1/*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26#include <GL/gl.h>
27#include <GL/internal/dri_interface.h>
28
29#include "intel_batchbuffer.h"
30#include "intel_mipmap_tree.h"
31#include "intel_resolve_map.h"
32#include "intel_tex.h"
33#include "intel_blit.h"
34#include "intel_fbo.h"
35
36#include "brw_blorp.h"
37#include "brw_context.h"
38#include "brw_state.h"
39
40#include "main/enums.h"
41#include "main/fbobject.h"
42#include "main/formats.h"
43#include "main/glformats.h"
44#include "main/texcompress_etc.h"
45#include "main/teximage.h"
46#include "main/streaming-load-memcpy.h"
47#include "x86/common_x86_asm.h"
48
49#define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51static void *intel_miptree_map_raw(struct brw_context *brw,
52                                   struct intel_mipmap_tree *mt);
53
54static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56static bool
57intel_miptree_alloc_mcs(struct brw_context *brw,
58                        struct intel_mipmap_tree *mt,
59                        GLuint num_samples);
60
61/**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65static enum intel_msaa_layout
66compute_msaa_layout(struct brw_context *brw, mesa_format format,
67                    enum intel_aux_disable aux_disable)
68{
69   /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70   if (brw->gen < 7)
71      return INTEL_MSAA_LAYOUT_IMS;
72
73   /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74   switch (_mesa_get_format_base_format(format)) {
75   case GL_DEPTH_COMPONENT:
76   case GL_STENCIL_INDEX:
77   case GL_DEPTH_STENCIL:
78      return INTEL_MSAA_LAYOUT_IMS;
79   default:
80      /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81       *
82       *   This field must be set to 0 for all SINT MSRTs when all RT channels
83       *   are not written
84       *
85       * In practice this means that we have to disable MCS for all signed
86       * integer MSAA buffers.  The alternative, to disable MCS only when one
87       * of the render target channels is disabled, is impractical because it
88       * would require converting between CMS and UMS MSAA layouts on the fly,
89       * which is expensive.
90       */
91      if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92         return INTEL_MSAA_LAYOUT_UMS;
93      } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94         /* We can't use the CMS layout because it uses an aux buffer, the MCS
95          * buffer. So fallback to UMS, which is identical to CMS without the
96          * MCS. */
97         return INTEL_MSAA_LAYOUT_UMS;
98      } else {
99         return INTEL_MSAA_LAYOUT_CMS;
100      }
101   }
102}
103
104bool
105intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106                                   unsigned tiling)
107{
108   /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109    * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110    *
111    *     - Support is limited to tiled render targets.
112    *
113    * Gen9 changes the restriction to Y-tile only.
114    */
115   if (brw->gen >= 9)
116      return tiling == I915_TILING_Y;
117   else if (brw->gen >= 7)
118      return tiling != I915_TILING_NONE;
119   else
120      return false;
121}
122
123/**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 *     - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 *     - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 *       64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 *     - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 *     non-MSRTs only.
143 */
144bool
145intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146                                           const struct intel_mipmap_tree *mt)
147{
148   /* MCS support does not exist prior to Gen7 */
149   if (brw->gen < 7)
150      return false;
151
152   if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153      return false;
154
155   /* This function applies only to non-multisampled render targets. */
156   if (mt->num_samples > 1)
157      return false;
158
159   /* MCS is only supported for color buffers */
160   switch (_mesa_get_format_base_format(mt->format)) {
161   case GL_DEPTH_COMPONENT:
162   case GL_DEPTH_STENCIL:
163   case GL_STENCIL_INDEX:
164      return false;
165   }
166
167   if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168      return false;
169
170   const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171   const bool arrayed = mt->physical_depth0 != 1;
172
173   if (arrayed) {
174       /* Multisample surfaces with the CMS layout are not layered surfaces,
175        * yet still have physical_depth0 > 1. Assert that we don't
176        * accidentally reject a multisampled surface here. We should have
177        * rejected it earlier by explicitly checking the sample count.
178        */
179      assert(mt->num_samples <= 1);
180   }
181
182   /* Handle the hardware restrictions...
183    *
184    * All GENs have the following restriction: "MCS buffer for non-MSRT is
185    * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186    *
187    * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188    * Non-MultiSampler Render Target Restrictions) Support is for
189    * non-mip-mapped and non-array surface types only.
190    *
191    * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192    * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193    * surfaces are supported with MCS buffer layout with these alignments in
194    * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195    *
196    * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197    * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198    * surfaces are supported with MCS buffer layout with these alignments in
199    * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200    */
201   if (brw->gen < 8 && (mip_mapped || arrayed))
202      return false;
203
204   /* There's no point in using an MCS buffer if the surface isn't in a
205    * renderable format.
206    */
207   if (!brw->format_supported_as_render_target[mt->format])
208      return false;
209
210   if (brw->gen >= 9) {
211      mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212      const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
213      return isl_format_supports_lossless_compression(&brw->screen->devinfo,
214                                                      brw_format);
215   } else
216      return true;
217}
218
219/* On Gen9 support for color buffer compression was extended to single
220 * sampled surfaces. This is a helper considering both auxiliary buffer
221 * type and number of samples telling if the given miptree represents
222 * the new single sampled case - also called lossless compression.
223 */
224bool
225intel_miptree_is_lossless_compressed(const struct brw_context *brw,
226                                     const struct intel_mipmap_tree *mt)
227{
228   /* Only available from Gen9 onwards. */
229   if (brw->gen < 9)
230      return false;
231
232   /* Compression always requires auxiliary buffer. */
233   if (!mt->mcs_buf)
234      return false;
235
236   /* Single sample compression is represented re-using msaa compression
237    * layout type: "Compressed Multisampled Surfaces".
238    */
239   if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
240      return false;
241
242   /* And finally distinguish between msaa and single sample case. */
243   return mt->num_samples <= 1;
244}
245
246bool
247intel_miptree_supports_lossless_compressed(struct brw_context *brw,
248                                           const struct intel_mipmap_tree *mt)
249{
250   /* For now compression is only enabled for integer formats even though
251    * there exist supported floating point formats also. This is a heuristic
252    * decision based on current public benchmarks. In none of the cases these
253    * formats provided any improvement but a few cases were seen to regress.
254    * Hence these are left to to be enabled in the future when they are known
255    * to improve things.
256    */
257   if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
258      return false;
259
260   /* Fast clear mechanism and lossless compression go hand in hand. */
261   if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
262      return false;
263
264   /* Fast clear can be also used to clear srgb surfaces by using equivalent
265    * linear format. This trick, however, can't be extended to be used with
266    * lossless compression and therefore a check is needed to see if the format
267    * really is linear.
268    */
269   return _mesa_get_srgb_format_linear(mt->format) == mt->format;
270}
271
272/**
273 * Determine depth format corresponding to a depth+stencil format,
274 * for separate stencil.
275 */
276mesa_format
277intel_depth_format_for_depthstencil_format(mesa_format format) {
278   switch (format) {
279   case MESA_FORMAT_Z24_UNORM_S8_UINT:
280      return MESA_FORMAT_Z24_UNORM_X8_UINT;
281   case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
282      return MESA_FORMAT_Z_FLOAT32;
283   default:
284      return format;
285   }
286}
287
288
289/**
290 * @param for_bo Indicates that the caller is
291 *        intel_miptree_create_for_bo(). If true, then do not create
292 *        \c stencil_mt.
293 */
294static struct intel_mipmap_tree *
295intel_miptree_create_layout(struct brw_context *brw,
296                            GLenum target,
297                            mesa_format format,
298                            GLuint first_level,
299                            GLuint last_level,
300                            GLuint width0,
301                            GLuint height0,
302                            GLuint depth0,
303                            GLuint num_samples,
304                            uint32_t layout_flags)
305{
306   struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
307   if (!mt)
308      return NULL;
309
310   DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
311       _mesa_enum_to_string(target),
312       _mesa_get_format_name(format),
313       first_level, last_level, depth0, mt);
314
315   if (target == GL_TEXTURE_1D_ARRAY)
316      assert(height0 == 1);
317
318   mt->target = target;
319   mt->format = format;
320   mt->first_level = first_level;
321   mt->last_level = last_level;
322   mt->logical_width0 = width0;
323   mt->logical_height0 = height0;
324   mt->logical_depth0 = depth0;
325   mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
326      INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
327   mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
328   mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
329   exec_list_make_empty(&mt->hiz_map);
330   exec_list_make_empty(&mt->color_resolve_map);
331   mt->cpp = _mesa_get_format_bytes(format);
332   mt->num_samples = num_samples;
333   mt->compressed = _mesa_is_format_compressed(format);
334   mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
335   mt->refcount = 1;
336
337   int depth_multiply = 1;
338   if (num_samples > 1) {
339      /* Adjust width/height/depth for MSAA */
340      mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
341      if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
342         /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
343          * "If the surface is multisampled and it is a depth or stencil
344          *  surface or Multisampled Surface StorageFormat in SURFACE_STATE is
345          *  MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
346          *  proceeding:
347          *
348          *  +----------------------------------------------------------------+
349          *  | Num Multisamples |        W_l =         |        H_l =         |
350          *  +----------------------------------------------------------------+
351          *  |         2        | ceiling(W_l / 2) * 4 | H_l (no adjustment)  |
352          *  |         4        | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
353          *  |         8        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
354          *  |        16        | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
355          *  +----------------------------------------------------------------+
356          * "
357          *
358          * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
359          * format rather than UMS/CMS (array slices).  The Sandybridge PRM,
360          * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
361          *
362          * Another more complicated explanation for these adjustments comes
363          * from the Sandybridge PRM, volume 4, part 1, page 31:
364          *
365          *     "Any of the other messages (sample*, LOD, load4) used with a
366          *      (4x) multisampled surface will in-effect sample a surface with
367          *      double the height and width as that indicated in the surface
368          *      state. Each pixel position on the original-sized surface is
369          *      replaced with a 2x2 of samples with the following arrangement:
370          *
371          *         sample 0 sample 2
372          *         sample 1 sample 3"
373          *
374          * Thus, when sampling from a multisampled texture, it behaves as
375          * though the layout in memory for (x,y,sample) is:
376          *
377          *      (0,0,0) (0,0,2)   (1,0,0) (1,0,2)
378          *      (0,0,1) (0,0,3)   (1,0,1) (1,0,3)
379          *
380          *      (0,1,0) (0,1,2)   (1,1,0) (1,1,2)
381          *      (0,1,1) (0,1,3)   (1,1,1) (1,1,3)
382          *
383          * However, the actual layout of multisampled data in memory is:
384          *
385          *      (0,0,0) (1,0,0)   (0,0,1) (1,0,1)
386          *      (0,1,0) (1,1,0)   (0,1,1) (1,1,1)
387          *
388          *      (0,0,2) (1,0,2)   (0,0,3) (1,0,3)
389          *      (0,1,2) (1,1,2)   (0,1,3) (1,1,3)
390          *
391          * This pattern repeats for each 2x2 pixel block.
392          *
393          * As a result, when calculating the size of our 4-sample buffer for
394          * an odd width or height, we have to align before scaling up because
395          * sample 3 is in that bottom right 2x2 block.
396          */
397         switch (num_samples) {
398         case 2:
399            assert(brw->gen >= 8);
400            width0 = ALIGN(width0, 2) * 2;
401            height0 = ALIGN(height0, 2);
402            break;
403         case 4:
404            width0 = ALIGN(width0, 2) * 2;
405            height0 = ALIGN(height0, 2) * 2;
406            break;
407         case 8:
408            width0 = ALIGN(width0, 2) * 4;
409            height0 = ALIGN(height0, 2) * 2;
410            break;
411         case 16:
412            width0 = ALIGN(width0, 2) * 4;
413            height0 = ALIGN(height0, 2) * 4;
414            break;
415         default:
416            /* num_samples should already have been quantized to 0, 1, 2, 4, 8
417             * or 16.
418             */
419            unreachable("not reached");
420         }
421      } else {
422         /* Non-interleaved */
423         depth_multiply = num_samples;
424         depth0 *= depth_multiply;
425      }
426   }
427
428   /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
429    * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
430    * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
431    * used on Gen8 to make it pick a qpitch value which doesn't include space
432    * for the mipmaps. On Gen9 this is not necessary because it will
433    * automatically pick a packed qpitch value whenever mt->first_level ==
434    * mt->last_level.
435    * TODO: can we use it elsewhere?
436    * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
437    */
438   if (brw->gen >= 9) {
439      mt->array_layout = ALL_LOD_IN_EACH_SLICE;
440   } else {
441      switch (mt->msaa_layout) {
442      case INTEL_MSAA_LAYOUT_NONE:
443      case INTEL_MSAA_LAYOUT_IMS:
444         mt->array_layout = ALL_LOD_IN_EACH_SLICE;
445         break;
446      case INTEL_MSAA_LAYOUT_UMS:
447      case INTEL_MSAA_LAYOUT_CMS:
448         mt->array_layout = ALL_SLICES_AT_EACH_LOD;
449         break;
450      }
451   }
452
453   if (target == GL_TEXTURE_CUBE_MAP)
454      assert(depth0 == 6 * depth_multiply);
455
456   mt->physical_width0 = width0;
457   mt->physical_height0 = height0;
458   mt->physical_depth0 = depth0;
459
460   if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
461       _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
462       (brw->must_use_separate_stencil ||
463	(brw->has_separate_stencil &&
464         intel_miptree_wants_hiz_buffer(brw, mt)))) {
465      uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
466      if (brw->gen == 6) {
467         stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
468                          MIPTREE_LAYOUT_TILING_ANY;
469      }
470
471      mt->stencil_mt = intel_miptree_create(brw,
472                                            mt->target,
473                                            MESA_FORMAT_S_UINT8,
474                                            mt->first_level,
475                                            mt->last_level,
476                                            mt->logical_width0,
477                                            mt->logical_height0,
478                                            mt->logical_depth0,
479                                            num_samples,
480                                            stencil_flags);
481
482      if (!mt->stencil_mt) {
483	 intel_miptree_release(&mt);
484	 return NULL;
485      }
486      mt->stencil_mt->r8stencil_needs_update = true;
487
488      /* Fix up the Z miptree format for how we're splitting out separate
489       * stencil.  Gen7 expects there to be no stencil bits in its depth buffer.
