, tmp2, tmp1
4048    *   EXP tmp1, tmp1
4049    *
4050    * tmp1 = (src.w == 0) ? 1 : tmp1;
4051    *   EQ tmp2, 0, src.w
4052    *   MOVC tmp1, tmp2, 1.0, tmp1
4053    *
4054    * dst.z = (0 < src.x) ? tmp1 : 0;
4055    *   LT tmp2, 0, src.x
4056    *   MOVC dst.z, tmp2, tmp1, 0.0
4057    */
4058   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
4059      struct tgsi_full_dst_register dst_z =
4060         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
4061
4062      unsigned tmp1 = get_temp_index(emit);
4063      struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4064      struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4065      unsigned tmp2 = get_temp_index(emit);
4066      struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4067      struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4068
4069      struct tgsi_full_src_register src_xxxx =
4070         scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
4071      struct tgsi_full_src_register src_yyyy =
4072         scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
4073      struct tgsi_full_src_register src_wwww =
4074         scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
4075
4076      struct tgsi_full_src_register zero =
4077         make_immediate_reg_float(emit, 0.0f);
4078      struct tgsi_full_src_register lowerbound =
4079         make_immediate_reg_float(emit, -128.0f);
4080      struct tgsi_full_src_register upperbound =
4081         make_immediate_reg_float(emit, 128.0f);
4082
4083      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp1_dst, &src_wwww,
4084                           &lowerbound, FALSE);
4085      emit_instruction_op2(emit, VGPU10_OPCODE_MIN, &tmp1_dst, &tmp1_src,
4086                           &upperbound, FALSE);
4087      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp2_dst, &src_yyyy,
4088                           &zero, FALSE);
4089
4090      /* POW tmp1, tmp2, tmp1 */
4091      /* LOG tmp2, tmp2 */
4092      emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp2_dst, &tmp2_src,
4093                           FALSE);
4094
4095      /* MUL tmp1, tmp2, tmp1 */
4096      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &tmp2_src,
4097                           &tmp1_src, FALSE);
4098
4099      /* EXP tmp1, tmp1 */
4100      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp1_dst, &tmp1_src,
4101                           FALSE);
4102
4103      /* EQ tmp2, 0, src.w */
4104      emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp2_dst, &zero,
4105                           &src_wwww, FALSE);
4106      /* MOVC tmp1.z, tmp2, tmp1, 1.0 */
4107      emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp1_dst,
4108                           &tmp2_src, &one, &tmp1_src, FALSE);
4109
4110      /* LT tmp2, 0, src.x */
4111      emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp2_dst, &zero,
4112                           &src_xxxx, FALSE);
4113      /* MOVC dst.z, tmp2, tmp1, 0.0 */
4114      emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &dst_z,
4115                           &tmp2_src, &tmp1_src, &zero, FALSE);
4116   }
4117
4118   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
4119                        FALSE);
4120   free_temp_indexes(emit);
4121
4122   return TRUE;
4123}
4124
4125
4126/**
4127 * Emit code for TGSI_OPCODE_LOG instruction.
4128 */
4129static boolean
4130emit_log(struct svga_shader_emitter_v10 *emit,
4131         const struct tgsi_full_instruction *inst)
4132{
4133   /*
4134    * dst.x = floor(lg2(abs(s0.x)))
4135    * dst.y = abs(s0.x) / (2 ^ floor(lg2(abs(s0.x))))
4136    * dst.z = lg2(abs(s0.x))
4137    * dst.w = 1.0
4138    */
4139
4140   struct tgsi_full_src_register src_xxxx =
4141      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
4142   unsigned tmp = get_temp_index(emit);
4143   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4144   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4145   struct tgsi_full_src_register abs_src_xxxx = absolute_src(&src_xxxx);
4146
4147   /* only use X component of temp reg */
4148   tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4149   tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4150
4151   /* LOG tmp.x, abs(s0.x) */
4152   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
4153      emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst,
4154                          &abs_src_xxxx, FALSE);
4155   }
4156
4157   /* MOV dst.z, tmp.x */
4158   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
4159      struct tgsi_full_dst_register dst_z =
4160         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Z);
4161
4162      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z,
4163                           &tmp_src, inst->Instruction.Saturate);
4164   }
4165
4166   /* FLR tmp.x, tmp.x */
4167   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
4168      emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst,
4169                           &tmp_src, FALSE);
4170   }
4171
4172   /* MOV dst.x, tmp.x */
4173   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
4174      struct tgsi_full_dst_register dst_x =
4175         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X);
4176
4177      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &tmp_src,
4178                           inst->Instruction.Saturate);
4179   }
4180
4181   /* EXP tmp.x, tmp.x */
4182   /* DIV dst.y, abs(s0.x), tmp.x */
4183   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
4184      struct tgsi_full_dst_register dst_y =
4185         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y);
4186
4187      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp_dst, &tmp_src,
4188                           FALSE);
4189      emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &dst_y, &abs_src_xxxx,
4190                           &tmp_src, inst->Instruction.Saturate);
4191   }
4192
4193   /* MOV dst.w, 1.0 */
4194   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
4195      struct tgsi_full_dst_register dst_w =
4196         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_W);
4197      struct tgsi_full_src_register one =
4198         make_immediate_reg_float(emit, 1.0f);
4199
4200      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE);
4201   }
4202
4203   free_temp_indexes(emit);
4204
4205   return TRUE;
4206}
4207
4208
4209/**
4210 * Emit code for TGSI_OPCODE_LRP instruction.
4211 */
4212static boolean
4213emit_lrp(struct svga_shader_emitter_v10 *emit,
4214         const struct tgsi_full_instruction *inst)
4215{
4216   /* dst = LRP(s0, s1, s2):
4217    *   dst = s0 * (s1 - s2) + s2
4218    * Translates into:
4219    *   SUB tmp, s1, s2;        tmp = s1 - s2
4220    *   MAD dst, s0, tmp, s2;   dst = s0 * t1 + s2
4221    */
4222   unsigned tmp = get_temp_index(emit);
4223   struct tgsi_full_src_register src_tmp = make_src_temp_reg(tmp);
4224   struct tgsi_full_dst_register dst_tmp = make_dst_temp_reg(tmp);
4225   struct tgsi_full_src_register neg_src2 = negate_src(&inst->Src[2]);
4226
4227   /* ADD tmp, s1, -s2 */
4228   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_tmp,
4229                        &inst->Src[1], &neg_src2, FALSE);
4230
4231   /* MAD dst, s1, tmp, s3 */
4232   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &inst->Dst[0],
4233                        &inst->Src[0], &src_tmp, &inst->Src[2],
4234                        inst->Instruction.Saturate);
4235
4236   free_temp_indexes(emit);
4237
4238   return TRUE;
4239}
4240
4241
4242/**
4243 * Emit code for TGSI_OPCODE_POW instruction.
4244 */
4245static boolean
4246emit_pow(struct svga_shader_emitter_v10 *emit,
4247         const struct tgsi_full_instruction *inst)
4248{
4249   /* Note that TGSI_OPCODE_POW computes only one value from src0.x and
4250    * src1.x while VGPU10 computes four values.
4251    *
4252    * dst = POW(src0, src1):
4253    *   dst.xyzw = src0.x ^ src1.x
4254    */
4255   unsigned tmp = get_temp_index(emit);
4256   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4257   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4258   struct tgsi_full_src_register src0_xxxx =
4259      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4260                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4261   struct tgsi_full_src_register src1_xxxx =
4262      swizzle_src(&inst->Src[1], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4263                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4264
4265   /* LOG tmp, s0.xxxx */
4266   emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst, &src0_xxxx,
4267                        FALSE);
4268
4269   /* MUL tmp, tmp, s1.xxxx */
4270   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst, &tmp_src,
4271                        &src1_xxxx, FALSE);
4272
4273   /* EXP tmp, s0.xxxx */
4274   emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0],
4275                        &tmp_src, inst->Instruction.Saturate);
4276
4277   /* free tmp */
4278   free_temp_indexes(emit);
4279
4280   return TRUE;
4281}
4282
4283
4284/**
4285 * Emit code for TGSI_OPCODE_RCP (reciprocal) instruction.
4286 */
4287static boolean
4288emit_rcp(struct svga_shader_emitter_v10 *emit,
4289         const struct tgsi_full_instruction *inst)
4290{
4291   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4292
4293   unsigned tmp = get_temp_index(emit);
4294   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4295   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4296
4297   struct tgsi_full_dst_register tmp_dst_x =
4298      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4299   struct tgsi_full_src_register tmp_src_xxxx =
4300      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4301
4302   /* DIV tmp.x, 1.0, s0 */
4303   emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst_x, &one,
4304                        &inst->Src[0], FALSE);
4305
4306   /* MOV dst, tmp.xxxx */
4307   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4308                        &tmp_src_xxxx, inst->Instruction.Saturate);
4309
4310   free_temp_indexes(emit);
4311
4312   return TRUE;
4313}
4314
4315
4316/**
4317 * Emit code for TGSI_OPCODE_RSQ instruction.
4318 */
4319static boolean
4320emit_rsq(struct svga_shader_emitter_v10 *emit,
4321         const struct tgsi_full_instruction *inst)
4322{
4323   /* dst = RSQ(src):
4324    *   dst.xyzw = 1 / sqrt(src.x)
4325    * Translates into:
4326    *   RSQ tmp, src.x
4327    *   MOV dst, tmp.xxxx
4328    */
4329
4330   unsigned tmp = get_temp_index(emit);
4331   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4332   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4333
4334   struct tgsi_full_dst_register tmp_dst_x =
4335      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4336   struct tgsi_full_src_register tmp_src_xxxx =
4337      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4338
4339   /* RSQ tmp, src.x */
4340   emit_instruction_op1(emit, VGPU10_OPCODE_RSQ, &tmp_dst_x,
4341                        &inst->Src[0], FALSE);
4342
4343   /* MOV dst, tmp.xxxx */
4344   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4345                        &tmp_src_xxxx, inst->Instruction.Saturate);
4346
4347   /* free tmp */
4348   free_temp_indexes(emit);
4349
4350   return TRUE;
4351}
4352
4353
4354/**
4355 * Emit code for TGSI_OPCODE_SCS instruction.
4356 */
4357static boolean
4358emit_scs(struct svga_shader_emitter_v10 *emit,
4359         const struct tgsi_full_instruction *inst)
4360{
4361   /* dst.x = cos(src.x)
4362    * dst.y = sin(src.x)
4363    * dst.z = 0.0
4364    * dst.w = 1.0
4365    */
4366   struct tgsi_full_dst_register dst_x =
4367      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X);
4368   struct tgsi_full_dst_register dst_y =
4369      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y);
4370   struct tgsi_full_dst_register dst_zw =
4371      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_ZW);
4372
4373   struct tgsi_full_src_register zero_one =
4374      make_immediate_reg_float4(emit, 0.0f, 0.0f, 0.0f, 1.0f);
4375
4376   begin_emit_instruction(emit);
4377   emit_opcode(emit, VGPU10_OPCODE_SINCOS, inst->Instruction.Saturate);
4378   emit_dst_register(emit, &dst_y);
4379   emit_dst_register(emit, &dst_x);
4380   emit_src_register(emit, &inst->Src[0]);
4381   end_emit_instruction(emit);
4382
4383   emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
4384                        &dst_zw, &zero_one, inst->Instruction.Saturate);
4385
4386   return TRUE;
4387}
4388
4389
4390/**
4391 * Emit code for TGSI_OPCODE_SEQ (Set Equal) instruction.
4392 */
4393static boolean
4394emit_seq(struct svga_shader_emitter_v10 *emit,
4395         const struct tgsi_full_instruction *inst)
4396{
4397   /* dst = SEQ(s0, s1):
4398    *   dst = s0 == s1 ? 1.0 : 0.0  (per component)
4399    * Translates into:
4400    *   EQ tmp, s0, s1;           tmp = s0 == s1 : 0xffffffff : 0 (per comp)
4401    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4402    */
4403   unsigned tmp = get_temp_index(emit);
4404   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4405   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4406   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4407   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4408
4409   /* EQ tmp, s0, s1 */
4410   emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp_dst, &inst->Src[0],
4411                        &inst->Src[1], FALSE);
4412
4413   /* MOVC dst, tmp, one, zero */
4414   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4415                        &one, &zero, FALSE);
4416
4417   free_temp_indexes(emit);
4418
4419   return TRUE;
4420}
4421
4422
4423/**
4424 * Emit code for TGSI_OPCODE_SGE (Set Greater than or Equal) instruction.
4425 */
4426static boolean
4427emit_sge(struct svga_shader_emitter_v10 *emit,
4428         const struct tgsi_full_instruction *inst)
4429{
4430   /* dst = SGE(s0, s1):
4431    *   dst = s0 >= s1 ? 1.0 : 0.0  (per component)
4432    * Translates into:
4433    *   GE tmp, s0, s1;           tmp = s0 >= s1 : 0xffffffff : 0 (per comp)
4434    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4435    */
4436   unsigned tmp = get_temp_index(emit);
4437   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4438   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4439   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4440   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4441
4442   /* GE tmp, s0, s1 */
4443   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[0],
4444                        &inst->Src[1], FALSE);
4445
4446   /* MOVC dst, tmp, one, zero */
4447   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4448                        &one, &zero, FALSE);
4449
4450   free_temp_indexes(emit);
4451
4452   return TRUE;
4453}
4454
4455
4456/**
4457 * Emit code for TGSI_OPCODE_SGT (Set Greater than) instruction.
