s_triangle.c revision 086f9fc0e2aef27f54eda87c733685500555bf20
1/* 2 * Mesa 3-D graphics library 3 * Version: 7.3 4 * 5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included 15 * in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/* 27 * When the device driver doesn't implement triangle rasterization it 28 * can hook in _swrast_Triangle, which eventually calls one of these 29 * functions to draw triangles. 30 */ 31 32#include "main/glheader.h" 33#include "main/context.h" 34#include "main/colormac.h" 35#include "main/imports.h" 36#include "main/macros.h" 37#include "main/texformat.h" 38#include "shader/prog_instruction.h" 39 40#include "s_aatriangle.h" 41#include "s_context.h" 42#include "s_feedback.h" 43#include "s_span.h" 44#include "s_triangle.h" 45 46 47/** 48 * Test if a triangle should be culled. Used for feedback and selection mode. 49 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. 50 */ 51GLboolean 52_swrast_culltriangle( GLcontext *ctx, 53 const SWvertex *v0, 54 const SWvertex *v1, 55 const SWvertex *v2 ) 56{ 57 SWcontext *swrast = SWRAST_CONTEXT(ctx); 58 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 59 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 60 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 61 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 62 GLfloat c = ex*fy-ey*fx; 63 64 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) 65 return GL_FALSE; 66 67 return GL_TRUE; 68} 69 70 71 72/* 73 * Render a smooth or flat-shaded color index triangle. 74 */ 75#define NAME ci_triangle 76#define INTERP_Z 1 77#define INTERP_ATTRIBS 1 /* just for fog */ 78#define INTERP_INDEX 1 79#define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span); 80#include "s_tritemp.h" 81 82 83 84/* 85 * Render a flat-shaded RGBA triangle. 86 */ 87#define NAME flat_rgba_triangle 88#define INTERP_Z 1 89#define SETUP_CODE \ 90 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\ 91 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \ 92 span.interpMask |= SPAN_RGBA; \ 93 span.red = ChanToFixed(v2->color[0]); \ 94 span.green = ChanToFixed(v2->color[1]); \ 95 span.blue = ChanToFixed(v2->color[2]); \ 96 span.alpha = ChanToFixed(v2->color[3]); \ 97 span.redStep = 0; \ 98 span.greenStep = 0; \ 99 span.blueStep = 0; \ 100 span.alphaStep = 0; 101#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 102#include "s_tritemp.h" 103 104 105 106/* 107 * Render a smooth-shaded RGBA triangle. 108 */ 109#define NAME smooth_rgba_triangle 110#define INTERP_Z 1 111#define INTERP_RGB 1 112#define INTERP_ALPHA 1 113#define SETUP_CODE \ 114 { \ 115 /* texturing must be off */ \ 116 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \ 117 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \ 118 } 119#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 120#include "s_tritemp.h" 121 122 123 124/* 125 * Render an RGB, GL_DECAL, textured triangle. 126 * Interpolate S,T only w/out mipmapping or perspective correction. 127 * 128 * No fog. No depth testing. 129 */ 130#define NAME simple_textured_triangle 131#define INTERP_INT_TEX 1 132#define S_SCALE twidth 133#define T_SCALE theight 134 135#define SETUP_CODE \ 136 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 137 const struct gl_texture_object *obj = \ 138 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 139 const struct gl_texture_image *texImg = \ 140 obj->Image[0][obj->BaseLevel]; \ 141 const GLfloat twidth = (GLfloat) texImg->Width; \ 142 const GLfloat theight = (GLfloat) texImg->Height; \ 143 const GLint twidth_log2 = texImg->WidthLog2; \ 144 const GLubyte *texture = (const GLubyte *) texImg->Data; \ 145 const GLint smask = texImg->Width - 1; \ 146 const GLint tmask = texImg->Height - 1; \ 147 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 148 if (!rb || !texture) { \ 149 return; \ 150 } 151 152#define RENDER_SPAN( span ) \ 153 GLuint i; \ 154 GLubyte rgb[MAX_WIDTH][3]; \ 155 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 156 span.intTex[1] -= FIXED_HALF; \ 157 for (i = 0; i < span.end; i++) { \ 158 GLint s = FixedToInt(span.intTex[0]) & smask; \ 159 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 160 GLint pos = (t << twidth_log2) + s; \ 161 pos = pos + pos + pos; /* multiply by 3 */ \ 162 rgb[i][RCOMP] = texture[pos+2]; \ 163 rgb[i][GCOMP] = texture[pos+1]; \ 164 rgb[i][BCOMP] = texture[pos+0]; \ 165 span.intTex[0] += span.intTexStep[0]; \ 166 span.intTex[1] += span.intTexStep[1]; \ 167 } \ 168 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL); 169 170#include "s_tritemp.h" 171 172 173 174/* 175 * Render an RGB, GL_DECAL, textured triangle. 