490       */
491      mt->format = intel_depth_format_for_depthstencil_format(mt->format);
492      mt->cpp = 4;
493
494      if (format == mt->format) {
495         _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
496                       _mesa_get_format_name(mt->format));
497      }
498   }
499
500   if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
501      mt->array_layout = ALL_SLICES_AT_EACH_LOD;
502
503   /*
504    * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
505    * multisampled or have an AUX buffer attached to it.
506    *
507    * GEN  |    MSRT        | AUX_CCS_* or AUX_MCS
508    *  -------------------------------------------
509    *  9   |  HALIGN_16     |    HALIGN_16
510    *  8   |  HALIGN_ANY    |    HALIGN_16
511    *  7   |      ?         |        ?
512    *  6   |      ?         |        ?
513    */
514   if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
515      if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
516         layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
517   } else if (brw->gen >= 9 && num_samples > 1) {
518      layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
519   } else {
520      const UNUSED bool is_lossless_compressed_aux =
521         brw->gen >= 9 && num_samples == 1 &&
522         mt->format == MESA_FORMAT_R_UINT32;
523
524      /* For now, nothing else has this requirement */
525      assert(is_lossless_compressed_aux ||
526             (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
527   }
528
529   brw_miptree_layout(brw, mt, layout_flags);
530
531   if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
532      assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
533
534   return mt;
535}
536
537
538/**
539 * Choose an appropriate uncompressed format for a requested
540 * compressed format, if unsupported.
541 */
542mesa_format
543intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
544{
545   /* No need to lower ETC formats on these platforms,
546    * they are supported natively.
547    */
548   if (brw->gen >= 8 || brw->is_baytrail)
549      return format;
550
551   switch (format) {
552   case MESA_FORMAT_ETC1_RGB8:
553      return MESA_FORMAT_R8G8B8X8_UNORM;
554   case MESA_FORMAT_ETC2_RGB8:
555      return MESA_FORMAT_R8G8B8X8_UNORM;
556   case MESA_FORMAT_ETC2_SRGB8:
557   case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
558   case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
559      return MESA_FORMAT_B8G8R8A8_SRGB;
560   case MESA_FORMAT_ETC2_RGBA8_EAC:
561   case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
562      return MESA_FORMAT_R8G8B8A8_UNORM;
563   case MESA_FORMAT_ETC2_R11_EAC:
564      return MESA_FORMAT_R_UNORM16;
565   case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
566      return MESA_FORMAT_R_SNORM16;
567   case MESA_FORMAT_ETC2_RG11_EAC:
568      return MESA_FORMAT_R16G16_UNORM;
569   case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
570      return MESA_FORMAT_R16G16_SNORM;
571   default:
572      /* Non ETC1 / ETC2 format */
573      return format;
574   }
575}
576
577/* This function computes Yf/Ys tiled bo size, alignment and pitch. */
578static unsigned long
579intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
580                        unsigned long *pitch)
581{
582   uint32_t tile_width, tile_height;
583   unsigned long stride, size, aligned_y;
584
585   assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
586   intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
587                       &tile_width, &tile_height);
588
589   aligned_y = ALIGN(mt->total_height, tile_height);
590   stride = mt->total_width * mt->cpp;
591   stride = ALIGN(stride, tile_width);
592   size = stride * aligned_y;
593
594   if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
595      assert(size % 4096 == 0);
596      *alignment = 4096;
597   } else {
598      assert(size % (64 * 1024) == 0);
599      *alignment = 64 * 1024;
600   }
601   *pitch = stride;
602   return size;
603}
604
605static struct intel_mipmap_tree *
606miptree_create(struct brw_context *brw,
607               GLenum target,
608               mesa_format format,
609               GLuint first_level,
610               GLuint last_level,
611               GLuint width0,
612               GLuint height0,
613               GLuint depth0,
614               GLuint num_samples,
615               uint32_t layout_flags)
616{
617   struct intel_mipmap_tree *mt;
618   mesa_format tex_format = format;
619   mesa_format etc_format = MESA_FORMAT_NONE;
620   uint32_t alloc_flags = 0;
621
622   format = intel_lower_compressed_format(brw, format);
623
624   etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
625
626   assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
627   mt = intel_miptree_create_layout(brw, target, format,
628                                    first_level, last_level, width0,
629                                    height0, depth0, num_samples,
630                                    layout_flags);
631   /*
632    * pitch == 0 || height == 0  indicates the null texture
633    */
634   if (!mt || !mt->total_width || !mt->total_height) {
635      intel_miptree_release(&mt);
636      return NULL;
637   }
638
639   if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
640      mt->tiling = I915_TILING_Y;
641
642   if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
643      alloc_flags |= BO_ALLOC_FOR_RENDER;
644
645   unsigned long pitch;
646   mt->etc_format = etc_format;
647
648   if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
649      unsigned alignment = 0;
650      unsigned long size;
651      size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
652      assert(size);
653      mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
654                                             size, alignment);
655   } else {
656      if (format == MESA_FORMAT_S_UINT8) {
657         /* Align to size of W tile, 64x64. */
658         mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
659                                           ALIGN(mt->total_width, 64),
660                                           ALIGN(mt->total_height, 64),
661                                           mt->cpp, &mt->tiling, &pitch,
662                                           alloc_flags);
663      } else {
664         mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
665                                           mt->total_width, mt->total_height,
666                                           mt->cpp, &mt->tiling, &pitch,
667                                           alloc_flags);
668      }
669   }
670
671   mt->pitch = pitch;
672
673   return mt;
674}
675
676struct intel_mipmap_tree *
677intel_miptree_create(struct brw_context *brw,
678                     GLenum target,
679                     mesa_format format,
680                     GLuint first_level,
681                     GLuint last_level,
682                     GLuint width0,
683                     GLuint height0,
684                     GLuint depth0,
685                     GLuint num_samples,
686                     uint32_t layout_flags)
687{
688   struct intel_mipmap_tree *mt = miptree_create(
689                                     brw, target, format,
690                                     first_level, last_level,
691                                     width0, height0, depth0, num_samples,
692                                     layout_flags);
693
694   /* If the BO is too large to fit in the aperture, we need to use the
695    * BLT engine to support it.  Prior to Sandybridge, the BLT paths can't
696    * handle Y-tiling, so we need to fall back to X.
697    */
698   if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
699       mt->tiling == I915_TILING_Y) {
700      unsigned long pitch = mt->pitch;
701      const uint32_t alloc_flags =
702         (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
703         BO_ALLOC_FOR_RENDER : 0;
704      perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
705                 mt->total_width, mt->total_height);
706
707      mt->tiling = I915_TILING_X;
708      drm_intel_bo_unreference(mt->bo);
709      mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
710                                  mt->total_width, mt->total_height, mt->cpp,
711                                  &mt->tiling, &pitch, alloc_flags);
712      mt->pitch = pitch;
713   }
714
715   mt->offset = 0;
716
717   if (!mt->bo) {
718       intel_miptree_release(&mt);
719       return NULL;
720   }
721
722
723   if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
724      assert(mt->num_samples > 1);
725      if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
726         intel_miptree_release(&mt);
727         return NULL;
728      }
729   }
730
731   /* If this miptree is capable of supporting fast color clears, set
732    * fast_clear_state appropriately to ensure that fast clears will occur.
733    * Allocation of the MCS miptree will be deferred until the first fast
734    * clear actually occurs or when compressed single sampled buffer is
735    * written by the GPU for the first time.
736    */
737   if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
738       intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
739      mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
740      assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
741
742      /* On Gen9+ clients are not currently capable of consuming compressed
743       * single-sampled buffers. Disabling compression allows us to skip
744       * resolves.
745       */
746      const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
747      const bool is_lossless_compressed =
748         unlikely(!lossless_compression_disabled) &&
749         brw->gen >= 9 && !mt->is_scanout &&
750         intel_miptree_supports_lossless_compressed(brw, mt);
751
752      if (is_lossless_compressed) {
753         intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
754      }
755   }
756
757   return mt;
758}
759
760struct intel_mipmap_tree *
761intel_miptree_create_for_bo(struct brw_context *brw,
762                            drm_intel_bo *bo,
763                            mesa_format format,
764                            uint32_t offset,
765                            uint32_t width,
766                            uint32_t height,
767                            uint32_t depth,
768                            int pitch,
769                            uint32_t layout_flags)
770{
771   struct intel_mipmap_tree *mt;
772   uint32_t tiling, swizzle;
773   GLenum target;
774
775   drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
776
777   /* Nothing will be able to use this miptree with the BO if the offset isn't
778    * aligned.
779    */
780   if (tiling != I915_TILING_NONE)
781      assert(offset % 4096 == 0);
782
783   /* miptrees can't handle negative pitch.  If you need flipping of images,
784    * that's outside of the scope of the mt.
785    */
786   assert(pitch >= 0);
787
788   target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
789
790   /* The BO already has a tiling format and we shouldn't confuse the lower
791    * layers by making it try to find a tiling format again.
792    */
793   assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
794   assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
795
796   layout_flags |= MIPTREE_LAYOUT_FOR_BO;
797   mt = intel_miptree_create_layout(brw, target, format,
798                                    0, 0,
799                                    width, height, depth, 0,
800                                    layout_flags);
801   if (!mt)
802      return NULL;
803
804   drm_intel_bo_reference(bo);
805   mt->bo = bo;
806   mt->pitch = pitch;
807   mt->offset = offset;
808   mt->tiling = tiling;
809
810   return mt;
811}
812
813/**
814 * For a singlesample renderbuffer, this simply wraps the given BO with a
815 * miptree.
816 *
817 * For a multisample renderbuffer, this wraps the window system's
818 * (singlesample) BO with a singlesample miptree attached to the
819 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
820 * that will contain the actual rendering (which is lazily resolved to
821 * irb->singlesample_mt).
822 */
823void
824intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
825                                         struct intel_renderbuffer *irb,
826                                         drm_intel_bo *bo,
827                                         uint32_t width, uint32_t height,
828                                         uint32_t pitch)
829{
830   struct intel_mipmap_tree *singlesample_mt = NULL;
831   struct intel_mipmap_tree *multisample_mt = NULL;
832   struct gl_renderbuffer *rb = &irb->Base.Base;
833   mesa_format format = rb->Format;
834   int num_samples = rb->NumSamples;
835
836   /* Only the front and back buffers, which are color buffers, are allocated
837    * through the image loader.
838    */
839   assert(_mesa_get_format_base_format(format) == GL_RGB ||
840          _mesa_get_format_base_format(format) == GL_RGBA);
841
842   singlesample_mt = intel_miptree_create_for_bo(intel,
843                                                 bo,
844                                                 format,
845                                                 0,
846                                                 width,
847                                                 height,
848                                                 1,
849                                                 pitch,
850                                                 MIPTREE_LAYOUT_FOR_SCANOUT);
851   if (!singlesample_mt)
852      goto fail;
853
854   /* If this miptree is capable of supporting fast color clears, set
855    * mcs_state appropriately to ensure that fast clears will occur.
856    * Allocation of the MCS miptree will be deferred until the first fast
857    * clear actually occurs.
