1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31#include "main/macros.h"
32#include "brw_context.h"
33#include "brw_eu.h"
34#include "brw_fs.h"
35#include "brw_cs.h"
36#include "brw_nir.h"
37#include "brw_vec4_gs_visitor.h"
38#include "brw_cfg.h"
39#include "brw_program.h"
40#include "brw_dead_control_flow.h"
41#include "compiler/glsl_types.h"
42#include "compiler/nir/nir_builder.h"
43#include "program/prog_parameter.h"
44
45using namespace brw;
46
47static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48                                       const fs_inst *inst);
49
50void
51fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52              const fs_reg *src, unsigned sources)
53{
54   memset(this, 0, sizeof(*this));
55
56   this->src = new fs_reg[MAX2(sources, 3)];
57   for (unsigned i = 0; i < sources; i++)
58      this->src[i] = src[i];
59
60   this->opcode = opcode;
61   this->dst = dst;
62   this->sources = sources;
63   this->exec_size = exec_size;
64   this->base_mrf = -1;
65
66   assert(dst.file != IMM && dst.file != UNIFORM);
67
68   assert(this->exec_size != 0);
69
70   this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72   /* This will be the case for almost all instructions. */
73   switch (dst.file) {
74   case VGRF:
75   case ARF:
76   case FIXED_GRF:
77   case MRF:
78   case ATTR:
79      this->size_written = dst.component_size(exec_size);
80      break;
81   case BAD_FILE:
82      this->size_written = 0;
83      break;
84   case IMM:
85   case UNIFORM:
86      unreachable("Invalid destination register file");
87   }
88
89   this->writes_accumulator = false;
90}
91
92fs_inst::fs_inst()
93{
94   init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95}
96
97fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98{
99   init(opcode, exec_size, reg_undef, NULL, 0);
100}
101
102fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103{
104   init(opcode, exec_size, dst, NULL, 0);
105}
106
107fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108                 const fs_reg &src0)
109{
110   const fs_reg src[1] = { src0 };
111   init(opcode, exec_size, dst, src, 1);
112}
113
114fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115                 const fs_reg &src0, const fs_reg &src1)
116{
117   const fs_reg src[2] = { src0, src1 };
118   init(opcode, exec_size, dst, src, 2);
119}
120
121fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122                 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123{
124   const fs_reg src[3] = { src0, src1, src2 };
125   init(opcode, exec_size, dst, src, 3);
126}
127
128fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129                 const fs_reg src[], unsigned sources)
130{
131   init(opcode, exec_width, dst, src, sources);
132}
133
134fs_inst::fs_inst(const fs_inst &that)
135{
136   memcpy(this, &that, sizeof(that));
137
138   this->src = new fs_reg[MAX2(that.sources, 3)];
139
140   for (unsigned i = 0; i < that.sources; i++)
141      this->src[i] = that.src[i];
142}
143
144fs_inst::~fs_inst()
145{
146   delete[] this->src;
147}
148
149void
150fs_inst::resize_sources(uint8_t num_sources)
151{
152   if (this->sources != num_sources) {
153      fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155      for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156         src[i] = this->src[i];
157
158      delete[] this->src;
159      this->src = src;
160      this->sources = num_sources;
161   }
162}
163
164void
165fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166                                       const fs_reg &dst,
167                                       const fs_reg &surf_index,
168                                       const fs_reg &varying_offset,
169                                       uint32_t const_offset)
170{
171   /* We have our constant surface use a pitch of 4 bytes, so our index can
172    * be any component of a vector, and then we load 4 contiguous
173    * components starting from that.
174    *
175    * We break down the const_offset to a portion added to the variable offset
176    * and a portion done using fs_reg::offset, which means that if you have
177    * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178    * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179    * later notice that those loads are all the same and eliminate the
180    * redundant ones.
181    */
182   fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183   bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185   /* The pull load message will load a vec4 (16 bytes). If we are loading
186    * a double this means we are only loading 2 elements worth of data.
187    * We also want to use a 32-bit data type for the dst of the load operation
188    * so other parts of the driver don't get confused about the size of the
189    * result.
190    */
191   fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192   fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193                            vec4_result, surf_index, vec4_offset);
194   inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196   if (type_sz(dst.type) == 8) {
197      shuffle_32bit_load_result_to_64bit_data(
198         bld, retype(vec4_result, dst.type), vec4_result, 2);
199   }
200
201   vec4_result.type = dst.type;
202   bld.MOV(dst, offset(vec4_result, bld,
203                       (const_offset & 0xf) / type_sz(vec4_result.type)));
204}
205
206/**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210void
211fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212{
213   /* The caller always wants uncompressed to emit the minimal extra
214    * dependencies, and to avoid having to deal with aligning its regs to 2.
215    */
216   const fs_builder ubld = bld.annotate("send dependency resolve")
217                              .half(0);
218
219   ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220}
221
222bool
223fs_inst::equals(fs_inst *inst) const
224{
225   return (opcode == inst->opcode &&
226           dst.equals(inst->dst) &&
227           src[0].equals(inst->src[0]) &&
228           src[1].equals(inst->src[1]) &&
229           src[2].equals(inst->src[2]) &&
230           saturate == inst->saturate &&
231           predicate == inst->predicate &&
232           conditional_mod == inst->conditional_mod &&
233           mlen == inst->mlen &&
234           base_mrf == inst->base_mrf &&
235           target == inst->target &&
236           eot == inst->eot &&
237           header_size == inst->header_size &&
238           shadow_compare == inst->shadow_compare &&
239           exec_size == inst->exec_size &&
240           offset == inst->offset);
241}
242
243bool
244fs_inst::is_send_from_grf() const
245{
246   switch (opcode) {
247   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248   case SHADER_OPCODE_SHADER_TIME_ADD:
249   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252   case SHADER_OPCODE_UNTYPED_ATOMIC:
253   case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255   case SHADER_OPCODE_TYPED_ATOMIC:
256   case SHADER_OPCODE_TYPED_SURFACE_READ:
257   case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258   case SHADER_OPCODE_URB_WRITE_SIMD8:
259   case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262   case SHADER_OPCODE_URB_READ_SIMD8:
263   case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264      return true;
265   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266      return src[1].file == VGRF;
267   case FS_OPCODE_FB_WRITE:
268   case FS_OPCODE_FB_READ:
269      return src[0].file == VGRF;
270   default:
271      if (is_tex())
272         return src[0].file == VGRF;
273
274      return false;
275   }
276}
277
278/**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use.  For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 *   code generator: if src == dst and one instruction writes the
291 *   destination before a later instruction reads the source, then
292 *   src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299bool
300fs_inst::has_source_and_destination_hazard() const
301{
302   switch (opcode) {
303   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304      /* Multiple partial writes to the destination */
305      return true;
306   default:
307      /* The SIMD16 compressed instruction
308       *
309       * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
310       *
311       * is actually decoded in hardware as:
312       *
313       * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
314       * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
315       *
316       * Which is safe.  However, if we have uniform accesses
317       * happening, we get into trouble:
318       *
319       * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
320       * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
321       *
322       * Now our destination for the first instruction overwrote the
323       * second instruction's src0, and we get garbage for those 8
324       * pixels.  There's a similar issue for the pre-gen6
325       * pixel_x/pixel_y, which are registers of 16-bit values and thus
326       * would get stomped by the first decode as well.
327       */
328      if (exec_size == 16) {
329         for (int i = 0; i < sources; i++) {
330            if (src[i].file == VGRF && (src[i].stride == 0 ||
331                                        src[i].type == BRW_REGISTER_TYPE_UW ||
332                                        src[i].type == BRW_REGISTER_TYPE_W ||
333                                        src[i].type == BRW_REGISTER_TYPE_UB ||
334                                        src[i].type == BRW_REGISTER_TYPE_B)) {
335               return true;
336            }
337         }
338      }
339      return false;
340   }
341}
342
343bool
344fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345{
346   if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347      return false;
348
349   fs_reg reg = this->src[0];
350   if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351      return false;
352
353   if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354      return false;
355
356   for (int i = 0; i < this->sources; i++) {
357      reg.type = this->src[i].type;
358      if (!this->src[i].equals(reg))
359         return false;
360
361      if (i < this->header_size) {
362         reg.offset += REG_SIZE;
363      } else {
364         reg = horiz_offset(reg, this->exec_size);
365      }
366   }
367
368   return true;
369}
370
371bool
372fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373{
374   if (devinfo->gen == 6 && is_math())
375      return false;
376
377   if (is_send_from_grf())
378      return false;
379
380   if (!backend_instruction::can_do_source_mods())
381      return false;
382
383   return true;
384}
385
386bool
387fs_inst::can_change_types() const
388{
389   return dst.type == src[0].type &&
390          !src[0].abs && !src[0].negate && !saturate &&
391          (opcode == BRW_OPCODE_MOV ||
392           (opcode == BRW_OPCODE_SEL &&
393            dst.type == src[1].type &&
394            predicate != BRW_PREDICATE_NONE &&
395            !src[1].abs && !src[1].negate));
396}
397
398bool
399fs_inst::has_side_effects() const
400{
401   return this->eot || backend_instruction::has_side_effects();
402}
403
404void
405fs_reg::init()
406{
407   memset(this, 0, sizeof(*this));
408   stride = 1;
409}
410
411/** Generic unset register constructor. */
412fs_reg::fs_reg()
413{
414   init();
415   this->file = BAD_FILE;
416}
417
418fs_reg::fs_reg(struct ::brw_reg reg) :
419   backend_reg(reg)
420{
421   this->offset = 0;
422   this->stride = 1;
423   if (this->file == IMM &&
424       (this->type != BRW_REGISTER_TYPE_V &&
425        this->type != BRW_REGISTER_TYPE_UV &&
426        this->type != BRW_REGISTER_TYPE_VF)) {
427      this->stride = 0;
428   }
429}
430
431bool
432fs_reg::equals(const fs_reg &r) const
433{
434   return (this->backend_reg::equals(r) &&
435           stride == r.stride);
436}
437
438bool
439fs_reg::is_contiguous() const
440{
441   return stride == 1;
442}
443
444unsigned
445fs_reg::component_size(unsigned width) const
446{
447   const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448                            hstride == 0 ? 0 :
449                            1 << (hstride - 1));
450   return MAX2(width * stride, 1) * type_sz(type);
451}
452
453extern "C" int
454type_size_scalar(const struct glsl_type *type)
455{
456   unsigned int size, i;
457
458   switch (type->base_type) {
459   case GLSL_TYPE_UINT:
460   case GLSL_TYPE_INT:
461   case GLSL_TYPE_FLOAT:
462   case GLSL_TYPE_BOOL:
463      return type->components();
464   case GLSL_TYPE_DOUBLE:
465      return type->components() * 2;
466   case GLSL_TYPE_ARRAY:
467      return type_size_scalar(type->fields.array) * type->length;
468   case GLSL_TYPE_STRUCT:
469      size = 0;
470      for (i = 0; i < type->length; i++) {
471	 size += type_size_scalar(type->fields.structure[i].type);
472      }
473      return size;
474   case GLSL_TYPE_SAMPLER:
475      /* Samplers take up no register space, since they're baked in at
476       * link time.
477       */
478      return 0;
479   case GLSL_TYPE_ATOMIC_UINT:
480      return 0;
481   case GLSL_TYPE_SUBROUTINE:
482      return 1;
483   case GLSL_TYPE_IMAGE:
484      return BRW_IMAGE_PARAM_SIZE;
485   case GLSL_TYPE_VOID:
486   case GLSL_TYPE_ERROR:
487   case GLSL_TYPE_INTERFACE:
488   case GLSL_TYPE_FUNCTION:
489      unreachable("not reached");
490   }
491
492   return 0;
493}
494
495/**
496 * Create a MOV to read the timestamp register.
497 *
498 * The caller is responsible for emitting the MOV.  The return value is
499 * the destination of the MOV, with extra parameters set.
500 */
501fs_reg
502fs_visitor::get_timestamp(const fs_builder &bld)
503{
504   assert(devinfo->gen >= 7);
505
506   fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507                                          BRW_ARF_TIMESTAMP,
508                                          0),
509                             BRW_REGISTER_TYPE_UD));
510
511   fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512
513   /* We want to read the 3 fields we care about even if it's not enabled in
514    * the dispatch.
515    */
516   bld.group(4, 0).exec_all().MOV(dst, ts);
517
518   return dst;
519}
520
521void
522fs_visitor::emit_shader_time_begin()
523{
524   /* We want only the low 32 bits of the timestamp.  Since it's running
525    * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526    * which is plenty of time for our purposes.  It is identical across the
527    * EUs, but since it's tracking GPU core speed it will increment at a
528    * varying rate as render P-states change.
529    */
530   shader_start_time = component(
531      get_timestamp(bld.annotate("shader time start")), 0);
532}
533
534void
535fs_visitor::emit_shader_time_end()
536{
537   /* Insert our code just before the final SEND with EOT. */
538   exec_node *end = this->instructions.get_tail();
539   assert(end && ((fs_inst *) end)->eot);
540   const fs_builder ibld = bld.annotate("shader time end")
541                              .exec_all().at(NULL, end);
542   const fs_reg timestamp = get_timestamp(ibld);
543
544   /* We only use the low 32 bits of the timestamp - see
545    * emit_shader_time_begin()).
546    *
547    * We could also check if render P-states have changed (or anything
548    * else that might disrupt timing) by setting smear to 2 and checking if
549    * that field is != 0.
550    */
551   const fs_reg shader_end_time = component(timestamp, 0);
552
553   /* Check that there weren't any timestamp reset events (assuming these
554    * were the only two timestamp reads that happened).
555    */
556   const fs_reg reset = component(timestamp, 2);
557   set_condmod(BRW_CONDITIONAL_Z,
558               ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559   ibld.IF(BRW_PREDICATE_NORMAL);
560
561   fs_reg start = shader_start_time;
562   start.negate = true;
563   const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564                                        BRW_REGISTER_TYPE_UD),
565                                 0);
566   const fs_builder cbld = ibld.group(1, 0);
567   cbld.group(1, 0).ADD(diff, start, shader_end_time);
568
569   /* If there were no instructions between the two timestamp gets, the diff
570    * is 2 cycles.  Remove that overhead, so I can forget about that when
571    * trying to determine the time taken for single instructions.
572    */
573   cbld.ADD(diff, diff, brw_imm_ud(-2u));
574   SHADER_TIME_ADD(cbld, 0, diff);
575   SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576   ibld.emit(BRW_OPCODE_ELSE);
577   SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578   ibld.emit(BRW_OPCODE_ENDIF);
579}
580
581void
582fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583                            int shader_time_subindex,
584                            fs_reg value)
585{
586   int index = shader_time_index * 3 + shader_time_subindex;
587   struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
588
589   fs_reg payload;
590   if (dispatch_width == 8)
591      payload = vgrf(glsl_type::uvec2_type);
592   else
593      payload = vgrf(glsl_type::uint_type);
594
595   bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596}
597
598void
599fs_visitor::vfail(const char *format, va_list va)
600{
601   char *msg;
602
603   if (failed)
604      return;
605
606   failed = true;
607
608   msg = ralloc_vasprintf(mem_ctx, format, va);
609   msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610
611   this->fail_msg = msg;
612
613   if (debug_enabled) {
614      fprintf(stderr, "%s",  msg);
615   }
616}
617
618void
619fs_visitor::fail(const char *format, ...)
620{
621   va_list va;
622
623   va_start(va, format);
624   vfail(format, va);
625   va_end(va);
626}
627
628/**
629 * Mark this program as impossible to compile with dispatch width greater
630 * than n.
631 *
632 * During the SIMD8 compile (which happens first), we can detect and flag
633 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634 * SIMD16+ compile altogether.
635 *
636 * During a compile of dispatch width greater than n (if one happens anyway),
637 * this just calls fail().
638 */
639void
640fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641{
642   if (dispatch_width > n) {
643      fail("%s", msg);
644   } else {
645      max_dispatch_width = n;
646      compiler->shader_perf_log(log_data,
647                                "Shader dispatch width limited to SIMD%d: %s",
648                                n, msg);
649   }
650}
651
652/**
653 * Returns true if the instruction has a flag that means it won't
654 * update an entire destination register.
655 *
656 * For example, dead code elimination and live variable analysis want to know
657 * when a write to a variable screens off any preceding values that were in
658 * it.
659 */
660bool
661fs_inst::is_partial_write() const
662{
663   return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664           (this->exec_size * type_sz(this->dst.type)) < 32 ||
665           !this->dst.is_contiguous() ||
666           this->dst.offset % REG_SIZE != 0);
667}
668
669unsigned
670fs_inst::components_read(unsigned i) const
671{
672   /* Return zero if the source is not present. */
673   if (src[i].file == BAD_FILE)
674      return 0;
675
676   switch (opcode) {
677   case FS_OPCODE_LINTERP:
678      if (i == 0)
679         return 2;
680      else
681         return 1;
682
683   case FS_OPCODE_PIXEL_X:
684   case FS_OPCODE_PIXEL_Y:
685      assert(i == 0);
686      return 2;
687
688   case FS_OPCODE_FB_WRITE_LOGICAL:
689      assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690      /* First/second FB write color. */
691      if (i < 2)
692         return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693      else
694         return 1;
695
696   case SHADER_OPCODE_TEX_LOGICAL:
697   case SHADER_OPCODE_TXD_LOGICAL:
698   case SHADER_OPCODE_TXF_LOGICAL:
699   case SHADER_OPCODE_TXL_LOGICAL:
700   case SHADER_OPCODE_TXS_LOGICAL:
701   case FS_OPCODE_TXB_LOGICAL:
702   case SHADER_OPCODE_TXF_CMS_LOGICAL:
703   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704   case SHADER_OPCODE_TXF_UMS_LOGICAL:
705   case SHADER_OPCODE_TXF_MCS_LOGICAL:
706   case SHADER_OPCODE_LOD_LOGICAL:
707   case SHADER_OPCODE_TG4_LOGICAL:
708   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710      assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711             src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712      /* Texture coordinates. */
713      if (i == TEX_LOGICAL_SRC_COORDINATE)
714         return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715      /* Texture derivatives. */
716      else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717               opcode == SHADER_OPCODE_TXD_LOGICAL)
718         return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719      /* Texture offset. */
720      else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721         return 2;
722      /* MCS */
723      else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724         return 2;
725      else
726         return 1;
727
728   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730      assert(src[3].file == IMM);
731      /* Surface coordinates. */
732      if (i == 0)
733         return src[3].ud;
734      /* Surface operation source (ignored for reads). */
735      else if (i == 1)
736         return 0;
737      else
738         return 1;
739
740   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742      assert(src[3].file == IMM &&
743             src[4].file == IMM);
744      /* Surface coordinates. */
745      if (i == 0)
746         return src[3].ud;
747      /* Surface operation source. */
748      else if (i == 1)
749         return src[4].ud;
750      else
751         return 1;
752
753   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755      assert(src[3].file == IMM &&
756             src[4].file == IMM);
757      const unsigned op = src[4].ud;
758      /* Surface coordinates. */
759      if (i == 0)
760         return src[3].ud;
761      /* Surface operation source. */
762      else if (i == 1 && op == BRW_AOP_CMPWR)
763         return 2;
764      else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765                          op == BRW_AOP_PREDEC))
766         return 0;
767      else
768         return 1;
769   }
770
771   default:
772      return 1;
773   }
774}
775
776unsigned
777fs_inst::size_read(int arg) const
778{
779   switch (opcode) {
780   case FS_OPCODE_FB_WRITE:
781   case FS_OPCODE_FB_READ:
782   case SHADER_OPCODE_URB_WRITE_SIMD8:
783   case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786   case SHADER_OPCODE_URB_READ_SIMD8:
787   case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788   case SHADER_OPCODE_UNTYPED_ATOMIC:
789   case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791   case SHADER_OPCODE_TYPED_ATOMIC:
792   case SHADER_OPCODE_TYPED_SURFACE_READ:
793   case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795      if (arg == 0)
796         return mlen * REG_SIZE;
797      break;
798
799   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800      /* The payload is actually stored in src1 */
801      if (arg == 1)
802         return mlen * REG_SIZE;
803      break;
804
805   case FS_OPCODE_LINTERP:
806      if (arg == 1)
807         return 16;
808      break;
809
810   case SHADER_OPCODE_LOAD_PAYLOAD:
811      if (arg < this->header_size)
812         return REG_SIZE;
813      break;
814
815   case CS_OPCODE_CS_TERMINATE:
816   case SHADER_OPCODE_BARRIER:
817      return REG_SIZE;
818
819   case SHADER_OPCODE_MOV_INDIRECT:
820      if (arg == 0) {
821         assert(src[2].file == IMM);
822         return src[2].ud;
823      }
824      break;
825
826   default:
827      if (is_tex() && arg == 0 && src[0].file == VGRF)
828         return mlen * REG_SIZE;
829      break;
830   }
831
832   switch (src[arg].file) {
833   case UNIFORM:
834   case IMM:
835      return components_read(arg) * type_sz(src[arg].type);
836   case BAD_FILE:
837   case ARF:
838   case FIXED_GRF:
839   case VGRF:
840   case ATTR:
841      return components_read(arg) * src[arg].component_size(exec_size);
842   case MRF:
843      unreachable("MRF registers are not allowed as sources");
844   }
845   return 0;
846}
847
848namespace {
849   /* Return the subset of flag registers that an instruction could
850    * potentially read or write based on the execution controls and flag
851    * subregister number of the instruction.
852    */
853   unsigned
854   flag_mask(const fs_inst *inst)
855   {
856      const unsigned start = inst->flag_subreg * 16 + inst->group;
857      const unsigned end = start + inst->exec_size;
858      return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859   }
860}
861
862unsigned
863fs_inst::flags_read(const gen_device_info *devinfo) const
864{
865   /* XXX - This doesn't consider explicit uses of the flag register as source
866    *       region.
867    */
868   if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869       predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870      /* The vertical predication modes combine corresponding bits from
871       * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872       */
873      const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874      return flag_mask(this) << shift | flag_mask(this);
875   } else if (predicate) {
876      return flag_mask(this);
877   } else {
878      return 0;
879   }
880}
881
882unsigned
883fs_inst::flags_written() const
884{
885   /* XXX - This doesn't consider explicit uses of the flag register as
886    *       destination region.
887    */
888   if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889                            opcode != BRW_OPCODE_IF &&
890                            opcode != BRW_OPCODE_WHILE)) ||
891       opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892      return flag_mask(this);
893   } else {
894      return 0;
895   }
896}
897
898/**
899 * Returns how many MRFs an FS opcode will write over.
900 *
901 * Note that this is not the 0 or 1 implied writes in an actual gen
902 * instruction -- the FS opcodes often generate MOVs in addition.
903 */
904int
905fs_visitor::implied_mrf_writes(fs_inst *inst)
906{
907   if (inst->mlen == 0)
908      return 0;
909
910   if (inst->base_mrf == -1)
911      return 0;
912
913   switch (inst->opcode) {
914   case SHADER_OPCODE_RCP:
915   case SHADER_OPCODE_RSQ:
916   case SHADER_OPCODE_SQRT:
917   case SHADER_OPCODE_EXP2:
918   case SHADER_OPCODE_LOG2:
919   case SHADER_OPCODE_SIN:
920   case SHADER_OPCODE_COS:
921      return 1 * dispatch_width / 8;
922   case SHADER_OPCODE_POW:
923   case SHADER_OPCODE_INT_QUOTIENT:
924   case SHADER_OPCODE_INT_REMAINDER:
925      return 2 * dispatch_width / 8;
926   case SHADER_OPCODE_TEX:
927   case FS_OPCODE_TXB:
928   case SHADER_OPCODE_TXD:
929   case SHADER_OPCODE_TXF:
930   case SHADER_OPCODE_TXF_CMS:
931   case SHADER_OPCODE_TXF_MCS:
932   case SHADER_OPCODE_TG4:
933   case SHADER_OPCODE_TG4_OFFSET:
934   case SHADER_OPCODE_TXL:
935   case SHADER_OPCODE_TXS:
936   case SHADER_OPCODE_LOD:
937   case SHADER_OPCODE_SAMPLEINFO:
938      return 1;
939   case FS_OPCODE_FB_WRITE:
940      return 2;
941   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942   case SHADER_OPCODE_GEN4_SCRATCH_READ:
943      return 1;
944   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945      return inst->mlen;
946   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947      return inst->mlen;
948   default:
949      unreachable("not reached");
950   }
951}
952
953fs_reg
954fs_visitor::vgrf(const glsl_type *const type)
955{
956   int reg_width = dispatch_width / 8;
957   return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958                 brw_type_for_base_type(type));
959}
960
961fs_reg::fs_reg(enum brw_reg_file file, int nr)
962{
963   init();
964   this->file = file;
965   this->nr = nr;
966   this->type = BRW_REGISTER_TYPE_F;
967   this->stride = (file == UNIFORM ? 0 : 1);
968}
969
970fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971{
972   init();
973   this->file = file;
974   this->nr = nr;
975   this->type = type;
976   this->stride = (file == UNIFORM ? 0 : 1);
977}
978
979/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982void
983fs_visitor::import_uniforms(fs_visitor *v)
984{
985   this->push_constant_loc = v->push_constant_loc;
986   this->pull_constant_loc = v->pull_constant_loc;
987   this->uniforms = v->uniforms;
988}
989
990void
991fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992{
993   assert(stage == MESA_SHADER_FRAGMENT);
994
995   /* gl_FragCoord.x */
996   bld.MOV(wpos, this->pixel_x);
997   wpos = offset(wpos, bld, 1);
998
999   /* gl_FragCoord.y */
1000   bld.MOV(wpos, this->pixel_y);
1001   wpos = offset(wpos, bld, 1);
1002
1003   /* gl_FragCoord.z */
1004   if (devinfo->gen >= 6) {
1005      bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006   } else {
1007      bld.emit(FS_OPCODE_LINTERP, wpos,
1008           this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009           interp_reg(VARYING_SLOT_POS, 2));
1010   }
1011   wpos = offset(wpos, bld, 1);
1012
1013   /* gl_FragCoord.w: Already set up in emit_interpolation */
1014   bld.MOV(wpos, this->wpos_w);
1015}
1016
1017enum brw_barycentric_mode
1018brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019{
1020   /* Barycentric modes don't make sense for flat inputs. */
1021   assert(mode != INTERP_MODE_FLAT);
1022
1023   unsigned bary;
1024   switch (op) {
1025   case nir_intrinsic_load_barycentric_pixel:
1026   case nir_intrinsic_load_barycentric_at_offset:
1027      bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028      break;
1029   case nir_intrinsic_load_barycentric_centroid:
1030      bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031      break;
1032   case nir_intrinsic_load_barycentric_sample:
1033   case nir_intrinsic_load_barycentric_at_sample:
1034      bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035      break;
1036   default:
1037      unreachable("invalid intrinsic");
1038   }
1039
1040   if (mode == INTERP_MODE_NOPERSPECTIVE)
1041      bary += 3;
1042
1043   return (enum brw_barycentric_mode) bary;
1044}
1045
1046/**
1047 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048 */
1049static enum brw_barycentric_mode
1050centroid_to_pixel(enum brw_barycentric_mode bary)
1051{
1052   assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053          bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054   return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055}
1056
1057fs_reg *
1058fs_visitor::emit_frontfacing_interpolation()
1059{
1060   fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061
1062   if (devinfo->gen >= 6) {
1063      /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064       * a boolean result from this (~0/true or 0/false).