176 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or 177 * perspective correction. 178 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) 179 * 180 * No fog. 181 */ 182#define NAME simple_z_textured_triangle 183#define INTERP_Z 1 184#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 185#define INTERP_INT_TEX 1 186#define S_SCALE twidth 187#define T_SCALE theight 188 189#define SETUP_CODE \ 190 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 191 const struct gl_texture_object *obj = \ 192 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 193 const struct gl_texture_image *texImg = \ 194 obj->Image[0][obj->BaseLevel]; \ 195 const GLfloat twidth = (GLfloat) texImg->Width; \ 196 const GLfloat theight = (GLfloat) texImg->Height; \ 197 const GLint twidth_log2 = texImg->WidthLog2; \ 198 const GLubyte *texture = (const GLubyte *) texImg->Data; \ 199 const GLint smask = texImg->Width - 1; \ 200 const GLint tmask = texImg->Height - 1; \ 201 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 202 if (!rb || !texture) { \ 203 return; \ 204 } 205 206#define RENDER_SPAN( span ) \ 207 GLuint i; \ 208 GLubyte rgb[MAX_WIDTH][3]; \ 209 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 210 span.intTex[1] -= FIXED_HALF; \ 211 for (i = 0; i < span.end; i++) { \ 212 const GLuint z = FixedToDepth(span.z); \ 213 if (z < zRow[i]) { \ 214 GLint s = FixedToInt(span.intTex[0]) & smask; \ 215 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 216 GLint pos = (t << twidth_log2) + s; \ 217 pos = pos + pos + pos; /* multiply by 3 */ \ 218 rgb[i][RCOMP] = texture[pos+2]; \ 219 rgb[i][GCOMP] = texture[pos+1]; \ 220 rgb[i][BCOMP] = texture[pos+0]; \ 221 zRow[i] = z; \ 222 span.array->mask[i] = 1; \ 223 } \ 224 else { \ 225 span.array->mask[i] = 0; \ 226 } \ 227 span.intTex[0] += span.intTexStep[0]; \ 228 span.intTex[1] += span.intTexStep[1]; \ 229 span.z += span.zStep; \ 230 } \ 231 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask); 232 233#include "s_tritemp.h" 234 235 236#if CHAN_TYPE != GL_FLOAT 237 238struct affine_info 239{ 240 GLenum filter; 241 GLenum format; 242 GLenum envmode; 243 GLint smask, tmask; 244 GLint twidth_log2; 245 const GLchan *texture; 246 GLfixed er, eg, eb, ea; 247 GLint tbytesline, tsize; 248}; 249 250 251static INLINE GLint 252ilerp(GLint t, GLint a, GLint b) 253{ 254 return a + ((t * (b - a)) >> FIXED_SHIFT); 255} 256 257static INLINE GLint 258ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) 259{ 260 const GLint temp0 = ilerp(ia, v00, v10); 261 const GLint temp1 = ilerp(ia, v01, v11); 262 return ilerp(ib, temp0, temp1); 263} 264 265 266/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA 267 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD 268 * texture env modes. 269 */ 270static INLINE void 271affine_span(GLcontext *ctx, SWspan *span, 272 struct affine_info *info) 273{ 274 GLchan sample[4]; /* the filtered texture sample */ 275 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 276 277 /* Instead of defining a function for each mode, a test is done 278 * between the outer and inner loops. This is to reduce code size 279 * and complexity. Observe that an optimizing compiler kills 280 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 281 */ 282 283#define NEAREST_RGB \ 284 sample[RCOMP] = tex00[2]; \ 285 sample[GCOMP] = tex00[1]; \ 286 sample[BCOMP] = tex00[0]; \ 287 sample[ACOMP] = CHAN_MAX; 288 289#define LINEAR_RGB \ 290 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 291 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 292 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ 293 sample[ACOMP] = CHAN_MAX; 294 295#define NEAREST_RGBA \ 296 sample[RCOMP] = tex00[3]; \ 297 sample[GCOMP] = tex00[2]; \ 298 sample[BCOMP] = tex00[1]; \ 299 sample[ACOMP] = tex00[0]; 300 301#define LINEAR_RGBA \ 302 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\ 303 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 