858    */
859   if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
860       intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
861      singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
862   }
863
864   if (num_samples == 0) {
865      intel_miptree_release(&irb->mt);
866      irb->mt = singlesample_mt;
867
868      assert(!irb->singlesample_mt);
869   } else {
870      intel_miptree_release(&irb->singlesample_mt);
871      irb->singlesample_mt = singlesample_mt;
872
873      if (!irb->mt ||
874          irb->mt->logical_width0 != width ||
875          irb->mt->logical_height0 != height) {
876         multisample_mt = intel_miptree_create_for_renderbuffer(intel,
877                                                                format,
878                                                                width,
879                                                                height,
880                                                                num_samples);
881         if (!multisample_mt)
882            goto fail;
883
884         irb->need_downsample = false;
885         intel_miptree_release(&irb->mt);
886         irb->mt = multisample_mt;
887      }
888   }
889   return;
890
891fail:
892   intel_miptree_release(&irb->singlesample_mt);
893   intel_miptree_release(&irb->mt);
894   return;
895}
896
897struct intel_mipmap_tree*
898intel_miptree_create_for_renderbuffer(struct brw_context *brw,
899                                      mesa_format format,
900                                      uint32_t width,
901                                      uint32_t height,
902                                      uint32_t num_samples)
903{
904   struct intel_mipmap_tree *mt;
905   uint32_t depth = 1;
906   bool ok;
907   GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
908   const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
909                                 MIPTREE_LAYOUT_TILING_ANY |
910                                 MIPTREE_LAYOUT_FOR_SCANOUT;
911
912   mt = intel_miptree_create(brw, target, format, 0, 0,
913                             width, height, depth, num_samples,
914                             layout_flags);
915   if (!mt)
916      goto fail;
917
918   if (intel_miptree_wants_hiz_buffer(brw, mt)) {
919      ok = intel_miptree_alloc_hiz(brw, mt);
920      if (!ok)
921         goto fail;
922   }
923
924   return mt;
925
926fail:
927   intel_miptree_release(&mt);
928   return NULL;
929}
930
931void
932intel_miptree_reference(struct intel_mipmap_tree **dst,
933                        struct intel_mipmap_tree *src)
934{
935   if (*dst == src)
936      return;
937
938   intel_miptree_release(dst);
939
940   if (src) {
941      src->refcount++;
942      DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
943   }
944
945   *dst = src;
946}
947
948static void
949intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
950{
951   if (hiz_buf == NULL)
952      return;
953
954   if (hiz_buf->mt)
955      intel_miptree_release(&hiz_buf->mt);
956   else
957      drm_intel_bo_unreference(hiz_buf->aux_base.bo);
958
959   free(hiz_buf);
960}
961
962void
963intel_miptree_release(struct intel_mipmap_tree **mt)
964{
965   if (!*mt)
966      return;
967
968   DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
969   if (--(*mt)->refcount <= 0) {
970      GLuint i;
971
972      DBG("%s deleting %p\n", __func__, *mt);
973
974      drm_intel_bo_unreference((*mt)->bo);
975      intel_miptree_release(&(*mt)->stencil_mt);
976      intel_miptree_release(&(*mt)->r8stencil_mt);
977      intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
978      if ((*mt)->mcs_buf) {
979         drm_intel_bo_unreference((*mt)->mcs_buf->bo);
980         free((*mt)->mcs_buf);
981      }
982      intel_resolve_map_clear(&(*mt)->hiz_map);
983      intel_resolve_map_clear(&(*mt)->color_resolve_map);
984
985      intel_miptree_release(&(*mt)->plane[0]);
986      intel_miptree_release(&(*mt)->plane[1]);
987
988      for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
989	 free((*mt)->level[i].slice);
990      }
991
992      free(*mt);
993   }
994   *mt = NULL;
995}
996
997
998void
999intel_get_image_dims(struct gl_texture_image *image,
1000                     int *width, int *height, int *depth)
1001{
1002   switch (image->TexObject->Target) {
1003   case GL_TEXTURE_1D_ARRAY:
1004      /* For a 1D Array texture the OpenGL API will treat the image height as
1005       * the number of array slices. For Intel hardware, we treat the 1D array
1006       * as a 2D Array with a height of 1. So, here we want to swap image
1007       * height and depth.
1008       */
1009      assert(image->Depth == 1);
1010      *width = image->Width;
1011      *height = 1;
1012      *depth = image->Height;
1013      break;
1014   case GL_TEXTURE_CUBE_MAP:
1015      /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1016       * though we really have 6 slices.
1017       */
1018      assert(image->Depth == 1);
1019      *width = image->Width;
1020      *height = image->Height;
1021      *depth = 6;
1022      break;
1023   default:
1024      *width = image->Width;
1025      *height = image->Height;
1026      *depth = image->Depth;
1027      break;
1028   }
1029}
1030
1031/**
1032 * Can the image be pulled into a unified mipmap tree?  This mirrors
1033 * the completeness test in a lot of ways.
1034 *
1035 * Not sure whether I want to pass gl_texture_image here.
1036 */
1037bool
1038intel_miptree_match_image(struct intel_mipmap_tree *mt,
1039                          struct gl_texture_image *image)
1040{
1041   struct intel_texture_image *intelImage = intel_texture_image(image);
1042   GLuint level = intelImage->base.Base.Level;
1043   int width, height, depth;
1044
1045   /* glTexImage* choose the texture object based on the target passed in, and
1046    * objects can't change targets over their lifetimes, so this should be
1047    * true.
1048    */
1049   assert(image->TexObject->Target == mt->target);
1050
1051   mesa_format mt_format = mt->format;
1052   if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1053      mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1054   if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1055      mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1056   if (mt->etc_format != MESA_FORMAT_NONE)
1057      mt_format = mt->etc_format;
1058
1059   if (image->TexFormat != mt_format)
1060      return false;
1061
1062   intel_get_image_dims(image, &width, &height, &depth);
1063
1064   if (mt->target == GL_TEXTURE_CUBE_MAP)
1065      depth = 6;
1066
1067   int level_depth = mt->level[level].depth;
1068   if (mt->num_samples > 1) {
1069      switch (mt->msaa_layout) {
1070      case INTEL_MSAA_LAYOUT_NONE:
1071      case INTEL_MSAA_LAYOUT_IMS:
1072         break;
1073      case INTEL_MSAA_LAYOUT_UMS:
1074      case INTEL_MSAA_LAYOUT_CMS:
1075         level_depth /= mt->num_samples;
1076         break;
1077      }
1078   }
1079
1080   /* Test image dimensions against the base level image adjusted for
1081    * minification.  This will also catch images not present in the
1082    * tree, changed targets, etc.
1083    */
1084   if (width != minify(mt->logical_width0, level - mt->first_level) ||
1085       height != minify(mt->logical_height0, level - mt->first_level) ||
1086       depth != level_depth) {
1087      return false;
1088   }
1089
1090   if (image->NumSamples != mt->num_samples)
1091      return false;
1092
1093   return true;
1094}
1095
1096
1097void
1098intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1099			     GLuint level,
1100			     GLuint x, GLuint y, GLuint d)
1101{
1102   mt->level[level].depth = d;
1103   mt->level[level].level_x = x;
1104   mt->level[level].level_y = y;
1105
1106   DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1107       level, d, x, y);
1108
1109   assert(mt->level[level].slice == NULL);
1110
1111   mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1112   mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1113   mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1114}
1115
1116
1117void
1118intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1119			       GLuint level, GLuint img,
1120			       GLuint x, GLuint y)
1121{
1122   if (img == 0 && level == 0)
1123      assert(x == 0 && y == 0);
1124
1125   assert(img < mt->level[level].depth);
1126
1127   mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1128   mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1129
1130   DBG("%s level %d img %d pos %d,%d\n",
1131       __func__, level, img,
1132       mt->level[level].slice[img].x_offset,
1133       mt->level[level].slice[img].y_offset);
1134}
1135
1136void
1137intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1138			       GLuint level, GLuint slice,
1139			       GLuint *x, GLuint *y)
1140{
1141   assert(slice < mt->level[level].depth);
1142
1143   *x = mt->level[level].slice[slice].x_offset;
1144   *y = mt->level[level].slice[slice].y_offset;
1145}
1146
1147
1148/**
1149 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1150 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1151 * and tile_h is set to 1.
1152 */
1153void
1154intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1155                    uint32_t *tile_w, uint32_t *tile_h)
1156{
1157   if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1158      switch (tiling) {
1159      case I915_TILING_X:
1160         *tile_w = 512;
1161         *tile_h = 8;
1162         break;
1163      case I915_TILING_Y:
1164         *tile_w = 128;
1165         *tile_h = 32;
1166         break;
1167      case I915_TILING_NONE:
1168         *tile_w = cpp;
1169         *tile_h = 1;
1170         break;
1171      default:
1172         unreachable("not reached");
1173      }
1174   } else {
1175      uint32_t aspect_ratio = 1;
1176      assert(_mesa_is_pow_two(cpp));
1177
1178      switch (cpp) {
1179      case 1:
1180         *tile_h = 64;
1181         break;
1182      case 2:
1183      case 4:
1184         *tile_h = 32;
1185         break;
1186      case 8:
1187      case 16:
1188         *tile_h = 16;
1189         break;
1190      default:
1191         unreachable("not reached");
1192      }
1193
1194      if (cpp == 2 || cpp == 8)
1195         aspect_ratio = 2;
1196
1197      if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1198         *tile_h *= 4;
1199
1200      *tile_w = *tile_h * aspect_ratio * cpp;
1201   }
1202}
1203
1204
1205/**
1206 * This function computes masks that may be used to select the bits of the X
1207 * and Y coordinates that indicate the offset within a tile.  If the BO is
1208 * untiled, the masks are set to 0.
1209 */
1210void
1211intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1212                     uint32_t *mask_x, uint32_t *mask_y)
1213{
1214   uint32_t tile_w_bytes, tile_h;
1215
1216   intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1217
1218   *mask_x = tile_w_bytes / cpp - 1;
1219   *mask_y = tile_h - 1;
1220}
1221
1222/**
1223 * Compute the offset (in bytes) from the start of the BO to the given x
1224 * and y coordinate.  For tiled BOs, caller must ensure that x and y are
1225 * multiples of the tile size.
1226 */
1227uint32_t
1228intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1229                                 uint32_t x, uint32_t y)
1230{
1231   int cpp = mt->cpp;
1232   uint32_t pitch = mt->pitch;
1233   uint32_t tiling = mt->tiling;
1234
1235   switch (tiling) {
1236   default:
1237      unreachable("not reached");
1238   case I915_TILING_NONE:
1239      return y * pitch + x * cpp;
1240   case I915_TILING_X:
1241      assert((x % (512 / cpp)) == 0);
1242      assert((y % 8) == 0);
1243      return y * pitch + x / (512 / cpp) * 4096;
1244   case I915_TILING_Y:
1245      assert((x % (128 / cpp)) == 0);
1246      assert((y % 32) == 0);
1247      return y * pitch + x / (128 / cpp) * 4096;
1248   }
1249}
1250
1251/**
1252 * Rendering with tiled buffers requires that the base address of the buffer
1253 * be aligned to a page boundary.  For renderbuffers, and sometimes with
1254 * textures, we may want the surface to point at a texture image level that
1255 * isn't at a page boundary.
1256 *
1257 * This function returns an appropriately-aligned base offset
1258 * according to the tiling restrictions, plus any required x/y offset
1259 * from there.
1260 */
1261uint32_t
1262intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1263                               GLuint level, GLuint slice,
1264                               uint32_t *tile_x,
1265                               uint32_t *tile_y)
1266{
1267   uint32_t x, y;
1268   uint32_t mask_x, mask_y;
1269
1270   intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
1271   intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1272
1273   *tile_x = x & mask_x;
1274   *tile_y = y & mask_y;
1275
1276   return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1277}
1278
1279static void
1280intel_miptree_copy_slice_sw(struct brw_context *brw,
1281                            struct intel_mipmap_tree *dst_mt,
1282                            struct intel_mipmap_tree *src_mt,
1283                            int level,
1284                            int slice,
1285                            int width,
1286                            int height)
1287{
1288   void *src, *dst;
1289   ptrdiff_t src_stride, dst_stride;
1290   int cpp = dst_mt->cpp;
1291
1292   intel_miptree_map(brw, src_mt,
1293                     level, slice,
1294                     0, 0,
1295                     width, height,
1296                     GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1297                     &src, &src_stride);
1298
1299   intel_miptree_map(brw, dst_mt,
1300                     level, slice,
1301                     0, 0,
1302                     width, height,
1303                     GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1304                     BRW_MAP_DIRECT_BIT,
1305                     &dst, &dst_stride);
1306
1307   DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1308       _mesa_get_format_name(src_mt->format),
1309       src_mt, src, src_stride,
1310       _mesa_get_format_name(dst_mt->format),
1311       dst_mt, dst, dst_stride,
1312       width, height);
1313
1314   int row_size = cpp * width;
1315   if (src_stride == row_size &&
1316       dst_stride == row_size) {
1317      memcpy(dst, src, row_size * height);
1318   } else {
1319      for (int i = 0; i < height; i++) {
1320         memcpy(dst, src, row_size);
1321         dst += dst_stride;
1322         src += src_stride;
1323      }
1324   }
1325
1326   intel_miptree_unmap(brw, dst_mt, level, slice);
1327   intel_miptree_unmap(brw, src_mt, level, slice);
1328
1329   /* Don't forget to copy the stencil data over, too.  We could have skipped
1330    * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1331    * shuffling the two data sources in/out of temporary storage instead of
1332    * the direct mapping we get this way.
1333    */
1334   if (dst_mt->stencil_mt) {
1335      assert(src_mt->stencil_mt);
1336      intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1337                                  level, slice, width, height);
1338   }
1339}
1340
1341static void
1342intel_miptree_copy_slice(struct brw_context *brw,
1343			 struct intel_mipmap_tree *dst_mt,
1344			 struct intel_mipmap_tree *src_mt,
1345			 int level,
1346			 int face,
1347			 int depth)
1348
1349{
1350   mesa_format format = src_mt->format;
1351   uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1352   uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1353   int slice;
1354
1355   if (face > 0)
1356      slice = face;
1357   else
1358      slice = depth;
1359
1360   assert(depth < src_mt->level[level].depth);
1361   assert(src_mt->format == dst_mt->format);
1362
1363   if (dst_mt->compressed) {
1364      unsigned int i, j;
1365      _mesa_get_format_block_size(dst_mt->format, &i, &j);
1366      height = ALIGN_NPOT(height, j) / j;
1367      width = ALIGN_NPOT(width, i) / i;
1368   }
1369
1370   /* If it's a packed depth/stencil buffer with separate stencil, the blit
1371    * below won't apply since we can't do the depth's Y tiling or the
1372    * stencil's W tiling in the blitter.