1065       *
1066       * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067       * this task in only one instruction:
1068       *    - a negation source modifier will flip the bit; and
1069       *    - a W -> D type conversion will sign extend the bit into the high
1070       *      word of the destination.
1071       *
1072       * An ASR 15 fills the low word of the destination.
1073       */
1074      fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075      g0.negate = true;
1076
1077      bld.ASR(*reg, g0, brw_imm_d(15));
1078   } else {
1079      /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080       * a boolean result from this (1/true or 0/false).
1081       *
1082       * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083       * the negation source modifier to flip it. Unfortunately the SHR
1084       * instruction only operates on UD (or D with an abs source modifier)
1085       * sources without negation.
1086       *
1087       * Instead, use ASR (which will give ~0/true or 0/false).
1088       */
1089      fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090      g1_6.negate = true;
1091
1092      bld.ASR(*reg, g1_6, brw_imm_d(31));
1093   }
1094
1095   return reg;
1096}
1097
1098void
1099fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100{
1101   assert(stage == MESA_SHADER_FRAGMENT);
1102   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103   assert(dst.type == BRW_REGISTER_TYPE_F);
1104
1105   if (wm_prog_data->persample_dispatch) {
1106      /* Convert int_sample_pos to floating point */
1107      bld.MOV(dst, int_sample_pos);
1108      /* Scale to the range [0, 1] */
1109      bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110   }
1111   else {
1112      /* From ARB_sample_shading specification:
1113       * "When rendering to a non-multisample buffer, or if multisample
1114       *  rasterization is disabled, gl_SamplePosition will always be
1115       *  (0.5, 0.5).
1116       */
1117      bld.MOV(dst, brw_imm_f(0.5f));
1118   }
1119}
1120
1121fs_reg *
1122fs_visitor::emit_samplepos_setup()
1123{
1124   assert(devinfo->gen >= 6);
1125
1126   const fs_builder abld = bld.annotate("compute sample position");
1127   fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128   fs_reg pos = *reg;
1129   fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130   fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131
1132   /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133    * mode will be enabled.
1134    *
1135    * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136    * R31.1:0         Position Offset X/Y for Slot[3:0]
1137    * R31.3:2         Position Offset X/Y for Slot[7:4]
1138    * .....
1139    *
1140    * The X, Y sample positions come in as bytes in  thread payload. So, read
1141    * the positions using vstride=16, width=8, hstride=2.
1142    */
1143   struct brw_reg sample_pos_reg =
1144      stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145                    BRW_REGISTER_TYPE_B), 16, 8, 2);
1146
1147   if (dispatch_width == 8) {
1148      abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149   } else {
1150      abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151      abld.half(1).MOV(half(int_sample_x, 1),
1152                       fs_reg(suboffset(sample_pos_reg, 16)));
1153   }
1154   /* Compute gl_SamplePosition.x */
1155   compute_sample_position(pos, int_sample_x);
1156   pos = offset(pos, abld, 1);
1157   if (dispatch_width == 8) {
1158      abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159   } else {
1160      abld.half(0).MOV(half(int_sample_y, 0),
1161                       fs_reg(suboffset(sample_pos_reg, 1)));
1162      abld.half(1).MOV(half(int_sample_y, 1),
1163                       fs_reg(suboffset(sample_pos_reg, 17)));
1164   }
1165   /* Compute gl_SamplePosition.y */
1166   compute_sample_position(pos, int_sample_y);
1167   return reg;
1168}
1169
1170fs_reg *
1171fs_visitor::emit_sampleid_setup()
1172{
1173   assert(stage == MESA_SHADER_FRAGMENT);
1174   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175   assert(devinfo->gen >= 6);
1176
1177   const fs_builder abld = bld.annotate("compute sample id");
1178   fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179
1180   if (!key->multisample_fbo) {
1181      /* As per GL_ARB_sample_shading specification:
1182       * "When rendering to a non-multisample buffer, or if multisample
1183       *  rasterization is disabled, gl_SampleID will always be zero."
1184       */
1185      abld.MOV(*reg, brw_imm_d(0));
1186   } else if (devinfo->gen >= 8) {
1187      /* Sample ID comes in as 4-bit numbers in g1.0:
1188       *
1189       *    15:12 Slot 3 SampleID (only used in SIMD16)
1190       *     11:8 Slot 2 SampleID (only used in SIMD16)
1191       *      7:4 Slot 1 SampleID
1192       *      3:0 Slot 0 SampleID
1193       *
1194       * Each slot corresponds to four channels, so we want to replicate each
1195       * half-byte value to 4 channels in a row:
1196       *
1197       *    dst+0:    .7    .6    .5    .4    .3    .2    .1    .0
1198       *             7:4   7:4   7:4   7:4   3:0   3:0   3:0   3:0
1199       *
1200       *    dst+1:    .7    .6    .5    .4    .3    .2    .1    .0  (if SIMD16)
1201       *           15:12 15:12 15:12 15:12  11:8  11:8  11:8  11:8
1202       *
1203       * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204       * channels to read the first byte (7:0), and the second group of 8
1205       * channels to read the second byte (15:8).  Then, we shift right by
1206       * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207       * values into place.  Finally, we AND with 0xf to keep the low nibble.
1208       *
1209       *    shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210       *    and(16) dst<1>D tmp<8,8,1>W  0xf:W
1211       *
1212       * TODO: These payload bits exist on Gen7 too, but they appear to always
1213       *       be zero, so this code fails to work.  We should find out why.
1214       */
1215      fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216
1217      abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218                                         BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219                    brw_imm_v(0x44440000));
1220      abld.AND(*reg, tmp, brw_imm_w(0xf));
1221   } else {
1222      const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223                                         BRW_REGISTER_TYPE_D), 0);
1224      const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225
1226      /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227       * 8x multisampling, subspan 0 will represent sample N (where N
1228       * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229       * 7. We can find the value of N by looking at R0.0 bits 7:6
1230       * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231       * (since samples are always delivered in pairs). That is, we
1232       * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233       * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234       * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235       * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236       * populating a temporary variable with the sequence (0, 1, 2, 3),
1237       * and then reading from it using vstride=1, width=4, hstride=0.
1238       * These computations hold good for 4x multisampling as well.
1239       *
1240       * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241       * the first four slots are sample 0 of subspan 0; the next four
1242       * are sample 1 of subspan 0; the third group is sample 0 of
1243       * subspan 1, and finally sample 1 of subspan 1.
1244       */
1245
1246      /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247       * accomodate 16x MSAA.
1248       */
1249      abld.exec_all().group(1, 0)
1250          .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251               brw_imm_ud(0xc0));
1252      abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253
1254      /* This works for both SIMD8 and SIMD16 */
1255      abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256
1257      /* This special instruction takes care of setting vstride=1,
1258       * width=4, hstride=0 of t2 during an ADD instruction.
1259       */
1260      abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261   }
1262
1263   return reg;
1264}
1265
1266fs_reg *
1267fs_visitor::emit_samplemaskin_setup()
1268{
1269   assert(stage == MESA_SHADER_FRAGMENT);
1270   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271   assert(devinfo->gen >= 6);
1272
1273   fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274
1275   fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276                               BRW_REGISTER_TYPE_D));
1277
1278   if (wm_prog_data->persample_dispatch) {
1279      /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280       * and a mask representing which sample is being processed by the
1281       * current shader invocation.
1282       *
1283       * From the OES_sample_variables specification:
1284       * "When per-sample shading is active due to the use of a fragment input
1285       *  qualified by "sample" or due to the use of the gl_SampleID or
1286       *  gl_SamplePosition variables, only the bit for the current sample is
1287       *  set in gl_SampleMaskIn."
1288       */
1289      const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290
1291      if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292         nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293
1294      fs_reg one = vgrf(glsl_type::int_type);
1295      fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296      abld.MOV(one, brw_imm_d(1));
1297      abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298      abld.AND(*reg, enabled_mask, coverage_mask);
1299   } else {
1300      /* In per-pixel mode, the coverage mask is sufficient. */
1301      *reg = coverage_mask;
1302   }
1303   return reg;
1304}
1305
1306fs_reg
1307fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308{
1309   if (!src.abs && !src.negate)
1310      return src;
1311
1312   fs_reg temp = bld.vgrf(src.type);
1313   bld.MOV(temp, src);
1314
1315   return temp;
1316}
1317
1318void
1319fs_visitor::emit_discard_jump()
1320{
1321   assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322
1323   /* For performance, after a discard, jump to the end of the
1324    * shader if all relevant channels have been discarded.
1325    */
1326   fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327   discard_jump->flag_subreg = 1;
1328
1329   discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330   discard_jump->predicate_inverse = true;
1331}
1332
1333void
1334fs_visitor::emit_gs_thread_end()
1335{
1336   assert(stage == MESA_SHADER_GEOMETRY);
1337
1338   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339
1340   if (gs_compile->control_data_header_size_bits > 0) {
1341      emit_gs_control_data_bits(this->final_gs_vertex_count);
1342   }
1343
1344   const fs_builder abld = bld.annotate("thread end");
1345   fs_inst *inst;
1346
1347   if (gs_prog_data->static_vertex_count != -1) {
1348      foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349         if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350             prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351             prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352             prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353            prev->eot = true;
1354
1355            /* Delete now dead instructions. */
1356            foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357               if (dead == prev)
1358                  break;
1359               dead->remove();
1360            }
1361            return;
1362         } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363            break;
1364         }
1365      }
1366      fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367      abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368      inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369      inst->mlen = 1;
1370   } else {
1371      fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372      fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373      sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374      sources[1] = this->final_gs_vertex_count;
1375      abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376      inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377      inst->mlen = 2;
1378   }
1379   inst->eot = true;
1380   inst->offset = 0;
1381}
1382
1383void
1384fs_visitor::assign_curb_setup()
1385{
1386   prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1387
1388   /* Map the offsets in the UNIFORM file to fixed HW regs. */
1389   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1390      for (unsigned int i = 0; i < inst->sources; i++) {
1391	 if (inst->src[i].file == UNIFORM) {
1392            int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1393            int constant_nr;
1394            if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1395               constant_nr = push_constant_loc[uniform_nr];
1396            } else {
1397               /* Section 5.11 of the OpenGL 4.1 spec says:
1398                * "Out-of-bounds reads return undefined values, which include
1399                *  values from other variables of the active program or zero."
1400                * Just return the first push constant.
1401                */
1402               constant_nr = 0;
1403            }
1404
1405	    struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1406						  constant_nr / 8,
1407						  constant_nr % 8);
1408            brw_reg.abs = inst->src[i].abs;
1409            brw_reg.negate = inst->src[i].negate;
1410
1411            assert(inst->src[i].stride == 0);
1412            inst->src[i] = byte_offset(
1413               retype(brw_reg, inst->src[i].type),
1414               inst->src[i].offset % 4);
1415	 }
1416      }
1417   }
1418
1419   /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1420   this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1421}
1422
1423void
1424fs_visitor::calculate_urb_setup()
1425{
1426   assert(stage == MESA_SHADER_FRAGMENT);
1427   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1428   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1429
1430   memset(prog_data->urb_setup, -1,
1431          sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1432
1433   int urb_next = 0;
1434   /* Figure out where each of the incoming setup attributes lands. */
1435   if (devinfo->gen >= 6) {
1436      if (_mesa_bitcount_64(nir->info->inputs_read &
1437                            BRW_FS_VARYING_INPUT_MASK) <= 16) {
1438         /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1439          * first 16 varying inputs, so we can put them wherever we want.
1440          * Just put them in order.
1441          *
1442          * This is useful because it means that (a) inputs not used by the
1443          * fragment shader won't take up valuable register space, and (b) we
1444          * won't have to recompile the fragment shader if it gets paired with
1445          * a different vertex (or geometry) shader.
1446          */
1447         for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1448            if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1449                BITFIELD64_BIT(i)) {
1450               prog_data->urb_setup[i] = urb_next++;
1451            }
1452         }
1453      } else {
1454         bool include_vue_header =
1455            nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1456
1457         /* We have enough input varyings that the SF/SBE pipeline stage can't
1458          * arbitrarily rearrange them to suit our whim; we have to put them
1459          * in an order that matches the output of the previous pipeline stage
1460          * (geometry or vertex shader).
1461          */
1462         struct brw_vue_map prev_stage_vue_map;
1463         brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1464                             key->input_slots_valid,
1465                             nir->info->separate_shader);
1466         int first_slot =
1467            include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1468
1469         assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1470         for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1471              slot++) {
1472            int varying = prev_stage_vue_map.slot_to_varying[slot];
1473            if (varying != BRW_VARYING_SLOT_PAD &&
1474                (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1475                 BITFIELD64_BIT(varying))) {
1476               prog_data->urb_setup[varying] = slot - first_slot;
1477            }
1478         }
1479         urb_next = prev_stage_vue_map.num_slots - first_slot;
1480      }
1481   } else {
1482      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1483      for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1484         /* Point size is packed into the header, not as a general attribute */
1485         if (i == VARYING_SLOT_PSIZ)
1486            continue;
1487
1488	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1489	    /* The back color slot is skipped when the front color is
1490	     * also written to.  In addition, some slots can be
1491	     * written in the vertex shader and not read in the
1492	     * fragment shader.  So the register number must always be
1493	     * incremented, mapped or not.
1494	     */
1495	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1496	       prog_data->urb_setup[i] = urb_next;
1497            urb_next++;
1498	 }
1499      }
1500
1501      /*
1502       * It's a FS only attribute, and we did interpolation for this attribute
1503       * in SF thread. So, count it here, too.
1504       *
1505       * See compile_sf_prog() for more info.
1506       */
1507      if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1508         prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1509   }
1510
1511   prog_data->num_varying_inputs = urb_next;
1512}
1513
1514void
1515fs_visitor::assign_urb_setup()
1516{
1517   assert(stage == MESA_SHADER_FRAGMENT);
1518   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1519
1520   int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1521
1522   /* Offset all the urb_setup[] index by the actual position of the
1523    * setup regs, now that the location of the constants has been chosen.
1524    */
1525   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1526      if (inst->opcode == FS_OPCODE_LINTERP) {
1527	 assert(inst->src[1].file == FIXED_GRF);
1528         inst->src[1].nr += urb_start;
1529      }
1530
1531      if (inst->opcode == FS_OPCODE_CINTERP) {
1532	 assert(inst->src[0].file == FIXED_GRF);
1533         inst->src[0].nr += urb_start;
1534      }
1535   }
1536
1537   /* Each attribute is 4 setup channels, each of which is half a reg. */
1538   this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1539}
1540
1541void
1542fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1543{
1544   for (int i = 0; i < inst->sources; i++) {
1545      if (inst->src[i].file == ATTR) {
1546         int grf = payload.num_regs +
1547                   prog_data->curb_read_length +
1548                   inst->src[i].nr +
1549                   inst->src[i].offset / REG_SIZE;
1550
1551         /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1552          *
1553          * VertStride must be used to cross GRF register boundaries. This
1554          * rule implies that elements within a 'Width' cannot cross GRF
1555          * boundaries.
1556          *
1557          * So, for registers that are large enough, we have to split the exec
1558          * size in two and trust the compression state to sort it out.
1559          */
1560         unsigned total_size = inst->exec_size *
1561                               inst->src[i].stride *
1562                               type_sz(inst->src[i].type);
1563
1564         assert(total_size <= 2 * REG_SIZE);
1565         const unsigned exec_size =
1566            (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1567
1568         unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1569         struct brw_reg reg =
1570            stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1571                               inst->src[i].offset % REG_SIZE),
1572                   exec_size * inst->src[i].stride,
1573                   width, inst->src[i].stride);
1574         reg.abs = inst->src[i].abs;
1575         reg.negate = inst->src[i].negate;
1576
1577         inst->src[i] = reg;
1578      }
1579   }
1580}
1581
1582void
1583fs_visitor::assign_vs_urb_setup()
1584{
1585   struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1586
1587   assert(stage == MESA_SHADER_VERTEX);
1588
1589   /* Each attribute is 4 regs. */
1590   this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1591
1592   assert(vs_prog_data->base.urb_read_length <= 15);
1593
1594   /* Rewrite all ATTR file references to the hw grf that they land in. */
1595   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1596      convert_attr_sources_to_hw_regs(inst);
1597   }
1598}
1599
1600void
1601fs_visitor::assign_tcs_single_patch_urb_setup()
1602{
1603   assert(stage == MESA_SHADER_TESS_CTRL);
1604
1605   /* Rewrite all ATTR file references to HW_REGs. */
1606   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1607      convert_attr_sources_to_hw_regs(inst);
1608   }
1609}
1610
1611void
1612fs_visitor::assign_tes_urb_setup()
1613{
1614   assert(stage == MESA_SHADER_TESS_EVAL);
1615
1616   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1617
1618   first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1619
1620   /* Rewrite all ATTR file references to HW_REGs. */
1621   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1622      convert_attr_sources_to_hw_regs(inst);
1623   }
1624}
1625
1626void
1627fs_visitor::assign_gs_urb_setup()
1628{
1629   assert(stage == MESA_SHADER_GEOMETRY);
1630
1631   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1632
1633   first_non_payload_grf +=
1634      8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1635
1636   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1637      /* Rewrite all ATTR file references to GRFs. */
1638      convert_attr_sources_to_hw_regs(inst);
1639   }
1640}
1641
1642
1643/**
1644 * Split large virtual GRFs into separate components if we can.
1645 *
1646 * This is mostly duplicated with what brw_fs_vector_splitting does,
1647 * but that's really conservative because it's afraid of doing
1648 * splitting that doesn't result in real progress after the rest of
1649 * the optimization phases, which would cause infinite looping in
1650 * optimization.  We can do it once here, safely.  This also has the
1651 * opportunity to split interpolated values, or maybe even uniforms,
1652 * which we don't have at the IR level.
1653 *
1654 * We want to split, because virtual GRFs are what we register
1655 * allocate and spill (due to contiguousness requirements for some
1656 * instructions), and they're what we naturally generate in the
1657 * codegen process, but most virtual GRFs don't actually need to be
1658 * contiguous sets of GRFs.  If we split, we'll end up with reduced
1659 * live intervals and better dead code elimination and coalescing.
1660 */
1661void
1662fs_visitor::split_virtual_grfs()
1663{
1664   /* Compact the register file so we eliminate dead vgrfs.  This
1665    * only defines split points for live registers, so if we have
1666    * too large dead registers they will hit assertions later.
1667    */
1668   compact_virtual_grfs();
1669
1670   int num_vars = this->alloc.count;
1671
1672   /* Count the total number of registers */
1673   int reg_count = 0;
1674   int vgrf_to_reg[num_vars];
1675   for (int i = 0; i < num_vars; i++) {
1676      vgrf_to_reg[i] = reg_count;
1677      reg_count += alloc.sizes[i];
1678   }
1679
1680   /* An array of "split points".  For each register slot, this indicates
1681    * if this slot can be separated from the previous slot.  Every time an
1682    * instruction uses multiple elements of a register (as a source or
1683    * destination), we mark the used slots as inseparable.  Then we go
1684    * through and split the registers into the smallest pieces we can.
1685    */
1686   bool split_points[reg_count];
1687   memset(split_points, 0, sizeof(split_points));
1688
1689   /* Mark all used registers as fully splittable */
1690   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1691      if (inst->dst.file == VGRF) {
1692         int reg = vgrf_to_reg[inst->dst.nr];
1693         for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1694            split_points[reg + j] = true;
1695      }
1696
1697      for (int i = 0; i < inst->sources; i++) {
1698         if (inst->src[i].file == VGRF) {
1699            int reg = vgrf_to_reg[inst->src[i].nr];
1700            for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1701               split_points[reg + j] = true;
1702         }
1703      }
1704   }
1705
1706   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1707      if (inst->dst.file == VGRF) {
1708         int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1709         for (unsigned j = 1; j < regs_written(inst); j++)
1710            split_points[reg + j] = false;
1711      }
1712      for (int i = 0; i < inst->sources; i++) {
1713         if (inst->src[i].file == VGRF) {
1714            int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1715            for (unsigned j = 1; j < regs_read(inst, i); j++)
1716               split_points[reg + j] = false;
1717         }
1718      }
1719   }
1720
1721   int new_virtual_grf[reg_count];
1722   int new_reg_offset[reg_count];
1723
1724   int reg = 0;
1725   for (int i = 0; i < num_vars; i++) {
1726      /* The first one should always be 0 as a quick sanity check. */
1727      assert(split_points[reg] == false);
1728
1729      /* j = 0 case */
1730      new_reg_offset[reg] = 0;
1731      reg++;
1732      int offset = 1;
1733
1734      /* j > 0 case */
1735      for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1736         /* If this is a split point, reset the offset to 0 and allocate a
1737          * new virtual GRF for the previous offset many registers
1738          */
1739         if (split_points[reg]) {
1740            assert(offset <= MAX_VGRF_SIZE);
1741            int grf = alloc.allocate(offset);
1742            for (int k = reg - offset; k < reg; k++)
1743               new_virtual_grf[k] = grf;
1744            offset = 0;
1745         }
1746         new_reg_offset[reg] = offset;
1747         offset++;
1748         reg++;
1749      }
1750
1751      /* The last one gets the original register number */
1752      assert(offset <= MAX_VGRF_SIZE);
1753      alloc.sizes[i] = offset;
1754      for (int k = reg - offset; k < reg; k++)
1755         new_virtual_grf[k] = i;
1756   }
1757   assert(reg == reg_count);
1758
1759   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1760      if (inst->dst.file == VGRF) {
1761         reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1762         inst->dst.nr = new_virtual_grf[reg];
1763         inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1764                            inst->dst.offset % REG_SIZE;
1765         assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1766      }
1767      for (int i = 0; i < inst->sources; i++) {
1768	 if (inst->src[i].file == VGRF) {
1769            reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1770            inst->src[i].nr = new_virtual_grf[reg];
1771            inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1772                                  inst->src[i].offset % REG_SIZE;
1773            assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1774         }
1775      }
1776   }
1777   invalidate_live_intervals();
1778}
1779
1780/**
1781 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1782 *
1783 * During code generation, we create tons of temporary variables, many of
1784 * which get immediately killed and are never used again.  Yet, in later
1785 * optimization and analysis passes, such as compute_live_intervals, we need
1786 * to loop over all the virtual GRFs.  Compacting them can save a lot of
1787 * overhead.
1788 */
1789bool
1790fs_visitor::compact_virtual_grfs()
1791{
1792   bool progress = false;
1793   int remap_table[this->alloc.count];
1794   memset(remap_table, -1, sizeof(remap_table));
1795
1796   /* Mark which virtual GRFs are used. */
1797   foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1798      if (inst->dst.file == VGRF)
1799         remap_table[inst->dst.nr] = 0;
1800
1801      for (int i = 0; i < inst->sources; i++) {
1802         if (inst->src[i].file == VGRF)
1803            remap_table[inst->src[i].nr] = 0;
1804      }
1805   }
1806
1807   /* Compact the GRF arrays. */
1808   int new_index = 0;
1809   for (unsigned i = 0; i < this->alloc.count; i++) {
1810      if (remap_table[i] == -1) {
1811         /* We just found an unused register.  This means that we are
1812          * actually going to compact something.
1813          */
1814         progress = true;
1815      } else {
1816         remap_table[i] = new_index;
1817         alloc.sizes[new_index] = alloc.sizes[i];
1818         invalidate_live_intervals();
1819         ++new_index;
1820      }
1821   }
1822
1823   this->alloc.count = new_index;
1824
1825   /* Patch all the instructions to use the newly renumbered registers */
1826   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1827      if (inst->dst.file == VGRF)
1828         inst->dst.nr = remap_table[inst->dst.nr];
1829
1830      for (int i = 0; i < inst->sources; i++) {
1831         if (inst->src[i].file == VGRF)
1832            inst->src[i].nr = remap_table[inst->src[i].nr];
1833      }
1834   }
1835
1836   /* Patch all the references to delta_xy, since they're used in register
1837    * allocation.  If they're unused, switch them to BAD_FILE so we don't
1838    * think some random VGRF is delta_xy.