304 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 305 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]) 306 307#define MODULATE \ 308 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 309 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 310 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 311 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) 312 313#define DECAL \ 314 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ 315 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ 316 >> (FIXED_SHIFT + 8); \ 317 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ 318 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ 319 >> (FIXED_SHIFT + 8); \ 320 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ 321 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ 322 >> (FIXED_SHIFT + 8); \ 323 dest[ACOMP] = FixedToInt(span->alpha) 324 325#define BLEND \ 326 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ 327 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ 328 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ 329 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ 330 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ 331 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ 332 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) 333 334#define REPLACE COPY_CHAN4(dest, sample) 335 336#define ADD \ 337 { \ 338 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ 339 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ 340 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ 341 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ 342 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ 343 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ 344 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ 345 } 346 347/* shortcuts */ 348 349#define NEAREST_RGB_REPLACE \ 350 NEAREST_RGB; \ 351 dest[0] = sample[0]; \ 352 dest[1] = sample[1]; \ 353 dest[2] = sample[2]; \ 354 dest[3] = FixedToInt(span->alpha); 355 356#define NEAREST_RGBA_REPLACE \ 357 dest[RCOMP] = tex00[3]; \ 358 dest[GCOMP] = tex00[2]; \ 359 dest[BCOMP] = tex00[1]; \ 360 dest[ACOMP] = tex00[0] 361 362#define SPAN_NEAREST(DO_TEX, COMPS) \ 363 for (i = 0; i < span->end; i++) { \ 364 /* Isn't it necessary to use FixedFloor below?? */ \ 365 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 366 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 367 GLint pos = (t << info->twidth_log2) + s; \ 368 const GLchan *tex00 = info->texture + COMPS * pos; \ 369 DO_TEX; \ 370 span->red += span->redStep; \ 371 span->green += span->greenStep; \ 372 span->blue += span->blueStep; \ 373 span->alpha += span->alphaStep; \ 374 span->intTex[0] += span->intTexStep[0]; \ 375 span->intTex[1] += span->intTexStep[1]; \ 376 dest += 4; \ 377 } 378 379#define SPAN_LINEAR(DO_TEX, COMPS) \ 380 for (i = 0; i < span->end; i++) { \ 381 /* Isn't it necessary to use FixedFloor below?? */ \ 382 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 383 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 384 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ 385 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ 386 const GLint pos = (t << info->twidth_log2) + s; \ 387 const GLchan *tex00 = info->texture + COMPS * pos; \ 388 const GLchan *tex10 = tex00 + info->tbytesline; \ 389 const GLchan *tex01 = tex00 + COMPS; \ 390 const GLchan *tex11 = tex10 + COMPS; \ 391 if (t == info->tmask) { \ 392 tex10 -= info->tsize; \ 393 tex11 -= info->tsize; \ 394 } \ 395 if (s == info->smask) { \ 396 tex01 -= info->tbytesline; \ 397 tex11 -= info->tbytesline; \ 398 } \ 399 DO_TEX; \ 400 span->red += span->redStep; \ 401 span->green += span->greenStep; \ 402 span->blue += span->blueStep; \ 403 span->alpha += span->alphaStep; \ 404 span->intTex[0] += span->intTexStep[0]; \ 405 span->intTex[1] += span->intTexStep[1]; \ 406 dest += 4; \ 407 } 408 409 410 GLuint i; 411 GLchan *dest = span->array->rgba[0]; 412 413 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ 414 ctx->Texture._EnabledCoordUnits = 0x0; 415 416 span->intTex[0] -= FIXED_HALF; 417 span->intTex[1] -= FIXED_HALF; 418 switch (info->filter) { 419 case GL_NEAREST: 420 switch (info->format) { 421 case MESA_FORMAT_RGB888: 422 switch (info->envmode) { 