4458 */
4459static boolean
4460emit_sgt(struct svga_shader_emitter_v10 *emit,
4461         const struct tgsi_full_instruction *inst)
4462{
4463   /* dst = SGT(s0, s1):
4464    *   dst = s0 > s1 ? 1.0 : 0.0  (per component)
4465    * Translates into:
4466    *   LT tmp, s1, s0;           tmp = s1 < s0 ? 0xffffffff : 0 (per comp)
4467    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4468    */
4469   unsigned tmp = get_temp_index(emit);
4470   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4471   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4472   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4473   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4474
4475   /* LT tmp, s1, s0 */
4476   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[1],
4477                        &inst->Src[0], FALSE);
4478
4479   /* MOVC dst, tmp, one, zero */
4480   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4481                        &one, &zero, FALSE);
4482
4483   free_temp_indexes(emit);
4484
4485   return TRUE;
4486}
4487
4488
4489/**
4490 * Emit code for TGSI_OPCODE_SIN and TGSI_OPCODE_COS instructions.
4491 */
4492static boolean
4493emit_sincos(struct svga_shader_emitter_v10 *emit,
4494         const struct tgsi_full_instruction *inst)
4495{
4496   unsigned tmp = get_temp_index(emit);
4497   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4498   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4499
4500   struct tgsi_full_src_register tmp_src_xxxx =
4501      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4502   struct tgsi_full_dst_register tmp_dst_x =
4503      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4504
4505   begin_emit_instruction(emit);
4506   emit_opcode(emit, VGPU10_OPCODE_SINCOS, FALSE);
4507
4508   if(inst->Instruction.Opcode == TGSI_OPCODE_SIN)
4509   {
4510      emit_dst_register(emit, &tmp_dst_x);  /* first destination register */
4511      emit_null_dst_register(emit);  /* second destination register */
4512   }
4513   else {
4514      emit_null_dst_register(emit);
4515      emit_dst_register(emit, &tmp_dst_x);
4516   }
4517
4518   emit_src_register(emit, &inst->Src[0]);
4519   end_emit_instruction(emit);
4520
4521   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4522                        &tmp_src_xxxx, inst->Instruction.Saturate);
4523
4524   free_temp_indexes(emit);
4525
4526   return TRUE;
4527}
4528
4529
4530/**
4531 * Emit code for TGSI_OPCODE_SLE (Set Less than or Equal) instruction.
4532 */
4533static boolean
4534emit_sle(struct svga_shader_emitter_v10 *emit,
4535         const struct tgsi_full_instruction *inst)
4536{
4537   /* dst = SLE(s0, s1):
4538    *   dst = s0 <= s1 ? 1.0 : 0.0  (per component)
4539    * Translates into:
4540    *   GE tmp, s1, s0;           tmp = s1 >= s0 : 0xffffffff : 0 (per comp)
4541    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4542    */
4543   unsigned tmp = get_temp_index(emit);
4544   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4545   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4546   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4547   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4548
4549   /* GE tmp, s1, s0 */
4550   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[1],
4551                        &inst->Src[0], FALSE);
4552
4553   /* MOVC dst, tmp, one, zero */
4554   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4555                        &one, &zero, FALSE);
4556
4557   free_temp_indexes(emit);
4558
4559   return TRUE;
4560}
4561
4562
4563/**
4564 * Emit code for TGSI_OPCODE_SLT (Set Less than) instruction.
4565 */
4566static boolean
4567emit_slt(struct svga_shader_emitter_v10 *emit,
4568         const struct tgsi_full_instruction *inst)
4569{
4570   /* dst = SLT(s0, s1):
4571    *   dst = s0 < s1 ? 1.0 : 0.0  (per component)
4572    * Translates into:
4573    *   LT tmp, s0, s1;           tmp = s0 < s1 ? 0xffffffff : 0 (per comp)
4574    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4575    */
4576   unsigned tmp = get_temp_index(emit);
4577   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4578   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4579   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4580   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4581
4582   /* LT tmp, s0, s1 */
4583   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0],
4584                        &inst->Src[1], FALSE);
4585
4586   /* MOVC dst, tmp, one, zero */
4587   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4588                        &one, &zero, FALSE);
4589
4590   free_temp_indexes(emit);
4591
4592   return TRUE;
4593}
4594
4595
4596/**
4597 * Emit code for TGSI_OPCODE_SNE (Set Not Equal) instruction.
4598 */
4599static boolean
4600emit_sne(struct svga_shader_emitter_v10 *emit,
4601         const struct tgsi_full_instruction *inst)
4602{
4603   /* dst = SNE(s0, s1):
4604    *   dst = s0 != s1 ? 1.0 : 0.0  (per component)
4605    * Translates into:
4606    *   EQ tmp, s0, s1;           tmp = s0 == s1 : 0xffffffff : 0 (per comp)
4607    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4608    */
4609   unsigned tmp = get_temp_index(emit);
4610   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4611   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4612   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4613   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4614
4615   /* NE tmp, s0, s1 */
4616   emit_instruction_op2(emit, VGPU10_OPCODE_NE, &tmp_dst, &inst->Src[0],
4617                        &inst->Src[1], FALSE);
4618
4619   /* MOVC dst, tmp, one, zero */
4620   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4621                        &one, &zero, FALSE);
4622
4623   free_temp_indexes(emit);
4624
4625   return TRUE;
4626}
4627
4628
4629/**
4630 * Emit code for TGSI_OPCODE_SSG (Set Sign) instruction.
4631 */
4632static boolean
4633emit_ssg(struct svga_shader_emitter_v10 *emit,
4634         const struct tgsi_full_instruction *inst)
4635{
4636   /* dst.x = (src.x > 0.0) ? 1.0 : (src.x < 0.0) ? -1.0 : 0.0
4637    * dst.y = (src.y > 0.0) ? 1.0 : (src.y < 0.0) ? -1.0 : 0.0
4638    * dst.z = (src.z > 0.0) ? 1.0 : (src.z < 0.0) ? -1.0 : 0.0
4639    * dst.w = (src.w > 0.0) ? 1.0 : (src.w < 0.0) ? -1.0 : 0.0
4640    * Translates into:
4641    *   LT tmp1, src, zero;           tmp1 = src < zero ? 0xffffffff : 0 (per comp)
4642    *   MOVC tmp2, tmp1, -1.0, 0.0;   tmp2 = tmp1 ? -1.0 : 0.0 (per component)
4643    *   LT tmp1, zero, src;           tmp1 = zero < src ? 0xffffffff : 0 (per comp)
4644    *   MOVC dst, tmp1, 1.0, tmp2;    dst = tmp1 ? 1.0 : tmp2 (per component)
4645    */
4646   struct tgsi_full_src_register zero =
4647      make_immediate_reg_float(emit, 0.0f);
4648   struct tgsi_full_src_register one =
4649      make_immediate_reg_float(emit, 1.0f);
4650   struct tgsi_full_src_register neg_one =
4651      make_immediate_reg_float(emit, -1.0f);
4652
4653   unsigned tmp1 = get_temp_index(emit);
4654   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4655   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4656
4657   unsigned tmp2 = get_temp_index(emit);
4658   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4659   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4660
4661   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &inst->Src[0],
4662                        &zero, FALSE);
4663   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp2_dst, &tmp1_src,
4664                        &neg_one, &zero, FALSE);
4665   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &zero,
4666                        &inst->Src[0], FALSE);
4667   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp1_src,
4668                        &one, &tmp2_src, FALSE);
4669
4670   free_temp_indexes(emit);
4671
4672   return TRUE;
4673}
4674
4675
4676/**
4677 * Emit code for TGSI_OPCODE_ISSG (Integer Set Sign) instruction.
4678 */
4679static boolean
4680emit_issg(struct svga_shader_emitter_v10 *emit,
4681          const struct tgsi_full_instruction *inst)
4682{
4683   /* dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
4684    * dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
4685    * dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
4686    * dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
4687    * Translates into:
4688    *   ILT tmp1, src, 0              tmp1 = src < 0 ? -1 : 0 (per component)
4689    *   ILT tmp2, 0, src              tmp2 = 0 < src ? -1 : 0 (per component)
4690    *   IADD dst, tmp1, neg(tmp2)     dst  = tmp1 - tmp2      (per component)
4691    */
4692   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4693
4694   unsigned tmp1 = get_temp_index(emit);
4695   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4696   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4697
4698   unsigned tmp2 = get_temp_index(emit);
4699   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4700   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4701
4702   struct tgsi_full_src_register neg_tmp2 = negate_src(&tmp2_src);
4703
4704   emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp1_dst,
4705                        &inst->Src[0], &zero, FALSE);
4706   emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp2_dst,
4707                        &zero, &inst->Src[0], FALSE);
4708   emit_instruction_op2(emit, VGPU10_OPCODE_IADD, &inst->Dst[0],
4709                        &tmp1_src, &neg_tmp2, FALSE);
4710
4711   free_temp_indexes(emit);
4712
4713   return TRUE;
4714}
4715
4716
4717/**
4718 * Emit code for TGSI_OPCODE_SUB instruction.
4719 */
4720static boolean
4721emit_sub(struct svga_shader_emitter_v10 *emit,
4722         const struct tgsi_full_instruction *inst)
4723{
4724   /* dst = SUB(s0, s1):
4725    *   dst = s0 - s1
4726    * Translates into:
4727    *   ADD dst, s0, neg(s1)
4728    */
4729   struct tgsi_full_src_register neg_src1 = negate_src(&inst->Src[1]);
4730
4731   /* ADD dst, s0, neg(s1) */
4732   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0],
4733                        &inst->Src[0], &neg_src1,
4734                        inst->Instruction.Saturate);
4735
4736   return TRUE;
4737}
4738
4739
4740/**
4741 * Emit a comparison instruction.  The dest register will get
4742 * 0 or ~0 values depending on the outcome of comparing src0 to src1.
4743 */
4744static void
4745emit_comparison(struct svga_shader_emitter_v10 *emit,
4746                SVGA3dCmpFunc func,
4747                const struct tgsi_full_dst_register *dst,
4748                const struct tgsi_full_src_register *src0,
4749                const struct tgsi_full_src_register *src1)
4750{
4751   struct tgsi_full_src_register immediate;
4752   VGPU10OpcodeToken0 opcode0;
4753   boolean swapSrc = FALSE;
4754
4755   /* Sanity checks for svga vs. gallium enums */
4756   STATIC_ASSERT(SVGA3D_CMP_LESS == (PIPE_FUNC_LESS + 1));
4757   STATIC_ASSERT(SVGA3D_CMP_GREATEREQUAL == (PIPE_FUNC_GEQUAL + 1));
4758
4759   opcode0.value = 0;
4760
4761   switch (func) {
4762   case SVGA3D_CMP_NEVER:
4763      immediate = make_immediate_reg_int(emit, 0);
4764      /* MOV dst, {0} */
4765      begin_emit_instruction(emit);
4766      emit_dword(emit, VGPU10_OPCODE_MOV);
4767      emit_dst_register(emit, dst);
4768      emit_src_register(emit, &immediate);
4769      end_emit_instruction(emit);
4770      return;
4771   case SVGA3D_CMP_ALWAYS:
4772      immediate = make_immediate_reg_int(emit, -1);
4773      /* MOV dst, {-1} */
4774      begin_emit_instruction(emit);
4775      emit_dword(emit, VGPU10_OPCODE_MOV);
4776      emit_dst_register(emit, dst);
4777      emit_src_register(emit, &immediate);
4778      end_emit_instruction(emit);
4779      return;
4780   case SVGA3D_CMP_LESS:
4781      opcode0.opcodeType = VGPU10_OPCODE_LT;
4782      break;
4783   case SVGA3D_CMP_EQUAL:
4784      opcode0.opcodeType = VGPU10_OPCODE_EQ;
4785      break;
4786   case SVGA3D_CMP_LESSEQUAL:
4787      opcode0.opcodeType = VGPU10_OPCODE_GE;
4788      swapSrc = TRUE;
4789      break;
4790   case SVGA3D_CMP_GREATER:
4791      opcode0.opcodeType = VGPU10_OPCODE_LT;
4792      swapSrc = TRUE;
4793      break;
4794   case SVGA3D_CMP_NOTEQUAL:
4795      opcode0.opcodeType = VGPU10_OPCODE_NE;
4796      break;
4797   case SVGA3D_CMP_GREATEREQUAL:
4798      opcode0.opcodeType = VGPU10_OPCODE_GE;
4799      break;
4800   default:
4801      assert(!"Unexpected comparison mode");
4802      opcode0.opcodeType = VGPU10_OPCODE_EQ;
4803   }
4804
4805   begin_emit_instruction(emit);
4806   emit_dword(emit, opcode0.value);
4807   emit_dst_register(emit, dst);
4808   if (swapSrc) {
4809      emit_src_register(emit, src1);
4810      emit_src_register(emit, src0);
4811   }
4812   else {
4813      emit_src_register(emit, src0);
4814      emit_src_register(emit, src1);
4815   }
4816   end_emit_instruction(emit);
4817}
4818
4819
4820/**
4821 * Get texel/address offsets for a texture instruction.
4822 */
4823static void
4824get_texel_offsets(const struct svga_shader_emitter_v10 *emit,
4825                  const struct tgsi_full_instruction *inst, int offsets[3])
4826{
4827   if (inst->Texture.NumOffsets == 1) {
4828      /* According to OpenGL Shader Language spec the offsets are only
4829       * fetched from a previously-declared immediate/literal.
