svga_tgsi_vgpu10.c revision e0184b3995fa308c125ae8e090d2bbdffd495b5f
1/**********************************************************
2 * Copyright 1998-2013 VMware, Inc.  All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person
5 * obtaining a copy of this software and associated documentation
6 * files (the "Software"), to deal in the Software without
7 * restriction, including without limitation the rights to use, copy,
8 * modify, merge, publish, distribute, sublicense, and/or sell copies
9 * of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 **********************************************************/
25
26/**
27 * @file svga_tgsi_vgpu10.c
28 *
29 * TGSI -> VGPU10 shader translation.
30 *
31 * \author Mingcheng Chen
32 * \author Brian Paul
33 */
34
35#include "pipe/p_compiler.h"
36#include "pipe/p_shader_tokens.h"
37#include "pipe/p_defines.h"
38#include "tgsi/tgsi_build.h"
39#include "tgsi/tgsi_dump.h"
40#include "tgsi/tgsi_info.h"
41#include "tgsi/tgsi_parse.h"
42#include "tgsi/tgsi_scan.h"
43#include "tgsi/tgsi_two_side.h"
44#include "tgsi/tgsi_aa_point.h"
45#include "tgsi/tgsi_util.h"
46#include "util/u_math.h"
47#include "util/u_memory.h"
48#include "util/u_bitmask.h"
49#include "util/u_debug.h"
50#include "util/u_pstipple.h"
51
52#include "svga_context.h"
53#include "svga_debug.h"
54#include "svga_link.h"
55#include "svga_shader.h"
56#include "svga_tgsi.h"
57
58#include "VGPU10ShaderTokens.h"
59
60
61#define INVALID_INDEX 99999
62#define MAX_INTERNAL_TEMPS 3
63#define MAX_SYSTEM_VALUES 4
64#define MAX_IMMEDIATE_COUNT \
65        (VGPU10_MAX_IMMEDIATE_CONSTANT_BUFFER_ELEMENT_COUNT/4)
66#define MAX_TEMP_ARRAYS 64  /* Enough? */
67
68
69/**
70 * Clipping is complicated.  There's four different cases which we
71 * handle during VS/GS shader translation:
72 */
73enum clipping_mode
74{
75   CLIP_NONE,     /**< No clipping enabled */
76   CLIP_LEGACY,   /**< The shader has no clipping declarations or code but
77                   * one or more user-defined clip planes are enabled.  We
78                   * generate extra code to emit clip distances.
79                   */
80   CLIP_DISTANCE, /**< The shader already declares clip distance output
81                   * registers and has code to write to them.
82                   */
83   CLIP_VERTEX    /**< The shader declares a clip vertex output register and
84                  * has code that writes to the register.  We convert the
85                  * clipvertex position into one or more clip distances.
86                  */
87};
88
89
90struct svga_shader_emitter_v10
91{
92   /* The token output buffer */
93   unsigned size;
94   char *buf;
95   char *ptr;
96
97   /* Information about the shader and state (does not change) */
98   struct svga_compile_key key;
99   struct tgsi_shader_info info;
100   unsigned unit;
101
102   unsigned inst_start_token;
103   boolean discard_instruction; /**< throw away current instruction? */
104
105   union tgsi_immediate_data immediates[MAX_IMMEDIATE_COUNT][4];
106   unsigned num_immediates;      /**< Number of immediates emitted */
107   unsigned common_immediate_pos[8];  /**< literals for common immediates */
108   unsigned num_common_immediates;
109   boolean immediates_emitted;
110
111   unsigned num_outputs;      /**< include any extra outputs */
112                              /**  The first extra output is reserved for
113                               *   non-adjusted vertex position for
114                               *   stream output purpose
115                               */
116
117   /* Temporary Registers */
118   unsigned num_shader_temps; /**< num of temps used by original shader */
119   unsigned internal_temp_count;  /**< currently allocated internal temps */
120   struct {
121      unsigned start, size;
122   } temp_arrays[MAX_TEMP_ARRAYS];
123   unsigned num_temp_arrays;
124
125   /** Map TGSI temp registers to VGPU10 temp array IDs and indexes */
126   struct {
127      unsigned arrayId, index;
128   } temp_map[VGPU10_MAX_TEMPS]; /**< arrayId, element */
129
130   /** Number of constants used by original shader for each constant buffer.
131    * The size should probably always match with that of svga_state.constbufs.
132    */
133   unsigned num_shader_consts[SVGA_MAX_CONST_BUFS];
134
135   /* Samplers */
136   unsigned num_samplers;
137   ubyte sampler_target[PIPE_MAX_SAMPLERS];  /**< TGSI_TEXTURE_x */
138   ubyte sampler_return_type[PIPE_MAX_SAMPLERS];  /**< TGSI_RETURN_TYPE_x */
139
140   /* Address regs (really implemented with temps) */
141   unsigned num_address_regs;
142   unsigned address_reg_index[MAX_VGPU10_ADDR_REGS];
143
144   /* Output register usage masks */
145   ubyte output_usage_mask[PIPE_MAX_SHADER_OUTPUTS];
146
147   /* To map TGSI system value index to VGPU shader input indexes */
148   ubyte system_value_indexes[MAX_SYSTEM_VALUES];
149
150   struct {
151      /* vertex position scale/translation */
152      unsigned out_index;  /**< the real position output reg */
153      unsigned tmp_index;  /**< the fake/temp position output reg */
154      unsigned so_index;   /**< the non-adjusted position output reg */
155      unsigned prescale_scale_index, prescale_trans_index;
156      boolean  need_prescale;
157   } vposition;
158
159   /* For vertex shaders only */
160   struct {
161      /* viewport constant */
162      unsigned viewport_index;
163
164      /* temp index of adjusted vertex attributes */
165      unsigned adjusted_input[PIPE_MAX_SHADER_INPUTS];
166   } vs;
167
168   /* For fragment shaders only */
169   struct {
170      /* apha test */
171      unsigned color_out_index[PIPE_MAX_COLOR_BUFS];  /**< the real color output regs */
172      unsigned color_tmp_index;  /**< fake/temp color output reg */
173      unsigned alpha_ref_index;  /**< immediate constant for alpha ref */
174
175      /* front-face */
176      unsigned face_input_index; /**< real fragment shader face reg (bool) */
177      unsigned face_tmp_index;   /**< temp face reg converted to -1 / +1 */
178
179      unsigned pstipple_sampler_unit;
180
181      unsigned fragcoord_input_index;  /**< real fragment position input reg */
182      unsigned fragcoord_tmp_index;    /**< 1/w modified position temp reg */
183   } fs;
184
185   /* For geometry shaders only */
186   struct {
187      VGPU10_PRIMITIVE prim_type;/**< VGPU10 primitive type */
188      VGPU10_PRIMITIVE_TOPOLOGY prim_topology; /**< VGPU10 primitive topology */
189      unsigned input_size;       /**< size of input arrays */
190      unsigned prim_id_index;    /**< primitive id register index */
191      unsigned max_out_vertices; /**< maximum number of output vertices */
192   } gs;
193
194   /* For vertex or geometry shaders */
195   enum clipping_mode clip_mode;
196   unsigned clip_dist_out_index; /**< clip distance output register index */
197   unsigned clip_dist_tmp_index; /**< clip distance temporary register */
198   unsigned clip_dist_so_index;  /**< clip distance shadow copy */
199
200   /** Index of temporary holding the clipvertex coordinate */
201   unsigned clip_vertex_out_index; /**< clip vertex output register index */
202   unsigned clip_vertex_tmp_index; /**< clip vertex temporary index */
203
204   /* user clip plane constant slot indexes */
205   unsigned clip_plane_const[PIPE_MAX_CLIP_PLANES];
206
207   unsigned num_output_writes;
208   boolean constant_color_output;
209
210   boolean uses_flat_interp;
211
212   /* For all shaders: const reg index for RECT coord scaling */
213   unsigned texcoord_scale_index[PIPE_MAX_SAMPLERS];
214
215   /* For all shaders: const reg index for texture buffer size */
216   unsigned texture_buffer_size_index[PIPE_MAX_SAMPLERS];
217
218   /* VS/GS/FS Linkage info */
219   struct shader_linkage linkage;
220
221   bool register_overflow;  /**< Set if we exceed a VGPU10 register limit */
222};
223
224
225static boolean
226emit_post_helpers(struct svga_shader_emitter_v10 *emit);
227
228static boolean
229emit_vertex(struct svga_shader_emitter_v10 *emit,
230            const struct tgsi_full_instruction *inst);
231
232static char err_buf[128];
233
234static boolean
235expand(struct svga_shader_emitter_v10 *emit)
236{
237   char *new_buf;
238   unsigned newsize = emit->size * 2;
239
240   if (emit->buf != err_buf)
241      new_buf = REALLOC(emit->buf, emit->size, newsize);
242   else
243      new_buf = NULL;
244
245   if (!new_buf) {
246      emit->ptr = err_buf;
247      emit->buf = err_buf;
248      emit->size = sizeof(err_buf);
249      return FALSE;
250   }
251
252   emit->size = newsize;
253   emit->ptr = new_buf + (emit->ptr - emit->buf);
254   emit->buf = new_buf;
255   return TRUE;
256}
257
258/**
259 * Create and initialize a new svga_shader_emitter_v10 object.
260 */
261static struct svga_shader_emitter_v10 *
262alloc_emitter(void)
263{
264   struct svga_shader_emitter_v10 *emit = CALLOC(1, sizeof(*emit));
265
266   if (!emit)
267      return NULL;
268
269   /* to initialize the output buffer */
270   emit->size = 512;
271   if (!expand(emit)) {
272      FREE(emit);
273      return NULL;
274   }
275   return emit;
276}
277
278/**
279 * Free an svga_shader_emitter_v10 object.
280 */
281static void
282free_emitter(struct svga_shader_emitter_v10 *emit)
283{
284   assert(emit);
285   FREE(emit->buf);    /* will be NULL if translation succeeded */
286   FREE(emit);
287}
288
289static inline boolean
290reserve(struct svga_shader_emitter_v10 *emit,
291        unsigned nr_dwords)
292{
293   while (emit->ptr - emit->buf + nr_dwords * sizeof(uint32) >= emit->size) {
294      if (!expand(emit))
295         return FALSE;
296   }
297
298   return TRUE;
299}
300
301static boolean
302emit_dword(struct svga_shader_emitter_v10 *emit, uint32 dword)
303{
304   if (!reserve(emit, 1))
305      return FALSE;
306
307   *(uint32 *)emit->ptr = dword;
308   emit->ptr += sizeof dword;
309   return TRUE;
310}
311
312static boolean
313emit_dwords(struct svga_shader_emitter_v10 *emit,
314            const uint32 *dwords,
315            unsigned nr)
316{
317   if (!reserve(emit, nr))
318      return FALSE;
319
320   memcpy(emit->ptr, dwords, nr * sizeof *dwords);
321   emit->ptr += nr * sizeof *dwords;
322   return TRUE;
323}
324
325/** Return the number of tokens in the emitter's buffer */
326static unsigned
327emit_get_num_tokens(const struct svga_shader_emitter_v10 *emit)
328{
329   return (emit->ptr - emit->buf) / sizeof(unsigned);
330}
331
332
333/**
334 * Check for register overflow.  If we overflow we'll set an
335 * error flag.  This function can be called for register declarations
336 * or use as src/dst instruction operands.
337 * \param type  register type.  One of VGPU10_OPERAND_TYPE_x
338                or VGPU10_OPCODE_DCL_x
339 * \param index  the register index
340 */
341static void
342check_register_index(struct svga_shader_emitter_v10 *emit,
343                     unsigned operandType, unsigned index)
344{
345   bool overflow_before = emit->register_overflow;
346
347   switch (operandType) {
348   case VGPU10_OPERAND_TYPE_TEMP:
349   case VGPU10_OPERAND_TYPE_INDEXABLE_TEMP:
350   case VGPU10_OPCODE_DCL_TEMPS:
351      if (index >= VGPU10_MAX_TEMPS) {
352         emit->register_overflow = TRUE;
353      }
354      break;
355   case VGPU10_OPERAND_TYPE_CONSTANT_BUFFER:
356   case VGPU10_OPCODE_DCL_CONSTANT_BUFFER:
357      if (index >= VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) {
358         emit->register_overflow = TRUE;
359      }
360      break;
361   case VGPU10_OPERAND_TYPE_INPUT:
362   case VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID:
363   case VGPU10_OPCODE_DCL_INPUT:
364   case VGPU10_OPCODE_DCL_INPUT_SGV:
365   case VGPU10_OPCODE_DCL_INPUT_SIV:
366   case VGPU10_OPCODE_DCL_INPUT_PS:
367   case VGPU10_OPCODE_DCL_INPUT_PS_SGV:
368   case VGPU10_OPCODE_DCL_INPUT_PS_SIV:
369      if ((emit->unit == PIPE_SHADER_VERTEX &&
370           index >= VGPU10_MAX_VS_INPUTS) ||
371          (emit->unit == PIPE_SHADER_GEOMETRY &&
372           index >= VGPU10_MAX_GS_INPUTS) ||
373          (emit->unit == PIPE_SHADER_FRAGMENT &&
374           index >= VGPU10_MAX_FS_INPUTS)) {
375         emit->register_overflow = TRUE;
376      }
377      break;
378   case VGPU10_OPERAND_TYPE_OUTPUT:
379   case VGPU10_OPCODE_DCL_OUTPUT:
380   case VGPU10_OPCODE_DCL_OUTPUT_SGV:
381   case VGPU10_OPCODE_DCL_OUTPUT_SIV:
382      if ((emit->unit == PIPE_SHADER_VERTEX &&
383           index >= VGPU10_MAX_VS_OUTPUTS) ||
384          (emit->unit == PIPE_SHADER_GEOMETRY &&
385           index >= VGPU10_MAX_GS_OUTPUTS) ||
386          (emit->unit == PIPE_SHADER_FRAGMENT &&
387           index >= VGPU10_MAX_FS_OUTPUTS)) {
388         emit->register_overflow = TRUE;
389      }
390      break;
391   case VGPU10_OPERAND_TYPE_SAMPLER:
392   case VGPU10_OPCODE_DCL_SAMPLER:
393      if (index >= VGPU10_MAX_SAMPLERS) {
394         emit->register_overflow = TRUE;
395      }
396      break;
397   case VGPU10_OPERAND_TYPE_RESOURCE:
398   case VGPU10_OPCODE_DCL_RESOURCE:
399      if (index >= VGPU10_MAX_RESOURCES) {
400         emit->register_overflow = TRUE;
401      }
402      break;
403   case VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER:
404      if (index >= MAX_IMMEDIATE_COUNT) {
405         emit->register_overflow = TRUE;
406      }
407      break;
408   default:
409      assert(0);
410      ; /* nothing */
411   }
412
413   if (emit->register_overflow && !overflow_before) {
414      debug_printf("svga: vgpu10 register overflow (reg %u, index %u)\n",
415                   operandType, index);
416   }
417}
418
419
420/**
421 * Examine misc state to determine the clipping mode.
422 */
423static void
424determine_clipping_mode(struct svga_shader_emitter_v10 *emit)
425{
426   if (emit->info.num_written_clipdistance > 0) {
427      emit->clip_mode = CLIP_DISTANCE;
428   }
429   else if (emit->info.writes_clipvertex) {
430      emit->clip_mode = CLIP_VERTEX;
431   }
432   else if (emit->key.clip_plane_enable) {
433      emit->clip_mode = CLIP_LEGACY;
434   }
435   else {
436      emit->clip_mode = CLIP_NONE;
437   }
438}
439
440
441/**
442 * For clip distance register declarations and clip distance register
443 * writes we need to mask the declaration usage or instruction writemask
444 * (respectively) against the set of the really-enabled clipping planes.
445 *
446 * The piglit test spec/glsl-1.30/execution/clipping/vs-clip-distance-enables
447 * has a VS that writes to all 8 clip distance registers, but the plane enable
448 * flags are a subset of that.
449 *
450 * This function is used to apply the plane enable flags to the register
451 * declaration or instruction writemask.
452 *
453 * \param writemask  the declaration usage mask or instruction writemask
454 * \param clip_reg_index  which clip plane register is being declared/written.
455 *                        The legal values are 0 and 1 (two clip planes per
456 *                        register, for a total of 8 clip planes)
457 */
458static unsigned
459apply_clip_plane_mask(struct svga_shader_emitter_v10 *emit,
460                      unsigned writemask, unsigned clip_reg_index)
461{
462   unsigned shift;
463
464   assert(clip_reg_index < 2);
465
466   /* four clip planes per clip register: */
467   shift = clip_reg_index * 4;
468   writemask &= ((emit->key.clip_plane_enable >> shift) & 0xf);
469
470   return writemask;
471}
472
473
474/**
475 * Translate gallium shader type into VGPU10 type.
476 */
477static VGPU10_PROGRAM_TYPE
478translate_shader_type(unsigned type)
479{
480   switch (type) {
481   case PIPE_SHADER_VERTEX:
482      return VGPU10_VERTEX_SHADER;
483   case PIPE_SHADER_GEOMETRY:
484      return VGPU10_GEOMETRY_SHADER;
485   case PIPE_SHADER_FRAGMENT:
486      return VGPU10_PIXEL_SHADER;
487   default:
488      assert(!"Unexpected shader type");
489      return VGPU10_VERTEX_SHADER;
490   }
491}
492
493
494/**
495 * Translate a TGSI_OPCODE_x into a VGPU10_OPCODE_x
496 * Note: we only need to translate the opcodes for "simple" instructions,
497 * as seen below.  All other opcodes are handled/translated specially.
498 */
499static VGPU10_OPCODE_TYPE
500translate_opcode(unsigned opcode)
501{
502   switch (opcode) {
503   case TGSI_OPCODE_MOV:
504      return VGPU10_OPCODE_MOV;
505   case TGSI_OPCODE_MUL:
506      return VGPU10_OPCODE_MUL;
507   case TGSI_OPCODE_ADD:
508      return VGPU10_OPCODE_ADD;
509   case TGSI_OPCODE_DP3:
510      return VGPU10_OPCODE_DP3;
511   case TGSI_OPCODE_DP4:
512      return VGPU10_OPCODE_DP4;
513   case TGSI_OPCODE_MIN:
514      return VGPU10_OPCODE_MIN;
515   case TGSI_OPCODE_MAX:
516      return VGPU10_OPCODE_MAX;
517   case TGSI_OPCODE_MAD:
518      return VGPU10_OPCODE_MAD;
519   case TGSI_OPCODE_SQRT:
520      return VGPU10_OPCODE_SQRT;
521   case TGSI_OPCODE_FRC:
522      return VGPU10_OPCODE_FRC;
523   case TGSI_OPCODE_FLR:
524      return VGPU10_OPCODE_ROUND_NI;
525   case TGSI_OPCODE_FSEQ:
526      return VGPU10_OPCODE_EQ;
527   case TGSI_OPCODE_FSGE:
528      return VGPU10_OPCODE_GE;
529   case TGSI_OPCODE_FSNE:
530      return VGPU10_OPCODE_NE;
531   case TGSI_OPCODE_DDX:
532      return VGPU10_OPCODE_DERIV_RTX;
533   case TGSI_OPCODE_DDY:
534      return VGPU10_OPCODE_DERIV_RTY;
535   case TGSI_OPCODE_RET:
536      return VGPU10_OPCODE_RET;
537   case TGSI_OPCODE_DIV:
538      return VGPU10_OPCODE_DIV;
539   case TGSI_OPCODE_IDIV:
540      return VGPU10_OPCODE_IDIV;
541   case TGSI_OPCODE_DP2:
542      return VGPU10_OPCODE_DP2;
543   case TGSI_OPCODE_BRK:
544      return VGPU10_OPCODE_BREAK;
545   case TGSI_OPCODE_IF:
546      return VGPU10_OPCODE_IF;
547   case TGSI_OPCODE_ELSE:
548      return VGPU10_OPCODE_ELSE;
549   case TGSI_OPCODE_ENDIF:
550      return VGPU10_OPCODE_ENDIF;
551   case TGSI_OPCODE_CEIL:
552      return VGPU10_OPCODE_ROUND_PI;
553   case TGSI_OPCODE_I2F:
554      return VGPU10_OPCODE_ITOF;
555   case TGSI_OPCODE_NOT:
556      return VGPU10_OPCODE_NOT;
557   case TGSI_OPCODE_TRUNC:
558      return VGPU10_OPCODE_ROUND_Z;
559   case TGSI_OPCODE_SHL:
560      return VGPU10_OPCODE_ISHL;
561   case TGSI_OPCODE_AND:
562      return VGPU10_OPCODE_AND;
563   case TGSI_OPCODE_OR:
564      return VGPU10_OPCODE_OR;
565   case TGSI_OPCODE_XOR:
566      return VGPU10_OPCODE_XOR;
567   case TGSI_OPCODE_CONT:
568      return VGPU10_OPCODE_CONTINUE;
569   case TGSI_OPCODE_EMIT:
570      return VGPU10_OPCODE_EMIT;
571   case TGSI_OPCODE_ENDPRIM:
572      return VGPU10_OPCODE_CUT;
573   case TGSI_OPCODE_BGNLOOP:
574      return VGPU10_OPCODE_LOOP;
575   case TGSI_OPCODE_ENDLOOP:
576      return VGPU10_OPCODE_ENDLOOP;
577   case TGSI_OPCODE_ENDSUB:
578      return VGPU10_OPCODE_RET;
579   case TGSI_OPCODE_NOP:
580      return VGPU10_OPCODE_NOP;
581   case TGSI_OPCODE_BREAKC:
582      return VGPU10_OPCODE_BREAKC;
583   case TGSI_OPCODE_END:
584      return VGPU10_OPCODE_RET;
585   case TGSI_OPCODE_F2I:
586      return VGPU10_OPCODE_FTOI;
587   case TGSI_OPCODE_IMAX:
588      return VGPU10_OPCODE_IMAX;
589   case TGSI_OPCODE_IMIN:
590      return VGPU10_OPCODE_IMIN;
591   case TGSI_OPCODE_UDIV:
592   case TGSI_OPCODE_UMOD:
593   case TGSI_OPCODE_MOD:
594      return VGPU10_OPCODE_UDIV;
595   case TGSI_OPCODE_IMUL_HI:
596      return VGPU10_OPCODE_IMUL;
597   case TGSI_OPCODE_INEG:
598      return VGPU10_OPCODE_INEG;
599   case TGSI_OPCODE_ISHR:
600      return VGPU10_OPCODE_ISHR;
601   case TGSI_OPCODE_ISGE:
602      return VGPU10_OPCODE_IGE;
603   case TGSI_OPCODE_ISLT:
604      return VGPU10_OPCODE_ILT;
605   case TGSI_OPCODE_F2U:
606      return VGPU10_OPCODE_FTOU;
607   case TGSI_OPCODE_UADD:
608      return VGPU10_OPCODE_IADD;
609   case TGSI_OPCODE_U2F:
610      return VGPU10_OPCODE_UTOF;
611   case TGSI_OPCODE_UCMP:
612      return VGPU10_OPCODE_MOVC;
613   case TGSI_OPCODE_UMAD:
614      return VGPU10_OPCODE_UMAD;
615   case TGSI_OPCODE_UMAX:
616      return VGPU10_OPCODE_UMAX;
617   case TGSI_OPCODE_UMIN:
618      return VGPU10_OPCODE_UMIN;
619   case TGSI_OPCODE_UMUL:
620   case TGSI_OPCODE_UMUL_HI:
621      return VGPU10_OPCODE_UMUL;
622   case TGSI_OPCODE_USEQ:
623      return VGPU10_OPCODE_IEQ;
624   case TGSI_OPCODE_USGE:
625      return VGPU10_OPCODE_UGE;
626   case TGSI_OPCODE_USHR:
627      return VGPU10_OPCODE_USHR;
628   case TGSI_OPCODE_USLT:
629      return VGPU10_OPCODE_ULT;
630   case TGSI_OPCODE_USNE:
631      return VGPU10_OPCODE_INE;
632   case TGSI_OPCODE_SWITCH:
633      return VGPU10_OPCODE_SWITCH;
634   case TGSI_OPCODE_CASE:
635      return VGPU10_OPCODE_CASE;
636   case TGSI_OPCODE_DEFAULT:
637      return VGPU10_OPCODE_DEFAULT;
638   case TGSI_OPCODE_ENDSWITCH:
639      return VGPU10_OPCODE_ENDSWITCH;
640   case TGSI_OPCODE_FSLT:
641      return VGPU10_OPCODE_LT;
642   case TGSI_OPCODE_ROUND:
643      return VGPU10_OPCODE_ROUND_NE;
644   default:
645      assert(!"Unexpected TGSI opcode in translate_opcode()");
646      return VGPU10_OPCODE_NOP;
647   }
648}
649
650
651/**
652 * Translate a TGSI register file type into a VGPU10 operand type.
653 * \param array  is the TGSI_FILE_TEMPORARY register an array?
654 */
655static VGPU10_OPERAND_TYPE
656translate_register_file(enum tgsi_file_type file, boolean array)
657{
658   switch (file) {
659   case TGSI_FILE_CONSTANT:
660      return VGPU10_OPERAND_TYPE_CONSTANT_BUFFER;
661   case TGSI_FILE_INPUT:
662      return VGPU10_OPERAND_TYPE_INPUT;
663   case TGSI_FILE_OUTPUT:
664      return VGPU10_OPERAND_TYPE_OUTPUT;
665   case TGSI_FILE_TEMPORARY:
666      return array ? VGPU10_OPERAND_TYPE_INDEXABLE_TEMP
667                   : VGPU10_OPERAND_TYPE_TEMP;
668   case TGSI_FILE_IMMEDIATE:
669      /* all immediates are 32-bit values at this time so
670       * VGPU10_OPERAND_TYPE_IMMEDIATE64 is not possible at this time.
671       */
672      return VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER;
673   case TGSI_FILE_SAMPLER:
674      return VGPU10_OPERAND_TYPE_SAMPLER;
675   case TGSI_FILE_SYSTEM_VALUE:
676      return VGPU10_OPERAND_TYPE_INPUT;
677
678   /* XXX TODO more cases to finish */
679
680   default:
681      assert(!"Bad tgsi register file!");
682      return VGPU10_OPERAND_TYPE_NULL;
683   }
684}
685
686
687/**
688 * Emit a null dst register
689 */
690static void
691emit_null_dst_register(struct svga_shader_emitter_v10 *emit)
692{
693   VGPU10OperandToken0 operand;
694
695   operand.value = 0;
696   operand.operandType = VGPU10_OPERAND_TYPE_NULL;
697   operand.numComponents = VGPU10_OPERAND_0_COMPONENT;
698
699   emit_dword(emit, operand.value);
700}
701
702
703/**
704 * If the given register is a temporary, return the array ID.
705 * Else return zero.
706 */
707static unsigned
708get_temp_array_id(const struct svga_shader_emitter_v10 *emit,
709                  unsigned file, unsigned index)
710{
711   if (file == TGSI_FILE_TEMPORARY) {
712      return emit->temp_map[index].arrayId;
713   }
714   else {
715      return 0;
716   }
717}
718
719
720/**
721 * If the given register is a temporary, convert the index from a TGSI
722 * TEMPORARY index to a VGPU10 temp index.
723 */
724static unsigned
725remap_temp_index(const struct svga_shader_emitter_v10 *emit,
726                 unsigned file, unsigned index)
727{
728   if (file == TGSI_FILE_TEMPORARY) {
729      return emit->temp_map[index].index;
730   }
731   else {
732      return index;
733   }
734}
735
736
737/**
738 * Setup the operand0 fields related to indexing (1D, 2D, relative, etc).
739 * Note: the operandType field must already be initialized.
740 */
741static VGPU10OperandToken0
742setup_operand0_indexing(struct svga_shader_emitter_v10 *emit,
743                        VGPU10OperandToken0 operand0,
744                        unsigned file,
745                        boolean indirect, boolean index2D,
746                        unsigned tempArrayID)
747{
748   unsigned indexDim, index0Rep, index1Rep = VGPU10_OPERAND_INDEX_0D;
749
750   /*
751    * Compute index dimensions
752    */
753   if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32 ||
754       operand0.operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) {
755      /* there's no swizzle for in-line immediates */
756      indexDim = VGPU10_OPERAND_INDEX_0D;
757      assert(operand0.selectionMode == 0);
758   }
759   else {
760      if (index2D ||
761          tempArrayID > 0 ||
762          operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) {
763         indexDim = VGPU10_OPERAND_INDEX_2D;
764      }
765      else {
766         indexDim = VGPU10_OPERAND_INDEX_1D;
767      }
768   }
769
770   /*
771    * Compute index representations (immediate, relative, etc).
772    */
773   if (tempArrayID > 0) {
774      assert(file == TGSI_FILE_TEMPORARY);
775      /* First index is the array ID, second index is the array element */
776      index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
777      if (indirect) {
778         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
779      }
780      else {
781         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
782      }
783   }
784   else if (indirect) {
785      if (file == TGSI_FILE_CONSTANT) {
786         /* index[0] indicates which constant buffer while index[1] indicates
787          * the position in the constant buffer.
788          */
789         index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
790         index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
791      }
792      else {
793         /* All other register files are 1-dimensional */
794         index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE;
795      }
796   }
797   else {
798      index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
799      index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32;
800   }
801
802   operand0.indexDimension = indexDim;
803   operand0.index0Representation = index0Rep;
804   operand0.index1Representation = index1Rep;
805
806   return operand0;
807}
808
809
810/**
811 * Emit the operand for expressing an address register for indirect indexing.
812 * Note that the address register is really just a temp register.
813 * \param addr_reg_index  which address register to use
814 */
815static void
816emit_indirect_register(struct svga_shader_emitter_v10 *emit,
817                       unsigned addr_reg_index)
818{
819   unsigned tmp_reg_index;
820   VGPU10OperandToken0 operand0;
821
822   assert(addr_reg_index < MAX_VGPU10_ADDR_REGS);
823
824   tmp_reg_index = emit->address_reg_index[addr_reg_index];
825
826   /* operand0 is a simple temporary register, selecting one component */
827   operand0.value = 0;
828   operand0.operandType = VGPU10_OPERAND_TYPE_TEMP;
829   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
830   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
831   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
832   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
833   operand0.swizzleX = 0;
834   operand0.swizzleY = 1;
835   operand0.swizzleZ = 2;
836   operand0.swizzleW = 3;
837
838   emit_dword(emit, operand0.value);
839   emit_dword(emit, remap_temp_index(emit, TGSI_FILE_TEMPORARY, tmp_reg_index));
840}
841
842
843/**
844 * Translate the dst register of a TGSI instruction and emit VGPU10 tokens.
845 * \param emit  the emitter context
846 * \param reg  the TGSI dst register to translate
847 */
848static void
849emit_dst_register(struct svga_shader_emitter_v10 *emit,
850                  const struct tgsi_full_dst_register *reg)
851{
852   unsigned file = reg->Register.File;
853   unsigned index = reg->Register.Index;
854   const unsigned sem_name = emit->info.output_semantic_name[index];
855   const unsigned sem_index = emit->info.output_semantic_index[index];
856   unsigned writemask = reg->Register.WriteMask;
857   const unsigned indirect = reg->Register.Indirect;
858   const unsigned tempArrayId = get_temp_array_id(emit, file, index);
859   const unsigned index2d = reg->Register.Dimension;
860   VGPU10OperandToken0 operand0;
861
862   if (file == TGSI_FILE_OUTPUT) {
863      if (emit->unit == PIPE_SHADER_VERTEX ||
864          emit->unit == PIPE_SHADER_GEOMETRY) {
865         if (index == emit->vposition.out_index &&
866             emit->vposition.tmp_index != INVALID_INDEX) {
867            /* replace OUTPUT[POS] with TEMP[POS].  We need to store the
868             * vertex position result in a temporary so that we can modify
869             * it in the post_helper() code.
870             */
871            file = TGSI_FILE_TEMPORARY;
872            index = emit->vposition.tmp_index;
873         }
874         else if (sem_name == TGSI_SEMANTIC_CLIPDIST &&
875                  emit->clip_dist_tmp_index != INVALID_INDEX) {
876            /* replace OUTPUT[CLIPDIST] with TEMP[CLIPDIST].
877             * We store the clip distance in a temporary first, then
878             * we'll copy it to the shadow copy and to CLIPDIST with the
879             * enabled planes mask in emit_clip_distance_instructions().
