s_triangle.c revision b7f5e92f1749ce4601a758f66ddc64959f11742b
1/* $Id: s_triangle.c,v 1.57 2002/04/12 15:39:59 brianp Exp $ */ 2 3/* 4 * Mesa 3-D graphics library 5 * Version: 4.1 6 * 7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included 17 * in all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 28/* 29 * When the device driver doesn't implement triangle rasterization it 30 * can hook in _swrast_Triangle, which eventually calls one of these 31 * functions to draw triangles. 32 */ 33 34#include "glheader.h" 35#include "context.h" 36#include "colormac.h" 37#include "macros.h" 38#include "mem.h" 39#include "mmath.h" 40#include "texformat.h" 41#include "teximage.h" 42#include "texstate.h" 43 44#include "s_aatriangle.h" 45#include "s_context.h" 46#include "s_depth.h" 47#include "s_feedback.h" 48#include "s_span.h" 49#include "s_triangle.h" 50 51 52 53GLboolean _mesa_cull_triangle( GLcontext *ctx, 54 const SWvertex *v0, 55 const SWvertex *v1, 56 const SWvertex *v2 ) 57{ 58 GLfloat ex = v1->win[0] - v0->win[0]; 59 GLfloat ey = v1->win[1] - v0->win[1]; 60 GLfloat fx = v2->win[0] - v0->win[0]; 61 GLfloat fy = v2->win[1] - v0->win[1]; 62 GLfloat c = ex*fy-ey*fx; 63 64 if (c * SWRAST_CONTEXT(ctx)->_backface_sign > 0) 65 return 0; 66 67 return 1; 68} 69 70 71 72/* 73 * Render a flat-shaded color index triangle. 74 */ 75static void flat_ci_triangle( GLcontext *ctx, 76 const SWvertex *v0, 77 const SWvertex *v1, 78 const SWvertex *v2 ) 79{ 80#define INTERP_Z 1 81#define INTERP_FOG 1 82 83#define SETUP_CODE \ 84 span.interpMask |= SPAN_INDEX; \ 85 span.index = IntToFixed(v2->index); \ 86 span.indexStep = 0; 87 88#define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span); 89 90#include "s_tritemp.h" 91} 92 93 94 95/* 96 * Render a smooth-shaded color index triangle. 97 */ 98static void smooth_ci_triangle( GLcontext *ctx, 99 const SWvertex *v0, 100 const SWvertex *v1, 101 const SWvertex *v2 ) 102{ 103#define INTERP_Z 1 104#define INTERP_FOG 1 105#define INTERP_INDEX 1 106 107#define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span); 108 109#include "s_tritemp.h" 110} 111 112 113 114/* 115 * Render a flat-shaded RGBA triangle. 116 */ 117static void flat_rgba_triangle( GLcontext *ctx, 118 const SWvertex *v0, 119 const SWvertex *v1, 120 const SWvertex *v2 ) 121{ 122#define INTERP_Z 1 123#define INTERP_FOG 1 124#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 125 126#define SETUP_CODE \ 127 ASSERT(!ctx->Texture._ReallyEnabled); \ 128 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \ 129 span.interpMask |= SPAN_RGBA; \ 130 span.red = ChanToFixed(v2->color[0]); \ 131 span.green = ChanToFixed(v2->color[1]); \ 132 span.blue = ChanToFixed(v2->color[2]); \ 133 span.alpha = ChanToFixed(v2->color[3]); \ 134 span.redStep = 0; \ 135 span.greenStep = 0; \ 136 span.blueStep = 0; \ 137 span.alphaStep = 0; 138 139#define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span); 140 141#include "s_tritemp.h" 142} 143 144 145 146/* 147 * Render a smooth-shaded RGBA triangle. 148 */ 149static void smooth_rgba_triangle( GLcontext *ctx, 150 const SWvertex *v0, 151 const SWvertex *v1, 152 const SWvertex *v2 ) 153{ 154 155#define INTERP_Z 1 156#define INTERP_FOG 1 157#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 158#define INTERP_RGB 1 159#define INTERP_ALPHA 1 160 161#define SETUP_CODE \ 162 { \ 163 /* texturing must be off */ \ 164 ASSERT(!ctx->Texture._ReallyEnabled); \ 165 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \ 166 } 167 168#define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span); 169 170#include "s_tritemp.h" 171 172} 173 174 175/* 176 * Render an RGB, GL_DECAL, textured triangle. 177 * Interpolate S,T only w/out mipmapping or perspective correction. 