t_vp_build.c revision 37f2eaa316d507b729ca392b651ae18ef92efcac
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3.1
4 *
5 * Copyright (C) 2005  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "glheader.h"
34#include "macros.h"
35#include "enums.h"
36#include "t_context.h"
37#include "t_vp_build.h"
38
39#include "shader/program.h"
40#include "shader/nvvertprog.h"
41#include "shader/arbvertparse.h"
42
43struct state_key {
44   unsigned light_global_enabled:1;
45   unsigned light_local_viewer:1;
46   unsigned light_twoside:1;
47   unsigned light_color_material:1;
48   unsigned light_color_material_mask:12;
49   unsigned light_material_mask:12;
50
51   unsigned normalize:1;
52   unsigned rescale_normals:1;
53   unsigned fog_source_is_depth:1;
54   unsigned tnl_do_vertex_fog:1;
55   unsigned separate_specular:1;
56   unsigned fog_enabled:1;
57   unsigned fog_mode:2;
58   unsigned point_attenuated:1;
59   unsigned texture_enabled_global:1;
60
61   struct {
62      unsigned light_enabled:1;
63      unsigned light_eyepos3_is_zero:1;
64      unsigned light_spotcutoff_is_180:1;
65      unsigned light_attenuated:1;
66      unsigned texunit_really_enabled:1;
67      unsigned texmat_enabled:1;
68      unsigned texgen_enabled:4;
69      unsigned texgen_mode0:4;
70      unsigned texgen_mode1:4;
71      unsigned texgen_mode2:4;
72      unsigned texgen_mode3:4;
73   } unit[8];
74};
75
76
77
78#define FOG_LINEAR   0
79#define FOG_EXP      1
80#define FOG_EXP2     2
81#define FOG_UNKNOWN  3
82
83static GLuint translate_fog_mode( GLenum mode )
84{
85   switch (mode) {
86   case GL_LINEAR: return FOG_LINEAR;
87   case GL_EXP: return FOG_EXP;
88   case GL_EXP2: return FOG_EXP2;
89   default: return FOG_UNKNOWN;
90   }
91}
92
93#define TXG_NONE           0
94#define TXG_OBJ_LINEAR     1
95#define TXG_EYE_LINEAR     2
96#define TXG_SPHERE_MAP     3
97#define TXG_REFLECTION_MAP 4
98#define TXG_NORMAL_MAP     5
99
100static GLuint translate_texgen( GLboolean enabled, GLenum mode )
101{
102   if (!enabled)
103      return TXG_NONE;
104
105   switch (mode) {
106   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
107   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
108   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
109   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
110   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
111   default: return TXG_NONE;
112   }
113}
114
115static struct state_key *make_state_key( GLcontext *ctx )
116{
117   TNLcontext *tnl = TNL_CONTEXT(ctx);
118   struct vertex_buffer *VB = &tnl->vb;
119   struct state_key *key = CALLOC_STRUCT(state_key);
120   GLuint i;
121
122   key->separate_specular = (ctx->Light.Model.ColorControl ==
123			     GL_SEPARATE_SPECULAR_COLOR);
124
125   if (ctx->Light.Enabled) {
126      key->light_global_enabled = 1;
127
128      if (ctx->Light.Model.LocalViewer)
129	 key->light_local_viewer = 1;
130
131      if (ctx->Light.Model.TwoSide)
132	 key->light_twoside = 1;
133
134      if (ctx->Light.ColorMaterialEnabled) {
135	 key->light_color_material = 1;
136	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
137      }
138
139      for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
140	 if (VB->AttribPtr[i]->stride)
141	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
142
143      for (i = 0; i < MAX_LIGHTS; i++) {
144	 struct gl_light *light = &ctx->Light.Light[i];
145
146	 if (light->Enabled) {
147	    key->unit[i].light_enabled = 1;
148
149	    if (light->EyePosition[3] == 0.0)
150	       key->unit[i].light_eyepos3_is_zero = 1;
151
152	    if (light->SpotCutoff == 180.0)
153	       key->unit[i].light_spotcutoff_is_180 = 1;
154
155	    if (light->ConstantAttenuation != 1.0 ||
156		light->LinearAttenuation != 0.0 ||
157		light->QuadraticAttenuation != 0.0)
158	       key->unit[i].light_attenuated = 1;
159	 }
160      }
161   }
162
163   if (ctx->Transform.Normalize)
164      key->normalize = 1;
165
166   if (ctx->Transform.RescaleNormals)
167      key->rescale_normals = 1;
168
169   if (ctx->Fog.Enabled)
170      key->fog_enabled = 1;
171
172   if (key->fog_enabled) {
173      if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
174	 key->fog_source_is_depth = 1;
175
176      if (tnl->_DoVertexFog)
177	 key->tnl_do_vertex_fog = 1;
178
179      key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
180   }
181
182   if (ctx->Point._Attenuated)
183      key->point_attenuated = 1;
184
185   if (ctx->Texture._TexGenEnabled ||
186       ctx->Texture._TexMatEnabled ||
187       ctx->Texture._EnabledUnits)
188      key->texture_enabled_global = 1;
189
190   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
191      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
192