880             */
881            file = TGSI_FILE_TEMPORARY;
882            index = emit->clip_dist_tmp_index + sem_index;
883         }
884         else if (sem_name == TGSI_SEMANTIC_CLIPVERTEX &&
885                  emit->clip_vertex_tmp_index != INVALID_INDEX) {
886            /* replace the CLIPVERTEX output register with a temporary */
887            assert(emit->clip_mode == CLIP_VERTEX);
888            assert(sem_index == 0);
889            file = TGSI_FILE_TEMPORARY;
890            index = emit->clip_vertex_tmp_index;
891         }
892      }
893      else if (emit->unit == PIPE_SHADER_FRAGMENT) {
894         if (sem_name == TGSI_SEMANTIC_POSITION) {
895            /* Fragment depth output register */
896            operand0.value = 0;
897            operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH;
898            operand0.indexDimension = VGPU10_OPERAND_INDEX_0D;
899            operand0.numComponents = VGPU10_OPERAND_1_COMPONENT;
900            emit_dword(emit, operand0.value);
901            return;
902         }
903         else if (index == emit->fs.color_out_index[0] &&
904             emit->fs.color_tmp_index != INVALID_INDEX) {
905            /* replace OUTPUT[COLOR] with TEMP[COLOR].  We need to store the
906             * fragment color result in a temporary so that we can read it
907             * it in the post_helper() code.
908             */
909            file = TGSI_FILE_TEMPORARY;
910            index = emit->fs.color_tmp_index;
911         }
912         else {
913            /* Typically, for fragment shaders, the output register index
914             * matches the color semantic index.  But not when we write to
915             * the fragment depth register.  In that case, OUT[0] will be
916             * fragdepth and OUT[1] will be the 0th color output.  We need
917             * to use the semantic index for color outputs.
918             */
919            assert(sem_name == TGSI_SEMANTIC_COLOR);
920            index = emit->info.output_semantic_index[index];
921
922            emit->num_output_writes++;
923         }
924      }
925   }
926
927   /* init operand tokens to all zero */
928   operand0.value = 0;
929
930   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
931
932   /* the operand has a writemask */
933   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
934
935   /* Which of the four dest components to write to. Note that we can use a
936    * simple assignment here since TGSI writemasks match VGPU10 writemasks.
937    */
938   STATIC_ASSERT(TGSI_WRITEMASK_X == VGPU10_OPERAND_4_COMPONENT_MASK_X);
939   operand0.mask = writemask;
940
941   /* translate TGSI register file type to VGPU10 operand type */
942   operand0.operandType = translate_register_file(file, tempArrayId > 0);
943
944   check_register_index(emit, operand0.operandType, index);
945
946   operand0 = setup_operand0_indexing(emit, operand0, file, indirect,
947                                      index2d, tempArrayId);
948
949   /* Emit tokens */
950   emit_dword(emit, operand0.value);
951   if (tempArrayId > 0) {
952      emit_dword(emit, tempArrayId);
953   }
954
955   emit_dword(emit, remap_temp_index(emit, file, index));
956
957   if (indirect) {
958      emit_indirect_register(emit, reg->Indirect.Index);
959   }
960}
961
962
963/**
964 * Translate a src register of a TGSI instruction and emit VGPU10 tokens.
965 */
966static void
967emit_src_register(struct svga_shader_emitter_v10 *emit,
968                  const struct tgsi_full_src_register *reg)
969{
970   unsigned file = reg->Register.File;
971   unsigned index = reg->Register.Index;
972   const unsigned indirect = reg->Register.Indirect;
973   const unsigned tempArrayId = get_temp_array_id(emit, file, index);
974   const unsigned index2d = reg->Register.Dimension;
975   const unsigned swizzleX = reg->Register.SwizzleX;
976   const unsigned swizzleY = reg->Register.SwizzleY;
977   const unsigned swizzleZ = reg->Register.SwizzleZ;
978   const unsigned swizzleW = reg->Register.SwizzleW;
979   const unsigned absolute = reg->Register.Absolute;
980   const unsigned negate = reg->Register.Negate;
981   bool is_prim_id = FALSE;
982
983   VGPU10OperandToken0 operand0;
984   VGPU10OperandToken1 operand1;
985
986   if (emit->unit == PIPE_SHADER_FRAGMENT &&
987      file == TGSI_FILE_INPUT) {
988      if (index == emit->fs.face_input_index) {
989         /* Replace INPUT[FACE] with TEMP[FACE] */
990         file = TGSI_FILE_TEMPORARY;
991         index = emit->fs.face_tmp_index;
992      }
993      else if (index == emit->fs.fragcoord_input_index) {
994         /* Replace INPUT[POSITION] with TEMP[POSITION] */
995         file = TGSI_FILE_TEMPORARY;
996         index = emit->fs.fragcoord_tmp_index;
997      }
998      else {
999         /* We remap fragment shader inputs to that FS input indexes
1000          * match up with VS/GS output indexes.
1001          */
1002         index = emit->linkage.input_map[index];
1003      }
1004   }
1005   else if (emit->unit == PIPE_SHADER_GEOMETRY &&
1006            file == TGSI_FILE_INPUT) {
1007      is_prim_id = (index == emit->gs.prim_id_index);
1008      index = emit->linkage.input_map[index];
1009   }
1010   else if (emit->unit == PIPE_SHADER_VERTEX) {
1011      if (file == TGSI_FILE_INPUT) {
1012         /* if input is adjusted... */
1013         if ((emit->key.vs.adjust_attrib_w_1 |
1014              emit->key.vs.adjust_attrib_itof |
1015              emit->key.vs.adjust_attrib_utof |
1016              emit->key.vs.attrib_is_bgra |
1017              emit->key.vs.attrib_puint_to_snorm |
1018              emit->key.vs.attrib_puint_to_uscaled |
1019              emit->key.vs.attrib_puint_to_sscaled) & (1 << index)) {
1020            file = TGSI_FILE_TEMPORARY;
1021            index = emit->vs.adjusted_input[index];
1022         }
1023      }
1024      else if (file == TGSI_FILE_SYSTEM_VALUE) {
1025         assert(index < ARRAY_SIZE(emit->system_value_indexes));
1026         index = emit->system_value_indexes[index];
1027      }
1028   }
1029
1030   operand0.value = operand1.value = 0;
1031
1032   if (is_prim_id) {
1033      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
1034      operand0.operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID;
1035   }
1036   else {
1037      operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1038      operand0.operandType = translate_register_file(file, tempArrayId > 0);
1039   }
1040
1041   operand0 = setup_operand0_indexing(emit, operand0, file, indirect,
1042                                      index2d, tempArrayId);
1043
1044   if (operand0.operandType != VGPU10_OPERAND_TYPE_IMMEDIATE32 &&
1045       operand0.operandType != VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) {
1046      /* there's no swizzle for in-line immediates */
1047      if (swizzleX == swizzleY &&
1048          swizzleX == swizzleZ &&
1049          swizzleX == swizzleW) {
1050         operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
1051      }
1052      else {
1053         operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
1054      }
1055
1056      operand0.swizzleX = swizzleX;
1057      operand0.swizzleY = swizzleY;
1058      operand0.swizzleZ = swizzleZ;
1059      operand0.swizzleW = swizzleW;
1060
1061      if (absolute || negate) {
1062         operand0.extended = 1;
1063         operand1.extendedOperandType = VGPU10_EXTENDED_OPERAND_MODIFIER;
1064         if (absolute && !negate)
1065            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABS;
1066         if (!absolute && negate)
1067            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_NEG;
1068         if (absolute && negate)
1069            operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABSNEG;
1070      }
1071   }
1072
1073   /* Emit the operand tokens */
1074   emit_dword(emit, operand0.value);
1075   if (operand0.extended)
1076      emit_dword(emit, operand1.value);
1077
1078   if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32) {
1079      /* Emit the four float/int in-line immediate values */
1080      unsigned *c;
1081      assert(index < ARRAY_SIZE(emit->immediates));
1082      assert(file == TGSI_FILE_IMMEDIATE);
1083      assert(swizzleX < 4);
1084      assert(swizzleY < 4);
1085      assert(swizzleZ < 4);
1086      assert(swizzleW < 4);
1087      c = (unsigned *) emit->immediates[index];
1088      emit_dword(emit, c[swizzleX]);
1089      emit_dword(emit, c[swizzleY]);
1090      emit_dword(emit, c[swizzleZ]);
1091      emit_dword(emit, c[swizzleW]);
1092   }
1093   else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_1D) {
1094      /* Emit the register index(es) */
1095      if (index2d ||
1096          operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) {
1097         emit_dword(emit, reg->Dimension.Index);
1098      }
1099
1100      if (tempArrayId > 0) {
1101         emit_dword(emit, tempArrayId);
1102      }
1103
1104      emit_dword(emit, remap_temp_index(emit, file, index));
1105
1106      if (indirect) {
1107         emit_indirect_register(emit, reg->Indirect.Index);
1108      }
1109   }
1110}
1111
1112
1113/**
1114 * Emit a resource operand (for use with a SAMPLE instruction).
1115 */
1116static void
1117emit_resource_register(struct svga_shader_emitter_v10 *emit,
1118                       unsigned resource_number)
1119{
1120   VGPU10OperandToken0 operand0;
1121
1122   check_register_index(emit, VGPU10_OPERAND_TYPE_RESOURCE, resource_number);
1123
1124   /* init */
1125   operand0.value = 0;
1126
1127   operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE;
1128   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1129   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1130   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
1131   operand0.swizzleX = VGPU10_COMPONENT_X;
1132   operand0.swizzleY = VGPU10_COMPONENT_Y;
1133   operand0.swizzleZ = VGPU10_COMPONENT_Z;
1134   operand0.swizzleW = VGPU10_COMPONENT_W;
1135
1136   emit_dword(emit, operand0.value);
1137   emit_dword(emit, resource_number);
1138}
1139
1140
1141/**
1142 * Emit a sampler operand (for use with a SAMPLE instruction).
1143 */
1144static void
1145emit_sampler_register(struct svga_shader_emitter_v10 *emit,
1146                      unsigned sampler_number)
1147{
1148   VGPU10OperandToken0 operand0;
1149
1150   check_register_index(emit, VGPU10_OPERAND_TYPE_SAMPLER, sampler_number);
1151
1152   /* init */
1153   operand0.value = 0;
1154
1155   operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER;
1156   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1157
1158   emit_dword(emit, operand0.value);
1159   emit_dword(emit, sampler_number);
1160}
1161
1162
1163/**
1164 * Emit an operand which reads the IS_FRONT_FACING register.
1165 */
1166static void
1167emit_face_register(struct svga_shader_emitter_v10 *emit)
1168{
1169   VGPU10OperandToken0 operand0;
1170   unsigned index = emit->linkage.input_map[emit->fs.face_input_index];
1171
1172   /* init */
1173   operand0.value = 0;
1174
1175   operand0.operandType = VGPU10_OPERAND_TYPE_INPUT;
1176   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
1177   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE;
1178   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
1179
1180   operand0.swizzleX = VGPU10_COMPONENT_X;
1181   operand0.swizzleY = VGPU10_COMPONENT_X;
1182   operand0.swizzleZ = VGPU10_COMPONENT_X;
1183   operand0.swizzleW = VGPU10_COMPONENT_X;
1184
1185   emit_dword(emit, operand0.value);
1186   emit_dword(emit, index);
1187}
1188
1189
1190/**
1191 * Emit the token for a VGPU10 opcode.
1192 * \param saturate   clamp result to [0,1]?
1193 */
1194static void
1195emit_opcode(struct svga_shader_emitter_v10 *emit,
1196            unsigned vgpu10_opcode, boolean saturate)
1197{
1198   VGPU10OpcodeToken0 token0;
1199
1200   token0.value = 0;  /* init all fields to zero */
1201   token0.opcodeType = vgpu10_opcode;
1202   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1203   token0.saturate = saturate;
1204
1205   emit_dword(emit, token0.value);
1206}
1207
1208
1209/**
1210 * Emit the token for a VGPU10 resinfo instruction.
1211 * \param modifier   return type modifier, _uint or _rcpFloat.
1212 *                   TODO: We may want to remove this parameter if it will
1213 *                   only ever be used as _uint.
1214 */
1215static void
1216emit_opcode_resinfo(struct svga_shader_emitter_v10 *emit,
1217                    VGPU10_RESINFO_RETURN_TYPE modifier)
1218{
1219   VGPU10OpcodeToken0 token0;
1220
1221   token0.value = 0;  /* init all fields to zero */
1222   token0.opcodeType = VGPU10_OPCODE_RESINFO;
1223   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1224   token0.resinfoReturnType = modifier;
1225
1226   emit_dword(emit, token0.value);
1227}
1228
1229
1230/**
1231 * Emit opcode tokens for a texture sample instruction.  Texture instructions
1232 * can be rather complicated (texel offsets, etc) so we have this specialized
1233 * function.
1234 */
1235static void
1236emit_sample_opcode(struct svga_shader_emitter_v10 *emit,
1237                   unsigned vgpu10_opcode, boolean saturate,
1238                   const int offsets[3])
1239{
1240   VGPU10OpcodeToken0 token0;
1241   VGPU10OpcodeToken1 token1;
1242
1243   token0.value = 0;  /* init all fields to zero */
1244   token0.opcodeType = vgpu10_opcode;
1245   token0.instructionLength = 0; /* Filled in by end_emit_instruction() */
1246   token0.saturate = saturate;
1247
1248   if (offsets[0] || offsets[1] || offsets[2]) {
1249      assert(offsets[0] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1250      assert(offsets[1] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1251      assert(offsets[2] >= VGPU10_MIN_TEXEL_FETCH_OFFSET);
1252      assert(offsets[0] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1253      assert(offsets[1] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1254      assert(offsets[2] <= VGPU10_MAX_TEXEL_FETCH_OFFSET);
1255
1256      token0.extended = 1;
1257      token1.value = 0;
1258      token1.opcodeType = VGPU10_EXTENDED_OPCODE_SAMPLE_CONTROLS;
1259      token1.offsetU = offsets[0];
1260      token1.offsetV = offsets[1];
1261      token1.offsetW = offsets[2];
1262   }
1263
1264   emit_dword(emit, token0.value);
1265   if (token0.extended) {
1266      emit_dword(emit, token1.value);
1267   }
1268}
1269
1270
1271/**
1272 * Emit a DISCARD opcode token.
1273 * If nonzero is set, we'll discard the fragment if the X component is not 0.
1274 * Otherwise, we'll discard the fragment if the X component is 0.
1275 */
1276static void
1277emit_discard_opcode(struct svga_shader_emitter_v10 *emit, boolean nonzero)
1278{
1279   VGPU10OpcodeToken0 opcode0;
1280
1281   opcode0.value = 0;
1282   opcode0.opcodeType = VGPU10_OPCODE_DISCARD;
1283   if (nonzero)
1284      opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO;
1285
1286   emit_dword(emit, opcode0.value);
1287}
1288
1289
1290/**
1291 * We need to call this before we begin emitting a VGPU10 instruction.
1292 */
1293static void
1294begin_emit_instruction(struct svga_shader_emitter_v10 *emit)
1295{
1296   assert(emit->inst_start_token == 0);
1297   /* Save location of the instruction's VGPU10OpcodeToken0 token.
1298    * Note, we can't save a pointer because it would become invalid if
1299    * we have to realloc the output buffer.
1300    */
1301   emit->inst_start_token = emit_get_num_tokens(emit);
1302}
1303
1304
1305/**
1306 * We need to call this after we emit the last token of a VGPU10 instruction.
1307 * This function patches in the opcode token's instructionLength field.
1308 */
1309static void
1310end_emit_instruction(struct svga_shader_emitter_v10 *emit)
1311{
1312   VGPU10OpcodeToken0 *tokens = (VGPU10OpcodeToken0 *) emit->buf;
1313   unsigned inst_length;
1314
1315   assert(emit->inst_start_token > 0);
1316
1317   if (emit->discard_instruction) {
1318      /* Back up the emit->ptr to where this instruction started so
1319       * that we discard the current instruction.
1320       */
1321      emit->ptr = (char *) (tokens + emit->inst_start_token);
1322   }
1323   else {
1324      /* Compute instruction length and patch that into the start of
1325       * the instruction.
1326       */
1327      inst_length = emit_get_num_tokens(emit) - emit->inst_start_token;
1328
1329      assert(inst_length > 0);
1330
1331      tokens[emit->inst_start_token].instructionLength = inst_length;
1332   }
1333
1334   emit->inst_start_token = 0; /* reset to zero for error checking */
1335   emit->discard_instruction = FALSE;
1336}
1337
1338
1339/**
1340 * Return index for a free temporary register.
1341 */
1342static unsigned
1343get_temp_index(struct svga_shader_emitter_v10 *emit)
1344{
1345   assert(emit->internal_temp_count < MAX_INTERNAL_TEMPS);
1346   return emit->num_shader_temps + emit->internal_temp_count++;
1347}
1348
1349
1350/**
1351 * Release the temporaries which were generated by get_temp_index().
1352 */
1353static void
1354free_temp_indexes(struct svga_shader_emitter_v10 *emit)
1355{
1356   emit->internal_temp_count = 0;
1357}
1358
1359
1360/**
1361 * Create a tgsi_full_src_register.
1362 */
1363static struct tgsi_full_src_register
1364make_src_reg(unsigned file, unsigned index)
1365{
1366   struct tgsi_full_src_register reg;
1367
1368   memset(&reg, 0, sizeof(reg));
1369   reg.Register.File = file;
1370   reg.Register.Index = index;
1371   reg.Register.SwizzleX = TGSI_SWIZZLE_X;
1372   reg.Register.SwizzleY = TGSI_SWIZZLE_Y;
1373   reg.Register.SwizzleZ = TGSI_SWIZZLE_Z;
1374   reg.Register.SwizzleW = TGSI_SWIZZLE_W;
1375   return reg;
1376}
1377
1378
1379/**
1380 * Create a tgsi_full_src_register for a temporary.
1381 */
1382static struct tgsi_full_src_register
1383make_src_temp_reg(unsigned index)
1384{
1385   return make_src_reg(TGSI_FILE_TEMPORARY, index);
1386}
1387
1388
1389/**
1390 * Create a tgsi_full_src_register for a constant.
1391 */
1392static struct tgsi_full_src_register
1393make_src_const_reg(unsigned index)
1394{
1395   return make_src_reg(TGSI_FILE_CONSTANT, index);
1396}
1397
1398
1399/**
1400 * Create a tgsi_full_src_register for an immediate constant.
1401 */
1402static struct tgsi_full_src_register
1403make_src_immediate_reg(unsigned index)
1404{
1405   return make_src_reg(TGSI_FILE_IMMEDIATE, index);
1406}
1407
1408
1409/**
1410 * Create a tgsi_full_dst_register.
1411 */
1412static struct tgsi_full_dst_register
1413make_dst_reg(unsigned file, unsigned index)
1414{
1415   struct tgsi_full_dst_register reg;
1416
1417   memset(&reg, 0, sizeof(reg));
1418   reg.Register.File = file;
1419   reg.Register.Index = index;
1420   reg.Register.WriteMask = TGSI_WRITEMASK_XYZW;
1421   return reg;
1422}
1423
1424
1425/**
1426 * Create a tgsi_full_dst_register for a temporary.
1427 */
1428static struct tgsi_full_dst_register
1429make_dst_temp_reg(unsigned index)
1430{
1431   return make_dst_reg(TGSI_FILE_TEMPORARY, index);
1432}
1433
1434
1435/**
1436 * Create a tgsi_full_dst_register for an output.
1437 */
1438static struct tgsi_full_dst_register
1439make_dst_output_reg(unsigned index)
1440{
1441   return make_dst_reg(TGSI_FILE_OUTPUT, index);
1442}
1443
1444
1445/**
1446 * Create negated tgsi_full_src_register.
1447 */
1448static struct tgsi_full_src_register
1449negate_src(const struct tgsi_full_src_register *reg)
1450{
1451   struct tgsi_full_src_register neg = *reg;
1452   neg.Register.Negate = !reg->Register.Negate;
1453   return neg;
1454}
1455
1456/**
1457 * Create absolute value of a tgsi_full_src_register.
1458 */
1459static struct tgsi_full_src_register
1460absolute_src(const struct tgsi_full_src_register *reg)
1461{
1462   struct tgsi_full_src_register absolute = *reg;
1463   absolute.Register.Absolute = 1;
1464   return absolute;
1465}
1466
1467
1468/** Return the named swizzle term from the src register */
1469static inline unsigned
1470get_swizzle(const struct tgsi_full_src_register *reg, unsigned term)
1471{
1472   switch (term) {
1473   case TGSI_SWIZZLE_X:
1474      return reg->Register.SwizzleX;
1475   case TGSI_SWIZZLE_Y:
1476      return reg->Register.SwizzleY;
1477   case TGSI_SWIZZLE_Z:
1478      return reg->Register.SwizzleZ;
1479   case TGSI_SWIZZLE_W:
1480      return reg->Register.SwizzleW;
1481   default:
1482      assert(!"Bad swizzle");
1483      return TGSI_SWIZZLE_X;
1484   }
1485}
1486
1487
1488/**
1489 * Create swizzled tgsi_full_src_register.
1490 */
1491static struct tgsi_full_src_register
1492swizzle_src(const struct tgsi_full_src_register *reg,
1493            unsigned swizzleX, unsigned swizzleY,
1494            unsigned swizzleZ, unsigned swizzleW)
1495{
1496   struct tgsi_full_src_register swizzled = *reg;
1497   /* Note: we swizzle the current swizzle */
1498   swizzled.Register.SwizzleX = get_swizzle(reg, swizzleX);
1499   swizzled.Register.SwizzleY = get_swizzle(reg, swizzleY);
1500   swizzled.Register.SwizzleZ = get_swizzle(reg, swizzleZ);
1501   swizzled.Register.SwizzleW = get_swizzle(reg, swizzleW);
1502   return swizzled;
1503}
1504
1505
1506/**
1507 * Create swizzled tgsi_full_src_register where all the swizzle
1508 * terms are the same.
1509 */
1510static struct tgsi_full_src_register
1511scalar_src(const struct tgsi_full_src_register *reg, unsigned swizzle)
1512{
1513   struct tgsi_full_src_register swizzled = *reg;
1514   /* Note: we swizzle the current swizzle */
1515   swizzled.Register.SwizzleX =
1516   swizzled.Register.SwizzleY =
1517   swizzled.Register.SwizzleZ =
1518   swizzled.Register.SwizzleW = get_swizzle(reg, swizzle);
1519   return swizzled;
1520}
1521
1522
1523/**
1524 * Create new tgsi_full_dst_register with writemask.
1525 * \param mask  bitmask of TGSI_WRITEMASK_[XYZW]
1526 */
1527static struct tgsi_full_dst_register
1528writemask_dst(const struct tgsi_full_dst_register *reg, unsigned mask)
1529{
1530   struct tgsi_full_dst_register masked = *reg;
1531   masked.Register.WriteMask = mask;
1532   return masked;
1533}
1534
1535
1536/**
1537 * Check if the register's swizzle is XXXX, YYYY, ZZZZ, or WWWW.
1538 */
1539static boolean
1540same_swizzle_terms(const struct tgsi_full_src_register *reg)
1541{
1542   return (reg->Register.SwizzleX == reg->Register.SwizzleY &&
1543           reg->Register.SwizzleY == reg->Register.SwizzleZ &&
1544           reg->Register.SwizzleZ == reg->Register.SwizzleW);
1545}
1546
1547
1548/**
1549 * Search the vector for the value 'x' and return its position.
1550 */
1551static int
1552find_imm_in_vec4(const union tgsi_immediate_data vec[4],
1553                 union tgsi_immediate_data x)
1554{
1555   unsigned i;
1556   for (i = 0; i < 4; i++) {
1557      if (vec[i].Int == x.Int)
1558         return i;
1559   }
1560   return -1;
1561}
1562
1563
1564/**
1565 * Helper used by make_immediate_reg(), make_immediate_reg_4().
1566 */
1567static int
1568find_immediate(struct svga_shader_emitter_v10 *emit,
1569               union tgsi_immediate_data x, unsigned startIndex)
1570{
1571   const unsigned endIndex = emit->num_immediates;
1572   unsigned i;
1573
1574   assert(emit->immediates_emitted);
1575
1576   /* Search immediates for x, y, z, w */
1577   for (i = startIndex; i < endIndex; i++) {
1578      if (x.Int == emit->immediates[i][0].Int ||
1579          x.Int == emit->immediates[i][1].Int ||
1580          x.Int == emit->immediates[i][2].Int ||
1581          x.Int == emit->immediates[i][3].Int) {
1582         return i;
1583      }
1584   }
1585   /* Should never try to use an immediate value that wasn't pre-declared */
1586   assert(!"find_immediate() failed!");
1587   return -1;
1588}
1589
1590
1591/**
1592 * Return a tgsi_full_src_register for an immediate/literal
1593 * union tgsi_immediate_data[4] value.
1594 * Note: the values must have been previously declared/allocated in
1595 * emit_pre_helpers().  And, all of x,y,z,w must be located in the same
1596 * vec4 immediate.
1597 */
1598static struct tgsi_full_src_register
1599make_immediate_reg_4(struct svga_shader_emitter_v10 *emit,
1600                     const union tgsi_immediate_data imm[4])
1601{
1602   struct tgsi_full_src_register reg;
1603   unsigned i;
1604
1605   for (i = 0; i < emit->num_common_immediates; i++) {
1606      /* search for first component value */
1607      int immpos = find_immediate(emit, imm[0], i);
1608      int x, y, z, w;
1609
1610      assert(immpos >= 0);
1611
1612      /* find remaining components within the immediate vector */
1613      x = find_imm_in_vec4(emit->immediates[immpos], imm[0]);
1614      y = find_imm_in_vec4(emit->immediates[immpos], imm[1]);
1615      z = find_imm_in_vec4(emit->immediates[immpos], imm[2]);
1616      w = find_imm_in_vec4(emit->immediates[immpos], imm[3]);
1617
1618      if (x >=0 &&  y >= 0 && z >= 0 && w >= 0) {
1619         /* found them all */
1620         memset(&reg, 0, sizeof(reg));
1621         reg.Register.File = TGSI_FILE_IMMEDIATE;
1622         reg.Register.Index = immpos;
1623         reg.Register.SwizzleX = x;
1624         reg.Register.SwizzleY = y;
1625         reg.Register.SwizzleZ = z;
1626         reg.Register.SwizzleW = w;
1627         return reg;
1628      }
1629      /* else, keep searching */
1630   }
1631
1632   assert(!"Failed to find immediate register!");
1633
1634   /* Just return IMM[0].xxxx */
1635   memset(&reg, 0, sizeof(reg));
1636   reg.Register.File = TGSI_FILE_IMMEDIATE;
1637   return reg;
1638}
1639
1640
1641/**
1642 * Return a tgsi_full_src_register for an immediate/literal
1643 * union tgsi_immediate_data value of the form {value, value, value, value}.
1644 * \sa make_immediate_reg_4() regarding allowed values.
1645 */
1646static struct tgsi_full_src_register
1647make_immediate_reg(struct svga_shader_emitter_v10 *emit,
1648                   union tgsi_immediate_data value)
1649{
1650   struct tgsi_full_src_register reg;
1651   int immpos = find_immediate(emit, value, 0);
1652
1653   assert(immpos >= 0);
1654
1655   memset(&reg, 0, sizeof(reg));
1656   reg.Register.File = TGSI_FILE_IMMEDIATE;
1657   reg.Register.Index = immpos;
1658   reg.Register.SwizzleX =
1659   reg.Register.SwizzleY =
1660   reg.Register.SwizzleZ =
1661   reg.Register.SwizzleW = find_imm_in_vec4(emit->immediates[immpos], value);
1662
1663   return reg;
1664}
1665
1666
1667/**
1668 * Return a tgsi_full_src_register for an immediate/literal float[4] value.
1669 * \sa make_immediate_reg_4() regarding allowed values.
1670 */
1671static struct tgsi_full_src_register
1672make_immediate_reg_float4(struct svga_shader_emitter_v10 *emit,
1673                          float x, float y, float z, float w)
1674{
1675   union tgsi_immediate_data imm[4];
1676   imm[0].Float = x;
1677   imm[1].Float = y;
1678   imm[2].Float = z;
1679   imm[3].Float = w;
1680   return make_immediate_reg_4(emit, imm);
1681}
1682
1683
1684/**
1685 * Return a tgsi_full_src_register for an immediate/literal float value
1686 * of the form {value, value, value, value}.
1687 * \sa make_immediate_reg_4() regarding allowed values.
1688 */
1689static struct tgsi_full_src_register
1690make_immediate_reg_float(struct svga_shader_emitter_v10 *emit, float value)
1691{
1692   union tgsi_immediate_data imm;
1693   imm.Float = value;
1694   return make_immediate_reg(emit, imm);
1695}
1696
1697
1698/**
1699 * Return a tgsi_full_src_register for an immediate/literal int[4] vector.
1700 */
1701static struct tgsi_full_src_register
1702make_immediate_reg_int4(struct svga_shader_emitter_v10 *emit,
1703                        int x, int y, int z, int w)
1704{
1705   union tgsi_immediate_data imm[4];
1706   imm[0].Int = x;
1707   imm[1].Int = y;
1708   imm[2].Int = z;
1709   imm[3].Int = w;
1710   return make_immediate_reg_4(emit, imm);
1711}
1712
1713
1714/**
1715 * Return a tgsi_full_src_register for an immediate/literal int value
1716 * of the form {value, value, value, value}.
1717 * \sa make_immediate_reg_4() regarding allowed values.
1718 */
1719static struct tgsi_full_src_register
1720make_immediate_reg_int(struct svga_shader_emitter_v10 *emit, int value)
1721{
1722   union tgsi_immediate_data imm;
1723   imm.Int = value;
1724   return make_immediate_reg(emit, imm);
1725}
1726
1727
1728/**
1729 * Allocate space for a union tgsi_immediate_data[4] immediate.
1730 * \return  the index/position of the immediate.
1731 */
1732static unsigned
1733alloc_immediate_4(struct svga_shader_emitter_v10 *emit,
1734                  const union tgsi_immediate_data imm[4])
1735{
1736   unsigned n = emit->num_immediates++;
1737   assert(!emit->immediates_emitted);
1738   assert(n < ARRAY_SIZE(emit->immediates));
1739   emit->immediates[n][0] = imm[0];
1740   emit->immediates[n][1] = imm[1];
1741   emit->immediates[n][2] = imm[2];
1742   emit->immediates[n][3] = imm[3];
1743   return n;
1744}
1745
1746
1747/**
1748 * Allocate space for a float[4] immediate.
1749 * \return  the index/position of the immediate.
1750 */
1751static unsigned
1752alloc_immediate_float4(struct svga_shader_emitter_v10 *emit,
1753                       float x, float y, float z, float w)
1754{
1755   union tgsi_immediate_data imm[4];
1756   imm[0].Float = x;
1757   imm[1].Float = y;
1758   imm[2].Float = z;
1759   imm[3].Float = w;
1760   return alloc_immediate_4(emit, imm);
1761}
1762
1763
1764/**
1765 * Allocate space for a int[4] immediate.
1766 * \return  the index/position of the immediate.
1767 */
1768static unsigned
1769alloc_immediate_int4(struct svga_shader_emitter_v10 *emit,
1770                       int x, int y, int z, int w)
1771{
1772   union tgsi_immediate_data imm[4];
1773   imm[0].Int = x;
1774   imm[1].Int = y;
1775   imm[2].Int = z;
1776   imm[3].Int = w;
1777   return alloc_immediate_4(emit, imm);
1778}
1779
1780
1781/**
1782 * Allocate a shader input to store a system value.
1783 */
1784static unsigned
1785alloc_system_value_index(struct svga_shader_emitter_v10 *emit, unsigned index)
1786{
1787   const unsigned n = emit->info.file_max[TGSI_FILE_INPUT] + 1 + index;
1788   assert(index < ARRAY_SIZE(emit->system_value_indexes));
1789   emit->system_value_indexes[index] = n;
1790   return n;
1791}
1792
1793
1794/**
1795 * Translate a TGSI immediate value (union tgsi_immediate_data[4]) to VGPU10.