178 * 179 * No fog. 180 */ 181static void simple_textured_triangle( GLcontext *ctx, 182 const SWvertex *v0, 183 const SWvertex *v1, 184 const SWvertex *v2 ) 185{ 186#define INTERP_INT_TEX 1 187#define S_SCALE twidth 188#define T_SCALE theight 189 190#define SETUP_CODE \ 191 SWcontext *swrast = SWRAST_CONTEXT(ctx); \ 192 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \ 193 const GLint b = obj->BaseLevel; \ 194 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ 195 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \ 196 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \ 197 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \ 198 const GLint smask = obj->Image[b]->Width - 1; \ 199 const GLint tmask = obj->Image[b]->Height - 1; \ 200 if (!texture) { \ 201 /* this shouldn't happen */ \ 202 return; \ 203 } 204 205#define RENDER_SPAN( span ) \ 206 GLuint i; \ 207 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 208 span.intTex[1] -= FIXED_HALF; \ 209 for (i = 0; i < span.end; i++) { \ 210 GLint s = FixedToInt(span.intTex[0]) & smask; \ 211 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 212 GLint pos = (t << twidth_log2) + s; \ 213 pos = pos + pos + pos; /* multiply by 3 */ \ 214 span.color.rgb[i][RCOMP] = texture[pos]; \ 215 span.color.rgb[i][GCOMP] = texture[pos+1]; \ 216 span.color.rgb[i][BCOMP] = texture[pos+2]; \ 217 span.intTex[0] += span.intTexStep[0]; \ 218 span.intTex[1] += span.intTexStep[1]; \ 219 } \ 220 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \ 221 (CONST GLchan (*)[3]) span.color.rgb, \ 222 NULL ); 223 224#include "s_tritemp.h" 225} 226 227 228/* 229 * Render an RGB, GL_DECAL, textured triangle. 230 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or 231 * perspective correction. 232 * 233 * No fog. 234 */ 235static void simple_z_textured_triangle( GLcontext *ctx, 236 const SWvertex *v0, 237 const SWvertex *v1, 238 const SWvertex *v2 ) 239{ 240#define INTERP_Z 1 241#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 242#define INTERP_INT_TEX 1 243#define S_SCALE twidth 244#define T_SCALE theight 245 246#define SETUP_CODE \ 247 SWcontext *swrast = SWRAST_CONTEXT(ctx); \ 248 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \ 249 const GLint b = obj->BaseLevel; \ 250 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ 251 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \ 252 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \ 253 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \ 254 const GLint smask = obj->Image[b]->Width - 1; \ 255 const GLint tmask = obj->Image[b]->Height - 1; \ 256 if (!texture) { \ 257 /* this shouldn't happen */ \ 258 return; \ 259 } 260 261#define RENDER_SPAN( span ) \ 262 GLuint i; \ 263 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 264 span.intTex[1] -= FIXED_HALF; \ 265 for (i = 0; i < span.end; i++) { \ 266 const GLdepth z = FixedToDepth(span.z); \ 267 if (z < zRow[i]) { \ 268 GLint s = FixedToInt(span.intTex[0]) & smask; \ 269 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 270 GLint pos = (t << twidth_log2) + s; \ 271 pos = pos + pos + pos; /* multiply by 3 */ \ 272 span.color.rgb[i][RCOMP] = texture[pos]; \ 273 span.color.rgb[i][GCOMP] = texture[pos+1]; \ 274 span.color.rgb[i][BCOMP] = texture[pos+2]; \ 275 zRow[i] = z; \ 276 span.mask[i] = 1; \ 277 } \ 278 else { \ 279 span.mask[i] = 0; \ 280 } \ 281 span.intTex[0] += span.intTexStep[0]; \ 282 span.intTex[1] += span.intTexStep[1]; \ 283 span.z += span.zStep; \ 284 } \ 285 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \ 286 (CONST GLchan (*)[3]) span.color.rgb, \ 287 span.mask ); 288 289#include "s_tritemp.h" 290} 291 292 293#if CHAN_TYPE != GL_FLOAT 294 295struct affine_info 296{ 297 GLenum filter; 298 GLenum format; 299 GLenum envmode; 300 GLint smask, tmask; 301 GLint twidth_log2; 302 const GLchan *texture; 303 GLfixed er, eg, eb, ea; 304 GLint tbytesline, tsize; 305}; 306 307 308/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA 309 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD 310 * texture env modes. 311 */ 312static INLINE void 313affine_span(GLcontext *ctx, struct sw_span *span, 314 struct affine_info *info) 315{ 316 GLchan sample[4]; /* the filtered texture sample */ 317 318 /* Instead of defining a function for each mode, a test is done 319 * between the outer and inner loops. This is to reduce code size 320 * and complexity. Observe that an optimizing compiler kills 321 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 322 */ 323 324#define NEAREST_RGB \ 325 sample[RCOMP] = tex00[RCOMP]; \ 326 sample[GCOMP] = tex00[GCOMP]; \ 327 sample[BCOMP] = tex00[BCOMP]; \ 328 sample[ACOMP] = CHAN_MAX 329 330#define LINEAR_RGB \ 331 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \ 332 