193      if (texUnit->_ReallyEnabled)
194	 key->unit[i].texunit_really_enabled = 1;
195
196      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
197	 key->unit[i].texmat_enabled = 1;
198
199      if (texUnit->TexGenEnabled) {
200	 key->unit[i].texgen_enabled = 1;
201
202	 key->unit[i].texgen_mode0 =
203	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
204			      texUnit->GenModeS );
205	 key->unit[i].texgen_mode1 =
206	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
207			      texUnit->GenModeT );
208	 key->unit[i].texgen_mode2 =
209	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
210			      texUnit->GenModeR );
211	 key->unit[i].texgen_mode3 =
212	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
213			      texUnit->GenModeQ );
214      }
215   }
216
217   return key;
218}
219
220
221
222/* Very useful debugging tool - produces annotated listing of
223 * generated program with line/function references for each
224 * instruction back into this file:
225 */
226#define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
227
228/* Should be tunable by the driver - do we want to do matrix
229 * multiplications with DP4's or with MUL/MAD's?  SSE works better
230 * with the latter, drivers may differ.
231 */
232#define PREFER_DP4 0
233
234#define MAX_INSN 200
235
236/* Use uregs to represent registers internally, translate to Mesa's
237 * expected formats on emit.
238 *
239 * NOTE: These are passed by value extensively in this file rather
240 * than as usual by pointer reference.  If this disturbs you, try
241 * remembering they are just 32bits in size.
242 *
243 * GCC is smart enough to deal with these dword-sized structures in
244 * much the same way as if I had defined them as dwords and was using
245 * macros to access and set the fields.  This is much nicer and easier
246 * to evolve.
247 */
248struct ureg {
249   GLuint file:4;
250   GLint idx:8;      /* relative addressing may be negative */
251   GLuint negate:1;
252   GLuint swz:12;
253   GLuint pad:7;
254};
255
256
257struct tnl_program {
258   const struct state_key *state;
259   struct vertex_program *program;
260
261   GLuint temp_in_use;
262   GLuint temp_reserved;
263
264   struct ureg eye_position;
265   struct ureg eye_position_normalized;
266   struct ureg eye_normal;
267   struct ureg identity;
268
269   GLuint materials;
270   GLuint color_materials;
271};
272
273
274const static struct ureg undef = {
275   ~0,
276   ~0,
277   0,
278   0,
279   0
280};
281
282/* Local shorthand:
283 */
284#define X    SWIZZLE_X
285#define Y    SWIZZLE_Y
286#define Z    SWIZZLE_Z
287#define W    SWIZZLE_W
288
289
290/* Construct a ureg:
291 */
292static struct ureg make_ureg(GLuint file, GLint idx)
293{
294   struct ureg reg;
295   reg.file = file;
296   reg.idx = idx;
297   reg.negate = 0;
298   reg.swz = SWIZZLE_NOOP;
299   reg.pad = 0;
300   return reg;
301}
302
303
304
305static struct ureg negate( struct ureg reg )
306{
307   reg.negate ^= 1;
308   return reg;
309}
310
311
312static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
313{
314   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
315			   GET_SWZ(reg.swz, y),
316			   GET_SWZ(reg.swz, z),
317			   GET_SWZ(reg.swz, w));
318
319   return reg;
320}
321
322static struct ureg swizzle1( struct ureg reg, int x )
323{
324   return swizzle(reg, x, x, x, x);
325}
326
327static struct ureg get_temp( struct tnl_program *p )
328{
329   int bit = _mesa_ffs( ~p->temp_in_use );
330   if (!bit) {
331      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
332      _mesa_exit(1);
333   }
334
335   p->temp_in_use |= 1<<(bit-1);
336   return make_ureg(PROGRAM_TEMPORARY, bit-1);
337}
338
339static struct ureg reserve_temp( struct tnl_program *p )
340{
341   struct ureg temp = get_temp( p );
342   p->temp_reserved |= 1<<temp.idx;
343   return temp;
344}
345
346static void release_temp( struct tnl_program *p, struct ureg reg )
347{
348   if (reg.file == PROGRAM_TEMPORARY) {
349      p->temp_in_use &= ~(1<<reg.idx);
350      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
351   }
352}
353
354static void release_temps( struct tnl_program *p )
355{
356   p->temp_in_use = p->temp_reserved;
357}
358
359
360
361static struct ureg register_input( struct tnl_program *p, GLuint input )
362{
363   p->program->InputsRead |= (1<<input);
364   return make_ureg(PROGRAM_INPUT, input);
365}
366
367static struct ureg register_output( struct tnl_program *p, GLuint output )
368{
369   p->program->OutputsWritten |= (1<<output);
370   return make_ureg(PROGRAM_OUTPUT, output);
371}
372
373static struct ureg register_const4f( struct tnl_program *p,
374			      GLfloat s0,
375			      GLfloat s1,
376			      GLfloat s2,
377			      GLfloat s3)
378{