1839    */
1840   for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1841      if (delta_xy[i].file == VGRF) {
1842         if (remap_table[delta_xy[i].nr] != -1) {
1843            delta_xy[i].nr = remap_table[delta_xy[i].nr];
1844         } else {
1845            delta_xy[i].file = BAD_FILE;
1846         }
1847      }
1848   }
1849
1850   return progress;
1851}
1852
1853static void
1854set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1855                           unsigned *max_chunk_bitsize,
1856                           bool contiguous, unsigned bitsize,
1857                           const unsigned target_bitsize,
1858                           int *push_constant_loc, int *pull_constant_loc,
1859                           unsigned *num_push_constants,
1860                           unsigned *num_pull_constants,
1861                           const unsigned max_push_components,
1862                           const unsigned max_chunk_size,
1863                           struct brw_stage_prog_data *stage_prog_data)
1864{
1865   /* This is the first live uniform in the chunk */
1866   if (*chunk_start < 0)
1867      *chunk_start = uniform;
1868
1869   /* Keep track of the maximum bit size access in contiguous uniforms */
1870   *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1871
1872   /* If this element does not need to be contiguous with the next, we
1873    * split at this point and everything between chunk_start and u forms a
1874    * single chunk.
1875    */
1876   if (!contiguous) {
1877      /* If bitsize doesn't match the target one, skip it */
1878      if (*max_chunk_bitsize != target_bitsize) {
1879         /* FIXME: right now we only support 32 and 64-bit accesses */
1880         assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1881         *max_chunk_bitsize = 0;
1882         *chunk_start = -1;
1883         return;
1884      }
1885
1886      unsigned chunk_size = uniform - *chunk_start + 1;
1887
1888      /* Decide whether we should push or pull this parameter.  In the
1889       * Vulkan driver, push constants are explicitly exposed via the API
1890       * so we push everything.  In GL, we only push small arrays.
1891       */
1892      if (stage_prog_data->pull_param == NULL ||
1893          (*num_push_constants + chunk_size <= max_push_components &&
1894           chunk_size <= max_chunk_size)) {
1895         assert(*num_push_constants + chunk_size <= max_push_components);
1896         for (unsigned j = *chunk_start; j <= uniform; j++)
1897            push_constant_loc[j] = (*num_push_constants)++;
1898      } else {
1899         for (unsigned j = *chunk_start; j <= uniform; j++)
1900            pull_constant_loc[j] = (*num_pull_constants)++;
1901      }
1902
1903      *max_chunk_bitsize = 0;
1904      *chunk_start = -1;
1905   }
1906}
1907
1908/**
1909 * Assign UNIFORM file registers to either push constants or pull constants.
1910 *
1911 * We allow a fragment shader to have more than the specified minimum
1912 * maximum number of fragment shader uniform components (64).  If
1913 * there are too many of these, they'd fill up all of register space.
1914 * So, this will push some of them out to the pull constant buffer and
1915 * update the program to load them.
1916 */
1917void
1918fs_visitor::assign_constant_locations()
1919{
1920   /* Only the first compile gets to decide on locations. */
1921   if (dispatch_width != min_dispatch_width)
1922      return;
1923
1924   bool is_live[uniforms];
1925   memset(is_live, 0, sizeof(is_live));
1926   unsigned bitsize_access[uniforms];
1927   memset(bitsize_access, 0, sizeof(bitsize_access));
1928
1929   /* For each uniform slot, a value of true indicates that the given slot and
1930    * the next slot must remain contiguous.  This is used to keep us from
1931    * splitting arrays apart.
1932    */
1933   bool contiguous[uniforms];
1934   memset(contiguous, 0, sizeof(contiguous));
1935
1936   int thread_local_id_index =
1937      (stage == MESA_SHADER_COMPUTE) ?
1938      brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1939
1940   /* First, we walk through the instructions and do two things:
1941    *
1942    *  1) Figure out which uniforms are live.
1943    *
1944    *  2) Mark any indirectly used ranges of registers as contiguous.
1945    *
1946    * Note that we don't move constant-indexed accesses to arrays.  No
1947    * testing has been done of the performance impact of this choice.
1948    */
1949   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1950      for (int i = 0 ; i < inst->sources; i++) {
1951         if (inst->src[i].file != UNIFORM)
1952            continue;
1953
1954         int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1955
1956         if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1957            assert(inst->src[2].ud % 4 == 0);
1958            unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1959            assert(last < uniforms);
1960
1961            for (unsigned j = constant_nr; j < last; j++) {
1962               is_live[j] = true;
1963               contiguous[j] = true;
1964               bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1965            }
1966            is_live[last] = true;
1967            bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1968         } else {
1969            if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1970               int regs_read = inst->components_read(i) *
1971                  type_sz(inst->src[i].type) / 4;
1972               for (int j = 0; j < regs_read; j++) {
1973                  is_live[constant_nr + j] = true;
1974                  bitsize_access[constant_nr + j] =
1975                     MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
1976               }
1977            }
1978         }
1979      }
1980   }
1981
1982   if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1983      thread_local_id_index = -1;
1984
1985   /* Only allow 16 registers (128 uniform components) as push constants.
1986    *
1987    * Just demote the end of the list.  We could probably do better
1988    * here, demoting things that are rarely used in the program first.
1989    *
1990    * If changing this value, note the limitation about total_regs in
1991    * brw_curbe.c.
1992    */
1993   unsigned int max_push_components = 16 * 8;
1994   if (thread_local_id_index >= 0)
1995      max_push_components--; /* Save a slot for the thread ID */
1996
1997   /* We push small arrays, but no bigger than 16 floats.  This is big enough
1998    * for a vec4 but hopefully not large enough to push out other stuff.  We
1999    * should probably use a better heuristic at some point.
2000    */
2001   const unsigned int max_chunk_size = 16;
2002
2003   unsigned int num_push_constants = 0;
2004   unsigned int num_pull_constants = 0;
2005
2006   push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2007   pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2008
2009   /* Default to -1 meaning no location */
2010   memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2011   memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2012
2013   int chunk_start = -1;
2014   unsigned max_chunk_bitsize = 0;
2015
2016   /* First push 64-bit uniforms to ensure they are properly aligned */
2017   const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2018   for (unsigned u = 0; u < uniforms; u++) {
2019      if (!is_live[u])
2020         continue;
2021
2022      set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2023                                 contiguous[u], bitsize_access[u],
2024                                 uniform_64_bit_size,
2025                                 push_constant_loc, pull_constant_loc,
2026                                 &num_push_constants, &num_pull_constants,
2027                                 max_push_components, max_chunk_size,
2028                                 stage_prog_data);
2029
2030   }
2031
2032   /* Then push the rest of uniforms */
2033   const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2034   for (unsigned u = 0; u < uniforms; u++) {
2035      if (!is_live[u])
2036         continue;
2037
2038      /* Skip thread_local_id_index to put it in the last push register. */
2039      if (thread_local_id_index == (int)u)
2040         continue;
2041
2042      set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2043                                 contiguous[u], bitsize_access[u],
2044                                 uniform_32_bit_size,
2045                                 push_constant_loc, pull_constant_loc,
2046                                 &num_push_constants, &num_pull_constants,
2047                                 max_push_components, max_chunk_size,
2048                                 stage_prog_data);
2049   }
2050
2051   /* Add the CS local thread ID uniform at the end of the push constants */
2052   if (thread_local_id_index >= 0)
2053      push_constant_loc[thread_local_id_index] = num_push_constants++;
2054
2055   /* As the uniforms are going to be reordered, take the data from a temporary
2056    * copy of the original param[].
2057    */
2058   gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2059                                            stage_prog_data->nr_params);
2060   memcpy(param, stage_prog_data->param,
2061          sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2062   stage_prog_data->nr_params = num_push_constants;
2063   stage_prog_data->nr_pull_params = num_pull_constants;
2064
2065   /* Up until now, the param[] array has been indexed by reg + offset
2066    * of UNIFORM registers.  Move pull constants into pull_param[] and
2067    * condense param[] to only contain the uniforms we chose to push.
2068    *
2069    * NOTE: Because we are condensing the params[] array, we know that
2070    * push_constant_loc[i] <= i and we can do it in one smooth loop without
2071    * having to make a copy.
2072    */
2073   int new_thread_local_id_index = -1;
2074   for (unsigned int i = 0; i < uniforms; i++) {
2075      const gl_constant_value *value = param[i];
2076
2077      if (pull_constant_loc[i] != -1) {
2078         stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2079      } else if (push_constant_loc[i] != -1) {
2080         stage_prog_data->param[push_constant_loc[i]] = value;
2081         if (thread_local_id_index == (int)i)
2082            new_thread_local_id_index = push_constant_loc[i];
2083      }
2084   }
2085   ralloc_free(param);
2086
2087   if (stage == MESA_SHADER_COMPUTE)
2088      brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2089         new_thread_local_id_index;
2090}
2091
2092/**
2093 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2094 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2095 */
2096void
2097fs_visitor::lower_constant_loads()
2098{
2099   const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2100
2101   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2102      /* Set up the annotation tracking for new generated instructions. */
2103      const fs_builder ibld(this, block, inst);
2104
2105      for (int i = 0; i < inst->sources; i++) {
2106	 if (inst->src[i].file != UNIFORM)
2107	    continue;
2108
2109         /* We'll handle this case later */
2110         if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2111            continue;
2112
2113         unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2114         if (location >= uniforms)
2115            continue; /* Out of bounds access */
2116
2117         int pull_index = pull_constant_loc[location];
2118
2119         if (pull_index == -1)
2120	    continue;
2121
2122         assert(inst->src[i].stride == 0);
2123
2124         const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2125         const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2126         const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2127         const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2128         const unsigned base = pull_index * 4;
2129
2130         ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2131                   dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2132
2133         /* Rewrite the instruction to use the temporary VGRF. */
2134         inst->src[i].file = VGRF;
2135         inst->src[i].nr = dst.nr;
2136         inst->src[i].offset = (base & (block_sz - 1)) +
2137                               inst->src[i].offset % 4;
2138
2139         brw_mark_surface_used(prog_data, index);
2140      }
2141
2142      if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2143          inst->src[0].file == UNIFORM) {
2144
2145         unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2146         if (location >= uniforms)
2147            continue; /* Out of bounds access */
2148
2149         int pull_index = pull_constant_loc[location];
2150
2151         if (pull_index == -1)
2152	    continue;
2153
2154         VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2155                                    brw_imm_ud(index),
2156                                    inst->src[1],
2157                                    pull_index * 4);
2158         inst->remove(block);
2159
2160         brw_mark_surface_used(prog_data, index);
2161      }
2162   }
2163   invalidate_live_intervals();
2164}
2165
2166bool
2167fs_visitor::opt_algebraic()
2168{
2169   bool progress = false;
2170
2171   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2172      switch (inst->opcode) {
2173      case BRW_OPCODE_MOV:
2174         if (inst->src[0].file != IMM)
2175            break;
2176
2177         if (inst->saturate) {
2178            if (inst->dst.type != inst->src[0].type)
2179               assert(!"unimplemented: saturate mixed types");
2180
2181            if (brw_saturate_immediate(inst->dst.type,
2182                                       &inst->src[0].as_brw_reg())) {
2183               inst->saturate = false;
2184               progress = true;
2185            }
2186         }
2187         break;
2188
2189      case BRW_OPCODE_MUL:
2190	 if (inst->src[1].file != IMM)
2191	    continue;
2192
2193	 /* a * 1.0 = a */
2194	 if (inst->src[1].is_one()) {
2195	    inst->opcode = BRW_OPCODE_MOV;
2196	    inst->src[1] = reg_undef;
2197	    progress = true;
2198	    break;
2199	 }
2200
2201         /* a * -1.0 = -a */
2202         if (inst->src[1].is_negative_one()) {
2203            inst->opcode = BRW_OPCODE_MOV;
2204            inst->src[0].negate = !inst->src[0].negate;
2205            inst->src[1] = reg_undef;
2206            progress = true;
2207            break;
2208         }
2209
2210         /* a * 0.0 = 0.0 */
2211         if (inst->src[1].is_zero()) {
2212            inst->opcode = BRW_OPCODE_MOV;
2213            inst->src[0] = inst->src[1];
2214            inst->src[1] = reg_undef;
2215            progress = true;
2216            break;
2217         }
2218
2219         if (inst->src[0].file == IMM) {
2220            assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2221            inst->opcode = BRW_OPCODE_MOV;
2222            inst->src[0].f *= inst->src[1].f;
2223            inst->src[1] = reg_undef;
2224            progress = true;
2225            break;
2226         }
2227	 break;
2228      case BRW_OPCODE_ADD:
2229         if (inst->src[1].file != IMM)
2230            continue;
2231
2232         /* a + 0.0 = a */
2233         if (inst->src[1].is_zero()) {
2234            inst->opcode = BRW_OPCODE_MOV;
2235            inst->src[1] = reg_undef;
2236            progress = true;
2237            break;
2238         }
2239
2240         if (inst->src[0].file == IMM) {
2241            assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2242            inst->opcode = BRW_OPCODE_MOV;
2243            inst->src[0].f += inst->src[1].f;
2244            inst->src[1] = reg_undef;
2245            progress = true;
2246            break;
2247         }
2248         break;
2249      case BRW_OPCODE_OR:
2250         if (inst->src[0].equals(inst->src[1])) {
2251            inst->opcode = BRW_OPCODE_MOV;
2252            inst->src[1] = reg_undef;
2253            progress = true;
2254            break;
2255         }
2256         break;
2257      case BRW_OPCODE_LRP:
2258         if (inst->src[1].equals(inst->src[2])) {
2259            inst->opcode = BRW_OPCODE_MOV;
2260            inst->src[0] = inst->src[1];
2261            inst->src[1] = reg_undef;
2262            inst->src[2] = reg_undef;
2263            progress = true;
2264            break;
2265         }
2266         break;
2267      case BRW_OPCODE_CMP:
2268         if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2269             inst->src[0].abs &&
2270             inst->src[0].negate &&
2271             inst->src[1].is_zero()) {
2272            inst->src[0].abs = false;
2273            inst->src[0].negate = false;
2274            inst->conditional_mod = BRW_CONDITIONAL_Z;
2275            progress = true;
2276            break;
2277         }
2278         break;
2279      case BRW_OPCODE_SEL:
2280         if (inst->src[0].equals(inst->src[1])) {
2281            inst->opcode = BRW_OPCODE_MOV;
2282            inst->src[1] = reg_undef;
2283            inst->predicate = BRW_PREDICATE_NONE;
2284            inst->predicate_inverse = false;
2285            progress = true;
2286         } else if (inst->saturate && inst->src[1].file == IMM) {
2287            switch (inst->conditional_mod) {
2288            case BRW_CONDITIONAL_LE:
2289            case BRW_CONDITIONAL_L:
2290               switch (inst->src[1].type) {
2291               case BRW_REGISTER_TYPE_F:
2292                  if (inst->src[1].f >= 1.0f) {
2293                     inst->opcode = BRW_OPCODE_MOV;
2294                     inst->src[1] = reg_undef;
2295                     inst->conditional_mod = BRW_CONDITIONAL_NONE;
2296                     progress = true;
2297                  }
2298                  break;
2299               default:
2300                  break;
2301               }
2302               break;
2303            case BRW_CONDITIONAL_GE:
2304            case BRW_CONDITIONAL_G:
2305               switch (inst->src[1].type) {
2306               case BRW_REGISTER_TYPE_F:
2307                  if (inst->src[1].f <= 0.0f) {
2308                     inst->opcode = BRW_OPCODE_MOV;
2309                     inst->src[1] = reg_undef;
2310                     inst->conditional_mod = BRW_CONDITIONAL_NONE;
2311                     progress = true;
2312                  }
2313                  break;
2314               default:
2315                  break;
2316               }
2317            default:
2318               break;
2319            }
2320         }
2321         break;
2322      case BRW_OPCODE_MAD:
2323         if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2324            inst->opcode = BRW_OPCODE_MOV;
2325            inst->src[1] = reg_undef;
2326            inst->src[2] = reg_undef;
2327            progress = true;
2328         } else if (inst->src[0].is_zero()) {
2329            inst->opcode = BRW_OPCODE_MUL;
2330            inst->src[0] = inst->src[2];
2331            inst->src[2] = reg_undef;
2332            progress = true;
2333         } else if (inst->src[1].is_one()) {
2334            inst->opcode = BRW_OPCODE_ADD;
2335            inst->src[1] = inst->src[2];
2336            inst->src[2] = reg_undef;
2337            progress = true;
2338         } else if (inst->src[2].is_one()) {
2339            inst->opcode = BRW_OPCODE_ADD;
2340            inst->src[2] = reg_undef;
2341            progress = true;
2342         } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2343            inst->opcode = BRW_OPCODE_ADD;
2344            inst->src[1].f *= inst->src[2].f;
2345            inst->src[2] = reg_undef;
2346            progress = true;
2347         }
2348         break;
2349      case SHADER_OPCODE_BROADCAST:
2350         if (is_uniform(inst->src[0])) {
2351            inst->opcode = BRW_OPCODE_MOV;
2352            inst->sources = 1;
2353            inst->force_writemask_all = true;
2354            progress = true;
2355         } else if (inst->src[1].file == IMM) {
2356            inst->opcode = BRW_OPCODE_MOV;
2357            inst->src[0] = component(inst->src[0],
2358                                     inst->src[1].ud);
2359            inst->sources = 1;
2360            inst->force_writemask_all = true;
2361            progress = true;
2362         }
2363         break;
2364
2365      default:
2366	 break;
2367      }
2368
2369      /* Swap if src[0] is immediate. */
2370      if (progress && inst->is_commutative()) {
2371         if (inst->src[0].file == IMM) {
2372            fs_reg tmp = inst->src[1];
2373            inst->src[1] = inst->src[0];
2374            inst->src[0] = tmp;
2375         }
2376      }
2377   }
2378   return progress;
2379}
2380
2381/**
2382 * Optimize sample messages that have constant zero values for the trailing
2383 * texture coordinates. We can just reduce the message length for these
2384 * instructions instead of reserving a register for it. Trailing parameters
2385 * that aren't sent default to zero anyway. This will cause the dead code
2386 * eliminator to remove the MOV instruction that would otherwise be emitted to
2387 * set up the zero value.
2388 */
2389bool
2390fs_visitor::opt_zero_samples()
2391{
2392   /* Gen4 infers the texturing opcode based on the message length so we can't
2393    * change it.
2394    */
2395   if (devinfo->gen < 5)
2396      return false;
2397
2398   bool progress = false;
2399
2400   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2401      if (!inst->is_tex())
2402         continue;
2403
2404      fs_inst *load_payload = (fs_inst *) inst->prev;
2405
2406      if (load_payload->is_head_sentinel() ||
2407          load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2408         continue;
2409
2410      /* We don't want to remove the message header or the first parameter.
2411       * Removing the first parameter is not allowed, see the Haswell PRM
2412       * volume 7, page 149:
2413       *
2414       *     "Parameter 0 is required except for the sampleinfo message, which
2415       *      has no parameter 0"
2416       */
2417      while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2418             load_payload->src[(inst->mlen - inst->header_size) /
2419                               (inst->exec_size / 8) +
2420                               inst->header_size - 1].is_zero()) {
2421         inst->mlen -= inst->exec_size / 8;
2422         progress = true;
2423      }
2424   }
2425
2426   if (progress)
2427      invalidate_live_intervals();
2428
2429   return progress;
2430}
2431
2432/**
2433 * Optimize sample messages which are followed by the final RT write.
2434 *
2435 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2436 * results sent directly to the framebuffer, bypassing the EU.  Recognize the
2437 * final texturing results copied to the framebuffer write payload and modify
2438 * them to write to the framebuffer directly.
2439 */
2440bool
2441fs_visitor::opt_sampler_eot()
2442{
2443   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2444
2445   if (stage != MESA_SHADER_FRAGMENT)
2446      return false;
2447
2448   if (devinfo->gen < 9 && !devinfo->is_cherryview)
2449      return false;
2450
2451   /* FINISHME: It should be possible to implement this optimization when there
2452    * are multiple drawbuffers.
2453    */
2454   if (key->nr_color_regions != 1)
2455      return false;
2456
2457   /* Requires emitting a bunch of saturating MOV instructions during logical
2458    * send lowering to clamp the color payload, which the sampler unit isn't
2459    * going to do for us.
2460    */
2461   if (key->clamp_fragment_color)
2462      return false;
2463
2464   /* Look for a texturing instruction immediately before the final FB_WRITE. */
2465   bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2466   fs_inst *fb_write = (fs_inst *)block->end();
2467   assert(fb_write->eot);
2468   assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2469
2470   /* There wasn't one; nothing to do. */
2471   if (unlikely(fb_write->prev->is_head_sentinel()))
2472      return false;
2473
2474   fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2475
2476   /* 3D Sampler » Messages » Message Format
2477    *
2478    * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2479    *  messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2480    */
2481   if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2482       tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2483       tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2484       tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2485       tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2486       tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2487       tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2488       tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2489      return false;
2490
2491   /* XXX - This shouldn't be necessary. */
2492   if (tex_inst->prev->is_head_sentinel())
2493      return false;
2494
2495   /* Check that the FB write sources are fully initialized by the single
2496    * texturing instruction.
2497    */
2498   for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2499      if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2500         if (!fb_write->src[i].equals(tex_inst->dst) ||
2501             fb_write->size_read(i) != tex_inst->size_written)
2502         return false;
2503      } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2504         if (fb_write->src[i].file != BAD_FILE)
2505            return false;
2506      }
2507   }
2508
2509   assert(!tex_inst->eot); /* We can't get here twice */
2510   assert((tex_inst->offset & (0xff << 24)) == 0);
2511
2512   const fs_builder ibld(this, block, tex_inst);
2513
2514   tex_inst->offset |= fb_write->target << 24;
2515   tex_inst->eot = true;
2516   tex_inst->dst = ibld.null_reg_ud();
2517   tex_inst->size_written = 0;
2518   fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2519
2520   /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2521    * flag and submit a header together with the sampler message as required
2522    * by the hardware.
2523    */
2524   invalidate_live_intervals();
2525   return true;
2526}
2527
2528bool
2529fs_visitor::opt_register_renaming()
2530{
2531   bool progress = false;
2532   int depth = 0;
2533
2534   int remap[alloc.count];
2535   memset(remap, -1, sizeof(int) * alloc.count);
2536
2537   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2538      if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2539         depth++;
2540      } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2541                 inst->opcode == BRW_OPCODE_WHILE) {
2542         depth--;
2543      }
2544
2545      /* Rewrite instruction sources. */
2546      for (int i = 0; i < inst->sources; i++) {
2547         if (inst->src[i].file == VGRF &&
2548             remap[inst->src[i].nr] != -1 &&
2549             remap[inst->src[i].nr] != inst->src[i].nr) {
2550            inst->src[i].nr = remap[inst->src[i].nr];
2551            progress = true;
2552         }
2553      }
2554
2555      const int dst = inst->dst.nr;
2556
2557      if (depth == 0 &&
2558          inst->dst.file == VGRF &&
2559          alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2560          !inst->is_partial_write()) {
2561         if (remap[dst] == -1) {
2562            remap[dst] = dst;
2563         } else {
2564            remap[dst] = alloc.allocate(regs_written(inst));
2565            inst->dst.nr = remap[dst];
2566            progress = true;
2567         }
2568      } else if (inst->dst.file == VGRF &&
2569                 remap[dst] != -1 &&
2570                 remap[dst] != dst) {
2571         inst->dst.nr = remap[dst];
2572         progress = true;
2573      }
2574   }
2575
2576   if (progress) {
2577      invalidate_live_intervals();
2578
2579      for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2580         if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2581            delta_xy[i].nr = remap[delta_xy[i].nr];
2582         }
2583      }
2584   }
2585
2586   return progress;
2587}
2588
2589/**
2590 * Remove redundant or useless discard jumps.
2591 *
2592 * For example, we can eliminate jumps in the following sequence:
2593 *
2594 * discard-jump       (redundant with the next jump)
2595 * discard-jump       (useless; jumps to the next instruction)
2596 * placeholder-halt
2597 */
2598bool
2599fs_visitor::opt_redundant_discard_jumps()
2600{
2601   bool progress = false;
2602
2603   bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2604
2605   fs_inst *placeholder_halt = NULL;
2606   foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2607      if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2608         placeholder_halt = inst;
2609         break;
2610      }
2611   }
2612
2613   if (!placeholder_halt)
2614      return false;
2615
2616   /* Delete any HALTs immediately before the placeholder halt. */
2617   for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2618        !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2619        prev = (fs_inst *) placeholder_halt->prev) {
2620      prev->remove(last_bblock);
2621      progress = true;
2622   }
2623
2624   if (progress)
2625      invalidate_live_intervals();
2626
2627   return progress;
2628}
2629
2630/**
2631 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2632 * from \p r.offset which overlaps the region starting at \p s.offset and
2633 * spanning \p ds bytes.
2634 */
2635static inline unsigned
2636mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2637{
2638   const int rel_offset = reg_offset(s) - reg_offset(r);
2639   const int shift = rel_offset / REG_SIZE;
2640   const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2641   assert(reg_space(r) == reg_space(s) &&
2642          shift >= 0 && shift < int(8 * sizeof(unsigned)));
2643   return ((1 << n) - 1) << shift;
2644}
2645
2646bool
2647fs_visitor::compute_to_mrf()
2648{
2649   bool progress = false;
2650   int next_ip = 0;
2651
2652   /* No MRFs on Gen >= 7. */
2653   if (devinfo->gen >= 7)
2654      return false;
2655
2656   calculate_live_intervals();
2657
2658   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2659      int ip = next_ip;
2660      next_ip++;
2661
2662      if (inst->opcode != BRW_OPCODE_MOV ||
2663	  inst->is_partial_write() ||
2664	  inst->dst.file != MRF || inst->src[0].file != VGRF ||
2665	  inst->dst.type != inst->src[0].type ||
2666	  inst->src[0].abs || inst->src[0].negate ||
2667          !inst->src[0].is_contiguous() ||
2668          inst->src[0].offset % REG_SIZE != 0)
2669	 continue;
2670
2671      /* Can't compute-to-MRF this GRF if someone else was going to
2672       * read it later.