1796 */
1797static boolean
1798emit_vgpu10_immediate(struct svga_shader_emitter_v10 *emit,
1799                      const struct tgsi_full_immediate *imm)
1800{
1801   /* We don't actually emit any code here.  We just save the
1802    * immediate values and emit them later.
1803    */
1804   alloc_immediate_4(emit, imm->u);
1805   return TRUE;
1806}
1807
1808
1809/**
1810 * Emit a VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER block
1811 * containing all the immediate values previously allocated
1812 * with alloc_immediate_4().
1813 */
1814static boolean
1815emit_vgpu10_immediates_block(struct svga_shader_emitter_v10 *emit)
1816{
1817   VGPU10OpcodeToken0 token;
1818
1819   assert(!emit->immediates_emitted);
1820
1821   token.value = 0;
1822   token.opcodeType = VGPU10_OPCODE_CUSTOMDATA;
1823   token.customDataClass = VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER;
1824
1825   /* Note: no begin/end_emit_instruction() calls */
1826   emit_dword(emit, token.value);
1827   emit_dword(emit, 2 + 4 * emit->num_immediates);
1828   emit_dwords(emit, (unsigned *) emit->immediates, 4 * emit->num_immediates);
1829
1830   emit->immediates_emitted = TRUE;
1831
1832   return TRUE;
1833}
1834
1835
1836/**
1837 * Translate a fragment shader's TGSI_INTERPOLATE_x mode to a vgpu10
1838 * interpolation mode.
1839 * \return a VGPU10_INTERPOLATION_x value
1840 */
1841static unsigned
1842translate_interpolation(const struct svga_shader_emitter_v10 *emit,
1843                        unsigned interp, unsigned interpolate_loc)
1844{
1845   if (interp == TGSI_INTERPOLATE_COLOR) {
1846      interp = emit->key.fs.flatshade ?
1847         TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
1848   }
1849
1850   switch (interp) {
1851   case TGSI_INTERPOLATE_CONSTANT:
1852      return VGPU10_INTERPOLATION_CONSTANT;
1853   case TGSI_INTERPOLATE_LINEAR:
1854      return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ?
1855             VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID :
1856             VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE;
1857   case TGSI_INTERPOLATE_PERSPECTIVE:
1858      return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ?
1859             VGPU10_INTERPOLATION_LINEAR_CENTROID :
1860             VGPU10_INTERPOLATION_LINEAR;
1861   default:
1862      assert(!"Unexpected interpolation mode");
1863      return VGPU10_INTERPOLATION_CONSTANT;
1864   }
1865}
1866
1867
1868/**
1869 * Translate a TGSI property to VGPU10.
1870 * Don't emit any instructions yet, only need to gather the primitive property information.
1871 * The output primitive topology might be changed later. The final property instructions
1872 * will be emitted as part of the pre-helper code.
1873 */
1874static boolean
1875emit_vgpu10_property(struct svga_shader_emitter_v10 *emit,
1876                     const struct tgsi_full_property *prop)
1877{
1878   static const VGPU10_PRIMITIVE primType[] = {
1879      VGPU10_PRIMITIVE_POINT,           /* PIPE_PRIM_POINTS */
1880      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINES */
1881      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINE_LOOP */
1882      VGPU10_PRIMITIVE_LINE,            /* PIPE_PRIM_LINE_STRIP */
1883      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLES */
1884      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLE_STRIP */
1885      VGPU10_PRIMITIVE_TRIANGLE,        /* PIPE_PRIM_TRIANGLE_FAN */
1886      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_QUADS */
1887      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_QUAD_STRIP */
1888      VGPU10_PRIMITIVE_UNDEFINED,       /* PIPE_PRIM_POLYGON */
1889      VGPU10_PRIMITIVE_LINE_ADJ,        /* PIPE_PRIM_LINES_ADJACENCY */
1890      VGPU10_PRIMITIVE_LINE_ADJ,        /* PIPE_PRIM_LINE_STRIP_ADJACENCY */
1891      VGPU10_PRIMITIVE_TRIANGLE_ADJ,    /* PIPE_PRIM_TRIANGLES_ADJACENCY */
1892      VGPU10_PRIMITIVE_TRIANGLE_ADJ     /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */
1893   };
1894
1895   static const VGPU10_PRIMITIVE_TOPOLOGY primTopology[] = {
1896      VGPU10_PRIMITIVE_TOPOLOGY_POINTLIST,     /* PIPE_PRIM_POINTS */
1897      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST,      /* PIPE_PRIM_LINES */
1898      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST,      /* PIPE_PRIM_LINE_LOOP */
1899      VGPU10_PRIMITIVE_TOPOLOGY_LINESTRIP,     /* PIPE_PRIM_LINE_STRIP */
1900      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST,  /* PIPE_PRIM_TRIANGLES */
1901      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_STRIP */
1902      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_FAN */
1903      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_QUADS */
1904      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_QUAD_STRIP */
1905      VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED,     /* PIPE_PRIM_POLYGON */
1906      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ,  /* PIPE_PRIM_LINES_ADJACENCY */
1907      VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ,  /* PIPE_PRIM_LINE_STRIP_ADJACENCY */
1908      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ, /* PIPE_PRIM_TRIANGLES_ADJACENCY */
1909      VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */
1910   };
1911
1912   static const unsigned inputArraySize[] = {
1913      0,       /* VGPU10_PRIMITIVE_UNDEFINED */
1914      1,       /* VGPU10_PRIMITIVE_POINT */
1915      2,       /* VGPU10_PRIMITIVE_LINE */
1916      3,       /* VGPU10_PRIMITIVE_TRIANGLE */
1917      0,
1918      0,
1919      4,       /* VGPU10_PRIMITIVE_LINE_ADJ */
1920      6        /* VGPU10_PRIMITIVE_TRIANGLE_ADJ */
1921   };
1922
1923   switch (prop->Property.PropertyName) {
1924   case TGSI_PROPERTY_GS_INPUT_PRIM:
1925      assert(prop->u[0].Data < ARRAY_SIZE(primType));
1926      emit->gs.prim_type = primType[prop->u[0].Data];
1927      assert(emit->gs.prim_type != VGPU10_PRIMITIVE_UNDEFINED);
1928      emit->gs.input_size = inputArraySize[emit->gs.prim_type];
1929      break;
1930
1931   case TGSI_PROPERTY_GS_OUTPUT_PRIM:
1932      assert(prop->u[0].Data < ARRAY_SIZE(primTopology));
1933      emit->gs.prim_topology = primTopology[prop->u[0].Data];
1934      assert(emit->gs.prim_topology != VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED);
1935      break;
1936
1937   case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
1938      emit->gs.max_out_vertices = prop->u[0].Data;
1939      break;
1940
1941   default:
1942      break;
1943   }
1944
1945   return TRUE;
1946}
1947
1948
1949static void
1950emit_property_instruction(struct svga_shader_emitter_v10 *emit,
1951                          VGPU10OpcodeToken0 opcode0, unsigned nData,
1952                          unsigned data)
1953{
1954   begin_emit_instruction(emit);
1955   emit_dword(emit, opcode0.value);
1956   if (nData)
1957      emit_dword(emit, data);
1958   end_emit_instruction(emit);
1959}
1960
1961
1962/**
1963 * Emit property instructions
1964 */
1965static void
1966emit_property_instructions(struct svga_shader_emitter_v10 *emit)
1967{
1968   VGPU10OpcodeToken0 opcode0;
1969
1970   assert(emit->unit == PIPE_SHADER_GEOMETRY);
1971
1972   /* emit input primitive type declaration */
1973   opcode0.value = 0;
1974   opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_INPUT_PRIMITIVE;
1975   opcode0.primitive = emit->gs.prim_type;
1976   emit_property_instruction(emit, opcode0, 0, 0);
1977
1978   /* emit output primitive topology declaration */
1979   opcode0.value = 0;
1980   opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_OUTPUT_PRIMITIVE_TOPOLOGY;
1981   opcode0.primitiveTopology = emit->gs.prim_topology;
1982   emit_property_instruction(emit, opcode0, 0, 0);
1983
1984   /* emit max output vertices */
1985   opcode0.value = 0;
1986   opcode0.opcodeType = VGPU10_OPCODE_DCL_MAX_OUTPUT_VERTEX_COUNT;
1987   emit_property_instruction(emit, opcode0, 1, emit->gs.max_out_vertices);
1988}
1989
1990
1991/**
1992 * Emit a vgpu10 declaration "instruction".
1993 * \param index  the register index
1994 * \param size   array size of the operand. In most cases, it is 1,
1995 *               but for inputs to geometry shader, the array size varies
1996 *               depending on the primitive type.
1997 */
1998static void
1999emit_decl_instruction(struct svga_shader_emitter_v10 *emit,
2000                      VGPU10OpcodeToken0 opcode0,
2001                      VGPU10OperandToken0 operand0,
2002                      VGPU10NameToken name_token,
2003                      unsigned index, unsigned size)
2004{
2005   assert(opcode0.opcodeType);
2006   assert(operand0.mask);
2007
2008   begin_emit_instruction(emit);
2009   emit_dword(emit, opcode0.value);
2010
2011   emit_dword(emit, operand0.value);
2012
2013   if (operand0.indexDimension == VGPU10_OPERAND_INDEX_1D) {
2014      /* Next token is the index of the register to declare */
2015      emit_dword(emit, index);
2016   }
2017   else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_2D) {
2018      /* Next token is the size of the register */
2019      emit_dword(emit, size);
2020
2021      /* Followed by the index of the register */
2022      emit_dword(emit, index);
2023   }
2024
2025   if (name_token.value) {
2026      emit_dword(emit, name_token.value);
2027   }
2028
2029   end_emit_instruction(emit);
2030}
2031
2032
2033/**
2034 * Emit the declaration for a shader input.
2035 * \param opcodeType  opcode type, one of VGPU10_OPCODE_DCL_INPUTx
2036 * \param operandType operand type, one of VGPU10_OPERAND_TYPE_INPUT_x
2037 * \param dim         index dimension
2038 * \param index       the input register index
2039 * \param size        array size of the operand. In most cases, it is 1,
2040 *                    but for inputs to geometry shader, the array size varies
2041 *                    depending on the primitive type.
2042 * \param name        one of VGPU10_NAME_x
2043 * \parma numComp     number of components
2044 * \param selMode     component selection mode
2045 * \param usageMask   bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values
2046 * \param interpMode  interpolation mode
2047 */
2048static void
2049emit_input_declaration(struct svga_shader_emitter_v10 *emit,
2050                       unsigned opcodeType, unsigned operandType,
2051                       unsigned dim, unsigned index, unsigned size,
2052                       unsigned name, unsigned numComp,
2053                       unsigned selMode, unsigned usageMask,
2054                       unsigned interpMode)
2055{
2056   VGPU10OpcodeToken0 opcode0;
2057   VGPU10OperandToken0 operand0;
2058   VGPU10NameToken name_token;
2059
2060   assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2061   assert(opcodeType == VGPU10_OPCODE_DCL_INPUT ||
2062          opcodeType == VGPU10_OPCODE_DCL_INPUT_SIV ||
2063          opcodeType == VGPU10_OPCODE_DCL_INPUT_PS ||
2064          opcodeType == VGPU10_OPCODE_DCL_INPUT_PS_SGV);
2065   assert(operandType == VGPU10_OPERAND_TYPE_INPUT ||
2066          operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID);
2067   assert(numComp <= VGPU10_OPERAND_4_COMPONENT);
2068   assert(selMode <= VGPU10_OPERAND_4_COMPONENT_MASK_MODE);
2069   assert(dim <= VGPU10_OPERAND_INDEX_3D);
2070   assert(name == VGPU10_NAME_UNDEFINED ||
2071          name == VGPU10_NAME_POSITION ||
2072          name == VGPU10_NAME_INSTANCE_ID ||
2073          name == VGPU10_NAME_VERTEX_ID ||
2074          name == VGPU10_NAME_PRIMITIVE_ID ||
2075          name == VGPU10_NAME_IS_FRONT_FACE);
2076   assert(interpMode == VGPU10_INTERPOLATION_UNDEFINED ||
2077          interpMode == VGPU10_INTERPOLATION_CONSTANT ||
2078          interpMode == VGPU10_INTERPOLATION_LINEAR ||
2079          interpMode == VGPU10_INTERPOLATION_LINEAR_CENTROID ||
2080          interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE ||
2081          interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID);
2082
2083   check_register_index(emit, opcodeType, index);
2084
2085   opcode0.value = operand0.value = name_token.value = 0;
2086
2087   opcode0.opcodeType = opcodeType;
2088   opcode0.interpolationMode = interpMode;
2089
2090   operand0.operandType = operandType;
2091   operand0.numComponents = numComp;
2092   operand0.selectionMode = selMode;
2093   operand0.mask = usageMask;
2094   operand0.indexDimension = dim;
2095   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2096   if (dim == VGPU10_OPERAND_INDEX_2D)
2097      operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2098
2099   name_token.name = name;
2100
2101   emit_decl_instruction(emit, opcode0, operand0, name_token, index, size);
2102}
2103
2104
2105/**
2106 * Emit the declaration for a shader output.
2107 * \param type  one of VGPU10_OPCODE_DCL_OUTPUTx
2108 * \param index  the output register index
2109 * \param name  one of VGPU10_NAME_x
2110 * \param usageMask  bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values
2111 */
2112static void
2113emit_output_declaration(struct svga_shader_emitter_v10 *emit,
2114                        unsigned type, unsigned index,
2115                        unsigned name, unsigned usageMask)
2116{
2117   VGPU10OpcodeToken0 opcode0;
2118   VGPU10OperandToken0 operand0;
2119   VGPU10NameToken name_token;
2120
2121   assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2122   assert(type == VGPU10_OPCODE_DCL_OUTPUT ||
2123          type == VGPU10_OPCODE_DCL_OUTPUT_SGV ||
2124          type == VGPU10_OPCODE_DCL_OUTPUT_SIV);
2125   assert(name == VGPU10_NAME_UNDEFINED ||
2126          name == VGPU10_NAME_POSITION ||
2127          name == VGPU10_NAME_PRIMITIVE_ID ||
2128          name == VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX ||
2129          name == VGPU10_NAME_CLIP_DISTANCE);
2130
2131   check_register_index(emit, type, index);
2132
2133   opcode0.value = operand0.value = name_token.value = 0;
2134
2135   opcode0.opcodeType = type;
2136   operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT;
2137   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
2138   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
2139   operand0.mask = usageMask;
2140   operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
2141   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2142
2143   name_token.name = name;
2144
2145   emit_decl_instruction(emit, opcode0, operand0, name_token, index, 1);
2146}
2147
2148
2149/**
2150 * Emit the declaration for the fragment depth output.
2151 */
2152static void
2153emit_fragdepth_output_declaration(struct svga_shader_emitter_v10 *emit)
2154{
2155   VGPU10OpcodeToken0 opcode0;
2156   VGPU10OperandToken0 operand0;
2157   VGPU10NameToken name_token;
2158
2159   assert(emit->unit == PIPE_SHADER_FRAGMENT);
2160
2161   opcode0.value = operand0.value = name_token.value = 0;
2162
2163   opcode0.opcodeType = VGPU10_OPCODE_DCL_OUTPUT;
2164   operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH;
2165   operand0.numComponents = VGPU10_OPERAND_1_COMPONENT;
2166   operand0.indexDimension = VGPU10_OPERAND_INDEX_0D;
2167   operand0.mask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
2168
2169   emit_decl_instruction(emit, opcode0, operand0, name_token, 0, 1);
2170}
2171
2172
2173/**
2174 * Emit the declaration for a system value input/output.
2175 */
2176static void
2177emit_system_value_declaration(struct svga_shader_emitter_v10 *emit,
2178                              unsigned semantic_name, unsigned index)
2179{
2180   switch (semantic_name) {
2181   case TGSI_SEMANTIC_INSTANCEID:
2182      index = alloc_system_value_index(emit, index);
2183      emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV,
2184                             VGPU10_OPERAND_TYPE_INPUT,
2185                             VGPU10_OPERAND_INDEX_1D,
2186                             index, 1,
2187                             VGPU10_NAME_INSTANCE_ID,
2188                             VGPU10_OPERAND_4_COMPONENT,
2189                             VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2190                             VGPU10_OPERAND_4_COMPONENT_MASK_X,
2191                             VGPU10_INTERPOLATION_UNDEFINED);
2192      break;
2193   case TGSI_SEMANTIC_VERTEXID:
2194      index = alloc_system_value_index(emit, index);
2195      emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV,
2196                             VGPU10_OPERAND_TYPE_INPUT,
2197                             VGPU10_OPERAND_INDEX_1D,
2198                             index, 1,
2199                             VGPU10_NAME_VERTEX_ID,
2200                             VGPU10_OPERAND_4_COMPONENT,
2201                             VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2202                             VGPU10_OPERAND_4_COMPONENT_MASK_X,
2203                             VGPU10_INTERPOLATION_UNDEFINED);
2204      break;
2205   default:
2206      ; /* XXX */
2207   }
2208}
2209
2210/**
2211 * Translate a TGSI declaration to VGPU10.
2212 */
2213static boolean
2214emit_vgpu10_declaration(struct svga_shader_emitter_v10 *emit,
2215                        const struct tgsi_full_declaration *decl)
2216{
2217   switch (decl->Declaration.File) {
2218   case TGSI_FILE_INPUT:
2219      /* do nothing - see emit_input_declarations() */
2220      return TRUE;
2221
2222   case TGSI_FILE_OUTPUT:
2223      assert(decl->Range.First == decl->Range.Last);
2224      emit->output_usage_mask[decl->Range.First] = decl->Declaration.UsageMask;
2225      return TRUE;
2226
2227   case TGSI_FILE_TEMPORARY:
2228      /* Don't declare the temps here.  Just keep track of how many
2229       * and emit the declaration later.
2230       */
2231      if (decl->Declaration.Array) {
2232         /* Indexed temporary array.  Save the start index of the array
2233          * and the size of the array.
2234          */
2235         const unsigned arrayID = MIN2(decl->Array.ArrayID, MAX_TEMP_ARRAYS);
2236         unsigned i;
2237
2238         assert(arrayID < ARRAY_SIZE(emit->temp_arrays));
2239
2240         /* Save this array so we can emit the declaration for it later */
2241         emit->temp_arrays[arrayID].start = decl->Range.First;
2242         emit->temp_arrays[arrayID].size =
2243            decl->Range.Last - decl->Range.First + 1;
2244
2245         emit->num_temp_arrays = MAX2(emit->num_temp_arrays, arrayID + 1);
2246         assert(emit->num_temp_arrays <= MAX_TEMP_ARRAYS);
2247         emit->num_temp_arrays = MIN2(emit->num_temp_arrays, MAX_TEMP_ARRAYS);
2248
2249         /* Fill in the temp_map entries for this array */
2250         for (i = decl->Range.First; i <= decl->Range.Last; i++) {
2251            emit->temp_map[i].arrayId = arrayID;
2252            emit->temp_map[i].index = i - decl->Range.First;
2253         }
2254      }
2255
2256      /* for all temps, indexed or not, keep track of highest index */
2257      emit->num_shader_temps = MAX2(emit->num_shader_temps,
2258                                    decl->Range.Last + 1);
2259      return TRUE;
2260
2261   case TGSI_FILE_CONSTANT:
2262      /* Don't declare constants here.  Just keep track and emit later. */
2263      {
2264         unsigned constbuf = 0, num_consts;
2265         if (decl->Declaration.Dimension) {
2266            constbuf = decl->Dim.Index2D;
2267         }
2268         /* We throw an assertion here when, in fact, the shader should never
2269          * have linked due to constbuf index out of bounds, so we shouldn't
2270          * have reached here.
2271          */
2272         assert(constbuf < ARRAY_SIZE(emit->num_shader_consts));
2273
2274         num_consts = MAX2(emit->num_shader_consts[constbuf],
2275                           decl->Range.Last + 1);
2276
2277         if (num_consts > VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) {
2278            debug_printf("Warning: constant buffer is declared to size [%u]"
2279                         " but [%u] is the limit.\n",
2280                         num_consts,
2281                         VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT);
2282         }
2283         /* The linker doesn't enforce the max UBO size so we clamp here */
2284         emit->num_shader_consts[constbuf] =
2285            MIN2(num_consts, VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT);
2286      }
2287      return TRUE;
2288
2289   case TGSI_FILE_IMMEDIATE:
2290      assert(!"TGSI_FILE_IMMEDIATE not handled yet!");
2291      return FALSE;
2292
2293   case TGSI_FILE_SYSTEM_VALUE:
2294      emit_system_value_declaration(emit, decl->Semantic.Name,
2295                                    decl->Range.First);
2296      return TRUE;
2297
2298   case TGSI_FILE_SAMPLER:
2299      /* Don't declare samplers here.  Just keep track and emit later. */
2300      emit->num_samplers = MAX2(emit->num_samplers, decl->Range.Last + 1);
2301      return TRUE;
2302
2303#if 0
2304   case TGSI_FILE_RESOURCE:
2305      /*opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE;*/
2306      /* XXX more, VGPU10_RETURN_TYPE_FLOAT */
2307      assert(!"TGSI_FILE_RESOURCE not handled yet");
2308      return FALSE;
2309#endif
2310
2311   case TGSI_FILE_ADDRESS:
2312      emit->num_address_regs = MAX2(emit->num_address_regs,
2313                                    decl->Range.Last + 1);
2314      return TRUE;
2315
2316   case TGSI_FILE_SAMPLER_VIEW:
2317      {
2318         unsigned unit = decl->Range.First;
2319         assert(decl->Range.First == decl->Range.Last);
2320         emit->sampler_target[unit] = decl->SamplerView.Resource;
2321         /* Note: we can ignore YZW return types for now */
2322         emit->sampler_return_type[unit] = decl->SamplerView.ReturnTypeX;
2323      }
2324      return TRUE;
2325
2326   default:
2327      assert(!"Unexpected type of declaration");
2328      return FALSE;
2329   }
2330}
2331
2332
2333
2334/**
2335 * Emit all input declarations.
2336 */
2337static boolean
2338emit_input_declarations(struct svga_shader_emitter_v10 *emit)
2339{
2340   unsigned i;
2341
2342   if (emit->unit == PIPE_SHADER_FRAGMENT) {
2343
2344      for (i = 0; i < emit->linkage.num_inputs; i++) {
2345         unsigned semantic_name = emit->info.input_semantic_name[i];
2346         unsigned usage_mask = emit->info.input_usage_mask[i];
2347         unsigned index = emit->linkage.input_map[i];
2348         unsigned type, interpolationMode, name;
2349
2350         if (usage_mask == 0)
2351            continue;  /* register is not actually used */
2352
2353         if (semantic_name == TGSI_SEMANTIC_POSITION) {
2354            /* fragment position input */
2355            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2356            interpolationMode = VGPU10_INTERPOLATION_LINEAR;
2357            name = VGPU10_NAME_POSITION;
2358            if (usage_mask & TGSI_WRITEMASK_W) {
2359               /* we need to replace use of 'w' with '1/w' */
2360               emit->fs.fragcoord_input_index = i;
2361            }
2362         }
2363         else if (semantic_name == TGSI_SEMANTIC_FACE) {
2364            /* fragment front-facing input */
2365            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2366            interpolationMode = VGPU10_INTERPOLATION_CONSTANT;
2367            name = VGPU10_NAME_IS_FRONT_FACE;
2368            emit->fs.face_input_index = i;
2369         }
2370         else if (semantic_name == TGSI_SEMANTIC_PRIMID) {
2371            /* primitive ID */
2372            type = VGPU10_OPCODE_DCL_INPUT_PS_SGV;
2373            interpolationMode = VGPU10_INTERPOLATION_CONSTANT;
2374            name = VGPU10_NAME_PRIMITIVE_ID;
2375         }
2376         else {
2377            /* general fragment input */
2378            type = VGPU10_OPCODE_DCL_INPUT_PS;
2379            interpolationMode =
2380               translate_interpolation(emit,
2381                                       emit->info.input_interpolate[i],
2382                                       emit->info.input_interpolate_loc[i]);
2383
2384            /* keeps track if flat interpolation mode is being used */
2385            emit->uses_flat_interp = emit->uses_flat_interp ||
2386               (interpolationMode == VGPU10_INTERPOLATION_CONSTANT);
2387
2388            name = VGPU10_NAME_UNDEFINED;
2389         }
2390
2391         emit_input_declaration(emit, type,
2392                                VGPU10_OPERAND_TYPE_INPUT,
2393                                VGPU10_OPERAND_INDEX_1D, index, 1,
2394                                name,
2395                                VGPU10_OPERAND_4_COMPONENT,
2396                                VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2397                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2398                                interpolationMode);
2399      }
2400   }
2401   else if (emit->unit == PIPE_SHADER_GEOMETRY) {
2402
2403      for (i = 0; i < emit->info.num_inputs; i++) {
2404         unsigned semantic_name = emit->info.input_semantic_name[i];
2405         unsigned usage_mask = emit->info.input_usage_mask[i];
2406         unsigned index = emit->linkage.input_map[i];
2407         unsigned opcodeType, operandType;
2408         unsigned numComp, selMode;
2409         unsigned name;
2410         unsigned dim;
2411
2412         if (usage_mask == 0)
2413            continue;  /* register is not actually used */
2414
2415         opcodeType = VGPU10_OPCODE_DCL_INPUT;
2416         operandType = VGPU10_OPERAND_TYPE_INPUT;
2417         numComp = VGPU10_OPERAND_4_COMPONENT;
2418         selMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE;
2419         name = VGPU10_NAME_UNDEFINED;
2420
2421         /* all geometry shader inputs are two dimensional except gl_PrimitiveID */
2422         dim = VGPU10_OPERAND_INDEX_2D;
2423
2424         if (semantic_name == TGSI_SEMANTIC_PRIMID) {
2425            /* Primitive ID */
2426            operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID;
2427            dim = VGPU10_OPERAND_INDEX_0D;
2428            numComp = VGPU10_OPERAND_0_COMPONENT;
2429            selMode = 0;
2430
2431            /* also save the register index so we can check for
2432             * primitive id when emit src register. We need to modify the
2433             * operand type, index dimension when emit primitive id src reg.
2434             */
2435            emit->gs.prim_id_index = i;
2436         }
2437         else if (semantic_name == TGSI_SEMANTIC_POSITION) {
2438            /* vertex position input */
2439            opcodeType = VGPU10_OPCODE_DCL_INPUT_SIV;
2440            name = VGPU10_NAME_POSITION;
2441         }
2442
2443         emit_input_declaration(emit, opcodeType, operandType,
2444                                dim, index,
2445                                emit->gs.input_size,
2446                                name,
2447                                numComp, selMode,
2448                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2449                                VGPU10_INTERPOLATION_UNDEFINED);
2450      }
2451   }
2452   else {
2453      assert(emit->unit == PIPE_SHADER_VERTEX);
2454
2455      for (i = 0; i < emit->info.file_max[TGSI_FILE_INPUT] + 1; i++) {
2456         unsigned usage_mask = emit->info.input_usage_mask[i];
2457         unsigned index = i;
2458
2459         if (usage_mask == 0)
2460            continue;  /* register is not actually used */
2461
2462         emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT,
2463                                VGPU10_OPERAND_TYPE_INPUT,
2464                                VGPU10_OPERAND_INDEX_1D, index, 1,
2465                                VGPU10_NAME_UNDEFINED,
2466                                VGPU10_OPERAND_4_COMPONENT,
2467                                VGPU10_OPERAND_4_COMPONENT_MASK_MODE,
2468                                VGPU10_OPERAND_4_COMPONENT_MASK_ALL,
2469                                VGPU10_INTERPOLATION_UNDEFINED);
2470      }
2471   }
2472
2473   return TRUE;
2474}
2475
2476
2477/**
2478 * Emit all output declarations.
2479 */
2480static boolean
2481emit_output_declarations(struct svga_shader_emitter_v10 *emit)
2482{
2483   unsigned i;
2484
2485   for (i = 0; i < emit->info.num_outputs; i++) {
2486      /*const unsigned usage_mask = emit->info.output_usage_mask[i];*/
2487      const unsigned semantic_name = emit->info.output_semantic_name[i];
2488      const unsigned semantic_index = emit->info.output_semantic_index[i];
2489      unsigned index = i;
2490
2491      if (emit->unit == PIPE_SHADER_FRAGMENT) {
2492         if (semantic_name == TGSI_SEMANTIC_COLOR) {
2493            assert(semantic_index < ARRAY_SIZE(emit->fs.color_out_index));
2494
2495            emit->fs.color_out_index[semantic_index] = index;
2496
2497            /* The semantic index is the shader's color output/buffer index */
2498            emit_output_declaration(emit,
2499                                    VGPU10_OPCODE_DCL_OUTPUT, semantic_index,
2500                                    VGPU10_NAME_UNDEFINED,
2501                                    VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2502
2503            if (semantic_index == 0) {
2504               if (emit->key.fs.write_color0_to_n_cbufs > 1) {
2505                  /* Emit declarations for the additional color outputs
2506                   * for broadcasting.
2507                   */
2508                  unsigned j;
2509                  for (j = 1; j < emit->key.fs.write_color0_to_n_cbufs; j++) {
2510                     /* Allocate a new output index */
2511                     unsigned idx = emit->info.num_outputs + j - 1;
2512                     emit->fs.color_out_index[j] = idx;
2513                     emit_output_declaration(emit,
2514                                        VGPU10_OPCODE_DCL_OUTPUT, idx,
2515                                        VGPU10_NAME_UNDEFINED,
2516                                        VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2517                     emit->info.output_semantic_index[idx] = j;
2518                  }
2519               }
2520            }
2521            else {
2522               assert(!emit->key.fs.write_color0_to_n_cbufs);
2523            }
2524         }
2525         else if (semantic_name == TGSI_SEMANTIC_POSITION) {
2526            /* Fragment depth output */
2527            emit_fragdepth_output_declaration(emit);
2528         }
2529         else {
2530            assert(!"Bad output semantic name");
2531         }
2532      }
2533      else {
2534         /* VS or GS */
2535         unsigned name, type;
2536         unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
2537
2538         switch (semantic_name) {
2539         case TGSI_SEMANTIC_POSITION:
2540            assert(emit->unit != PIPE_SHADER_FRAGMENT);
2541            type = VGPU10_OPCODE_DCL_OUTPUT_SIV;
2542            name = VGPU10_NAME_POSITION;
2543            /* Save the index of the vertex position output register */
2544            emit->vposition.out_index = index;
2545            break;
2546         case TGSI_SEMANTIC_CLIPDIST:
2547            type = VGPU10_OPCODE_DCL_OUTPUT_SIV;
2548            name = VGPU10_NAME_CLIP_DISTANCE;
2549            /* save the starting index of the clip distance output register */
2550            if (semantic_index == 0)
2551               emit->clip_dist_out_index = index;
2552            writemask = emit->output_usage_mask[index];
2553            writemask = apply_clip_plane_mask(emit, writemask, semantic_index);
2554            if (writemask == 0x0) {
2555               continue; /* discard this do-nothing declaration */
2556            }
2557            break;
2558         case TGSI_SEMANTIC_PRIMID:
2559            assert(emit->unit == PIPE_SHADER_GEOMETRY);
2560            type = VGPU10_OPCODE_DCL_OUTPUT_SGV;
2561            name = VGPU10_NAME_PRIMITIVE_ID;
2562            break;
2563         case TGSI_SEMANTIC_LAYER:
2564            assert(emit->unit == PIPE_SHADER_GEOMETRY);
2565            type = VGPU10_OPCODE_DCL_OUTPUT_SGV;
2566            name = VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX;
2567            break;
2568         case TGSI_SEMANTIC_CLIPVERTEX:
2569            type = VGPU10_OPCODE_DCL_OUTPUT;
2570            name = VGPU10_NAME_UNDEFINED;
2571            emit->clip_vertex_out_index = index;
2572            break;
2573         default:
2574            /* generic output */
2575            type = VGPU10_OPCODE_DCL_OUTPUT;
2576            name = VGPU10_NAME_UNDEFINED;
2577         }
2578
2579         emit_output_declaration(emit, type, index, name, writemask);
2580      }
2581   }
2582
2583   if (emit->vposition.so_index != INVALID_INDEX &&
2584       emit->vposition.out_index != INVALID_INDEX) {
2585
2586      assert(emit->unit != PIPE_SHADER_FRAGMENT);
2587
2588      /* Emit the declaration for the non-adjusted vertex position
2589       * for stream output purpose
2590       */
2591      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2592                              emit->vposition.so_index,
2593                              VGPU10_NAME_UNDEFINED,
2594                              VGPU10_OPERAND_4_COMPONENT_MASK_ALL);
2595   }
2596
2597   if (emit->clip_dist_so_index != INVALID_INDEX &&
2598       emit->clip_dist_out_index != INVALID_INDEX) {
2599
2600      assert(emit->unit != PIPE_SHADER_FRAGMENT);
2601
2602      /* Emit the declaration for the clip distance shadow copy which
2603       * will be used for stream output purpose and for clip distance
2604       * varying variable
2605       */
2606      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2607                              emit->clip_dist_so_index,
2608                              VGPU10_NAME_UNDEFINED,
2609                              emit->output_usage_mask[emit->clip_dist_out_index]);
2610
2611      if (emit->info.num_written_clipdistance > 4) {
2612         /* for the second clip distance register, each handles 4 planes */
2613         emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT,
2614                                 emit->clip_dist_so_index + 1,
2615                                 VGPU10_NAME_UNDEFINED,
2616                                 emit->output_usage_mask[emit->clip_dist_out_index+1]);
2617      }
2618   }
2619
2620   return TRUE;
2621}
2622
2623
2624/**
2625 * Emit the declaration for the temporary registers.