4830       */
4831      const struct tgsi_texture_offset *off = inst->TexOffsets;
4832      const unsigned index = off[0].Index;
4833      const unsigned swizzleX = off[0].SwizzleX;
4834      const unsigned swizzleY = off[0].SwizzleY;
4835      const unsigned swizzleZ = off[0].SwizzleZ;
4836      const union tgsi_immediate_data *imm = emit->immediates[index];
4837
4838      assert(inst->TexOffsets[0].File == TGSI_FILE_IMMEDIATE);
4839
4840      offsets[0] = imm[swizzleX].Int;
4841      offsets[1] = imm[swizzleY].Int;
4842      offsets[2] = imm[swizzleZ].Int;
4843   }
4844   else {
4845      offsets[0] = offsets[1] = offsets[2] = 0;
4846   }
4847}
4848
4849
4850/**
4851 * Set up the coordinate register for texture sampling.
4852 * When we're sampling from a RECT texture we have to scale the
4853 * unnormalized coordinate to a normalized coordinate.
4854 * We do that by multiplying the coordinate by an "extra" constant.
4855 * An alternative would be to use the RESINFO instruction to query the
4856 * texture's size.
4857 */
4858static struct tgsi_full_src_register
4859setup_texcoord(struct svga_shader_emitter_v10 *emit,
4860               unsigned unit,
4861               const struct tgsi_full_src_register *coord)
4862{
4863   if (emit->key.tex[unit].unnormalized) {
4864      unsigned scale_index = emit->texcoord_scale_index[unit];
4865      unsigned tmp = get_temp_index(emit);
4866      struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4867      struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4868      struct tgsi_full_src_register scale_src = make_src_const_reg(scale_index);
4869
4870      /* MUL tmp, coord, const[] */
4871      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst,
4872                           coord, &scale_src, FALSE);
4873      return tmp_src;
4874   }
4875   else {
4876      /* use texcoord as-is */
4877      return *coord;
4878   }
4879}
4880
4881
4882/**
4883 * For SAMPLE_C instructions, emit the extra src register which indicates
4884 * the reference/comparision value.
4885 */
4886static void
4887emit_tex_compare_refcoord(struct svga_shader_emitter_v10 *emit,
4888                          unsigned target,
4889                          const struct tgsi_full_src_register *coord)
4890{
4891   struct tgsi_full_src_register coord_src_ref;
4892   unsigned component;
4893
4894   assert(tgsi_is_shadow_target(target));
4895
4896   assert(target != TGSI_TEXTURE_SHADOWCUBE_ARRAY); /* XXX not implemented */
4897   if (target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
4898       target == TGSI_TEXTURE_SHADOWCUBE)
4899      component = TGSI_SWIZZLE_W;
4900   else
4901      component = TGSI_SWIZZLE_Z;
4902
4903   coord_src_ref = scalar_src(coord, component);
4904
4905   emit_src_register(emit, &coord_src_ref);
4906}
4907
4908
4909/**
4910 * Info for implementing texture swizzles.
4911 * The begin_tex_swizzle(), get_tex_swizzle_dst() and end_tex_swizzle()
4912 * functions use this to encapsulate the extra steps needed to perform
4913 * a texture swizzle, or shadow/depth comparisons.
4914 * The shadow/depth comparison is only done here if for the cases where
4915 * there's no VGPU10 opcode (like texture bias lookup w/ shadow compare).
4916 */
4917struct tex_swizzle_info
4918{
4919   boolean swizzled;
4920   boolean shadow_compare;
4921   unsigned unit;
4922   unsigned texture_target;  /**< TGSI_TEXTURE_x */
4923   struct tgsi_full_src_register tmp_src;
4924   struct tgsi_full_dst_register tmp_dst;
4925   const struct tgsi_full_dst_register *inst_dst;
4926   const struct tgsi_full_src_register *coord_src;
4927};
4928
4929
4930/**
4931 * Do setup for handling texture swizzles or shadow compares.
4932 * \param unit  the texture unit
4933 * \param inst  the TGSI texture instruction
4934 * \param shadow_compare  do shadow/depth comparison?
4935 * \param swz  returns the swizzle info
4936 */
4937static void
4938begin_tex_swizzle(struct svga_shader_emitter_v10 *emit,
4939                  unsigned unit,
4940                  const struct tgsi_full_instruction *inst,
4941                  boolean shadow_compare,
4942                  struct tex_swizzle_info *swz)
4943{
4944   swz->swizzled = (emit->key.tex[unit].swizzle_r != TGSI_SWIZZLE_X ||
4945                    emit->key.tex[unit].swizzle_g != TGSI_SWIZZLE_Y ||
4946                    emit->key.tex[unit].swizzle_b != TGSI_SWIZZLE_Z ||
4947                    emit->key.tex[unit].swizzle_a != TGSI_SWIZZLE_W);
4948
4949   swz->shadow_compare = shadow_compare;
4950   swz->texture_target = inst->Texture.Texture;
4951
4952   if (swz->swizzled || shadow_compare) {
4953      /* Allocate temp register for the result of the SAMPLE instruction
4954       * and the source of the MOV/compare/swizzle instructions.
4955       */
4956      unsigned tmp = get_temp_index(emit);
4957      swz->tmp_src = make_src_temp_reg(tmp);
4958      swz->tmp_dst = make_dst_temp_reg(tmp);
4959
4960      swz->unit = unit;
4961   }
4962   swz->inst_dst = &inst->Dst[0];
4963   swz->coord_src = &inst->Src[0];
4964}
4965
4966
4967/**
4968 * Returns the register to put the SAMPLE instruction results into.
4969 * This will either be the original instruction dst reg (if no swizzle
4970 * and no shadow comparison) or a temporary reg if there is a swizzle.
4971 */
4972static const struct tgsi_full_dst_register *
4973get_tex_swizzle_dst(const struct tex_swizzle_info *swz)
4974{
4975   return (swz->swizzled || swz->shadow_compare)
4976      ? &swz->tmp_dst : swz->inst_dst;
4977}
4978
4979
4980/**
4981 * This emits the MOV instruction that actually implements a texture swizzle
4982 * and/or shadow comparison.
4983 */
4984static void
4985end_tex_swizzle(struct svga_shader_emitter_v10 *emit,
4986                const struct tex_swizzle_info *swz)
4987{
4988   if (swz->shadow_compare) {
4989      /* Emit extra instructions to compare the fetched texel value against
4990       * a texture coordinate component.  The result of the comparison
4991       * is 0.0 or 1.0.
4992       */
4993      struct tgsi_full_src_register coord_src;
4994      struct tgsi_full_src_register texel_src =
4995         scalar_src(&swz->tmp_src, TGSI_SWIZZLE_X);
4996      struct tgsi_full_src_register one =
4997         make_immediate_reg_float(emit, 1.0f);
4998      /* convert gallium comparison func to SVGA comparison func */
4999      SVGA3dCmpFunc compare_func = emit->key.tex[swz->unit].compare_func + 1;
5000
5001      assert(emit->unit == PIPE_SHADER_FRAGMENT);
5002
5003      switch (swz->texture_target) {
5004      case TGSI_TEXTURE_SHADOW2D:
5005      case TGSI_TEXTURE_SHADOWRECT:
5006      case TGSI_TEXTURE_SHADOW1D_ARRAY:
5007         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z);
5008         break;
5009      case TGSI_TEXTURE_SHADOW1D:
5010         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Y);
5011         break;
5012      case TGSI_TEXTURE_SHADOWCUBE:
5013      case TGSI_TEXTURE_SHADOW2D_ARRAY:
5014         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_W);
5015         break;
5016      default:
5017         assert(!"Unexpected texture target in end_tex_swizzle()");
5018         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z);
5019      }
5020
5021      /* COMPARE tmp, coord, texel */
5022      /* XXX it would seem that the texel and coord arguments should
5023       * be transposed here, but piglit tests indicate otherwise.
5024       */
5025      emit_comparison(emit, compare_func,
5026                      &swz->tmp_dst, &texel_src, &coord_src);
5027
5028      /* AND dest, tmp, {1.0} */
5029      begin_emit_instruction(emit);
5030      emit_opcode(emit, VGPU10_OPCODE_AND, FALSE);
5031      if (swz->swizzled) {
5032         emit_dst_register(emit, &swz->tmp_dst);
5033      }
5034      else {
5035         emit_dst_register(emit, swz->inst_dst);
5036      }
5037      emit_src_register(emit, &swz->tmp_src);
5038      emit_src_register(emit, &one);
5039      end_emit_instruction(emit);
5040   }
5041
5042   if (swz->swizzled) {
5043      unsigned swz_r = emit->key.tex[swz->unit].swizzle_r;
5044      unsigned swz_g = emit->key.tex[swz->unit].swizzle_g;
5045      unsigned swz_b = emit->key.tex[swz->unit].swizzle_b;
5046      unsigned swz_a = emit->key.tex[swz->unit].swizzle_a;
5047      unsigned writemask_0 = 0, writemask_1 = 0;
5048      boolean int_tex = is_integer_type(emit->sampler_return_type[swz->unit]);
5049
5050      /* Swizzle w/out zero/one terms */
5051      struct tgsi_full_src_register src_swizzled =
5052         swizzle_src(&swz->tmp_src,
5053                     swz_r < PIPE_SWIZZLE_0 ? swz_r : PIPE_SWIZZLE_X,
5054                     swz_g < PIPE_SWIZZLE_0 ? swz_g : PIPE_SWIZZLE_Y,
5055                     swz_b < PIPE_SWIZZLE_0 ? swz_b : PIPE_SWIZZLE_Z,
5056                     swz_a < PIPE_SWIZZLE_0 ? swz_a : PIPE_SWIZZLE_W);
5057
5058      /* MOV dst, color(tmp).<swizzle> */
5059      emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
5060                           swz->inst_dst, &src_swizzled, FALSE);
5061
5062      /* handle swizzle zero terms */
5063      writemask_0 = (((swz_r == PIPE_SWIZZLE_0) << 0) |
5064                     ((swz_g == PIPE_SWIZZLE_0) << 1) |
5065                     ((swz_b == PIPE_SWIZZLE_0) << 2) |
5066                     ((swz_a == PIPE_SWIZZLE_0) << 3));
5067
5068      if (writemask_0) {
5069         struct tgsi_full_src_register zero = int_tex ?
5070            make_immediate_reg_int(emit, 0) :
5071            make_immediate_reg_float(emit, 0.0f);
5072         struct tgsi_full_dst_register dst =
5073            writemask_dst(swz->inst_dst, writemask_0);
5074
5075         /* MOV dst.writemask_0, {0,0,0,0} */
5076         emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
5077                              &dst, &zero, FALSE);
5078      }
5079
5080      /* handle swizzle one terms */
5081      writemask_1 = (((swz_r == PIPE_SWIZZLE_1) << 0) |
5082                     ((swz_g == PIPE_SWIZZLE_1) << 1) |
5083                     ((swz_b == PIPE_SWIZZLE_1) << 2) |
5084                     ((swz_a == PIPE_SWIZZLE_1) << 3));
5085
5086      if (writemask_1) {
5087         struct tgsi_full_src_register one = int_tex ?
5088            make_immediate_reg_int(emit, 1) :
5089            make_immediate_reg_float(emit, 1.0f);
5090         struct tgsi_full_dst_register dst =
5091            writemask_dst(swz->inst_dst, writemask_1);
5092
5093         /* MOV dst.writemask_1, {1,1,1,1} */
5094         emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst, &one, FALSE);
5095      }
5096   }
5097}
5098
5099
5100/**
5101 * Emit code for TGSI_OPCODE_SAMPLE instruction.
5102 */
5103static boolean
5104emit_sample(struct svga_shader_emitter_v10 *emit,
5105            const struct tgsi_full_instruction *inst)
5106{
5107   const unsigned resource_unit = inst->Src[1].Register.Index;
5108   const unsigned sampler_unit = inst->Src[2].Register.Index;
5109   struct tgsi_full_src_register coord;
5110   int offsets[3];
5111   struct tex_swizzle_info swz_info;
5112
5113   begin_tex_swizzle(emit, sampler_unit, inst, FALSE, &swz_info);
5114
5115   get_texel_offsets(emit, inst, offsets);
5116
5117   coord = setup_texcoord(emit, resource_unit, &inst->Src[0]);
5118
5119   /* SAMPLE dst, coord(s0), resource, sampler */
5120   begin_emit_instruction(emit);
5121
5122   emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE,
5123                      inst->Instruction.Saturate, offsets);
5124   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5125   emit_src_register(emit, &coord);
5126   emit_resource_register(emit, resource_unit);
5127   emit_sampler_register(emit, sampler_unit);
5128   end_emit_instruction(emit);
5129
5130   end_tex_swizzle(emit, &swz_info);
5131
5132   free_temp_indexes(emit);
5133
5134   return TRUE;
5135}
5136
5137
5138/**
5139 * Check if a texture instruction is valid.
5140 * An example of an invalid texture instruction is doing shadow comparison
5141 * with an integer-valued texture.
5142 * If we detect an invalid texture instruction, we replace it with:
5143 *   MOV dst, {1,1,1,1};
5144 * \return TRUE if valid, FALSE if invalid.