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \ 333 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \ 334 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \ 335 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \ 336 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \ 337 sample[ACOMP] = CHAN_MAX 338 339#define NEAREST_RGBA COPY_CHAN4(sample, tex00) 340 341#define LINEAR_RGBA \ 342 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \ 343 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\ 344 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \ 345 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\ 346 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \ 347 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\ 348 sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) + \ 349 tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT 350 351#define MODULATE \ 352 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 353 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 354 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 355 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) 356 357#define DECAL \ 358 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ 359 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ 360 >> (FIXED_SHIFT + 8); \ 361 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ 362 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ 363 >> (FIXED_SHIFT + 8); \ 364 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ 365 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ 366 >> (FIXED_SHIFT + 8); \ 367 dest[ACOMP] = FixedToInt(span->alpha) 368 369#define BLEND \ 370 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ 371 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ 372 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ 373 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ 374 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ 375 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ 376 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) 377 378#define REPLACE COPY_CHAN4(dest, sample) 379 380#define ADD \ 381 { \ 382 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ 383 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ 384 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ 385 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ 386 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ 387 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ 388 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ 389 } 390 391/* shortcuts */ 392 393#define NEAREST_RGB_REPLACE \ 394 NEAREST_RGB; \ 395 dest[0] = sample[0]; \ 396 dest[1] = sample[1]; \ 397 dest[2] = sample[2]; \ 398 dest[3] = FixedToInt(span->alpha); 399 400#define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00) 401 402#define SPAN_NEAREST(DO_TEX,COMP) \ 403 for (i = 0; i < span->end; i++) { \ 404 /* Isn't it necessary to use FixedFloor below?? */ \ 405 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 406 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 407 GLint pos = (t << info->twidth_log2) + s; \ 408 const GLchan *tex00 = info->texture + COMP * pos; \ 409 DO_TEX; \ 410 span->red += span->redStep; \ 411 span->green += span->greenStep; \ 412 span->blue += span->blueStep; \ 413 span->alpha += span->alphaStep; \ 414 span->intTex[0] += span->intTexStep[0]; \ 415 span->intTex[1] += span->intTexStep[1]; \ 416 dest += 4; \ 417 } 418 419#define SPAN_LINEAR(DO_TEX,COMP) \ 420 for (i = 0; i < span->end; i++) { \ 421 /* Isn't it necessary to use FixedFloor below?? */ \ 422 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 423 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 424 GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ 425 GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ 426 GLfixed si = FIXED_FRAC_MASK - sf; \ 427 GLfixed ti = FIXED_FRAC_MASK - tf; \ 428 GLint pos = (t << info->twidth_log2) + s; \ 429 const GLchan *tex00 = info->texture + COMP * pos; \ 430 const GLchan *tex10 = tex00 + info->tbytesline; \ 431 const GLchan *tex01 = tex00 + COMP; \ 432 const GLchan *tex11 = tex10 + COMP; \ 433 (void) ti; \ 434 (void) si; \ 435 if (t == info->tmask) { \ 436 tex10 -= info->tsize; \ 437 tex11 -= info->tsize; \ 