379   GLfloat values[4];
380   GLint idx;
381   values[0] = s0;
382   values[1] = s1;
383   values[2] = s2;
384   values[3] = s3;
385   idx = _mesa_add_unnamed_constant( p->program->Parameters, values );
386   return make_ureg(PROGRAM_STATE_VAR, idx);
387}
388
389#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
390#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
391#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
392#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
393
394static GLboolean is_undef( struct ureg reg )
395{
396   return reg.file == 0xf;
397}
398
399static struct ureg get_identity_param( struct tnl_program *p )
400{
401   if (is_undef(p->identity))
402      p->identity = register_const4f(p, 0,0,0,1);
403
404   return p->identity;
405}
406
407static struct ureg register_param6( struct tnl_program *p,
408				   GLint s0,
409				   GLint s1,
410				   GLint s2,
411				   GLint s3,
412				   GLint s4,
413				   GLint s5)
414{
415   GLint tokens[6];
416   GLint idx;
417   tokens[0] = s0;
418   tokens[1] = s1;
419   tokens[2] = s2;
420   tokens[3] = s3;
421   tokens[4] = s4;
422   tokens[5] = s5;
423   idx = _mesa_add_state_reference( p->program->Parameters, tokens );
424   return make_ureg(PROGRAM_STATE_VAR, idx);
425}
426
427
428#define register_param1(p,s0)          register_param6(p,s0,0,0,0,0,0)
429#define register_param2(p,s0,s1)       register_param6(p,s0,s1,0,0,0,0)
430#define register_param3(p,s0,s1,s2)    register_param6(p,s0,s1,s2,0,0,0)
431#define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
432
433
434static void register_matrix_param6( struct tnl_program *p,
435				    GLint s0,
436				    GLint s1,
437				    GLint s2,
438				    GLint s3,
439				    GLint s4,
440				    GLint s5,
441				    struct ureg *matrix )
442{
443   GLuint i;
444
445   /* This is a bit sad as the support is there to pull the whole
446    * matrix out in one go:
447    */
448   for (i = 0; i <= s4 - s3; i++)
449      matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
450}
451
452
453static void emit_arg( struct vp_src_register *src,
454		      struct ureg reg )
455{
456   src->File = reg.file;
457   src->Index = reg.idx;
458   src->Swizzle = reg.swz;
459   src->Negate = reg.negate;
460   src->RelAddr = 0;
461   src->pad = 0;
462}
463
464static void emit_dst( struct vp_dst_register *dst,
465		      struct ureg reg, GLuint mask )
466{
467   dst->File = reg.file;
468   dst->Index = reg.idx;
469   /* allow zero as a shorthand for xyzw */
470   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
471   dst->pad = 0;
472}
473
474static void debug_insn( struct vp_instruction *inst, const char *fn,
475			GLuint line )
476{
477   if (DISASSEM) {
478      static const char *last_fn;
479
480      if (fn != last_fn) {
481	 last_fn = fn;
482	 _mesa_printf("%s:\n", fn);
483      }
484
485      _mesa_printf("%d:\t", line);
486      _mesa_debug_vp_inst(1, inst);
487   }
488}
489
490
491static void emit_op3fn(struct tnl_program *p,
492		       GLuint op,
493		       struct ureg dest,
494		       GLuint mask,
495		       struct ureg src0,
496		       struct ureg src1,
497		       struct ureg src2,
498		       const char *fn,
499		       GLuint line)
500{
501   GLuint nr = p->program->Base.NumInstructions++;
502   struct vp_instruction *inst = &p->program->Instructions[nr];
503
504   if (p->program->Base.NumInstructions > MAX_INSN) {
505      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
506      return;
507   }
508
509   inst->Opcode = op;
510   inst->StringPos = 0;
511   inst->Data = 0;
512
513   emit_arg( &inst->SrcReg[0], src0 );
514   emit_arg( &inst->SrcReg[1], src1 );
515   emit_arg( &inst->SrcReg[2], src2 );
516
517   emit_dst( &inst->DstReg, dest, mask );
518
519   debug_insn(inst, fn, line);
520}
521
522
523#define emit_op3(p, op, dst, mask, src0, src1, src2) \
524   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
525
526#define emit_op2(p, op, dst, mask, src0, src1) \
527    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
528
529#define emit_op1(p, op, dst, mask, src0) \
530    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
531
532
533static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
534{
535   if (reg.file == PROGRAM_TEMPORARY &&
536       !(p->temp_reserved & (1<<reg.idx)))
537      return reg;
538   else {
539      struct ureg temp = get_temp(p);
540      emit_op1(p, VP_OPCODE_MOV, temp, 0, reg);
541      return temp;
542   }
543}
544
545
546/* Currently no tracking performed of input/output/register size or
547 * active elements.  Could be used to reduce these operations, as
548 * could the matrix type.
549 */
550static void emit_matrix_transform_vec4( struct tnl_program *p,
551					struct ureg dest,