1373    */
1374   if (src_mt->stencil_mt) {
1375      intel_miptree_copy_slice_sw(brw,
1376                                  dst_mt, src_mt,
1377                                  level, slice,
1378                                  width, height);
1379      return;
1380   }
1381
1382   uint32_t dst_x, dst_y, src_x, src_y;
1383   intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1384   intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1385
1386   DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1387       _mesa_get_format_name(src_mt->format),
1388       src_mt, src_x, src_y, src_mt->pitch,
1389       _mesa_get_format_name(dst_mt->format),
1390       dst_mt, dst_x, dst_y, dst_mt->pitch,
1391       width, height);
1392
1393   if (!intel_miptree_blit(brw,
1394                           src_mt, level, slice, 0, 0, false,
1395                           dst_mt, level, slice, 0, 0, false,
1396                           width, height, GL_COPY)) {
1397      perf_debug("miptree validate blit for %s failed\n",
1398                 _mesa_get_format_name(format));
1399
1400      intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1401                                  width, height);
1402   }
1403}
1404
1405/**
1406 * Copies the image's current data to the given miptree, and associates that
1407 * miptree with the image.
1408 *
1409 * If \c invalidate is true, then the actual image data does not need to be
1410 * copied, but the image still needs to be associated to the new miptree (this
1411 * is set to true if we're about to clear the image).
1412 */
1413void
1414intel_miptree_copy_teximage(struct brw_context *brw,
1415			    struct intel_texture_image *intelImage,
1416			    struct intel_mipmap_tree *dst_mt,
1417                            bool invalidate)
1418{
1419   struct intel_mipmap_tree *src_mt = intelImage->mt;
1420   struct intel_texture_object *intel_obj =
1421      intel_texture_object(intelImage->base.Base.TexObject);
1422   int level = intelImage->base.Base.Level;
1423   int face = intelImage->base.Base.Face;
1424
1425   GLuint depth;
1426   if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1427      depth = intelImage->base.Base.Height;
1428   else
1429      depth = intelImage->base.Base.Depth;
1430
1431   if (!invalidate) {
1432      for (int slice = 0; slice < depth; slice++) {
1433         intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1434      }
1435   }
1436
1437   intel_miptree_reference(&intelImage->mt, dst_mt);
1438   intel_obj->needs_validate = true;
1439}
1440
1441static void
1442intel_miptree_init_mcs(struct brw_context *brw,
1443                       struct intel_mipmap_tree *mt,
1444                       int init_value)
1445{
1446   assert(mt->mcs_buf != NULL);
1447
1448   /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1449    *
1450    *     When MCS buffer is enabled and bound to MSRT, it is required that it
1451    *     is cleared prior to any rendering.
1452    *
1453    * Since we don't use the MCS buffer for any purpose other than rendering,
1454    * it makes sense to just clear it immediately upon allocation.
1455    *
1456    * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1457    */
1458   const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
1459   if (unlikely(ret)) {
1460      fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1461      drm_intel_bo_unreference(mt->mcs_buf->bo);
1462      free(mt->mcs_buf);
1463      return;
1464   }
1465   void *data = mt->mcs_buf->bo->virtual;
1466   memset(data, init_value, mt->mcs_buf->size);
1467   drm_intel_bo_unmap(mt->mcs_buf->bo);
1468}
1469
1470static struct intel_miptree_aux_buffer *
1471intel_mcs_miptree_buf_create(struct brw_context *brw,
1472                             struct intel_mipmap_tree *mt,
1473                             mesa_format format,
1474                             unsigned mcs_width,
1475                             unsigned mcs_height,
1476                             uint32_t layout_flags)
1477{
1478   struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1479   struct intel_mipmap_tree *temp_mt;
1480
1481   if (!buf)
1482      return NULL;
1483
1484   /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1485    *
1486    *     "The MCS surface must be stored as Tile Y."
1487    */
1488   layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1489   temp_mt = miptree_create(brw,
1490                            mt->target,
1491                            format,
1492                            mt->first_level,
1493                            mt->last_level,
1494                            mcs_width,
1495                            mcs_height,
1496                            mt->logical_depth0,
1497                            0 /* num_samples */,
1498                            layout_flags);
1499   if (!temp_mt) {
1500      free(buf);
1501      return NULL;
1502   }
1503
1504   buf->bo = temp_mt->bo;
1505   buf->offset = temp_mt->offset;
1506   buf->size = temp_mt->total_height * temp_mt->pitch;
1507   buf->pitch = temp_mt->pitch;
1508   buf->qpitch = temp_mt->qpitch;
1509
1510   /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1511    * structure should go away. We use miptree create simply as a means to make
1512    * sure all the constraints for the buffer are satisfied.
1513    */
1514   drm_intel_bo_reference(temp_mt->bo);
1515   intel_miptree_release(&temp_mt);
1516
1517   return buf;
1518}
1519
1520static bool
1521intel_miptree_alloc_mcs(struct brw_context *brw,
1522                        struct intel_mipmap_tree *mt,
1523                        GLuint num_samples)
1524{
1525   assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1526   assert(mt->mcs_buf == NULL);
1527   assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1528
1529   /* Choose the correct format for the MCS buffer.  All that really matters
1530    * is that we allocate the right buffer size, since we'll always be
1531    * accessing this miptree using MCS-specific hardware mechanisms, which
1532    * infer the correct format based on num_samples.
1533    */
1534   mesa_format format;
1535   switch (num_samples) {
1536   case 2:
1537   case 4:
1538      /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1539       * each sample).
1540       */
1541      format = MESA_FORMAT_R_UNORM8;
1542      break;
1543   case 8:
1544      /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1545       * for each sample, plus 8 padding bits).
1546       */
1547      format = MESA_FORMAT_R_UINT32;
1548      break;
1549   case 16:
1550      /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1551       * for each sample).
1552       */
1553      format = MESA_FORMAT_RG_UINT32;
1554      break;
1555   default:
1556      unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1557   };
1558
1559   mt->mcs_buf =
1560      intel_mcs_miptree_buf_create(brw, mt,
1561                                   format,
1562                                   mt->logical_width0,
1563                                   mt->logical_height0,
1564                                   MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1565   if (!mt->mcs_buf)
1566      return false;
1567
1568   intel_miptree_init_mcs(brw, mt, 0xFF);
1569
1570   /* Multisampled miptrees are only supported for single level. */
1571   assert(mt->first_level == 0);
1572   intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
1573                                      mt->logical_depth0,
1574                                      INTEL_FAST_CLEAR_STATE_CLEAR);
1575
1576   return true;
1577}
1578
1579
1580bool
1581intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1582                                 struct intel_mipmap_tree *mt,
1583                                 bool is_lossless_compressed)
1584{
1585   assert(mt->mcs_buf == NULL);
1586   assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1587
1588   struct isl_surf temp_main_surf;
1589   struct isl_surf temp_ccs_surf;
1590
1591   /* Create first an ISL presentation for the main color surface and let ISL
1592    * calculate equivalent CCS surface against it.
1593    */
1594   intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1595   if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1596      return false;
1597
1598   assert(temp_ccs_surf.size &&
1599          (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1600
1601   struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1602   if (!buf)
1603      return false;
1604
1605   buf->size = temp_ccs_surf.size;
1606   buf->pitch = temp_ccs_surf.row_pitch;
1607   buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1608
1609   /* In case of compression mcs buffer needs to be initialised requiring the
1610    * buffer to be immediately mapped to cpu space for writing. Therefore do
1611    * not use the gpu access flag which can cause an unnecessary delay if the
1612    * backing pages happened to be just used by the GPU.
1613    */
1614   const uint32_t alloc_flags =
1615      is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1616   uint32_t tiling = I915_TILING_Y;
1617   unsigned long pitch;
1618
1619   /* ISL has stricter set of alignment rules then the drm allocator.
1620    * Therefore one can pass the ISL dimensions in terms of bytes instead of
1621    * trying to recalculate based on different format block sizes.
1622    */
1623   buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1624                                      buf->pitch, buf->size / buf->pitch,
1625                                      1, &tiling, &pitch, alloc_flags);
1626   if (buf->bo) {
1627      assert(pitch == buf->pitch);
1628      assert(tiling == I915_TILING_Y);
1629   } else {
1630      free(buf);
1631      return false;
1632   }
1633
1634   mt->mcs_buf = buf;
1635
1636   /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1637    * used for lossless compression which requires similar initialisation
1638    * as multi-sample compression.
1639    */
1640   if (is_lossless_compressed) {
1641      /* Hardware sets the auxiliary buffer to all zeroes when it does full
1642       * resolve. Initialize it accordingly in case the first renderer is
1643       * cpu (or other none compression aware party).
1644       *
1645       * This is also explicitly stated in the spec (MCS Buffer for Render
1646       * Target(s)):
1647       *   "If Software wants to enable Color Compression without Fast clear,
1648       *    Software needs to initialize MCS with zeros."
1649       */
1650      intel_miptree_init_mcs(brw, mt, 0);
1651      mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1652   }
1653
1654   return true;
1655}
1656
1657/**
1658 * Helper for intel_miptree_alloc_hiz() that sets
1659 * \c mt->level[level].has_hiz. Return true if and only if
1660 * \c has_hiz was set.
1661 */
1662static bool
1663intel_miptree_level_enable_hiz(struct brw_context *brw,
1664                               struct intel_mipmap_tree *mt,
1665                               uint32_t level)
1666{
1667   assert(mt->hiz_buf);
1668
1669   if (brw->gen >= 8 || brw->is_haswell) {
1670      uint32_t width = minify(mt->physical_width0, level);
1671      uint32_t height = minify(mt->physical_height0, level);
1672
1673      /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1674       * and the height is 4 aligned. This allows our HiZ support
1675       * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1676       * we can grow the width & height to allow the HiZ op to
1677       * force the proper size alignments.
1678       */
1679      if (level > 0 && ((width & 7) || (height & 3))) {
1680         DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1681         return false;
1682      }
1683   }
1684
1685   DBG("mt %p level %d: HiZ enabled\n", mt, level);
1686   mt->level[level].has_hiz = true;
1687   return true;
1688}
1689
1690
1691/**
1692 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1693 * buffer dimensions and allocates a bo for the hiz buffer.
1694 */
1695static struct intel_miptree_hiz_buffer *
1696intel_gen7_hiz_buf_create(struct brw_context *brw,
1697                          struct intel_mipmap_tree *mt)
1698{
1699   unsigned z_width = mt->logical_width0;
1700   unsigned z_height = mt->logical_height0;
1701   const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1702   unsigned hz_width, hz_height;
1703   struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1704
1705   if (!buf)
1706      return NULL;
1707
1708   /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1709    * adjustments required for Z_Height and Z_Width based on multisampling.
1710    */
1711   switch (mt->num_samples) {
1712   case 0:
1713   case 1:
1714      break;
1715   case 2:
1716   case 4:
1717      z_width *= 2;
1718      z_height *= 2;
1719      break;
1720   case 8:
1721      z_width *= 4;
1722      z_height *= 2;
1723      break;
1724   default:
1725      unreachable("unsupported sample count");
1726   }
1727
1728   const unsigned vertical_align = 8; /* 'j' in the docs */
1729   const unsigned H0 = z_height;
1730   const unsigned h0 = ALIGN(H0, vertical_align);
1731   const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1732   const unsigned Z0 = z_depth;
1733
1734   /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1735   hz_width = ALIGN(z_width, 16);
1736
1737   if (mt->target == GL_TEXTURE_3D) {
1738      unsigned H_i = H0;
1739      unsigned Z_i = Z0;
1740      hz_height = 0;
1741      for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1742         unsigned h_i = ALIGN(H_i, vertical_align);
1743         /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1744         hz_height += h_i * Z_i;
1745         H_i = minify(H_i, 1);
1746         Z_i = minify(Z_i, 1);
1747      }
1748      /* HZ_Height =
1749       *    (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1750       */
1751      hz_height = DIV_ROUND_UP(hz_height, 2);
1752   } else {
1753      const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1754      /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1755      hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1756   }
1757
1758   unsigned long pitch;
1759   uint32_t tiling = I915_TILING_Y;
1760   buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1761                                               hz_width, hz_height, 1,
1762                                               &tiling, &pitch,
1763                                               BO_ALLOC_FOR_RENDER);
1764   if (!buf->aux_base.bo) {
1765      free(buf);
1766      return NULL;
1767   } else if (tiling != I915_TILING_Y) {
1768      drm_intel_bo_unreference(buf->aux_base.bo);
1769      free(buf);
1770      return NULL;
1771   }
1772
1773   buf->aux_base.size = hz_width * hz_height;
1774   buf->aux_base.pitch = pitch;
1775
1776   return buf;
1777}
1778
1779
1780/**
1781 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1782 * buffer dimensions and allocates a bo for the hiz buffer.
1783 */
1784static struct intel_miptree_hiz_buffer *
1785intel_gen8_hiz_buf_create(struct brw_context *brw,
1786                          struct intel_mipmap_tree *mt)
1787{
1788   unsigned z_width = mt->logical_width0;
1789   unsigned z_height = mt->logical_height0;
1790   const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1791   unsigned hz_width, hz_height;
1792   struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1793
1794   if (!buf)
1795      return NULL;
1796
1797   /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1798    * adjustments required for Z_Height and Z_Width based on multisampling.