438 } \ 439 if (s == info->smask) { \ 440 tex01 -= info->tbytesline; \ 441 tex11 -= info->tbytesline; \ 442 } \ 443 DO_TEX; \ 444 span->red += span->redStep; \ 445 span->green += span->greenStep; \ 446 span->blue += span->blueStep; \ 447 span->alpha += span->alphaStep; \ 448 span->intTex[0] += span->intTexStep[0]; \ 449 span->intTex[1] += span->intTexStep[1]; \ 450 dest += 4; \ 451 } 452 453 454 GLuint i; 455 GLchan *dest = span->color.rgba[0]; 456 457 span->intTex[0] -= FIXED_HALF; 458 span->intTex[1] -= FIXED_HALF; 459 switch (info->filter) { 460 case GL_NEAREST: 461 switch (info->format) { 462 case GL_RGB: 463 switch (info->envmode) { 464 case GL_MODULATE: 465 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 466 break; 467 case GL_DECAL: 468 case GL_REPLACE: 469 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 470 break; 471 case GL_BLEND: 472 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 473 break; 474 case GL_ADD: 475 SPAN_NEAREST(NEAREST_RGB;ADD,3); 476 break; 477 default: 478 abort(); 479 } 480 break; 481 case GL_RGBA: 482 switch(info->envmode) { 483 case GL_MODULATE: 484 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 485 break; 486 case GL_DECAL: 487 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 488 break; 489 case GL_BLEND: 490 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 491 break; 492 case GL_ADD: 493 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 494 break; 495 case GL_REPLACE: 496 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 497 break; 498 default: 499 abort(); 500 } 501 break; 502 } 503 break; 504 505 case GL_LINEAR: 506 span->intTex[0] -= FIXED_HALF; 507 span->intTex[1] -= FIXED_HALF; 508 switch (info->format) { 509 case GL_RGB: 510 switch (info->envmode) { 511 case GL_MODULATE: 512 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 513 break; 514 case GL_DECAL: 515 case GL_REPLACE: 516 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 517 break; 518 case GL_BLEND: 519 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 520 break; 521 case GL_ADD: 522 SPAN_LINEAR(LINEAR_RGB;ADD,3); 523 break; 524 default: 525 abort(); 526 } 527 break; 528 case GL_RGBA: 529 switch (info->envmode) { 530 case GL_MODULATE: 531 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 532 break; 533 case GL_DECAL: 534 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 535 break; 536 case GL_BLEND: 537 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 538 break; 539 case GL_ADD: 540 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 541 break; 542 case GL_REPLACE: 543 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 544 break; 545 default: 546 abort(); 547 } break; 548 } 549 break; 550 } 551 span->interpMask &= ~SPAN_RGBA; 552 ASSERT(span->arrayMask & SPAN_RGBA); 553 _mesa_write_rgba_span(ctx, span); 554 555#undef SPAN_NEAREST 556#undef SPAN_LINEAR 557} 558 559 560 561/* 562 * Render an RGB/RGBA textured triangle without perspective correction. 563 */ 564static void affine_textured_triangle( GLcontext *ctx, 565 const SWvertex *v0, 566 const SWvertex *v1, 567 const SWvertex *v2 ) 568{ 569#define INTERP_Z 1 570#define INTERP_FOG 1 571#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 572#define INTERP_RGB 1 573#define INTERP_ALPHA 1 574#define INTERP_INT_TEX 1 575#define S_SCALE twidth 576#define T_SCALE theight 577 578#define SETUP_CODE \ 579 struct affine_info info; \ 580 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 581 struct gl_texture_object *obj = unit->Current2D; \ 582 const GLint b = obj->BaseLevel; \ 583 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ 584 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \ 585 info.texture = (const GLchan *) obj->Image[b]->Data; \ 586 info.twidth_log2 = obj->Image[b]->WidthLog2; \ 587 info.smask = obj->Image[b]->Width - 1; \ 588 info.tmask = obj->Image[b]->Height - 1; \ 589 info.format = obj->Image[b]->Format; \ 590 info.filter = obj->MinFilter; \ 591 info.envmode = unit->EnvMode; \ 592 span.arrayMask |= SPAN_RGBA; \ 593 \ 594 if (info.envmode == GL_BLEND) { \ 595 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 596 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 597 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 598 