423 case GL_MODULATE: 424 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 425 break; 426 case GL_DECAL: 427 case GL_REPLACE: 428 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 429 break; 430 case GL_BLEND: 431 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 432 break; 433 case GL_ADD: 434 SPAN_NEAREST(NEAREST_RGB;ADD,3); 435 break; 436 default: 437 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); 438 return; 439 } 440 break; 441 case MESA_FORMAT_RGBA8888: 442 switch(info->envmode) { 443 case GL_MODULATE: 444 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 445 break; 446 case GL_DECAL: 447 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 448 break; 449 case GL_BLEND: 450 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 451 break; 452 case GL_ADD: 453 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 454 break; 455 case GL_REPLACE: 456 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 457 break; 458 default: 459 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); 460 return; 461 } 462 break; 463 } 464 break; 465 466 case GL_LINEAR: 467 span->intTex[0] -= FIXED_HALF; 468 span->intTex[1] -= FIXED_HALF; 469 switch (info->format) { 470 case MESA_FORMAT_RGB888: 471 switch (info->envmode) { 472 case GL_MODULATE: 473 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 474 break; 475 case GL_DECAL: 476 case GL_REPLACE: 477 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 478 break; 479 case GL_BLEND: 480 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 481 break; 482 case GL_ADD: 483 SPAN_LINEAR(LINEAR_RGB;ADD,3); 484 break; 485 default: 486 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); 487 return; 488 } 489 break; 490 case MESA_FORMAT_RGBA8888: 491 switch (info->envmode) { 492 case GL_MODULATE: 493 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 494 break; 495 case GL_DECAL: 496 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 497 break; 498 case GL_BLEND: 499 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 500 break; 501 case GL_ADD: 502 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 503 break; 504 case GL_REPLACE: 505 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 506 break; 507 default: 508 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); 509 return; 510 } 511 break; 512 } 513 break; 514 } 515 span->interpMask &= ~SPAN_RGBA; 516 ASSERT(span->arrayMask & SPAN_RGBA); 517 518 _swrast_write_rgba_span(ctx, span); 519 520 /* re-enable texture units */ 521 ctx->Texture._EnabledCoordUnits = texEnableSave; 522 523#undef SPAN_NEAREST 524#undef SPAN_LINEAR 525} 526 527 528 529/* 530 * Render an RGB/RGBA textured triangle without perspective correction. 531 */ 532#define NAME affine_textured_triangle 533#define INTERP_Z 1 534#define INTERP_RGB 1 535#define INTERP_ALPHA 1 536#define INTERP_INT_TEX 1 537#define S_SCALE twidth 538#define T_SCALE theight 539 540#define SETUP_CODE \ 541 struct affine_info info; \ 542 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 543 const struct gl_texture_object *obj = \ 544 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 545 const struct gl_texture_image *texImg = \ 546 obj->Image[0][obj->BaseLevel]; \ 547 const GLfloat twidth = (GLfloat) texImg->Width; \ 548 const GLfloat theight = (GLfloat) texImg->Height; \ 549 info.texture = (const GLchan *) texImg->Data; \ 550 info.twidth_log2 = texImg->WidthLog2; \ 551 info.smask = texImg->Width - 1; \ 552 info.tmask = texImg->Height - 1; \ 553 info.format = texImg->TexFormat; \ 554 info.filter = obj->MinFilter; \ 555 info.envmode = unit->EnvMode; \ 556 span.arrayMask |= SPAN_RGBA; \ 557 \ 558 if (info.envmode == GL_BLEND) { \ 559 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 560 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 561 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 562 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 563 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 564 } \ 565 if (!info.texture) { \ 566 /* this shouldn't happen */ \ 567 return; \ 568 } \ 569 \ 570 switch (info.format) { \ 571 case MESA_FORMAT_RGB888: \ 572 info.tbytesline = texImg->Width * 3; \ 573 break; \ 574 case MESA_FORMAT_RGBA8888: \ 575 info.tbytesline = texImg->Width * 4; \ 576 break; \ 577 default: \ 578 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ 579 return; \ 580 } \ 581 info.tsize = texImg->Height * info.tbytesline; 582 583#define RENDER_SPAN( span ) affine_span(ctx, &span, &info); 584 585#include "s_tritemp.h" 586 587 588 589struct persp_info 590{ 591 GLenum filter; 592 GLenum format; 593 GLenum envmode; 594 GLint smask, tmask; 595 GLint twidth_log2; 596 const GLchan *texture; 597 GLfixed er, eg, eb, ea; /* texture env color */ 598 GLint tbytesline, tsize; 599}; 600 601 602static INLINE void 603fast_persp_span(GLcontext *ctx, SWspan *span, 604 struct persp_info *info) 605{ 606 GLchan sample[4]; /* the filtered texture sample */ 607 608 /* Instead of defining a function for each mode, a test is done 609 * between the outer and inner loops. This is to reduce code size 610 * and complexity. Observe that an optimizing compiler kills 611 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 612 */ 613#define SPAN_NEAREST(DO_TEX,COMP) \ 614 for (i = 0; i < span->end; i++) { \ 615 GLdouble invQ = tex_coord[2] ? \ 616 (1.0 / tex_coord[2]) : 1.0; \ 617 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 618 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 619 GLint s = IFLOOR(s_tmp) & info->smask; \ 620 GLint t = IFLOOR(t_tmp) & info->tmask; \ 621 GLint pos = (t << info->twidth_log2) + s; \ 622 const GLchan *tex00 = info->texture + COMP * pos; \ 623 DO_TEX; \ 624 span->red += span->redStep; \ 625 span->green += span->greenStep; \ 626 span->blue += span->blueStep; \ 627 span->alpha += span->alphaStep; \ 628 tex_coord[0] += tex_step[0]; \ 629 tex_coord[1] += tex_step[1]; \ 630 tex_coord[2] += tex_step[2]; \ 631 dest += 4; \ 632 } 633 634#define SPAN_LINEAR(DO_TEX,COMP) \ 635 for (i = 0; i < span->end; i++) { \ 636 GLdouble invQ = tex_coord[2] ? \ 637 (1.0 / tex_coord[2]) : 1.0; \ 638 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 639 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 640 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ 641 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ 642 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ 643 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ 644 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ 645 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ 646 const GLint pos = (t << info->twidth_log2) + s; \ 647 const GLchan *tex00 = info->texture + COMP * pos; \ 648 const GLchan *tex10 = tex00 + info->tbytesline; \ 649 const GLchan *tex01 = tex00 + COMP; \ 650 const GLchan *tex11 = tex10 + COMP; \ 651 if (t == info->tmask) { \ 652 tex10 -= info->tsize; \ 653 tex11 -= info->tsize; \ 654 } \ 655 if (s == info->smask) { \ 656 tex01 -= info->tbytesline; \ 657 tex11 -= info->tbytesline; \ 658 } \ 659 DO_TEX; \ 660 span->red += span->redStep; \ 661 span->green += span->greenStep; \ 662 span->blue += span->blueStep; \ 663 span->alpha += span->alphaStep; \ 664 tex_coord[0] += tex_step[0]; \ 665 tex_coord[1] += tex_step[1]; \ 666 tex_coord[2] += tex_step[2]; \ 667 dest += 4; \ 668 } 669 670 GLuint i; 671 GLfloat tex_coord[3], tex_step[3]; 672 GLchan *dest = span->array->rgba[0]; 673 674 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 675 ctx->Texture._EnabledCoordUnits = 0; 676 677 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 678 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 679 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 680 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 681 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */ 682 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3]; 683 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3]; 684 685 switch (info->filter) { 686 case GL_NEAREST: 687 switch (info->format) { 688 case MESA_FORMAT_RGB888: 689 switch (info->envmode) { 690 case GL_MODULATE: 691 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 692 break; 693 case GL_DECAL: 694 case GL_REPLACE: 695 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 696 break; 697 case GL_BLEND: 698 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 699 break; 700 case GL_ADD: 701 SPAN_NEAREST(NEAREST_RGB;ADD,3); 702 break; 703 default: 704 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); 705 return; 706 } 707 break; 708 case MESA_FORMAT_RGBA8888: 709 