2626 */
2627static boolean
2628emit_temporaries_declaration(struct svga_shader_emitter_v10 *emit)
2629{
2630   unsigned total_temps, reg, i;
2631
2632   total_temps = emit->num_shader_temps;
2633
2634   /* Allocate extra temps for specially-implemented instructions,
2635    * such as LIT.
2636    */
2637   total_temps += MAX_INTERNAL_TEMPS;
2638
2639   if (emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY) {
2640      if (emit->vposition.need_prescale || emit->key.vs.undo_viewport ||
2641          emit->key.clip_plane_enable ||
2642          emit->vposition.so_index != INVALID_INDEX) {
2643         emit->vposition.tmp_index = total_temps;
2644         total_temps += 1;
2645      }
2646
2647      if (emit->unit == PIPE_SHADER_VERTEX) {
2648         unsigned attrib_mask = (emit->key.vs.adjust_attrib_w_1 |
2649                                 emit->key.vs.adjust_attrib_itof |
2650                                 emit->key.vs.adjust_attrib_utof |
2651                                 emit->key.vs.attrib_is_bgra |
2652                                 emit->key.vs.attrib_puint_to_snorm |
2653                                 emit->key.vs.attrib_puint_to_uscaled |
2654                                 emit->key.vs.attrib_puint_to_sscaled);
2655         while (attrib_mask) {
2656            unsigned index = u_bit_scan(&attrib_mask);
2657            emit->vs.adjusted_input[index] = total_temps++;
2658         }
2659      }
2660
2661      if (emit->clip_mode == CLIP_DISTANCE) {
2662         /* We need to write the clip distance to a temporary register
2663          * first. Then it will be copied to the shadow copy for
2664          * the clip distance varying variable and stream output purpose.
2665          * It will also be copied to the actual CLIPDIST register
2666          * according to the enabled clip planes
2667          */
2668         emit->clip_dist_tmp_index = total_temps++;
2669         if (emit->info.num_written_clipdistance > 4)
2670            total_temps++; /* second clip register */
2671      }
2672      else if (emit->clip_mode == CLIP_VERTEX) {
2673         /* We need to convert the TGSI CLIPVERTEX output to one or more
2674          * clip distances.  Allocate a temp reg for the clipvertex here.
2675          */
2676         assert(emit->info.writes_clipvertex > 0);
2677         emit->clip_vertex_tmp_index = total_temps;
2678         total_temps++;
2679      }
2680   }
2681   else if (emit->unit == PIPE_SHADER_FRAGMENT) {
2682      if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS ||
2683          emit->key.fs.white_fragments ||
2684          emit->key.fs.write_color0_to_n_cbufs > 1) {
2685         /* Allocate a temp to hold the output color */
2686         emit->fs.color_tmp_index = total_temps;
2687         total_temps += 1;
2688      }
2689
2690      if (emit->fs.face_input_index != INVALID_INDEX) {
2691         /* Allocate a temp for the +/-1 face register */
2692         emit->fs.face_tmp_index = total_temps;
2693         total_temps += 1;
2694      }
2695
2696      if (emit->fs.fragcoord_input_index != INVALID_INDEX) {
2697         /* Allocate a temp for modified fragment position register */
2698         emit->fs.fragcoord_tmp_index = total_temps;
2699         total_temps += 1;
2700      }
2701   }
2702
2703   for (i = 0; i < emit->num_address_regs; i++) {
2704      emit->address_reg_index[i] = total_temps++;
2705   }
2706
2707   /* Initialize the temp_map array which maps TGSI temp indexes to VGPU10
2708    * temp indexes.  Basically, we compact all the non-array temp register
2709    * indexes into a consecutive series.
2710    *
2711    * Before, we may have some TGSI declarations like:
2712    *   DCL TEMP[0..1], LOCAL
2713    *   DCL TEMP[2..4], ARRAY(1), LOCAL
2714    *   DCL TEMP[5..7], ARRAY(2), LOCAL
2715    *   plus, some extra temps, like TEMP[8], TEMP[9] for misc things
2716    *
2717    * After, we'll have a map like this:
2718    *   temp_map[0] = { array 0, index 0 }
2719    *   temp_map[1] = { array 0, index 1 }
2720    *   temp_map[2] = { array 1, index 0 }
2721    *   temp_map[3] = { array 1, index 1 }
2722    *   temp_map[4] = { array 1, index 2 }
2723    *   temp_map[5] = { array 2, index 0 }
2724    *   temp_map[6] = { array 2, index 1 }
2725    *   temp_map[7] = { array 2, index 2 }
2726    *   temp_map[8] = { array 0, index 2 }
2727    *   temp_map[9] = { array 0, index 3 }
2728    *
2729    * We'll declare two arrays of 3 elements, plus a set of four non-indexed
2730    * temps numbered 0..3
2731    *
2732    * Any time we emit a temporary register index, we'll have to use the
2733    * temp_map[] table to convert the TGSI index to the VGPU10 index.
2734    *
2735    * Finally, we recompute the total_temps value here.
2736    */
2737   reg = 0;
2738   for (i = 0; i < total_temps; i++) {
2739      if (emit->temp_map[i].arrayId == 0) {
2740         emit->temp_map[i].index = reg++;
2741      }
2742   }
2743   total_temps = reg;
2744
2745   if (0) {
2746      debug_printf("total_temps %u\n", total_temps);
2747      for (i = 0; i < 30; i++) {
2748         debug_printf("temp %u ->  array %u  index %u\n",
2749                      i, emit->temp_map[i].arrayId, emit->temp_map[i].index);
2750      }
2751   }
2752
2753   /* Emit declaration of ordinary temp registers */
2754   if (total_temps > 0) {
2755      VGPU10OpcodeToken0 opcode0;
2756
2757      opcode0.value = 0;
2758      opcode0.opcodeType = VGPU10_OPCODE_DCL_TEMPS;
2759
2760      begin_emit_instruction(emit);
2761      emit_dword(emit, opcode0.value);
2762      emit_dword(emit, total_temps);
2763      end_emit_instruction(emit);
2764   }
2765
2766   /* Emit declarations for indexable temp arrays.  Skip 0th entry since
2767    * it's unused.
2768    */
2769   for (i = 1; i < emit->num_temp_arrays; i++) {
2770      unsigned num_temps = emit->temp_arrays[i].size;
2771
2772      if (num_temps > 0) {
2773         VGPU10OpcodeToken0 opcode0;
2774
2775         opcode0.value = 0;
2776         opcode0.opcodeType = VGPU10_OPCODE_DCL_INDEXABLE_TEMP;
2777
2778         begin_emit_instruction(emit);
2779         emit_dword(emit, opcode0.value);
2780         emit_dword(emit, i); /* which array */
2781         emit_dword(emit, num_temps);
2782         emit_dword(emit, 4); /* num components */
2783         end_emit_instruction(emit);
2784
2785         total_temps += num_temps;
2786      }
2787   }
2788
2789   /* Check that the grand total of all regular and indexed temps is
2790    * under the limit.
2791    */
2792   check_register_index(emit, VGPU10_OPCODE_DCL_TEMPS, total_temps - 1);
2793
2794   return TRUE;
2795}
2796
2797
2798static boolean
2799emit_constant_declaration(struct svga_shader_emitter_v10 *emit)
2800{
2801   VGPU10OpcodeToken0 opcode0;
2802   VGPU10OperandToken0 operand0;
2803   unsigned total_consts, i;
2804
2805   opcode0.value = 0;
2806   opcode0.opcodeType = VGPU10_OPCODE_DCL_CONSTANT_BUFFER;
2807   opcode0.accessPattern = VGPU10_CB_IMMEDIATE_INDEXED;
2808   /* XXX or, access pattern = VGPU10_CB_DYNAMIC_INDEXED */
2809
2810   operand0.value = 0;
2811   operand0.numComponents = VGPU10_OPERAND_4_COMPONENT;
2812   operand0.indexDimension = VGPU10_OPERAND_INDEX_2D;
2813   operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2814   operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2815   operand0.operandType = VGPU10_OPERAND_TYPE_CONSTANT_BUFFER;
2816   operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE;
2817   operand0.swizzleX = 0;
2818   operand0.swizzleY = 1;
2819   operand0.swizzleZ = 2;
2820   operand0.swizzleW = 3;
2821
2822   /**
2823    * Emit declaration for constant buffer [0].  We also allocate
2824    * room for the extra constants here.
2825    */
2826   total_consts = emit->num_shader_consts[0];
2827
2828   /* Now, allocate constant slots for the "extra" constants */
2829
2830   /* Vertex position scale/translation */
2831   if (emit->vposition.need_prescale) {
2832      emit->vposition.prescale_scale_index = total_consts++;
2833      emit->vposition.prescale_trans_index = total_consts++;
2834   }
2835
2836   if (emit->unit == PIPE_SHADER_VERTEX) {
2837      if (emit->key.vs.undo_viewport) {
2838         emit->vs.viewport_index = total_consts++;
2839      }
2840   }
2841
2842   /* user-defined clip planes */
2843   if (emit->key.clip_plane_enable) {
2844      unsigned n = util_bitcount(emit->key.clip_plane_enable);
2845      assert(emit->unit == PIPE_SHADER_VERTEX ||
2846             emit->unit == PIPE_SHADER_GEOMETRY);
2847      for (i = 0; i < n; i++) {
2848         emit->clip_plane_const[i] = total_consts++;
2849      }
2850   }
2851
2852   /* Texcoord scale factors for RECT textures */
2853   {
2854      for (i = 0; i < emit->num_samplers; i++) {
2855         if (emit->key.tex[i].unnormalized) {
2856            emit->texcoord_scale_index[i] = total_consts++;
2857         }
2858      }
2859   }
2860
2861   /* Texture buffer sizes */
2862   for (i = 0; i < emit->num_samplers; i++) {
2863      if (emit->sampler_target[i] == TGSI_TEXTURE_BUFFER) {
2864         emit->texture_buffer_size_index[i] = total_consts++;
2865      }
2866   }
2867
2868   if (total_consts > 0) {
2869      begin_emit_instruction(emit);
2870      emit_dword(emit, opcode0.value);
2871      emit_dword(emit, operand0.value);
2872      emit_dword(emit, 0);  /* which const buffer slot */
2873      emit_dword(emit, total_consts);
2874      end_emit_instruction(emit);
2875   }
2876
2877   /* Declare remaining constant buffers (UBOs) */
2878   for (i = 1; i < ARRAY_SIZE(emit->num_shader_consts); i++) {
2879      if (emit->num_shader_consts[i] > 0) {
2880         begin_emit_instruction(emit);
2881         emit_dword(emit, opcode0.value);
2882         emit_dword(emit, operand0.value);
2883         emit_dword(emit, i);  /* which const buffer slot */
2884         emit_dword(emit, emit->num_shader_consts[i]);
2885         end_emit_instruction(emit);
2886      }
2887   }
2888
2889   return TRUE;
2890}
2891
2892
2893/**
2894 * Emit declarations for samplers.
2895 */
2896static boolean
2897emit_sampler_declarations(struct svga_shader_emitter_v10 *emit)
2898{
2899   unsigned i;
2900
2901   for (i = 0; i < emit->num_samplers; i++) {
2902      VGPU10OpcodeToken0 opcode0;
2903      VGPU10OperandToken0 operand0;
2904
2905      opcode0.value = 0;
2906      opcode0.opcodeType = VGPU10_OPCODE_DCL_SAMPLER;
2907      opcode0.samplerMode = VGPU10_SAMPLER_MODE_DEFAULT;
2908
2909      operand0.value = 0;
2910      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
2911      operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER;
2912      operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
2913      operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
2914
2915      begin_emit_instruction(emit);
2916      emit_dword(emit, opcode0.value);
2917      emit_dword(emit, operand0.value);
2918      emit_dword(emit, i);
2919      end_emit_instruction(emit);
2920   }
2921
2922   return TRUE;
2923}
2924
2925
2926/**
2927 * Translate TGSI_TEXTURE_x to VGAPU10_RESOURCE_DIMENSION_x.
2928 */
2929static unsigned
2930tgsi_texture_to_resource_dimension(unsigned target, boolean is_array)
2931{
2932   switch (target) {
2933   case TGSI_TEXTURE_BUFFER:
2934      return VGPU10_RESOURCE_DIMENSION_BUFFER;
2935   case TGSI_TEXTURE_1D:
2936      return VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2937   case TGSI_TEXTURE_2D:
2938   case TGSI_TEXTURE_RECT:
2939      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2940   case TGSI_TEXTURE_3D:
2941      return VGPU10_RESOURCE_DIMENSION_TEXTURE3D;
2942   case TGSI_TEXTURE_CUBE:
2943      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE;
2944   case TGSI_TEXTURE_SHADOW1D:
2945      return VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2946   case TGSI_TEXTURE_SHADOW2D:
2947   case TGSI_TEXTURE_SHADOWRECT:
2948      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2949   case TGSI_TEXTURE_1D_ARRAY:
2950   case TGSI_TEXTURE_SHADOW1D_ARRAY:
2951      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE1DARRAY
2952         : VGPU10_RESOURCE_DIMENSION_TEXTURE1D;
2953   case TGSI_TEXTURE_2D_ARRAY:
2954   case TGSI_TEXTURE_SHADOW2D_ARRAY:
2955      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DARRAY
2956         : VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2957   case TGSI_TEXTURE_SHADOWCUBE:
2958      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE;
2959   case TGSI_TEXTURE_2D_MSAA:
2960      return VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS;
2961   case TGSI_TEXTURE_2D_ARRAY_MSAA:
2962      return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DMSARRAY
2963         : VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS;
2964   case TGSI_TEXTURE_CUBE_ARRAY:
2965      return VGPU10_RESOURCE_DIMENSION_TEXTURECUBEARRAY;
2966   default:
2967      assert(!"Unexpected resource type");
2968      return VGPU10_RESOURCE_DIMENSION_TEXTURE2D;
2969   }
2970}
2971
2972
2973/**
2974 * Given a tgsi_return_type, return true iff it is an integer type.
2975 */
2976static boolean
2977is_integer_type(enum tgsi_return_type type)
2978{
2979   switch (type) {
2980      case TGSI_RETURN_TYPE_SINT:
2981      case TGSI_RETURN_TYPE_UINT:
2982         return TRUE;
2983      case TGSI_RETURN_TYPE_FLOAT:
2984      case TGSI_RETURN_TYPE_UNORM:
2985      case TGSI_RETURN_TYPE_SNORM:
2986         return FALSE;
2987      case TGSI_RETURN_TYPE_COUNT:
2988      default:
2989         assert(!"is_integer_type: Unknown tgsi_return_type");
2990         return FALSE;
2991   }
2992}
2993
2994
2995/**
2996 * Emit declarations for resources.
2997 * XXX When we're sure that all TGSI shaders will be generated with
2998 * sampler view declarations (Ex: DCL SVIEW[n], 2D, UINT) we may
2999 * rework this code.
3000 */
3001static boolean
3002emit_resource_declarations(struct svga_shader_emitter_v10 *emit)
3003{
3004   unsigned i;
3005
3006   /* Emit resource decl for each sampler */
3007   for (i = 0; i < emit->num_samplers; i++) {
3008      VGPU10OpcodeToken0 opcode0;
3009      VGPU10OperandToken0 operand0;
3010      VGPU10ResourceReturnTypeToken return_type;
3011      VGPU10_RESOURCE_RETURN_TYPE rt;
3012
3013      opcode0.value = 0;
3014      opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE;
3015      opcode0.resourceDimension =
3016         tgsi_texture_to_resource_dimension(emit->sampler_target[i],
3017                                            emit->key.tex[i].is_array);
3018      operand0.value = 0;
3019      operand0.numComponents = VGPU10_OPERAND_0_COMPONENT;
3020      operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE;
3021      operand0.indexDimension = VGPU10_OPERAND_INDEX_1D;
3022      operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32;
3023
3024#if 1
3025      /* convert TGSI_RETURN_TYPE_x to VGPU10_RETURN_TYPE_x */
3026      STATIC_ASSERT(VGPU10_RETURN_TYPE_UNORM == TGSI_RETURN_TYPE_UNORM + 1);
3027      STATIC_ASSERT(VGPU10_RETURN_TYPE_SNORM == TGSI_RETURN_TYPE_SNORM + 1);
3028      STATIC_ASSERT(VGPU10_RETURN_TYPE_SINT == TGSI_RETURN_TYPE_SINT + 1);
3029      STATIC_ASSERT(VGPU10_RETURN_TYPE_UINT == TGSI_RETURN_TYPE_UINT + 1);
3030      STATIC_ASSERT(VGPU10_RETURN_TYPE_FLOAT == TGSI_RETURN_TYPE_FLOAT + 1);
3031      assert(emit->sampler_return_type[i] <= TGSI_RETURN_TYPE_FLOAT);
3032      rt = emit->sampler_return_type[i] + 1;
3033#else
3034      switch (emit->sampler_return_type[i]) {
3035         case TGSI_RETURN_TYPE_UNORM: rt = VGPU10_RETURN_TYPE_UNORM; break;
3036         case TGSI_RETURN_TYPE_SNORM: rt = VGPU10_RETURN_TYPE_SNORM; break;
3037         case TGSI_RETURN_TYPE_SINT:  rt = VGPU10_RETURN_TYPE_SINT;  break;
3038         case TGSI_RETURN_TYPE_UINT:  rt = VGPU10_RETURN_TYPE_UINT;  break;
3039         case TGSI_RETURN_TYPE_FLOAT: rt = VGPU10_RETURN_TYPE_FLOAT; break;
3040         case TGSI_RETURN_TYPE_COUNT:
3041         default:
3042            rt = VGPU10_RETURN_TYPE_FLOAT;
3043            assert(!"emit_resource_declarations: Unknown tgsi_return_type");
3044      }
3045#endif
3046
3047      return_type.value = 0;
3048      return_type.component0 = rt;
3049      return_type.component1 = rt;
3050      return_type.component2 = rt;
3051      return_type.component3 = rt;
3052
3053      begin_emit_instruction(emit);
3054      emit_dword(emit, opcode0.value);
3055      emit_dword(emit, operand0.value);
3056      emit_dword(emit, i);
3057      emit_dword(emit, return_type.value);
3058      end_emit_instruction(emit);
3059   }
3060
3061   return TRUE;
3062}
3063
3064static void
3065emit_instruction_op1(struct svga_shader_emitter_v10 *emit,
3066                     unsigned opcode,
3067                     const struct tgsi_full_dst_register *dst,
3068                     const struct tgsi_full_src_register *src,
3069                     boolean saturate)
3070{
3071   begin_emit_instruction(emit);
3072   emit_opcode(emit, opcode, saturate);
3073   emit_dst_register(emit, dst);
3074   emit_src_register(emit, src);
3075   end_emit_instruction(emit);
3076}
3077
3078static void
3079emit_instruction_op2(struct svga_shader_emitter_v10 *emit,
3080                     unsigned opcode,
3081                     const struct tgsi_full_dst_register *dst,
3082                     const struct tgsi_full_src_register *src1,
3083                     const struct tgsi_full_src_register *src2,
3084                     boolean saturate)
3085{
3086   begin_emit_instruction(emit);
3087   emit_opcode(emit, opcode, saturate);
3088   emit_dst_register(emit, dst);
3089   emit_src_register(emit, src1);
3090   emit_src_register(emit, src2);
3091   end_emit_instruction(emit);
3092}
3093
3094static void
3095emit_instruction_op3(struct svga_shader_emitter_v10 *emit,
3096                     unsigned opcode,
3097                     const struct tgsi_full_dst_register *dst,
3098                     const struct tgsi_full_src_register *src1,
3099                     const struct tgsi_full_src_register *src2,
3100                     const struct tgsi_full_src_register *src3,
3101                     boolean saturate)
3102{
3103   begin_emit_instruction(emit);
3104   emit_opcode(emit, opcode, saturate);
3105   emit_dst_register(emit, dst);
3106   emit_src_register(emit, src1);
3107   emit_src_register(emit, src2);
3108   emit_src_register(emit, src3);
3109   end_emit_instruction(emit);
3110}
3111
3112/**
3113 * Emit the actual clip distance instructions to be used for clipping
3114 * by copying the clip distance from the temporary registers to the
3115 * CLIPDIST registers written with the enabled planes mask.
3116 * Also copy the clip distance from the temporary to the clip distance
3117 * shadow copy register which will be referenced by the input shader
3118 */
3119static void
3120emit_clip_distance_instructions(struct svga_shader_emitter_v10 *emit)
3121{
3122   struct tgsi_full_src_register tmp_clip_dist_src;
3123   struct tgsi_full_dst_register clip_dist_dst;
3124
3125   unsigned i;
3126   unsigned clip_plane_enable = emit->key.clip_plane_enable;
3127   unsigned clip_dist_tmp_index = emit->clip_dist_tmp_index;
3128   int num_written_clipdist = emit->info.num_written_clipdistance;
3129
3130   assert(emit->clip_dist_out_index != INVALID_INDEX);
3131   assert(emit->clip_dist_tmp_index != INVALID_INDEX);
3132
3133   /**
3134    * Temporary reset the temporary clip dist register index so
3135    * that the copy to the real clip dist register will not
3136    * attempt to copy to the temporary register again
3137    */
3138   emit->clip_dist_tmp_index = INVALID_INDEX;
3139
3140   for (i = 0; i < 2 && num_written_clipdist > 0; i++, num_written_clipdist-=4) {
3141
3142      tmp_clip_dist_src = make_src_temp_reg(clip_dist_tmp_index + i);
3143
3144      /**
3145       * copy to the shadow copy for use by varying variable and
3146       * stream output. All clip distances
3147       * will be written regardless of the enabled clipping planes.
3148       */
3149      clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT,
3150                                   emit->clip_dist_so_index + i);
3151
3152      /* MOV clip_dist_so, tmp_clip_dist */
3153      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst,
3154                           &tmp_clip_dist_src, FALSE);
3155
3156      /**
3157       * copy those clip distances to enabled clipping planes
3158       * to CLIPDIST registers for clipping
3159       */
3160      if (clip_plane_enable & 0xf) {
3161         clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT,
3162                                      emit->clip_dist_out_index + i);
3163         clip_dist_dst = writemask_dst(&clip_dist_dst, clip_plane_enable & 0xf);
3164
3165         /* MOV CLIPDIST, tmp_clip_dist */
3166         emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst,
3167                              &tmp_clip_dist_src, FALSE);
3168      }
3169      /* four clip planes per clip register */
3170      clip_plane_enable >>= 4;
3171   }
3172   /**
3173    * set the temporary clip dist register index back to the
3174    * temporary index for the next vertex
3175    */
3176   emit->clip_dist_tmp_index = clip_dist_tmp_index;
3177}
3178
3179/* Declare clip distance output registers for user-defined clip planes
3180 * or the TGSI_CLIPVERTEX output.
3181 */
3182static void
3183emit_clip_distance_declarations(struct svga_shader_emitter_v10 *emit)
3184{
3185   unsigned num_clip_planes = util_bitcount(emit->key.clip_plane_enable);
3186   unsigned index = emit->num_outputs;
3187   unsigned plane_mask;
3188
3189   assert(emit->unit == PIPE_SHADER_VERTEX ||
3190          emit->unit == PIPE_SHADER_GEOMETRY);
3191   assert(num_clip_planes <= 8);
3192
3193   if (emit->clip_mode != CLIP_LEGACY &&
3194       emit->clip_mode != CLIP_VERTEX) {
3195      return;
3196   }
3197
3198   if (num_clip_planes == 0)
3199      return;
3200
3201   /* Declare one or two clip output registers.  The number of components
3202    * in the mask reflects the number of clip planes.  For example, if 5
3203    * clip planes are needed, we'll declare outputs similar to:
3204    * dcl_output_siv o2.xyzw, clip_distance
3205    * dcl_output_siv o3.x, clip_distance
3206    */
3207   emit->clip_dist_out_index = index; /* save the starting clip dist reg index */
3208
3209   plane_mask = (1 << num_clip_planes) - 1;
3210   if (plane_mask & 0xf) {
3211      unsigned cmask = plane_mask & VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
3212      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index,
3213                              VGPU10_NAME_CLIP_DISTANCE, cmask);
3214      emit->num_outputs++;
3215   }
3216   if (plane_mask & 0xf0) {
3217      unsigned cmask = (plane_mask >> 4) & VGPU10_OPERAND_4_COMPONENT_MASK_ALL;
3218      emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index + 1,
3219                              VGPU10_NAME_CLIP_DISTANCE, cmask);
3220      emit->num_outputs++;
3221   }
3222}
3223
3224
3225/**
3226 * Emit the instructions for writing to the clip distance registers
3227 * to handle legacy/automatic clip planes.
3228 * For each clip plane, the distance is the dot product of the vertex
3229 * position (found in TEMP[vpos_tmp_index]) and the clip plane coefficients.
3230 * This is not used when the shader has an explicit CLIPVERTEX or CLIPDISTANCE
3231 * output registers already declared.
3232 */
3233static void
3234emit_clip_distance_from_vpos(struct svga_shader_emitter_v10 *emit,
3235                             unsigned vpos_tmp_index)
3236{
3237   unsigned i, num_clip_planes = util_bitcount(emit->key.clip_plane_enable);
3238
3239   assert(emit->clip_mode == CLIP_LEGACY);
3240   assert(num_clip_planes <= 8);
3241
3242   assert(emit->unit == PIPE_SHADER_VERTEX ||
3243          emit->unit == PIPE_SHADER_GEOMETRY);
3244
3245   for (i = 0; i < num_clip_planes; i++) {
3246      struct tgsi_full_dst_register dst;
3247      struct tgsi_full_src_register plane_src, vpos_src;
3248      unsigned reg_index = emit->clip_dist_out_index + i / 4;
3249      unsigned comp = i % 4;
3250      unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp;
3251
3252      /* create dst, src regs */
3253      dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index);
3254      dst = writemask_dst(&dst, writemask);
3255
3256      plane_src = make_src_const_reg(emit->clip_plane_const[i]);
3257      vpos_src = make_src_temp_reg(vpos_tmp_index);
3258
3259      /* DP4 clip_dist, plane, vpos */
3260      emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst,
3261                           &plane_src, &vpos_src, FALSE);
3262   }
3263}
3264
3265
3266/**
3267 * Emit the instructions for computing the clip distance results from
3268 * the clip vertex temporary.
3269 * For each clip plane, the distance is the dot product of the clip vertex
3270 * position (found in a temp reg) and the clip plane coefficients.
3271 */
3272static void
3273emit_clip_vertex_instructions(struct svga_shader_emitter_v10 *emit)
3274{
3275   const unsigned num_clip = util_bitcount(emit->key.clip_plane_enable);
3276   unsigned i;
3277   struct tgsi_full_dst_register dst;
3278   struct tgsi_full_src_register clipvert_src;
3279   const unsigned clip_vertex_tmp = emit->clip_vertex_tmp_index;
3280
3281   assert(emit->unit == PIPE_SHADER_VERTEX ||
3282          emit->unit == PIPE_SHADER_GEOMETRY);
3283
3284   assert(emit->clip_mode == CLIP_VERTEX);
3285
3286   clipvert_src = make_src_temp_reg(clip_vertex_tmp);
3287
3288   for (i = 0; i < num_clip; i++) {
3289      struct tgsi_full_src_register plane_src;
3290      unsigned reg_index = emit->clip_dist_out_index + i / 4;
3291      unsigned comp = i % 4;
3292      unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp;
3293
3294      /* create dst, src regs */
3295      dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index);
3296      dst = writemask_dst(&dst, writemask);
3297
3298      plane_src = make_src_const_reg(emit->clip_plane_const[i]);
3299
3300      /* DP4 clip_dist, plane, vpos */
3301      emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst,
3302                           &plane_src, &clipvert_src, FALSE);
3303   }
3304
3305   /* copy temporary clip vertex register to the clip vertex register */
3306
3307   assert(emit->clip_vertex_out_index != INVALID_INDEX);
3308
3309   /**
3310    * temporary reset the temporary clip vertex register index so
3311    * that copy to the clip vertex register will not attempt
3312    * to copy to the temporary register again
3313    */
3314   emit->clip_vertex_tmp_index = INVALID_INDEX;
3315
3316   /* MOV clip_vertex, clip_vertex_tmp */
3317   dst = make_dst_reg(TGSI_FILE_OUTPUT, emit->clip_vertex_out_index);
3318   emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
3319                        &dst, &clipvert_src, FALSE);
3320
3321   /**
3322    * set the temporary clip vertex register index back to the
3323    * temporary index for the next vertex
3324    */
3325   emit->clip_vertex_tmp_index = clip_vertex_tmp;
3326}
3327
3328/**
3329 * Emit code to convert RGBA to BGRA
3330 */
3331static void
3332emit_swap_r_b(struct svga_shader_emitter_v10 *emit,
3333                     const struct tgsi_full_dst_register *dst,
3334                     const struct tgsi_full_src_register *src)
3335{
3336   struct tgsi_full_src_register bgra_src =
3337      swizzle_src(src, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_Y, TGSI_SWIZZLE_X, TGSI_SWIZZLE_W);
3338
3339   begin_emit_instruction(emit);
3340   emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
3341   emit_dst_register(emit, dst);
3342   emit_src_register(emit, &bgra_src);
3343   end_emit_instruction(emit);
3344}
3345
3346
3347/** Convert from 10_10_10_2 normalized to 10_10_10_2_snorm */
3348static void
3349emit_puint_to_snorm(struct svga_shader_emitter_v10 *emit,
3350                    const struct tgsi_full_dst_register *dst,
3351                    const struct tgsi_full_src_register *src)
3352{
3353   struct tgsi_full_src_register half = make_immediate_reg_float(emit, 0.5f);
3354   struct tgsi_full_src_register two =
3355      make_immediate_reg_float4(emit, 2.0f, 2.0f, 2.0f, 3.0f);
3356   struct tgsi_full_src_register neg_two =
3357      make_immediate_reg_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f);
3358
3359   unsigned val_tmp = get_temp_index(emit);
3360   struct tgsi_full_dst_register val_dst = make_dst_temp_reg(val_tmp);
3361   struct tgsi_full_src_register val_src = make_src_temp_reg(val_tmp);
3362
3363   unsigned bias_tmp = get_temp_index(emit);
3364   struct tgsi_full_dst_register bias_dst = make_dst_temp_reg(bias_tmp);
3365   struct tgsi_full_src_register bias_src = make_src_temp_reg(bias_tmp);
3366
3367   /* val = src * 2.0 */
3368   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &val_dst,
3369                        src, &two, FALSE);
3370
3371   /* bias = src > 0.5 */
3372   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &bias_dst,
3373                        src, &half, FALSE);
3374
3375   /* bias = bias & -2.0 */
3376   emit_instruction_op2(emit, VGPU10_OPCODE_AND, &bias_dst,
3377                        &bias_src, &neg_two, FALSE);
3378
3379   /* dst = val + bias */
3380   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, dst,
3381                        &val_src, &bias_src, FALSE);
3382
3383   free_temp_indexes(emit);
3384}
3385
3386
3387/** Convert from 10_10_10_2_unorm to 10_10_10_2_uscaled */
3388static void
3389emit_puint_to_uscaled(struct svga_shader_emitter_v10 *emit,
3390                      const struct tgsi_full_dst_register *dst,
3391                      const struct tgsi_full_src_register *src)
3392{
3393   struct tgsi_full_src_register scale =
3394      make_immediate_reg_float4(emit, 1023.0f, 1023.0f, 1023.0f, 3.0f);
3395
3396   /* dst = src * scale */
3397   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, dst, src, &scale, FALSE);
3398}
3399
3400
3401/** Convert from R32_UINT to 10_10_10_2_sscaled */
3402static void
3403emit_puint_to_sscaled(struct svga_shader_emitter_v10 *emit,
3404                      const struct tgsi_full_dst_register *dst,
3405                      const struct tgsi_full_src_register *src)
3406{
3407   struct tgsi_full_src_register lshift =
3408      make_immediate_reg_int4(emit, 22, 12, 2, 0);
3409   struct tgsi_full_src_register rshift =
3410      make_immediate_reg_int4(emit, 22, 22, 22, 30);
3411
3412   struct tgsi_full_src_register src_xxxx = scalar_src(src, TGSI_SWIZZLE_X);
3413
3414   unsigned tmp = get_temp_index(emit);
3415   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3416   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3417
3418   /*
3419    * r = (pixel << 22) >> 22;   # signed int in [511, -512]
3420    * g = (pixel << 12) >> 22;   # signed int in [511, -512]
3421    * b = (pixel <<  2) >> 22;   # signed int in [511, -512]
3422    * a = (pixel <<  0) >> 30;   # signed int in [1, -2]
3423    * dst = i_to_f(r,g,b,a);     # convert to float
3424    */
3425   emit_instruction_op2(emit, VGPU10_OPCODE_ISHL, &tmp_dst,
3426                        &src_xxxx, &lshift, FALSE);
3427   emit_instruction_op2(emit, VGPU10_OPCODE_ISHR, &tmp_dst,
3428                        &tmp_src, &rshift, FALSE);
3429   emit_instruction_op1(emit, VGPU10_OPCODE_ITOF, dst, &tmp_src, FALSE);
3430
3431   free_temp_indexes(emit);
3432}
3433
3434
3435/**
3436 * Emit code for TGSI_OPCODE_ABS instruction.