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 599 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 600 } \ 601 if (!info.texture) { \ 602 /* this shouldn't happen */ \ 603 return; \ 604 } \ 605 \ 606 switch (info.format) { \ 607 case GL_ALPHA: \ 608 case GL_LUMINANCE: \ 609 case GL_INTENSITY: \ 610 info.tbytesline = obj->Image[b]->Width; \ 611 break; \ 612 case GL_LUMINANCE_ALPHA: \ 613 info.tbytesline = obj->Image[b]->Width * 2; \ 614 break; \ 615 case GL_RGB: \ 616 info.tbytesline = obj->Image[b]->Width * 3; \ 617 break; \ 618 case GL_RGBA: \ 619 info.tbytesline = obj->Image[b]->Width * 4; \ 620 break; \ 621 default: \ 622 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ 623 return; \ 624 } \ 625 info.tsize = obj->Image[b]->Height * info.tbytesline; 626 627#define RENDER_SPAN( span ) affine_span(ctx, &span, &info); 628 629#include "s_tritemp.h" 630 631} 632 633 634 635struct persp_info 636{ 637 GLenum filter; 638 GLenum format; 639 GLenum envmode; 640 GLint smask, tmask; 641 GLint twidth_log2; 642 const GLchan *texture; 643 GLfixed er, eg, eb, ea; /* texture env color */ 644 GLint tbytesline, tsize; 645}; 646 647 648static INLINE void 649fast_persp_span(GLcontext *ctx, struct sw_span *span, 650 struct persp_info *info) 651{ 652 GLchan sample[4]; /* the filtered texture sample */ 653 654 /* Instead of defining a function for each mode, a test is done 655 * between the outer and inner loops. This is to reduce code size 656 * and complexity. Observe that an optimizing compiler kills 657 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 658 */ 659#define SPAN_NEAREST(DO_TEX,COMP) \ 660 for (i = 0; i < span->end; i++) { \ 661 GLdouble invQ = tex_coord[2] ? \ 662 (1.0 / tex_coord[2]) : 1.0; \ 663 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 664 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 665 GLint s = IFLOOR(s_tmp) & info->smask; \ 666 GLint t = IFLOOR(t_tmp) & info->tmask; \ 667 GLint pos = (t << info->twidth_log2) + s; \ 668 const GLchan *tex00 = info->texture + COMP * pos; \ 669 DO_TEX; \ 670 span->red += span->redStep; \ 671 span->green += span->greenStep; \ 672 span->blue += span->blueStep; \ 673 span->alpha += span->alphaStep; \ 674 tex_coord[0] += tex_step[0]; \ 675 tex_coord[1] += tex_step[1]; \ 676 tex_coord[2] += tex_step[2]; \ 677 dest += 4; \ 678 } 679 680#define SPAN_LINEAR(DO_TEX,COMP) \ 681 for (i = 0; i < span->end; i++) { \ 682 GLdouble invQ = tex_coord[2] ? \ 683 (1.0 / tex_coord[2]) : 1.0; \ 684 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 685 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 686 GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ 687 GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ 688 GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ 689 GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ 690 GLfixed sf = s_fix & FIXED_FRAC_MASK; \ 691 GLfixed tf = t_fix & FIXED_FRAC_MASK; \ 692 GLfixed si = FIXED_FRAC_MASK - sf; \ 693 GLfixed ti = FIXED_FRAC_MASK - tf; \ 694 GLint pos = (t << info->twidth_log2) + s; \ 695 const GLchan *tex00 = info->texture + COMP * pos; \ 696 const GLchan *tex10 = tex00 + info->tbytesline; \ 697 const GLchan *tex01 = tex00 + COMP; \ 698 const GLchan *tex11 = tex10 + COMP; \ 699 (void) ti; \ 700 (void) si; \ 701 if (t == info->tmask) { \ 702 tex10 -= info->tsize; \ 703 tex11 -= info->tsize; \ 704 } \ 705 if (s == info->smask) { \ 706 tex01 -= info->tbytesline; \ 707 tex11 -= info->tbytesline; \ 708 } \ 709 DO_TEX; \ 710 span->red += span->redStep; \ 711 span->green += span->greenStep; \ 712 span->blue += span->blueStep; \ 713 span->alpha += span->alphaStep; \ 714 tex_coord[0] += tex_step[0]; \ 715 tex_coord[1] += tex_step[1]; \ 716 tex_coord[2] += tex_step[2]; \ 717 dest += 4; \ 718 } 719 720 GLuint i; 721 GLfloat tex_coord[3], tex_step[3]; 722 GLchan *dest = span->color.rgba[0]; 723 724 tex_coord[0] = span->tex[0][0] * (info->smask + 1); 725 tex_step[0] = span->texStepX[0][0] * (info->smask + 1); 726 tex_coord[1] = span->tex[0][1] * (info->tmask + 1); 727 tex_step[1] = span->texStepX[0][1] * (info->tmask + 1); 728 /* span->tex[0][2] only if 3D-texturing, here only 2D */ 729 tex_coord[2] = span->tex[0][3]; 730 tex_step[2] = span->texStepX[0][3]; 731 732 switch (info->filter) { 733 case GL_NEAREST: 