5145 */
5146static boolean
5147is_valid_tex_instruction(struct svga_shader_emitter_v10 *emit,
5148                         const struct tgsi_full_instruction *inst)
5149{
5150   const unsigned unit = inst->Src[1].Register.Index;
5151   const unsigned target = inst->Texture.Texture;
5152   boolean valid = TRUE;
5153
5154   if (tgsi_is_shadow_target(target) &&
5155       is_integer_type(emit->sampler_return_type[unit])) {
5156      debug_printf("Invalid SAMPLE_C with an integer texture!\n");
5157      valid = FALSE;
5158   }
5159   /* XXX might check for other conditions in the future here */
5160
5161   if (!valid) {
5162      /* emit a MOV dst, {1,1,1,1} instruction. */
5163      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
5164      begin_emit_instruction(emit);
5165      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
5166      emit_dst_register(emit, &inst->Dst[0]);
5167      emit_src_register(emit, &one);
5168      end_emit_instruction(emit);
5169   }
5170
5171   return valid;
5172}
5173
5174
5175/**
5176 * Emit code for TGSI_OPCODE_TEX (simple texture lookup)
5177 */
5178static boolean
5179emit_tex(struct svga_shader_emitter_v10 *emit,
5180         const struct tgsi_full_instruction *inst)
5181{
5182   const uint unit = inst->Src[1].Register.Index;
5183   unsigned target = inst->Texture.Texture;
5184   unsigned opcode;
5185   struct tgsi_full_src_register coord;
5186   int offsets[3];
5187   struct tex_swizzle_info swz_info;
5188
5189   /* check that the sampler returns a float */
5190   if (!is_valid_tex_instruction(emit, inst))
5191      return TRUE;
5192
5193   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5194
5195   get_texel_offsets(emit, inst, offsets);
5196
5197   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5198
5199   /* SAMPLE dst, coord(s0), resource, sampler */
5200   begin_emit_instruction(emit);
5201
5202   if (tgsi_is_shadow_target(target))
5203      opcode = VGPU10_OPCODE_SAMPLE_C;
5204   else
5205      opcode = VGPU10_OPCODE_SAMPLE;
5206
5207   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5208   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5209   emit_src_register(emit, &coord);
5210   emit_resource_register(emit, unit);
5211   emit_sampler_register(emit, unit);
5212   if (opcode == VGPU10_OPCODE_SAMPLE_C) {
5213      emit_tex_compare_refcoord(emit, target, &coord);
5214   }
5215   end_emit_instruction(emit);
5216
5217   end_tex_swizzle(emit, &swz_info);
5218
5219   free_temp_indexes(emit);
5220
5221   return TRUE;
5222}
5223
5224
5225/**
5226 * Emit code for TGSI_OPCODE_TXP (projective texture)
5227 */
5228static boolean
5229emit_txp(struct svga_shader_emitter_v10 *emit,
5230         const struct tgsi_full_instruction *inst)
5231{
5232   const uint unit = inst->Src[1].Register.Index;
5233   unsigned target = inst->Texture.Texture;
5234   unsigned opcode;
5235   int offsets[3];
5236   unsigned tmp = get_temp_index(emit);
5237   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
5238   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
5239   struct tgsi_full_src_register src0_wwww =
5240      scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5241   struct tgsi_full_src_register coord;
5242   struct tex_swizzle_info swz_info;
5243
5244   /* check that the sampler returns a float */
5245   if (!is_valid_tex_instruction(emit, inst))
5246      return TRUE;
5247
5248   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5249
5250   get_texel_offsets(emit, inst, offsets);
5251
5252   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5253
5254   /* DIV tmp, coord, coord.wwww */
5255   emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst,
5256                        &coord, &src0_wwww, FALSE);
5257
5258   /* SAMPLE dst, coord(tmp), resource, sampler */
5259   begin_emit_instruction(emit);
5260
5261   if (tgsi_is_shadow_target(target))
5262      opcode = VGPU10_OPCODE_SAMPLE_C;
5263   else
5264      opcode = VGPU10_OPCODE_SAMPLE;
5265
5266   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5267   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5268   emit_src_register(emit, &tmp_src);  /* projected coord */
5269   emit_resource_register(emit, unit);
5270   emit_sampler_register(emit, unit);
5271   if (opcode == VGPU10_OPCODE_SAMPLE_C) {
5272      emit_tex_compare_refcoord(emit, target, &tmp_src);
5273   }
5274   end_emit_instruction(emit);
5275
5276   end_tex_swizzle(emit, &swz_info);
5277
5278   free_temp_indexes(emit);
5279
5280   return TRUE;
5281}
5282
5283
5284/*
5285 * Emit code for TGSI_OPCODE_XPD instruction.
5286 */
5287static boolean
5288emit_xpd(struct svga_shader_emitter_v10 *emit,
5289         const struct tgsi_full_instruction *inst)
5290{
5291   /* dst.x = src0.y * src1.z - src1.y * src0.z
5292    * dst.y = src0.z * src1.x - src1.z * src0.x
5293    * dst.z = src0.x * src1.y - src1.x * src0.y
5294    * dst.w = 1
5295    */
5296   struct tgsi_full_src_register s0_xxxx =
5297      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
5298   struct tgsi_full_src_register s0_yyyy =
5299      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
5300   struct tgsi_full_src_register s0_zzzz =
5301      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z);
5302
5303   struct tgsi_full_src_register s1_xxxx =
5304      scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
5305   struct tgsi_full_src_register s1_yyyy =
5306      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
5307   struct tgsi_full_src_register s1_zzzz =
5308      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Z);
5309
5310   unsigned tmp1 = get_temp_index(emit);
5311   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
5312   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
5313
5314   unsigned tmp2 = get_temp_index(emit);
5315   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
5316   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
5317   struct tgsi_full_src_register neg_tmp2_src = negate_src(&tmp2_src);
5318
5319   unsigned tmp3 = get_temp_index(emit);
5320   struct tgsi_full_src_register tmp3_src = make_src_temp_reg(tmp3);
5321   struct tgsi_full_dst_register tmp3_dst = make_dst_temp_reg(tmp3);
5322   struct tgsi_full_dst_register tmp3_dst_x =
5323      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_X);
5324   struct tgsi_full_dst_register tmp3_dst_y =
5325      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Y);
5326   struct tgsi_full_dst_register tmp3_dst_z =
5327      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Z);
5328   struct tgsi_full_dst_register tmp3_dst_w =
5329      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_W);
5330
5331   /* Note: we put all the intermediate computations into tmp3 in case
5332    * the XPD dest register is that same as one of the src regs (in which
5333    * case we could clobber a src reg before we're done with it) .
5334    *
5335    * Note: we could get by with just one temp register instead of three
5336    * since we're doing scalar operations and there's enough room in one
5337    * temp for everything.
5338    */
5339
5340   /* MUL tmp1, src0.y, src1.z */
5341   /* MUL tmp2, src1.y, src0.z */
5342   /* ADD tmp3.x, tmp1, -tmp2 */
5343   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
5344      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst,
5345                           &s0_yyyy, &s1_zzzz, FALSE);
5346      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst,
5347                           &s1_yyyy, &s0_zzzz, FALSE);
5348      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_x,
5349                           &tmp1_src, &neg_tmp2_src, FALSE);
5350   }
5351
5352   /* MUL tmp1, src0.z, src1.x */
5353   /* MUL tmp2, src1.z, src0.x */
5354   /* ADD tmp3.y, tmp1, -tmp2 */
5355   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
5356      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_zzzz,
5357                           &s1_xxxx, FALSE);
5358      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_zzzz,
5359                           &s0_xxxx, FALSE);
5360      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_y,
5361                           &tmp1_src, &neg_tmp2_src, FALSE);
5362   }
5363
5364   /* MUL tmp1, src0.x, src1.y */
5365   /* MUL tmp2, src1.x, src0.y */
5366   /* ADD tmp3.z, tmp1, -tmp2 */
5367   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
5368      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_xxxx,
5369                           &s1_yyyy, FALSE);
5370      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_xxxx,
5371                           &s0_yyyy, FALSE);
5372      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_z,
5373                           &tmp1_src, &neg_tmp2_src, FALSE);
5374   }
5375
5376   /* MOV tmp3.w, 1.0 */
5377   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
5378      struct tgsi_full_src_register one =
5379         make_immediate_reg_float(emit, 1.0f);
5380
5381      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp3_dst_w, &one, FALSE);
5382   }
5383
5384   /* MOV dst, tmp3 */
5385   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp3_src,
5386                        inst->Instruction.Saturate);
5387
5388
5389   free_temp_indexes(emit);
5390
5391   return TRUE;
5392}
5393
5394
5395/**
5396 * Emit code for TGSI_OPCODE_TXD (explicit derivatives)
5397 */
5398static boolean
5399emit_txd(struct svga_shader_emitter_v10 *emit,
5400         const struct tgsi_full_instruction *inst)
5401{
5402   const uint unit = inst->Src[3].Register.Index;
5403   unsigned target = inst->Texture.Texture;
5404   int offsets[3];
5405   struct tgsi_full_src_register coord;
5406   struct tex_swizzle_info swz_info;
5407
5408   begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target),
5409                     &swz_info);
5410
5411   get_texel_offsets(emit, inst, offsets);
5412
5413   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5414
5415   /* SAMPLE_D dst, coord(s0), resource, sampler, Xderiv(s1), Yderiv(s2) */
5416   begin_emit_instruction(emit);
5417   emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE_D,
5418                      inst->Instruction.Saturate, offsets);
5419   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5420   emit_src_register(emit, &coord);
5421   emit_resource_register(emit, unit);
5422   emit_sampler_register(emit, unit);
5423   emit_src_register(emit, &inst->Src[1]);  /* Xderiv */
5424   emit_src_register(emit, &inst->Src[2]);  /* Yderiv */
5425   end_emit_instruction(emit);
5426
5427   end_tex_swizzle(emit, &swz_info);
5428
5429   free_temp_indexes(emit);
5430
5431   return TRUE;
5432}
5433
5434
5435/**
5436 * Emit code for TGSI_OPCODE_TXF (texel fetch)
5437 */
5438static boolean
5439emit_txf(struct svga_shader_emitter_v10 *emit,
5440         const struct tgsi_full_instruction *inst)
5441{
5442   const uint unit = inst->Src[1].Register.Index;
5443   const boolean msaa = tgsi_is_msaa_target(inst->Texture.Texture);
5444   int offsets[3];
5445   struct tex_swizzle_info swz_info;
5446
5447   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5448
5449   get_texel_offsets(emit, inst, offsets);
5450
5451   if (msaa) {
5452      /* Fetch one sample from an MSAA texture */
5453      struct tgsi_full_src_register sampleIndex =
5454         scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5455      /* LD_MS dst, coord(s0), resource, sampleIndex */
5456      begin_emit_instruction(emit);
5457      emit_sample_opcode(emit, VGPU10_OPCODE_LD_MS,
5458                         inst->Instruction.Saturate, offsets);
5459      emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5460      emit_src_register(emit, &inst->Src[0]);
5461      emit_resource_register(emit, unit);
5462      emit_src_register(emit, &sampleIndex);
5463      end_emit_instruction(emit);
5464   }
5465   else {
5466      /* Fetch one texel specified by integer coordinate */
5467      /* LD dst, coord(s0), resource */
5468      begin_emit_instruction(emit);
5469      emit_sample_opcode(emit, VGPU10_OPCODE_LD,
5470                         inst->Instruction.Saturate, offsets);
5471      emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5472      emit_src_register(emit, &inst->Src[0]);
5473      emit_resource_register(emit, unit);
5474      end_emit_instruction(emit);
5475   }
5476
5477   end_tex_swizzle(emit, &swz_info);
5478
5479   free_temp_indexes(emit);
5480
5481   return TRUE;
5482}
5483
5484
5485/**
5486 * Emit code for TGSI_OPCODE_TXL (explicit LOD) or TGSI_OPCODE_TXB (LOD bias)
5487 * or TGSI_OPCODE_TXB2 (for cube shadow maps).
5488 */
5489static boolean
5490emit_txl_txb(struct svga_shader_emitter_v10 *emit,
5491             const struct tgsi_full_instruction *inst)
5492{
5493   unsigned target = inst->Texture.Texture;
5494   unsigned opcode, unit;
5495   int offsets[3];
5496   struct tgsi_full_src_register coord, lod_bias;
5497   struct tex_swizzle_info swz_info;
5498
5499   assert(inst->Instruction.Opcode == TGSI_OPCODE_TXL ||
5500          inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
5501          inst->Instruction.Opcode == TGSI_OPCODE_TXB2);
5502
5503   if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2) {
5504      lod_bias = scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
5505      unit = inst->Src[2].Register.Index;
5506   }
5507   else {
5508      lod_bias = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5509      unit = inst->Src[1].Register.Index;
5510   }
5511
5512   begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target),
5513                     &swz_info);
5514
5515   get_texel_offsets(emit, inst, offsets);
5516
5517   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5518
5519   /* SAMPLE_L/B dst, coord(s0), resource, sampler, lod(s3) */
5520   begin_emit_instruction(emit);
5521   if (inst->Instruction.Opcode == TGSI_OPCODE_TXL) {
5522      opcode = VGPU10_OPCODE_SAMPLE_L;
5523   }
5524   else {
5525      opcode = VGPU10_OPCODE_SAMPLE_B;
5526   }
5527   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5528   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5529   emit_src_register(emit, &coord);
5530   emit_resource_register(emit, unit);
5531   emit_sampler_register(emit, unit);
5532   emit_src_register(emit, &lod_bias);
5533   end_emit_instruction(emit);
5534
5535   end_tex_swizzle(emit, &swz_info);
5536
5537   free_temp_indexes(emit);
5538
5539   return TRUE;
5540}
5541
5542
5543/**
5544 * Emit code for TGSI_OPCODE_TXQ (texture query) instruction.