1799    */
1800   if (brw->gen < 9) {
1801      switch (mt->num_samples) {
1802      case 0:
1803      case 1:
1804         break;
1805      case 2:
1806      case 4:
1807         z_width *= 2;
1808         z_height *= 2;
1809         break;
1810      case 8:
1811         z_width *= 4;
1812         z_height *= 2;
1813         break;
1814      default:
1815         unreachable("unsupported sample count");
1816      }
1817   }
1818
1819   const unsigned vertical_align = 8; /* 'j' in the docs */
1820   const unsigned H0 = z_height;
1821   const unsigned h0 = ALIGN(H0, vertical_align);
1822   const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1823   const unsigned Z0 = z_depth;
1824
1825   /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1826   hz_width = ALIGN(z_width, 16);
1827
1828   unsigned H_i = H0;
1829   unsigned Z_i = Z0;
1830   unsigned sum_h_i = 0;
1831   unsigned hz_height_3d_sum = 0;
1832   for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1833      unsigned i = level - mt->first_level;
1834      unsigned h_i = ALIGN(H_i, vertical_align);
1835      /* sum(i=2 to m; h_i) */
1836      if (i >= 2) {
1837         sum_h_i += h_i;
1838      }
1839      /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1840      hz_height_3d_sum += h_i * Z_i;
1841      H_i = minify(H_i, 1);
1842      Z_i = minify(Z_i, 1);
1843   }
1844   /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1845   buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1846
1847   if (mt->target == GL_TEXTURE_3D) {
1848      /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1849      hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1850   } else {
1851      /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1852      hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1853   }
1854
1855   unsigned long pitch;
1856   uint32_t tiling = I915_TILING_Y;
1857   buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1858                                               hz_width, hz_height, 1,
1859                                               &tiling, &pitch,
1860                                               BO_ALLOC_FOR_RENDER);
1861   if (!buf->aux_base.bo) {
1862      free(buf);
1863      return NULL;
1864   } else if (tiling != I915_TILING_Y) {
1865      drm_intel_bo_unreference(buf->aux_base.bo);
1866      free(buf);
1867      return NULL;
1868   }
1869
1870   buf->aux_base.size = hz_width * hz_height;
1871   buf->aux_base.pitch = pitch;
1872
1873   return buf;
1874}
1875
1876
1877static struct intel_miptree_hiz_buffer *
1878intel_hiz_miptree_buf_create(struct brw_context *brw,
1879                             struct intel_mipmap_tree *mt)
1880{
1881   struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1882   uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1883
1884   if (brw->gen == 6)
1885      layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1886
1887   if (!buf)
1888      return NULL;
1889
1890   layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1891   buf->mt = intel_miptree_create(brw,
1892                                  mt->target,
1893                                  mt->format,
1894                                  mt->first_level,
1895                                  mt->last_level,
1896                                  mt->logical_width0,
1897                                  mt->logical_height0,
1898                                  mt->logical_depth0,
1899                                  mt->num_samples,
1900                                  layout_flags);
1901   if (!buf->mt) {
1902      free(buf);
1903      return NULL;
1904   }
1905
1906   buf->aux_base.bo = buf->mt->bo;
1907   buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1908   buf->aux_base.pitch = buf->mt->pitch;
1909   buf->aux_base.qpitch = buf->mt->qpitch;
1910
1911   return buf;
1912}
1913
1914bool
1915intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1916                               struct intel_mipmap_tree *mt)
1917{
1918   if (!brw->has_hiz)
1919      return false;
1920
1921   if (mt->hiz_buf != NULL)
1922      return false;
1923
1924   if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1925      return false;
1926
1927   switch (mt->format) {
1928   case MESA_FORMAT_Z_FLOAT32:
1929   case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1930   case MESA_FORMAT_Z24_UNORM_X8_UINT:
1931   case MESA_FORMAT_Z24_UNORM_S8_UINT:
1932   case MESA_FORMAT_Z_UNORM16:
1933      return true;
1934   default:
1935      return false;
1936   }
1937}
1938
1939bool
1940intel_miptree_alloc_hiz(struct brw_context *brw,
1941			struct intel_mipmap_tree *mt)
1942{
1943   assert(mt->hiz_buf == NULL);
1944   assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1945
1946   if (brw->gen == 7) {
1947      mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1948   } else if (brw->gen >= 8) {
1949      mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1950   } else {
1951      mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1952   }
1953
1954   if (!mt->hiz_buf)
1955      return false;
1956
1957   /* Mark that all slices need a HiZ resolve. */
1958   for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1959      if (!intel_miptree_level_enable_hiz(brw, mt, level))
1960         continue;
1961
1962      for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1963         struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1964         exec_node_init(&m->link);
1965         m->level = level;
1966         m->layer = layer;
1967         m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
1968
1969         exec_list_push_tail(&mt->hiz_map, &m->link);
1970      }
1971   }
1972
1973   return true;
1974}
1975
1976/**
1977 * Can the miptree sample using the hiz buffer?
1978 */
1979bool
1980intel_miptree_sample_with_hiz(struct brw_context *brw,
1981                              struct intel_mipmap_tree *mt)
1982{
1983   /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1984    * so keep things conservative for now and never enable it unless we're SKL+.
1985    */
1986   if (brw->gen < 9) {
1987      return false;
1988   }
1989
1990   if (!mt->hiz_buf) {
1991      return false;
1992   }
1993
1994   /* It seems the hardware won't fallback to the depth buffer if some of the
1995    * mipmap levels aren't available in the HiZ buffer. So we need all levels
1996    * of the texture to be HiZ enabled.
1997    */
1998   for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1999      if (!intel_miptree_level_has_hiz(mt, level))
2000         return false;
2001   }
2002
2003   /* If compressed multisampling is enabled, then we use it for the auxiliary
2004    * buffer instead.
2005    *
2006    * From the BDW PRM (Volume 2d: Command Reference: Structures
2007    *                   RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2008    *
2009    *  "If this field is set to AUX_HIZ, Number of Multisamples must be
2010    *   MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2011    *
2012    * There is no such blurb for 1D textures, but there is sufficient evidence
2013    * that this is broken on SKL+.
2014    */
2015   return (mt->num_samples <= 1 &&
2016           mt->target != GL_TEXTURE_3D &&
2017           mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2018}
2019
2020/**
2021 * Does the miptree slice have hiz enabled?
2022 */
2023bool
2024intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2025{
2026   intel_miptree_check_level_layer(mt, level, 0);
2027   return mt->level[level].has_hiz;
2028}
2029
2030void
2031intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2032					  uint32_t level,
2033					  uint32_t layer)
2034{
2035   if (!intel_miptree_level_has_hiz(mt, level))
2036      return;
2037
2038   intel_resolve_map_set(&mt->hiz_map,
2039			 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
2040}
2041
2042
2043void
2044intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2045                                            uint32_t level,
2046                                            uint32_t layer)
2047{
2048   if (!intel_miptree_level_has_hiz(mt, level))
2049      return;
2050
2051   intel_resolve_map_set(&mt->hiz_map,
2052			 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
2053}
2054
2055void
2056intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2057                                                uint32_t level)
2058{
2059   uint32_t layer;
2060   uint32_t end_layer = mt->level[level].depth;
2061
2062   for (layer = 0; layer < end_layer; layer++) {
2063      intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2064   }
2065}
2066
2067static bool
2068intel_miptree_slice_resolve(struct brw_context *brw,
2069			    struct intel_mipmap_tree *mt,
2070			    uint32_t level,
2071			    uint32_t layer,
2072			    enum blorp_hiz_op need)
2073{
2074   intel_miptree_check_level_layer(mt, level, layer);
2075
2076   struct intel_resolve_map *item =
2077	 intel_resolve_map_get(&mt->hiz_map, level, layer);
2078
2079   if (!item || item->need != need)
2080      return false;
2081
2082   intel_hiz_exec(brw, mt, level, layer, need);
2083   intel_resolve_map_remove(item);
2084   return true;
2085}
2086
2087bool
2088intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2089				struct intel_mipmap_tree *mt,
2090				uint32_t level,
2091				uint32_t layer)
2092{
2093   return intel_miptree_slice_resolve(brw, mt, level, layer,
2094				      BLORP_HIZ_OP_HIZ_RESOLVE);
2095}
2096
2097bool
2098intel_miptree_slice_resolve_depth(struct brw_context *brw,
2099				  struct intel_mipmap_tree *mt,
2100				  uint32_t level,
2101				  uint32_t layer)
2102{
2103   return intel_miptree_slice_resolve(brw, mt, level, layer,
2104				      BLORP_HIZ_OP_DEPTH_RESOLVE);
2105}
2106
2107static bool
2108intel_miptree_all_slices_resolve(struct brw_context *brw,
2109				 struct intel_mipmap_tree *mt,
2110				 enum blorp_hiz_op need)
2111{
2112   bool did_resolve = false;
2113
2114   foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2115      if (map->need != need)
2116	 continue;
2117
2118      intel_hiz_exec(brw, mt, map->level, map->layer, need);
2119      intel_resolve_map_remove(map);
2120      did_resolve = true;
2121   }
2122
2123   return did_resolve;
2124}
2125
2126bool
2127intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2128				     struct intel_mipmap_tree *mt)
2129{
2130   return intel_miptree_all_slices_resolve(brw, mt,
2131					   BLORP_HIZ_OP_HIZ_RESOLVE);
2132}
2133
2134bool
2135intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2136				       struct intel_mipmap_tree *mt)
2137{
2138   return intel_miptree_all_slices_resolve(brw, mt,
2139					   BLORP_HIZ_OP_DEPTH_RESOLVE);
2140}
2141
2142enum intel_fast_clear_state
2143intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
2144                                   unsigned level, unsigned layer)
2145{
2146   intel_miptree_check_level_layer(mt, level, layer);
2147
2148   const struct intel_resolve_map *item =
2149      intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
2150
2151   if (!item)
2152      return INTEL_FAST_CLEAR_STATE_RESOLVED;
2153
2154   return item->fast_clear_state;
2155}
2156
2157static void
2158intel_miptree_check_color_resolve(const struct brw_context *brw,
2159                                  const struct intel_mipmap_tree *mt,
2160                                  unsigned level, unsigned layer)
2161{
2162
2163   if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2164      return;
2165
2166   /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2167   assert(brw->gen >= 8 ||
2168          (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2169
2170   /* Compression of arrayed msaa surfaces is supported. */
2171   if (mt->num_samples > 1)
2172      return;
2173
2174   /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2175   assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2176
2177   (void)level;
2178   (void)layer;
2179}
2180
2181void
2182intel_miptree_set_fast_clear_state(const struct brw_context *brw,
2183                                   struct intel_mipmap_tree *mt,
2184                                   unsigned level,
2185                                   unsigned first_layer,
2186                                   unsigned num_layers,
2187                                   enum intel_fast_clear_state new_state)
2188{
2189   /* Setting the state to resolved means removing the item from the list
2190    * altogether.
2191    */
2192   assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2193
2194   intel_miptree_check_color_resolve(brw, mt, level, first_layer);
2195
2196   assert(first_layer + num_layers <= mt->physical_depth0);
2197
2198   for (unsigned i = 0; i < num_layers; i++)
2199      intel_resolve_map_set(&mt->color_resolve_map, level,
2200                            first_layer + i, new_state);
2201}
2202
2203bool
2204intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2205                                   unsigned start_level, unsigned num_levels,
2206                                   unsigned start_layer, unsigned num_layers)
2207{
2208   return intel_resolve_map_find_any(&mt->color_resolve_map,
2209                                     start_level, num_levels,
2210                                     start_layer, num_layers) != NULL;
2211}
2212
2213void
2214intel_miptree_used_for_rendering(const struct brw_context *brw,
2215                                 struct intel_mipmap_tree *mt, unsigned level,
2216                                 unsigned start_layer, unsigned num_layers)
2217{
2218   const bool is_lossless_compressed =
2219      intel_miptree_is_lossless_compressed(brw, mt);
2220
2221   for (unsigned i = 0; i < num_layers; ++i) {
2222      const enum intel_fast_clear_state fast_clear_state =
2223         intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
2224
2225      /* If the buffer was previously in fast clear state, change it to
2226       * unresolved state, since it won't be guaranteed to be clear after
2227       * rendering occurs.
2228       */
2229      if (is_lossless_compressed ||
2230          fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
2231         intel_miptree_set_fast_clear_state(
2232            brw, mt, level, start_layer + i, 1,
2233            INTEL_FAST_CLEAR_STATE_UNRESOLVED);
2234      }
2235   }
2236}
2237
2238static bool
2239intel_miptree_needs_color_resolve(const struct brw_context *brw,
2240                                  const struct intel_mipmap_tree *mt,
2241                                  int flags)
2242{
2243   if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
2244      return false;
2245
2246   const bool is_lossless_compressed =
2247      intel_miptree_is_lossless_compressed(brw, mt);
2248
2249   /* From gen9 onwards there is new compression scheme for single sampled
2250    * surfaces called "lossless compressed". These don't need to be always
2251    * resolved.
2252    */
2253   if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
2254      return false;
2255
2256   /* Fast color clear resolves only make sense for non-MSAA buffers. */
2257   if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
2258      return false;
2259
2260   return true;
2261}
2262
2263bool
2264intel_miptree_resolve_color(struct brw_context *brw,
2265                            struct intel_mipmap_tree *mt, unsigned level,
2266                            unsigned start_layer, unsigned num_layers,
2267                            int flags)
2268{
2269   intel_miptree_check_color_resolve(brw, mt, level, start_layer);
2270
2271   if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2272      return false;
2273
2274   /* Arrayed fast clear is only supported for gen8+. */
2275   assert(brw->gen >= 8 || num_layers == 1);
2276
2277   bool resolved = false;
2278   for (unsigned i = 0; i < num_layers; ++i) {
2279      intel_miptree_check_level_layer(mt, level, start_layer + i);
2280
2281      struct intel_resolve_map *item =
2282         intel_resolve_map_get(&mt->color_resolve_map, level,
2283                               start_layer + i);
2284
2285      if (item) {
2286         assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2287
2288         brw_blorp_resolve_color(brw, mt, level, start_layer);
2289         intel_resolve_map_remove(item);
2290         resolved = true;
2291      }
2292   }
2293
2294   return resolved;
2295}
2296
2297void
2298intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2299                                       struct intel_mipmap_tree *mt,
2300                                       int flags)
2301{
2302   if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2303      return;
2304
2305   foreach_list_typed_safe(struct intel_resolve_map, map, link,
2306                           &mt->color_resolve_map) {
2307      assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2308
2309      brw_blorp_resolve_color(brw, mt, map->level, map->layer);
2310      intel_resolve_map_remove(map);
2311   }
2312}
2313
2314/**
2315 * Make it possible to share the BO backing the given miptree with another
2316 * process or another miptree.