734 switch (info->format) { 735 case GL_RGB: 736 switch (info->envmode) { 737 case GL_MODULATE: 738 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 739 break; 740 case GL_DECAL: 741 case GL_REPLACE: 742 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 743 break; 744 case GL_BLEND: 745 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 746 break; 747 case GL_ADD: 748 SPAN_NEAREST(NEAREST_RGB;ADD,3); 749 break; 750 default: 751 abort(); 752 } 753 break; 754 case GL_RGBA: 755 switch(info->envmode) { 756 case GL_MODULATE: 757 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 758 break; 759 case GL_DECAL: 760 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 761 break; 762 case GL_BLEND: 763 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 764 break; 765 case GL_ADD: 766 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 767 break; 768 case GL_REPLACE: 769 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 770 break; 771 default: 772 abort(); 773 } 774 break; 775 } 776 break; 777 778 case GL_LINEAR: 779 switch (info->format) { 780 case GL_RGB: 781 switch (info->envmode) { 782 case GL_MODULATE: 783 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 784 break; 785 case GL_DECAL: 786 case GL_REPLACE: 787 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 788 break; 789 case GL_BLEND: 790 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 791 break; 792 case GL_ADD: 793 SPAN_LINEAR(LINEAR_RGB;ADD,3); 794 break; 795 default: 796 abort(); 797 } 798 break; 799 case GL_RGBA: 800 switch (info->envmode) { 801 case GL_MODULATE: 802 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 803 break; 804 case GL_DECAL: 805 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 806 break; 807 case GL_BLEND: 808 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 809 break; 810 case GL_ADD: 811 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 812 break; 813 case GL_REPLACE: 814 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 815 break; 816 default: 817 abort(); 818 } 819 break; 820 } 821 break; 822 } 823 824 ASSERT(span->arrayMask & SPAN_RGBA); 825 _mesa_write_rgba_span(ctx, span); 826 827 828#undef SPAN_NEAREST 829#undef SPAN_LINEAR 830} 831 832 833/* 834 * Render an perspective corrected RGB/RGBA textured triangle. 835 * The Q (aka V in Mesa) coordinate must be zero such that the divide 836 * by interpolated Q/W comes out right. 837 * 838 */ 839static void persp_textured_triangle( GLcontext *ctx, 840 const SWvertex *v0, 841 const SWvertex *v1, 842 const SWvertex *v2 ) 843{ 844#define INTERP_Z 1 845#define INTERP_FOG 1 846#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 847#define INTERP_RGB 1 848#define INTERP_ALPHA 1 849#define INTERP_TEX 1 850 851#define SETUP_CODE \ 852 struct persp_info info; \ 853 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 854 const struct gl_texture_object *obj = unit->Current2D; \ 855 const GLint b = obj->BaseLevel; \ 856 info.texture = (const GLchan *) obj->Image[b]->Data; \ 857 info.twidth_log2 = obj->Image[b]->WidthLog2; \ 858 info.smask = obj->Image[b]->Width - 1; \ 859 info.tmask = obj->Image[b]->Height - 1; \ 860 info.format = obj->Image[b]->Format; \ 861 info.filter = obj->MinFilter; \ 862 info.envmode = unit->EnvMode; \ 863 \ 864 if (info.envmode == GL_BLEND) { \ 865 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 866 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 867 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 868 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 869 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 870 } \ 871 if (!info.texture) { \ 872 /* this shouldn't happen */ \ 873 return; \ 874 } \ 875 \ 876 switch (info.format) { \ 877 case GL_ALPHA: \ 878 case GL_LUMINANCE: \ 879 case GL_INTENSITY: \ 880 info.tbytesline = obj->Image[b]->Width; \ 881 break; \ 882 case GL_LUMINANCE_ALPHA: \ 883 info.tbytesline = obj->Image[b]->Width * 2; \ 884 break; \ 885 case GL_RGB: \ 886 info.tbytesline = obj->Image[b]->Width * 3; \ 887 break; \ 888 case GL_RGBA: \ 889 info.tbytesline = obj->Image[b]->Width * 4; \ 890 break; \ 891 default: \ 892 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ 893 return; \ 894 } \ 895 info.tsize = obj->Image[b]->Height * info.tbytesline; 896 897#define RENDER_SPAN( span ) \ 898 span.interpMask &= ~SPAN_RGBA; \ 899 span.arrayMask |= SPAN_RGBA; \ 900 fast_persp_span(ctx, &span, &info); 901 902#include "s_tritemp.h" 903 904} 905 906 907#endif /* CHAN_BITS != GL_FLOAT */ 908 909 910 911 912/* 913 * Render a smooth-shaded, textured, RGBA triangle. 