552					const struct ureg *mat,
553					struct ureg src)
554{
555   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
556   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
557   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
558   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
559}
560
561/* This version is much easier to implement if writemasks are not
562 * supported natively on the target or (like SSE), the target doesn't
563 * have a clean/obvious dotproduct implementation.
564 */
565static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
566						  struct ureg dest,
567						  const struct ureg *mat,
568						  struct ureg src)
569{
570   struct ureg tmp;
571
572   if (dest.file != PROGRAM_TEMPORARY)
573      tmp = get_temp(p);
574   else
575      tmp = dest;
576
577   emit_op2(p, VP_OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
578   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
579   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
580   emit_op3(p, VP_OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
581
582   if (dest.file != PROGRAM_TEMPORARY)
583      release_temp(p, tmp);
584}
585
586static void emit_matrix_transform_vec3( struct tnl_program *p,
587					struct ureg dest,
588					const struct ureg *mat,
589					struct ureg src)
590{
591   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
592   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
593   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
594}
595
596
597static void emit_normalize_vec3( struct tnl_program *p,
598				 struct ureg dest,
599				 struct ureg src )
600{
601   struct ureg tmp = get_temp(p);
602   emit_op2(p, VP_OPCODE_DP3, tmp, 0, src, src);
603   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
604   emit_op2(p, VP_OPCODE_MUL, dest, 0, src, tmp);
605   release_temp(p, tmp);
606}
607
608static void emit_passthrough( struct tnl_program *p,
609			      GLuint input,
610			      GLuint output )
611{
612   struct ureg out = register_output(p, output);
613   emit_op1(p, VP_OPCODE_MOV, out, 0, register_input(p, input));
614}
615
616static struct ureg get_eye_position( struct tnl_program *p )
617{
618   if (is_undef(p->eye_position)) {
619      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
620      struct ureg modelview[4];
621
622      p->eye_position = reserve_temp(p);
623
624      if (PREFER_DP4) {
625	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
626				 STATE_MATRIX, modelview );
627
628	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
629      }
630      else {
631	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
632				 STATE_MATRIX_TRANSPOSE, modelview );
633
634	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
635      }
636   }
637
638   return p->eye_position;
639}
640
641
642static struct ureg get_eye_position_normalized( struct tnl_program *p )
643{
644   if (is_undef(p->eye_position_normalized)) {
645      struct ureg eye = get_eye_position(p);
646      p->eye_position_normalized = reserve_temp(p);
647      emit_normalize_vec3(p, p->eye_position_normalized, eye);
648   }
649
650   return p->eye_position_normalized;
651}
652
653
654static struct ureg get_eye_normal( struct tnl_program *p )
655{
656   if (is_undef(p->eye_normal)) {
657      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
658      struct ureg mvinv[3];
659
660      register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
661			      STATE_MATRIX_INVTRANS, mvinv );
662
663      p->eye_normal = reserve_temp(p);
664
665      /* Transform to eye space:
666       */
667      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
668
669      /* Normalize/Rescale:
670       */
671      if (p->state->normalize) {
672	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
673      }
674      else if (p->state->rescale_normals) {
675	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
676					       STATE_NORMAL_SCALE);
677
678	 emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal,
679		   swizzle1(rescale, X));
680      }
681   }
682
683   return p->eye_normal;
684}
685
686
687
688static void build_hpos( struct tnl_program *p )
689{
690   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
691   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
692   struct ureg mvp[4];
693
694   if (PREFER_DP4) {
695      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
696			      STATE_MATRIX, mvp );
697      emit_matrix_transform_vec4( p, hpos, mvp, pos );
698   }
699   else {
700      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
701			      STATE_MATRIX_TRANSPOSE, mvp );
702      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
703   }
704}
705
706
707static GLuint material_attrib( GLuint side, GLuint property )