2317 *
2318 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2319 * then discard the MCS buffer, if present.  We also set the no_ccs flag to
2320 * ensure that no MCS buffer gets allocated in the future.
2321 *
2322 * HiZ is similarly unsafe with shared buffers.
2323 */
2324void
2325intel_miptree_make_shareable(struct brw_context *brw,
2326                             struct intel_mipmap_tree *mt)
2327{
2328   /* MCS buffers are also used for multisample buffers, but we can't resolve
2329    * away a multisample MCS buffer because it's an integral part of how the
2330    * pixel data is stored.  Fortunately this code path should never be
2331    * reached for multisample buffers.
2332    */
2333   assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2334
2335   if (mt->mcs_buf) {
2336      intel_miptree_all_slices_resolve_color(brw, mt, 0);
2337      mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2338      drm_intel_bo_unreference(mt->mcs_buf->bo);
2339      free(mt->mcs_buf);
2340      mt->mcs_buf = NULL;
2341   }
2342
2343   if (mt->hiz_buf) {
2344      mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2345      intel_miptree_all_slices_resolve_depth(brw, mt);
2346      intel_miptree_hiz_buffer_free(mt->hiz_buf);
2347      mt->hiz_buf = NULL;
2348   }
2349}
2350
2351
2352/**
2353 * \brief Get pointer offset into stencil buffer.
2354 *
2355 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2356 * must decode the tile's layout in software.
2357 *
2358 * See
2359 *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2360 *     Format.
2361 *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2362 *
2363 * Even though the returned offset is always positive, the return type is
2364 * signed due to
2365 *    commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2366 *    mesa: Fix return type of  _mesa_get_format_bytes() (#37351)
2367 */
2368static intptr_t
2369intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2370{
2371   uint32_t tile_size = 4096;
2372   uint32_t tile_width = 64;
2373   uint32_t tile_height = 64;
2374   uint32_t row_size = 64 * stride;
2375
2376   uint32_t tile_x = x / tile_width;
2377   uint32_t tile_y = y / tile_height;
2378
2379   /* The byte's address relative to the tile's base addres. */
2380   uint32_t byte_x = x % tile_width;
2381   uint32_t byte_y = y % tile_height;
2382
2383   uintptr_t u = tile_y * row_size
2384               + tile_x * tile_size
2385               + 512 * (byte_x / 8)
2386               +  64 * (byte_y / 8)
2387               +  32 * ((byte_y / 4) % 2)
2388               +  16 * ((byte_x / 4) % 2)
2389               +   8 * ((byte_y / 2) % 2)
2390               +   4 * ((byte_x / 2) % 2)
2391               +   2 * (byte_y % 2)
2392               +   1 * (byte_x % 2);
2393
2394   if (swizzled) {
2395      /* adjust for bit6 swizzling */
2396      if (((byte_x / 8) % 2) == 1) {
2397	 if (((byte_y / 8) % 2) == 0) {
2398	    u += 64;
2399	 } else {
2400	    u -= 64;
2401	 }
2402      }
2403   }
2404
2405   return u;
2406}
2407
2408void
2409intel_miptree_updownsample(struct brw_context *brw,
2410                           struct intel_mipmap_tree *src,
2411                           struct intel_mipmap_tree *dst)
2412{
2413   brw_blorp_blit_miptrees(brw,
2414                           src, 0 /* level */, 0 /* layer */,
2415                           src->format, SWIZZLE_XYZW,
2416                           dst, 0 /* level */, 0 /* layer */, dst->format,
2417                           0, 0,
2418                           src->logical_width0, src->logical_height0,
2419                           0, 0,
2420                           dst->logical_width0, dst->logical_height0,
2421                           GL_NEAREST, false, false /*mirror x, y*/,
2422                           false, false);
2423
2424   if (src->stencil_mt) {
2425      brw_blorp_blit_miptrees(brw,
2426                              src->stencil_mt, 0 /* level */, 0 /* layer */,
2427                              src->stencil_mt->format, SWIZZLE_XYZW,
2428                              dst->stencil_mt, 0 /* level */, 0 /* layer */,
2429                              dst->stencil_mt->format,
2430                              0, 0,
2431                              src->logical_width0, src->logical_height0,
2432                              0, 0,
2433                              dst->logical_width0, dst->logical_height0,
2434                              GL_NEAREST, false, false /*mirror x, y*/,
2435                              false, false /* decode/encode srgb */);
2436   }
2437}
2438
2439void
2440intel_update_r8stencil(struct brw_context *brw,
2441                       struct intel_mipmap_tree *mt)
2442{
2443   assert(brw->gen >= 7);
2444   struct intel_mipmap_tree *src =
2445      mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2446   if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2447      return;
2448
2449   if (!mt->r8stencil_mt) {
2450      const uint32_t r8stencil_flags =
2451         MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2452         MIPTREE_LAYOUT_DISABLE_AUX;
2453      assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2454      mt->r8stencil_mt = intel_miptree_create(brw,
2455                                              src->target,
2456                                              MESA_FORMAT_R_UINT8,
2457                                              src->first_level,
2458                                              src->last_level,
2459                                              src->logical_width0,
2460                                              src->logical_height0,
2461                                              src->logical_depth0,
2462                                              src->num_samples,
2463                                              r8stencil_flags);
2464      assert(mt->r8stencil_mt);
2465   }
2466
2467   struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2468
2469   for (int level = src->first_level; level <= src->last_level; level++) {
2470      const unsigned depth = src->level[level].depth;
2471      const int layers_per_blit =
2472         (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2473          dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2474         dst->num_samples : 1;
2475
2476      for (unsigned layer = 0; layer < depth; layer++) {
2477         brw_blorp_blit_miptrees(brw,
2478                                 src, level, layer,
2479                                 src->format, SWIZZLE_X,
2480                                 dst, level, layers_per_blit * layer,
2481                                 MESA_FORMAT_R_UNORM8,
2482                                 0, 0,
2483                                 minify(src->logical_width0, level),
2484                                 minify(src->logical_height0, level),
2485                                 0, 0,
2486                                 minify(dst->logical_width0, level),
2487                                 minify(dst->logical_height0, level),
2488                                 GL_NEAREST, false, false /*mirror x, y*/,
2489                                 false, false /* decode/encode srgb */);
2490      }
2491   }
2492
2493   brw_render_cache_set_check_flush(brw, dst->bo);
2494   src->r8stencil_needs_update = false;
2495}
2496
2497static void *
2498intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2499{
2500   /* CPU accesses to color buffers don't understand fast color clears, so
2501    * resolve any pending fast color clears before we map.
2502    */
2503   intel_miptree_all_slices_resolve_color(brw, mt, 0);
2504
2505   drm_intel_bo *bo = mt->bo;
2506
2507   if (drm_intel_bo_references(brw->batch.bo, bo))
2508      intel_batchbuffer_flush(brw);
2509
2510   if (mt->tiling != I915_TILING_NONE)
2511      brw_bo_map_gtt(brw, bo, "miptree");
2512   else
2513      brw_bo_map(brw, bo, true, "miptree");
2514
2515   return bo->virtual;
2516}
2517
2518static void
2519intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2520{
2521   drm_intel_bo_unmap(mt->bo);
2522}
2523
2524static void
2525intel_miptree_map_gtt(struct brw_context *brw,
2526		      struct intel_mipmap_tree *mt,
2527		      struct intel_miptree_map *map,
2528		      unsigned int level, unsigned int slice)
2529{
2530   unsigned int bw, bh;
2531   void *base;
2532   unsigned int image_x, image_y;
2533   intptr_t x = map->x;
2534   intptr_t y = map->y;
2535
2536   /* For compressed formats, the stride is the number of bytes per
2537    * row of blocks.  intel_miptree_get_image_offset() already does
2538    * the divide.
2539    */
2540   _mesa_get_format_block_size(mt->format, &bw, &bh);
2541   assert(y % bh == 0);
2542   assert(x % bw == 0);
2543   y /= bh;
2544   x /= bw;
2545
2546   base = intel_miptree_map_raw(brw, mt) + mt->offset;
2547
2548   if (base == NULL)
2549      map->ptr = NULL;
2550   else {
2551      /* Note that in the case of cube maps, the caller must have passed the
2552       * slice number referencing the face.
2553      */
2554      intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2555      x += image_x;
2556      y += image_y;
2557
2558      map->stride = mt->pitch;
2559      map->ptr = base + y * map->stride + x * mt->cpp;
2560   }
2561
2562   DBG("%s: %d,%d %dx%d from mt %p (%s) "
2563       "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2564       map->x, map->y, map->w, map->h,
2565       mt, _mesa_get_format_name(mt->format),
2566       x, y, map->ptr, map->stride);
2567}
2568
2569static void
2570intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2571{
2572   intel_miptree_unmap_raw(mt);
2573}
2574
2575static void
2576intel_miptree_map_blit(struct brw_context *brw,
2577		       struct intel_mipmap_tree *mt,
2578		       struct intel_miptree_map *map,
2579		       unsigned int level, unsigned int slice)
2580{
2581   map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2582                                         /* first_level */ 0,
2583                                         /* last_level */ 0,
2584                                         map->w, map->h, 1,
2585                                         /* samples */ 0,
2586                                         MIPTREE_LAYOUT_TILING_NONE);
2587
2588   if (!map->linear_mt) {
2589      fprintf(stderr, "Failed to allocate blit temporary\n");
2590      goto fail;
2591   }
2592   map->stride = map->linear_mt->pitch;
2593
2594   /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2595    * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2596    * invalidate is set, since we'll be writing the whole rectangle from our
2597    * temporary buffer back out.
2598    */
2599   if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2600      if (!intel_miptree_copy(brw,
2601                              mt, level, slice, map->x, map->y,
2602                              map->linear_mt, 0, 0, 0, 0,
2603                              map->w, map->h)) {
2604         fprintf(stderr, "Failed to blit\n");
2605         goto fail;
2606      }
2607   }
2608
2609   map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2610
2611   DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2612       map->x, map->y, map->w, map->h,
2613       mt, _mesa_get_format_name(mt->format),
2614       level, slice, map->ptr, map->stride);
2615
2616   return;
2617
2618fail:
2619   intel_miptree_release(&map->linear_mt);
2620   map->ptr = NULL;
2621   map->stride = 0;
2622}
2623
2624static void
2625intel_miptree_unmap_blit(struct brw_context *brw,
2626			 struct intel_mipmap_tree *mt,
2627			 struct intel_miptree_map *map,
2628			 unsigned int level,
2629			 unsigned int slice)
2630{
2631   struct gl_context *ctx = &brw->ctx;
2632
2633   intel_miptree_unmap_raw(map->linear_mt);
2634
2635   if (map->mode & GL_MAP_WRITE_BIT) {
2636      bool ok = intel_miptree_copy(brw,
2637                                   map->linear_mt, 0, 0, 0, 0,
2638                                   mt, level, slice, map->x, map->y,
2639                                   map->w, map->h);
2640      WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2641   }
2642
2643   intel_miptree_release(&map->linear_mt);
2644}
2645
2646/**
2647 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2648 */
2649#if defined(USE_SSE41)
2650static void
2651intel_miptree_map_movntdqa(struct brw_context *brw,
2652                           struct intel_mipmap_tree *mt,
2653                           struct intel_miptree_map *map,
2654                           unsigned int level, unsigned int slice)
2655{
2656   assert(map->mode & GL_MAP_READ_BIT);
2657   assert(!(map->mode & GL_MAP_WRITE_BIT));
2658
2659   DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2660       map->x, map->y, map->w, map->h,
2661       mt, _mesa_get_format_name(mt->format),
2662       level, slice, map->ptr, map->stride);
2663
2664   /* Map the original image */
2665   uint32_t image_x;
2666   uint32_t image_y;
2667   intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2668   image_x += map->x;
2669   image_y += map->y;
2670
2671   void *src = intel_miptree_map_raw(brw, mt);
2672   if (!src)
2673      return;
2674
2675   src += mt->offset;
2676
2677   src += image_y * mt->pitch;
2678   src += image_x * mt->cpp;
2679
2680   /* Due to the pixel offsets for the particular image being mapped, our
2681    * src pointer may not be 16-byte aligned.  However, if the pitch is
2682    * divisible by 16, then the amount by which it's misaligned will remain
2683    * consistent from row to row.