5545 */
5546static boolean
5547emit_txq(struct svga_shader_emitter_v10 *emit,
5548         const struct tgsi_full_instruction *inst)
5549{
5550   const uint unit = inst->Src[1].Register.Index;
5551
5552   if (emit->sampler_target[unit] == TGSI_TEXTURE_BUFFER) {
5553      /* RESINFO does not support querying texture buffers, so we instead
5554       * store texture buffer sizes in shader constants, then copy them to
5555       * implement TXQ instead of emitting RESINFO.
5556       * MOV dst, const[texture_buffer_size_index[unit]]
5557       */
5558      struct tgsi_full_src_register size_src =
5559         make_src_const_reg(emit->texture_buffer_size_index[unit]);
5560      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &size_src,
5561                           FALSE);
5562   } else {
5563      /* RESINFO dst, srcMipLevel, resource */
5564      begin_emit_instruction(emit);
5565      emit_opcode_resinfo(emit, VGPU10_RESINFO_RETURN_UINT);
5566      emit_dst_register(emit, &inst->Dst[0]);
5567      emit_src_register(emit, &inst->Src[0]);
5568      emit_resource_register(emit, unit);
5569      end_emit_instruction(emit);
5570   }
5571
5572   free_temp_indexes(emit);
5573
5574   return TRUE;
5575}
5576
5577
5578/**
5579 * Emit a simple instruction (like ADD, MUL, MIN, etc).
5580 */
5581static boolean
5582emit_simple(struct svga_shader_emitter_v10 *emit,
5583            const struct tgsi_full_instruction *inst)
5584{
5585   const unsigned opcode = inst->Instruction.Opcode;
5586   const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode);
5587   unsigned i;
5588
5589   begin_emit_instruction(emit);
5590   emit_opcode(emit, translate_opcode(inst->Instruction.Opcode),
5591               inst->Instruction.Saturate);
5592   for (i = 0; i < op->num_dst; i++) {
5593      emit_dst_register(emit, &inst->Dst[i]);
5594   }
5595   for (i = 0; i < op->num_src; i++) {
5596      emit_src_register(emit, &inst->Src[i]);
5597   }
5598   end_emit_instruction(emit);
5599
5600   return TRUE;
5601}
5602
5603
5604/**
5605 * We only special case the MOV instruction to try to detect constant
5606 * color writes in the fragment shader.
5607 */
5608static boolean
5609emit_mov(struct svga_shader_emitter_v10 *emit,
5610         const struct tgsi_full_instruction *inst)
5611{
5612   const struct tgsi_full_src_register *src = &inst->Src[0];
5613   const struct tgsi_full_dst_register *dst = &inst->Dst[0];
5614
5615   if (emit->unit == PIPE_SHADER_FRAGMENT &&
5616       dst->Register.File == TGSI_FILE_OUTPUT &&
5617       dst->Register.Index == 0 &&
5618       src->Register.File == TGSI_FILE_CONSTANT &&
5619       !src->Register.Indirect) {
5620      emit->constant_color_output = TRUE;
5621   }
5622
5623   return emit_simple(emit, inst);
5624}
5625
5626
5627/**
5628 * Emit a simple VGPU10 instruction which writes to multiple dest registers,
5629 * where TGSI only uses one dest register.
5630 */
5631static boolean
5632emit_simple_1dst(struct svga_shader_emitter_v10 *emit,
5633                 const struct tgsi_full_instruction *inst,
5634                 unsigned dst_count,
5635                 unsigned dst_index)
5636{
5637   const unsigned opcode = inst->Instruction.Opcode;
5638   const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode);
5639   unsigned i;
5640
5641   begin_emit_instruction(emit);
5642   emit_opcode(emit, translate_opcode(inst->Instruction.Opcode),
5643               inst->Instruction.Saturate);
5644
5645   for (i = 0; i < dst_count; i++) {
5646      if (i == dst_index) {
5647         emit_dst_register(emit, &inst->Dst[0]);
5648      } else {
5649         emit_null_dst_register(emit);
5650      }
5651   }
5652
5653   for (i = 0; i < op->num_src; i++) {
5654      emit_src_register(emit, &inst->Src[i]);
5655   }
5656   end_emit_instruction(emit);
5657
5658   return TRUE;
5659}
5660
5661
5662/**
5663 * Translate a single TGSI instruction to VGPU10.
5664 */
5665static boolean
5666emit_vgpu10_instruction(struct svga_shader_emitter_v10 *emit,
5667                        unsigned inst_number,
5668                        const struct tgsi_full_instruction *inst)
5669{
5670   const unsigned opcode = inst->Instruction.Opcode;
5671
5672   switch (opcode) {
5673   case TGSI_OPCODE_ADD:
5674   case TGSI_OPCODE_AND:
5675   case TGSI_OPCODE_BGNLOOP:
5676   case TGSI_OPCODE_BRK:
5677   case TGSI_OPCODE_CEIL:
5678   case TGSI_OPCODE_CONT:
5679   case TGSI_OPCODE_DDX:
5680   case TGSI_OPCODE_DDY:
5681   case TGSI_OPCODE_DIV:
5682   case TGSI_OPCODE_DP2:
5683   case TGSI_OPCODE_DP3:
5684   case TGSI_OPCODE_DP4:
5685   case TGSI_OPCODE_ELSE:
5686   case TGSI_OPCODE_ENDIF:
5687   case TGSI_OPCODE_ENDLOOP:
5688   case TGSI_OPCODE_ENDSUB:
5689   case TGSI_OPCODE_F2I:
5690   case TGSI_OPCODE_F2U:
5691   case TGSI_OPCODE_FLR:
5692   case TGSI_OPCODE_FRC:
5693   case TGSI_OPCODE_FSEQ:
5694   case TGSI_OPCODE_FSGE:
5695   case TGSI_OPCODE_FSLT:
5696   case TGSI_OPCODE_FSNE:
5697   case TGSI_OPCODE_I2F:
5698   case TGSI_OPCODE_IMAX:
5699   case TGSI_OPCODE_IMIN:
5700   case TGSI_OPCODE_INEG:
5701   case TGSI_OPCODE_ISGE:
5702   case TGSI_OPCODE_ISHR:
5703   case TGSI_OPCODE_ISLT:
5704   case TGSI_OPCODE_MAD:
5705   case TGSI_OPCODE_MAX:
5706   case TGSI_OPCODE_MIN:
5707   case TGSI_OPCODE_MUL:
5708   case TGSI_OPCODE_NOP:
5709   case TGSI_OPCODE_NOT:
5710   case TGSI_OPCODE_OR:
5711   case TGSI_OPCODE_RET:
5712   case TGSI_OPCODE_UADD:
5713   case TGSI_OPCODE_USEQ:
5714   case TGSI_OPCODE_USGE:
5715   case TGSI_OPCODE_USLT:
5716   case TGSI_OPCODE_UMIN:
5717   case TGSI_OPCODE_UMAD:
5718   case TGSI_OPCODE_UMAX:
5719   case TGSI_OPCODE_ROUND:
5720   case TGSI_OPCODE_SQRT:
5721   case TGSI_OPCODE_SHL:
5722   case TGSI_OPCODE_TRUNC:
5723   case TGSI_OPCODE_U2F:
5724   case TGSI_OPCODE_UCMP:
5725   case TGSI_OPCODE_USHR:
5726   case TGSI_OPCODE_USNE:
5727   case TGSI_OPCODE_XOR:
5728      /* simple instructions */
5729      return emit_simple(emit, inst);
5730
5731   case TGSI_OPCODE_MOV:
5732      return emit_mov(emit, inst);
5733   case TGSI_OPCODE_EMIT:
5734      return emit_vertex(emit, inst);
5735   case TGSI_OPCODE_ENDPRIM:
5736      return emit_endprim(emit, inst);
5737   case TGSI_OPCODE_IABS:
5738      return emit_iabs(emit, inst);
5739   case TGSI_OPCODE_ARL:
5740      /* fall-through */
5741   case TGSI_OPCODE_UARL:
5742      return emit_arl_uarl(emit, inst);
5743   case TGSI_OPCODE_BGNSUB:
5744      /* no-op */
5745      return TRUE;
5746   case TGSI_OPCODE_CAL:
5747      return emit_cal(emit, inst);
5748   case TGSI_OPCODE_CMP:
5749      return emit_cmp(emit, inst);
5750   case TGSI_OPCODE_COS:
5751      return emit_sincos(emit, inst);
5752   case TGSI_OPCODE_DP2A:
5753      return emit_dp2a(emit, inst);
5754   case TGSI_OPCODE_DPH:
5755      return emit_dph(emit, inst);
5756   case TGSI_OPCODE_DST:
5757      return emit_dst(emit, inst);
5758   case TGSI_OPCODE_EX2:
5759      return emit_ex2(emit, inst);
5760   case TGSI_OPCODE_EXP:
5761      return emit_exp(emit, inst);
5762   case TGSI_OPCODE_IF:
5763      return emit_if(emit, inst);
5764   case TGSI_OPCODE_KILL:
5765      return emit_kill(emit, inst);
5766   case TGSI_OPCODE_KILL_IF:
5767      return emit_kill_if(emit, inst);
5768   case TGSI_OPCODE_LG2:
5769      return emit_lg2(emit, inst);
5770   case TGSI_OPCODE_LIT:
5771      return emit_lit(emit, inst);
5772   case TGSI_OPCODE_LOG:
5773      return emit_log(emit, inst);
5774   case TGSI_OPCODE_LRP:
5775      return emit_lrp(emit, inst);
5776   case TGSI_OPCODE_POW:
5777      return emit_pow(emit, inst);
5778   case TGSI_OPCODE_RCP:
5779      return emit_rcp(emit, inst);
5780   case TGSI_OPCODE_RSQ:
5781      return emit_rsq(emit, inst);
5782   case TGSI_OPCODE_SAMPLE:
5783      return emit_sample(emit, inst);
5784   case TGSI_OPCODE_SCS:
5785      return emit_scs(emit, inst);
5786   case TGSI_OPCODE_SEQ:
5787      return emit_seq(emit, inst);
5788   case TGSI_OPCODE_SGE:
5789      return emit_sge(emit, inst);
5790   case TGSI_OPCODE_SGT:
5791      return emit_sgt(emit, inst);
5792   case TGSI_OPCODE_SIN:
5793      return emit_sincos(emit, inst);
5794   case TGSI_OPCODE_SLE:
5795      return emit_sle(emit, inst);
5796   case TGSI_OPCODE_SLT:
5797      return emit_slt(emit, inst);
5798   case TGSI_OPCODE_SNE:
5799      return emit_sne(emit, inst);
5800   case TGSI_OPCODE_SSG:
5801      return emit_ssg(emit, inst);
5802   case TGSI_OPCODE_ISSG:
5803      return emit_issg(emit, inst);
5804   case TGSI_OPCODE_SUB:
5805      return emit_sub(emit, inst);
5806   case TGSI_OPCODE_TEX:
5807      return emit_tex(emit, inst);
5808   case TGSI_OPCODE_TXP:
5809      return emit_txp(emit, inst);
5810   case TGSI_OPCODE_TXB:
5811   case TGSI_OPCODE_TXB2:
5812   case TGSI_OPCODE_TXL:
5813      return emit_txl_txb(emit, inst);
5814   case TGSI_OPCODE_TXD:
5815      return emit_txd(emit, inst);
5816   case TGSI_OPCODE_TXF:
5817      return emit_txf(emit, inst);
5818   case TGSI_OPCODE_TXQ:
5819      return emit_txq(emit, inst);
5820   case TGSI_OPCODE_UIF:
5821      return emit_if(emit, inst);
5822   case TGSI_OPCODE_XPD:
5823      return emit_xpd(emit, inst);
5824   case TGSI_OPCODE_UMUL_HI:
5825   case TGSI_OPCODE_IMUL_HI:
5826   case TGSI_OPCODE_UDIV:
5827   case TGSI_OPCODE_IDIV:
5828      /* These cases use only the FIRST of two destination registers */
5829      return emit_simple_1dst(emit, inst, 2, 0);
5830   case TGSI_OPCODE_UMUL:
5831   case TGSI_OPCODE_UMOD:
5832   case TGSI_OPCODE_MOD:
5833      /* These cases use only the SECOND of two destination registers */
5834      return emit_simple_1dst(emit, inst, 2, 1);
5835   case TGSI_OPCODE_END:
5836      if (!emit_post_helpers(emit))
5837         return FALSE;
5838      return emit_simple(emit, inst);
5839
5840   default:
5841      debug_printf("Unimplemented tgsi instruction %s\n",
5842                   tgsi_get_opcode_name(opcode));
5843      return FALSE;
5844   }
5845
5846   return TRUE;
5847}
5848
5849
5850/**
5851 * Emit the extra instructions to adjust the vertex position.
5852 * There are two possible adjustments:
5853 * 1. Converting from Gallium to VGPU10 coordinate space by applying the
5854 *    "prescale" and "pretranslate" values.
5855 * 2. Undoing the viewport transformation when we use the swtnl/draw path.
5856 * \param vs_pos_tmp_index  which temporary register contains the vertex pos.