switch(info->envmode) { 710 case GL_MODULATE: 711 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 712 break; 713 case GL_DECAL: 714 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 715 break; 716 case GL_BLEND: 717 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 718 break; 719 case GL_ADD: 720 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 721 break; 722 case GL_REPLACE: 723 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 724 break; 725 default: 726 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); 727 return; 728 } 729 break; 730 } 731 break; 732 733 case GL_LINEAR: 734 switch (info->format) { 735 case MESA_FORMAT_RGB888: 736 switch (info->envmode) { 737 case GL_MODULATE: 738 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 739 break; 740 case GL_DECAL: 741 case GL_REPLACE: 742 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 743 break; 744 case GL_BLEND: 745 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 746 break; 747 case GL_ADD: 748 SPAN_LINEAR(LINEAR_RGB;ADD,3); 749 break; 750 default: 751 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); 752 return; 753 } 754 break; 755 case MESA_FORMAT_RGBA8888: 756 switch (info->envmode) { 757 case GL_MODULATE: 758 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 759 break; 760 case GL_DECAL: 761 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 762 break; 763 case GL_BLEND: 764 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 765 break; 766 case GL_ADD: 767 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 768 break; 769 case GL_REPLACE: 770 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 771 break; 772 default: 773 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); 774 return; 775 } 776 break; 777 } 778 break; 779 } 780 781 ASSERT(span->arrayMask & SPAN_RGBA); 782 _swrast_write_rgba_span(ctx, span); 783 784#undef SPAN_NEAREST 785#undef SPAN_LINEAR 786 787 /* restore state */ 788 ctx->Texture._EnabledCoordUnits = texEnableSave; 789} 790 791 792/* 793 * Render an perspective corrected RGB/RGBA textured triangle. 794 * The Q (aka V in Mesa) coordinate must be zero such that the divide 795 * by interpolated Q/W comes out right. 796 * 797 */ 798#define NAME persp_textured_triangle 799#define INTERP_Z 1 800#define INTERP_RGB 1 801#define INTERP_ALPHA 1 802#define INTERP_ATTRIBS 1 803 804#define SETUP_CODE \ 805 struct persp_info info; \ 806 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 807 const struct gl_texture_object *obj = \ 808 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 809 const struct gl_texture_image *texImg = \ 810 obj->Image[0][obj->BaseLevel]; \ 811 info.texture = (const GLchan *) texImg->Data; \ 812 info.twidth_log2 = texImg->WidthLog2; \ 813 info.smask = texImg->Width - 1; \ 814 info.tmask = texImg->Height - 1; \ 815 info.format = texImg->TexFormat; \ 816 info.filter = obj->MinFilter; \ 817 info.envmode = unit->EnvMode; \ 818 \ 819 if (info.envmode == GL_BLEND) { \ 820 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 821 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 822 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 823 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 824 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 825 } \ 826 if (!info.texture) { \ 827 /* this shouldn't happen */ \ 828 return; \ 829 } \ 830 \ 831 switch (info.format) { \ 832 case MESA_FORMAT_RGB888: \ 833 info.tbytesline = texImg->Width * 3; \ 834 break; \ 835 case MESA_FORMAT_RGBA8888: \ 836 info.tbytesline = texImg->Width * 4; \ 837 break; \ 838 default: \ 839 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ 840 return; \ 841 } \ 842 info.tsize = texImg->Height * info.tbytesline; 843 844#define RENDER_SPAN( span ) \ 845 span.interpMask &= ~SPAN_RGBA; \ 846 span.arrayMask |= SPAN_RGBA; \ 847 fast_persp_span(ctx, &span, &info); 848 849#include "s_tritemp.h" 850 851#endif /*CHAN_TYPE != GL_FLOAT*/ 852 853 854 855/* 856 * Render an RGBA triangle with arbitrary attributes. 