2673       */
2674      if (this->virtual_grf_end[inst->src[0].nr] > ip)
2675	 continue;
2676
2677      /* Found a move of a GRF to a MRF.  Let's see if we can go rewrite the
2678       * things that computed the value of all GRFs of the source region.  The
2679       * regs_left bitset keeps track of the registers we haven't yet found a
2680       * generating instruction for.
2681       */
2682      unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2683
2684      foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2685         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2686                             inst->src[0], inst->size_read(0))) {
2687	    /* Found the last thing to write our reg we want to turn
2688	     * into a compute-to-MRF.
2689	     */
2690
2691	    /* If this one instruction didn't populate all the
2692	     * channels, bail.  We might be able to rewrite everything
2693	     * that writes that reg, but it would require smarter
2694	     * tracking.
2695	     */
2696	    if (scan_inst->is_partial_write())
2697	       break;
2698
2699            /* Handling things not fully contained in the source of the copy
2700             * would need us to understand coalescing out more than one MOV at
2701             * a time.
2702             */
2703            if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2704                                     inst->src[0], inst->size_read(0)))
2705               break;
2706
2707	    /* SEND instructions can't have MRF as a destination. */
2708	    if (scan_inst->mlen)
2709	       break;
2710
2711	    if (devinfo->gen == 6) {
2712	       /* gen6 math instructions must have the destination be
2713		* GRF, so no compute-to-MRF for them.
2714		*/
2715	       if (scan_inst->is_math()) {
2716		  break;
2717	       }
2718	    }
2719
2720            /* Clear the bits for any registers this instruction overwrites. */
2721            regs_left &= ~mask_relative_to(
2722               inst->src[0], scan_inst->dst, scan_inst->size_written);
2723            if (!regs_left)
2724               break;
2725	 }
2726
2727	 /* We don't handle control flow here.  Most computation of
2728	  * values that end up in MRFs are shortly before the MRF
2729	  * write anyway.
2730	  */
2731	 if (block->start() == scan_inst)
2732	    break;
2733
2734	 /* You can't read from an MRF, so if someone else reads our
2735	  * MRF's source GRF that we wanted to rewrite, that stops us.
2736	  */
2737	 bool interfered = false;
2738	 for (int i = 0; i < scan_inst->sources; i++) {
2739            if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2740                                inst->src[0], inst->size_read(0))) {
2741	       interfered = true;
2742	    }
2743	 }
2744	 if (interfered)
2745	    break;
2746
2747         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2748                             inst->dst, inst->size_written)) {
2749	    /* If somebody else writes our MRF here, we can't
2750	     * compute-to-MRF before that.
2751	     */
2752            break;
2753         }
2754
2755         if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2756             regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2757                             inst->dst, inst->size_written)) {
2758	    /* Found a SEND instruction, which means that there are
2759	     * live values in MRFs from base_mrf to base_mrf +
2760	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
2761	     * above it.
2762	     */
2763            break;
2764         }
2765      }
2766
2767      if (regs_left)
2768         continue;
2769
2770      /* Found all generating instructions of our MRF's source value, so it
2771       * should be safe to rewrite them to point to the MRF directly.
2772       */
2773      regs_left = (1 << regs_read(inst, 0)) - 1;
2774
2775      foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2776         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2777                             inst->src[0], inst->size_read(0))) {
2778            /* Clear the bits for any registers this instruction overwrites. */
2779            regs_left &= ~mask_relative_to(
2780               inst->src[0], scan_inst->dst, scan_inst->size_written);
2781
2782            const unsigned rel_offset = reg_offset(scan_inst->dst) -
2783                                        reg_offset(inst->src[0]);
2784
2785            if (inst->dst.nr & BRW_MRF_COMPR4) {
2786               /* Apply the same address transformation done by the hardware
2787                * for COMPR4 MRF writes.
2788                */
2789               assert(rel_offset < 2 * REG_SIZE);
2790               scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2791
2792               /* Clear the COMPR4 bit if the generating instruction is not
2793                * compressed.
2794                */
2795               if (scan_inst->size_written < 2 * REG_SIZE)
2796                  scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2797
2798            } else {
2799               /* Calculate the MRF number the result of this instruction is
2800                * ultimately written to.
2801                */
2802               scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2803            }
2804
2805            scan_inst->dst.file = MRF;
2806            scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2807            scan_inst->saturate |= inst->saturate;
2808            if (!regs_left)
2809               break;
2810         }
2811      }
2812
2813      assert(!regs_left);
2814      inst->remove(block);
2815      progress = true;
2816   }
2817
2818   if (progress)
2819      invalidate_live_intervals();
2820
2821   return progress;
2822}
2823
2824/**
2825 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2826 * flow.  We could probably do better here with some form of divergence
2827 * analysis.
2828 */
2829bool
2830fs_visitor::eliminate_find_live_channel()
2831{
2832   bool progress = false;
2833   unsigned depth = 0;
2834
2835   if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2836      /* The optimization below assumes that channel zero is live on thread
2837       * dispatch, which may not be the case if the fixed function dispatches
2838       * threads sparsely.
2839       */
2840      return false;
2841   }
2842
2843   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2844      switch (inst->opcode) {
2845      case BRW_OPCODE_IF:
2846      case BRW_OPCODE_DO:
2847         depth++;
2848         break;
2849
2850      case BRW_OPCODE_ENDIF:
2851      case BRW_OPCODE_WHILE:
2852         depth--;
2853         break;
2854
2855      case FS_OPCODE_DISCARD_JUMP:
2856         /* This can potentially make control flow non-uniform until the end
2857          * of the program.
2858          */
2859         return progress;
2860
2861      case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2862         if (depth == 0) {
2863            inst->opcode = BRW_OPCODE_MOV;
2864            inst->src[0] = brw_imm_ud(0u);
2865            inst->sources = 1;
2866            inst->force_writemask_all = true;
2867            progress = true;
2868         }
2869         break;
2870
2871      default:
2872         break;
2873      }
2874   }
2875
2876   return progress;
2877}
2878
2879/**
2880 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2881 * instructions to FS_OPCODE_REP_FB_WRITE.
2882 */
2883void
2884fs_visitor::emit_repclear_shader()
2885{
2886   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2887   int base_mrf = 0;
2888   int color_mrf = base_mrf + 2;
2889   fs_inst *mov;
2890
2891   if (uniforms > 0) {
2892      mov = bld.exec_all().group(4, 0)
2893               .MOV(brw_message_reg(color_mrf),
2894                    fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2895   } else {
2896      struct brw_reg reg =
2897         brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2898                 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2899                 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2900
2901      mov = bld.exec_all().group(4, 0)
2902               .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2903   }
2904
2905   fs_inst *write;
2906   if (key->nr_color_regions == 1) {
2907      write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2908      write->saturate = key->clamp_fragment_color;
2909      write->base_mrf = color_mrf;
2910      write->target = 0;
2911      write->header_size = 0;
2912      write->mlen = 1;
2913   } else {
2914      assume(key->nr_color_regions > 0);
2915      for (int i = 0; i < key->nr_color_regions; ++i) {
2916         write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2917         write->saturate = key->clamp_fragment_color;
2918         write->base_mrf = base_mrf;
2919         write->target = i;
2920         write->header_size = 2;
2921         write->mlen = 3;
2922      }
2923   }
2924   write->eot = true;
2925
2926   calculate_cfg();
2927
2928   assign_constant_locations();
2929   assign_curb_setup();
2930
2931   /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2932   if (uniforms > 0) {
2933      assert(mov->src[0].file == FIXED_GRF);
2934      mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2935   }
2936}
2937
2938/**
2939 * Walks through basic blocks, looking for repeated MRF writes and
2940 * removing the later ones.
2941 */
2942bool
2943fs_visitor::remove_duplicate_mrf_writes()
2944{
2945   fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2946   bool progress = false;
2947
2948   /* Need to update the MRF tracking for compressed instructions. */
2949   if (dispatch_width >= 16)
2950      return false;
2951
2952   memset(last_mrf_move, 0, sizeof(last_mrf_move));
2953
2954   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2955      if (inst->is_control_flow()) {
2956	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2957      }
2958
2959      if (inst->opcode == BRW_OPCODE_MOV &&
2960	  inst->dst.file == MRF) {
2961         fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2962	 if (prev_inst && inst->equals(prev_inst)) {
2963	    inst->remove(block);
2964	    progress = true;
2965	    continue;
2966	 }
2967      }
2968
2969      /* Clear out the last-write records for MRFs that were overwritten. */
2970      if (inst->dst.file == MRF) {
2971         last_mrf_move[inst->dst.nr] = NULL;
2972      }
2973
2974      if (inst->mlen > 0 && inst->base_mrf != -1) {
2975	 /* Found a SEND instruction, which will include two or fewer
2976	  * implied MRF writes.  We could do better here.
2977	  */
2978	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2979	    last_mrf_move[inst->base_mrf + i] = NULL;
2980	 }
2981      }
2982
2983      /* Clear out any MRF move records whose sources got overwritten. */
2984      for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2985         if (last_mrf_move[i] &&
2986             regions_overlap(inst->dst, inst->size_written,
2987                             last_mrf_move[i]->src[0],
2988                             last_mrf_move[i]->size_read(0))) {
2989            last_mrf_move[i] = NULL;
2990         }
2991      }
2992
2993      if (inst->opcode == BRW_OPCODE_MOV &&
2994	  inst->dst.file == MRF &&
2995	  inst->src[0].file != ARF &&
2996	  !inst->is_partial_write()) {
2997         last_mrf_move[inst->dst.nr] = inst;
2998      }
2999   }
3000
3001   if (progress)
3002      invalidate_live_intervals();
3003
3004   return progress;
3005}
3006
3007static void
3008clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3009{
3010   /* Clear the flag for registers that actually got read (as expected). */
3011   for (int i = 0; i < inst->sources; i++) {
3012      int grf;
3013      if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3014         grf = inst->src[i].nr;
3015      } else {
3016         continue;
3017      }
3018
3019      if (grf >= first_grf &&
3020          grf < first_grf + grf_len) {
3021         deps[grf - first_grf] = false;
3022         if (inst->exec_size == 16)
3023            deps[grf - first_grf + 1] = false;
3024      }
3025   }
3026}
3027
3028/**
3029 * Implements this workaround for the original 965:
3030 *
3031 *     "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3032 *      check for post destination dependencies on this instruction, software
3033 *      must ensure that there is no destination hazard for the case of ‘write
3034 *      followed by a posted write’ shown in the following example.
3035 *
3036 *      1. mov r3 0
3037 *      2. send r3.xy <rest of send instruction>
3038 *      3. mov r2 r3
3039 *
3040 *      Due to no post-destination dependency check on the ‘send’, the above
3041 *      code sequence could have two instructions (1 and 2) in flight at the
3042 *      same time that both consider ‘r3’ as the target of their final writes.
3043 */
3044void
3045fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3046                                                        fs_inst *inst)
3047{
3048   int write_len = regs_written(inst);
3049   int first_write_grf = inst->dst.nr;
3050   bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3051   assert(write_len < (int)sizeof(needs_dep) - 1);
3052
3053   memset(needs_dep, false, sizeof(needs_dep));
3054   memset(needs_dep, true, write_len);
3055
3056   clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3057
3058   /* Walk backwards looking for writes to registers we're writing which
3059    * aren't read since being written.  If we hit the start of the program,
3060    * we assume that there are no outstanding dependencies on entry to the
3061    * program.
3062    */
3063   foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3064      /* If we hit control flow, assume that there *are* outstanding
3065       * dependencies, and force their cleanup before our instruction.
3066       */
3067      if (block->start() == scan_inst && block->num != 0) {
3068         for (int i = 0; i < write_len; i++) {
3069            if (needs_dep[i])
3070               DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3071                               first_write_grf + i);
3072         }
3073         return;
3074      }
3075
3076      /* We insert our reads as late as possible on the assumption that any
3077       * instruction but a MOV that might have left us an outstanding
3078       * dependency has more latency than a MOV.
3079       */
3080      if (scan_inst->dst.file == VGRF) {
3081         for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3082            int reg = scan_inst->dst.nr + i;
3083
3084            if (reg >= first_write_grf &&
3085                reg < first_write_grf + write_len &&
3086                needs_dep[reg - first_write_grf]) {
3087               DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3088               needs_dep[reg - first_write_grf] = false;
3089               if (scan_inst->exec_size == 16)
3090                  needs_dep[reg - first_write_grf + 1] = false;
3091            }
3092         }
3093      }
3094
3095      /* Clear the flag for registers that actually got read (as expected). */
3096      clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3097
3098      /* Continue the loop only if we haven't resolved all the dependencies */
3099      int i;
3100      for (i = 0; i < write_len; i++) {
3101         if (needs_dep[i])
3102            break;
3103      }
3104      if (i == write_len)
3105         return;
3106   }
3107}
3108
3109/**
3110 * Implements this workaround for the original 965:
3111 *
3112 *     "[DevBW, DevCL] Errata: A destination register from a send can not be
3113 *      used as a destination register until after it has been sourced by an
3114 *      instruction with a different destination register.
3115 */
3116void
3117fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3118{
3119   int write_len = regs_written(inst);
3120   int first_write_grf = inst->dst.nr;
3121   bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3122   assert(write_len < (int)sizeof(needs_dep) - 1);
3123
3124   memset(needs_dep, false, sizeof(needs_dep));
3125   memset(needs_dep, true, write_len);
3126   /* Walk forwards looking for writes to registers we're writing which aren't
3127    * read before being written.
3128    */
3129   foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3130      /* If we hit control flow, force resolve all remaining dependencies. */
3131      if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3132         for (int i = 0; i < write_len; i++) {
3133            if (needs_dep[i])
3134               DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3135                               first_write_grf + i);
3136         }
3137         return;
3138      }
3139
3140      /* Clear the flag for registers that actually got read (as expected). */
3141      clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3142
3143      /* We insert our reads as late as possible since they're reading the
3144       * result of a SEND, which has massive latency.
3145       */
3146      if (scan_inst->dst.file == VGRF &&
3147          scan_inst->dst.nr >= first_write_grf &&
3148          scan_inst->dst.nr < first_write_grf + write_len &&
3149          needs_dep[scan_inst->dst.nr - first_write_grf]) {
3150         DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3151                         scan_inst->dst.nr);
3152         needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3153      }
3154
3155      /* Continue the loop only if we haven't resolved all the dependencies */
3156      int i;
3157      for (i = 0; i < write_len; i++) {
3158         if (needs_dep[i])
3159            break;
3160      }
3161      if (i == write_len)
3162         return;
3163   }
3164}
3165
3166void
3167fs_visitor::insert_gen4_send_dependency_workarounds()
3168{
3169   if (devinfo->gen != 4 || devinfo->is_g4x)
3170      return;
3171
3172   bool progress = false;
3173
3174   foreach_block_and_inst(block, fs_inst, inst, cfg) {
3175      if (inst->mlen != 0 && inst->dst.file == VGRF) {
3176         insert_gen4_pre_send_dependency_workarounds(block, inst);
3177         insert_gen4_post_send_dependency_workarounds(block, inst);
3178         progress = true;
3179      }
3180   }
3181
3182   if (progress)
3183      invalidate_live_intervals();
3184}
3185
3186/**
3187 * Turns the generic expression-style uniform pull constant load instruction
3188 * into a hardware-specific series of instructions for loading a pull
3189 * constant.
3190 *
3191 * The expression style allows the CSE pass before this to optimize out
3192 * repeated loads from the same offset, and gives the pre-register-allocation
3193 * scheduling full flexibility, while the conversion to native instructions
3194 * allows the post-register-allocation scheduler the best information
3195 * possible.
3196 *
3197 * Note that execution masking for setting up pull constant loads is special:
3198 * the channels that need to be written are unrelated to the current execution
3199 * mask, since a later instruction will use one of the result channels as a
3200 * source operand for all 8 or 16 of its channels.
3201 */
3202void
3203fs_visitor::lower_uniform_pull_constant_loads()
3204{
3205   foreach_block_and_inst (block, fs_inst, inst, cfg) {
3206      if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3207         continue;
3208
3209      if (devinfo->gen >= 7) {
3210         const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3211         const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3212
3213         ubld.group(8, 0).MOV(payload,
3214                              retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3215         ubld.group(1, 0).MOV(component(payload, 2),
3216                              brw_imm_ud(inst->src[1].ud / 16));
3217
3218         inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3219         inst->src[1] = payload;
3220         inst->header_size = 1;
3221         inst->mlen = 1;
3222
3223         invalidate_live_intervals();
3224      } else {
3225         /* Before register allocation, we didn't tell the scheduler about the
3226          * MRF we use.  We know it's safe to use this MRF because nothing
3227          * else does except for register spill/unspill, which generates and
3228          * uses its MRF within a single IR instruction.
3229          */
3230         inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3231         inst->mlen = 1;
3232      }
3233   }
3234}
3235
3236bool
3237fs_visitor::lower_load_payload()
3238{
3239   bool progress = false;
3240
3241   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3242      if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3243         continue;
3244
3245      assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3246      assert(inst->saturate == false);
3247      fs_reg dst = inst->dst;
3248
3249      /* Get rid of COMPR4.  We'll add it back in if we need it */
3250      if (dst.file == MRF)
3251         dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3252
3253      const fs_builder ibld(this, block, inst);
3254      const fs_builder hbld = ibld.exec_all().group(8, 0);
3255
3256      for (uint8_t i = 0; i < inst->header_size; i++) {
3257         if (inst->src[i].file != BAD_FILE) {
3258            fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3259            fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3260            hbld.MOV(mov_dst, mov_src);
3261         }
3262         dst = offset(dst, hbld, 1);
3263      }
3264
3265      if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3266          inst->exec_size > 8) {
3267         /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3268          * a straightforward copy.  Instead, the result of the
3269          * LOAD_PAYLOAD is treated as interleaved and the first four
3270          * non-header sources are unpacked as:
3271          *
3272          * m + 0: r0
3273          * m + 1: g0
3274          * m + 2: b0
3275          * m + 3: a0
3276          * m + 4: r1
3277          * m + 5: g1
3278          * m + 6: b1
3279          * m + 7: a1
3280          *
3281          * This is used for gen <= 5 fb writes.
3282          */
3283         assert(inst->exec_size == 16);
3284         assert(inst->header_size + 4 <= inst->sources);
3285         for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3286            if (inst->src[i].file != BAD_FILE) {
3287               if (devinfo->has_compr4) {
3288                  fs_reg compr4_dst = retype(dst, inst->src[i].type);
3289                  compr4_dst.nr |= BRW_MRF_COMPR4;
3290                  ibld.MOV(compr4_dst, inst->src[i]);
3291               } else {
3292                  /* Platform doesn't have COMPR4.  We have to fake it */
3293                  fs_reg mov_dst = retype(dst, inst->src[i].type);
3294                  ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3295                  mov_dst.nr += 4;
3296                  ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3297               }
3298            }
3299
3300            dst.nr++;
3301         }
3302
3303         /* The loop above only ever incremented us through the first set
3304          * of 4 registers.  However, thanks to the magic of COMPR4, we
3305          * actually wrote to the first 8 registers, so we need to take
3306          * that into account now.
3307          */
3308         dst.nr += 4;
3309
3310         /* The COMPR4 code took care of the first 4 sources.  We'll let
3311          * the regular path handle any remaining sources.  Yes, we are
3312          * modifying the instruction but we're about to delete it so
3313          * this really doesn't hurt anything.
3314          */
3315         inst->header_size += 4;
3316      }
3317
3318      for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3319         if (inst->src[i].file != BAD_FILE)
3320            ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3321         dst = offset(dst, ibld, 1);
3322      }
3323
3324      inst->remove(block);
3325      progress = true;
3326   }
3327
3328   if (progress)
3329      invalidate_live_intervals();
3330
3331   return progress;
3332}
3333
3334bool
3335fs_visitor::lower_integer_multiplication()
3336{
3337   bool progress = false;
3338
3339   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3340      const fs_builder ibld(this, block, inst);
3341
3342      if (inst->opcode == BRW_OPCODE_MUL) {
3343         if (inst->dst.is_accumulator() ||
3344             (inst->dst.type != BRW_REGISTER_TYPE_D &&
3345              inst->dst.type != BRW_REGISTER_TYPE_UD))
3346            continue;
3347
3348         /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3349          * operation directly, but CHV/BXT cannot.
3350          */
3351         if (devinfo->gen >= 8 &&
3352             !devinfo->is_cherryview && !devinfo->is_broxton)
3353            continue;
3354
3355         if (inst->src[1].file == IMM &&
3356             inst->src[1].ud < (1 << 16)) {
3357            /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3358             * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3359             * src1 are used.
3360             *
3361             * If multiplying by an immediate value that fits in 16-bits, do a
3362             * single MUL instruction with that value in the proper location.
3363             */
3364            if (devinfo->gen < 7) {
3365               fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3366                          inst->dst.type);
3367               ibld.MOV(imm, inst->src[1]);
3368               ibld.MUL(inst->dst, imm, inst->src[0]);
3369            } else {
3370               const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3371               ibld.MUL(inst->dst, inst->src[0],
3372                        ud ? brw_imm_uw(inst->src[1].ud)
3373                           : brw_imm_w(inst->src[1].d));
3374            }
3375         } else {
3376            /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3377             * do 32-bit integer multiplication in one instruction, but instead
3378             * must do a sequence (which actually calculates a 64-bit result):
3379             *
3380             *    mul(8)  acc0<1>D   g3<8,8,1>D      g4<8,8,1>D
3381             *    mach(8) null       g3<8,8,1>D      g4<8,8,1>D
3382             *    mov(8)  g2<1>D     acc0<8,8,1>D
3383             *
3384             * But on Gen > 6, the ability to use second accumulator register
3385             * (acc1) for non-float data types was removed, preventing a simple
3386             * implementation in SIMD16. A 16-channel result can be calculated by
3387             * executing the three instructions twice in SIMD8, once with quarter
3388             * control of 1Q for the first eight channels and again with 2Q for
3389             * the second eight channels.
3390             *
3391             * Which accumulator register is implicitly accessed (by AccWrEnable
3392             * for instance) is determined by the quarter control. Unfortunately
3393             * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3394             * implicit accumulator access by an instruction with 2Q will access
3395             * acc1 regardless of whether the data type is usable in acc1.
3396             *
3397             * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3398             * integer data types.
3399             *
3400             * Since we only want the low 32-bits of the result, we can do two
3401             * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3402             * adjust the high result and add them (like the mach is doing):
3403             *
3404             *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<8,8,1>UW
3405             *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<8,8,1>UW
3406             *    shl(8)  g9<1>D     g8<8,8,1>D      16D
3407             *    add(8)  g2<1>D     g7<8,8,1>D      g8<8,8,1>D
3408             *
3409             * We avoid the shl instruction by realizing that we only want to add
3410             * the low 16-bits of the "high" result to the high 16-bits of the
3411             * "low" result and using proper regioning on the add:
3412             *
3413             *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<16,8,2>UW
3414             *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<16,8,2>UW
3415             *    add(8)  g7.1<2>UW  g7.1<16,8,2>UW  g8<16,8,2>UW
3416             *
3417             * Since it does not use the (single) accumulator register, we can
3418             * schedule multi-component multiplications much better.
3419             */
3420
3421            fs_reg orig_dst = inst->dst;
3422            if (orig_dst.is_null() || orig_dst.file == MRF) {
3423               inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3424                                  inst->dst.type);
3425            }
3426            fs_reg low = inst->dst;
3427            fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3428                        inst->dst.type);
3429
3430            if (devinfo->gen >= 7) {
3431               if (inst->src[1].file == IMM) {
3432                  ibld.MUL(low, inst->src[0],
3433                           brw_imm_uw(inst->src[1].ud & 0xffff));
3434                  ibld.MUL(high, inst->src[0],
3435                           brw_imm_uw(inst->src[1].ud >> 16));
3436               } else {
3437                  ibld.MUL(low, inst->src[0],
3438                           subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3439                  ibld.MUL(high, inst->src[0],
3440                           subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3441               }
3442            } else {
3443               ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3444                        inst->src[1]);
3445               ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3446                        inst->src[1]);
3447            }
3448
3449            ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3450                     subscript(low, BRW_REGISTER_TYPE_UW, 1),
3451                     subscript(high, BRW_REGISTER_TYPE_UW, 0));
3452
3453            if (inst->conditional_mod || orig_dst.file == MRF) {
3454               set_condmod(inst->conditional_mod,
3455                           ibld.MOV(orig_dst, inst->dst));
3456            }
3457         }
3458
3459      } else if (inst->opcode == SHADER_OPCODE_MULH) {
3460         /* Should have been lowered to 8-wide. */
3461         assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3462         const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3463                                   inst->dst.type);
3464         fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3465         fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3466
3467         if (devinfo->gen >= 8) {
3468            /* Until Gen8, integer multiplies read 32-bits from one source,
3469             * and 16-bits from the other, and relying on the MACH instruction
3470             * to generate the high bits of the result.
3471             *
3472             * On Gen8, the multiply instruction does a full 32x32-bit
3473             * multiply, but in order to do a 64-bit multiply we can simulate
3474             * the previous behavior and then use a MACH instruction.