3437 */
3438static boolean
3439emit_abs(struct svga_shader_emitter_v10 *emit,
3440         const struct tgsi_full_instruction *inst)
3441{
3442   /* dst = ABS(s0):
3443    *   dst = abs(s0)
3444    * Translates into:
3445    *   MOV dst, abs(s0)
3446    */
3447   struct tgsi_full_src_register abs_src0 = absolute_src(&inst->Src[0]);
3448
3449   /* MOV dst, abs(s0) */
3450   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
3451                        &abs_src0, inst->Instruction.Saturate);
3452
3453   return TRUE;
3454}
3455
3456
3457/**
3458 * Emit code for TGSI_OPCODE_ARL or TGSI_OPCODE_UARL instruction.
3459 */
3460static boolean
3461emit_arl_uarl(struct svga_shader_emitter_v10 *emit,
3462              const struct tgsi_full_instruction *inst)
3463{
3464   unsigned index = inst->Dst[0].Register.Index;
3465   struct tgsi_full_dst_register dst;
3466   unsigned opcode;
3467
3468   assert(index < MAX_VGPU10_ADDR_REGS);
3469   dst = make_dst_temp_reg(emit->address_reg_index[index]);
3470
3471   /* ARL dst, s0
3472    * Translates into:
3473    * FTOI address_tmp, s0
3474    *
3475    * UARL dst, s0
3476    * Translates into:
3477    * MOV address_tmp, s0
3478    */
3479   if (inst->Instruction.Opcode == TGSI_OPCODE_ARL)
3480      opcode = VGPU10_OPCODE_FTOI;
3481   else
3482      opcode = VGPU10_OPCODE_MOV;
3483
3484   emit_instruction_op1(emit, opcode, &dst, &inst->Src[0], FALSE);
3485
3486   return TRUE;
3487}
3488
3489
3490/**
3491 * Emit code for TGSI_OPCODE_CAL instruction.
3492 */
3493static boolean
3494emit_cal(struct svga_shader_emitter_v10 *emit,
3495         const struct tgsi_full_instruction *inst)
3496{
3497   unsigned label = inst->Label.Label;
3498   VGPU10OperandToken0 operand;
3499   operand.value = 0;
3500   operand.operandType = VGPU10_OPERAND_TYPE_LABEL;
3501
3502   begin_emit_instruction(emit);
3503   emit_dword(emit, operand.value);
3504   emit_dword(emit, label);
3505   end_emit_instruction(emit);
3506
3507   return TRUE;
3508}
3509
3510
3511/**
3512 * Emit code for TGSI_OPCODE_IABS instruction.
3513 */
3514static boolean
3515emit_iabs(struct svga_shader_emitter_v10 *emit,
3516          const struct tgsi_full_instruction *inst)
3517{
3518   /* dst.x = (src0.x < 0) ? -src0.x : src0.x
3519    * dst.y = (src0.y < 0) ? -src0.y : src0.y
3520    * dst.z = (src0.z < 0) ? -src0.z : src0.z
3521    * dst.w = (src0.w < 0) ? -src0.w : src0.w
3522    *
3523    * Translates into
3524    *   IMAX dst, src, neg(src)
3525    */
3526   struct tgsi_full_src_register neg_src = negate_src(&inst->Src[0]);
3527   emit_instruction_op2(emit, VGPU10_OPCODE_IMAX, &inst->Dst[0],
3528                        &inst->Src[0], &neg_src, FALSE);
3529
3530   return TRUE;
3531}
3532
3533
3534/**
3535 * Emit code for TGSI_OPCODE_CMP instruction.
3536 */
3537static boolean
3538emit_cmp(struct svga_shader_emitter_v10 *emit,
3539         const struct tgsi_full_instruction *inst)
3540{
3541   /* dst.x = (src0.x < 0) ? src1.x : src2.x
3542    * dst.y = (src0.y < 0) ? src1.y : src2.y
3543    * dst.z = (src0.z < 0) ? src1.z : src2.z
3544    * dst.w = (src0.w < 0) ? src1.w : src2.w
3545    *
3546    * Translates into
3547    *   LT tmp, src0, 0.0
3548    *   MOVC dst, tmp, src1, src2
3549    */
3550   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3551   unsigned tmp = get_temp_index(emit);
3552   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3553   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3554
3555   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst,
3556                        &inst->Src[0], &zero, FALSE);
3557   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0],
3558                        &tmp_src, &inst->Src[1], &inst->Src[2],
3559                        inst->Instruction.Saturate);
3560
3561   free_temp_indexes(emit);
3562
3563   return TRUE;
3564}
3565
3566
3567/**
3568 * Emit code for TGSI_OPCODE_DP2A instruction.
3569 */
3570static boolean
3571emit_dp2a(struct svga_shader_emitter_v10 *emit,
3572          const struct tgsi_full_instruction *inst)
3573{
3574   /* dst.x = src0.x * src1.x + src0.y * src1.y + src2.x
3575    * dst.y = src0.x * src1.x + src0.y * src1.y + src2.x
3576    * dst.z = src0.x * src1.x + src0.y * src1.y + src2.x
3577    * dst.w = src0.x * src1.x + src0.y * src1.y + src2.x
3578    * Translate into
3579    *   MAD tmp.x, s0.y, s1.y, s2.x
3580    *   MAD tmp.x, s0.x, s1.x, tmp.x
3581    *   MOV dst.xyzw, tmp.xxxx
3582    */
3583   unsigned tmp = get_temp_index(emit);
3584   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3585   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3586
3587   struct tgsi_full_src_register tmp_src_xxxx =
3588      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3589   struct tgsi_full_dst_register tmp_dst_x =
3590      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3591
3592   struct tgsi_full_src_register src0_xxxx =
3593      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
3594   struct tgsi_full_src_register src0_yyyy =
3595      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
3596   struct tgsi_full_src_register src1_xxxx =
3597      scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
3598   struct tgsi_full_src_register src1_yyyy =
3599      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
3600   struct tgsi_full_src_register src2_xxxx =
3601      scalar_src(&inst->Src[2], TGSI_SWIZZLE_X);
3602
3603   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_yyyy,
3604                        &src1_yyyy, &src2_xxxx, FALSE);
3605   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_xxxx,
3606                        &src1_xxxx, &tmp_src_xxxx, FALSE);
3607   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
3608                        &tmp_src_xxxx, inst->Instruction.Saturate);
3609
3610   free_temp_indexes(emit);
3611
3612   return TRUE;
3613}
3614
3615
3616/**
3617 * Emit code for TGSI_OPCODE_DPH instruction.
3618 */
3619static boolean
3620emit_dph(struct svga_shader_emitter_v10 *emit,
3621         const struct tgsi_full_instruction *inst)
3622{
3623   /*
3624    * DP3 tmp, s0, s1
3625    * ADD dst, tmp, s1.wwww
3626    */
3627
3628   struct tgsi_full_src_register s1_wwww =
3629      swizzle_src(&inst->Src[1], TGSI_SWIZZLE_W, TGSI_SWIZZLE_W,
3630                  TGSI_SWIZZLE_W, TGSI_SWIZZLE_W);
3631
3632   unsigned tmp = get_temp_index(emit);
3633   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3634   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3635
3636   /* DP3 tmp, s0, s1 */
3637   emit_instruction_op2(emit, VGPU10_OPCODE_DP3, &tmp_dst, &inst->Src[0],
3638                        &inst->Src[1], FALSE);
3639
3640   /* ADD dst, tmp, s1.wwww */
3641   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0], &tmp_src,
3642                        &s1_wwww, inst->Instruction.Saturate);
3643
3644   free_temp_indexes(emit);
3645
3646   return TRUE;
3647}
3648
3649
3650/**
3651 * Emit code for TGSI_OPCODE_DST instruction.
3652 */
3653static boolean
3654emit_dst(struct svga_shader_emitter_v10 *emit,
3655         const struct tgsi_full_instruction *inst)
3656{
3657   /*
3658    * dst.x = 1
3659    * dst.y = src0.y * src1.y
3660    * dst.z = src0.z
3661    * dst.w = src1.w
3662    */
3663
3664   struct tgsi_full_src_register s0_yyyy =
3665      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
3666   struct tgsi_full_src_register s0_zzzz =
3667      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z);
3668   struct tgsi_full_src_register s1_yyyy =
3669      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
3670   struct tgsi_full_src_register s1_wwww =
3671      scalar_src(&inst->Src[1], TGSI_SWIZZLE_W);
3672
3673   /*
3674    * If dst and either src0 and src1 are the same we need
3675    * to create a temporary for it and insert a extra move.
3676    */
3677   unsigned tmp_move = get_temp_index(emit);
3678   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
3679   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
3680
3681   /* MOV dst.x, 1.0 */
3682   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3683      struct tgsi_full_dst_register dst_x =
3684         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
3685      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3686
3687      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE);
3688   }
3689
3690   /* MUL dst.y, s0.y, s1.y */
3691   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3692      struct tgsi_full_dst_register dst_y =
3693         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
3694
3695      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &dst_y, &s0_yyyy,
3696                           &s1_yyyy, inst->Instruction.Saturate);
3697   }
3698
3699   /* MOV dst.z, s0.z */
3700   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3701      struct tgsi_full_dst_register dst_z =
3702         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
3703
3704      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z, &s0_zzzz,
3705                           inst->Instruction.Saturate);
3706  }
3707
3708   /* MOV dst.w, s1.w */
3709   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3710      struct tgsi_full_dst_register dst_w =
3711         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
3712
3713      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &s1_wwww,
3714                           inst->Instruction.Saturate);
3715   }
3716
3717   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
3718                        FALSE);
3719   free_temp_indexes(emit);
3720
3721   return TRUE;
3722}
3723
3724
3725
3726/**
3727 * Emit code for TGSI_OPCODE_ENDPRIM (GS only)
3728 */
3729static boolean
3730emit_endprim(struct svga_shader_emitter_v10 *emit,
3731             const struct tgsi_full_instruction *inst)
3732{
3733   assert(emit->unit == PIPE_SHADER_GEOMETRY);
3734
3735   /* We can't use emit_simple() because the TGSI instruction has one
3736    * operand (vertex stream number) which we must ignore for VGPU10.
3737    */
3738   begin_emit_instruction(emit);
3739   emit_opcode(emit, VGPU10_OPCODE_CUT, FALSE);
3740   end_emit_instruction(emit);
3741   return TRUE;
3742}
3743
3744
3745/**
3746 * Emit code for TGSI_OPCODE_EX2 (2^x) instruction.
3747 */
3748static boolean
3749emit_ex2(struct svga_shader_emitter_v10 *emit,
3750         const struct tgsi_full_instruction *inst)
3751{
3752   /* Note that TGSI_OPCODE_EX2 computes only one value from src.x
3753    * while VGPU10 computes four values.
3754    *
3755    * dst = EX2(src):
3756    *   dst.xyzw = 2.0 ^ src.x
3757    */
3758
3759   struct tgsi_full_src_register src_xxxx =
3760      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
3761                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
3762
3763   /* EXP tmp, s0.xxxx */
3764   emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0], &src_xxxx,
3765                        inst->Instruction.Saturate);
3766
3767   return TRUE;
3768}
3769
3770
3771/**
3772 * Emit code for TGSI_OPCODE_EXP instruction.
3773 */
3774static boolean
3775emit_exp(struct svga_shader_emitter_v10 *emit,
3776         const struct tgsi_full_instruction *inst)
3777{
3778   /*
3779    * dst.x = 2 ^ floor(s0.x)
3780    * dst.y = s0.x - floor(s0.x)
3781    * dst.z = 2 ^ s0.x
3782    * dst.w = 1.0
3783    */
3784
3785   struct tgsi_full_src_register src_xxxx =
3786      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
3787   unsigned tmp = get_temp_index(emit);
3788   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3789   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3790
3791   /*
3792    * If dst and src are the same we need to create
3793    * a temporary for it and insert a extra move.
3794    */
3795   unsigned tmp_move = get_temp_index(emit);
3796   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
3797   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
3798
3799   /* only use X component of temp reg */
3800   tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3801   tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3802
3803   /* ROUND_NI tmp.x, s0.x */
3804   emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst,
3805                        &src_xxxx, FALSE); /* round to -infinity */
3806
3807   /* EXP dst.x, tmp.x */
3808   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3809      struct tgsi_full_dst_register dst_x =
3810         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
3811
3812      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_x, &tmp_src,
3813                           inst->Instruction.Saturate);
3814   }
3815
3816   /* ADD dst.y, s0.x, -tmp */
3817   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3818      struct tgsi_full_dst_register dst_y =
3819         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
3820      struct tgsi_full_src_register neg_tmp_src = negate_src(&tmp_src);
3821
3822      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_y, &src_xxxx,
3823                           &neg_tmp_src, inst->Instruction.Saturate);
3824   }
3825
3826   /* EXP dst.z, s0.x */
3827   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3828      struct tgsi_full_dst_register dst_z =
3829         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
3830
3831      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_z, &src_xxxx,
3832                           inst->Instruction.Saturate);
3833   }
3834
3835   /* MOV dst.w, 1.0 */
3836   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3837      struct tgsi_full_dst_register dst_w =
3838         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
3839      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3840
3841      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one,
3842                           FALSE);
3843   }
3844
3845   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
3846                        FALSE);
3847
3848   free_temp_indexes(emit);
3849
3850   return TRUE;
3851}
3852
3853
3854/**
3855 * Emit code for TGSI_OPCODE_IF instruction.
3856 */
3857static boolean
3858emit_if(struct svga_shader_emitter_v10 *emit,
3859        const struct tgsi_full_instruction *inst)
3860{
3861   VGPU10OpcodeToken0 opcode0;
3862
3863   /* The src register should be a scalar */
3864   assert(inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleY &&
3865          inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleZ &&
3866          inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleW);
3867
3868   /* The only special thing here is that we need to set the
3869    * VGPU10_INSTRUCTION_TEST_NONZERO flag since we want to test if
3870    * src.x is non-zero.
3871    */
3872   opcode0.value = 0;
3873   opcode0.opcodeType = VGPU10_OPCODE_IF;
3874   opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO;
3875
3876   begin_emit_instruction(emit);
3877   emit_dword(emit, opcode0.value);
3878   emit_src_register(emit, &inst->Src[0]);
3879   end_emit_instruction(emit);
3880
3881   return TRUE;
3882}
3883
3884
3885/**
3886 * Emit code for TGSI_OPCODE_KILL_IF instruction (kill fragment if any of
3887 * the register components are negative).
3888 */
3889static boolean
3890emit_kill_if(struct svga_shader_emitter_v10 *emit,
3891             const struct tgsi_full_instruction *inst)
3892{
3893   unsigned tmp = get_temp_index(emit);
3894   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
3895   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
3896
3897   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3898
3899   struct tgsi_full_dst_register tmp_dst_x =
3900      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
3901   struct tgsi_full_src_register tmp_src_xxxx =
3902      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
3903
3904   /* tmp = src[0] < 0.0 */
3905   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0],
3906                        &zero, FALSE);
3907
3908   if (!same_swizzle_terms(&inst->Src[0])) {
3909      /* If the swizzle is not XXXX, YYYY, ZZZZ or WWWW we need to
3910       * logically OR the swizzle terms.  Most uses of KILL_IF only
3911       * test one channel so it's good to avoid these extra steps.
3912       */
3913      struct tgsi_full_src_register tmp_src_yyyy =
3914         scalar_src(&tmp_src, TGSI_SWIZZLE_Y);
3915      struct tgsi_full_src_register tmp_src_zzzz =
3916         scalar_src(&tmp_src, TGSI_SWIZZLE_Z);
3917      struct tgsi_full_src_register tmp_src_wwww =
3918         scalar_src(&tmp_src, TGSI_SWIZZLE_W);
3919
3920      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3921                           &tmp_src_yyyy, FALSE);
3922      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3923                           &tmp_src_zzzz, FALSE);
3924      emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx,
3925                           &tmp_src_wwww, FALSE);
3926   }
3927
3928   begin_emit_instruction(emit);
3929   emit_discard_opcode(emit, TRUE); /* discard if src0.x is non-zero */
3930   emit_src_register(emit, &tmp_src_xxxx);
3931   end_emit_instruction(emit);
3932
3933   free_temp_indexes(emit);
3934
3935   return TRUE;
3936}
3937
3938
3939/**
3940 * Emit code for TGSI_OPCODE_KILL instruction (unconditional discard).
3941 */
3942static boolean
3943emit_kill(struct svga_shader_emitter_v10 *emit,
3944          const struct tgsi_full_instruction *inst)
3945{
3946   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
3947
3948   /* DISCARD if 0.0 is zero */
3949   begin_emit_instruction(emit);
3950   emit_discard_opcode(emit, FALSE);
3951   emit_src_register(emit, &zero);
3952   end_emit_instruction(emit);
3953
3954   return TRUE;
3955}
3956
3957
3958/**
3959 * Emit code for TGSI_OPCODE_LG2 instruction.
3960 */
3961static boolean
3962emit_lg2(struct svga_shader_emitter_v10 *emit,
3963         const struct tgsi_full_instruction *inst)
3964{
3965   /* Note that TGSI_OPCODE_LG2 computes only one value from src.x
3966    * while VGPU10 computes four values.
3967    *
3968    * dst = LG2(src):
3969    *   dst.xyzw = log2(src.x)
3970    */
3971
3972   struct tgsi_full_src_register src_xxxx =
3973      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
3974                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
3975
3976   /* LOG tmp, s0.xxxx */
3977   emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &inst->Dst[0], &src_xxxx,
3978                        inst->Instruction.Saturate);
3979
3980   return TRUE;
3981}
3982
3983
3984/**
3985 * Emit code for TGSI_OPCODE_LIT instruction.
3986 */
3987static boolean
3988emit_lit(struct svga_shader_emitter_v10 *emit,
3989         const struct tgsi_full_instruction *inst)
3990{
3991   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
3992
3993   /*
3994    * If dst and src are the same we need to create
3995    * a temporary for it and insert a extra move.
3996    */
3997   unsigned tmp_move = get_temp_index(emit);
3998   struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move);
3999   struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move);
4000
4001   /*
4002    * dst.x = 1
4003    * dst.y = max(src.x, 0)
4004    * dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
4005    * dst.w = 1
4006    */
4007
4008   /* MOV dst.x, 1.0 */
4009   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
4010      struct tgsi_full_dst_register dst_x =
4011         writemask_dst(&move_dst, TGSI_WRITEMASK_X);
4012      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE);
4013   }
4014
4015   /* MOV dst.w, 1.0 */
4016   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
4017      struct tgsi_full_dst_register dst_w =
4018         writemask_dst(&move_dst, TGSI_WRITEMASK_W);
4019      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE);
4020   }
4021
4022   /* MAX dst.y, src.x, 0.0 */
4023   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
4024      struct tgsi_full_dst_register dst_y =
4025         writemask_dst(&move_dst, TGSI_WRITEMASK_Y);
4026      struct tgsi_full_src_register zero =
4027         make_immediate_reg_float(emit, 0.0f);
4028      struct tgsi_full_src_register src_xxxx =
4029         swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4030                     TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4031
4032      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &dst_y, &src_xxxx,
4033                           &zero, inst->Instruction.Saturate);
4034   }
4035
4036   /*
4037    * tmp1 = clamp(src.w, -128, 128);
4038    *   MAX tmp1, src.w, -128
4039    *   MIN tmp1, tmp1, 128
4040    *
4041    * tmp2 = max(tmp2, 0);
4042    *   MAX tmp2, src.y, 0
4043    *
4044    * tmp1 = pow(tmp2, tmp1);
4045    *   LOG tmp2, tmp2
4046    *   MUL tmp1, tmp2, tmp1
4047    *   EXP tmp1, tmp1
4048    *
4049    * tmp1 = (src.w == 0) ? 1 : tmp1;
4050    *   EQ tmp2, 0, src.w
4051    *   MOVC tmp1, tmp2, 1.0, tmp1
4052    *
4053    * dst.z = (0 < src.x) ? tmp1 : 0;
4054    *   LT tmp2, 0, src.x
4055    *   MOVC dst.z, tmp2, tmp1, 0.0
4056    */
4057   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
4058      struct tgsi_full_dst_register dst_z =
4059         writemask_dst(&move_dst, TGSI_WRITEMASK_Z);
4060
4061      unsigned tmp1 = get_temp_index(emit);
4062      struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4063      struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4064      unsigned tmp2 = get_temp_index(emit);
4065      struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4066      struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4067
4068      struct tgsi_full_src_register src_xxxx =
4069         scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
4070      struct tgsi_full_src_register src_yyyy =
4071         scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
4072      struct tgsi_full_src_register src_wwww =
4073         scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
4074
4075      struct tgsi_full_src_register zero =
4076         make_immediate_reg_float(emit, 0.0f);
4077      struct tgsi_full_src_register lowerbound =
4078         make_immediate_reg_float(emit, -128.0f);
4079      struct tgsi_full_src_register upperbound =
4080         make_immediate_reg_float(emit, 128.0f);
4081
4082      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp1_dst, &src_wwww,
4083                           &lowerbound, FALSE);
4084      emit_instruction_op2(emit, VGPU10_OPCODE_MIN, &tmp1_dst, &tmp1_src,
4085                           &upperbound, FALSE);
4086      emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp2_dst, &src_yyyy,
4087                           &zero, FALSE);
4088
4089      /* POW tmp1, tmp2, tmp1 */
4090      /* LOG tmp2, tmp2 */
4091      emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp2_dst, &tmp2_src,
4092                           FALSE);
4093
4094      /* MUL tmp1, tmp2, tmp1 */
4095      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &tmp2_src,
4096                           &tmp1_src, FALSE);
4097
4098      /* EXP tmp1, tmp1 */
4099      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp1_dst, &tmp1_src,
4100                           FALSE);
4101
4102      /* EQ tmp2, 0, src.w */
4103      emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp2_dst, &zero,
4104                           &src_wwww, FALSE);
4105      /* MOVC tmp1.z, tmp2, tmp1, 1.0 */
4106      emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp1_dst,
4107                           &tmp2_src, &one, &tmp1_src, FALSE);
4108
4109      /* LT tmp2, 0, src.x */
4110      emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp2_dst, &zero,
4111                           &src_xxxx, FALSE);
4112      /* MOVC dst.z, tmp2, tmp1, 0.0 */
4113      emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &dst_z,
4114                           &tmp2_src, &tmp1_src, &zero, FALSE);
4115   }
4116
4117   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src,
4118                        FALSE);
4119   free_temp_indexes(emit);
4120
4121   return TRUE;
4122}
4123
4124
4125/**
4126 * Emit code for TGSI_OPCODE_LOG instruction.
4127 */
4128static boolean
4129emit_log(struct svga_shader_emitter_v10 *emit,
4130         const struct tgsi_full_instruction *inst)
4131{
4132   /*
4133    * dst.x = floor(lg2(abs(s0.x)))
4134    * dst.y = abs(s0.x) / (2 ^ floor(lg2(abs(s0.x))))
4135    * dst.z = lg2(abs(s0.x))
4136    * dst.w = 1.0
4137    */
4138
4139   struct tgsi_full_src_register src_xxxx =
4140      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
4141   unsigned tmp = get_temp_index(emit);
4142   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4143   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4144   struct tgsi_full_src_register abs_src_xxxx = absolute_src(&src_xxxx);
4145
4146   /* only use X component of temp reg */
4147   tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4148   tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4149
4150   /* LOG tmp.x, abs(s0.x) */
4151   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
4152      emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst,
4153                          &abs_src_xxxx, FALSE);
4154   }
4155
4156   /* MOV dst.z, tmp.x */
4157   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
4158      struct tgsi_full_dst_register dst_z =
4159         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Z);
4160
4161      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z,
4162                           &tmp_src, inst->Instruction.Saturate);
4163   }
4164
4165   /* FLR tmp.x, tmp.x */
4166   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
4167      emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst,
4168                           &tmp_src, FALSE);
4169   }
4170
4171   /* MOV dst.x, tmp.x */
4172   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
4173      struct tgsi_full_dst_register dst_x =
4174         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X);
4175
4176      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &tmp_src,
4177                           inst->Instruction.Saturate);
4178   }
4179
4180   /* EXP tmp.x, tmp.x */
4181   /* DIV dst.y, abs(s0.x), tmp.x */
4182   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
4183      struct tgsi_full_dst_register dst_y =
4184         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y);
4185
4186      emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp_dst, &tmp_src,
4187                           FALSE);
4188      emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &dst_y, &abs_src_xxxx,
4189                           &tmp_src, inst->Instruction.Saturate);
4190   }
4191
4192   /* MOV dst.w, 1.0 */
4193   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
4194      struct tgsi_full_dst_register dst_w =
4195         writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_W);
4196      struct tgsi_full_src_register one =
4197         make_immediate_reg_float(emit, 1.0f);
4198
4199      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE);
4200   }
4201
4202   free_temp_indexes(emit);
4203
4204   return TRUE;
4205}
4206
4207
4208/**
4209 * Emit code for TGSI_OPCODE_LRP instruction.
4210 */
4211static boolean
4212emit_lrp(struct svga_shader_emitter_v10 *emit,
4213         const struct tgsi_full_instruction *inst)
4214{
4215   /* dst = LRP(s0, s1, s2):
4216    *   dst = s0 * (s1 - s2) + s2
4217    * Translates into:
4218    *   SUB tmp, s1, s2;        tmp = s1 - s2
4219    *   MAD dst, s0, tmp, s2;   dst = s0 * t1 + s2
4220    */
4221   unsigned tmp = get_temp_index(emit);
4222   struct tgsi_full_src_register src_tmp = make_src_temp_reg(tmp);
4223   struct tgsi_full_dst_register dst_tmp = make_dst_temp_reg(tmp);
4224   struct tgsi_full_src_register neg_src2 = negate_src(&inst->Src[2]);
4225
4226   /* ADD tmp, s1, -s2 */
4227   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_tmp,
4228                        &inst->Src[1], &neg_src2, FALSE);
4229
4230   /* MAD dst, s1, tmp, s3 */
4231   emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &inst->Dst[0],
4232                        &inst->Src[0], &src_tmp, &inst->Src[2],
4233                        inst->Instruction.Saturate);
4234
4235   free_temp_indexes(emit);
4236
4237   return TRUE;
4238}
4239
4240
4241/**
4242 * Emit code for TGSI_OPCODE_POW instruction.
4243 */
4244static boolean
4245emit_pow(struct svga_shader_emitter_v10 *emit,
4246         const struct tgsi_full_instruction *inst)
4247{
4248   /* Note that TGSI_OPCODE_POW computes only one value from src0.x and
4249    * src1.x while VGPU10 computes four values.
4250    *
4251    * dst = POW(src0, src1):
4252    *   dst.xyzw = src0.x ^ src1.x
4253    */
4254   unsigned tmp = get_temp_index(emit);
4255   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4256   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4257   struct tgsi_full_src_register src0_xxxx =
4258      swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4259                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4260   struct tgsi_full_src_register src1_xxxx =
4261      swizzle_src(&inst->Src[1], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X,
4262                  TGSI_SWIZZLE_X, TGSI_SWIZZLE_X);
4263
4264   /* LOG tmp, s0.xxxx */
4265   emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst, &src0_xxxx,
4266                        FALSE);
4267
4268   /* MUL tmp, tmp, s1.xxxx */
4269   emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst, &tmp_src,
4270                        &src1_xxxx, FALSE);
4271
4272   /* EXP tmp, s0.xxxx */
4273   emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0],
4274                        &tmp_src, inst->Instruction.Saturate);
4275
4276   /* free tmp */
4277   free_temp_indexes(emit);
4278
4279   return TRUE;
4280}
4281
4282
4283/**
4284 * Emit code for TGSI_OPCODE_RCP (reciprocal) instruction.
4285 */
4286static boolean
4287emit_rcp(struct svga_shader_emitter_v10 *emit,
4288         const struct tgsi_full_instruction *inst)
4289{
4290   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4291
4292   unsigned tmp = get_temp_index(emit);
4293   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4294   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4295
4296   struct tgsi_full_dst_register tmp_dst_x =
4297      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4298   struct tgsi_full_src_register tmp_src_xxxx =
4299      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4300
4301   /* DIV tmp.x, 1.0, s0 */
4302   emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst_x, &one,
4303                        &inst->Src[0], FALSE);
4304
4305   /* MOV dst, tmp.xxxx */
4306   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4307                        &tmp_src_xxxx, inst->Instruction.Saturate);
4308
4309   free_temp_indexes(emit);
4310
4311   return TRUE;
4312}
4313
4314
4315/**
4316 * Emit code for TGSI_OPCODE_RSQ instruction.
4317 */
4318static boolean
4319emit_rsq(struct svga_shader_emitter_v10 *emit,
4320         const struct tgsi_full_instruction *inst)
4321{
4322   /* dst = RSQ(src):
4323    *   dst.xyzw = 1 / sqrt(src.x)
4324    * Translates into:
4325    *   RSQ tmp, src.x
4326    *   MOV dst, tmp.xxxx
4327    */
4328
4329   unsigned tmp = get_temp_index(emit);
4330   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4331   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4332
4333   struct tgsi_full_dst_register tmp_dst_x =
4334      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4335   struct tgsi_full_src_register tmp_src_xxxx =
4336      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4337
4338   /* RSQ tmp, src.x */
4339   emit_instruction_op1(emit, VGPU10_OPCODE_RSQ, &tmp_dst_x,
4340                        &inst->Src[0], FALSE);
4341
4342   /* MOV dst, tmp.xxxx */
4343   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4344                        &tmp_src_xxxx, inst->Instruction.Saturate);
4345
4346   /* free tmp */
4347   free_temp_indexes(emit);
4348
4349   return TRUE;
4350}
4351
4352
4353/**
4354 * Emit code for TGSI_OPCODE_SCS instruction.