857 */ 858#define NAME general_triangle 859#define INTERP_Z 1 860#define INTERP_RGB 1 861#define INTERP_ALPHA 1 862#define INTERP_ATTRIBS 1 863#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 864#include "s_tritemp.h" 865 866 867 868 869/* 870 * Special tri function for occlusion testing 871 */ 872#define NAME occlusion_zless_triangle 873#define INTERP_Z 1 874#define SETUP_CODE \ 875 struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \ 876 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ 877 ASSERT(ctx->Depth.Test); \ 878 ASSERT(!ctx->Depth.Mask); \ 879 ASSERT(ctx->Depth.Func == GL_LESS); \ 880 if (!q) { \ 881 return; \ 882 } 883#define RENDER_SPAN( span ) \ 884 if (rb->Format == MESA_FORMAT_Z16) { \ 885 GLuint i; \ 886 const GLushort *zRow = (const GLushort *) \ 887 rb->GetPointer(ctx, rb, span.x, span.y); \ 888 for (i = 0; i < span.end; i++) { \ 889 GLuint z = FixedToDepth(span.z); \ 890 if (z < zRow[i]) { \ 891 q->Result++; \ 892 } \ 893 span.z += span.zStep; \ 894 } \ 895 } \ 896 else { \ 897 GLuint i; \ 898 const GLuint *zRow = (const GLuint *) \ 899 rb->GetPointer(ctx, rb, span.x, span.y); \ 900 for (i = 0; i < span.end; i++) { \ 901 if ((GLuint)span.z < zRow[i]) { \ 902 q->Result++; \ 903 } \ 904 span.z += span.zStep; \ 905 } \ 906 } 907#include "s_tritemp.h" 908 909 910 911static void 912nodraw_triangle( GLcontext *ctx, 913 const SWvertex *v0, 914 const SWvertex *v1, 915 const SWvertex *v2 ) 916{ 917 (void) (ctx && v0 && v1 && v2); 918} 919 920 921/* 922 * This is used when separate specular color is enabled, but not 923 * texturing. We add the specular color to the primary color, 924 * draw the triangle, then restore the original primary color. 925 * Inefficient, but seldom needed. 926 */ 927void 928_swrast_add_spec_terms_triangle(GLcontext *ctx, const SWvertex *v0, 929 const SWvertex *v1, const SWvertex *v2) 930{ 931 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ 932 SWvertex *ncv1 = (SWvertex *)v1; 933 SWvertex *ncv2 = (SWvertex *)v2; 934 GLfloat rSum, gSum, bSum; 935 GLchan cSave[3][4]; 936 937 /* save original colors */ 938 COPY_CHAN4( cSave[0], ncv0->color ); 939 COPY_CHAN4( cSave[1], ncv1->color ); 940 COPY_CHAN4( cSave[2], ncv2->color ); 941 /* sum v0 */ 942 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; 943 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; 944 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; 945 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); 946 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); 947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); 948 /* sum v1 */ 949 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0]; 950 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1]; 951 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2]; 952 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); 953 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); 954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); 955 /* sum v2 */ 956 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0]; 957 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1]; 958 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2]; 959 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); 960 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); 961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); 962 /* draw */ 963 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); 964 /* restore original colors */ 965 COPY_CHAN4( ncv0->color, cSave[0] ); 966 COPY_CHAN4( ncv1->color, cSave[1] ); 967 COPY_CHAN4( ncv2->color, cSave[2] ); 968} 969 970 971 972#ifdef DEBUG 973 974/* record the current triangle function name */ 975const char *_mesa_triFuncName = NULL; 976 977#define USE(triFunc) \ 978do { \ 979 _mesa_triFuncName = #triFunc; \ 980 /*printf("%s\n", _mesa_triFuncName);*/ \ 981 swrast->Triangle = triFunc; \ 982} while (0) 983 984#else 985 986#define USE(triFunc) swrast->Triangle = triFunc; 987 988#endif 989 990 991 992 993/* 994 * Determine which triangle rendering function to use given the current 995 * rendering context. 