3475             *
3476             * FINISHME: Don't use source modifiers on src1.
3477             */
3478            assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3479                   mul->src[1].type == BRW_REGISTER_TYPE_UD);
3480            mul->src[1].type = BRW_REGISTER_TYPE_UW;
3481            mul->src[1].stride *= 2;
3482
3483         } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3484                    inst->group > 0) {
3485            /* Among other things the quarter control bits influence which
3486             * accumulator register is used by the hardware for instructions
3487             * that access the accumulator implicitly (e.g. MACH).  A
3488             * second-half instruction would normally map to acc1, which
3489             * doesn't exist on Gen7 and up (the hardware does emulate it for
3490             * floating-point instructions *only* by taking advantage of the
3491             * extra precision of acc0 not normally used for floating point
3492             * arithmetic).
3493             *
3494             * HSW and up are careful enough not to try to access an
3495             * accumulator register that doesn't exist, but on earlier Gen7
3496             * hardware we need to make sure that the quarter control bits are
3497             * zero to avoid non-deterministic behaviour and emit an extra MOV
3498             * to get the result masked correctly according to the current
3499             * channel enables.
3500             */
3501            mach->group = 0;
3502            mach->force_writemask_all = true;
3503            mach->dst = ibld.vgrf(inst->dst.type);
3504            ibld.MOV(inst->dst, mach->dst);
3505         }
3506      } else {
3507         continue;
3508      }
3509
3510      inst->remove(block);
3511      progress = true;
3512   }
3513
3514   if (progress)
3515      invalidate_live_intervals();
3516
3517   return progress;
3518}
3519
3520bool
3521fs_visitor::lower_minmax()
3522{
3523   assert(devinfo->gen < 6);
3524
3525   bool progress = false;
3526
3527   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3528      const fs_builder ibld(this, block, inst);
3529
3530      if (inst->opcode == BRW_OPCODE_SEL &&
3531          inst->predicate == BRW_PREDICATE_NONE) {
3532         /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3533          *        the original SEL.L/GE instruction
3534          */
3535         ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3536                  inst->conditional_mod);
3537         inst->predicate = BRW_PREDICATE_NORMAL;
3538         inst->conditional_mod = BRW_CONDITIONAL_NONE;
3539
3540         progress = true;
3541      }
3542   }
3543
3544   if (progress)
3545      invalidate_live_intervals();
3546
3547   return progress;
3548}
3549
3550static void
3551setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3552                    fs_reg *dst, fs_reg color, unsigned components)
3553{
3554   if (key->clamp_fragment_color) {
3555      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3556      assert(color.type == BRW_REGISTER_TYPE_F);
3557
3558      for (unsigned i = 0; i < components; i++)
3559         set_saturate(true,
3560                      bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3561
3562      color = tmp;
3563   }
3564
3565   for (unsigned i = 0; i < components; i++)
3566      dst[i] = offset(color, bld, i);
3567}
3568
3569static void
3570lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3571                            const struct brw_wm_prog_data *prog_data,
3572                            const brw_wm_prog_key *key,
3573                            const fs_visitor::thread_payload &payload)
3574{
3575   assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3576   const gen_device_info *devinfo = bld.shader->devinfo;
3577   const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3578   const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3579   const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3580   const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3581   const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3582   const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3583   fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3584   const unsigned components =
3585      inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3586
3587   /* We can potentially have a message length of up to 15, so we have to set
3588    * base_mrf to either 0 or 1 in order to fit in m0..m15.
3589    */
3590   fs_reg sources[15];
3591   int header_size = 2, payload_header_size;
3592   unsigned length = 0;
3593
3594   /* From the Sandy Bridge PRM, volume 4, page 198:
3595    *
3596    *     "Dispatched Pixel Enables. One bit per pixel indicating
3597    *      which pixels were originally enabled when the thread was
3598    *      dispatched. This field is only required for the end-of-
3599    *      thread message and on all dual-source messages."
3600    */
3601   if (devinfo->gen >= 6 &&
3602       (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3603       color1.file == BAD_FILE &&
3604       key->nr_color_regions == 1) {
3605      header_size = 0;
3606   }
3607
3608   if (header_size != 0) {
3609      assert(header_size == 2);
3610      /* Allocate 2 registers for a header */
3611      length += 2;
3612   }
3613
3614   if (payload.aa_dest_stencil_reg) {
3615      sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3616      bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3617         .MOV(sources[length],
3618              fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3619      length++;
3620   }
3621
3622   if (sample_mask.file != BAD_FILE) {
3623      sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3624                               BRW_REGISTER_TYPE_UD);
3625
3626      /* Hand over gl_SampleMask.  Only the lower 16 bits of each channel are
3627       * relevant.  Since it's unsigned single words one vgrf is always
3628       * 16-wide, but only the lower or higher 8 channels will be used by the
3629       * hardware when doing a SIMD8 write depending on whether we have
3630       * selected the subspans for the first or second half respectively.
3631       */
3632      assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3633      sample_mask.type = BRW_REGISTER_TYPE_UW;
3634      sample_mask.stride *= 2;
3635
3636      bld.exec_all().annotate("FB write oMask")
3637         .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3638                           inst->group),
3639              sample_mask);
3640      length++;
3641   }
3642
3643   payload_header_size = length;
3644
3645   if (src0_alpha.file != BAD_FILE) {
3646      /* FIXME: This is being passed at the wrong location in the payload and
3647       * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3648       * It's supposed to be immediately before oMask but there seems to be no
3649       * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3650       * requires header sources to form a contiguous segment at the beginning
3651       * of the message and src0_alpha has per-channel semantics.
3652       */
3653      setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3654      length++;
3655   } else if (key->replicate_alpha && inst->target != 0) {
3656      /* Handle the case when fragment shader doesn't write to draw buffer
3657       * zero. No need to call setup_color_payload() for src0_alpha because
3658       * alpha value will be undefined.
3659       */
3660      length++;
3661   }
3662
3663   setup_color_payload(bld, key, &sources[length], color0, components);
3664   length += 4;
3665
3666   if (color1.file != BAD_FILE) {
3667      setup_color_payload(bld, key, &sources[length], color1, components);
3668      length += 4;
3669   }
3670
3671   if (src_depth.file != BAD_FILE) {
3672      sources[length] = src_depth;
3673      length++;
3674   }
3675
3676   if (dst_depth.file != BAD_FILE) {
3677      sources[length] = dst_depth;
3678      length++;
3679   }
3680
3681   if (src_stencil.file != BAD_FILE) {
3682      assert(devinfo->gen >= 9);
3683      assert(bld.dispatch_width() != 16);
3684
3685      /* XXX: src_stencil is only available on gen9+. dst_depth is never
3686       * available on gen9+. As such it's impossible to have both enabled at the
3687       * same time and therefore length cannot overrun the array.
3688       */
3689      assert(length < 15);
3690
3691      sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3692      bld.exec_all().annotate("FB write OS")
3693         .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3694              subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3695      length++;
3696   }
3697
3698   fs_inst *load;
3699   if (devinfo->gen >= 7) {
3700      /* Send from the GRF */
3701      fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3702      load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3703      payload.nr = bld.shader->alloc.allocate(regs_written(load));
3704      load->dst = payload;
3705
3706      inst->src[0] = payload;
3707      inst->resize_sources(1);
3708   } else {
3709      /* Send from the MRF */
3710      load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3711                              sources, length, payload_header_size);
3712
3713      /* On pre-SNB, we have to interlace the color values.  LOAD_PAYLOAD
3714       * will do this for us if we just give it a COMPR4 destination.
3715       */
3716      if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3717         load->dst.nr |= BRW_MRF_COMPR4;
3718
3719      inst->resize_sources(0);
3720      inst->base_mrf = 1;
3721   }
3722
3723   inst->opcode = FS_OPCODE_FB_WRITE;
3724   inst->mlen = regs_written(load);
3725   inst->header_size = header_size;
3726}
3727
3728static void
3729lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3730{
3731   const fs_builder &ubld = bld.exec_all();
3732   const unsigned length = 2;
3733   const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3734
3735   ubld.group(16, 0)
3736       .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3737
3738   inst->resize_sources(1);
3739   inst->src[0] = header;
3740   inst->opcode = FS_OPCODE_FB_READ;
3741   inst->mlen = length;
3742   inst->header_size = length;
3743}
3744
3745static void
3746lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3747                                const fs_reg &coordinate,
3748                                const fs_reg &shadow_c,
3749                                const fs_reg &lod, const fs_reg &lod2,
3750                                const fs_reg &surface,
3751                                const fs_reg &sampler,
3752                                unsigned coord_components,
3753                                unsigned grad_components)
3754{
3755   const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3756                         op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3757   fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3758   fs_reg msg_end = msg_begin;
3759
3760   /* g0 header. */
3761   msg_end = offset(msg_end, bld.group(8, 0), 1);
3762
3763   for (unsigned i = 0; i < coord_components; i++)
3764      bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3765              offset(coordinate, bld, i));
3766
3767   msg_end = offset(msg_end, bld, coord_components);
3768
3769   /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3770    * require all three components to be present and zero if they are unused.
3771    */
3772   if (coord_components > 0 &&
3773       (has_lod || shadow_c.file != BAD_FILE ||
3774        (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3775      for (unsigned i = coord_components; i < 3; i++)
3776         bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3777
3778      msg_end = offset(msg_end, bld, 3 - coord_components);
3779   }
3780
3781   if (op == SHADER_OPCODE_TXD) {
3782      /* TXD unsupported in SIMD16 mode. */
3783      assert(bld.dispatch_width() == 8);
3784
3785      /* the slots for u and v are always present, but r is optional */
3786      if (coord_components < 2)
3787         msg_end = offset(msg_end, bld, 2 - coord_components);
3788
3789      /*  P   = u, v, r
3790       * dPdx = dudx, dvdx, drdx
3791       * dPdy = dudy, dvdy, drdy
3792       *
3793       * 1-arg: Does not exist.
3794       *
3795       * 2-arg: dudx   dvdx   dudy   dvdy
3796       *        dPdx.x dPdx.y dPdy.x dPdy.y
3797       *        m4     m5     m6     m7
3798       *
3799       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
3800       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3801       *        m5     m6     m7     m8     m9     m10
3802       */
3803      for (unsigned i = 0; i < grad_components; i++)
3804         bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3805
3806      msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3807
3808      for (unsigned i = 0; i < grad_components; i++)
3809         bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3810
3811      msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3812   }
3813
3814   if (has_lod) {
3815      /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3816       * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3817       */
3818      assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3819             bld.dispatch_width() == 16);
3820
3821      const brw_reg_type type =
3822         (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3823          BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3824      bld.MOV(retype(msg_end, type), lod);
3825      msg_end = offset(msg_end, bld, 1);
3826   }
3827
3828   if (shadow_c.file != BAD_FILE) {
3829      if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3830         /* There's no plain shadow compare message, so we use shadow
3831          * compare with a bias of 0.0.
3832          */
3833         bld.MOV(msg_end, brw_imm_f(0.0f));
3834         msg_end = offset(msg_end, bld, 1);
3835      }
3836
3837      bld.MOV(msg_end, shadow_c);
3838      msg_end = offset(msg_end, bld, 1);
3839   }
3840
3841   inst->opcode = op;
3842   inst->src[0] = reg_undef;
3843   inst->src[1] = surface;
3844   inst->src[2] = sampler;
3845   inst->resize_sources(3);
3846   inst->base_mrf = msg_begin.nr;
3847   inst->mlen = msg_end.nr - msg_begin.nr;
3848   inst->header_size = 1;
3849}
3850
3851static void
3852lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3853                                const fs_reg &coordinate,
3854                                const fs_reg &shadow_c,
3855                                const fs_reg &lod, const fs_reg &lod2,
3856                                const fs_reg &sample_index,
3857                                const fs_reg &surface,
3858                                const fs_reg &sampler,
3859                                unsigned coord_components,
3860                                unsigned grad_components)
3861{
3862   fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3863   fs_reg msg_coords = message;
3864   unsigned header_size = 0;
3865
3866   if (inst->offset != 0) {
3867      /* The offsets set up by the visitor are in the m1 header, so we can't
3868       * go headerless.
3869       */
3870      header_size = 1;
3871      message.nr--;
3872   }
3873
3874   for (unsigned i = 0; i < coord_components; i++)
3875      bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3876              offset(coordinate, bld, i));
3877
3878   fs_reg msg_end = offset(msg_coords, bld, coord_components);
3879   fs_reg msg_lod = offset(msg_coords, bld, 4);
3880
3881   if (shadow_c.file != BAD_FILE) {
3882      fs_reg msg_shadow = msg_lod;
3883      bld.MOV(msg_shadow, shadow_c);
3884      msg_lod = offset(msg_shadow, bld, 1);
3885      msg_end = msg_lod;
3886   }
3887
3888   switch (op) {
3889   case SHADER_OPCODE_TXL:
3890   case FS_OPCODE_TXB:
3891      bld.MOV(msg_lod, lod);
3892      msg_end = offset(msg_lod, bld, 1);
3893      break;
3894   case SHADER_OPCODE_TXD:
3895      /**
3896       *  P   =  u,    v,    r
3897       * dPdx = dudx, dvdx, drdx
3898       * dPdy = dudy, dvdy, drdy
3899       *
3900       * Load up these values:
3901       * - dudx   dudy   dvdx   dvdy   drdx   drdy
3902       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3903       */
3904      msg_end = msg_lod;
3905      for (unsigned i = 0; i < grad_components; i++) {
3906         bld.MOV(msg_end, offset(lod, bld, i));
3907         msg_end = offset(msg_end, bld, 1);
3908
3909         bld.MOV(msg_end, offset(lod2, bld, i));
3910         msg_end = offset(msg_end, bld, 1);
3911      }
3912      break;
3913   case SHADER_OPCODE_TXS:
3914      msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3915      bld.MOV(msg_lod, lod);
3916      msg_end = offset(msg_lod, bld, 1);
3917      break;
3918   case SHADER_OPCODE_TXF:
3919      msg_lod = offset(msg_coords, bld, 3);
3920      bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3921      msg_end = offset(msg_lod, bld, 1);
3922      break;
3923   case SHADER_OPCODE_TXF_CMS:
3924      msg_lod = offset(msg_coords, bld, 3);
3925      /* lod */
3926      bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3927      /* sample index */
3928      bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3929      msg_end = offset(msg_lod, bld, 2);
3930      break;
3931   default:
3932      break;
3933   }
3934
3935   inst->opcode = op;
3936   inst->src[0] = reg_undef;
3937   inst->src[1] = surface;
3938   inst->src[2] = sampler;
3939   inst->resize_sources(3);
3940   inst->base_mrf = message.nr;
3941   inst->mlen = msg_end.nr - message.nr;
3942   inst->header_size = header_size;
3943
3944   /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3945   assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3946}
3947
3948static bool
3949is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3950{
3951   if (devinfo->gen < 8 && !devinfo->is_haswell)
3952      return false;
3953
3954   return sampler.file != IMM || sampler.ud >= 16;
3955}
3956
3957static void
3958lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3959                                const fs_reg &coordinate,
3960                                const fs_reg &shadow_c,
3961                                fs_reg lod, const fs_reg &lod2,
3962                                const fs_reg &sample_index,
3963                                const fs_reg &mcs,
3964                                const fs_reg &surface,
3965                                const fs_reg &sampler,
3966                                const fs_reg &tg4_offset,
3967                                unsigned coord_components,
3968                                unsigned grad_components)
3969{
3970   const gen_device_info *devinfo = bld.shader->devinfo;
3971   unsigned reg_width = bld.dispatch_width() / 8;
3972   unsigned header_size = 0, length = 0;
3973   fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3974   for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3975      sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3976
3977   if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3978       inst->offset != 0 || inst->eot ||
3979       op == SHADER_OPCODE_SAMPLEINFO ||
3980       is_high_sampler(devinfo, sampler)) {
3981      /* For general texture offsets (no txf workaround), we need a header to
3982       * put them in.  Note that we're only reserving space for it in the
3983       * message payload as it will be initialized implicitly by the
3984       * generator.
3985       *
3986       * TG4 needs to place its channel select in the header, for interaction
3987       * with ARB_texture_swizzle.  The sampler index is only 4-bits, so for
3988       * larger sampler numbers we need to offset the Sampler State Pointer in
3989       * the header.
3990       */
3991      header_size = 1;
3992      sources[0] = fs_reg();
3993      length++;
3994
3995      /* If we're requesting fewer than four channels worth of response,
3996       * and we have an explicit header, we need to set up the sampler
3997       * writemask.  It's reversed from normal: 1 means "don't write".
3998       */
3999      if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4000         assert(regs_written(inst) % reg_width == 0);
4001         unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4002         inst->offset |= mask << 12;
4003      }
4004   }
4005
4006   if (shadow_c.file != BAD_FILE) {
4007      bld.MOV(sources[length], shadow_c);
4008      length++;
4009   }
4010
4011   bool coordinate_done = false;
4012
4013   /* Set up the LOD info */
4014   switch (op) {
4015   case FS_OPCODE_TXB:
4016   case SHADER_OPCODE_TXL:
4017      if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4018         op = SHADER_OPCODE_TXL_LZ;
4019         break;
4020      }
4021      bld.MOV(sources[length], lod);
4022      length++;
4023      break;
4024   case SHADER_OPCODE_TXD:
4025      /* TXD should have been lowered in SIMD16 mode. */
4026      assert(bld.dispatch_width() == 8);
4027
4028      /* Load dPdx and the coordinate together:
4029       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4030       */
4031      for (unsigned i = 0; i < coord_components; i++) {
4032         bld.MOV(sources[length++], offset(coordinate, bld, i));
4033
4034         /* For cube map array, the coordinate is (u,v,r,ai) but there are
4035          * only derivatives for (u, v, r).
4036          */
4037         if (i < grad_components) {
4038            bld.MOV(sources[length++], offset(lod, bld, i));
4039            bld.MOV(sources[length++], offset(lod2, bld, i));
4040         }
4041      }
4042
4043      coordinate_done = true;
4044      break;
4045   case SHADER_OPCODE_TXS:
4046      bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4047      length++;
4048      break;
4049   case SHADER_OPCODE_TXF:
4050      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4051       * On Gen9 they are u, v, lod, r
4052       */
4053      bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4054
4055      if (devinfo->gen >= 9) {
4056         if (coord_components >= 2) {
4057            bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4058                    offset(coordinate, bld, 1));
4059         } else {
4060            sources[length] = brw_imm_d(0);
4061         }
4062         length++;
4063      }
4064
4065      if (devinfo->gen >= 9 && lod.is_zero()) {
4066         op = SHADER_OPCODE_TXF_LZ;
4067      } else {
4068         bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4069         length++;
4070      }
4071
4072      for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4073         bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4074                 offset(coordinate, bld, i));
4075
4076      coordinate_done = true;
4077      break;
4078
4079   case SHADER_OPCODE_TXF_CMS:
4080   case SHADER_OPCODE_TXF_CMS_W:
4081   case SHADER_OPCODE_TXF_UMS:
4082   case SHADER_OPCODE_TXF_MCS:
4083      if (op == SHADER_OPCODE_TXF_UMS ||
4084          op == SHADER_OPCODE_TXF_CMS ||
4085          op == SHADER_OPCODE_TXF_CMS_W) {
4086         bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4087         length++;
4088      }
4089
4090      if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4091         /* Data from the multisample control surface. */
4092         bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4093         length++;
4094
4095         /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4096          * the MCS data.
4097          */
4098         if (op == SHADER_OPCODE_TXF_CMS_W) {
4099            bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4100                    mcs.file == IMM ?
4101                    mcs :
4102                    offset(mcs, bld, 1));
4103            length++;
4104         }
4105      }
4106
4107      /* There is no offsetting for this message; just copy in the integer
4108       * texture coordinates.
4109       */
4110      for (unsigned i = 0; i < coord_components; i++)
4111         bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4112                 offset(coordinate, bld, i));
4113
4114      coordinate_done = true;
4115      break;
4116   case SHADER_OPCODE_TG4_OFFSET:
4117      /* More crazy intermixing */
4118      for (unsigned i = 0; i < 2; i++) /* u, v */
4119         bld.MOV(sources[length++], offset(coordinate, bld, i));
4120
4121      for (unsigned i = 0; i < 2; i++) /* offu, offv */
4122         bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4123                 offset(tg4_offset, bld, i));
4124
4125      if (coord_components == 3) /* r if present */
4126         bld.MOV(sources[length++], offset(coordinate, bld, 2));
4127
4128      coordinate_done = true;
4129      break;
4130   default:
4131      break;
4132   }
4133
4134   /* Set up the coordinate (except for cases where it was done above) */
4135   if (!coordinate_done) {
4136      for (unsigned i = 0; i < coord_components; i++)
4137         bld.MOV(sources[length++], offset(coordinate, bld, i));
4138   }
4139
4140   int mlen;
4141   if (reg_width == 2)
4142      mlen = length * reg_width - header_size;
4143   else
4144      mlen = length * reg_width;
4145
4146   const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4147                                     BRW_REGISTER_TYPE_F);
4148   bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4149
4150   /* Generate the SEND. */
4151   inst->opcode = op;
4152   inst->src[0] = src_payload;
4153   inst->src[1] = surface;
4154   inst->src[2] = sampler;
4155   inst->resize_sources(3);
4156   inst->mlen = mlen;
4157   inst->header_size = header_size;
4158
4159   /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4160   assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4161}
4162
4163static void
4164lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4165{
4166   const gen_device_info *devinfo = bld.shader->devinfo;
4167   const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4168   const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4169   const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4170   const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4171   const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4172   const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4173   const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4174   const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4175   const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4176   assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4177   const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4178   assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4179   const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4180
4181   if (devinfo->gen >= 7) {
4182      lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4183                                      shadow_c, lod, lod2, sample_index,
4184                                      mcs, surface, sampler, tg4_offset,
4185                                      coord_components, grad_components);
4186   } else if (devinfo->gen >= 5) {
4187      lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4188                                      shadow_c, lod, lod2, sample_index,
4189                                      surface, sampler,
4190                                      coord_components, grad_components);
4191   } else {
4192      lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4193                                      shadow_c, lod, lod2,
4194                                      surface, sampler,
4195                                      coord_components, grad_components);
4196   }
4197}
4198
4199/**
4200 * Initialize the header present in some typed and untyped surface
4201 * messages.
4202 */
4203static fs_reg
4204emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4205{
4206   fs_builder ubld = bld.exec_all().group(8, 0);
4207   const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4208   ubld.MOV(dst, brw_imm_d(0));
4209   ubld.MOV(component(dst, 7), sample_mask);
4210   return dst;
4211}
4212
4213static void
4214lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4215                           const fs_reg &sample_mask)
4216{
4217   /* Get the logical send arguments. */
4218   const fs_reg &addr = inst->src[0];
4219   const fs_reg &src = inst->src[1];
4220   const fs_reg &surface = inst->src[2];
4221   const UNUSED fs_reg &dims = inst->src[3];
4222   const fs_reg &arg = inst->src[4];
4223
4224   /* Calculate the total number of components of the payload. */
4225   const unsigned addr_sz = inst->components_read(0);
4226   const unsigned src_sz = inst->components_read(1);
4227   const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4228   const unsigned sz = header_sz + addr_sz + src_sz;
4229
4230   /* Allocate space for the payload. */
4231   fs_reg *const components = new fs_reg[sz];
4232   const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4233   unsigned n = 0;
4234
4235   /* Construct the payload. */
4236   if (header_sz)
4237      components[n++] = emit_surface_header(bld, sample_mask);
4238
4239   for (unsigned i = 0; i < addr_sz; i++)
4240      components[n++] = offset(addr, bld, i);
4241
4242   for (unsigned i = 0; i < src_sz; i++)
4243      components[n++] = offset(src, bld, i);
4244
4245   bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4246
4247   /* Update the original instruction. */
4248   inst->opcode = op;
4249   inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4250   inst->header_size = header_sz;
4251
4252   inst->src[0] = payload;
4253   inst->src[1] = surface;
4254   inst->src[2] = arg;
4255   inst->resize_sources(3);
4256
4257   delete[] components;
4258}
4259
4260static void
4261lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4262{
4263   const gen_device_info *devinfo = bld.shader->devinfo;
4264
4265   if (devinfo->gen >= 7) {
4266      /* We are switching the instruction from an ALU-like instruction to a
4267       * send-from-grf instruction.  Since sends can't handle strides or
4268       * source modifiers, we have to make a copy of the offset source.
4269       */
4270      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4271      bld.MOV(tmp, inst->src[1]);
4272      inst->src[1] = tmp;
4273
4274      inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4275
4276   } else {
4277      const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4278                           BRW_REGISTER_TYPE_UD);
4279
4280      bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4281
4282      inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4283      inst->resize_sources(1);
4284      inst->base_mrf = payload.nr;
4285      inst->header_size = 1;
4286      inst->mlen = 1 + inst->exec_size / 8;
4287   }
4288}
4289
4290static void
4291lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4292{
4293   assert(bld.shader->devinfo->gen < 6);
4294
4295   inst->base_mrf = 2;
4296   inst->mlen = inst->sources * inst->exec_size / 8;
4297
4298   if (inst->sources > 1) {
4299      /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4300       * "Message Payload":
4301       *
4302       * "Operand0[7].  For the INT DIV functions, this operand is the
4303       *  denominator."
4304       *  ...
4305       * "Operand1[7].  For the INT DIV functions, this operand is the
4306       *  numerator."