4355 */
4356static boolean
4357emit_scs(struct svga_shader_emitter_v10 *emit,
4358         const struct tgsi_full_instruction *inst)
4359{
4360   /* dst.x = cos(src.x)
4361    * dst.y = sin(src.x)
4362    * dst.z = 0.0
4363    * dst.w = 1.0
4364    */
4365   struct tgsi_full_dst_register dst_x =
4366      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X);
4367   struct tgsi_full_dst_register dst_y =
4368      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y);
4369   struct tgsi_full_dst_register dst_zw =
4370      writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_ZW);
4371
4372   struct tgsi_full_src_register zero_one =
4373      make_immediate_reg_float4(emit, 0.0f, 0.0f, 0.0f, 1.0f);
4374
4375   begin_emit_instruction(emit);
4376   emit_opcode(emit, VGPU10_OPCODE_SINCOS, inst->Instruction.Saturate);
4377   emit_dst_register(emit, &dst_y);
4378   emit_dst_register(emit, &dst_x);
4379   emit_src_register(emit, &inst->Src[0]);
4380   end_emit_instruction(emit);
4381
4382   emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
4383                        &dst_zw, &zero_one, inst->Instruction.Saturate);
4384
4385   return TRUE;
4386}
4387
4388
4389/**
4390 * Emit code for TGSI_OPCODE_SEQ (Set Equal) instruction.
4391 */
4392static boolean
4393emit_seq(struct svga_shader_emitter_v10 *emit,
4394         const struct tgsi_full_instruction *inst)
4395{
4396   /* dst = SEQ(s0, s1):
4397    *   dst = s0 == s1 ? 1.0 : 0.0  (per component)
4398    * Translates into:
4399    *   EQ tmp, s0, s1;           tmp = s0 == s1 : 0xffffffff : 0 (per comp)
4400    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4401    */
4402   unsigned tmp = get_temp_index(emit);
4403   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4404   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4405   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4406   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4407
4408   /* EQ tmp, s0, s1 */
4409   emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp_dst, &inst->Src[0],
4410                        &inst->Src[1], FALSE);
4411
4412   /* MOVC dst, tmp, one, zero */
4413   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4414                        &one, &zero, FALSE);
4415
4416   free_temp_indexes(emit);
4417
4418   return TRUE;
4419}
4420
4421
4422/**
4423 * Emit code for TGSI_OPCODE_SGE (Set Greater than or Equal) instruction.
4424 */
4425static boolean
4426emit_sge(struct svga_shader_emitter_v10 *emit,
4427         const struct tgsi_full_instruction *inst)
4428{
4429   /* dst = SGE(s0, s1):
4430    *   dst = s0 >= s1 ? 1.0 : 0.0  (per component)
4431    * Translates into:
4432    *   GE tmp, s0, s1;           tmp = s0 >= s1 : 0xffffffff : 0 (per comp)
4433    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4434    */
4435   unsigned tmp = get_temp_index(emit);
4436   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4437   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4438   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4439   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4440
4441   /* GE tmp, s0, s1 */
4442   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[0],
4443                        &inst->Src[1], FALSE);
4444
4445   /* MOVC dst, tmp, one, zero */
4446   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4447                        &one, &zero, FALSE);
4448
4449   free_temp_indexes(emit);
4450
4451   return TRUE;
4452}
4453
4454
4455/**
4456 * Emit code for TGSI_OPCODE_SGT (Set Greater than) instruction.
4457 */
4458static boolean
4459emit_sgt(struct svga_shader_emitter_v10 *emit,
4460         const struct tgsi_full_instruction *inst)
4461{
4462   /* dst = SGT(s0, s1):
4463    *   dst = s0 > s1 ? 1.0 : 0.0  (per component)
4464    * Translates into:
4465    *   LT tmp, s1, s0;           tmp = s1 < s0 ? 0xffffffff : 0 (per comp)
4466    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4467    */
4468   unsigned tmp = get_temp_index(emit);
4469   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4470   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4471   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4472   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4473
4474   /* LT tmp, s1, s0 */
4475   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[1],
4476                        &inst->Src[0], FALSE);
4477
4478   /* MOVC dst, tmp, one, zero */
4479   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4480                        &one, &zero, FALSE);
4481
4482   free_temp_indexes(emit);
4483
4484   return TRUE;
4485}
4486
4487
4488/**
4489 * Emit code for TGSI_OPCODE_SIN and TGSI_OPCODE_COS instructions.
4490 */
4491static boolean
4492emit_sincos(struct svga_shader_emitter_v10 *emit,
4493         const struct tgsi_full_instruction *inst)
4494{
4495   unsigned tmp = get_temp_index(emit);
4496   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4497   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4498
4499   struct tgsi_full_src_register tmp_src_xxxx =
4500      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
4501   struct tgsi_full_dst_register tmp_dst_x =
4502      writemask_dst(&tmp_dst, TGSI_WRITEMASK_X);
4503
4504   begin_emit_instruction(emit);
4505   emit_opcode(emit, VGPU10_OPCODE_SINCOS, FALSE);
4506
4507   if(inst->Instruction.Opcode == TGSI_OPCODE_SIN)
4508   {
4509      emit_dst_register(emit, &tmp_dst_x);  /* first destination register */
4510      emit_null_dst_register(emit);  /* second destination register */
4511   }
4512   else {
4513      emit_null_dst_register(emit);
4514      emit_dst_register(emit, &tmp_dst_x);
4515   }
4516
4517   emit_src_register(emit, &inst->Src[0]);
4518   end_emit_instruction(emit);
4519
4520   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0],
4521                        &tmp_src_xxxx, inst->Instruction.Saturate);
4522
4523   free_temp_indexes(emit);
4524
4525   return TRUE;
4526}
4527
4528
4529/**
4530 * Emit code for TGSI_OPCODE_SLE (Set Less than or Equal) instruction.
4531 */
4532static boolean
4533emit_sle(struct svga_shader_emitter_v10 *emit,
4534         const struct tgsi_full_instruction *inst)
4535{
4536   /* dst = SLE(s0, s1):
4537    *   dst = s0 <= s1 ? 1.0 : 0.0  (per component)
4538    * Translates into:
4539    *   GE tmp, s1, s0;           tmp = s1 >= s0 : 0xffffffff : 0 (per comp)
4540    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4541    */
4542   unsigned tmp = get_temp_index(emit);
4543   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4544   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4545   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4546   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4547
4548   /* GE tmp, s1, s0 */
4549   emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[1],
4550                        &inst->Src[0], FALSE);
4551
4552   /* MOVC dst, tmp, one, zero */
4553   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4554                        &one, &zero, FALSE);
4555
4556   free_temp_indexes(emit);
4557
4558   return TRUE;
4559}
4560
4561
4562/**
4563 * Emit code for TGSI_OPCODE_SLT (Set Less than) instruction.
4564 */
4565static boolean
4566emit_slt(struct svga_shader_emitter_v10 *emit,
4567         const struct tgsi_full_instruction *inst)
4568{
4569   /* dst = SLT(s0, s1):
4570    *   dst = s0 < s1 ? 1.0 : 0.0  (per component)
4571    * Translates into:
4572    *   LT tmp, s0, s1;           tmp = s0 < s1 ? 0xffffffff : 0 (per comp)
4573    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4574    */
4575   unsigned tmp = get_temp_index(emit);
4576   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4577   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4578   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4579   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4580
4581   /* LT tmp, s0, s1 */
4582   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0],
4583                        &inst->Src[1], FALSE);
4584
4585   /* MOVC dst, tmp, one, zero */
4586   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4587                        &one, &zero, FALSE);
4588
4589   free_temp_indexes(emit);
4590
4591   return TRUE;
4592}
4593
4594
4595/**
4596 * Emit code for TGSI_OPCODE_SNE (Set Not Equal) instruction.
4597 */
4598static boolean
4599emit_sne(struct svga_shader_emitter_v10 *emit,
4600         const struct tgsi_full_instruction *inst)
4601{
4602   /* dst = SNE(s0, s1):
4603    *   dst = s0 != s1 ? 1.0 : 0.0  (per component)
4604    * Translates into:
4605    *   EQ tmp, s0, s1;           tmp = s0 == s1 : 0xffffffff : 0 (per comp)
4606    *   MOVC dst, tmp, 1.0, 0.0;  dst = tmp ? 1.0 : 0.0 (per component)
4607    */
4608   unsigned tmp = get_temp_index(emit);
4609   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4610   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4611   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4612   struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
4613
4614   /* NE tmp, s0, s1 */
4615   emit_instruction_op2(emit, VGPU10_OPCODE_NE, &tmp_dst, &inst->Src[0],
4616                        &inst->Src[1], FALSE);
4617
4618   /* MOVC dst, tmp, one, zero */
4619   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src,
4620                        &one, &zero, FALSE);
4621
4622   free_temp_indexes(emit);
4623
4624   return TRUE;
4625}
4626
4627
4628/**
4629 * Emit code for TGSI_OPCODE_SSG (Set Sign) instruction.
4630 */
4631static boolean
4632emit_ssg(struct svga_shader_emitter_v10 *emit,
4633         const struct tgsi_full_instruction *inst)
4634{
4635   /* dst.x = (src.x > 0.0) ? 1.0 : (src.x < 0.0) ? -1.0 : 0.0
4636    * dst.y = (src.y > 0.0) ? 1.0 : (src.y < 0.0) ? -1.0 : 0.0
4637    * dst.z = (src.z > 0.0) ? 1.0 : (src.z < 0.0) ? -1.0 : 0.0
4638    * dst.w = (src.w > 0.0) ? 1.0 : (src.w < 0.0) ? -1.0 : 0.0
4639    * Translates into:
4640    *   LT tmp1, src, zero;           tmp1 = src < zero ? 0xffffffff : 0 (per comp)
4641    *   MOVC tmp2, tmp1, -1.0, 0.0;   tmp2 = tmp1 ? -1.0 : 0.0 (per component)
4642    *   LT tmp1, zero, src;           tmp1 = zero < src ? 0xffffffff : 0 (per comp)
4643    *   MOVC dst, tmp1, 1.0, tmp2;    dst = tmp1 ? 1.0 : tmp2 (per component)
4644    */
4645   struct tgsi_full_src_register zero =
4646      make_immediate_reg_float(emit, 0.0f);
4647   struct tgsi_full_src_register one =
4648      make_immediate_reg_float(emit, 1.0f);
4649   struct tgsi_full_src_register neg_one =
4650      make_immediate_reg_float(emit, -1.0f);
4651
4652   unsigned tmp1 = get_temp_index(emit);
4653   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4654   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4655
4656   unsigned tmp2 = get_temp_index(emit);
4657   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4658   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4659
4660   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &inst->Src[0],
4661                        &zero, FALSE);
4662   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp2_dst, &tmp1_src,
4663                        &neg_one, &zero, FALSE);
4664   emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &zero,
4665                        &inst->Src[0], FALSE);
4666   emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp1_src,
4667                        &one, &tmp2_src, FALSE);
4668
4669   free_temp_indexes(emit);
4670
4671   return TRUE;
4672}
4673
4674
4675/**
4676 * Emit code for TGSI_OPCODE_ISSG (Integer Set Sign) instruction.
4677 */
4678static boolean
4679emit_issg(struct svga_shader_emitter_v10 *emit,
4680          const struct tgsi_full_instruction *inst)
4681{
4682   /* dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
4683    * dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
4684    * dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
4685    * dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
4686    * Translates into:
4687    *   ILT tmp1, src, 0              tmp1 = src < 0 ? -1 : 0 (per component)
4688    *   ILT tmp2, 0, src              tmp2 = 0 < src ? -1 : 0 (per component)
4689    *   IADD dst, tmp1, neg(tmp2)     dst  = tmp1 - tmp2      (per component)
4690    */
4691   struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f);
4692
4693   unsigned tmp1 = get_temp_index(emit);
4694   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
4695   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
4696
4697   unsigned tmp2 = get_temp_index(emit);
4698   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
4699   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
4700
4701   struct tgsi_full_src_register neg_tmp2 = negate_src(&tmp2_src);
4702
4703   emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp1_dst,
4704                        &inst->Src[0], &zero, FALSE);
4705   emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp2_dst,
4706                        &zero, &inst->Src[0], FALSE);
4707   emit_instruction_op2(emit, VGPU10_OPCODE_IADD, &inst->Dst[0],
4708                        &tmp1_src, &neg_tmp2, FALSE);
4709
4710   free_temp_indexes(emit);
4711
4712   return TRUE;
4713}
4714
4715
4716/**
4717 * Emit code for TGSI_OPCODE_SUB instruction.
4718 */
4719static boolean
4720emit_sub(struct svga_shader_emitter_v10 *emit,
4721         const struct tgsi_full_instruction *inst)
4722{
4723   /* dst = SUB(s0, s1):
4724    *   dst = s0 - s1
4725    * Translates into:
4726    *   ADD dst, s0, neg(s1)
4727    */
4728   struct tgsi_full_src_register neg_src1 = negate_src(&inst->Src[1]);
4729
4730   /* ADD dst, s0, neg(s1) */
4731   emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0],
4732                        &inst->Src[0], &neg_src1,
4733                        inst->Instruction.Saturate);
4734
4735   return TRUE;
4736}
4737
4738
4739/**
4740 * Emit a comparison instruction.  The dest register will get
4741 * 0 or ~0 values depending on the outcome of comparing src0 to src1.
4742 */
4743static void
4744emit_comparison(struct svga_shader_emitter_v10 *emit,
4745                SVGA3dCmpFunc func,
4746                const struct tgsi_full_dst_register *dst,
4747                const struct tgsi_full_src_register *src0,
4748                const struct tgsi_full_src_register *src1)
4749{
4750   struct tgsi_full_src_register immediate;
4751   VGPU10OpcodeToken0 opcode0;
4752   boolean swapSrc = FALSE;
4753
4754   /* Sanity checks for svga vs. gallium enums */
4755   STATIC_ASSERT(SVGA3D_CMP_LESS == (PIPE_FUNC_LESS + 1));
4756   STATIC_ASSERT(SVGA3D_CMP_GREATEREQUAL == (PIPE_FUNC_GEQUAL + 1));
4757
4758   opcode0.value = 0;
4759
4760   switch (func) {
4761   case SVGA3D_CMP_NEVER:
4762      immediate = make_immediate_reg_int(emit, 0);
4763      /* MOV dst, {0} */
4764      begin_emit_instruction(emit);
4765      emit_dword(emit, VGPU10_OPCODE_MOV);
4766      emit_dst_register(emit, dst);
4767      emit_src_register(emit, &immediate);
4768      end_emit_instruction(emit);
4769      return;
4770   case SVGA3D_CMP_ALWAYS:
4771      immediate = make_immediate_reg_int(emit, -1);
4772      /* MOV dst, {-1} */
4773      begin_emit_instruction(emit);
4774      emit_dword(emit, VGPU10_OPCODE_MOV);
4775      emit_dst_register(emit, dst);
4776      emit_src_register(emit, &immediate);
4777      end_emit_instruction(emit);
4778      return;
4779   case SVGA3D_CMP_LESS:
4780      opcode0.opcodeType = VGPU10_OPCODE_LT;
4781      break;
4782   case SVGA3D_CMP_EQUAL:
4783      opcode0.opcodeType = VGPU10_OPCODE_EQ;
4784      break;
4785   case SVGA3D_CMP_LESSEQUAL:
4786      opcode0.opcodeType = VGPU10_OPCODE_GE;
4787      swapSrc = TRUE;
4788      break;
4789   case SVGA3D_CMP_GREATER:
4790      opcode0.opcodeType = VGPU10_OPCODE_LT;
4791      swapSrc = TRUE;
4792      break;
4793   case SVGA3D_CMP_NOTEQUAL:
4794      opcode0.opcodeType = VGPU10_OPCODE_NE;
4795      break;
4796   case SVGA3D_CMP_GREATEREQUAL:
4797      opcode0.opcodeType = VGPU10_OPCODE_GE;
4798      break;
4799   default:
4800      assert(!"Unexpected comparison mode");
4801      opcode0.opcodeType = VGPU10_OPCODE_EQ;
4802   }
4803
4804   begin_emit_instruction(emit);
4805   emit_dword(emit, opcode0.value);
4806   emit_dst_register(emit, dst);
4807   if (swapSrc) {
4808      emit_src_register(emit, src1);
4809      emit_src_register(emit, src0);
4810   }
4811   else {
4812      emit_src_register(emit, src0);
4813      emit_src_register(emit, src1);
4814   }
4815   end_emit_instruction(emit);
4816}
4817
4818
4819/**
4820 * Get texel/address offsets for a texture instruction.
4821 */
4822static void
4823get_texel_offsets(const struct svga_shader_emitter_v10 *emit,
4824                  const struct tgsi_full_instruction *inst, int offsets[3])
4825{
4826   if (inst->Texture.NumOffsets == 1) {
4827      /* According to OpenGL Shader Language spec the offsets are only
4828       * fetched from a previously-declared immediate/literal.
4829       */
4830      const struct tgsi_texture_offset *off = inst->TexOffsets;
4831      const unsigned index = off[0].Index;
4832      const unsigned swizzleX = off[0].SwizzleX;
4833      const unsigned swizzleY = off[0].SwizzleY;
4834      const unsigned swizzleZ = off[0].SwizzleZ;
4835      const union tgsi_immediate_data *imm = emit->immediates[index];
4836
4837      assert(inst->TexOffsets[0].File == TGSI_FILE_IMMEDIATE);
4838
4839      offsets[0] = imm[swizzleX].Int;
4840      offsets[1] = imm[swizzleY].Int;
4841      offsets[2] = imm[swizzleZ].Int;
4842   }
4843   else {
4844      offsets[0] = offsets[1] = offsets[2] = 0;
4845   }
4846}
4847
4848
4849/**
4850 * Set up the coordinate register for texture sampling.
4851 * When we're sampling from a RECT texture we have to scale the
4852 * unnormalized coordinate to a normalized coordinate.
4853 * We do that by multiplying the coordinate by an "extra" constant.
4854 * An alternative would be to use the RESINFO instruction to query the
4855 * texture's size.
4856 */
4857static struct tgsi_full_src_register
4858setup_texcoord(struct svga_shader_emitter_v10 *emit,
4859               unsigned unit,
4860               const struct tgsi_full_src_register *coord)
4861{
4862   if (emit->key.tex[unit].unnormalized) {
4863      unsigned scale_index = emit->texcoord_scale_index[unit];
4864      unsigned tmp = get_temp_index(emit);
4865      struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
4866      struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
4867      struct tgsi_full_src_register scale_src = make_src_const_reg(scale_index);
4868
4869      /* MUL tmp, coord, const[] */
4870      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst,
4871                           coord, &scale_src, FALSE);
4872      return tmp_src;
4873   }
4874   else {
4875      /* use texcoord as-is */
4876      return *coord;
4877   }
4878}
4879
4880
4881/**
4882 * For SAMPLE_C instructions, emit the extra src register which indicates
4883 * the reference/comparision value.
4884 */
4885static void
4886emit_tex_compare_refcoord(struct svga_shader_emitter_v10 *emit,
4887                          unsigned target,
4888                          const struct tgsi_full_src_register *coord)
4889{
4890   struct tgsi_full_src_register coord_src_ref;
4891   unsigned component;
4892
4893   assert(tgsi_is_shadow_target(target));
4894
4895   assert(target != TGSI_TEXTURE_SHADOWCUBE_ARRAY); /* XXX not implemented */
4896   if (target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
4897       target == TGSI_TEXTURE_SHADOWCUBE)
4898      component = TGSI_SWIZZLE_W;
4899   else
4900      component = TGSI_SWIZZLE_Z;
4901
4902   coord_src_ref = scalar_src(coord, component);
4903
4904   emit_src_register(emit, &coord_src_ref);
4905}
4906
4907
4908/**
4909 * Info for implementing texture swizzles.
4910 * The begin_tex_swizzle(), get_tex_swizzle_dst() and end_tex_swizzle()
4911 * functions use this to encapsulate the extra steps needed to perform
4912 * a texture swizzle, or shadow/depth comparisons.
4913 * The shadow/depth comparison is only done here if for the cases where
4914 * there's no VGPU10 opcode (like texture bias lookup w/ shadow compare).
4915 */
4916struct tex_swizzle_info
4917{
4918   boolean swizzled;
4919   boolean shadow_compare;
4920   unsigned unit;
4921   unsigned texture_target;  /**< TGSI_TEXTURE_x */
4922   struct tgsi_full_src_register tmp_src;
4923   struct tgsi_full_dst_register tmp_dst;
4924   const struct tgsi_full_dst_register *inst_dst;
4925   const struct tgsi_full_src_register *coord_src;
4926};
4927
4928
4929/**
4930 * Do setup for handling texture swizzles or shadow compares.
4931 * \param unit  the texture unit
4932 * \param inst  the TGSI texture instruction
4933 * \param shadow_compare  do shadow/depth comparison?
4934 * \param swz  returns the swizzle info
4935 */
4936static void
4937begin_tex_swizzle(struct svga_shader_emitter_v10 *emit,
4938                  unsigned unit,
4939                  const struct tgsi_full_instruction *inst,
4940                  boolean shadow_compare,
4941                  struct tex_swizzle_info *swz)
4942{
4943   swz->swizzled = (emit->key.tex[unit].swizzle_r != TGSI_SWIZZLE_X ||
4944                    emit->key.tex[unit].swizzle_g != TGSI_SWIZZLE_Y ||
4945                    emit->key.tex[unit].swizzle_b != TGSI_SWIZZLE_Z ||
4946                    emit->key.tex[unit].swizzle_a != TGSI_SWIZZLE_W);
4947
4948   swz->shadow_compare = shadow_compare;
4949   swz->texture_target = inst->Texture.Texture;
4950
4951   if (swz->swizzled || shadow_compare) {
4952      /* Allocate temp register for the result of the SAMPLE instruction
4953       * and the source of the MOV/compare/swizzle instructions.
4954       */
4955      unsigned tmp = get_temp_index(emit);
4956      swz->tmp_src = make_src_temp_reg(tmp);
4957      swz->tmp_dst = make_dst_temp_reg(tmp);
4958
4959      swz->unit = unit;
4960   }
4961   swz->inst_dst = &inst->Dst[0];
4962   swz->coord_src = &inst->Src[0];
4963}
4964
4965
4966/**
4967 * Returns the register to put the SAMPLE instruction results into.
4968 * This will either be the original instruction dst reg (if no swizzle
4969 * and no shadow comparison) or a temporary reg if there is a swizzle.
4970 */
4971static const struct tgsi_full_dst_register *
4972get_tex_swizzle_dst(const struct tex_swizzle_info *swz)
4973{
4974   return (swz->swizzled || swz->shadow_compare)
4975      ? &swz->tmp_dst : swz->inst_dst;
4976}
4977
4978
4979/**
4980 * This emits the MOV instruction that actually implements a texture swizzle
4981 * and/or shadow comparison.
4982 */
4983static void
4984end_tex_swizzle(struct svga_shader_emitter_v10 *emit,
4985                const struct tex_swizzle_info *swz)
4986{
4987   if (swz->shadow_compare) {
4988      /* Emit extra instructions to compare the fetched texel value against
4989       * a texture coordinate component.  The result of the comparison
4990       * is 0.0 or 1.0.
4991       */
4992      struct tgsi_full_src_register coord_src;
4993      struct tgsi_full_src_register texel_src =
4994         scalar_src(&swz->tmp_src, TGSI_SWIZZLE_X);
4995      struct tgsi_full_src_register one =
4996         make_immediate_reg_float(emit, 1.0f);
4997      /* convert gallium comparison func to SVGA comparison func */
4998      SVGA3dCmpFunc compare_func = emit->key.tex[swz->unit].compare_func + 1;
4999
5000      assert(emit->unit == PIPE_SHADER_FRAGMENT);
5001
5002      switch (swz->texture_target) {
5003      case TGSI_TEXTURE_SHADOW2D:
5004      case TGSI_TEXTURE_SHADOWRECT:
5005      case TGSI_TEXTURE_SHADOW1D_ARRAY:
5006         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z);
5007         break;
5008      case TGSI_TEXTURE_SHADOW1D:
5009         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Y);
5010         break;
5011      case TGSI_TEXTURE_SHADOWCUBE:
5012      case TGSI_TEXTURE_SHADOW2D_ARRAY:
5013         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_W);
5014         break;
5015      default:
5016         assert(!"Unexpected texture target in end_tex_swizzle()");
5017         coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z);
5018      }
5019
5020      /* COMPARE tmp, coord, texel */
5021      /* XXX it would seem that the texel and coord arguments should
5022       * be transposed here, but piglit tests indicate otherwise.
5023       */
5024      emit_comparison(emit, compare_func,
5025                      &swz->tmp_dst, &texel_src, &coord_src);
5026
5027      /* AND dest, tmp, {1.0} */
5028      begin_emit_instruction(emit);
5029      emit_opcode(emit, VGPU10_OPCODE_AND, FALSE);
5030      if (swz->swizzled) {
5031         emit_dst_register(emit, &swz->tmp_dst);
5032      }
5033      else {
5034         emit_dst_register(emit, swz->inst_dst);
5035      }
5036      emit_src_register(emit, &swz->tmp_src);
5037      emit_src_register(emit, &one);
5038      end_emit_instruction(emit);
5039   }
5040
5041   if (swz->swizzled) {
5042      unsigned swz_r = emit->key.tex[swz->unit].swizzle_r;
5043      unsigned swz_g = emit->key.tex[swz->unit].swizzle_g;
5044      unsigned swz_b = emit->key.tex[swz->unit].swizzle_b;
5045      unsigned swz_a = emit->key.tex[swz->unit].swizzle_a;
5046      unsigned writemask_0 = 0, writemask_1 = 0;
5047      boolean int_tex = is_integer_type(emit->sampler_return_type[swz->unit]);
5048
5049      /* Swizzle w/out zero/one terms */
5050      struct tgsi_full_src_register src_swizzled =
5051         swizzle_src(&swz->tmp_src,
5052                     swz_r < PIPE_SWIZZLE_0 ? swz_r : PIPE_SWIZZLE_X,
5053                     swz_g < PIPE_SWIZZLE_0 ? swz_g : PIPE_SWIZZLE_Y,
5054                     swz_b < PIPE_SWIZZLE_0 ? swz_b : PIPE_SWIZZLE_Z,
5055                     swz_a < PIPE_SWIZZLE_0 ? swz_a : PIPE_SWIZZLE_W);
5056
5057      /* MOV dst, color(tmp).<swizzle> */
5058      emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
5059                           swz->inst_dst, &src_swizzled, FALSE);
5060
5061      /* handle swizzle zero terms */
5062      writemask_0 = (((swz_r == PIPE_SWIZZLE_0) << 0) |
5063                     ((swz_g == PIPE_SWIZZLE_0) << 1) |
5064                     ((swz_b == PIPE_SWIZZLE_0) << 2) |
5065                     ((swz_a == PIPE_SWIZZLE_0) << 3));
5066
5067      if (writemask_0) {
5068         struct tgsi_full_src_register zero = int_tex ?
5069            make_immediate_reg_int(emit, 0) :
5070            make_immediate_reg_float(emit, 0.0f);
5071         struct tgsi_full_dst_register dst =
5072            writemask_dst(swz->inst_dst, writemask_0);
5073
5074         /* MOV dst.writemask_0, {0,0,0,0} */
5075         emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
5076                              &dst, &zero, FALSE);
5077      }
5078
5079      /* handle swizzle one terms */
5080      writemask_1 = (((swz_r == PIPE_SWIZZLE_1) << 0) |
5081                     ((swz_g == PIPE_SWIZZLE_1) << 1) |
5082                     ((swz_b == PIPE_SWIZZLE_1) << 2) |
5083                     ((swz_a == PIPE_SWIZZLE_1) << 3));
5084
5085      if (writemask_1) {
5086         struct tgsi_full_src_register one = int_tex ?
5087            make_immediate_reg_int(emit, 1) :
5088            make_immediate_reg_float(emit, 1.0f);
5089         struct tgsi_full_dst_register dst =
5090            writemask_dst(swz->inst_dst, writemask_1);
5091
5092         /* MOV dst.writemask_1, {1,1,1,1} */
5093         emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst, &one, FALSE);
5094      }
5095   }
5096}
5097
5098
5099/**
5100 * Emit code for TGSI_OPCODE_SAMPLE instruction.
5101 */
5102static boolean
5103emit_sample(struct svga_shader_emitter_v10 *emit,
5104            const struct tgsi_full_instruction *inst)
5105{
5106   const unsigned resource_unit = inst->Src[1].Register.Index;
5107   const unsigned sampler_unit = inst->Src[2].Register.Index;
5108   struct tgsi_full_src_register coord;
5109   int offsets[3];
5110   struct tex_swizzle_info swz_info;
5111
5112   begin_tex_swizzle(emit, sampler_unit, inst, FALSE, &swz_info);
5113
5114   get_texel_offsets(emit, inst, offsets);
5115
5116   coord = setup_texcoord(emit, resource_unit, &inst->Src[0]);
5117
5118   /* SAMPLE dst, coord(s0), resource, sampler */
5119   begin_emit_instruction(emit);
5120
5121   emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE,
5122                      inst->Instruction.Saturate, offsets);
5123   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5124   emit_src_register(emit, &coord);
5125   emit_resource_register(emit, resource_unit);
5126   emit_sampler_register(emit, sampler_unit);
5127   end_emit_instruction(emit);
5128
5129   end_tex_swizzle(emit, &swz_info);
5130
5131   free_temp_indexes(emit);
5132
5133   return TRUE;
5134}
5135
5136
5137/**
5138 * Check if a texture instruction is valid.
5139 * An example of an invalid texture instruction is doing shadow comparison
5140 * with an integer-valued texture.
5141 * If we detect an invalid texture instruction, we replace it with:
5142 *   MOV dst, {1,1,1,1};
5143 * \return TRUE if valid, FALSE if invalid.
5144 */
5145static boolean
5146is_valid_tex_instruction(struct svga_shader_emitter_v10 *emit,
5147                         const struct tgsi_full_instruction *inst)
5148{
5149   const unsigned unit = inst->Src[1].Register.Index;
5150   const unsigned target = inst->Texture.Texture;
5151   boolean valid = TRUE;
5152
5153   if (tgsi_is_shadow_target(target) &&
5154       is_integer_type(emit->sampler_return_type[unit])) {
5155      debug_printf("Invalid SAMPLE_C with an integer texture!\n");
5156      valid = FALSE;
5157   }
5158   /* XXX might check for other conditions in the future here */
5159
5160   if (!valid) {
5161      /* emit a MOV dst, {1,1,1,1} instruction. */
5162      struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f);
5163      begin_emit_instruction(emit);
5164      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
5165      emit_dst_register(emit, &inst->Dst[0]);
5166      emit_src_register(emit, &one);
5167      end_emit_instruction(emit);
5168   }
5169
5170   return valid;
5171}
5172
5173
5174/**
5175 * Emit code for TGSI_OPCODE_TEX (simple texture lookup)
5176 */
5177static boolean
5178emit_tex(struct svga_shader_emitter_v10 *emit,
5179         const struct tgsi_full_instruction *inst)
5180{
5181   const uint unit = inst->Src[1].Register.Index;
5182   unsigned target = inst->Texture.Texture;
5183   unsigned opcode;
5184   struct tgsi_full_src_register coord;
5185   int offsets[3];
5186   struct tex_swizzle_info swz_info;
5187
5188   /* check that the sampler returns a float */
5189   if (!is_valid_tex_instruction(emit, inst))
5190      return TRUE;
5191
5192   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5193
5194   get_texel_offsets(emit, inst, offsets);
5195
5196   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5197
5198   /* SAMPLE dst, coord(s0), resource, sampler */
5199   begin_emit_instruction(emit);
5200
5201   if (tgsi_is_shadow_target(target))
5202      opcode = VGPU10_OPCODE_SAMPLE_C;
5203   else
5204      opcode = VGPU10_OPCODE_SAMPLE;
5205
5206   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5207   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5208   emit_src_register(emit, &coord);
5209   emit_resource_register(emit, unit);
5210   emit_sampler_register(emit, unit);
5211   if (opcode == VGPU10_OPCODE_SAMPLE_C) {
5212      emit_tex_compare_refcoord(emit, target, &coord);
5213   }
5214   end_emit_instruction(emit);
5215
5216   end_tex_swizzle(emit, &swz_info);
5217
5218   free_temp_indexes(emit);
5219
5220   return TRUE;
5221}
5222
5223
5224/**
5225 * Emit code for TGSI_OPCODE_TXP (projective texture)
5226 */
5227static boolean
5228emit_txp(struct svga_shader_emitter_v10 *emit,
5229         const struct tgsi_full_instruction *inst)
5230{
5231   const uint unit = inst->Src[1].Register.Index;
5232   unsigned target = inst->Texture.Texture;
5233   unsigned opcode;
5234   int offsets[3];
5235   unsigned tmp = get_temp_index(emit);
5236   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
5237   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
5238   struct tgsi_full_src_register src0_wwww =
5239      scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5240   struct tgsi_full_src_register coord;
5241   struct tex_swizzle_info swz_info;
5242
5243   /* check that the sampler returns a float */
5244   if (!is_valid_tex_instruction(emit, inst))
5245      return TRUE;
5246
5247   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5248
5249   get_texel_offsets(emit, inst, offsets);
5250
5251   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5252
5253   /* DIV tmp, coord, coord.wwww */
5254   emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst,
5255                        &coord, &src0_wwww, FALSE);
5256
5257   /* SAMPLE dst, coord(tmp), resource, sampler */
5258   begin_emit_instruction(emit);
5259
5260   if (tgsi_is_shadow_target(target))
5261      opcode = VGPU10_OPCODE_SAMPLE_C;
5262   else
5263      opcode = VGPU10_OPCODE_SAMPLE;
5264
5265   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5266   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5267   emit_src_register(emit, &tmp_src);  /* projected coord */
5268   emit_resource_register(emit, unit);
5269   emit_sampler_register(emit, unit);
5270   if (opcode == VGPU10_OPCODE_SAMPLE_C) {
5271      emit_tex_compare_refcoord(emit, target, &tmp_src);
5272   }
5273   end_emit_instruction(emit);
5274
5275   end_tex_swizzle(emit, &swz_info);
5276
5277   free_temp_indexes(emit);
5278
5279   return TRUE;
5280}
5281
5282
5283/*
5284 * Emit code for TGSI_OPCODE_XPD instruction.