914 * Interpolate S,T,R with perspective correction, w/out mipmapping. 915 */ 916static void general_textured_triangle( GLcontext *ctx, 917 const SWvertex *v0, 918 const SWvertex *v1, 919 const SWvertex *v2 ) 920{ 921#define INTERP_Z 1 922#define INTERP_FOG 1 923#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 924#define INTERP_RGB 1 925#define INTERP_SPEC 1 926#define INTERP_ALPHA 1 927#define INTERP_TEX 1 928 929#define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span); 930 931#include "s_tritemp.h" 932} 933 934 935 936/* 937 * This is the big one! 938 * Interpolate Z, RGB, Alpha, specular, fog, and N sets of texture coordinates. 939 * Yup, it's slow. 940 */ 941static void 942multitextured_triangle( GLcontext *ctx, 943 const SWvertex *v0, 944 const SWvertex *v1, 945 const SWvertex *v2 ) 946{ 947 948#define INTERP_Z 1 949#define INTERP_FOG 1 950#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 951#define INTERP_RGB 1 952#define INTERP_ALPHA 1 953#define INTERP_SPEC 1 954#define INTERP_MULTITEX 1 955 956#define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span); 957 958#include "s_tritemp.h" 959 960} 961 962 963static void occlusion_zless_triangle( GLcontext *ctx, 964 const SWvertex *v0, 965 const SWvertex *v1, 966 const SWvertex *v2 ) 967{ 968 if (ctx->OcclusionResult) { 969 return; 970 } 971 972#define DO_OCCLUSION_TEST 973#define INTERP_Z 1 974#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 975 976#define RENDER_SPAN( span ) \ 977 GLuint i; \ 978 for (i = 0; i < span.end; i++) { \ 979 GLdepth z = FixedToDepth(span.z); \ 980 if (z < zRow[i]) { \ 981 ctx->OcclusionResult = GL_TRUE; \ 982 return; \ 983 } \ 984 span.z += span.zStep; \ 985 } 986 987#include "s_tritemp.h" 988} 989 990static void nodraw_triangle( GLcontext *ctx, 991 const SWvertex *v0, 992 const SWvertex *v1, 993 const SWvertex *v2 ) 994{ 995 (void) (ctx && v0 && v1 && v2); 996} 997 998 999/* 1000 * This is used when separate specular color is enabled, but not 1001 * texturing. We add the specular color to the primary color, 1002 * draw the triangle, then restore the original primary color. 1003 * Inefficient, but seldom needed. 1004 */ 1005void _swrast_add_spec_terms_triangle( GLcontext *ctx, 1006 const SWvertex *v0, 1007 const SWvertex *v1, 1008 const SWvertex *v2 ) 1009{ 1010 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ 1011 SWvertex *ncv1 = (SWvertex *)v1; 1012 SWvertex *ncv2 = (SWvertex *)v2; 1013#if CHAN_TYPE == GL_FLOAT 1014 GLfloat rSum, gSum, bSum; 1015#else 1016 GLint rSum, gSum, bSum; 1017#endif 1018 GLchan c[3][4]; 1019 /* save original colors */ 1020 COPY_CHAN4( c[0], ncv0->color ); 1021 COPY_CHAN4( c[1], ncv1->color ); 1022 COPY_CHAN4( c[2], ncv2->color ); 1023 /* sum v0 */ 1024 rSum = ncv0->color[0] + ncv0->specular[0]; 1025 gSum = ncv0->color[1] + ncv0->specular[1]; 1026 bSum = ncv0->color[2] + ncv0->specular[2]; 1027 ncv0->color[0] = MIN2(rSum, CHAN_MAX); 1028 ncv0->color[1] = MIN2(gSum, CHAN_MAX); 1029 ncv0->color[2] = MIN2(bSum, CHAN_MAX); 1030 /* sum v1 */ 1031 rSum = ncv1->color[0] + ncv1->specular[0]; 1032 gSum = ncv1->color[1] + ncv1->specular[1]; 1033 bSum = ncv1->color[2] + ncv1->specular[2]; 1034 ncv1->color[0] = MIN2(rSum, CHAN_MAX); 1035 ncv1->color[1] = MIN2(gSum, CHAN_MAX); 1036 ncv1->color[2] = MIN2(bSum, CHAN_MAX); 1037 /* sum v2 */ 1038 rSum = ncv2->color[0] + ncv2->specular[0]; 1039 gSum = ncv2->color[1] + ncv2->specular[1]; 1040 bSum = ncv2->color[2] + ncv2->specular[2]; 1041 ncv2->color[0] = MIN2(rSum, CHAN_MAX); 1042 ncv2->color[1] = MIN2(gSum, CHAN_MAX); 1043 ncv2->color[2] = MIN2(bSum, CHAN_MAX); 1044 /* draw */ 1045 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); 1046 /* restore original colors */ 1047 COPY_CHAN4( ncv0->color, c[0] ); 1048 COPY_CHAN4( ncv1->color, c[1] ); 1049 COPY_CHAN4( ncv2->color, c[2] ); 1050} 1051 1052 1053 1054#ifdef DEBUG 1055 1056/* record the current triangle function name */ 1057const char *_mesa_triFuncName = NULL; 1058 1059#define USE(triFunc) \ 1060do { \ 1061 _mesa_triFuncName = #triFunc; \ 1062 /*printf("%s\n", _mesa_triFuncName);*/ \ 1063 swrast->Triangle = triFunc; \ 1064} while (0) 1065 1066#else 1067 1068#define USE(triFunc) swrast->Triangle = triFunc; 1069 1070#endif 1071 1072 1073 1074 1075/* 1076 * Determine which triangle rendering function to use given the current 1077 * rendering context. 