2684    */
2685   assert((mt->pitch % 16) == 0);
2686   const int misalignment = ((uintptr_t) src) & 15;
2687
2688   /* Create an untiled temporary buffer for the mapping. */
2689   const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2690
2691   map->stride = ALIGN(misalignment + width_bytes, 16);
2692
2693   map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2694   /* Offset the destination so it has the same misalignment as src. */
2695   map->ptr = map->buffer + misalignment;
2696
2697   assert((((uintptr_t) map->ptr) & 15) == misalignment);
2698
2699   for (uint32_t y = 0; y < map->h; y++) {
2700      void *dst_ptr = map->ptr + y * map->stride;
2701      void *src_ptr = src + y * mt->pitch;
2702
2703      _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2704   }
2705
2706   intel_miptree_unmap_raw(mt);
2707}
2708
2709static void
2710intel_miptree_unmap_movntdqa(struct brw_context *brw,
2711                             struct intel_mipmap_tree *mt,
2712                             struct intel_miptree_map *map,
2713                             unsigned int level,
2714                             unsigned int slice)
2715{
2716   _mesa_align_free(map->buffer);
2717   map->buffer = NULL;
2718   map->ptr = NULL;
2719}
2720#endif
2721
2722static void
2723intel_miptree_map_s8(struct brw_context *brw,
2724		     struct intel_mipmap_tree *mt,
2725		     struct intel_miptree_map *map,
2726		     unsigned int level, unsigned int slice)
2727{
2728   map->stride = map->w;
2729   map->buffer = map->ptr = malloc(map->stride * map->h);
2730   if (!map->buffer)
2731      return;
2732
2733   /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2734    * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2735    * invalidate is set, since we'll be writing the whole rectangle from our
2736    * temporary buffer back out.
2737    */
2738   if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2739      uint8_t *untiled_s8_map = map->ptr;
2740      uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2741      unsigned int image_x, image_y;
2742
2743      intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2744
2745      for (uint32_t y = 0; y < map->h; y++) {
2746	 for (uint32_t x = 0; x < map->w; x++) {
2747	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
2748	                                       x + image_x + map->x,
2749	                                       y + image_y + map->y,
2750					       brw->has_swizzling);
2751	    untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2752	 }
2753      }
2754
2755      intel_miptree_unmap_raw(mt);
2756
2757      DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2758	  map->x, map->y, map->w, map->h,
2759	  mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2760   } else {
2761      DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2762	  map->x, map->y, map->w, map->h,
2763	  mt, map->ptr, map->stride);
2764   }
2765}
2766
2767static void
2768intel_miptree_unmap_s8(struct brw_context *brw,
2769		       struct intel_mipmap_tree *mt,
2770		       struct intel_miptree_map *map,
2771		       unsigned int level,
2772		       unsigned int slice)
2773{
2774   if (map->mode & GL_MAP_WRITE_BIT) {
2775      unsigned int image_x, image_y;
2776      uint8_t *untiled_s8_map = map->ptr;
2777      uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2778
2779      intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2780
2781      for (uint32_t y = 0; y < map->h; y++) {
2782	 for (uint32_t x = 0; x < map->w; x++) {
2783	    ptrdiff_t offset = intel_offset_S8(mt->pitch,
2784	                                       image_x + x + map->x,
2785	                                       image_y + y + map->y,
2786					       brw->has_swizzling);
2787	    tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2788	 }
2789      }
2790
2791      intel_miptree_unmap_raw(mt);
2792   }
2793
2794   free(map->buffer);
2795}
2796
2797static void
2798intel_miptree_map_etc(struct brw_context *brw,
2799                      struct intel_mipmap_tree *mt,
2800                      struct intel_miptree_map *map,
2801                      unsigned int level,
2802                      unsigned int slice)
2803{
2804   assert(mt->etc_format != MESA_FORMAT_NONE);
2805   if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2806      assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2807   }
2808
2809   assert(map->mode & GL_MAP_WRITE_BIT);
2810   assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2811
2812   map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2813   map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2814                                                map->w, map->h, 1));
2815   map->ptr = map->buffer;
2816}
2817
2818static void
2819intel_miptree_unmap_etc(struct brw_context *brw,
2820                        struct intel_mipmap_tree *mt,
2821                        struct intel_miptree_map *map,
2822                        unsigned int level,
2823                        unsigned int slice)
2824{
2825   uint32_t image_x;
2826   uint32_t image_y;
2827   intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2828
2829   image_x += map->x;
2830   image_y += map->y;
2831
2832   uint8_t *dst = intel_miptree_map_raw(brw, mt)
2833                + image_y * mt->pitch
2834                + image_x * mt->cpp;
2835
2836   if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2837      _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2838                                 map->ptr, map->stride,
2839                                 map->w, map->h);
2840   else
2841      _mesa_unpack_etc2_format(dst, mt->pitch,
2842                               map->ptr, map->stride,
2843                               map->w, map->h, mt->etc_format);
2844
2845   intel_miptree_unmap_raw(mt);
2846   free(map->buffer);
2847}
2848
2849/**
2850 * Mapping function for packed depth/stencil miptrees backed by real separate
2851 * miptrees for depth and stencil.
2852 *
2853 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2854 * separate from the depth buffer.  Yet at the GL API level, we have to expose
2855 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2856 * be able to map that memory for texture storage and glReadPixels-type
2857 * operations.  We give Mesa core that access by mallocing a temporary and
2858 * copying the data between the actual backing store and the temporary.
2859 */
2860static void
2861intel_miptree_map_depthstencil(struct brw_context *brw,
2862			       struct intel_mipmap_tree *mt,
2863			       struct intel_miptree_map *map,
2864			       unsigned int level, unsigned int slice)
2865{
2866   struct intel_mipmap_tree *z_mt = mt;
2867   struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2868   bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2869   int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2870
2871   map->stride = map->w * packed_bpp;
2872   map->buffer = map->ptr = malloc(map->stride * map->h);
2873   if (!map->buffer)
2874      return;
2875
2876   /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
2877    * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
2878    * invalidate is set, since we'll be writing the whole rectangle from our
2879    * temporary buffer back out.
2880    */
2881   if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2882      uint32_t *packed_map = map->ptr;
2883      uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2884      uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2885      unsigned int s_image_x, s_image_y;
2886      unsigned int z_image_x, z_image_y;
2887
2888      intel_miptree_get_image_offset(s_mt, level, slice,
2889				     &s_image_x, &s_image_y);
2890      intel_miptree_get_image_offset(z_mt, level, slice,
2891				     &z_image_x, &z_image_y);
2892
2893      for (uint32_t y = 0; y < map->h; y++) {
2894	 for (uint32_t x = 0; x < map->w; x++) {
2895	    int map_x = map->x + x, map_y = map->y + y;
2896	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2897						 map_x + s_image_x,
2898						 map_y + s_image_y,
2899						 brw->has_swizzling);
2900	    ptrdiff_t z_offset = ((map_y + z_image_y) *
2901                                  (z_mt->pitch / 4) +
2902				  (map_x + z_image_x));
2903	    uint8_t s = s_map[s_offset];
2904	    uint32_t z = z_map[z_offset];
2905
2906	    if (map_z32f_x24s8) {
2907	       packed_map[(y * map->w + x) * 2 + 0] = z;
2908	       packed_map[(y * map->w + x) * 2 + 1] = s;
2909	    } else {
2910	       packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2911	    }
2912	 }
2913      }
2914
2915      intel_miptree_unmap_raw(s_mt);
2916      intel_miptree_unmap_raw(z_mt);
2917
2918      DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2919	  __func__,
2920	  map->x, map->y, map->w, map->h,
2921	  z_mt, map->x + z_image_x, map->y + z_image_y,
2922	  s_mt, map->x + s_image_x, map->y + s_image_y,
2923	  map->ptr, map->stride);
2924   } else {
2925      DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2926	  map->x, map->y, map->w, map->h,
2927	  mt, map->ptr, map->stride);
2928   }
2929}
2930
2931static void
2932intel_miptree_unmap_depthstencil(struct brw_context *brw,
2933				 struct intel_mipmap_tree *mt,
2934				 struct intel_miptree_map *map,
2935				 unsigned int level,
2936				 unsigned int slice)
2937{
2938   struct intel_mipmap_tree *z_mt = mt;
2939   struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2940   bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2941
2942   if (map->mode & GL_MAP_WRITE_BIT) {
2943      uint32_t *packed_map = map->ptr;
2944      uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2945      uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2946      unsigned int s_image_x, s_image_y;
2947      unsigned int z_image_x, z_image_y;
2948
2949      intel_miptree_get_image_offset(s_mt, level, slice,
2950				     &s_image_x, &s_image_y);
2951      intel_miptree_get_image_offset(z_mt, level, slice,
2952				     &z_image_x, &z_image_y);
2953
2954      for (uint32_t y = 0; y < map->h; y++) {
2955	 for (uint32_t x = 0; x < map->w; x++) {
2956	    ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2957						 x + s_image_x + map->x,
2958						 y + s_image_y + map->y,
2959						 brw->has_swizzling);
2960	    ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2961                                  (z_mt->pitch / 4) +
2962				  (x + z_image_x + map->x));
2963
2964	    if (map_z32f_x24s8) {
2965	       z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2966	       s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2967	    } else {
2968	       uint32_t packed = packed_map[y * map->w + x];
2969	       s_map[s_offset] = packed >> 24;
2970	       z_map[z_offset] = packed;
2971	    }
2972	 }
2973      }
2974
2975      intel_miptree_unmap_raw(s_mt);
2976      intel_miptree_unmap_raw(z_mt);
2977
2978      DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2979	  __func__,
2980	  map->x, map->y, map->w, map->h,
2981	  z_mt, _mesa_get_format_name(z_mt->format),
2982	  map->x + z_image_x, map->y + z_image_y,
2983	  s_mt, map->x + s_image_x, map->y + s_image_y,
2984	  map->ptr, map->stride);
2985   }
2986
2987   free(map->buffer);
2988}
2989
2990/**
2991 * Create and attach a map to the miptree at (level, slice). Return the
2992 * attached map.
2993 */
2994static struct intel_miptree_map*
2995intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2996                         unsigned int level,
2997                         unsigned int slice,
2998                         unsigned int x,
2999                         unsigned int y,
3000                         unsigned int w,
3001                         unsigned int h,
3002                         GLbitfield mode)
3003{
3004   struct intel_miptree_map *map = calloc(1, sizeof(*map));
3005
3006   if (!map)
3007      return NULL;
3008
3009   assert(mt->level[level].slice[slice].map == NULL);
3010   mt->level[level].slice[slice].map = map;
3011
3012   map->mode = mode;
3013   map->x = x;
3014   map->y = y;
3015   map->w = w;
3016   map->h = h;
3017
3018   return map;
3019}
3020
3021/**
3022 * Release the map at (level, slice).
3023 */
3024static void
3025intel_miptree_release_map(struct intel_mipmap_tree *mt,
3026                         unsigned int level,
3027                         unsigned int slice)
3028{
3029   struct intel_miptree_map **map;
3030
3031   map = &mt->level[level].slice[slice].map;
3032   free(*map);
3033   *map = NULL;
3034}
3035
3036static bool
3037can_blit_slice(struct intel_mipmap_tree *mt,
3038               unsigned int level, unsigned int slice)
3039{
3040   /* See intel_miptree_blit() for details on the 32k pitch limit. */
3041   if (mt->pitch >= 32768)
3042      return false;
3043
3044   return true;
3045}
3046
3047static bool
3048use_intel_mipree_map_blit(struct brw_context *brw,
3049                          struct intel_mipmap_tree *mt,
3050                          GLbitfield mode,
3051                          unsigned int level,
3052                          unsigned int slice)
3053{
3054   if (brw->has_llc &&
3055      /* It's probably not worth swapping to the blit ring because of
3056       * all the overhead involved. But, we must use blitter for the
3057       * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
3058       */
3059       (!(mode & GL_MAP_WRITE_BIT) ||
3060        mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
3061       !mt->compressed &&
3062       (mt->tiling == I915_TILING_X ||
3063        /* Prior to Sandybridge, the blitter can't handle Y tiling */
3064        (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3065        /* Fast copy blit on skl+ supports all tiling formats. */
3066        brw->gen >= 9) &&
3067       can_blit_slice(mt, level, slice))
3068      return true;
3069
3070   if (mt->tiling != I915_TILING_NONE &&
3071       mt->bo->size >= brw->max_gtt_map_object_size) {
3072      assert(can_blit_slice(mt, level, slice));
3073      return true;
3074   }
3075
3076   return false;
3077}
3078
3079/**
3080 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3081 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3082 * arithmetic overflow.
3083 *
3084 * If you call this function and use \a out_stride, then you're doing pointer
3085 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3086 * bugs.  The caller must still take care to avoid 32-bit overflow errors in
3087 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3088 * which usually have type uint32_t or GLuint.