5857 */
5858static void
5859emit_vpos_instructions(struct svga_shader_emitter_v10 *emit,
5860                       unsigned vs_pos_tmp_index)
5861{
5862   struct tgsi_full_src_register tmp_pos_src;
5863   struct tgsi_full_dst_register pos_dst;
5864
5865   /* Don't bother to emit any extra vertex instructions if vertex position is
5866    * not written out
5867    */
5868   if (emit->vposition.out_index == INVALID_INDEX)
5869      return;
5870
5871   tmp_pos_src = make_src_temp_reg(vs_pos_tmp_index);
5872   pos_dst = make_dst_output_reg(emit->vposition.out_index);
5873
5874   /* If non-adjusted vertex position register index
5875    * is valid, copy the vertex position from the temporary
5876    * vertex position register before it is modified by the
5877    * prescale computation.
5878    */
5879   if (emit->vposition.so_index != INVALID_INDEX) {
5880      struct tgsi_full_dst_register pos_so_dst =
5881         make_dst_output_reg(emit->vposition.so_index);
5882
5883      /* MOV pos_so, tmp_pos */
5884      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_so_dst,
5885                           &tmp_pos_src, FALSE);
5886   }
5887
5888   if (emit->vposition.need_prescale) {
5889      /* This code adjusts the vertex position to match the VGPU10 convention.
5890       * If p is the position computed by the shader (usually by applying the
5891       * modelview and projection matrices), the new position q is computed by:
5892       *
5893       * q.x = p.w * trans.x + p.x * scale.x
5894       * q.y = p.w * trans.y + p.y * scale.y
5895       * q.z = p.w * trans.z + p.z * scale.z;
5896       * q.w = p.w * trans.w + p.w;
5897       */
5898      struct tgsi_full_src_register tmp_pos_src_w =
5899         scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W);
5900      struct tgsi_full_dst_register tmp_pos_dst =
5901         make_dst_temp_reg(vs_pos_tmp_index);
5902      struct tgsi_full_dst_register tmp_pos_dst_xyz =
5903         writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XYZ);
5904
5905      struct tgsi_full_src_register prescale_scale =
5906         make_src_const_reg(emit->vposition.prescale_scale_index);
5907      struct tgsi_full_src_register prescale_trans =
5908         make_src_const_reg(emit->vposition.prescale_trans_index);
5909
5910      /* MUL tmp_pos.xyz, tmp_pos, prescale.scale */
5911      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xyz,
5912                           &tmp_pos_src, &prescale_scale, FALSE);
5913
5914      /* MAD pos, tmp_pos.wwww, prescale.trans, tmp_pos */
5915      emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &pos_dst, &tmp_pos_src_w,
5916                           &prescale_trans, &tmp_pos_src, FALSE);
5917   }
5918   else if (emit->key.vs.undo_viewport) {
5919      /* This code computes the final vertex position from the temporary
5920       * vertex position by undoing the viewport transformation and the
5921       * divide-by-W operation (we convert window coords back to clip coords).
5922       * This is needed when we use the 'draw' module for fallbacks.
5923       * If p is the temp pos in window coords, then the NDC coord q is:
5924       *   q.x = (p.x - vp.x_trans) / vp.x_scale * p.w
5925       *   q.y = (p.y - vp.y_trans) / vp.y_scale * p.w
5926       *   q.z = p.z * p.w
5927       *   q.w = p.w
5928       * CONST[vs_viewport_index] contains:
5929       *   { 1/vp.x_scale, 1/vp.y_scale, -vp.x_trans, -vp.y_trans }
5930       */
5931      struct tgsi_full_dst_register tmp_pos_dst =
5932         make_dst_temp_reg(vs_pos_tmp_index);
5933      struct tgsi_full_dst_register tmp_pos_dst_xy =
5934         writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XY);
5935      struct tgsi_full_src_register tmp_pos_src_wwww =
5936         scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W);
5937
5938      struct tgsi_full_dst_register pos_dst_xyz =
5939         writemask_dst(&pos_dst, TGSI_WRITEMASK_XYZ);
5940      struct tgsi_full_dst_register pos_dst_w =
5941         writemask_dst(&pos_dst, TGSI_WRITEMASK_W);
5942
5943      struct tgsi_full_src_register vp_xyzw =
5944         make_src_const_reg(emit->vs.viewport_index);
5945      struct tgsi_full_src_register vp_zwww =
5946         swizzle_src(&vp_xyzw, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_W,
5947                     TGSI_SWIZZLE_W, TGSI_SWIZZLE_W);
5948
5949      /* ADD tmp_pos.xy, tmp_pos.xy, viewport.zwww */
5950      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp_pos_dst_xy,
5951                           &tmp_pos_src, &vp_zwww, FALSE);
5952
5953      /* MUL tmp_pos.xy, tmp_pos.xyzw, viewport.xyzy */
5954      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xy,
5955                           &tmp_pos_src, &vp_xyzw, FALSE);
5956
5957      /* MUL pos.xyz, tmp_pos.xyz, tmp_pos.www */
5958      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &pos_dst_xyz,
5959                           &tmp_pos_src, &tmp_pos_src_wwww, FALSE);
5960
5961      /* MOV pos.w, tmp_pos.w */
5962      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_dst_w,
5963                           &tmp_pos_src, FALSE);
5964   }
5965   else if (vs_pos_tmp_index != INVALID_INDEX) {
5966      /* This code is to handle the case where the temporary vertex
5967       * position register is created when the vertex shader has stream
5968       * output and prescale is disabled because rasterization is to be
5969       * discarded.
5970       */
5971      struct tgsi_full_dst_register pos_dst =
5972         make_dst_output_reg(emit->vposition.out_index);
5973
5974      /* MOV pos, tmp_pos */
5975      begin_emit_instruction(emit);
5976      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
5977      emit_dst_register(emit, &pos_dst);
5978      emit_src_register(emit, &tmp_pos_src);
5979      end_emit_instruction(emit);
5980   }
5981}
5982
5983static void
5984emit_clipping_instructions(struct svga_shader_emitter_v10 *emit)
5985{
5986   if (emit->clip_mode == CLIP_DISTANCE) {
5987      /* Copy from copy distance temporary to CLIPDIST & the shadow copy */
5988      emit_clip_distance_instructions(emit);
5989
5990   } else if (emit->clip_mode == CLIP_VERTEX) {
5991      /* Convert TGSI CLIPVERTEX to CLIPDIST */
5992      emit_clip_vertex_instructions(emit);
5993   }
5994
5995   /**
5996    * Emit vertex position and take care of legacy user planes only if
5997    * there is a valid vertex position register index.
5998    * This is to take care of the case
5999    * where the shader doesn't output vertex position. Then in
6000    * this case, don't bother to emit more vertex instructions.
6001    */
6002   if (emit->vposition.out_index == INVALID_INDEX)
6003      return;
6004
6005   /**
6006    * Emit per-vertex clipping instructions for legacy user defined clip planes.
6007    * NOTE: we must emit the clip distance instructions before the
6008    * emit_vpos_instructions() call since the later function will change
6009    * the TEMP[vs_pos_tmp_index] value.
6010    */
6011   if (emit->clip_mode == CLIP_LEGACY) {
6012      /* Emit CLIPDIST for legacy user defined clip planes */
6013      emit_clip_distance_from_vpos(emit, emit->vposition.tmp_index);
6014   }
6015}
6016
6017
6018/**
6019 * Emit extra per-vertex instructions.  This includes clip-coordinate
6020 * space conversion and computing clip distances.  This is called for
6021 * each GS emit-vertex instruction and at the end of VS translation.
6022 */
6023static void
6024emit_vertex_instructions(struct svga_shader_emitter_v10 *emit)
6025{
6026   const unsigned vs_pos_tmp_index = emit->vposition.tmp_index;
6027
6028   /* Emit clipping instructions based on clipping mode */
6029   emit_clipping_instructions(emit);
6030
6031   /**
6032    * Reset the temporary vertex position register index
6033    * so that emit_dst_register() will use the real vertex position output
6034    */
6035   emit->vposition.tmp_index = INVALID_INDEX;
6036
6037   /* Emit vertex position instructions */
6038   emit_vpos_instructions(emit, vs_pos_tmp_index);
6039
6040   /* Restore original vposition.tmp_index value for the next GS vertex.
6041    * It doesn't matter for VS.
6042    */
6043   emit->vposition.tmp_index = vs_pos_tmp_index;
6044}
6045
6046/**
6047 * Translate the TGSI_OPCODE_EMIT GS instruction.
6048 */
6049static boolean
6050emit_vertex(struct svga_shader_emitter_v10 *emit,
6051            const struct tgsi_full_instruction *inst)
6052{
6053   unsigned ret = TRUE;
6054
6055   assert(emit->unit == PIPE_SHADER_GEOMETRY);
6056
6057   emit_vertex_instructions(emit);
6058
6059   /* We can't use emit_simple() because the TGSI instruction has one
6060    * operand (vertex stream number) which we must ignore for VGPU10.
6061    */
6062   begin_emit_instruction(emit);
6063   emit_opcode(emit, VGPU10_OPCODE_EMIT, FALSE);
6064   end_emit_instruction(emit);
6065
6066   return ret;
6067}
6068
6069
6070/**
6071 * Emit the extra code to convert from VGPU10's boolean front-face
6072 * register to TGSI's signed front-face register.
6073 *
6074 * TODO: Make temporary front-face register a scalar.
6075 */
6076static void
6077emit_frontface_instructions(struct svga_shader_emitter_v10 *emit)
6078{
6079   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6080
6081   if (emit->fs.face_input_index != INVALID_INDEX) {
6082      /* convert vgpu10 boolean face register to gallium +/-1 value */
6083      struct tgsi_full_dst_register tmp_dst =
6084         make_dst_temp_reg(emit->fs.face_tmp_index);
6085      struct tgsi_full_src_register one =
6086         make_immediate_reg_float(emit, 1.0f);
6087      struct tgsi_full_src_register neg_one =
6088         make_immediate_reg_float(emit, -1.0f);
6089
6090      /* MOVC face_tmp, IS_FRONT_FACE.x, 1.0, -1.0 */
6091      begin_emit_instruction(emit);
6092      emit_opcode(emit, VGPU10_OPCODE_MOVC, FALSE);
6093      emit_dst_register(emit, &tmp_dst);
6094      emit_face_register(emit);
6095      emit_src_register(emit, &one);
6096      emit_src_register(emit, &neg_one);
6097      end_emit_instruction(emit);
6098   }
6099}
6100
6101
6102/**
6103 * Emit the extra code to convert from VGPU10's fragcoord.w value to 1/w.
6104 */
6105static void
6106emit_fragcoord_instructions(struct svga_shader_emitter_v10 *emit)
6107{
6108   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6109
6110   if (emit->fs.fragcoord_input_index != INVALID_INDEX) {
6111      struct tgsi_full_dst_register tmp_dst =
6112         make_dst_temp_reg(emit->fs.fragcoord_tmp_index);
6113      struct tgsi_full_dst_register tmp_dst_xyz =
6114         writemask_dst(&tmp_dst, TGSI_WRITEMASK_XYZ);
6115      struct tgsi_full_dst_register tmp_dst_w =
6116         writemask_dst(&tmp_dst, TGSI_WRITEMASK_W);
6117      struct tgsi_full_src_register one =
6118         make_immediate_reg_float(emit, 1.0f);
6119      struct tgsi_full_src_register fragcoord =
6120         make_src_reg(TGSI_FILE_INPUT, emit->fs.fragcoord_input_index);
6121
6122      /* save the input index */
6123      unsigned fragcoord_input_index = emit->fs.fragcoord_input_index;
6124      /* set to invalid to prevent substitution in emit_src_register() */
6125      emit->fs.fragcoord_input_index = INVALID_INDEX;
6126
6127      /* MOV fragcoord_tmp.xyz, fragcoord.xyz */
6128      begin_emit_instruction(emit);
6129      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
6130      emit_dst_register(emit, &tmp_dst_xyz);
6131      emit_src_register(emit, &fragcoord);
6132      end_emit_instruction(emit);
6133
6134      /* DIV fragcoord_tmp.w, 1.0, fragcoord.w */
6135      begin_emit_instruction(emit);
6136      emit_opcode(emit, VGPU10_OPCODE_DIV, FALSE);
6137      emit_dst_register(emit, &tmp_dst_w);
6138      emit_src_register(emit, &one);
6139      emit_src_register(emit, &fragcoord);
6140      end_emit_instruction(emit);
6141
6142      /* restore saved value */
6143      emit->fs.fragcoord_input_index = fragcoord_input_index;
6144   }
6145}
6146
6147
6148/**
6149 * Emit extra instructions to adjust VS inputs/attributes.  This can
6150 * mean casting a vertex attribute from int to float or setting the
6151 * W component to 1, or both.