996 * 997 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or 998 * remove tests to this code. 999 */ 1000void 1001_swrast_choose_triangle( GLcontext *ctx ) 1002{ 1003 SWcontext *swrast = SWRAST_CONTEXT(ctx); 1004 const GLboolean rgbmode = ctx->Visual.rgbMode; 1005 1006 if (ctx->Polygon.CullFlag && 1007 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { 1008 USE(nodraw_triangle); 1009 return; 1010 } 1011 1012 if (ctx->RenderMode==GL_RENDER) { 1013 1014 if (ctx->Polygon.SmoothFlag) { 1015 _swrast_set_aa_triangle_function(ctx); 1016 ASSERT(swrast->Triangle); 1017 return; 1018 } 1019 1020 /* special case for occlusion testing */ 1021 if (ctx->Query.CurrentOcclusionObject && 1022 ctx->Depth.Test && 1023 ctx->Depth.Mask == GL_FALSE && 1024 ctx->Depth.Func == GL_LESS && 1025 !ctx->Stencil._Enabled) { 1026 if ((rgbmode && 1027 ctx->Color.ColorMask[0] == 0 && 1028 ctx->Color.ColorMask[1] == 0 && 1029 ctx->Color.ColorMask[2] == 0 && 1030 ctx->Color.ColorMask[3] == 0) 1031 || 1032 (!rgbmode && ctx->Color.IndexMask == 0)) { 1033 USE(occlusion_zless_triangle); 1034 return; 1035 } 1036 } 1037 1038 if (!rgbmode) { 1039 USE(ci_triangle); 1040 return; 1041 } 1042 1043 /* 1044 * XXX should examine swrast->_ActiveAttribMask to determine what 1045 * needs to be interpolated. 1046 */ 1047 if (ctx->Texture._EnabledCoordUnits || 1048 ctx->FragmentProgram._Current || 1049 ctx->ATIFragmentShader._Enabled || 1050 NEED_SECONDARY_COLOR(ctx) || 1051 swrast->_FogEnabled) { 1052 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ 1053 const struct gl_texture_object *texObj2D; 1054 const struct gl_texture_image *texImg; 1055 GLenum minFilter, magFilter, envMode; 1056 gl_format format; 1057 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; 1058 1059 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL; 1060 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE; 1061 minFilter = texObj2D ? texObj2D->MinFilter : GL_NONE; 1062 magFilter = texObj2D ? texObj2D->MagFilter : GL_NONE; 1063 envMode = ctx->Texture.Unit[0].EnvMode; 1064 1065 /* First see if we can use an optimized 2-D texture function */ 1066 if (ctx->Texture._EnabledCoordUnits == 0x1 1067 && !ctx->FragmentProgram._Current 1068 && !ctx->ATIFragmentShader._Enabled 1069 && ctx->Texture._EnabledUnits == 0x1 1070 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT 1071 && texObj2D->WrapS == GL_REPEAT 1072 && texObj2D->WrapT == GL_REPEAT 1073 && texObj2D->_Swizzle == SWIZZLE_NOOP 1074 && texImg->_IsPowerOfTwo 1075 && texImg->Border == 0 1076 && texImg->Width == texImg->RowStride 1077 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888) 1078 && minFilter == magFilter 1079 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR 1080 && !swrast->_FogEnabled 1081 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT 1082 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) { 1083 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { 1084 if (minFilter == GL_NEAREST 1085 && format == MESA_FORMAT_RGB888 1086 && (envMode == GL_REPLACE || envMode == GL_DECAL) 1087 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) 1088 && ctx->Depth.Func == GL_LESS 1089 && ctx->Depth.Mask == GL_TRUE) 1090 || swrast->_RasterMask == TEXTURE_BIT) 1091 && ctx->Polygon.StippleFlag == GL_FALSE 1092 && ctx->DrawBuffer->Visual.depthBits <= 16) { 1093 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { 1094 USE(simple_z_textured_triangle); 1095 } 1096 else { 1097 USE(simple_textured_triangle); 1098 } 1099 } 1100 else { 1101#if CHAN_BITS != 8 1102 USE(general_triangle); 1103#else 1104 if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) 1105 /* We only handle RGBA8888 correctly on little endian 1106 * in the optimized code above. 1107 */ 1108 USE(general_triangle); 1109 else 1110 USE(affine_textured_triangle); 1111#endif 1112 } 1113 } 1114 else { 1115#if CHAN_BITS != 8 1116 USE(general_triangle); 1117#else 1118 USE(persp_textured_triangle); 1119#endif 1120 } 1121 } 1122 else { 1123 /* general case textured triangles */ 1124 USE(general_triangle); 1125 } 1126 } 1127 else { 1128 ASSERT(!swrast->_FogEnabled); 1129 ASSERT(!NEED_SECONDARY_COLOR(ctx)); 1130 if (ctx->Light.ShadeModel==GL_SMOOTH) { 1131 /* smooth shaded, no texturing, stippled or some raster ops */ 1132#if CHAN_BITS != 8 1133 USE(general_triangle); 1134#else 1135 USE(smooth_rgba_triangle); 1136#endif 1137 } 1138 else { 1139 /* flat shaded, no texturing, stippled or some raster ops */ 1140#if CHAN_BITS != 8 1141 USE(general_triangle); 1142#else 1143 USE(flat_rgba_triangle); 1144#endif 1145 } 1146 } 1147 } 1148 else if (ctx->RenderMode==GL_FEEDBACK) { 1149 USE(_swrast_feedback_triangle); 1150 } 1151 else { 1152 /* GL_SELECT mode */ 1153 USE(_swrast_select_triangle); 1154 } 1155} 1156