3089 */
3090void
3091intel_miptree_map(struct brw_context *brw,
3092                  struct intel_mipmap_tree *mt,
3093                  unsigned int level,
3094                  unsigned int slice,
3095                  unsigned int x,
3096                  unsigned int y,
3097                  unsigned int w,
3098                  unsigned int h,
3099                  GLbitfield mode,
3100                  void **out_ptr,
3101                  ptrdiff_t *out_stride)
3102{
3103   struct intel_miptree_map *map;
3104
3105   assert(mt->num_samples <= 1);
3106
3107   map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3108   if (!map){
3109      *out_ptr = NULL;
3110      *out_stride = 0;
3111      return;
3112   }
3113
3114   intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3115   if (map->mode & GL_MAP_WRITE_BIT) {
3116      intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3117   }
3118
3119   if (mt->format == MESA_FORMAT_S_UINT8) {
3120      intel_miptree_map_s8(brw, mt, map, level, slice);
3121   } else if (mt->etc_format != MESA_FORMAT_NONE &&
3122              !(mode & BRW_MAP_DIRECT_BIT)) {
3123      intel_miptree_map_etc(brw, mt, map, level, slice);
3124   } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3125      intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3126   } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3127      intel_miptree_map_blit(brw, mt, map, level, slice);
3128#if defined(USE_SSE41)
3129   } else if (!(mode & GL_MAP_WRITE_BIT) &&
3130              !mt->compressed && cpu_has_sse4_1 &&
3131              (mt->pitch % 16 == 0)) {
3132      intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3133#endif
3134   } else {
3135      /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
3136      assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
3137      intel_miptree_map_gtt(brw, mt, map, level, slice);
3138   }
3139
3140   *out_ptr = map->ptr;
3141   *out_stride = map->stride;
3142
3143   if (map->ptr == NULL)
3144      intel_miptree_release_map(mt, level, slice);
3145}
3146
3147void
3148intel_miptree_unmap(struct brw_context *brw,
3149                    struct intel_mipmap_tree *mt,
3150                    unsigned int level,
3151                    unsigned int slice)
3152{
3153   struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3154
3155   assert(mt->num_samples <= 1);
3156
3157   if (!map)
3158      return;
3159
3160   DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3161       mt, _mesa_get_format_name(mt->format), level, slice);
3162
3163   if (mt->format == MESA_FORMAT_S_UINT8) {
3164      intel_miptree_unmap_s8(brw, mt, map, level, slice);
3165   } else if (mt->etc_format != MESA_FORMAT_NONE &&
3166              !(map->mode & BRW_MAP_DIRECT_BIT)) {
3167      intel_miptree_unmap_etc(brw, mt, map, level, slice);
3168   } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3169      intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3170   } else if (map->linear_mt) {
3171      intel_miptree_unmap_blit(brw, mt, map, level, slice);
3172#if defined(USE_SSE41)
3173   } else if (map->buffer && cpu_has_sse4_1) {
3174      intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3175#endif
3176   } else {
3177      intel_miptree_unmap_gtt(mt);
3178   }
3179
3180   intel_miptree_release_map(mt, level, slice);
3181}
3182
3183enum isl_surf_dim
3184get_isl_surf_dim(GLenum target)
3185{
3186   switch (target) {
3187   case GL_TEXTURE_1D:
3188   case GL_TEXTURE_1D_ARRAY:
3189      return ISL_SURF_DIM_1D;
3190
3191   case GL_TEXTURE_2D:
3192   case GL_TEXTURE_2D_ARRAY:
3193   case GL_TEXTURE_RECTANGLE:
3194   case GL_TEXTURE_CUBE_MAP:
3195   case GL_TEXTURE_CUBE_MAP_ARRAY:
3196   case GL_TEXTURE_2D_MULTISAMPLE:
3197   case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3198   case GL_TEXTURE_EXTERNAL_OES:
3199      return ISL_SURF_DIM_2D;
3200
3201   case GL_TEXTURE_3D:
3202      return ISL_SURF_DIM_3D;
3203   }
3204
3205   unreachable("Invalid texture target");
3206}
3207
3208enum isl_dim_layout
3209get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3210                   GLenum target)
3211{
3212   switch (target) {
3213   case GL_TEXTURE_1D:
3214   case GL_TEXTURE_1D_ARRAY:
3215      return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3216              ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3217
3218   case GL_TEXTURE_2D:
3219   case GL_TEXTURE_2D_ARRAY:
3220   case GL_TEXTURE_RECTANGLE:
3221   case GL_TEXTURE_2D_MULTISAMPLE:
3222   case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3223   case GL_TEXTURE_EXTERNAL_OES:
3224      return ISL_DIM_LAYOUT_GEN4_2D;
3225
3226   case GL_TEXTURE_CUBE_MAP:
3227   case GL_TEXTURE_CUBE_MAP_ARRAY:
3228      return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3229              ISL_DIM_LAYOUT_GEN4_2D);
3230
3231   case GL_TEXTURE_3D:
3232      return (devinfo->gen >= 9 ?
3233              ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3234   }
3235
3236   unreachable("Invalid texture target");
3237}
3238
3239enum isl_tiling
3240intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3241{
3242   if (mt->format == MESA_FORMAT_S_UINT8) {
3243      return ISL_TILING_W;
3244   } else {
3245      switch (mt->tiling) {
3246      case I915_TILING_NONE:
3247         return ISL_TILING_LINEAR;
3248      case I915_TILING_X:
3249         return ISL_TILING_X;
3250      case I915_TILING_Y:
3251         switch (mt->tr_mode) {
3252         case INTEL_MIPTREE_TRMODE_NONE:
3253            return ISL_TILING_Y0;
3254         case INTEL_MIPTREE_TRMODE_YF:
3255            return ISL_TILING_Yf;
3256         case INTEL_MIPTREE_TRMODE_YS:
3257            return ISL_TILING_Ys;
3258         default:
3259            unreachable("Invalid tiled resource mode");
3260         }
3261      default:
3262         unreachable("Invalid tiling mode");
3263      }
3264   }
3265}
3266
3267void
3268intel_miptree_get_isl_surf(struct brw_context *brw,
3269                           const struct intel_mipmap_tree *mt,
3270                           struct isl_surf *surf)
3271{
3272   surf->dim = get_isl_surf_dim(mt->target);
3273   surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3274                                         mt->tiling, mt->target);
3275
3276   if (mt->num_samples > 1) {
3277      switch (mt->msaa_layout) {
3278      case INTEL_MSAA_LAYOUT_IMS:
3279         surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3280         break;
3281      case INTEL_MSAA_LAYOUT_UMS:
3282      case INTEL_MSAA_LAYOUT_CMS:
3283         surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3284         break;
3285      default:
3286         unreachable("Invalid MSAA layout");
3287      }
3288   } else {
3289      surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3290   }
3291
3292   surf->tiling = intel_miptree_get_isl_tiling(mt);
3293
3294   if (mt->format == MESA_FORMAT_S_UINT8) {
3295      /* The ISL definition of row_pitch matches the surface state pitch field
3296       * a bit better than intel_mipmap_tree.  In particular, ISL incorporates
3297       * the factor of 2 for W-tiling in row_pitch.
3298       */
3299      surf->row_pitch = 2 * mt->pitch;
3300   } else {
3301      surf->row_pitch = mt->pitch;
3302   }
3303
3304   surf->format = translate_tex_format(brw, mt->format, false);
3305
3306   if (brw->gen >= 9) {
3307      if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3308         /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3309         surf->image_alignment_el = isl_extent3d(64, 1, 1);
3310      } else {
3311         /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3312          * alignment in terms of surface elements like we want.
3313          */
3314         surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3315      }
3316   } else {
3317      /* On earlier gens it's stored in pixels. */
3318      unsigned bw, bh;
3319      _mesa_get_format_block_size(mt->format, &bw, &bh);
3320      surf->image_alignment_el =
3321         isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3322   }
3323
3324   surf->logical_level0_px.width = mt->logical_width0;
3325   surf->logical_level0_px.height = mt->logical_height0;
3326   if (surf->dim == ISL_SURF_DIM_3D) {
3327      surf->logical_level0_px.depth = mt->logical_depth0;
3328      surf->logical_level0_px.array_len = 1;
3329   } else {
3330      surf->logical_level0_px.depth = 1;
3331      surf->logical_level0_px.array_len = mt->logical_depth0;
3332   }
3333
3334   surf->phys_level0_sa.width = mt->physical_width0;
3335   surf->phys_level0_sa.height = mt->physical_height0;
3336   if (surf->dim == ISL_SURF_DIM_3D) {
3337      surf->phys_level0_sa.depth = mt->physical_depth0;
3338      surf->phys_level0_sa.array_len = 1;
3339   } else {
3340      surf->phys_level0_sa.depth = 1;
3341      surf->phys_level0_sa.array_len = mt->physical_depth0;
3342   }
3343
3344   surf->levels = mt->last_level + 1;
3345   surf->samples = MAX2(mt->num_samples, 1);
3346
3347   surf->size = 0; /* TODO */
3348   surf->alignment = 0; /* TODO */
3349
3350   switch (surf->dim_layout) {
3351   case ISL_DIM_LAYOUT_GEN4_2D:
3352   case ISL_DIM_LAYOUT_GEN4_3D:
3353      if (brw->gen >= 9) {
3354         surf->array_pitch_el_rows = mt->qpitch;
3355      } else {
3356         unsigned bw, bh;
3357         _mesa_get_format_block_size(mt->format, &bw, &bh);
3358         assert(mt->qpitch % bh == 0);
3359         surf->array_pitch_el_rows = mt->qpitch / bh;
3360      }
3361      break;
3362   case ISL_DIM_LAYOUT_GEN9_1D:
3363      surf->array_pitch_el_rows = 1;
3364      break;
3365   }
3366
3367   switch (mt->array_layout) {
3368   case ALL_LOD_IN_EACH_SLICE:
3369      surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3370      break;
3371   case ALL_SLICES_AT_EACH_LOD:
3372      surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3373      break;
3374   default:
3375      unreachable("Invalid array layout");
3376   }
3377
3378   GLenum base_format = _mesa_get_format_base_format(mt->format);
3379   switch (base_format) {
3380   case GL_DEPTH_COMPONENT:
3381      surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3382      break;
3383   case GL_STENCIL_INDEX:
3384      surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3385      if (brw->gen >= 8)
3386         surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3387      break;
3388   case GL_DEPTH_STENCIL:
3389      /* In this case we only texture from the depth part */
3390      surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3391                    ISL_SURF_USAGE_TEXTURE_BIT;
3392      break;
3393   default:
3394      surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3395      if (brw->format_supported_as_render_target[mt->format])
3396         surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3397      break;
3398   }
3399
3400   if (_mesa_is_cube_map_texture(mt->target))
3401      surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3402}
3403
3404/* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3405 * USED FOR ANY REAL CALCULATIONS.  THE ONLY VALID USE OF SUCH A SURFACE IS TO
3406 * PASS IT INTO isl_surf_fill_state.
3407 */
3408void
3409intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3410                               const struct intel_mipmap_tree *mt,
3411                               struct isl_surf *surf,
3412                               enum isl_aux_usage *usage)
3413{
3414   uint32_t aux_pitch, aux_qpitch;
3415   if (mt->mcs_buf) {
3416      aux_pitch = mt->mcs_buf->pitch;
3417      aux_qpitch = mt->mcs_buf->qpitch;
3418
3419      if (mt->num_samples > 1) {
3420         assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3421         *usage = ISL_AUX_USAGE_MCS;
3422      } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3423         assert(brw->gen >= 9);
3424         *usage = ISL_AUX_USAGE_CCS_E;
3425      } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3426         *usage = ISL_AUX_USAGE_CCS_D;
3427      } else {
3428         unreachable("Invalid MCS miptree");
3429      }
3430   } else if (mt->hiz_buf) {
3431      if (mt->hiz_buf->mt) {
3432         aux_pitch = mt->hiz_buf->mt->pitch;
3433         aux_qpitch = mt->hiz_buf->mt->qpitch;
3434      } else {
3435         aux_pitch = mt->hiz_buf->aux_base.pitch;
3436         aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3437      }
3438
3439      *usage = ISL_AUX_USAGE_HIZ;
3440   } else {
3441      *usage = ISL_AUX_USAGE_NONE;
3442      return;
3443   }
3444
3445   /* Start with a copy of the original surface. */
3446   intel_miptree_get_isl_surf(brw, mt, surf);
3447
3448   /* Figure out the format and tiling of the auxiliary surface */
3449   switch (*usage) {
3450   case ISL_AUX_USAGE_NONE:
3451      unreachable("Invalid auxiliary usage");
3452
3453   case ISL_AUX_USAGE_HIZ:
3454      isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3455      break;
3456
3457   case ISL_AUX_USAGE_MCS:
3458      /*
3459       * From the SKL PRM:
3460       *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3461       *    HALIGN 16 must be used."
3462       */
3463      if (brw->gen >= 9)
3464         assert(mt->halign == 16);
3465
3466      isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3467      break;
3468
3469   case ISL_AUX_USAGE_CCS_D:
3470   case ISL_AUX_USAGE_CCS_E:
3471      /*
3472       * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3473       *
3474       *    "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3475       *
3476       * From the hardware spec for GEN9:
3477       *
3478       *    "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3479       *    HALIGN 16 must be used."
3480       */
3481      assert(mt->num_samples <= 1);
3482      if (brw->gen >= 8)
3483         assert(mt->halign == 16);
3484
3485      isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3486      break;
3487   }
3488
3489   /* We want the pitch of the actual aux buffer. */
3490   surf->row_pitch = aux_pitch;
3491
3492   /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3493    * is in elements.  This doesn't match intel_mipmap_tree::qpitch which is
3494    * in elements of the primary color surface so we have to divide by the
3495    * compression block height.
3496    */
3497   surf->array_pitch_el_rows =
3498      aux_qpitch / isl_format_get_layout(surf->format)->bh;
3499}
3500
3501union isl_color_value
3502intel_miptree_get_isl_clear_color(struct brw_context *brw,
3503                                  const struct intel_mipmap_tree *mt)
3504{
3505   union isl_color_value clear_color;
3506
3507   if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3508      clear_color.i32[0] = mt->depth_clear_value;
3509      clear_color.i32[1] = 0;
3510      clear_color.i32[2] = 0;
3511      clear_color.i32[3] = 0;
3512   } else if (brw->gen >= 9) {
3513      clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3514      clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3515      clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3516      clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3517   } else if (_mesa_is_format_integer(mt->format)) {
3518      clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3519      clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3520      clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3521      clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3522   } else {
3523      clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3524      clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3525      clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3526      clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3527   }
3528
3529   return clear_color;
3530}
3531