5285 */
5286static boolean
5287emit_xpd(struct svga_shader_emitter_v10 *emit,
5288         const struct tgsi_full_instruction *inst)
5289{
5290   /* dst.x = src0.y * src1.z - src1.y * src0.z
5291    * dst.y = src0.z * src1.x - src1.z * src0.x
5292    * dst.z = src0.x * src1.y - src1.x * src0.y
5293    * dst.w = 1
5294    */
5295   struct tgsi_full_src_register s0_xxxx =
5296      scalar_src(&inst->Src[0], TGSI_SWIZZLE_X);
5297   struct tgsi_full_src_register s0_yyyy =
5298      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y);
5299   struct tgsi_full_src_register s0_zzzz =
5300      scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z);
5301
5302   struct tgsi_full_src_register s1_xxxx =
5303      scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
5304   struct tgsi_full_src_register s1_yyyy =
5305      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y);
5306   struct tgsi_full_src_register s1_zzzz =
5307      scalar_src(&inst->Src[1], TGSI_SWIZZLE_Z);
5308
5309   unsigned tmp1 = get_temp_index(emit);
5310   struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1);
5311   struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1);
5312
5313   unsigned tmp2 = get_temp_index(emit);
5314   struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2);
5315   struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2);
5316   struct tgsi_full_src_register neg_tmp2_src = negate_src(&tmp2_src);
5317
5318   unsigned tmp3 = get_temp_index(emit);
5319   struct tgsi_full_src_register tmp3_src = make_src_temp_reg(tmp3);
5320   struct tgsi_full_dst_register tmp3_dst = make_dst_temp_reg(tmp3);
5321   struct tgsi_full_dst_register tmp3_dst_x =
5322      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_X);
5323   struct tgsi_full_dst_register tmp3_dst_y =
5324      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Y);
5325   struct tgsi_full_dst_register tmp3_dst_z =
5326      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Z);
5327   struct tgsi_full_dst_register tmp3_dst_w =
5328      writemask_dst(&tmp3_dst, TGSI_WRITEMASK_W);
5329
5330   /* Note: we put all the intermediate computations into tmp3 in case
5331    * the XPD dest register is that same as one of the src regs (in which
5332    * case we could clobber a src reg before we're done with it) .
5333    *
5334    * Note: we could get by with just one temp register instead of three
5335    * since we're doing scalar operations and there's enough room in one
5336    * temp for everything.
5337    */
5338
5339   /* MUL tmp1, src0.y, src1.z */
5340   /* MUL tmp2, src1.y, src0.z */
5341   /* ADD tmp3.x, tmp1, -tmp2 */
5342   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
5343      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst,
5344                           &s0_yyyy, &s1_zzzz, FALSE);
5345      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst,
5346                           &s1_yyyy, &s0_zzzz, FALSE);
5347      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_x,
5348                           &tmp1_src, &neg_tmp2_src, FALSE);
5349   }
5350
5351   /* MUL tmp1, src0.z, src1.x */
5352   /* MUL tmp2, src1.z, src0.x */
5353   /* ADD tmp3.y, tmp1, -tmp2 */
5354   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
5355      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_zzzz,
5356                           &s1_xxxx, FALSE);
5357      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_zzzz,
5358                           &s0_xxxx, FALSE);
5359      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_y,
5360                           &tmp1_src, &neg_tmp2_src, FALSE);
5361   }
5362
5363   /* MUL tmp1, src0.x, src1.y */
5364   /* MUL tmp2, src1.x, src0.y */
5365   /* ADD tmp3.z, tmp1, -tmp2 */
5366   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
5367      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_xxxx,
5368                           &s1_yyyy, FALSE);
5369      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_xxxx,
5370                           &s0_yyyy, FALSE);
5371      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_z,
5372                           &tmp1_src, &neg_tmp2_src, FALSE);
5373   }
5374
5375   /* MOV tmp3.w, 1.0 */
5376   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
5377      struct tgsi_full_src_register one =
5378         make_immediate_reg_float(emit, 1.0f);
5379
5380      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp3_dst_w, &one, FALSE);
5381   }
5382
5383   /* MOV dst, tmp3 */
5384   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp3_src,
5385                        inst->Instruction.Saturate);
5386
5387
5388   free_temp_indexes(emit);
5389
5390   return TRUE;
5391}
5392
5393
5394/**
5395 * Emit code for TGSI_OPCODE_TXD (explicit derivatives)
5396 */
5397static boolean
5398emit_txd(struct svga_shader_emitter_v10 *emit,
5399         const struct tgsi_full_instruction *inst)
5400{
5401   const uint unit = inst->Src[3].Register.Index;
5402   unsigned target = inst->Texture.Texture;
5403   int offsets[3];
5404   struct tgsi_full_src_register coord;
5405   struct tex_swizzle_info swz_info;
5406
5407   begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target),
5408                     &swz_info);
5409
5410   get_texel_offsets(emit, inst, offsets);
5411
5412   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5413
5414   /* SAMPLE_D dst, coord(s0), resource, sampler, Xderiv(s1), Yderiv(s2) */
5415   begin_emit_instruction(emit);
5416   emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE_D,
5417                      inst->Instruction.Saturate, offsets);
5418   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5419   emit_src_register(emit, &coord);
5420   emit_resource_register(emit, unit);
5421   emit_sampler_register(emit, unit);
5422   emit_src_register(emit, &inst->Src[1]);  /* Xderiv */
5423   emit_src_register(emit, &inst->Src[2]);  /* Yderiv */
5424   end_emit_instruction(emit);
5425
5426   end_tex_swizzle(emit, &swz_info);
5427
5428   free_temp_indexes(emit);
5429
5430   return TRUE;
5431}
5432
5433
5434/**
5435 * Emit code for TGSI_OPCODE_TXF (texel fetch)
5436 */
5437static boolean
5438emit_txf(struct svga_shader_emitter_v10 *emit,
5439         const struct tgsi_full_instruction *inst)
5440{
5441   const uint unit = inst->Src[1].Register.Index;
5442   const boolean msaa = tgsi_is_msaa_target(inst->Texture.Texture);
5443   int offsets[3];
5444   struct tex_swizzle_info swz_info;
5445
5446   begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info);
5447
5448   get_texel_offsets(emit, inst, offsets);
5449
5450   if (msaa) {
5451      /* Fetch one sample from an MSAA texture */
5452      struct tgsi_full_src_register sampleIndex =
5453         scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5454      /* LD_MS dst, coord(s0), resource, sampleIndex */
5455      begin_emit_instruction(emit);
5456      emit_sample_opcode(emit, VGPU10_OPCODE_LD_MS,
5457                         inst->Instruction.Saturate, offsets);
5458      emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5459      emit_src_register(emit, &inst->Src[0]);
5460      emit_resource_register(emit, unit);
5461      emit_src_register(emit, &sampleIndex);
5462      end_emit_instruction(emit);
5463   }
5464   else {
5465      /* Fetch one texel specified by integer coordinate */
5466      /* LD dst, coord(s0), resource */
5467      begin_emit_instruction(emit);
5468      emit_sample_opcode(emit, VGPU10_OPCODE_LD,
5469                         inst->Instruction.Saturate, offsets);
5470      emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5471      emit_src_register(emit, &inst->Src[0]);
5472      emit_resource_register(emit, unit);
5473      end_emit_instruction(emit);
5474   }
5475
5476   end_tex_swizzle(emit, &swz_info);
5477
5478   free_temp_indexes(emit);
5479
5480   return TRUE;
5481}
5482
5483
5484/**
5485 * Emit code for TGSI_OPCODE_TXL (explicit LOD) or TGSI_OPCODE_TXB (LOD bias)
5486 * or TGSI_OPCODE_TXB2 (for cube shadow maps).
5487 */
5488static boolean
5489emit_txl_txb(struct svga_shader_emitter_v10 *emit,
5490             const struct tgsi_full_instruction *inst)
5491{
5492   unsigned target = inst->Texture.Texture;
5493   unsigned opcode, unit;
5494   int offsets[3];
5495   struct tgsi_full_src_register coord, lod_bias;
5496   struct tex_swizzle_info swz_info;
5497
5498   assert(inst->Instruction.Opcode == TGSI_OPCODE_TXL ||
5499          inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
5500          inst->Instruction.Opcode == TGSI_OPCODE_TXB2);
5501
5502   if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2) {
5503      lod_bias = scalar_src(&inst->Src[1], TGSI_SWIZZLE_X);
5504      unit = inst->Src[2].Register.Index;
5505   }
5506   else {
5507      lod_bias = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W);
5508      unit = inst->Src[1].Register.Index;
5509   }
5510
5511   begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target),
5512                     &swz_info);
5513
5514   get_texel_offsets(emit, inst, offsets);
5515
5516   coord = setup_texcoord(emit, unit, &inst->Src[0]);
5517
5518   /* SAMPLE_L/B dst, coord(s0), resource, sampler, lod(s3) */
5519   begin_emit_instruction(emit);
5520   if (inst->Instruction.Opcode == TGSI_OPCODE_TXL) {
5521      opcode = VGPU10_OPCODE_SAMPLE_L;
5522   }
5523   else {
5524      opcode = VGPU10_OPCODE_SAMPLE_B;
5525   }
5526   emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets);
5527   emit_dst_register(emit, get_tex_swizzle_dst(&swz_info));
5528   emit_src_register(emit, &coord);
5529   emit_resource_register(emit, unit);
5530   emit_sampler_register(emit, unit);
5531   emit_src_register(emit, &lod_bias);
5532   end_emit_instruction(emit);
5533
5534   end_tex_swizzle(emit, &swz_info);
5535
5536   free_temp_indexes(emit);
5537
5538   return TRUE;
5539}
5540
5541
5542/**
5543 * Emit code for TGSI_OPCODE_TXQ (texture query) instruction.
5544 */
5545static boolean
5546emit_txq(struct svga_shader_emitter_v10 *emit,
5547         const struct tgsi_full_instruction *inst)
5548{
5549   const uint unit = inst->Src[1].Register.Index;
5550
5551   if (emit->sampler_target[unit] == TGSI_TEXTURE_BUFFER) {
5552      /* RESINFO does not support querying texture buffers, so we instead
5553       * store texture buffer sizes in shader constants, then copy them to
5554       * implement TXQ instead of emitting RESINFO.
5555       * MOV dst, const[texture_buffer_size_index[unit]]
5556       */
5557      struct tgsi_full_src_register size_src =
5558         make_src_const_reg(emit->texture_buffer_size_index[unit]);
5559      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &size_src,
5560                           FALSE);
5561   } else {
5562      /* RESINFO dst, srcMipLevel, resource */
5563      begin_emit_instruction(emit);
5564      emit_opcode_resinfo(emit, VGPU10_RESINFO_RETURN_UINT);
5565      emit_dst_register(emit, &inst->Dst[0]);
5566      emit_src_register(emit, &inst->Src[0]);
5567      emit_resource_register(emit, unit);
5568      end_emit_instruction(emit);
5569   }
5570
5571   free_temp_indexes(emit);
5572
5573   return TRUE;
5574}
5575
5576
5577/**
5578 * Emit a simple instruction (like ADD, MUL, MIN, etc).
5579 */
5580static boolean
5581emit_simple(struct svga_shader_emitter_v10 *emit,
5582            const struct tgsi_full_instruction *inst)
5583{
5584   const unsigned opcode = inst->Instruction.Opcode;
5585   const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode);
5586   unsigned i;
5587
5588   begin_emit_instruction(emit);
5589   emit_opcode(emit, translate_opcode(inst->Instruction.Opcode),
5590               inst->Instruction.Saturate);
5591   for (i = 0; i < op->num_dst; i++) {
5592      emit_dst_register(emit, &inst->Dst[i]);
5593   }
5594   for (i = 0; i < op->num_src; i++) {
5595      emit_src_register(emit, &inst->Src[i]);
5596   }
5597   end_emit_instruction(emit);
5598
5599   return TRUE;
5600}
5601
5602
5603/**
5604 * We only special case the MOV instruction to try to detect constant
5605 * color writes in the fragment shader.
5606 */
5607static boolean
5608emit_mov(struct svga_shader_emitter_v10 *emit,
5609         const struct tgsi_full_instruction *inst)
5610{
5611   const struct tgsi_full_src_register *src = &inst->Src[0];
5612   const struct tgsi_full_dst_register *dst = &inst->Dst[0];
5613
5614   if (emit->unit == PIPE_SHADER_FRAGMENT &&
5615       dst->Register.File == TGSI_FILE_OUTPUT &&
5616       dst->Register.Index == 0 &&
5617       src->Register.File == TGSI_FILE_CONSTANT &&
5618       !src->Register.Indirect) {
5619      emit->constant_color_output = TRUE;
5620   }
5621
5622   return emit_simple(emit, inst);
5623}
5624
5625
5626/**
5627 * Emit a simple VGPU10 instruction which writes to multiple dest registers,
5628 * where TGSI only uses one dest register.
5629 */
5630static boolean
5631emit_simple_1dst(struct svga_shader_emitter_v10 *emit,
5632                 const struct tgsi_full_instruction *inst,
5633                 unsigned dst_count,
5634                 unsigned dst_index)
5635{
5636   const unsigned opcode = inst->Instruction.Opcode;
5637   const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode);
5638   unsigned i;
5639
5640   begin_emit_instruction(emit);
5641   emit_opcode(emit, translate_opcode(inst->Instruction.Opcode),
5642               inst->Instruction.Saturate);
5643
5644   for (i = 0; i < dst_count; i++) {
5645      if (i == dst_index) {
5646         emit_dst_register(emit, &inst->Dst[0]);
5647      } else {
5648         emit_null_dst_register(emit);
5649      }
5650   }
5651
5652   for (i = 0; i < op->num_src; i++) {
5653      emit_src_register(emit, &inst->Src[i]);
5654   }
5655   end_emit_instruction(emit);
5656
5657   return TRUE;
5658}
5659
5660
5661/**
5662 * Translate a single TGSI instruction to VGPU10.
5663 */
5664static boolean
5665emit_vgpu10_instruction(struct svga_shader_emitter_v10 *emit,
5666                        unsigned inst_number,
5667                        const struct tgsi_full_instruction *inst)
5668{
5669   const unsigned opcode = inst->Instruction.Opcode;
5670
5671   switch (opcode) {
5672   case TGSI_OPCODE_ADD:
5673   case TGSI_OPCODE_AND:
5674   case TGSI_OPCODE_BGNLOOP:
5675   case TGSI_OPCODE_BRK:
5676   case TGSI_OPCODE_CEIL:
5677   case TGSI_OPCODE_CONT:
5678   case TGSI_OPCODE_DDX:
5679   case TGSI_OPCODE_DDY:
5680   case TGSI_OPCODE_DIV:
5681   case TGSI_OPCODE_DP2:
5682   case TGSI_OPCODE_DP3:
5683   case TGSI_OPCODE_DP4:
5684   case TGSI_OPCODE_ELSE:
5685   case TGSI_OPCODE_ENDIF:
5686   case TGSI_OPCODE_ENDLOOP:
5687   case TGSI_OPCODE_ENDSUB:
5688   case TGSI_OPCODE_F2I:
5689   case TGSI_OPCODE_F2U:
5690   case TGSI_OPCODE_FLR:
5691   case TGSI_OPCODE_FRC:
5692   case TGSI_OPCODE_FSEQ:
5693   case TGSI_OPCODE_FSGE:
5694   case TGSI_OPCODE_FSLT:
5695   case TGSI_OPCODE_FSNE:
5696   case TGSI_OPCODE_I2F:
5697   case TGSI_OPCODE_IMAX:
5698   case TGSI_OPCODE_IMIN:
5699   case TGSI_OPCODE_INEG:
5700   case TGSI_OPCODE_ISGE:
5701   case TGSI_OPCODE_ISHR:
5702   case TGSI_OPCODE_ISLT:
5703   case TGSI_OPCODE_MAD:
5704   case TGSI_OPCODE_MAX:
5705   case TGSI_OPCODE_MIN:
5706   case TGSI_OPCODE_MUL:
5707   case TGSI_OPCODE_NOP:
5708   case TGSI_OPCODE_NOT:
5709   case TGSI_OPCODE_OR:
5710   case TGSI_OPCODE_RET:
5711   case TGSI_OPCODE_UADD:
5712   case TGSI_OPCODE_USEQ:
5713   case TGSI_OPCODE_USGE:
5714   case TGSI_OPCODE_USLT:
5715   case TGSI_OPCODE_UMIN:
5716   case TGSI_OPCODE_UMAD:
5717   case TGSI_OPCODE_UMAX:
5718   case TGSI_OPCODE_ROUND:
5719   case TGSI_OPCODE_SQRT:
5720   case TGSI_OPCODE_SHL:
5721   case TGSI_OPCODE_TRUNC:
5722   case TGSI_OPCODE_U2F:
5723   case TGSI_OPCODE_UCMP:
5724   case TGSI_OPCODE_USHR:
5725   case TGSI_OPCODE_USNE:
5726   case TGSI_OPCODE_XOR:
5727      /* simple instructions */
5728      return emit_simple(emit, inst);
5729
5730   case TGSI_OPCODE_MOV:
5731      return emit_mov(emit, inst);
5732   case TGSI_OPCODE_EMIT:
5733      return emit_vertex(emit, inst);
5734   case TGSI_OPCODE_ENDPRIM:
5735      return emit_endprim(emit, inst);
5736   case TGSI_OPCODE_ABS:
5737      return emit_abs(emit, inst);
5738   case TGSI_OPCODE_IABS:
5739      return emit_iabs(emit, inst);
5740   case TGSI_OPCODE_ARL:
5741      /* fall-through */
5742   case TGSI_OPCODE_UARL:
5743      return emit_arl_uarl(emit, inst);
5744   case TGSI_OPCODE_BGNSUB:
5745      /* no-op */
5746      return TRUE;
5747   case TGSI_OPCODE_CAL:
5748      return emit_cal(emit, inst);
5749   case TGSI_OPCODE_CMP:
5750      return emit_cmp(emit, inst);
5751   case TGSI_OPCODE_COS:
5752      return emit_sincos(emit, inst);
5753   case TGSI_OPCODE_DP2A:
5754      return emit_dp2a(emit, inst);
5755   case TGSI_OPCODE_DPH:
5756      return emit_dph(emit, inst);
5757   case TGSI_OPCODE_DST:
5758      return emit_dst(emit, inst);
5759   case TGSI_OPCODE_EX2:
5760      return emit_ex2(emit, inst);
5761   case TGSI_OPCODE_EXP:
5762      return emit_exp(emit, inst);
5763   case TGSI_OPCODE_IF:
5764      return emit_if(emit, inst);
5765   case TGSI_OPCODE_KILL:
5766      return emit_kill(emit, inst);
5767   case TGSI_OPCODE_KILL_IF:
5768      return emit_kill_if(emit, inst);
5769   case TGSI_OPCODE_LG2:
5770      return emit_lg2(emit, inst);
5771   case TGSI_OPCODE_LIT:
5772      return emit_lit(emit, inst);
5773   case TGSI_OPCODE_LOG:
5774      return emit_log(emit, inst);
5775   case TGSI_OPCODE_LRP:
5776      return emit_lrp(emit, inst);
5777   case TGSI_OPCODE_POW:
5778      return emit_pow(emit, inst);
5779   case TGSI_OPCODE_RCP:
5780      return emit_rcp(emit, inst);
5781   case TGSI_OPCODE_RSQ:
5782      return emit_rsq(emit, inst);
5783   case TGSI_OPCODE_SAMPLE:
5784      return emit_sample(emit, inst);
5785   case TGSI_OPCODE_SCS:
5786      return emit_scs(emit, inst);
5787   case TGSI_OPCODE_SEQ:
5788      return emit_seq(emit, inst);
5789   case TGSI_OPCODE_SGE:
5790      return emit_sge(emit, inst);
5791   case TGSI_OPCODE_SGT:
5792      return emit_sgt(emit, inst);
5793   case TGSI_OPCODE_SIN:
5794      return emit_sincos(emit, inst);
5795   case TGSI_OPCODE_SLE:
5796      return emit_sle(emit, inst);
5797   case TGSI_OPCODE_SLT:
5798      return emit_slt(emit, inst);
5799   case TGSI_OPCODE_SNE:
5800      return emit_sne(emit, inst);
5801   case TGSI_OPCODE_SSG:
5802      return emit_ssg(emit, inst);
5803   case TGSI_OPCODE_ISSG:
5804      return emit_issg(emit, inst);
5805   case TGSI_OPCODE_SUB:
5806      return emit_sub(emit, inst);
5807   case TGSI_OPCODE_TEX:
5808      return emit_tex(emit, inst);
5809   case TGSI_OPCODE_TXP:
5810      return emit_txp(emit, inst);
5811   case TGSI_OPCODE_TXB:
5812   case TGSI_OPCODE_TXB2:
5813   case TGSI_OPCODE_TXL:
5814      return emit_txl_txb(emit, inst);
5815   case TGSI_OPCODE_TXD:
5816      return emit_txd(emit, inst);
5817   case TGSI_OPCODE_TXF:
5818      return emit_txf(emit, inst);
5819   case TGSI_OPCODE_TXQ:
5820      return emit_txq(emit, inst);
5821   case TGSI_OPCODE_UIF:
5822      return emit_if(emit, inst);
5823   case TGSI_OPCODE_XPD:
5824      return emit_xpd(emit, inst);
5825   case TGSI_OPCODE_UMUL_HI:
5826   case TGSI_OPCODE_IMUL_HI:
5827   case TGSI_OPCODE_UDIV:
5828   case TGSI_OPCODE_IDIV:
5829      /* These cases use only the FIRST of two destination registers */
5830      return emit_simple_1dst(emit, inst, 2, 0);
5831   case TGSI_OPCODE_UMUL:
5832   case TGSI_OPCODE_UMOD:
5833   case TGSI_OPCODE_MOD:
5834      /* These cases use only the SECOND of two destination registers */
5835      return emit_simple_1dst(emit, inst, 2, 1);
5836   case TGSI_OPCODE_END:
5837      if (!emit_post_helpers(emit))
5838         return FALSE;
5839      return emit_simple(emit, inst);
5840
5841   default:
5842      debug_printf("Unimplemented tgsi instruction %s\n",
5843                   tgsi_get_opcode_name(opcode));
5844      return FALSE;
5845   }
5846
5847   return TRUE;
5848}
5849
5850
5851/**
5852 * Emit the extra instructions to adjust the vertex position.
5853 * There are two possible adjustments:
5854 * 1. Converting from Gallium to VGPU10 coordinate space by applying the
5855 *    "prescale" and "pretranslate" values.
5856 * 2. Undoing the viewport transformation when we use the swtnl/draw path.
5857 * \param vs_pos_tmp_index  which temporary register contains the vertex pos.
5858 */
5859static void
5860emit_vpos_instructions(struct svga_shader_emitter_v10 *emit,
5861                       unsigned vs_pos_tmp_index)
5862{
5863   struct tgsi_full_src_register tmp_pos_src;
5864   struct tgsi_full_dst_register pos_dst;
5865
5866   /* Don't bother to emit any extra vertex instructions if vertex position is
5867    * not written out
5868    */
5869   if (emit->vposition.out_index == INVALID_INDEX)
5870      return;
5871
5872   tmp_pos_src = make_src_temp_reg(vs_pos_tmp_index);
5873   pos_dst = make_dst_output_reg(emit->vposition.out_index);
5874
5875   /* If non-adjusted vertex position register index
5876    * is valid, copy the vertex position from the temporary
5877    * vertex position register before it is modified by the
5878    * prescale computation.
5879    */
5880   if (emit->vposition.so_index != INVALID_INDEX) {
5881      struct tgsi_full_dst_register pos_so_dst =
5882         make_dst_output_reg(emit->vposition.so_index);
5883
5884      /* MOV pos_so, tmp_pos */
5885      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_so_dst,
5886                           &tmp_pos_src, FALSE);
5887   }
5888
5889   if (emit->vposition.need_prescale) {
5890      /* This code adjusts the vertex position to match the VGPU10 convention.
5891       * If p is the position computed by the shader (usually by applying the
5892       * modelview and projection matrices), the new position q is computed by:
5893       *
5894       * q.x = p.w * trans.x + p.x * scale.x
5895       * q.y = p.w * trans.y + p.y * scale.y
5896       * q.z = p.w * trans.z + p.z * scale.z;
5897       * q.w = p.w * trans.w + p.w;
5898       */
5899      struct tgsi_full_src_register tmp_pos_src_w =
5900         scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W);
5901      struct tgsi_full_dst_register tmp_pos_dst =
5902         make_dst_temp_reg(vs_pos_tmp_index);
5903      struct tgsi_full_dst_register tmp_pos_dst_xyz =
5904         writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XYZ);
5905
5906      struct tgsi_full_src_register prescale_scale =
5907         make_src_const_reg(emit->vposition.prescale_scale_index);
5908      struct tgsi_full_src_register prescale_trans =
5909         make_src_const_reg(emit->vposition.prescale_trans_index);
5910
5911      /* MUL tmp_pos.xyz, tmp_pos, prescale.scale */
5912      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xyz,
5913                           &tmp_pos_src, &prescale_scale, FALSE);
5914
5915      /* MAD pos, tmp_pos.wwww, prescale.trans, tmp_pos */
5916      emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &pos_dst, &tmp_pos_src_w,
5917                           &prescale_trans, &tmp_pos_src, FALSE);
5918   }
5919   else if (emit->key.vs.undo_viewport) {
5920      /* This code computes the final vertex position from the temporary
5921       * vertex position by undoing the viewport transformation and the
5922       * divide-by-W operation (we convert window coords back to clip coords).
5923       * This is needed when we use the 'draw' module for fallbacks.
5924       * If p is the temp pos in window coords, then the NDC coord q is:
5925       *   q.x = (p.x - vp.x_trans) / vp.x_scale * p.w
5926       *   q.y = (p.y - vp.y_trans) / vp.y_scale * p.w
5927       *   q.z = p.z * p.w
5928       *   q.w = p.w
5929       * CONST[vs_viewport_index] contains:
5930       *   { 1/vp.x_scale, 1/vp.y_scale, -vp.x_trans, -vp.y_trans }
5931       */
5932      struct tgsi_full_dst_register tmp_pos_dst =
5933         make_dst_temp_reg(vs_pos_tmp_index);
5934      struct tgsi_full_dst_register tmp_pos_dst_xy =
5935         writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XY);
5936      struct tgsi_full_src_register tmp_pos_src_wwww =
5937         scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W);
5938
5939      struct tgsi_full_dst_register pos_dst_xyz =
5940         writemask_dst(&pos_dst, TGSI_WRITEMASK_XYZ);
5941      struct tgsi_full_dst_register pos_dst_w =
5942         writemask_dst(&pos_dst, TGSI_WRITEMASK_W);
5943
5944      struct tgsi_full_src_register vp_xyzw =
5945         make_src_const_reg(emit->vs.viewport_index);
5946      struct tgsi_full_src_register vp_zwww =
5947         swizzle_src(&vp_xyzw, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_W,
5948                     TGSI_SWIZZLE_W, TGSI_SWIZZLE_W);
5949
5950      /* ADD tmp_pos.xy, tmp_pos.xy, viewport.zwww */
5951      emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp_pos_dst_xy,
5952                           &tmp_pos_src, &vp_zwww, FALSE);
5953
5954      /* MUL tmp_pos.xy, tmp_pos.xyzw, viewport.xyzy */
5955      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xy,
5956                           &tmp_pos_src, &vp_xyzw, FALSE);
5957
5958      /* MUL pos.xyz, tmp_pos.xyz, tmp_pos.www */
5959      emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &pos_dst_xyz,
5960                           &tmp_pos_src, &tmp_pos_src_wwww, FALSE);
5961
5962      /* MOV pos.w, tmp_pos.w */
5963      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_dst_w,
5964                           &tmp_pos_src, FALSE);
5965   }
5966   else if (vs_pos_tmp_index != INVALID_INDEX) {
5967      /* This code is to handle the case where the temporary vertex
5968       * position register is created when the vertex shader has stream
5969       * output and prescale is disabled because rasterization is to be
5970       * discarded.
5971       */
5972      struct tgsi_full_dst_register pos_dst =
5973         make_dst_output_reg(emit->vposition.out_index);
5974
5975      /* MOV pos, tmp_pos */
5976      begin_emit_instruction(emit);
5977      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
5978      emit_dst_register(emit, &pos_dst);
5979      emit_src_register(emit, &tmp_pos_src);
5980      end_emit_instruction(emit);
5981   }
5982}
5983
5984static void
5985emit_clipping_instructions(struct svga_shader_emitter_v10 *emit)
5986{
5987   if (emit->clip_mode == CLIP_DISTANCE) {
5988      /* Copy from copy distance temporary to CLIPDIST & the shadow copy */
5989      emit_clip_distance_instructions(emit);
5990
5991   } else if (emit->clip_mode == CLIP_VERTEX) {
5992      /* Convert TGSI CLIPVERTEX to CLIPDIST */
5993      emit_clip_vertex_instructions(emit);
5994   }
5995
5996   /**
5997    * Emit vertex position and take care of legacy user planes only if
5998    * there is a valid vertex position register index.
5999    * This is to take care of the case
6000    * where the shader doesn't output vertex position. Then in
6001    * this case, don't bother to emit more vertex instructions.
6002    */
6003   if (emit->vposition.out_index == INVALID_INDEX)
6004      return;
6005
6006   /**
6007    * Emit per-vertex clipping instructions for legacy user defined clip planes.
6008    * NOTE: we must emit the clip distance instructions before the
6009    * emit_vpos_instructions() call since the later function will change
6010    * the TEMP[vs_pos_tmp_index] value.
6011    */
6012   if (emit->clip_mode == CLIP_LEGACY) {
6013      /* Emit CLIPDIST for legacy user defined clip planes */
6014      emit_clip_distance_from_vpos(emit, emit->vposition.tmp_index);
6015   }
6016}
6017
6018
6019/**
6020 * Emit extra per-vertex instructions.  This includes clip-coordinate
6021 * space conversion and computing clip distances.  This is called for
6022 * each GS emit-vertex instruction and at the end of VS translation.