708{
709   return ((property - STATE_AMBIENT) * 2 +
710	   side);
711}
712
713static void set_material_flags( struct tnl_program *p )
714{
715   p->color_materials = 0;
716   p->materials = 0;
717
718   if (p->state->light_color_material) {
719      p->materials =
720	 p->color_materials = p->state->light_color_material_mask;
721   }
722
723   p->materials |= p->state->light_material_mask;
724}
725
726
727static struct ureg get_material( struct tnl_program *p, GLuint side,
728				 GLuint property )
729{
730   GLuint attrib = material_attrib(side, property);
731
732   if (p->color_materials & (1<<attrib))
733      return register_input(p, VERT_ATTRIB_COLOR0);
734   else if (p->materials & (1<<attrib))
735      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
736   else
737      return register_param3( p, STATE_MATERIAL, side, property );
738}
739
740#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
741				   MAT_BIT_FRONT_AMBIENT | \
742				   MAT_BIT_FRONT_DIFFUSE) << (side))
743
744/* Either return a precalculated constant value or emit code to
745 * calculate these values dynamically in the case where material calls
746 * are present between begin/end pairs.
747 *
748 * Probably want to shift this to the program compilation phase - if
749 * we always emitted the calculation here, a smart compiler could
750 * detect that it was constant (given a certain set of inputs), and
751 * lift it out of the main loop.  That way the programs created here
752 * would be independent of the vertex_buffer details.
753 */
754static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
755{
756   if (p->materials & SCENE_COLOR_BITS(side)) {
757      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
758      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
759      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
760      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
761      struct ureg tmp = make_temp(p, material_diffuse);
762      emit_op3(p, VP_OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
763	       material_ambient, material_emission);
764      return tmp;
765   }
766   else
767      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
768}
769
770
771static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
772				  GLuint side, GLuint property )
773{
774   GLuint attrib = material_attrib(side, property);
775   if (p->materials & (1<<attrib)) {
776      struct ureg light_value =
777	 register_param3(p, STATE_LIGHT, light, property);
778      struct ureg material_value = get_material(p, side, property);
779      struct ureg tmp = get_temp(p);
780      emit_op2(p, VP_OPCODE_MUL, tmp,  0, light_value, material_value);
781      return tmp;
782   }
783   else
784      return register_param4(p, STATE_LIGHTPROD, light, side, property);
785}
786
787static struct ureg calculate_light_attenuation( struct tnl_program *p,
788						GLuint i,
789						struct ureg VPpli,
790						struct ureg dist )
791{
792   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
793					     STATE_ATTENUATION);
794   struct ureg att = get_temp(p);
795
796   /* Calculate spot attenuation:
797    */
798   if (!p->state->unit[i].light_spotcutoff_is_180) {
799      struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
800					     STATE_SPOT_DIRECTION);
801      struct ureg spot = get_temp(p);
802      struct ureg slt = get_temp(p);
803
804      emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
805      emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot);
806      emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
807      emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
808      emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot);
809
810      release_temp(p, spot);
811      release_temp(p, slt);
812   }
813
814   /* Calculate distance attenuation:
815    */
816   if (p->state->unit[i].light_attenuated) {
817
818      /* 1/d,d,d,1/d */
819      emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist);
820      /* 1,d,d*d,1/d */
821      emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
822      /* 1/dist-atten */
823      emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist);
824
825      if (!p->state->unit[i].light_spotcutoff_is_180) {
826	 /* dist-atten */
827	 emit_op1(p, VP_OPCODE_RCP, dist, 0, dist);
828	 /* spot-atten * dist-atten */
829	 emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att);
830      } else {
831	 /* dist-atten */
832	 emit_op1(p, VP_OPCODE_RCP, att, 0, dist);
833      }
834   }
835
836   return att;
837}
838
839
840
841
842
843/* Need to add some addtional parameters to allow lighting in object
844 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
845 * space lighting.