1078 * 1079 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or 1080 * remove tests to this code. 1081 */ 1082void 1083_swrast_choose_triangle( GLcontext *ctx ) 1084{ 1085 SWcontext *swrast = SWRAST_CONTEXT(ctx); 1086 const GLboolean rgbmode = ctx->Visual.rgbMode; 1087 1088 if (ctx->Polygon.CullFlag && 1089 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { 1090 USE(nodraw_triangle); 1091 return; 1092 } 1093 1094 if (ctx->RenderMode==GL_RENDER) { 1095 1096 if (ctx->Polygon.SmoothFlag) { 1097 _mesa_set_aa_triangle_function(ctx); 1098 ASSERT(swrast->Triangle); 1099 return; 1100 } 1101 1102 if (ctx->Depth.OcclusionTest && 1103 ctx->Depth.Test && 1104 ctx->Depth.Mask == GL_FALSE && 1105 ctx->Depth.Func == GL_LESS && 1106 !ctx->Stencil.Enabled) { 1107 if ((rgbmode && 1108 ctx->Color.ColorMask[0] == 0 && 1109 ctx->Color.ColorMask[1] == 0 && 1110 ctx->Color.ColorMask[2] == 0 && 1111 ctx->Color.ColorMask[3] == 0) 1112 || 1113 (!rgbmode && ctx->Color.IndexMask == 0)) { 1114 USE(occlusion_zless_triangle); 1115 return; 1116 } 1117 } 1118 1119 if (ctx->Texture._ReallyEnabled) { 1120 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ 1121 const struct gl_texture_object *texObj2D; 1122 const struct gl_texture_image *texImg; 1123 GLenum minFilter, magFilter, envMode; 1124 GLint format; 1125 texObj2D = ctx->Texture.Unit[0].Current2D; 1126 texImg = texObj2D ? texObj2D->Image[texObj2D->BaseLevel] : NULL; 1127 format = texImg ? texImg->TexFormat->MesaFormat : -1; 1128 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0; 1129 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0; 1130 envMode = ctx->Texture.Unit[0].EnvMode; 1131 1132 /* First see if we can used an optimized 2-D texture function */ 1133 if (ctx->Texture._ReallyEnabled==TEXTURE0_2D 1134 && texObj2D->WrapS==GL_REPEAT 1135 && texObj2D->WrapT==GL_REPEAT 1136 && texImg->Border==0 1137 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA) 1138 && minFilter == magFilter 1139 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR 1140 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) { 1141 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { 1142 if (minFilter == GL_NEAREST 1143 && format == MESA_FORMAT_RGB 1144 && (envMode == GL_REPLACE || envMode == GL_DECAL) 1145 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) 1146 && ctx->Depth.Func == GL_LESS 1147 && ctx->Depth.Mask == GL_TRUE) 1148 || swrast->_RasterMask == TEXTURE_BIT) 1149 && ctx->Polygon.StippleFlag == GL_FALSE) { 1150 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { 1151 USE(simple_z_textured_triangle); 1152 } 1153 else { 1154 USE(simple_textured_triangle); 1155 } 1156 } 1157 else { 1158#if (CHAN_BITS == 16 || CHAN_BITS == 32) 1159 USE(general_textured_triangle); 1160#else 1161 USE(affine_textured_triangle); 1162#endif 1163 } 1164 } 1165 else { 1166#if (CHAN_BITS == 16 || CHAN_BITS == 32) 1167 USE(general_textured_triangle); 1168#else 1169 USE(persp_textured_triangle); 1170#endif 1171 } 1172 } 1173 else { 1174 /* general case textured triangles */ 1175 if (ctx->Texture._ReallyEnabled > TEXTURE0_ANY) { 1176 USE(multitextured_triangle); 1177 } 1178 else { 1179 USE(general_textured_triangle); 1180 } 1181 } 1182 } 1183 else { 1184 ASSERT(!ctx->Texture._ReallyEnabled); 1185 if (ctx->Light.ShadeModel==GL_SMOOTH) { 1186 /* smooth shaded, no texturing, stippled or some raster ops */ 1187 if (rgbmode) { 1188 USE(smooth_rgba_triangle); 1189 } 1190 else { 1191 USE(smooth_ci_triangle); 1192 } 1193 } 1194 else { 1195 /* flat shaded, no texturing, stippled or some raster ops */ 1196 if (rgbmode) { 1197 USE(flat_rgba_triangle); 1198 } 1199 else { 1200 USE(flat_ci_triangle); 1201 } 1202 } 1203 } 1204 } 1205 else if (ctx->RenderMode==GL_FEEDBACK) { 1206 USE(_mesa_feedback_triangle); 1207 } 1208 else { 1209 /* GL_SELECT mode */ 1210 USE(_mesa_select_triangle); 1211 } 1212} 1213