6023 */
6024static void
6025emit_vertex_instructions(struct svga_shader_emitter_v10 *emit)
6026{
6027   const unsigned vs_pos_tmp_index = emit->vposition.tmp_index;
6028
6029   /* Emit clipping instructions based on clipping mode */
6030   emit_clipping_instructions(emit);
6031
6032   /**
6033    * Reset the temporary vertex position register index
6034    * so that emit_dst_register() will use the real vertex position output
6035    */
6036   emit->vposition.tmp_index = INVALID_INDEX;
6037
6038   /* Emit vertex position instructions */
6039   emit_vpos_instructions(emit, vs_pos_tmp_index);
6040
6041   /* Restore original vposition.tmp_index value for the next GS vertex.
6042    * It doesn't matter for VS.
6043    */
6044   emit->vposition.tmp_index = vs_pos_tmp_index;
6045}
6046
6047/**
6048 * Translate the TGSI_OPCODE_EMIT GS instruction.
6049 */
6050static boolean
6051emit_vertex(struct svga_shader_emitter_v10 *emit,
6052            const struct tgsi_full_instruction *inst)
6053{
6054   unsigned ret = TRUE;
6055
6056   assert(emit->unit == PIPE_SHADER_GEOMETRY);
6057
6058   emit_vertex_instructions(emit);
6059
6060   /* We can't use emit_simple() because the TGSI instruction has one
6061    * operand (vertex stream number) which we must ignore for VGPU10.
6062    */
6063   begin_emit_instruction(emit);
6064   emit_opcode(emit, VGPU10_OPCODE_EMIT, FALSE);
6065   end_emit_instruction(emit);
6066
6067   return ret;
6068}
6069
6070
6071/**
6072 * Emit the extra code to convert from VGPU10's boolean front-face
6073 * register to TGSI's signed front-face register.
6074 *
6075 * TODO: Make temporary front-face register a scalar.
6076 */
6077static void
6078emit_frontface_instructions(struct svga_shader_emitter_v10 *emit)
6079{
6080   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6081
6082   if (emit->fs.face_input_index != INVALID_INDEX) {
6083      /* convert vgpu10 boolean face register to gallium +/-1 value */
6084      struct tgsi_full_dst_register tmp_dst =
6085         make_dst_temp_reg(emit->fs.face_tmp_index);
6086      struct tgsi_full_src_register one =
6087         make_immediate_reg_float(emit, 1.0f);
6088      struct tgsi_full_src_register neg_one =
6089         make_immediate_reg_float(emit, -1.0f);
6090
6091      /* MOVC face_tmp, IS_FRONT_FACE.x, 1.0, -1.0 */
6092      begin_emit_instruction(emit);
6093      emit_opcode(emit, VGPU10_OPCODE_MOVC, FALSE);
6094      emit_dst_register(emit, &tmp_dst);
6095      emit_face_register(emit);
6096      emit_src_register(emit, &one);
6097      emit_src_register(emit, &neg_one);
6098      end_emit_instruction(emit);
6099   }
6100}
6101
6102
6103/**
6104 * Emit the extra code to convert from VGPU10's fragcoord.w value to 1/w.
6105 */
6106static void
6107emit_fragcoord_instructions(struct svga_shader_emitter_v10 *emit)
6108{
6109   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6110
6111   if (emit->fs.fragcoord_input_index != INVALID_INDEX) {
6112      struct tgsi_full_dst_register tmp_dst =
6113         make_dst_temp_reg(emit->fs.fragcoord_tmp_index);
6114      struct tgsi_full_dst_register tmp_dst_xyz =
6115         writemask_dst(&tmp_dst, TGSI_WRITEMASK_XYZ);
6116      struct tgsi_full_dst_register tmp_dst_w =
6117         writemask_dst(&tmp_dst, TGSI_WRITEMASK_W);
6118      struct tgsi_full_src_register one =
6119         make_immediate_reg_float(emit, 1.0f);
6120      struct tgsi_full_src_register fragcoord =
6121         make_src_reg(TGSI_FILE_INPUT, emit->fs.fragcoord_input_index);
6122
6123      /* save the input index */
6124      unsigned fragcoord_input_index = emit->fs.fragcoord_input_index;
6125      /* set to invalid to prevent substitution in emit_src_register() */
6126      emit->fs.fragcoord_input_index = INVALID_INDEX;
6127
6128      /* MOV fragcoord_tmp.xyz, fragcoord.xyz */
6129      begin_emit_instruction(emit);
6130      emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE);
6131      emit_dst_register(emit, &tmp_dst_xyz);
6132      emit_src_register(emit, &fragcoord);
6133      end_emit_instruction(emit);
6134
6135      /* DIV fragcoord_tmp.w, 1.0, fragcoord.w */
6136      begin_emit_instruction(emit);
6137      emit_opcode(emit, VGPU10_OPCODE_DIV, FALSE);
6138      emit_dst_register(emit, &tmp_dst_w);
6139      emit_src_register(emit, &one);
6140      emit_src_register(emit, &fragcoord);
6141      end_emit_instruction(emit);
6142
6143      /* restore saved value */
6144      emit->fs.fragcoord_input_index = fragcoord_input_index;
6145   }
6146}
6147
6148
6149/**
6150 * Emit extra instructions to adjust VS inputs/attributes.  This can
6151 * mean casting a vertex attribute from int to float or setting the
6152 * W component to 1, or both.
6153 */
6154static void
6155emit_vertex_attrib_instructions(struct svga_shader_emitter_v10 *emit)
6156{
6157   const unsigned save_w_1_mask = emit->key.vs.adjust_attrib_w_1;
6158   const unsigned save_itof_mask = emit->key.vs.adjust_attrib_itof;
6159   const unsigned save_utof_mask = emit->key.vs.adjust_attrib_utof;
6160   const unsigned save_is_bgra_mask = emit->key.vs.attrib_is_bgra;
6161   const unsigned save_puint_to_snorm_mask = emit->key.vs.attrib_puint_to_snorm;
6162   const unsigned save_puint_to_uscaled_mask = emit->key.vs.attrib_puint_to_uscaled;
6163   const unsigned save_puint_to_sscaled_mask = emit->key.vs.attrib_puint_to_sscaled;
6164
6165   unsigned adjust_mask = (save_w_1_mask |
6166                           save_itof_mask |
6167                           save_utof_mask |
6168                           save_is_bgra_mask |
6169                           save_puint_to_snorm_mask |
6170                           save_puint_to_uscaled_mask |
6171                           save_puint_to_sscaled_mask);
6172
6173   assert(emit->unit == PIPE_SHADER_VERTEX);
6174
6175   if (adjust_mask) {
6176      struct tgsi_full_src_register one =
6177         make_immediate_reg_float(emit, 1.0f);
6178
6179      struct tgsi_full_src_register one_int =
6180         make_immediate_reg_int(emit, 1);
6181
6182      /* We need to turn off these bitmasks while emitting the
6183       * instructions below, then restore them afterward.
6184       */
6185      emit->key.vs.adjust_attrib_w_1 = 0;
6186      emit->key.vs.adjust_attrib_itof = 0;
6187      emit->key.vs.adjust_attrib_utof = 0;
6188      emit->key.vs.attrib_is_bgra = 0;
6189      emit->key.vs.attrib_puint_to_snorm = 0;
6190      emit->key.vs.attrib_puint_to_uscaled = 0;
6191      emit->key.vs.attrib_puint_to_sscaled = 0;
6192
6193      while (adjust_mask) {
6194         unsigned index = u_bit_scan(&adjust_mask);
6195
6196         /* skip the instruction if this vertex attribute is not being used */
6197         if (emit->info.input_usage_mask[index] == 0)
6198            continue;
6199
6200         unsigned tmp = emit->vs.adjusted_input[index];
6201         struct tgsi_full_src_register input_src =
6202            make_src_reg(TGSI_FILE_INPUT, index);
6203
6204         struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
6205         struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
6206         struct tgsi_full_dst_register tmp_dst_w =
6207            writemask_dst(&tmp_dst, TGSI_WRITEMASK_W);
6208
6209         /* ITOF/UTOF/MOV tmp, input[index] */
6210         if (save_itof_mask & (1 << index)) {
6211            emit_instruction_op1(emit, VGPU10_OPCODE_ITOF,
6212                                 &tmp_dst, &input_src, FALSE);
6213         }
6214         else if (save_utof_mask & (1 << index)) {
6215            emit_instruction_op1(emit, VGPU10_OPCODE_UTOF,
6216                                 &tmp_dst, &input_src, FALSE);
6217         }
6218         else if (save_puint_to_snorm_mask & (1 << index)) {
6219            emit_puint_to_snorm(emit, &tmp_dst, &input_src);
6220         }
6221         else if (save_puint_to_uscaled_mask & (1 << index)) {
6222            emit_puint_to_uscaled(emit, &tmp_dst, &input_src);
6223         }
6224         else if (save_puint_to_sscaled_mask & (1 << index)) {
6225            emit_puint_to_sscaled(emit, &tmp_dst, &input_src);
6226         }
6227         else {
6228            assert((save_w_1_mask | save_is_bgra_mask) & (1 << index));
6229            emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6230                                 &tmp_dst, &input_src, FALSE);
6231         }
6232
6233         if (save_is_bgra_mask & (1 << index)) {
6234            emit_swap_r_b(emit, &tmp_dst, &tmp_src);
6235         }
6236
6237         if (save_w_1_mask & (1 << index)) {
6238            /* MOV tmp.w, 1.0 */
6239            if (emit->key.vs.attrib_is_pure_int & (1 << index)) {
6240               emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6241                                    &tmp_dst_w, &one_int, FALSE);
6242            }
6243            else {
6244               emit_instruction_op1(emit, VGPU10_OPCODE_MOV,
6245                                    &tmp_dst_w, &one, FALSE);
6246            }
6247         }
6248      }
6249
6250      emit->key.vs.adjust_attrib_w_1 = save_w_1_mask;
6251      emit->key.vs.adjust_attrib_itof = save_itof_mask;
6252      emit->key.vs.adjust_attrib_utof = save_utof_mask;
6253      emit->key.vs.attrib_is_bgra = save_is_bgra_mask;
6254      emit->key.vs.attrib_puint_to_snorm = save_puint_to_snorm_mask;
6255      emit->key.vs.attrib_puint_to_uscaled = save_puint_to_uscaled_mask;
6256      emit->key.vs.attrib_puint_to_sscaled = save_puint_to_sscaled_mask;
6257   }
6258}
6259
6260
6261/**
6262 * Some common values like 0.0, 1.0, 0.5, etc. are frequently needed
6263 * to implement some instructions.  We pre-allocate those values here
6264 * in the immediate constant buffer.
6265 */
6266static void
6267alloc_common_immediates(struct svga_shader_emitter_v10 *emit)
6268{
6269   unsigned n = 0;
6270
6271   emit->common_immediate_pos[n++] =
6272      alloc_immediate_float4(emit, 0.0f, 1.0f, 0.5f, -1.0f);
6273
6274   emit->common_immediate_pos[n++] =
6275      alloc_immediate_float4(emit, 128.0f, -128.0f, 2.0f, 3.0f);
6276
6277   emit->common_immediate_pos[n++] =
6278      alloc_immediate_int4(emit, 0, 1, 0, -1);
6279
6280   if (emit->key.vs.attrib_puint_to_snorm) {
6281      emit->common_immediate_pos[n++] =
6282         alloc_immediate_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f);
6283   }
6284
6285   if (emit->key.vs.attrib_puint_to_uscaled) {
6286      emit->common_immediate_pos[n++] =
6287         alloc_immediate_float4(emit, 1023.0f, 3.0f, 0.0f, 0.0f);
6288   }
6289
6290   if (emit->key.vs.attrib_puint_to_sscaled) {
6291      emit->common_immediate_pos[n++] =
6292         alloc_immediate_int4(emit, 22, 12, 2, 0);
6293
6294      emit->common_immediate_pos[n++] =
6295         alloc_immediate_int4(emit, 22, 30, 0, 0);
6296   }
6297
6298   assert(n <= ARRAY_SIZE(emit->common_immediate_pos));
6299   emit->num_common_immediates = n;
6300}
6301
6302
6303/**
6304 * Emit any extra/helper declarations/code that we might need between
6305 * the declaration section and code section.
6306 */
6307static boolean
6308emit_pre_helpers(struct svga_shader_emitter_v10 *emit)
6309{
6310   /* Properties */
6311   if (emit->unit == PIPE_SHADER_GEOMETRY)
6312      emit_property_instructions(emit);
6313
6314   /* Declare inputs */
6315   if (!emit_input_declarations(emit))
6316      return FALSE;
6317
6318   /* Declare outputs */
6319   if (!emit_output_declarations(emit))
6320      return FALSE;
6321
6322   /* Declare temporary registers */
6323   emit_temporaries_declaration(emit);
6324
6325   /* Declare constant registers */
6326   emit_constant_declaration(emit);
6327
6328   /* Declare samplers and resources */
6329   emit_sampler_declarations(emit);
6330   emit_resource_declarations(emit);
6331
6332   /* Declare clip distance output registers */
6333   if (emit->unit == PIPE_SHADER_VERTEX ||
6334       emit->unit == PIPE_SHADER_GEOMETRY) {
6335      emit_clip_distance_declarations(emit);
6336   }
6337
6338   alloc_common_immediates(emit);
6339
6340   if (emit->unit == PIPE_SHADER_FRAGMENT &&
6341       emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) {
6342      float alpha = emit->key.fs.alpha_ref;
6343      emit->fs.alpha_ref_index =
6344         alloc_immediate_float4(emit, alpha, alpha, alpha, alpha);
6345   }
6346
6347   /* Now, emit the constant block containing all the immediates
6348    * declared by shader, as well as the extra ones seen above.
6349    */
6350   emit_vgpu10_immediates_block(emit);
6351
6352   if (emit->unit == PIPE_SHADER_FRAGMENT) {
6353      emit_frontface_instructions(emit);
6354      emit_fragcoord_instructions(emit);
6355   }
6356   else if (emit->unit == PIPE_SHADER_VERTEX) {
6357      emit_vertex_attrib_instructions(emit);
6358   }
6359
6360   return TRUE;
6361}
6362
6363
6364/**
6365 * Emit alpha test code.  This compares TEMP[fs_color_tmp_index].w
6366 * against the alpha reference value and discards the fragment if the
6367 * comparison fails.
6368 */
6369static void
6370emit_alpha_test_instructions(struct svga_shader_emitter_v10 *emit,
6371                             unsigned fs_color_tmp_index)
6372{
6373   /* compare output color's alpha to alpha ref and kill */
6374   unsigned tmp = get_temp_index(emit);
6375   struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp);
6376   struct tgsi_full_src_register tmp_src_x =
6377      scalar_src(&tmp_src, TGSI_SWIZZLE_X);
6378   struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp);
6379   struct tgsi_full_src_register color_src =
6380      make_src_temp_reg(fs_color_tmp_index);
6381   struct tgsi_full_src_register color_src_w =
6382      scalar_src(&color_src, TGSI_SWIZZLE_W);
6383   struct tgsi_full_src_register ref_src =
6384      make_src_immediate_reg(emit->fs.alpha_ref_index);
6385   struct tgsi_full_dst_register color_dst =
6386      make_dst_output_reg(emit->fs.color_out_index[0]);
6387
6388   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6389
6390   /* dst = src0 'alpha_func' src1 */
6391   emit_comparison(emit, emit->key.fs.alpha_func, &tmp_dst,
6392                   &color_src_w, &ref_src);
6393
6394   /* DISCARD if dst.x == 0 */
6395   begin_emit_instruction(emit);
6396   emit_discard_opcode(emit, FALSE);  /* discard if src0.x is zero */
6397   emit_src_register(emit, &tmp_src_x);
6398   end_emit_instruction(emit);
6399
6400   /* If we don't need to broadcast the color below or set fragments to
6401    * white, emit final color here.
6402    */
6403   if (emit->key.fs.write_color0_to_n_cbufs <= 1 &&
6404       !emit->key.fs.white_fragments) {
6405      /* MOV output.color, tempcolor */
6406      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst,
6407                           &color_src, FALSE);     /* XXX saturate? */
6408   }
6409
6410   free_temp_indexes(emit);
6411}
6412
6413
6414/**
6415 * When we need to emit white for all fragments (for emulating XOR logicop
6416 * mode), this function copies white into the temporary color output register.
6417 */
6418static void
6419emit_set_color_white(struct svga_shader_emitter_v10 *emit,
6420                     unsigned fs_color_tmp_index)
6421{
6422   struct tgsi_full_dst_register color_dst =
6423      make_dst_temp_reg(fs_color_tmp_index);
6424   struct tgsi_full_src_register white =
6425      make_immediate_reg_float(emit, 1.0f);
6426
6427   emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst, &white, FALSE);
6428}
6429
6430
6431/**
6432 * Emit instructions for writing a single color output to multiple
6433 * color buffers.
6434 * This is used when the TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS (or
6435 * when key.fs.white_fragments is true).
6436 * property is set and the number of render targets is greater than one.
6437 * \param fs_color_tmp_index  index of the temp register that holds the
6438 *                            color to broadcast.
6439 */
6440static void
6441emit_broadcast_color_instructions(struct svga_shader_emitter_v10 *emit,
6442                                 unsigned fs_color_tmp_index)
6443{
6444   const unsigned n = emit->key.fs.write_color0_to_n_cbufs;
6445   unsigned i;
6446   struct tgsi_full_src_register color_src =
6447      make_src_temp_reg(fs_color_tmp_index);
6448
6449   assert(emit->unit == PIPE_SHADER_FRAGMENT);
6450
6451   for (i = 0; i < n; i++) {
6452      unsigned output_reg = emit->fs.color_out_index[i];
6453      struct tgsi_full_dst_register color_dst =
6454         make_dst_output_reg(output_reg);
6455
6456      /* Fill in this semantic here since we'll use it later in
6457       * emit_dst_register().
6458       */
6459      emit->info.output_semantic_name[output_reg] = TGSI_SEMANTIC_COLOR;
6460
6461      /* MOV output.color[i], tempcolor */
6462      emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst,
6463                           &color_src, FALSE);     /* XXX saturate? */
6464   }
6465}
6466
6467
6468/**
6469 * Emit extra helper code after the original shader code, but before the
6470 * last END/RET instruction.
6471 * For vertex shaders this means emitting the extra code to apply the
6472 * prescale scale/translation.
6473 */
6474static boolean
6475emit_post_helpers(struct svga_shader_emitter_v10 *emit)
6476{
6477   if (emit->unit == PIPE_SHADER_VERTEX) {
6478      emit_vertex_instructions(emit);
6479   }
6480   else if (emit->unit == PIPE_SHADER_FRAGMENT) {
6481      const unsigned fs_color_tmp_index = emit->fs.color_tmp_index;
6482
6483      /* We no longer want emit_dst_register() to substitute the
6484       * temporary fragment color register for the real color output.
6485       */
6486      emit->fs.color_tmp_index = INVALID_INDEX;
6487
6488      if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) {
6489         emit_alpha_test_instructions(emit, fs_color_tmp_index);
6490      }
6491      if (emit->key.fs.white_fragments) {
6492         emit_set_color_white(emit, fs_color_tmp_index);
6493      }
6494      if (emit->key.fs.write_color0_to_n_cbufs > 1 ||
6495          emit->key.fs.white_fragments) {
6496         emit_broadcast_color_instructions(emit, fs_color_tmp_index);
6497      }
6498   }
6499
6500   return TRUE;
6501}
6502
6503
6504/**
6505 * Translate the TGSI tokens into VGPU10 tokens.
6506 */
6507static boolean
6508emit_vgpu10_instructions(struct svga_shader_emitter_v10 *emit,
6509                         const struct tgsi_token *tokens)
6510{
6511   struct tgsi_parse_context parse;
6512   boolean ret = TRUE;
6513   boolean pre_helpers_emitted = FALSE;
6514   unsigned inst_number = 0;
6515
6516   tgsi_parse_init(&parse, tokens);
6517
6518   while (!tgsi_parse_end_of_tokens(&parse)) {
6519      tgsi_parse_token(&parse);
6520
6521      switch (parse.FullToken.Token.Type) {
6522      case TGSI_TOKEN_TYPE_IMMEDIATE:
6523         ret = emit_vgpu10_immediate(emit, &parse.FullToken.FullImmediate);
6524         if (!ret)
6525            goto done;
6526         break;
6527
6528      case TGSI_TOKEN_TYPE_DECLARATION:
6529         ret = emit_vgpu10_declaration(emit, &parse.FullToken.FullDeclaration);
6530         if (!ret)
6531            goto done;
6532         break;
6533
6534      case TGSI_TOKEN_TYPE_INSTRUCTION:
6535         if (!pre_helpers_emitted) {
6536            ret = emit_pre_helpers(emit);
6537            if (!ret)
6538               goto done;
6539            pre_helpers_emitted = TRUE;
6540         }
6541         ret = emit_vgpu10_instruction(emit, inst_number++,
6542                                       &parse.FullToken.FullInstruction);
6543         if (!ret)
6544            goto done;
6545         break;
6546
6547      case TGSI_TOKEN_TYPE_PROPERTY:
6548         ret = emit_vgpu10_property(emit, &parse.FullToken.FullProperty);
6549         if (!ret)
6550            goto done;
6551         break;
6552
6553      default:
6554         break;
6555      }
6556   }
6557
6558done:
6559   tgsi_parse_free(&parse);
6560   return ret;
6561}
6562
6563
6564/**
6565 * Emit the first VGPU10 shader tokens.
6566 */
6567static boolean
6568emit_vgpu10_header(struct svga_shader_emitter_v10 *emit)
6569{
6570   VGPU10ProgramToken ptoken;
6571
6572   /* First token: VGPU10ProgramToken  (version info, program type (VS,GS,PS)) */
6573   ptoken.majorVersion = 4;
6574   ptoken.minorVersion = 0;
6575   ptoken.programType = translate_shader_type(emit->unit);
6576   if (!emit_dword(emit, ptoken.value))
6577      return FALSE;
6578
6579   /* Second token: total length of shader, in tokens.  We can't fill this
6580    * in until we're all done.  Emit zero for now.
6581    */
6582   return emit_dword(emit, 0);
6583}
6584
6585
6586static boolean
6587emit_vgpu10_tail(struct svga_shader_emitter_v10 *emit)
6588{
6589   VGPU10ProgramToken *tokens;
6590
6591   /* Replace the second token with total shader length */
6592   tokens = (VGPU10ProgramToken *) emit->buf;
6593   tokens[1].value = emit_get_num_tokens(emit);
6594
6595   return TRUE;
6596}
6597
6598
6599/**
6600 * Modify the FS to read the BCOLORs and use the FACE register
6601 * to choose between the front/back colors.
6602 */
6603static const struct tgsi_token *
6604transform_fs_twoside(const struct tgsi_token *tokens)
6605{
6606   if (0) {
6607      debug_printf("Before tgsi_add_two_side ------------------\n");
6608      tgsi_dump(tokens,0);
6609   }
6610   tokens = tgsi_add_two_side(tokens);
6611   if (0) {
6612      debug_printf("After tgsi_add_two_side ------------------\n");
6613      tgsi_dump(tokens, 0);
6614   }
6615   return tokens;
6616}
6617
6618
6619/**
6620 * Modify the FS to do polygon stipple.
6621 */
6622static const struct tgsi_token *
6623transform_fs_pstipple(struct svga_shader_emitter_v10 *emit,
6624                      const struct tgsi_token *tokens)
6625{
6626   const struct tgsi_token *new_tokens;
6627   unsigned unit;
6628
6629   if (0) {
6630      debug_printf("Before pstipple ------------------\n");
6631      tgsi_dump(tokens,0);
6632   }
6633
6634   new_tokens = util_pstipple_create_fragment_shader(tokens, &unit, 0,
6635                                                     TGSI_FILE_INPUT);
6636
6637   emit->fs.pstipple_sampler_unit = unit;
6638
6639   /* Setup texture state for stipple */
6640   emit->sampler_target[unit] = TGSI_TEXTURE_2D;
6641   emit->key.tex[unit].swizzle_r = TGSI_SWIZZLE_X;
6642   emit->key.tex[unit].swizzle_g = TGSI_SWIZZLE_Y;
6643   emit->key.tex[unit].swizzle_b = TGSI_SWIZZLE_Z;
6644   emit->key.tex[unit].swizzle_a = TGSI_SWIZZLE_W;
6645
6646   if (0) {
6647      debug_printf("After pstipple ------------------\n");
6648      tgsi_dump(new_tokens, 0);
6649   }
6650
6651   return new_tokens;
6652}
6653
6654/**
6655 * Modify the FS to support anti-aliasing point.
6656 */
6657static const struct tgsi_token *
6658transform_fs_aapoint(const struct tgsi_token *tokens,
6659                     int aa_coord_index)
6660{
6661   if (0) {
6662      debug_printf("Before tgsi_add_aa_point ------------------\n");
6663      tgsi_dump(tokens,0);
6664   }
6665   tokens = tgsi_add_aa_point(tokens, aa_coord_index);
6666   if (0) {
6667      debug_printf("After tgsi_add_aa_point ------------------\n");
6668      tgsi_dump(tokens, 0);
6669   }
6670   return tokens;
6671}
6672
6673/**
6674 * This is the main entrypoint for the TGSI -> VPGU10 translator.
6675 */
6676struct svga_shader_variant *
6677svga_tgsi_vgpu10_translate(struct svga_context *svga,
6678                           const struct svga_shader *shader,
6679                           const struct svga_compile_key *key,
6680                           unsigned unit)
6681{
6682   struct svga_shader_variant *variant = NULL;
6683   struct svga_shader_emitter_v10 *emit;
6684   const struct tgsi_token *tokens = shader->tokens;
6685   struct svga_vertex_shader *vs = svga->curr.vs;
6686   struct svga_geometry_shader *gs = svga->curr.gs;
6687
6688   assert(unit == PIPE_SHADER_VERTEX ||
6689          unit == PIPE_SHADER_GEOMETRY ||
6690          unit == PIPE_SHADER_FRAGMENT);
6691
6692   /* These two flags cannot be used together */
6693   assert(key->vs.need_prescale + key->vs.undo_viewport <= 1);
6694
6695   /*
6696    * Setup the code emitter
6697    */
6698   emit = alloc_emitter();
6699   if (!emit)
6700      return NULL;
6701
6702   emit->unit = unit;
6703   emit->key = *key;
6704
6705   emit->vposition.need_prescale = (emit->key.vs.need_prescale ||
6706                                   emit->key.gs.need_prescale);
6707   emit->vposition.tmp_index = INVALID_INDEX;
6708   emit->vposition.so_index = INVALID_INDEX;
6709   emit->vposition.out_index = INVALID_INDEX;
6710
6711   emit->fs.color_tmp_index = INVALID_INDEX;
6712   emit->fs.face_input_index = INVALID_INDEX;
6713   emit->fs.fragcoord_input_index = INVALID_INDEX;
6714
6715   emit->gs.prim_id_index = INVALID_INDEX;
6716
6717   emit->clip_dist_out_index = INVALID_INDEX;
6718   emit->clip_dist_tmp_index = INVALID_INDEX;
6719   emit->clip_dist_so_index = INVALID_INDEX;
6720   emit->clip_vertex_out_index = INVALID_INDEX;
6721
6722   if (emit->key.fs.alpha_func == SVGA3D_CMP_INVALID) {
6723      emit->key.fs.alpha_func = SVGA3D_CMP_ALWAYS;
6724   }
6725
6726   if (unit == PIPE_SHADER_FRAGMENT) {
6727      if (key->fs.light_twoside) {
6728         tokens = transform_fs_twoside(tokens);
6729      }
6730      if (key->fs.pstipple) {
6731         const struct tgsi_token *new_tokens =
6732            transform_fs_pstipple(emit, tokens);
6733         if (tokens != shader->tokens) {
6734            /* free the two-sided shader tokens */
6735            tgsi_free_tokens(tokens);
6736         }
6737         tokens = new_tokens;
6738      }
6739      if (key->fs.aa_point) {
6740         tokens = transform_fs_aapoint(tokens, key->fs.aa_point_coord_index);
6741      }
6742   }
6743
6744   if (SVGA_DEBUG & DEBUG_TGSI) {
6745      debug_printf("#####################################\n");
6746      debug_printf("### TGSI Shader %u\n", shader->id);
6747      tgsi_dump(tokens, 0);
6748   }
6749
6750   /**
6751    * Rescan the header if the token string is different from the one
6752    * included in the shader; otherwise, the header info is already up-to-date
6753    */
6754   if (tokens != shader->tokens) {
6755      tgsi_scan_shader(tokens, &emit->info);
6756   } else {
6757      emit->info = shader->info;
6758   }
6759
6760   emit->num_outputs = emit->info.num_outputs;
6761
6762   if (unit == PIPE_SHADER_FRAGMENT) {
6763      /* Compute FS input remapping to match the output from VS/GS */
6764      if (gs) {
6765         svga_link_shaders(&gs->base.info, &emit->info, &emit->linkage);
6766      } else {
6767         assert(vs);
6768         svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage);
6769      }
6770   } else if (unit == PIPE_SHADER_GEOMETRY) {
6771      assert(vs);
6772      svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage);
6773   }
6774
6775   determine_clipping_mode(emit);
6776
6777   if (unit == PIPE_SHADER_GEOMETRY || unit == PIPE_SHADER_VERTEX) {
6778      if (shader->stream_output != NULL || emit->clip_mode == CLIP_DISTANCE) {
6779         /* if there is stream output declarations associated
6780          * with this shader or the shader writes to ClipDistance
6781          * then reserve extra registers for the non-adjusted vertex position
6782          * and the ClipDistance shadow copy
6783          */
6784         emit->vposition.so_index = emit->num_outputs++;
6785
6786         if (emit->clip_mode == CLIP_DISTANCE) {
6787            emit->clip_dist_so_index = emit->num_outputs++;
6788            if (emit->info.num_written_clipdistance > 4)
6789               emit->num_outputs++;
6790         }
6791      }
6792   }
6793
6794   /*
6795    * Do actual shader translation.
6796    */
6797   if (!emit_vgpu10_header(emit)) {
6798      debug_printf("svga: emit VGPU10 header failed\n");
6799      goto cleanup;
6800   }
6801
6802   if (!emit_vgpu10_instructions(emit, tokens)) {
6803      debug_printf("svga: emit VGPU10 instructions failed\n");
6804      goto cleanup;
6805   }
6806
6807   if (!emit_vgpu10_tail(emit)) {
6808      debug_printf("svga: emit VGPU10 tail failed\n");
6809      goto cleanup;
6810   }
6811
6812   if (emit->register_overflow) {
6813      goto cleanup;
6814   }
6815
6816   /*
6817    * Create, initialize the 'variant' object.
6818    */
6819   variant = svga_new_shader_variant(svga);
6820   if (!variant)
6821      goto cleanup;
6822
6823   variant->shader = shader;
6824   variant->nr_tokens = emit_get_num_tokens(emit);
6825   variant->tokens = (const unsigned *)emit->buf;
6826   emit->buf = NULL;  /* buffer is no longer owed by emitter context */
6827   memcpy(&variant->key, key, sizeof(*key));
6828   variant->id = UTIL_BITMASK_INVALID_INDEX;
6829
6830   /* The extra constant starting offset starts with the number of
6831    * shader constants declared in the shader.
6832    */
6833   variant->extra_const_start = emit->num_shader_consts[0];
6834   if (key->gs.wide_point) {
6835      /**
6836       * The extra constant added in the transformed shader
6837       * for inverse viewport scale is to be supplied by the driver.
6838       * So the extra constant starting offset needs to be reduced by 1.
6839       */
6840      assert(variant->extra_const_start > 0);
6841      variant->extra_const_start--;
6842   }
6843
6844   variant->pstipple_sampler_unit = emit->fs.pstipple_sampler_unit;
6845
6846   /* If there was exactly one write to a fragment shader output register
6847    * and it came from a constant buffer, we know all fragments will have
6848    * the same color (except for blending).
6849    */
6850   variant->constant_color_output =
6851      emit->constant_color_output && emit->num_output_writes == 1;
6852
6853   /** keep track in the variant if flat interpolation is used
6854    *  for any of the varyings.
6855    */
6856   variant->uses_flat_interp = emit->uses_flat_interp;
6857
6858   if (tokens != shader->tokens) {
6859      tgsi_free_tokens(tokens);
6860   }
6861
6862cleanup:
6863   free_emitter(emit);
6864
6865   return variant;
6866}
6867