4307       */
4308      const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4309      const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4310      const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4311
4312      inst->resize_sources(1);
4313      inst->src[0] = src0;
4314
4315      assert(inst->exec_size == 8);
4316      bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4317   }
4318}
4319
4320bool
4321fs_visitor::lower_logical_sends()
4322{
4323   bool progress = false;
4324
4325   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4326      const fs_builder ibld(this, block, inst);
4327
4328      switch (inst->opcode) {
4329      case FS_OPCODE_FB_WRITE_LOGICAL:
4330         assert(stage == MESA_SHADER_FRAGMENT);
4331         lower_fb_write_logical_send(ibld, inst,
4332                                     brw_wm_prog_data(prog_data),
4333                                     (const brw_wm_prog_key *)key,
4334                                     payload);
4335         break;
4336
4337      case FS_OPCODE_FB_READ_LOGICAL:
4338         lower_fb_read_logical_send(ibld, inst);
4339         break;
4340
4341      case SHADER_OPCODE_TEX_LOGICAL:
4342         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4343         break;
4344
4345      case SHADER_OPCODE_TXD_LOGICAL:
4346         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4347         break;
4348
4349      case SHADER_OPCODE_TXF_LOGICAL:
4350         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4351         break;
4352
4353      case SHADER_OPCODE_TXL_LOGICAL:
4354         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4355         break;
4356
4357      case SHADER_OPCODE_TXS_LOGICAL:
4358         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4359         break;
4360
4361      case FS_OPCODE_TXB_LOGICAL:
4362         lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4363         break;
4364
4365      case SHADER_OPCODE_TXF_CMS_LOGICAL:
4366         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4367         break;
4368
4369      case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4370         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4371         break;
4372
4373      case SHADER_OPCODE_TXF_UMS_LOGICAL:
4374         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4375         break;
4376
4377      case SHADER_OPCODE_TXF_MCS_LOGICAL:
4378         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4379         break;
4380
4381      case SHADER_OPCODE_LOD_LOGICAL:
4382         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4383         break;
4384
4385      case SHADER_OPCODE_TG4_LOGICAL:
4386         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4387         break;
4388
4389      case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4390         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4391         break;
4392
4393      case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4394         lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4395         break;
4396
4397      case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4398         lower_surface_logical_send(ibld, inst,
4399                                    SHADER_OPCODE_UNTYPED_SURFACE_READ,
4400                                    fs_reg());
4401         break;
4402
4403      case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4404         lower_surface_logical_send(ibld, inst,
4405                                    SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4406                                    ibld.sample_mask_reg());
4407         break;
4408
4409      case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4410         lower_surface_logical_send(ibld, inst,
4411                                    SHADER_OPCODE_UNTYPED_ATOMIC,
4412                                    ibld.sample_mask_reg());
4413         break;
4414
4415      case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4416         lower_surface_logical_send(ibld, inst,
4417                                    SHADER_OPCODE_TYPED_SURFACE_READ,
4418                                    brw_imm_d(0xffff));
4419         break;
4420
4421      case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4422         lower_surface_logical_send(ibld, inst,
4423                                    SHADER_OPCODE_TYPED_SURFACE_WRITE,
4424                                    ibld.sample_mask_reg());
4425         break;
4426
4427      case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4428         lower_surface_logical_send(ibld, inst,
4429                                    SHADER_OPCODE_TYPED_ATOMIC,
4430                                    ibld.sample_mask_reg());
4431         break;
4432
4433      case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4434         lower_varying_pull_constant_logical_send(ibld, inst);
4435         break;
4436
4437      case SHADER_OPCODE_RCP:
4438      case SHADER_OPCODE_RSQ:
4439      case SHADER_OPCODE_SQRT:
4440      case SHADER_OPCODE_EXP2:
4441      case SHADER_OPCODE_LOG2:
4442      case SHADER_OPCODE_SIN:
4443      case SHADER_OPCODE_COS:
4444      case SHADER_OPCODE_POW:
4445      case SHADER_OPCODE_INT_QUOTIENT:
4446      case SHADER_OPCODE_INT_REMAINDER:
4447         /* The math opcodes are overloaded for the send-like and
4448          * expression-like instructions which seems kind of icky.  Gen6+ has
4449          * a native (but rather quirky) MATH instruction so we don't need to
4450          * do anything here.  On Gen4-5 we'll have to lower the Gen6-like
4451          * logical instructions (which we can easily recognize because they
4452          * have mlen = 0) into send-like virtual instructions.
4453          */
4454         if (devinfo->gen < 6 && inst->mlen == 0) {
4455            lower_math_logical_send(ibld, inst);
4456            break;
4457
4458         } else {
4459            continue;
4460         }
4461
4462      default:
4463         continue;
4464      }
4465
4466      progress = true;
4467   }
4468
4469   if (progress)
4470      invalidate_live_intervals();
4471
4472   return progress;
4473}
4474
4475/**
4476 * Get the closest allowed SIMD width for instruction \p inst accounting for
4477 * some common regioning and execution control restrictions that apply to FPU
4478 * instructions.  These restrictions don't necessarily have any relevance to
4479 * instructions not executed by the FPU pipeline like extended math, control
4480 * flow or send message instructions.
4481 *
4482 * For virtual opcodes it's really up to the instruction -- In some cases
4483 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4484 * instructions) it may simplify virtual instruction lowering if we can
4485 * enforce FPU-like regioning restrictions already on the virtual instruction,
4486 * in other cases (e.g. virtual send-like instructions) this may be
4487 * excessively restrictive.
4488 */
4489static unsigned
4490get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4491                           const fs_inst *inst)
4492{
4493   /* Maximum execution size representable in the instruction controls. */
4494   unsigned max_width = MIN2(32, inst->exec_size);
4495
4496   /* According to the PRMs:
4497    *  "A. In Direct Addressing mode, a source cannot span more than 2
4498    *      adjacent GRF registers.
4499    *   B. A destination cannot span more than 2 adjacent GRF registers."
4500    *
4501    * Look for the source or destination with the largest register region
4502    * which is the one that is going to limit the overall execution size of
4503    * the instruction due to this rule.
4504    */
4505   unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4506
4507   for (unsigned i = 0; i < inst->sources; i++)
4508      reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4509
4510   /* Calculate the maximum execution size of the instruction based on the
4511    * factor by which it goes over the hardware limit of 2 GRFs.
4512    */
4513   if (reg_count > 2)
4514      max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4515
4516   /* According to the IVB PRMs:
4517    *  "When destination spans two registers, the source MUST span two
4518    *   registers. The exception to the above rule:
4519    *
4520    *    - When source is scalar, the source registers are not incremented.
4521    *    - When source is packed integer Word and destination is packed
4522    *      integer DWord, the source register is not incremented but the
4523    *      source sub register is incremented."
4524    *
4525    * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4526    * restrictions.  The code below intentionally doesn't check whether the
4527    * destination type is integer because empirically the hardware doesn't
4528    * seem to care what the actual type is as long as it's dword-aligned.
4529    */
4530   if (devinfo->gen < 8) {
4531      for (unsigned i = 0; i < inst->sources; i++) {
4532         if (inst->size_written > REG_SIZE &&
4533             inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4534             !is_uniform(inst->src[i]) &&
4535             !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4536               type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4537            const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4538            max_width = MIN2(max_width, inst->exec_size / reg_count);
4539         }
4540      }
4541   }
4542
4543   /* From the IVB PRMs:
4544    *  "When an instruction is SIMD32, the low 16 bits of the execution mask
4545    *   are applied for both halves of the SIMD32 instruction. If different
4546    *   execution mask channels are required, split the instruction into two
4547    *   SIMD16 instructions."
4548    *
4549    * There is similar text in the HSW PRMs.  Gen4-6 don't even implement
4550    * 32-wide control flow support in hardware and will behave similarly.
4551    */
4552   if (devinfo->gen < 8 && !inst->force_writemask_all)
4553      max_width = MIN2(max_width, 16);
4554
4555   /* From the IVB PRMs (applies to HSW too):
4556    *  "Instructions with condition modifiers must not use SIMD32."
4557    *
4558    * From the BDW PRMs (applies to later hardware too):
4559    *  "Ternary instruction with condition modifiers must not use SIMD32."
4560    */
4561   if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4562      max_width = MIN2(max_width, 16);
4563
4564   /* From the IVB PRMs (applies to other devices that don't have the
4565    * gen_device_info::supports_simd16_3src flag set):
4566    *  "In Align16 access mode, SIMD16 is not allowed for DW operations and
4567    *   SIMD8 is not allowed for DF operations."
4568    */
4569   if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4570      max_width = MIN2(max_width, inst->exec_size / reg_count);
4571
4572   /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4573    * the 8-bit quarter of the execution mask signals specified in the
4574    * instruction control fields) for the second compressed half of any
4575    * single-precision instruction (for double-precision instructions
4576    * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4577    * the EU will apply the wrong execution controls for the second
4578    * sequential GRF write if the number of channels per GRF is not exactly
4579    * eight in single-precision mode (or four in double-float mode).
4580    *
4581    * In this situation we calculate the maximum size of the split
4582    * instructions so they only ever write to a single register.
4583    */
4584   if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4585       !inst->force_writemask_all) {
4586      const unsigned channels_per_grf = inst->exec_size /
4587         DIV_ROUND_UP(inst->size_written, REG_SIZE);
4588      unsigned exec_type_size = 0;
4589      for (int i = 0; i < inst->sources; i++) {
4590         if (inst->src[i].file != BAD_FILE)
4591            exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4592      }
4593      assert(exec_type_size);
4594
4595      /* The hardware shifts exactly 8 channels per compressed half of the
4596       * instruction in single-precision mode and exactly 4 in double-precision.
4597       */
4598      if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4599         max_width = MIN2(max_width, channels_per_grf);
4600   }
4601
4602   /* Only power-of-two execution sizes are representable in the instruction
4603    * control fields.
4604    */
4605   return 1 << _mesa_logbase2(max_width);
4606}
4607
4608/**
4609 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4610 * various payload size restrictions that apply to sampler message
4611 * instructions.
4612 *
4613 * This is only intended to provide a maximum theoretical bound for the
4614 * execution size of the message based on the number of argument components
4615 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4616 * variant of the message can be used, though some messages may have
4617 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4618 * the message length to determine the exact SIMD width and argument count,
4619 * which makes a number of sampler message combinations impossible to
4620 * represent).
4621 */
4622static unsigned
4623get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4624                               const fs_inst *inst)
4625{
4626   /* Calculate the number of coordinate components that have to be present
4627    * assuming that additional arguments follow the texel coordinates in the
4628    * message payload.  On IVB+ there is no need for padding, on ILK-SNB we
4629    * need to pad to four or three components depending on the message,
4630    * pre-ILK we need to pad to at most three components.
4631    */
4632   const unsigned req_coord_components =
4633      (devinfo->gen >= 7 ||
4634       !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4635      (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4636                            inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4637      3;
4638
4639   /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4640    * variant of the TXL or TXF message.
4641    */
4642   const bool implicit_lod = devinfo->gen >= 9 &&
4643                             (inst->opcode == SHADER_OPCODE_TXL ||
4644                              inst->opcode == SHADER_OPCODE_TXF) &&
4645                             inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4646
4647   /* Calculate the total number of argument components that need to be passed
4648    * to the sampler unit.
4649    */
4650   const unsigned num_payload_components =
4651      MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4652           req_coord_components) +
4653      inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4654      (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4655      inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4656      inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4657      (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4658       inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4659      inst->components_read(TEX_LOGICAL_SRC_MCS);
4660
4661   /* SIMD16 messages with more than five arguments exceed the maximum message
4662    * size supported by the sampler, regardless of whether a header is
4663    * provided or not.
4664    */
4665   return MIN2(inst->exec_size,
4666               num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4667}
4668
4669/**
4670 * Get the closest native SIMD width supported by the hardware for instruction
4671 * \p inst.  The instruction will be left untouched by
4672 * fs_visitor::lower_simd_width() if the returned value is equal to the
4673 * original execution size.
4674 */
4675static unsigned
4676get_lowered_simd_width(const struct gen_device_info *devinfo,
4677                       const fs_inst *inst)
4678{
4679   switch (inst->opcode) {
4680   case BRW_OPCODE_MOV:
4681   case BRW_OPCODE_SEL:
4682   case BRW_OPCODE_NOT:
4683   case BRW_OPCODE_AND:
4684   case BRW_OPCODE_OR:
4685   case BRW_OPCODE_XOR:
4686   case BRW_OPCODE_SHR:
4687   case BRW_OPCODE_SHL:
4688   case BRW_OPCODE_ASR:
4689   case BRW_OPCODE_CMPN:
4690   case BRW_OPCODE_CSEL:
4691   case BRW_OPCODE_F32TO16:
4692   case BRW_OPCODE_F16TO32:
4693   case BRW_OPCODE_BFREV:
4694   case BRW_OPCODE_BFE:
4695   case BRW_OPCODE_ADD:
4696   case BRW_OPCODE_MUL:
4697   case BRW_OPCODE_AVG:
4698   case BRW_OPCODE_FRC:
4699   case BRW_OPCODE_RNDU:
4700   case BRW_OPCODE_RNDD:
4701   case BRW_OPCODE_RNDE:
4702   case BRW_OPCODE_RNDZ:
4703   case BRW_OPCODE_LZD:
4704   case BRW_OPCODE_FBH:
4705   case BRW_OPCODE_FBL:
4706   case BRW_OPCODE_CBIT:
4707   case BRW_OPCODE_SAD2:
4708   case BRW_OPCODE_MAD:
4709   case BRW_OPCODE_LRP:
4710   case FS_OPCODE_PACK:
4711      return get_fpu_lowered_simd_width(devinfo, inst);
4712
4713   case BRW_OPCODE_CMP: {
4714      /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4715       * when the destination is a GRF the dependency-clear bit on the flag
4716       * register is cleared early.
4717       *
4718       * Suggested workarounds are to disable coissuing CMP instructions
4719       * or to split CMP(16) instructions into two CMP(8) instructions.
4720       *
4721       * We choose to split into CMP(8) instructions since disabling
4722       * coissuing would affect CMP instructions not otherwise affected by
4723       * the errata.
4724       */
4725      const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4726                                  !inst->dst.is_null() ? 8 : ~0);
4727      return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4728   }
4729   case BRW_OPCODE_BFI1:
4730   case BRW_OPCODE_BFI2:
4731      /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4732       * should
4733       *  "Force BFI instructions to be executed always in SIMD8."
4734       */
4735      return MIN2(devinfo->is_haswell ? 8 : ~0u,
4736                  get_fpu_lowered_simd_width(devinfo, inst));
4737
4738   case BRW_OPCODE_IF:
4739      assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4740      return inst->exec_size;
4741
4742   case SHADER_OPCODE_RCP:
4743   case SHADER_OPCODE_RSQ:
4744   case SHADER_OPCODE_SQRT:
4745   case SHADER_OPCODE_EXP2:
4746   case SHADER_OPCODE_LOG2:
4747   case SHADER_OPCODE_SIN:
4748   case SHADER_OPCODE_COS:
4749      /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4750       * Gen6.
4751       */
4752      return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4753              devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4754              MIN2(8, inst->exec_size));
4755
4756   case SHADER_OPCODE_POW:
4757      /* SIMD16 is only allowed on Gen7+. */
4758      return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4759              MIN2(8, inst->exec_size));
4760
4761   case SHADER_OPCODE_INT_QUOTIENT:
4762   case SHADER_OPCODE_INT_REMAINDER:
4763      /* Integer division is limited to SIMD8 on all generations. */
4764      return MIN2(8, inst->exec_size);
4765
4766   case FS_OPCODE_LINTERP:
4767   case FS_OPCODE_GET_BUFFER_SIZE:
4768   case FS_OPCODE_DDX_COARSE:
4769   case FS_OPCODE_DDX_FINE:
4770   case FS_OPCODE_DDY_COARSE:
4771   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4772   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4773   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4774   case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4775   case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4776   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4777   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4778   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4779      return MIN2(16, inst->exec_size);
4780
4781   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4782      /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4783       * message used to implement varying pull constant loads, so expand it
4784       * to SIMD16.  An alternative with longer message payload length but
4785       * shorter return payload would be to use the SIMD8 sampler message that
4786       * takes (header, u, v, r) as parameters instead of (header, u).
4787       */
4788      return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4789
4790   case FS_OPCODE_DDY_FINE:
4791      /* The implementation of this virtual opcode may require emitting
4792       * compressed Align16 instructions, which are severely limited on some
4793       * generations.
4794       *
4795       * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4796       * Region Restrictions):
4797       *
4798       *  "In Align16 access mode, SIMD16 is not allowed for DW operations
4799       *   and SIMD8 is not allowed for DF operations."
4800       *
4801       * In this context, "DW operations" means "operations acting on 32-bit
4802       * values", so it includes operations on floats.
4803       *
4804       * Gen4 has a similar restriction.  From the i965 PRM, section 11.5.3
4805       * (Instruction Compression -> Rules and Restrictions):
4806       *
4807       *  "A compressed instruction must be in Align1 access mode. Align16
4808       *   mode instructions cannot be compressed."
4809       *
4810       * Similar text exists in the g45 PRM.
4811       *
4812       * Empirically, compressed align16 instructions using odd register
4813       * numbers don't appear to work on Sandybridge either.
4814       */
4815      return (devinfo->gen == 4 || devinfo->gen == 6 ||
4816              (devinfo->gen == 7 && !devinfo->is_haswell) ?
4817              MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4818
4819   case SHADER_OPCODE_MULH:
4820      /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4821       * is 8-wide on Gen7+.
4822       */
4823      return (devinfo->gen >= 7 ? 8 :
4824              get_fpu_lowered_simd_width(devinfo, inst));
4825
4826   case FS_OPCODE_FB_WRITE_LOGICAL:
4827      /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4828       * here.
4829       */
4830      assert(devinfo->gen != 6 ||
4831             inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4832             inst->exec_size == 8);
4833      /* Dual-source FB writes are unsupported in SIMD16 mode. */
4834      return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4835              8 : MIN2(16, inst->exec_size));
4836
4837   case FS_OPCODE_FB_READ_LOGICAL:
4838      return MIN2(16, inst->exec_size);
4839
4840   case SHADER_OPCODE_TEX_LOGICAL:
4841   case SHADER_OPCODE_TXF_CMS_LOGICAL:
4842   case SHADER_OPCODE_TXF_UMS_LOGICAL:
4843   case SHADER_OPCODE_TXF_MCS_LOGICAL:
4844   case SHADER_OPCODE_LOD_LOGICAL:
4845   case SHADER_OPCODE_TG4_LOGICAL:
4846   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4847   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4848   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4849      return get_sampler_lowered_simd_width(devinfo, inst);
4850
4851   case SHADER_OPCODE_TXD_LOGICAL:
4852      /* TXD is unsupported in SIMD16 mode. */
4853      return 8;
4854
4855   case SHADER_OPCODE_TXL_LOGICAL:
4856   case FS_OPCODE_TXB_LOGICAL:
4857      /* Only one execution size is representable pre-ILK depending on whether
4858       * the shadow reference argument is present.
4859       */
4860      if (devinfo->gen == 4)
4861         return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4862      else
4863         return get_sampler_lowered_simd_width(devinfo, inst);
4864
4865   case SHADER_OPCODE_TXF_LOGICAL:
4866   case SHADER_OPCODE_TXS_LOGICAL:
4867      /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4868       * messages.  Use SIMD16 instead.
4869       */
4870      if (devinfo->gen == 4)
4871         return 16;
4872      else
4873         return get_sampler_lowered_simd_width(devinfo, inst);
4874
4875   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4876   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4877   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4878      return 8;
4879
4880   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4881   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4882   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4883      return MIN2(16, inst->exec_size);
4884
4885   case SHADER_OPCODE_URB_READ_SIMD8:
4886   case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4887   case SHADER_OPCODE_URB_WRITE_SIMD8:
4888   case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4889   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4890   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4891      return MIN2(8, inst->exec_size);
4892
4893   case SHADER_OPCODE_MOV_INDIRECT:
4894      /* Prior to Broadwell, we only have 8 address subregisters */
4895      return MIN3(devinfo->gen >= 8 ? 16 : 8,
4896                  2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4897                  inst->exec_size);
4898
4899   case SHADER_OPCODE_LOAD_PAYLOAD: {
4900      const unsigned reg_count =
4901         DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4902
4903      if (reg_count > 2) {
4904         /* Only LOAD_PAYLOAD instructions with per-channel destination region
4905          * can be easily lowered (which excludes headers and heterogeneous
4906          * types).
4907          */
4908         assert(!inst->header_size);
4909         for (unsigned i = 0; i < inst->sources; i++)
4910            assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4911                   inst->src[i].file == BAD_FILE);
4912
4913         return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4914      } else {
4915         return inst->exec_size;
4916      }
4917   }
4918   default:
4919      return inst->exec_size;
4920   }
4921}
4922
4923/**
4924 * Return true if splitting out the group of channels of instruction \p inst
4925 * given by lbld.group() requires allocating a temporary for the i-th source
4926 * of the lowered instruction.
4927 */
4928static inline bool
4929needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4930{
4931   return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4932            (inst->components_read(i) == 1 &&
4933             lbld.dispatch_width() <= inst->exec_size));
4934}
4935
4936/**
4937 * Extract the data that would be consumed by the channel group given by
4938 * lbld.group() from the i-th source region of instruction \p inst and return
4939 * it as result in packed form.  If any copy instructions are required they
4940 * will be emitted before the given \p inst in \p block.
4941 */
4942static fs_reg
4943emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4944           unsigned i)
4945{
4946   /* Specified channel group from the source region. */
4947   const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4948
4949   if (needs_src_copy(lbld, inst, i)) {
4950      /* Builder of the right width to perform the copy avoiding uninitialized
4951       * data if the lowered execution size is greater than the original
4952       * execution size of the instruction.
4953       */
4954      const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4955                                              inst->exec_size), 0);
4956      const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4957
4958      for (unsigned k = 0; k < inst->components_read(i); ++k)
4959         cbld.at(block, inst)
4960             .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4961
4962      return tmp;
4963
4964   } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4965      /* The source is invariant for all dispatch_width-wide groups of the
4966       * original region.
4967       */
4968      return inst->src[i];
4969
4970   } else {
4971      /* We can just point the lowered instruction at the right channel group
4972       * from the original region.
4973       */
4974      return src;
4975   }
4976}
4977
4978/**
4979 * Return true if splitting out the group of channels of instruction \p inst
4980 * given by lbld.group() requires allocating a temporary for the destination
4981 * of the lowered instruction and copying the data back to the original
4982 * destination region.
4983 */
4984static inline bool
4985needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
4986{
4987   /* If the instruction writes more than one component we'll have to shuffle
4988    * the results of multiple lowered instructions in order to make sure that
4989    * they end up arranged correctly in the original destination region.
4990    */
4991   if (inst->size_written > inst->dst.component_size(inst->exec_size))
4992      return true;
4993
4994   /* If the lowered execution size is larger than the original the result of
4995    * the instruction won't fit in the original destination, so we'll have to
4996    * allocate a temporary in any case.
4997    */
4998   if (lbld.dispatch_width() > inst->exec_size)
4999      return true;
5000
5001   for (unsigned i = 0; i < inst->sources; i++) {
5002      /* If we already made a copy of the source for other reasons there won't
5003       * be any overlap with the destination.
5004       */
5005      if (needs_src_copy(lbld, inst, i))
5006         continue;
5007
5008      /* In order to keep the logic simple we emit a copy whenever the
5009       * destination region doesn't exactly match an overlapping source, which
5010       * may point at the source and destination not being aligned group by
5011       * group which could cause one of the lowered instructions to overwrite
5012       * the data read from the same source by other lowered instructions.
5013       */
5014      if (regions_overlap(inst->dst, inst->size_written,
5015                          inst->src[i], inst->size_read(i)) &&
5016          !inst->dst.equals(inst->src[i]))
5017        return true;
5018   }
5019
5020   return false;
5021}
5022
5023/**
5024 * Insert data from a packed temporary into the channel group given by
5025 * lbld.group() of the destination region of instruction \p inst and return
5026 * the temporary as result.  If any copy instructions are required they will
5027 * be emitted around the given \p inst in \p block.
5028 */
5029static fs_reg
5030emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5031{
5032   /* Builder of the right width to perform the copy avoiding uninitialized
5033    * data if the lowered execution size is greater than the original
5034    * execution size of the instruction.
5035    */
5036   const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5037                                           inst->exec_size), 0);
5038
5039   /* Specified channel group from the destination region. */
5040   const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5041   const unsigned dst_size = inst->size_written /
5042      inst->dst.component_size(inst->exec_size);
5043
5044   if (needs_dst_copy(lbld, inst)) {
5045      const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5046
5047      if (inst->predicate) {
5048         /* Handle predication by copying the original contents of
5049          * the destination into the temporary before emitting the
5050          * lowered instruction.
5051          */
5052         for (unsigned k = 0; k < dst_size; ++k)
5053            cbld.at(block, inst)
5054                .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5055      }
5056
5057      for (unsigned k = 0; k < dst_size; ++k)
5058         cbld.at(block, inst->next)
5059             .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5060
5061      return tmp;
5062
5063   } else {
5064      /* No need to allocate a temporary for the lowered instruction, just
5065       * take the right group of channels from the original region.
5066       */
5067      return dst;
5068   }
5069}
5070
5071bool
5072fs_visitor::lower_simd_width()
5073{
5074   bool progress = false;
5075
5076   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5077      const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5078
5079      if (lower_width != inst->exec_size) {
5080         /* Builder matching the original instruction.  We may also need to
5081          * emit an instruction of width larger than the original, set the
5082          * execution size of the builder to the highest of both for now so
5083          * we're sure that both cases can be handled.
5084          */
5085         const unsigned max_width = MAX2(inst->exec_size, lower_width);
5086         const fs_builder ibld = bld.at(block, inst)
5087                                    .exec_all(inst->force_writemask_all)
5088                                    .group(max_width, inst->group / max_width);
5089
5090         /* Split the copies in chunks of the execution width of either the
5091          * original or the lowered instruction, whichever is lower.