6152 */
6153static void
6154emit_vertex_attrib_instructions(struct svga_shader_emitter_v10 *emit)
6155{
6156   const unsigned save_w_1_mask = emit->key.vs.adjust_attrib_w_1;
6157   const unsigned save_itof_mask = emit->key.vs.adjust_attrib_itof;
6158   const unsigned save_utof_mask = emit->key.vs.adjust_attrib_utof;
6159   const unsigned save_is_bgra_mask = emit->key.vs.attrib_is_bgra;
6160   const unsigned save_puint_to_snorm_mask = emit->key.vs.attrib_puint_to_snorm;
6161   const unsigned save_puint_to_uscaled_mask = emit->key.vs.attrib_puint_to_uscaled;
6162   const unsigned save_puint_to_sscaled_mask = emit->key.vs.attrib_puint_to_sscaled;
6163
6164   unsigned adjust_mask = (save_w_1_mask |
6165                           save_itof_mask |
6166                           save_utof_mask |
6167                           save_is_bgra_mask |
6168                           save_puint_to_snorm_mask |
6169                           save_puint_to_uscaled_mask |
6170                           save_puint_to_sscaled_mask);
6171
6172   assert(emit->unit == PIPE_SHADER_VERTEX);
6173
6174   if (adjust_mask) {
6175      struct tgsi_full_src_register one =
6176         make_immediate_reg_float(emit, 1.0f);
6177
6178      struct tgsi_full_src_register one_int =
6179         make_immediate_reg_int(emit, 1);
6180
6181      /* We need to turn off these bitmasks while emitting the
6182       * instructions below, then restore them afterward.
6183       */
6184      emit->key.vs.adjust_attrib_w_1 = 0;
6185      emit->key.vs.adjust_attrib_itof = 0;
6186      emit->key.vs.adjust_attrib_utof = 0;
6187      emit->key.vs.attrib_is_bgra = 0;
6188      emit->key.vs.attrib_puint_to_snorm = 0;
6189      emit->key.vs.attrib_puint_to_uscaled = 0;
6190      emit->key.vs.attrib_puint_to_sscaled = 0;
6191
6192      while (adjust_mask) {
6193         unsigned index = u_bit_scan(&adjust_mask);
6194
6195         /* skip the instruction if this vertex attribute is not being used */
6196         if (emit->info.input_usage_mask[index] == 0)
6197            continue;
6198
6199         unsigned tmp = emit->vs.adjusted_input[index];
6200         struct tgsi_full_src_register input_src =
6201            make_src_reg(TGSI_FILE_INPUT, index);
6202
6203         struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
6204         struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
6205         struct tgsi_full_dst_register tmp_dst_w =
6206            writemask_dst(&tmp_dst, TGSI_WRITEMASK_W);
6207
6208         /* ITOF/UTOF/MOV tmp, input[index] */
6209         if (save_itof_mask & (1 << index)) {
6210            emit_instruction_op1(emit, VGPU10_OPCODE_ITOF,
6211                                 &tmp_dst, &input_src, FALSE);
6212         }
6213         else if (save_utof_mask & (1 << index)) {
6214            emit_instruction_op1(emit, VGPU10_OPCODE_UTOF,
6215                                 &tmp_dst, &input_src, FALSE);
6216         }
6217         else if (save_puint_to_snorm_mask & (1 << index)) {
6218            emit_puint_to_snorm(emit, &tmp_dst, &input_src);
6219         }
6220         else if (save_puint_to_uscaled_mask & (1 << index)) {
6221            emit_puint_to_uscaled(emit, &tmp_dst, &input_src);
6222         }
6223         else if (save_puint_to_sscaled_mask & (1 << index)) {
6224            emit_puint_to_sscaled(emit, &tmp_dst, &input_src);
6225         }
6226         else {
6227            assert((save_w_1_mask | save_is_bgra_mask) & (1 << index));
6228            emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6229                                 &tmp_dst, &input_src, FALSE);
6230         }
6231
6232         if (save_is_bgra_mask & (1 << index)) {
6233            emit_swap_r_b(emit, &tmp_dst, &tmp_src);
6234         }
6235
6236         if (save_w_1_mask & (1 << index)) {
6237            /* MOV tmp.w, 1.0 */
6238            if (emit->key.vs.attrib_is_pure_int & (1 << index)) {
6239               emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6240                                    &tmp_dst_w, &one_int, FALSE);
6241            }
6242            else {
6243               emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6244                                    &tmp_dst_w, &one, FALSE);
6245            }
6246         }
6247      }
6248
6249      emit->key.vs.adjust_attrib_w_1 = save_w_1_mask;
6250      emit->key.vs.adjust_attrib_itof = save_itof_mask;
6251      emit->key.vs.adjust_attrib_utof = save_utof_mask;
6252      emit->key.vs.attrib_is_bgra = save_is_bgra_mask;
6253      emit->key.vs.attrib_puint_to_snorm = save_puint_to_snorm_mask;
6254      emit->key.vs.attrib_puint_to_uscaled = save_puint_to_uscaled_mask;
6255      emit->key.vs.attrib_puint_to_sscaled = save_puint_to_sscaled_mask;
6256   }
6257}
6258
6259
6260/**
6261 * Some common values like 0.0, 1.0, 0.5, etc. are frequently needed
6262 * to implement some instructions.  We pre-allocate those values here
6263 * in the immediate constant buffer.
6264 */
6265static void
6266alloc_common_immediates(struct svga_shader_emitter_v10 *emit)
6267{
6268   unsigned n = 0;
6269
6270   emit->common_immediate_pos[n++] =
6271      alloc_immediate_float4(emit, 0.0f, 1.0f, 0.5f, -1.0f);
6272
6273   emit->common_immediate_pos[n++] =
6274      alloc_immediate_float4(emit, 128.0f, -128.0f, 2.0f, 3.0f);
6275
6276   emit->common_immediate_pos[n++] =
6277      alloc_immediate_int4(emit, 0, 1, 0, -1);
6278
6279   if (emit->key.vs.attrib_puint_to_snorm) {
6280      emit->common_immediate_pos[n++] =
6281         alloc_immediate_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f);
6282   }
6283
6284   if (emit->key.vs.attrib_puint_to_uscaled) {
6285      emit->common_immediate_pos[n++] =
6286         alloc_immediate_float4(emit, 1023.0f, 3.0f, 0.0f, 0.0f);
6287   }
6288
6289   if (emit->key.vs.attrib_puint_to_sscaled) {
6290      emit->common_immediate_pos[n++] =
6291         alloc_immediate_int4(emit, 22, 12, 2, 0);
6292
6293      emit->common_immediate_pos[n++] =
6294         alloc_immediate_int4(emit, 22, 30, 0, 0);
6295   }
6296
6297   assert(n <= ARRAY_SIZE(emit->common_immediate_pos));
6298   emit->num_common_immediates = n;
6299}
6300
6301
6302/**
6303 * Emit any extra/helper declarations/code that we might need between
6304 * the declaration section and code section.
6305 */
6306static boolean
6307emit_pre_helpers(struct svga_shader_emitter_v10 *emit)
6308{
6309   /* Properties */
6310   if (emit->unit == PIPE_SHADER_GEOMETRY)
6311      emit_property_instructions(emit);
6312
6313   /* Declare inputs */
6314   if (!emit_input_declarations(emit))
6315      return FALSE;
6316
6317   /* Declare outputs */
6318   if (!emit_output_declarations(emit))
6319      return FALSE;
6320
6321   /* Declare temporary registers */
6322   emit_temporaries_declaration(emit);
6323
6324   /* Declare constant registers */
6325   emit_constant_declaration(emit);
6326
6327   /* Declare samplers and resources */
6328   emit_sampler_declarations(emit);
6329   emit_resource_declarations(emit);
6330
6331   /* Declare clip distance output registers */
6332   if (emit->unit == PIPE_SHADER_VERTEX ||
6333       emit->unit == PIPE_SHADER_GEOMETRY) {
6334      emit_clip_distance_declarations(emit);
6335   }
6336
6337   alloc_common_immediates(emit);
6338
6339   if (emit->unit == PIPE_SHADER_FRAGMENT &&
6340       emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) {
6341      float alpha = emit->key.fs.alpha_ref;
6342      emit->fs.alpha_ref_index =
6343         alloc_immediate_float4(emit, alpha, alpha, alpha, alpha);
6344   }
6345
6346   /* Now, emit the constant block containing all the immediates
6347    * declared by shader, as well as the extra ones seen above.
6348    */
6349   emit_vgpu10_immediates_block(emit);
6350
6351   if (emit->unit == PIPE_SHADER_FRAGMENT) {
6352      emit_frontface_instructions(emit);
6353      emit_fragcoord_instructions(emit);
6354   }
6355   else if (emit->unit == PIPE_SHADER_VERTEX) {
6356      emit_vertex_attrib_instructions(emit);
6357   }
6358
6359   return TRUE;
6360}
6361
6362
6363/**
6364 * Emit alpha test code.  This compares TEMP[fs_color_tmp_index].w
6365 * against the alpha reference value and discards the fragment if the
6366 * comparison fails.
6367 */
6368static void
6369emit_alpha_test_instructions(struct svga_shader_emitter_v10 *emit,
6370                             unsigned fs_color_tmp_index)
6371{
6372   /* compare output color's alpha to alpha ref and kill */
6373   unsigned tmp = get_temp_index(emit);
6374   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
6375   struct tgsi_full_src_register tmp_src_x =
6376      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
6377   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
6378   struct tgsi_full_src_register color_src =
6379      make_src_temp_reg(fs_color_tmp_index);
6380   struct tgsi_full_src_register color_src_w =
6381      scalar_src(&color_src, TGSI_SWIZZLE_W);
6382   struct tgsi_full_src_register ref_src =
6383      make_src_immediate_reg(emit->fs.alpha_ref_index);
6384   struct tgsi_full_dst_register color_dst =
6385      make_dst_output_reg(emit->fs.color_out_index[0]);
6386
6387   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6388
6389   /* dst = src0 'alpha_func' src1 */
6390   emit_comparison(emit, emit->key.fs.alpha_func, &tmp_dst,
6391                   &color_src_w, &ref_src);
6392
6393   /* DISCARD if dst.x == 0 */
6394   begin_emit_instruction(emit);
6395   emit_discard_opcode(emit, FALSE);  /* discard if src0.x is zero */
6396   emit_src_register(emit, &tmp_src_x);
6397   end_emit_instruction(emit);
6398
6399   /* If we don't need to broadcast the color below or set fragments to
6400    * white, emit final color here.
6401    */
6402   if (emit->key.fs.write_color0_to_n_cbufs <= 1 &&
6403       !emit->key.fs.white_fragments) {
6404      /* MOV output.color, tempcolor */
6405      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst,
6406                           &color_src, FALSE);     /* XXX saturate? */
6407   }
6408
6409   free_temp_indexes(emit);
6410}
6411
6412
6413/**
6414 * When we need to emit white for all fragments (for emulating XOR logicop
6415 * mode), this function copies white into the temporary color output register.
6416 */
6417static void
6418emit_set_color_white(struct svga_shader_emitter_v10 *emit,
6419                     unsigned fs_color_tmp_index)
6420{
6421   struct tgsi_full_dst_register color_dst =
6422      make_dst_temp_reg(fs_color_tmp_index);
6423   struct tgsi_full_src_register white =
6424      make_immediate_reg_float(emit, 1.0f);
6425
6426   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst, &white, FALSE);
6427}
6428
6429
6430/**
6431 * Emit instructions for writing a single color output to multiple
6432 * color buffers.
6433 * This is used when the TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS (or
6434 * when key.fs.white_fragments is true).
6435 * property is set and the number of render targets is greater than one.
6436 * \param fs_color_tmp_index  index of the temp register that holds the
6437 *                            color to broadcast.
6438 */
6439static void
6440emit_broadcast_color_instructions(struct svga_shader_emitter_v10 *emit,
6441                                 unsigned fs_color_tmp_index)
6442{
6443   const unsigned n = emit->key.fs.write_color0_to_n_cbufs;
6444   unsigned i;
6445   struct tgsi_full_src_register color_src =
6446      make_src_temp_reg(fs_color_tmp_index);
6447
6448   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6449
6450   for (i = 0; i < n; i++) {
6451      unsigned output_reg = emit->fs.color_out_index[i];
6452      struct tgsi_full_dst_register color_dst =
6453         make_dst_output_reg(output_reg);
6454
6455      /* Fill in this semantic here since we'll use it later in
6456       * emit_dst_register().
6457       */
6458      emit->info.output_semantic_name[output_reg] = TGSI_SEMANTIC_COLOR;
6459
6460      /* MOV output.color[i], tempcolor */
6461      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst,
6462                           &color_src, FALSE);     /* XXX saturate? */
6463   }
6464}
6465
6466
6467/**
6468 * Emit extra helper code after the original shader code, but before the
6469 * last END/RET instruction.
6470 * For vertex shaders this means emitting the extra code to apply the
6471 * prescale scale/translation.
6472 */
6473static boolean
6474emit_post_helpers(struct svga_shader_emitter_v10 *emit)
6475{
6476   if (emit->unit == PIPE_SHADER_VERTEX) {
6477      emit_vertex_instructions(emit);
6478   }
6479   else if (emit->unit == PIPE_SHADER_FRAGMENT) {
6480      const unsigned fs_color_tmp_index = emit->fs.color_tmp_index;
6481
6482      /* We no longer want emit_dst_register() to substitute the
6483       * temporary fragment color register for the real color output.
6484       */
6485      emit->fs.color_tmp_index = INVALID_INDEX;
6486
6487      if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) {
6488         emit_alpha_test_instructions(emit, fs_color_tmp_index);
6489      }
6490      if (emit->key.fs.white_fragments) {
6491         emit_set_color_white(emit, fs_color_tmp_index);
6492      }
6493      if (emit->key.fs.write_color0_to_n_cbufs > 1 ||
6494          emit->key.fs.white_fragments) {
6495         emit_broadcast_color_instructions(emit, fs_color_tmp_index);
6496      }
6497   }
6498
6499   return TRUE;
6500}
6501
6502
6503/**
6504 * Translate the TGSI tokens into VGPU10 tokens.