5092          */
5093         const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5094         const unsigned dst_size = inst->size_written /
5095            inst->dst.component_size(inst->exec_size);
5096
5097         assert(!inst->writes_accumulator && !inst->mlen);
5098
5099         for (unsigned i = 0; i < n; i++) {
5100            /* Emit a copy of the original instruction with the lowered width.
5101             * If the EOT flag was set throw it away except for the last
5102             * instruction to avoid killing the thread prematurely.
5103             */
5104            fs_inst split_inst = *inst;
5105            split_inst.exec_size = lower_width;
5106            split_inst.eot = inst->eot && i == n - 1;
5107
5108            /* Select the correct channel enables for the i-th group, then
5109             * transform the sources and destination and emit the lowered
5110             * instruction.
5111             */
5112            const fs_builder lbld = ibld.group(lower_width, i);
5113
5114            for (unsigned j = 0; j < inst->sources; j++)
5115               split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5116
5117            split_inst.dst = emit_zip(lbld, block, inst);
5118            split_inst.size_written =
5119               split_inst.dst.component_size(lower_width) * dst_size;
5120
5121            lbld.emit(split_inst);
5122         }
5123
5124         inst->remove(block);
5125         progress = true;
5126      }
5127   }
5128
5129   if (progress)
5130      invalidate_live_intervals();
5131
5132   return progress;
5133}
5134
5135void
5136fs_visitor::dump_instructions()
5137{
5138   dump_instructions(NULL);
5139}
5140
5141void
5142fs_visitor::dump_instructions(const char *name)
5143{
5144   FILE *file = stderr;
5145   if (name && geteuid() != 0) {
5146      file = fopen(name, "w");
5147      if (!file)
5148         file = stderr;
5149   }
5150
5151   if (cfg) {
5152      calculate_register_pressure();
5153      int ip = 0, max_pressure = 0;
5154      foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5155         max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5156         fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5157         dump_instruction(inst, file);
5158         ip++;
5159      }
5160      fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5161   } else {
5162      int ip = 0;
5163      foreach_in_list(backend_instruction, inst, &instructions) {
5164         fprintf(file, "%4d: ", ip++);
5165         dump_instruction(inst, file);
5166      }
5167   }
5168
5169   if (file != stderr) {
5170      fclose(file);
5171   }
5172}
5173
5174void
5175fs_visitor::dump_instruction(backend_instruction *be_inst)
5176{
5177   dump_instruction(be_inst, stderr);
5178}
5179
5180void
5181fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5182{
5183   fs_inst *inst = (fs_inst *)be_inst;
5184
5185   if (inst->predicate) {
5186      fprintf(file, "(%cf0.%d) ",
5187             inst->predicate_inverse ? '-' : '+',
5188             inst->flag_subreg);
5189   }
5190
5191   fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5192   if (inst->saturate)
5193      fprintf(file, ".sat");
5194   if (inst->conditional_mod) {
5195      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5196      if (!inst->predicate &&
5197          (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5198                              inst->opcode != BRW_OPCODE_IF &&
5199                              inst->opcode != BRW_OPCODE_WHILE))) {
5200         fprintf(file, ".f0.%d", inst->flag_subreg);
5201      }
5202   }
5203   fprintf(file, "(%d) ", inst->exec_size);
5204
5205   if (inst->mlen) {
5206      fprintf(file, "(mlen: %d) ", inst->mlen);
5207   }
5208
5209   if (inst->eot) {
5210      fprintf(file, "(EOT) ");
5211   }
5212
5213   switch (inst->dst.file) {
5214   case VGRF:
5215      fprintf(file, "vgrf%d", inst->dst.nr);
5216      break;
5217   case FIXED_GRF:
5218      fprintf(file, "g%d", inst->dst.nr);
5219      break;
5220   case MRF:
5221      fprintf(file, "m%d", inst->dst.nr);
5222      break;
5223   case BAD_FILE:
5224      fprintf(file, "(null)");
5225      break;
5226   case UNIFORM:
5227      fprintf(file, "***u%d***", inst->dst.nr);
5228      break;
5229   case ATTR:
5230      fprintf(file, "***attr%d***", inst->dst.nr);
5231      break;
5232   case ARF:
5233      switch (inst->dst.nr) {
5234      case BRW_ARF_NULL:
5235         fprintf(file, "null");
5236         break;
5237      case BRW_ARF_ADDRESS:
5238         fprintf(file, "a0.%d", inst->dst.subnr);
5239         break;
5240      case BRW_ARF_ACCUMULATOR:
5241         fprintf(file, "acc%d", inst->dst.subnr);
5242         break;
5243      case BRW_ARF_FLAG:
5244         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5245         break;
5246      default:
5247         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5248         break;
5249      }
5250      break;
5251   case IMM:
5252      unreachable("not reached");
5253   }
5254
5255   if (inst->dst.offset ||
5256       (inst->dst.file == VGRF &&
5257        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5258      const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5259      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5260              inst->dst.offset % reg_size);
5261   }
5262
5263   if (inst->dst.stride != 1)
5264      fprintf(file, "<%u>", inst->dst.stride);
5265   fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5266
5267   for (int i = 0; i < inst->sources; i++) {
5268      if (inst->src[i].negate)
5269         fprintf(file, "-");
5270      if (inst->src[i].abs)
5271         fprintf(file, "|");
5272      switch (inst->src[i].file) {
5273      case VGRF:
5274         fprintf(file, "vgrf%d", inst->src[i].nr);
5275         break;
5276      case FIXED_GRF:
5277         fprintf(file, "g%d", inst->src[i].nr);
5278         break;
5279      case MRF:
5280         fprintf(file, "***m%d***", inst->src[i].nr);
5281         break;
5282      case ATTR:
5283         fprintf(file, "attr%d", inst->src[i].nr);
5284         break;
5285      case UNIFORM:
5286         fprintf(file, "u%d", inst->src[i].nr);
5287         break;
5288      case BAD_FILE:
5289         fprintf(file, "(null)");
5290         break;
5291      case IMM:
5292         switch (inst->src[i].type) {
5293         case BRW_REGISTER_TYPE_F:
5294            fprintf(file, "%-gf", inst->src[i].f);
5295            break;
5296         case BRW_REGISTER_TYPE_DF:
5297            fprintf(file, "%fdf", inst->src[i].df);
5298            break;
5299         case BRW_REGISTER_TYPE_W:
5300         case BRW_REGISTER_TYPE_D:
5301            fprintf(file, "%dd", inst->src[i].d);
5302            break;
5303         case BRW_REGISTER_TYPE_UW:
5304         case BRW_REGISTER_TYPE_UD:
5305            fprintf(file, "%uu", inst->src[i].ud);
5306            break;
5307         case BRW_REGISTER_TYPE_VF:
5308            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5309                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
5310                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
5311                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5312                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5313            break;
5314         default:
5315            fprintf(file, "???");
5316            break;
5317         }
5318         break;
5319      case ARF:
5320         switch (inst->src[i].nr) {
5321         case BRW_ARF_NULL:
5322            fprintf(file, "null");
5323            break;
5324         case BRW_ARF_ADDRESS:
5325            fprintf(file, "a0.%d", inst->src[i].subnr);
5326            break;
5327         case BRW_ARF_ACCUMULATOR:
5328            fprintf(file, "acc%d", inst->src[i].subnr);
5329            break;
5330         case BRW_ARF_FLAG:
5331            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5332            break;
5333         default:
5334            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5335            break;
5336         }
5337         break;
5338      }
5339
5340      if (inst->src[i].offset ||
5341          (inst->src[i].file == VGRF &&
5342           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5343         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5344         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5345                 inst->src[i].offset % reg_size);
5346      }
5347
5348      if (inst->src[i].abs)
5349         fprintf(file, "|");
5350
5351      if (inst->src[i].file != IMM) {
5352         unsigned stride;
5353         if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5354            unsigned hstride = inst->src[i].hstride;
5355            stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5356         } else {
5357            stride = inst->src[i].stride;
5358         }
5359         if (stride != 1)
5360            fprintf(file, "<%u>", stride);
5361
5362         fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5363      }
5364
5365      if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5366         fprintf(file, ", ");
5367   }
5368
5369   fprintf(file, " ");
5370
5371   if (inst->force_writemask_all)
5372      fprintf(file, "NoMask ");
5373
5374   if (inst->exec_size != dispatch_width)
5375      fprintf(file, "group%d ", inst->group);
5376
5377   fprintf(file, "\n");
5378}
5379
5380/**
5381 * Possibly returns an instruction that set up @param reg.
5382 *
5383 * Sometimes we want to take the result of some expression/variable
5384 * dereference tree and rewrite the instruction generating the result
5385 * of the tree.  When processing the tree, we know that the
5386 * instructions generated are all writing temporaries that are dead
5387 * outside of this tree.  So, if we have some instructions that write
5388 * a temporary, we're free to point that temp write somewhere else.
5389 *
5390 * Note that this doesn't guarantee that the instruction generated
5391 * only reg -- it might be the size=4 destination of a texture instruction.
5392 */
5393fs_inst *
5394fs_visitor::get_instruction_generating_reg(fs_inst *start,
5395					   fs_inst *end,
5396					   const fs_reg &reg)
5397{
5398   if (end == start ||
5399       end->is_partial_write() ||
5400       !reg.equals(end->dst)) {
5401      return NULL;
5402   } else {
5403      return end;
5404   }
5405}
5406
5407void
5408fs_visitor::setup_fs_payload_gen6()
5409{
5410   assert(stage == MESA_SHADER_FRAGMENT);
5411   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5412
5413   assert(devinfo->gen >= 6);
5414
5415   /* R0-1: masks, pixel X/Y coordinates. */
5416   payload.num_regs = 2;
5417   /* R2: only for 32-pixel dispatch.*/
5418
5419   /* R3-26: barycentric interpolation coordinates.  These appear in the
5420    * same order that they appear in the brw_barycentric_mode
5421    * enum.  Each set of coordinates occupies 2 registers if dispatch width
5422    * == 8 and 4 registers if dispatch width == 16.  Coordinates only
5423    * appear if they were enabled using the "Barycentric Interpolation
5424    * Mode" bits in WM_STATE.
5425    */
5426   for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5427      if (prog_data->barycentric_interp_modes & (1 << i)) {
5428         payload.barycentric_coord_reg[i] = payload.num_regs;
5429         payload.num_regs += 2;
5430         if (dispatch_width == 16) {
5431            payload.num_regs += 2;
5432         }
5433      }
5434   }
5435
5436   /* R27: interpolated depth if uses source depth */
5437   prog_data->uses_src_depth =
5438      (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5439   if (prog_data->uses_src_depth) {
5440      payload.source_depth_reg = payload.num_regs;
5441      payload.num_regs++;
5442      if (dispatch_width == 16) {
5443         /* R28: interpolated depth if not SIMD8. */
5444         payload.num_regs++;
5445      }
5446   }
5447
5448   /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5449   prog_data->uses_src_w =
5450      (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5451   if (prog_data->uses_src_w) {
5452      payload.source_w_reg = payload.num_regs;
5453      payload.num_regs++;
5454      if (dispatch_width == 16) {
5455         /* R30: interpolated W if not SIMD8. */
5456         payload.num_regs++;
5457      }
5458   }
5459
5460   /* R31: MSAA position offsets. */
5461   if (prog_data->persample_dispatch &&
5462       (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5463      /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5464       *
5465       *    "MSDISPMODE_PERSAMPLE is required in order to select
5466       *    POSOFFSET_SAMPLE"
5467       *
5468       * So we can only really get sample positions if we are doing real
5469       * per-sample dispatch.  If we need gl_SamplePosition and we don't have
5470       * persample dispatch, we hard-code it to 0.5.
5471       */
5472      prog_data->uses_pos_offset = true;
5473      payload.sample_pos_reg = payload.num_regs;
5474      payload.num_regs++;
5475   }
5476
5477   /* R32: MSAA input coverage mask */
5478   prog_data->uses_sample_mask =
5479      (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5480   if (prog_data->uses_sample_mask) {
5481      assert(devinfo->gen >= 7);
5482      payload.sample_mask_in_reg = payload.num_regs;
5483      payload.num_regs++;
5484      if (dispatch_width == 16) {
5485         /* R33: input coverage mask if not SIMD8. */
5486         payload.num_regs++;
5487      }
5488   }
5489
5490   /* R34-: bary for 32-pixel. */
5491   /* R58-59: interp W for 32-pixel. */
5492
5493   if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5494      source_depth_to_render_target = true;
5495   }
5496}
5497
5498void
5499fs_visitor::setup_vs_payload()
5500{
5501   /* R0: thread header, R1: urb handles */
5502   payload.num_regs = 2;
5503}
5504
5505void
5506fs_visitor::setup_gs_payload()
5507{
5508   assert(stage == MESA_SHADER_GEOMETRY);
5509
5510   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5511   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5512
5513   /* R0: thread header, R1: output URB handles */
5514   payload.num_regs = 2;
5515
5516   if (gs_prog_data->include_primitive_id) {
5517      /* R2: Primitive ID 0..7 */
5518      payload.num_regs++;
5519   }
5520
5521   /* Use a maximum of 24 registers for push-model inputs. */
5522   const unsigned max_push_components = 24;
5523
5524   /* If pushing our inputs would take too many registers, reduce the URB read
5525    * length (which is in HWords, or 8 registers), and resort to pulling.
5526    *
5527    * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5528    * have to multiply by VerticesIn to obtain the total storage requirement.
5529    */
5530   if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5531       max_push_components || gs_prog_data->invocations > 1) {
5532      gs_prog_data->base.include_vue_handles = true;
5533
5534      /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5535      payload.num_regs += nir->info->gs.vertices_in;
5536
5537      vue_prog_data->urb_read_length =
5538         ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5539   }
5540}
5541
5542void
5543fs_visitor::setup_cs_payload()
5544{
5545   assert(devinfo->gen >= 7);
5546   payload.num_regs = 1;
5547}
5548
5549void
5550fs_visitor::calculate_register_pressure()
5551{
5552   invalidate_live_intervals();
5553   calculate_live_intervals();
5554
5555   unsigned num_instructions = 0;
5556   foreach_block(block, cfg)
5557      num_instructions += block->instructions.length();
5558
5559   regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5560
5561   for (unsigned reg = 0; reg < alloc.count; reg++) {
5562      for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5563         regs_live_at_ip[ip] += alloc.sizes[reg];
5564   }
5565}
5566
5567/**
5568 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5569 *
5570 * The needs_unlit_centroid_workaround ends up producing one of these per
5571 * channel of centroid input, so it's good to clean them up.
5572 *
5573 * An assumption here is that nothing ever modifies the dispatched pixels
5574 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5575 * dictates that anyway.
5576 */
5577bool
5578fs_visitor::opt_drop_redundant_mov_to_flags()
5579{
5580   bool flag_mov_found[2] = {false};
5581   bool progress = false;
5582
5583   /* Instructions removed by this pass can only be added if this were true */
5584   if (!devinfo->needs_unlit_centroid_workaround)
5585      return false;
5586
5587   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5588      if (inst->is_control_flow()) {
5589         memset(flag_mov_found, 0, sizeof(flag_mov_found));
5590      } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5591         if (!flag_mov_found[inst->flag_subreg]) {
5592            flag_mov_found[inst->flag_subreg] = true;
5593         } else {
5594            inst->remove(block);
5595            progress = true;
5596         }
5597      } else if (inst->flags_written()) {
5598         flag_mov_found[inst->flag_subreg] = false;
5599      }
5600   }
5601
5602   return progress;
5603}
5604
5605void
5606fs_visitor::optimize()
5607{
5608   /* Start by validating the shader we currently have. */
5609   validate();
5610
5611   /* bld is the common builder object pointing at the end of the program we
5612    * used to translate it into i965 IR.  For the optimization and lowering
5613    * passes coming next, any code added after the end of the program without
5614    * having explicitly called fs_builder::at() clearly points at a mistake.
5615    * Ideally optimization passes wouldn't be part of the visitor so they
5616    * wouldn't have access to bld at all, but they do, so just in case some
5617    * pass forgets to ask for a location explicitly set it to NULL here to
5618    * make it trip.  The dispatch width is initialized to a bogus value to
5619    * make sure that optimizations set the execution controls explicitly to
5620    * match the code they are manipulating instead of relying on the defaults.
5621    */
5622   bld = fs_builder(this, 64);
5623
5624   assign_constant_locations();
5625   lower_constant_loads();
5626
5627   validate();
5628
5629   split_virtual_grfs();
5630   validate();
5631
5632#define OPT(pass, args...) ({                                           \
5633      pass_num++;                                                       \
5634      bool this_progress = pass(args);                                  \
5635                                                                        \
5636      if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {   \
5637         char filename[64];                                             \
5638         snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass,              \
5639                  stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5640                                                                        \
5641         backend_shader::dump_instructions(filename);                   \
5642      }                                                                 \
5643                                                                        \
5644      validate();                                                       \
5645                                                                        \
5646      progress = progress || this_progress;                             \
5647      this_progress;                                                    \
5648   })
5649
5650   if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5651      char filename[64];
5652      snprintf(filename, 64, "%s%d-%s-00-00-start",
5653               stage_abbrev, dispatch_width, nir->info->name);
5654
5655      backend_shader::dump_instructions(filename);
5656   }
5657
5658   bool progress = false;
5659   int iteration = 0;
5660   int pass_num = 0;
5661
5662   OPT(opt_drop_redundant_mov_to_flags);
5663
5664   do {
5665      progress = false;
5666      pass_num = 0;
5667      iteration++;
5668
5669      OPT(remove_duplicate_mrf_writes);
5670
5671      OPT(opt_algebraic);
5672      OPT(opt_cse);
5673      OPT(opt_copy_propagation);
5674      OPT(opt_predicated_break, this);
5675      OPT(opt_cmod_propagation);
5676      OPT(dead_code_eliminate);
5677      OPT(opt_peephole_sel);
5678      OPT(dead_control_flow_eliminate, this);
5679      OPT(opt_register_renaming);
5680      OPT(opt_saturate_propagation);
5681      OPT(register_coalesce);
5682      OPT(compute_to_mrf);
5683      OPT(eliminate_find_live_channel);
5684
5685      OPT(compact_virtual_grfs);
5686   } while (progress);
5687
5688   progress = false;
5689   pass_num = 0;
5690
5691   if (OPT(lower_pack)) {
5692      OPT(register_coalesce);
5693      OPT(dead_code_eliminate);
5694   }
5695
5696   if (OPT(lower_d2x)) {
5697      OPT(opt_copy_propagation);
5698      OPT(dead_code_eliminate);
5699   }
5700
5701   OPT(lower_simd_width);
5702
5703   /* After SIMD lowering just in case we had to unroll the EOT send. */
5704   OPT(opt_sampler_eot);
5705
5706   OPT(lower_logical_sends);
5707
5708   if (progress) {
5709      OPT(opt_copy_propagation);
5710      /* Only run after logical send lowering because it's easier to implement
5711       * in terms of physical sends.
5712       */
5713      if (OPT(opt_zero_samples))
5714         OPT(opt_copy_propagation);
5715      /* Run after logical send lowering to give it a chance to CSE the
5716       * LOAD_PAYLOAD instructions created to construct the payloads of
5717       * e.g. texturing messages in cases where it wasn't possible to CSE the
5718       * whole logical instruction.
5719       */
5720      OPT(opt_cse);
5721      OPT(register_coalesce);
5722      OPT(compute_to_mrf);
5723      OPT(dead_code_eliminate);
5724      OPT(remove_duplicate_mrf_writes);
5725      OPT(opt_peephole_sel);
5726   }
5727
5728   OPT(opt_redundant_discard_jumps);
5729
5730   if (OPT(lower_load_payload)) {
5731      split_virtual_grfs();
5732      OPT(register_coalesce);
5733      OPT(compute_to_mrf);
5734      OPT(dead_code_eliminate);
5735   }
5736
5737   OPT(opt_combine_constants);
5738   OPT(lower_integer_multiplication);
5739
5740   if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5741      OPT(opt_cmod_propagation);
5742      OPT(opt_cse);
5743      OPT(opt_copy_propagation);
5744      OPT(dead_code_eliminate);
5745   }
5746
5747   lower_uniform_pull_constant_loads();
5748
5749   validate();
5750}
5751
5752/**
5753 * Three source instruction must have a GRF/MRF destination register.
5754 * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
5755 */
5756void
5757fs_visitor::fixup_3src_null_dest()
5758{
5759   bool progress = false;
5760
5761   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5762      if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5763         inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5764                            inst->dst.type);
5765         progress = true;
5766      }
5767   }
5768
5769   if (progress)
5770      invalidate_live_intervals();
5771}
5772
5773void
5774fs_visitor::allocate_registers(bool allow_spilling)
5775{
5776   bool allocated_without_spills;
5777
5778   static const enum instruction_scheduler_mode pre_modes[] = {
5779      SCHEDULE_PRE,
5780      SCHEDULE_PRE_NON_LIFO,
5781      SCHEDULE_PRE_LIFO,
5782   };
5783
5784   bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5785
5786   /* Try each scheduling heuristic to see if it can successfully register
5787    * allocate without spilling.  They should be ordered by decreasing
5788    * performance but increasing likelihood of allocating.
5789    */
5790   for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5791      schedule_instructions(pre_modes[i]);
5792
5793      if (0) {
5794         assign_regs_trivial();
5795         allocated_without_spills = true;
5796      } else {
5797         allocated_without_spills = assign_regs(false, spill_all);
5798      }
5799      if (allocated_without_spills)
5800         break;
5801   }
5802
5803   if (!allocated_without_spills) {
5804      if (!allow_spilling)
5805         fail("Failure to register allocate and spilling is not allowed.");
5806
5807      /* We assume that any spilling is worse than just dropping back to
5808       * SIMD8.  There's probably actually some intermediate point where
5809       * SIMD16 with a couple of spills is still better.
5810       */
5811      if (dispatch_width > min_dispatch_width) {
5812         fail("Failure to register allocate.  Reduce number of "
5813              "live scalar values to avoid this.");
5814      } else {
5815         compiler->shader_perf_log(log_data,
5816                                   "%s shader triggered register spilling.  "
5817                                   "Try reducing the number of live scalar "
5818                                   "values to improve performance.\n",
5819                                   stage_name);
5820      }
5821
5822      /* Since we're out of heuristics, just go spill registers until we
5823       * get an allocation.
5824       */
5825      while (!assign_regs(true, spill_all)) {
5826         if (failed)
5827            break;
5828      }
5829   }
5830
5831   /* This must come after all optimization and register allocation, since
5832    * it inserts dead code that happens to have side effects, and it does
5833    * so based on the actual physical registers in use.
5834    */
5835   insert_gen4_send_dependency_workarounds();
5836
5837   if (failed)
5838      return;
5839
5840   schedule_instructions(SCHEDULE_POST);
5841
5842   if (last_scratch > 0) {
5843      MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5844
5845      prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5846
5847      if (stage == MESA_SHADER_COMPUTE) {
5848         if (devinfo->is_haswell) {
5849            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5850             * field documentation, Haswell supports a minimum of 2kB of
5851             * scratch space for compute shaders, unlike every other stage
5852             * and platform.
5853             */
5854            prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5855         } else if (devinfo->gen <= 7) {
5856            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5857             * field documentation, platforms prior to Haswell measure scratch
5858             * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5859             */
5860            prog_data->total_scratch = ALIGN(last_scratch, 1024);
5861            max_scratch_size = 12 * 1024;
5862         }
5863      }
5864
5865      /* We currently only support up to 2MB of scratch space.  If we
5866       * need to support more eventually, the documentation suggests
5867       * that we could allocate a larger buffer, and partition it out
5868       * ourselves.  We'd just have to undo the hardware's address
5869       * calculation by subtracting (FFTID * Per Thread Scratch Space)
5870       * and then add FFTID * (Larger Per Thread Scratch Space).
5871       *
5872       * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5873       * Thread Group Tracking > Local Memory/Scratch Space.
5874       */
5875      assert(prog_data->total_scratch < max_scratch_size);
5876   }
5877}
5878
5879bool
5880fs_visitor::run_vs(gl_clip_plane *clip_planes)
5881{
5882   assert(stage == MESA_SHADER_VERTEX);
5883
5884   setup_vs_payload();
5885
5886   if (shader_time_index >= 0)
5887      emit_shader_time_begin();
5888
5889   emit_nir_code();
5890
5891   if (failed)
5892      return false;
5893
5894   compute_clip_distance(clip_planes);
5895
5896   emit_urb_writes();
5897
5898   if (shader_time_index >= 0)
5899      emit_shader_time_end();
5900
5901   calculate_cfg();
5902
5903   optimize();
5904
5905   assign_curb_setup();
5906   assign_vs_urb_setup();
5907
5908   fixup_3src_null_dest();
5909   allocate_registers(true);
5910
5911   return !failed;
5912}
5913
5914bool
5915fs_visitor::run_tcs_single_patch()
5916{
5917   assert(stage == MESA_SHADER_TESS_CTRL);
5918
5919   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5920
5921   /* r1-r4 contain the ICP handles. */
5922   payload.num_regs = 5;
5923
5924   if (shader_time_index >= 0)
5925      emit_shader_time_begin();
5926
5927   /* Initialize gl_InvocationID */
5928   fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5929   fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5930   bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5931   bld.MOV(channels_ud, channels_uw);
5932
5933   if (tcs_prog_data->instances == 1) {
5934      invocation_id = channels_ud;
5935   } else {
5936      invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5937
5938      /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5939      fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5940      fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5941      bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5942              brw_imm_ud(INTEL_MASK(23, 17)));
5943      bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5944
5945      bld.ADD(invocation_id, instance_times_8, channels_ud);
5946   }
5947
5948   /* Fix the disptach mask */
5949   if (nir->info->tess.tcs_vertices_out % 8) {
5950      bld.CMP(bld.null_reg_ud(), invocation_id,
5951              brw_imm_ud(nir->info->tess.tcs_vertices_out), BRW_CONDITIONAL_L);
5952      bld.IF(BRW_PREDICATE_NORMAL);
5953   }
5954
5955   emit_nir_code();
5956
5957   if (nir->info->tess.tcs_vertices_out % 8) {
5958      bld.emit(BRW_OPCODE_ENDIF);
5959   }
5960
5961   /* Emit EOT write; set TR DS Cache bit */
5962   fs_reg srcs[3] = {
5963      fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5964      fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5965      fs_reg(brw_imm_ud(0)),
5966   };
5967   fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5968   bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5969
5970   fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5971                            bld.null_reg_ud(), payload);
5972   inst->mlen = 3;
5973   inst->eot = true;
5974
5975   if (shader_time_index >= 0)
5976      emit_shader_time_end();
5977
5978   if (failed)
5979      return false;
5980
5981   calculate_cfg();
5982
5983   optimize();
5984
5985   assign_curb_setup();
5986   assign_tcs_single_patch_urb_setup();
5987
5988   fixup_3src_null_dest();
5989   allocate_registers(true);
5990
5991   return !failed;
5992}
5993
5994bool
5995fs_visitor::run_tes()
5996{
5997   assert(stage == MESA_SHADER_TESS_EVAL);
5998
5999   /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6000   payload.num_regs = 5;
6001
6002   if (shader_time_index >= 0)
6003      emit_shader_time_begin();
6004
6005   emit_nir_code();
6006
6007   if (failed)
6008      return false;
6009
6010   emit_urb_writes();
6011
6012   if (shader_time_index >= 0)
6013      emit_shader_time_end();
6014
6015   calculate_cfg();
6016
6017   optimize();
6018
6019   assign_curb_setup();
6020   assign_tes_urb_setup();
6021
6022   fixup_3src_null_dest();
6023   allocate_registers(true);
6024
6025   return !failed;
6026}
6027
6028bool
6029fs_visitor::run_gs()
6030{
6031   assert(stage == MESA_SHADER_GEOMETRY);
6032
6033   setup_gs_payload();
6034
6035   this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6036
6037   if (gs_compile->control_data_header_size_bits > 0) {
6038      /* Create a VGRF to store accumulated control data bits. */
6039      this->control_data_bits = vgrf(glsl_type::uint_type);
6040
6041      /* If we're outputting more than 32 control data bits, then EmitVertex()
6042       * will set control_data_bits to 0 after emitting the first vertex.
6043       * Otherwise, we need to initialize it to 0 here.
6044       */
6045      if (gs_compile->control_data_header_size_bits <= 32) {
6046         const fs_builder abld = bld.annotate("initialize control data bits");
6047         abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6048      }
6049   }
6050
6051   if (shader_time_index >= 0)
6052      emit_shader_time_begin();
6053
6054   emit_nir_code();
6055
6056   emit_gs_thread_end();
6057
6058   if (shader_time_index >= 0)
6059      emit_shader_time_end();
6060
6061   if (failed)
6062      return false;
6063
6064   calculate_cfg();
6065
6066   optimize();
6067
6068   assign_curb_setup();
6069   assign_gs_urb_setup();
6070
6071   fixup_3src_null_dest();
6072   allocate_registers(true);
6073
6074   return !failed;
6075}
6076
6077bool
6078fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6079{
6080   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6081   brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6082
6083   assert(stage == MESA_SHADER_FRAGMENT);
6084
6085   if (devinfo->gen >= 6)
6086      setup_fs_payload_gen6();
6087   else
6088      setup_fs_payload_gen4();
6089
6090   if (0) {
6091      emit_dummy_fs();
6092   } else if (do_rep_send) {
6093      assert(dispatch_width == 16);
6094      emit_repclear_shader();
6095   } else {
6096      if (shader_time_index >= 0)
6097         emit_shader_time_begin();
6098
6099      calculate_urb_setup();
6100      if (nir->info->inputs_read > 0 ||
6101          (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6102         if (devinfo->gen < 6)
6103            emit_interpolation_setup_gen4();
6104         else
6105            emit_interpolation_setup_gen6();
6106      }
6107
6108      /* We handle discards by keeping track of the still-live pixels in f0.1.
6109       * Initialize it with the dispatched pixels.
6110       */
6111      if (wm_prog_data->uses_kill) {
6112         fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6113         discard_init->flag_subreg = 1;
6114      }
6115
6116      /* Generate FS IR for main().  (the visitor only descends into
6117       * functions called "main").
6118       */
6119      emit_nir_code();
6120
6121      if (failed)
6122	 return false;
6123
6124      if (wm_prog_data->uses_kill)
6125         bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6126
6127      if (wm_key->alpha_test_func)
6128         emit_alpha_test();
6129
6130      emit_fb_writes();
6131
6132      if (shader_time_index >= 0)
6133         emit_shader_time_end();
6134
6135      calculate_cfg();
6136
6137      optimize();
6138
6139      assign_curb_setup();
6140      assign_urb_setup();
6141
6142      fixup_3src_null_dest();
6143      allocate_registers(allow_spilling);
6144
6145      if (failed)
6146         return false;
6147   }
6148
6149   return !failed;
6150}
6151
6152bool
6153fs_visitor::run_cs()
6154{
6155   assert(stage == MESA_SHADER_COMPUTE);
6156
6157   setup_cs_payload();
6158
6159   if (shader_time_index >= 0)
6160      emit_shader_time_begin();
6161
6162   if (devinfo->is_haswell && prog_data->total_shared > 0) {
6163      /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6164      const fs_builder abld = bld.exec_all().group(1, 0);
6165      abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6166               suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6167   }
6168
6169   emit_nir_code();
6170
6171   if (failed)
6172      return false;
6173
6174   emit_cs_terminate();
6175
6176   if (shader_time_index >= 0)
6177      emit_shader_time_end();
6178
6179   calculate_cfg();
6180
6181   optimize();
6182
6183   assign_curb_setup();
6184
6185   fixup_3src_null_dest();
6186   allocate_registers(true);
6187
6188   if (failed)
6189      return false;
6190
6191   return !failed;
6192}
6193
6194/**
6195 * Return a bitfield where bit n is set if barycentric interpolation mode n
6196 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6197 *
6198 * We examine the load_barycentric intrinsics rather than looking at input
6199 * variables so that we catch interpolateAtCentroid() messages too, which
6200 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6201 */
6202static unsigned
6203brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6204                                     const nir_shader *shader)
6205{
6206   unsigned barycentric_interp_modes = 0;
6207
6208   nir_foreach_function(f, shader) {
6209      if (!f->impl)
6210         continue;
6211
6212      nir_foreach_block(block, f->impl) {
6213         nir_foreach_instr(instr, block) {
6214            if (instr->type != nir_instr_type_intrinsic)
6215               continue;
6216
6217            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6218            if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6219               continue;
6220
6221            /* Ignore WPOS; it doesn't require interpolation. */
6222            if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6223               continue;
6224
6225            intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6226            enum glsl_interp_mode interp = (enum glsl_interp_mode)
6227               nir_intrinsic_interp_mode(intrin);
6228            nir_intrinsic_op bary_op = intrin->intrinsic;
6229            enum brw_barycentric_mode bary =
6230               brw_barycentric_mode(interp, bary_op);
6231
6232            barycentric_interp_modes |= 1 << bary;
6233
6234            if (devinfo->needs_unlit_centroid_workaround &&
6235                bary_op == nir_intrinsic_load_barycentric_centroid)
6236               barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6237         }
6238      }
6239   }
6240
6241   return barycentric_interp_modes;
6242}
6243
6244static void
6245brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6246                        const nir_shader *shader)
6247{
6248   prog_data->flat_inputs = 0;
6249
6250   nir_foreach_variable(var, &shader->inputs) {
6251      int input_index = prog_data->urb_setup[var->data.location];
6252
6253      if (input_index < 0)
6254	 continue;
6255
6256      /* flat shading */
6257      if (var->data.interpolation == INTERP_MODE_FLAT)
6258         prog_data->flat_inputs |= (1 << input_index);
6259   }
6260}
6261
6262static uint8_t
6263computed_depth_mode(const nir_shader *shader)
6264{
6265   if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6266      switch (shader->info->fs.depth_layout) {
6267      case FRAG_DEPTH_LAYOUT_NONE:
6268      case FRAG_DEPTH_LAYOUT_ANY:
6269         return BRW_PSCDEPTH_ON;
6270      case FRAG_DEPTH_LAYOUT_GREATER:
6271         return BRW_PSCDEPTH_ON_GE;
6272      case FRAG_DEPTH_LAYOUT_LESS:
6273         return BRW_PSCDEPTH_ON_LE;
6274      case FRAG_DEPTH_LAYOUT_UNCHANGED:
6275         return BRW_PSCDEPTH_OFF;
6276      }
6277   }
6278   return BRW_PSCDEPTH_OFF;
6279}
6280
6281/**
6282 * Move load_interpolated_input with simple (payload-based) barycentric modes
6283 * to the top of the program so we don't emit multiple PLNs for the same input.
6284 *
6285 * This works around CSE not being able to handle non-dominating cases
6286 * such as:
6287 *
6288 *    if (...) {
6289 *       interpolate input
6290 *    } else {
6291 *       interpolate the same exact input
6292 *    }
6293 *
6294 * This should be replaced by global value numbering someday.
6295 */
6296void
6297move_interpolation_to_top(nir_shader *nir)
6298{
6299   nir_foreach_function(f, nir) {
6300      if (!f->impl)
6301         continue;
6302
6303      nir_block *top = nir_start_block(f->impl);
6304      exec_node *cursor_node = NULL;
6305
6306      nir_foreach_block(block, f->impl) {
6307         if (block == top)
6308            continue;
6309
6310         nir_foreach_instr_safe(instr, block) {
6311            if (instr->type != nir_instr_type_intrinsic)
6312               continue;
6313
6314            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6315            if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6316               continue;
6317            nir_intrinsic_instr *bary_intrinsic =
6318               nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6319            nir_intrinsic_op op = bary_intrinsic->intrinsic;
6320
6321            /* Leave interpolateAtSample/Offset() where they are. */
6322            if (op == nir_intrinsic_load_barycentric_at_sample ||
6323                op == nir_intrinsic_load_barycentric_at_offset)
6324               continue;
6325
6326            nir_instr *move[3] = {
6327               &bary_intrinsic->instr,
6328               intrin->src[1].ssa->parent_instr,
6329               instr
6330            };
6331
6332            for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6333               if (move[i]->block != top) {
6334                  move[i]->block = top;
6335                  exec_node_remove(&move[i]->node);
6336                  if (cursor_node) {
6337                     exec_node_insert_after(cursor_node, &move[i]->node);
6338                  } else {
6339                     exec_list_push_head(&top->instr_list, &move[i]->node);
6340                  }
6341                  cursor_node = &move[i]->node;
6342               }
6343            }
6344         }
6345      }
6346      nir_metadata_preserve(f->impl, (nir_metadata)
6347                            ((unsigned) nir_metadata_block_index |
6348                             (unsigned) nir_metadata_dominance));
6349   }
6350}
6351
6352/**
6353 * Demote per-sample barycentric intrinsics to centroid.
6354 *
6355 * Useful when rendering to a non-multisampled buffer.
6356 */
6357static void
6358demote_sample_qualifiers(nir_shader *nir)
6359{
6360   nir_foreach_function(f, nir) {
6361      if (!f->impl)
6362         continue;
6363
6364      nir_builder b;
6365      nir_builder_init(&b, f->impl);
6366
6367      nir_foreach_block(block, f->impl) {
6368         nir_foreach_instr_safe(instr, block) {
6369            if (instr->type != nir_instr_type_intrinsic)
6370               continue;
6371
6372            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6373            if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6374                intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6375               continue;
6376
6377            b.cursor = nir_before_instr(instr);
6378            nir_ssa_def *centroid =
6379               nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6380                                    nir_intrinsic_interp_mode(intrin));
6381            nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6382                                     nir_src_for_ssa(centroid));
6383            nir_instr_remove(instr);
6384         }
6385      }
6386
6387      nir_metadata_preserve(f->impl, (nir_metadata)
6388                            ((unsigned) nir_metadata_block_index |
6389                             (unsigned) nir_metadata_dominance));
6390   }
6391}
6392
6393const unsigned *
6394brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6395               void *mem_ctx,
6396               const struct brw_wm_prog_key *key,
6397               struct brw_wm_prog_data *prog_data,
6398               const nir_shader *src_shader,
6399               struct gl_program *prog,
6400               int shader_time_index8, int shader_time_index16,
6401               bool allow_spilling,
6402               bool use_rep_send, struct brw_vue_map *vue_map,
6403               unsigned *final_assembly_size,
6404               char **error_str)
6405{
6406   const struct gen_device_info *devinfo = compiler->devinfo;
6407
6408   nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6409   shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6410   brw_nir_lower_fs_inputs(shader, devinfo, key);
6411   brw_nir_lower_fs_outputs(shader);
6412
6413   if (devinfo->gen < 6) {
6414      brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6415   }
6416
6417   if (!key->multisample_fbo)
6418      NIR_PASS_V(shader, demote_sample_qualifiers);
6419   NIR_PASS_V(shader, move_interpolation_to_top);
6420   shader = brw_postprocess_nir(shader, compiler, true);
6421
6422   /* key->alpha_test_func means simulating alpha testing via discards,
6423    * so the shader definitely kills pixels.
6424    */
6425   prog_data->uses_kill = shader->info->fs.uses_discard ||
6426      key->alpha_test_func;
6427   prog_data->uses_omask = key->multisample_fbo &&
6428      shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6429   prog_data->computed_depth_mode = computed_depth_mode(shader);
6430   prog_data->computed_stencil =
6431      shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6432
6433   prog_data->persample_dispatch =
6434      key->multisample_fbo &&
6435      (key->persample_interp ||
6436       (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6437                                            SYSTEM_BIT_SAMPLE_POS)) ||
6438       shader->info->fs.uses_sample_qualifier ||
6439       shader->info->outputs_read);
6440
6441   prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6442   prog_data->post_depth_coverage = shader->info->fs.post_depth_coverage;
6443   prog_data->inner_coverage = shader->info->fs.inner_coverage;
6444
6445   prog_data->barycentric_interp_modes =
6446      brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6447
6448   cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6449   uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6450   unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6451
6452   fs_visitor v8(compiler, log_data, mem_ctx, key,
6453                 &prog_data->base, prog, shader, 8,
6454                 shader_time_index8);
6455   if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6456      if (error_str)
6457         *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6458
6459      return NULL;
6460   } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6461      simd8_cfg = v8.cfg;
6462      simd8_grf_start = v8.payload.num_regs;
6463      simd8_grf_used = v8.grf_used;
6464   }
6465
6466   if (v8.max_dispatch_width >= 16 &&
6467       likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6468      /* Try a SIMD16 compile */
6469      fs_visitor v16(compiler, log_data, mem_ctx, key,
6470                     &prog_data->base, prog, shader, 16,
6471                     shader_time_index16);
6472      v16.import_uniforms(&v8);
6473      if (!v16.run_fs(allow_spilling, use_rep_send)) {
6474         compiler->shader_perf_log(log_data,
6475                                   "SIMD16 shader failed to compile: %s",
6476                                   v16.fail_msg);
6477      } else {
6478         simd16_cfg = v16.cfg;
6479         simd16_grf_start = v16.payload.num_regs;
6480         simd16_grf_used = v16.grf_used;
6481      }
6482   }
6483
6484   /* When the caller requests a repclear shader, they want SIMD16-only */
6485   if (use_rep_send)
6486      simd8_cfg = NULL;
6487
6488   /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6489    * at the top to select the shader.  We've never implemented that.
6490    * Instead, we just give them exactly one shader and we pick the widest one
6491    * available.
6492    */
6493   if (compiler->devinfo->gen < 5 && simd16_cfg)
6494      simd8_cfg = NULL;
6495
6496   if (prog_data->persample_dispatch) {
6497      /* Starting with SandyBridge (where we first get MSAA), the different
6498       * pixel dispatch combinations are grouped into classifications A
6499       * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1).  On all hardware
6500       * generations, the only configurations supporting persample dispatch
6501       * are are this in which only one dispatch width is enabled.
6502       *
6503       * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6504       * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6505       */
6506      if (compiler->devinfo->gen == 6 &&
6507          prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6508         simd16_cfg = NULL;
6509      } else if (simd16_cfg) {
6510         simd8_cfg = NULL;
6511      }
6512   }
6513
6514   /* We have to compute the flat inputs after the visitor is finished running
6515    * because it relies on prog_data->urb_setup which is computed in
6516    * fs_visitor::calculate_urb_setup().
6517    */
6518   brw_compute_flat_inputs(prog_data, shader);
6519
6520   fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6521                  v8.promoted_constants, v8.runtime_check_aads_emit,
6522                  MESA_SHADER_FRAGMENT);
6523
6524   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6525      g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6526                                     shader->info->label ?
6527                                        shader->info->label : "unnamed",
6528                                     shader->info->name));
6529   }
6530
6531   if (simd8_cfg) {
6532      prog_data->dispatch_8 = true;
6533      g.generate_code(simd8_cfg, 8);
6534      prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6535      prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6536
6537      if (simd16_cfg) {
6538         prog_data->dispatch_16 = true;
6539         prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6540         prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6541         prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6542      }
6543   } else if (simd16_cfg) {
6544      prog_data->dispatch_16 = true;
6545      g.generate_code(simd16_cfg, 16);
6546      prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6547      prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6548   }
6549
6550   return g.get_assembly(final_assembly_size);
6551}
6552
6553fs_reg *
6554fs_visitor::emit_cs_work_group_id_setup()
6555{
6556   assert(stage == MESA_SHADER_COMPUTE);
6557
6558   fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6559
6560   struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6561   struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6562   struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6563
6564   bld.MOV(*reg, r0_1);
6565   bld.MOV(offset(*reg, bld, 1), r0_6);
6566   bld.MOV(offset(*reg, bld, 2), r0_7);
6567
6568   return reg;
6569}
6570
6571static void
6572fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6573{
6574   block->dwords = dwords;
6575   block->regs = DIV_ROUND_UP(dwords, 8);
6576   block->size = block->regs * 32;
6577}
6578
6579static void
6580cs_fill_push_const_info(const struct gen_device_info *devinfo,
6581                        struct brw_cs_prog_data *cs_prog_data)
6582{
6583   const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6584   bool fill_thread_id =
6585      cs_prog_data->thread_local_id_index >= 0 &&
6586      cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6587   bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6588
6589   /* The thread ID should be stored in the last param dword */
6590   assert(prog_data->nr_params > 0 || !fill_thread_id);
6591   assert(!fill_thread_id ||
6592          cs_prog_data->thread_local_id_index ==
6593             (int)prog_data->nr_params - 1);
6594
6595   unsigned cross_thread_dwords, per_thread_dwords;
6596   if (!cross_thread_supported) {
6597      cross_thread_dwords = 0u;
6598      per_thread_dwords = prog_data->nr_params;
6599   } else if (fill_thread_id) {
6600      /* Fill all but the last register with cross-thread payload */
6601      cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6602      per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6603      assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6604   } else {
6605      /* Fill all data using cross-thread payload */
6606      cross_thread_dwords = prog_data->nr_params;
6607      per_thread_dwords = 0u;
6608   }
6609
6610   fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6611   fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6612
6613   unsigned total_dwords =
6614      (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6615       cs_prog_data->push.cross_thread.size) / 4;
6616   fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6617
6618   assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6619          cs_prog_data->push.per_thread.size == 0);
6620   assert(cs_prog_data->push.cross_thread.dwords +
6621          cs_prog_data->push.per_thread.dwords ==
6622             prog_data->nr_params);
6623}
6624
6625static void
6626cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6627{
6628   cs_prog_data->simd_size = size;
6629   unsigned group_size = cs_prog_data->local_size[0] *
6630      cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6631   cs_prog_data->threads = (group_size + size - 1) / size;
6632}
6633
6634const unsigned *
6635brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6636               void *mem_ctx,
6637               const struct brw_cs_prog_key *key,
6638               struct brw_cs_prog_data *prog_data,
6639               const nir_shader *src_shader,
6640               int shader_time_index,
6641               unsigned *final_assembly_size,
6642               char **error_str)
6643{
6644   nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6645   shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6646   brw_nir_lower_cs_shared(shader);
6647   prog_data->base.total_shared += shader->num_shared;
6648
6649   /* Now that we cloned the nir_shader, we can update num_uniforms based on
6650    * the thread_local_id_index.
6651    */
6652   assert(prog_data->thread_local_id_index >= 0);
6653   shader->num_uniforms =
6654      MAX2(shader->num_uniforms,
6655           (unsigned)4 * (prog_data->thread_local_id_index + 1));
6656
6657   brw_nir_lower_intrinsics(shader, &prog_data->base);
6658   shader = brw_postprocess_nir(shader, compiler, true);
6659
6660   prog_data->local_size[0] = shader->info->cs.local_size[0];
6661   prog_data->local_size[1] = shader->info->cs.local_size[1];
6662   prog_data->local_size[2] = shader->info->cs.local_size[2];
6663   unsigned local_workgroup_size =
6664      shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6665      shader->info->cs.local_size[2];
6666
6667   unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6668   unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6669
6670   cfg_t *cfg = NULL;
6671   const char *fail_msg = NULL;
6672
6673   /* Now the main event: Visit the shader IR and generate our CS IR for it.
6674    */
6675   fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6676                 NULL, /* Never used in core profile */
6677                 shader, 8, shader_time_index);
6678   if (simd_required <= 8) {
6679      if (!v8.run_cs()) {
6680         fail_msg = v8.fail_msg;
6681      } else {
6682         cfg = v8.cfg;
6683         cs_set_simd_size(prog_data, 8);
6684         cs_fill_push_const_info(compiler->devinfo, prog_data);
6685         prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6686      }
6687   }
6688
6689   fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6690                 NULL, /* Never used in core profile */
6691                 shader, 16, shader_time_index);
6692   if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6693       !fail_msg && v8.max_dispatch_width >= 16 &&
6694       simd_required <= 16) {
6695      /* Try a SIMD16 compile */
6696      if (simd_required <= 8)
6697         v16.import_uniforms(&v8);
6698      if (!v16.run_cs()) {
6699         compiler->shader_perf_log(log_data,
6700                                   "SIMD16 shader failed to compile: %s",
6701                                   v16.fail_msg);
6702         if (!cfg) {
6703            fail_msg =
6704               "Couldn't generate SIMD16 program and not "
6705               "enough threads for SIMD8";
6706         }
6707      } else {
6708         cfg = v16.cfg;
6709         cs_set_simd_size(prog_data, 16);
6710         cs_fill_push_const_info(compiler->devinfo, prog_data);
6711         prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6712      }
6713   }
6714
6715   fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6716                 NULL, /* Never used in core profile */
6717                 shader, 32, shader_time_index);
6718   if (!fail_msg && v8.max_dispatch_width >= 32 &&
6719       (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6720      /* Try a SIMD32 compile */
6721      if (simd_required <= 8)
6722         v32.import_uniforms(&v8);
6723      else if (simd_required <= 16)
6724         v32.import_uniforms(&v16);
6725
6726      if (!v32.run_cs()) {
6727         compiler->shader_perf_log(log_data,
6728                                   "SIMD32 shader failed to compile: %s",
6729                                   v16.fail_msg);
6730         if (!cfg) {
6731            fail_msg =
6732               "Couldn't generate SIMD32 program and not "
6733               "enough threads for SIMD16";
6734         }
6735      } else {
6736         cfg = v32.cfg;
6737         cs_set_simd_size(prog_data, 32);
6738         cs_fill_push_const_info(compiler->devinfo, prog_data);
6739      }
6740   }
6741
6742   if (unlikely(cfg == NULL)) {
6743      assert(fail_msg);
6744      if (error_str)
6745         *error_str = ralloc_strdup(mem_ctx, fail_msg);
6746
6747      return NULL;
6748   }
6749
6750   fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6751                  v8.promoted_constants, v8.runtime_check_aads_emit,
6752                  MESA_SHADER_COMPUTE);
6753   if (INTEL_DEBUG & DEBUG_CS) {
6754      char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6755                                   shader->info->label ? shader->info->label :
6756                                                        "unnamed",
6757                                   shader->info->name);
6758      g.enable_debug(name);
6759   }
6760
6761   g.generate_code(cfg, prog_data->simd_size);
6762
6763   return g.get_assembly(final_assembly_size);
6764}
6765
6766/**
6767 * Test the dispatch mask packing assumptions of
6768 * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
6769 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6770 * executed with an unexpected dispatch mask.
6771 */
6772static UNUSED void
6773brw_fs_test_dispatch_packing(const fs_builder &bld)
6774{
6775   const gl_shader_stage stage = bld.shader->stage;
6776
6777   if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6778                                     bld.shader->stage_prog_data)) {
6779      const fs_builder ubld = bld.exec_all().group(1, 0);
6780      const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6781      const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6782                           brw_dmask_reg());
6783
6784      ubld.ADD(tmp, mask, brw_imm_ud(1));
6785      ubld.AND(tmp, mask, tmp);
6786
6787      /* This will loop forever if the dispatch mask doesn't have the expected
6788       * form '2^n-1', in which case tmp will be non-zero.
6789       */
6790      bld.emit(BRW_OPCODE_DO);
6791      bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6792      set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6793   }
6794}
6795