6505 */
6506static boolean
6507emit_vgpu10_instructions(struct svga_shader_emitter_v10 *emit,
6508                         const struct tgsi_token *tokens)
6509{
6510   struct tgsi_parse_context parse;
6511   boolean ret = TRUE;
6512   boolean pre_helpers_emitted = FALSE;
6513   unsigned inst_number = 0;
6514
6515   tgsi_parse_init(&parse, tokens);
6516
6517   while (!tgsi_parse_end_of_tokens(&parse)) {
6518      tgsi_parse_token(&parse);
6519
6520      switch (parse.FullToken.Token.Type) {
6521      case TGSI_TOKEN_TYPE_IMMEDIATE:
6522         ret = emit_vgpu10_immediate(emit, &parse.FullToken.FullImmediate);
6523         if (!ret)
6524            goto done;
6525         break;
6526
6527      case TGSI_TOKEN_TYPE_DECLARATION:
6528         ret = emit_vgpu10_declaration(emit, &parse.FullToken.FullDeclaration);
6529         if (!ret)
6530            goto done;
6531         break;
6532
6533      case TGSI_TOKEN_TYPE_INSTRUCTION:
6534         if (!pre_helpers_emitted) {
6535            ret = emit_pre_helpers(emit);
6536            if (!ret)
6537               goto done;
6538            pre_helpers_emitted = TRUE;
6539         }
6540         ret = emit_vgpu10_instruction(emit, inst_number++,
6541                                       &parse.FullToken.FullInstruction);
6542         if (!ret)
6543            goto done;
6544         break;
6545
6546      case TGSI_TOKEN_TYPE_PROPERTY:
6547         ret = emit_vgpu10_property(emit, &parse.FullToken.FullProperty);
6548         if (!ret)
6549            goto done;
6550         break;
6551
6552      default:
6553         break;
6554      }
6555   }
6556
6557done:
6558   tgsi_parse_free(&parse);
6559   return ret;
6560}
6561
6562
6563/**
6564 * Emit the first VGPU10 shader tokens.
6565 */
6566static boolean
6567emit_vgpu10_header(struct svga_shader_emitter_v10 *emit)
6568{
6569   VGPU10ProgramToken ptoken;
6570
6571   /* First token: VGPU10ProgramToken  (version info, program type (VS,GS,PS)) */
6572   ptoken.majorVersion = 4;
6573   ptoken.minorVersion = 0;
6574   ptoken.programType = translate_shader_type(emit->unit);
6575   if (!emit_dword(emit, ptoken.value))
6576      return FALSE;
6577
6578   /* Second token: total length of shader, in tokens.  We can't fill this
6579    * in until we're all done.  Emit zero for now.
6580    */
6581   return emit_dword(emit, 0);
6582}
6583
6584
6585static boolean
6586emit_vgpu10_tail(struct svga_shader_emitter_v10 *emit)
6587{
6588   VGPU10ProgramToken *tokens;
6589
6590   /* Replace the second token with total shader length */
6591   tokens = (VGPU10ProgramToken *) emit->buf;
6592   tokens[1].value = emit_get_num_tokens(emit);
6593
6594   return TRUE;
6595}
6596
6597
6598/**
6599 * Modify the FS to read the BCOLORs and use the FACE register
6600 * to choose between the front/back colors.
6601 */
6602static const struct tgsi_token *
6603transform_fs_twoside(const struct tgsi_token *tokens)
6604{
6605   if (0) {
6606      debug_printf("Before tgsi_add_two_side ------------------\n");
6607      tgsi_dump(tokens,0);
6608   }
6609   tokens = tgsi_add_two_side(tokens);
6610   if (0) {
6611      debug_printf("After tgsi_add_two_side ------------------\n");
6612      tgsi_dump(tokens, 0);
6613   }
6614   return tokens;
6615}
6616
6617
6618/**
6619 * Modify the FS to do polygon stipple.
6620 */
6621static const struct tgsi_token *
6622transform_fs_pstipple(struct svga_shader_emitter_v10 *emit,
6623                      const struct tgsi_token *tokens)
6624{
6625   const struct tgsi_token *new_tokens;
6626   unsigned unit;
6627
6628   if (0) {
6629      debug_printf("Before pstipple ------------------\n");
6630      tgsi_dump(tokens,0);
6631   }
6632
6633   new_tokens = util_pstipple_create_fragment_shader(tokens, &unit, 0,
6634                                                     TGSI_FILE_INPUT);
6635
6636   emit->fs.pstipple_sampler_unit = unit;
6637
6638   /* Setup texture state for stipple */
6639   emit->sampler_target[unit] = TGSI_TEXTURE_2D;
6640   emit->key.tex[unit].swizzle_r = TGSI_SWIZZLE_X;
6641   emit->key.tex[unit].swizzle_g = TGSI_SWIZZLE_Y;
6642   emit->key.tex[unit].swizzle_b = TGSI_SWIZZLE_Z;
6643   emit->key.tex[unit].swizzle_a = TGSI_SWIZZLE_W;
6644
6645   if (0) {
6646      debug_printf("After pstipple ------------------\n");
6647      tgsi_dump(new_tokens, 0);
6648   }
6649
6650   return new_tokens;
6651}
6652
6653/**
6654 * Modify the FS to support anti-aliasing point.
6655 */
6656static const struct tgsi_token *
6657transform_fs_aapoint(const struct tgsi_token *tokens,
6658                     int aa_coord_index)
6659{
6660   if (0) {
6661      debug_printf("Before tgsi_add_aa_point ------------------\n");
6662      tgsi_dump(tokens,0);
6663   }
6664   tokens = tgsi_add_aa_point(tokens, aa_coord_index);
6665   if (0) {
6666      debug_printf("After tgsi_add_aa_point ------------------\n");
6667      tgsi_dump(tokens, 0);
6668   }
6669   return tokens;
6670}
6671
6672/**
6673 * This is the main entrypoint for the TGSI -> VPGU10 translator.
6674 */
6675struct svga_shader_variant *
6676svga_tgsi_vgpu10_translate(struct svga_context *svga,
6677                           const struct svga_shader *shader,
6678                           const struct svga_compile_key *key,
6679                           unsigned unit)
6680{
6681   struct svga_shader_variant *variant = NULL;
6682   struct svga_shader_emitter_v10 *emit;
6683   const struct tgsi_token *tokens = shader->tokens;
6684   struct svga_vertex_shader *vs = svga->curr.vs;
6685   struct svga_geometry_shader *gs = svga->curr.gs;
6686
6687   assert(unit == PIPE_SHADER_VERTEX ||
6688          unit == PIPE_SHADER_GEOMETRY ||
6689          unit == PIPE_SHADER_FRAGMENT);
6690
6691   /* These two flags cannot be used together */
6692   assert(key->vs.need_prescale + key->vs.undo_viewport <= 1);
6693
6694   SVGA_STATS_TIME_PUSH(svga_sws(svga), SVGA_STATS_TIME_TGSIVGPU10TRANSLATE);
6695   /*
6696    * Setup the code emitter
6697    */
6698   emit = alloc_emitter();
6699   if (!emit)
6700      goto done;
6701
6702   emit->unit = unit;
6703   emit->key = *key;
6704
6705   emit->vposition.need_prescale = (emit->key.vs.need_prescale ||
6706                                   emit->key.gs.need_prescale);
6707   emit->vposition.tmp_index = INVALID_INDEX;
6708   emit->vposition.so_index = INVALID_INDEX;
6709   emit->vposition.out_index = INVALID_INDEX;
6710
6711   emit->fs.color_tmp_index = INVALID_INDEX;
6712   emit->fs.face_input_index = INVALID_INDEX;
6713   emit->fs.fragcoord_input_index = INVALID_INDEX;
6714
6715   emit->gs.prim_id_index = INVALID_INDEX;
6716
6717   emit->clip_dist_out_index = INVALID_INDEX;
6718   emit->clip_dist_tmp_index = INVALID_INDEX;
6719   emit->clip_dist_so_index = INVALID_INDEX;
6720   emit->clip_vertex_out_index = INVALID_INDEX;
6721
6722   if (emit->key.fs.alpha_func == SVGA3D_CMP_INVALID) {
6723      emit->key.fs.alpha_func = SVGA3D_CMP_ALWAYS;
6724   }
6725
6726   if (unit == PIPE_SHADER_FRAGMENT) {
6727      if (key->fs.light_twoside) {
6728         tokens = transform_fs_twoside(tokens);
6729      }
6730      if (key->fs.pstipple) {
6731         const struct tgsi_token *new_tokens =
6732            transform_fs_pstipple(emit, tokens);
6733         if (tokens != shader->tokens) {
6734            /* free the two-sided shader tokens */
6735            tgsi_free_tokens(tokens);
6736         }
6737         tokens = new_tokens;
6738      }
6739      if (key->fs.aa_point) {
6740         tokens = transform_fs_aapoint(tokens, key->fs.aa_point_coord_index);
6741      }
6742   }
6743
6744   if (SVGA_DEBUG & DEBUG_TGSI) {
6745      debug_printf("#####################################\n");
6746      debug_printf("### TGSI Shader %u\n", shader->id);
6747      tgsi_dump(tokens, 0);
6748   }
6749
6750   /**
6751    * Rescan the header if the token string is different from the one
6752    * included in the shader; otherwise, the header info is already up-to-date
6753    */
6754   if (tokens != shader->tokens) {
6755      tgsi_scan_shader(tokens, &emit->info);
6756   } else {
6757      emit->info = shader->info;
6758   }
6759
6760   emit->num_outputs = emit->info.num_outputs;
6761
6762   if (unit == PIPE_SHADER_FRAGMENT) {
6763      /* Compute FS input remapping to match the output from VS/GS */
6764      if (gs) {
6765         svga_link_shaders(&gs->base.info, &emit->info, &emit->linkage);
6766      } else {
6767         assert(vs);
6768         svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage);
6769      }
6770   } else if (unit == PIPE_SHADER_GEOMETRY) {
6771      assert(vs);
6772      svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage);
6773   }
6774
6775   determine_clipping_mode(emit);
6776
6777   if (unit == PIPE_SHADER_GEOMETRY || unit == PIPE_SHADER_VERTEX) {
6778      if (shader->stream_output != NULL || emit->clip_mode == CLIP_DISTANCE) {
6779         /* if there is stream output declarations associated
6780          * with this shader or the shader writes to ClipDistance
6781          * then reserve extra registers for the non-adjusted vertex position
6782          * and the ClipDistance shadow copy
6783          */
6784         emit->vposition.so_index = emit->num_outputs++;
6785
6786         if (emit->clip_mode == CLIP_DISTANCE) {
6787            emit->clip_dist_so_index = emit->num_outputs++;
6788            if (emit->info.num_written_clipdistance > 4)
6789               emit->num_outputs++;
6790         }
6791      }
6792   }
6793
6794   /*
6795    * Do actual shader translation.
6796    */
6797   if (!emit_vgpu10_header(emit)) {
6798      debug_printf("svga: emit VGPU10 header failed\n");
6799      goto cleanup;
6800   }
6801
6802   if (!emit_vgpu10_instructions(emit, tokens)) {
6803      debug_printf("svga: emit VGPU10 instructions failed\n");
6804      goto cleanup;
6805   }
6806
6807   if (!emit_vgpu10_tail(emit)) {
6808      debug_printf("svga: emit VGPU10 tail failed\n");
6809      goto cleanup;
6810   }
6811
6812   if (emit->register_overflow) {
6813      goto cleanup;
6814   }
6815
6816   /*
6817    * Create, initialize the 'variant' object.
6818    */
6819   variant = svga_new_shader_variant(svga);
6820   if (!variant)
6821      goto cleanup;
6822
6823   variant->shader = shader;
6824   variant->nr_tokens = emit_get_num_tokens(emit);
6825   variant->tokens = (const unsigned *)emit->buf;
6826   emit->buf = NULL;  /* buffer is no longer owed by emitter context */
6827   memcpy(&variant->key, key, sizeof(*key));
6828   variant->id = UTIL_BITMASK_INVALID_INDEX;
6829
6830   /* The extra constant starting offset starts with the number of
6831    * shader constants declared in the shader.
6832    */
6833   variant->extra_const_start = emit->num_shader_consts[0];
6834   if (key->gs.wide_point) {
6835      /**
6836       * The extra constant added in the transformed shader
6837       * for inverse viewport scale is to be supplied by the driver.
6838       * So the extra constant starting offset needs to be reduced by 1.
6839       */
6840      assert(variant->extra_const_start > 0);
6841      variant->extra_const_start--;
6842   }
6843
6844   variant->pstipple_sampler_unit = emit->fs.pstipple_sampler_unit;
6845
6846   /* If there was exactly one write to a fragment shader output register
6847    * and it came from a constant buffer, we know all fragments will have
6848    * the same color (except for blending).
6849    */
6850   variant->constant_color_output =
6851      emit->constant_color_output && emit->num_output_writes == 1;
6852
6853   /** keep track in the variant if flat interpolation is used
6854    *  for any of the varyings.
6855    */
6856   variant->uses_flat_interp = emit->uses_flat_interp;
6857
6858   if (tokens != shader->tokens) {
6859      tgsi_free_tokens(tokens);
6860   }
6861
6862cleanup:
6863   free_emitter(emit);
6864
6865done:
6866   SVGA_STATS_TIME_POP(svga_sws(svga));
6867   return variant;
6868}
6869