846 */
847static void build_lighting( struct tnl_program *p )
848{
849   const GLboolean twoside = p->state->light_twoside;
850   const GLboolean separate = p->state->separate_specular;
851   GLuint nr_lights = 0, count = 0;
852   struct ureg normal = get_eye_normal(p);
853   struct ureg lit = get_temp(p);
854   struct ureg dots = get_temp(p);
855   struct ureg _col0 = undef, _col1 = undef;
856   struct ureg _bfc0 = undef, _bfc1 = undef;
857   GLuint i;
858
859   for (i = 0; i < MAX_LIGHTS; i++)
860      if (p->state->unit[i].light_enabled)
861	 nr_lights++;
862
863   set_material_flags(p);
864
865   {
866      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
867      emit_op1(p, VP_OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
868      release_temp(p, shininess);
869
870      _col0 = make_temp(p, get_scenecolor(p, 0));
871      if (separate)
872	 _col1 = make_temp(p, get_identity_param(p));
873      else
874	 _col1 = _col0;
875
876   }
877
878   if (twoside) {
879      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
880      emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z,
881	       negate(swizzle1(shininess,X)));
882      release_temp(p, shininess);
883
884      _bfc0 = make_temp(p, get_scenecolor(p, 1));
885      if (separate)
886	 _bfc1 = make_temp(p, get_identity_param(p));
887      else
888	 _bfc1 = _bfc0;
889   }
890
891
892   /* If no lights, still need to emit the scenecolor.
893    */
894      {
895	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
896	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _col0);
897      }
898
899      if (separate) {
900	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
901	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _col1);
902      }
903
904      if (twoside) {
905	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
906	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _bfc0);
907      }
908
909      if (twoside && separate) {
910	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
911	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _bfc1);
912      }
913
914   if (nr_lights == 0) {
915      release_temps(p);
916      return;
917   }
918
919
920   for (i = 0; i < MAX_LIGHTS; i++) {
921      if (p->state->unit[i].light_enabled) {
922	 struct ureg half = undef;
923	 struct ureg att = undef, VPpli = undef;
924
925	 count++;
926
927	 if (p->state->unit[i].light_eyepos3_is_zero) {
928	    /* Can used precomputed constants in this case.
929	     * Attenuation never applies to infinite lights.
930	     */
931	    VPpli = register_param3(p, STATE_LIGHT, i,
932				    STATE_POSITION_NORMALIZED);
933	    half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
934	 }
935	 else {
936	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
937					       STATE_POSITION);
938	    struct ureg V = get_eye_position(p);
939	    struct ureg dist = get_temp(p);
940
941	    VPpli = get_temp(p);
942	    half = get_temp(p);
943
944	    /* Calulate VPpli vector
945	     */
946	    emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V);
947
948	    /* Normalize VPpli.  The dist value also used in
949	     * attenuation below.
950	     */
951	    emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli);
952	    emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist);
953	    emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist);
954
955
956	    /* Calculate  attenuation:
957	     */
958	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
959		p->state->unit[i].light_attenuated) {
960	       att = calculate_light_attenuation(p, i, VPpli, dist);
961	    }
962
963
964	    /* Calculate viewer direction, or use infinite viewer:
965	     */
966	    if (p->state->light_local_viewer) {
967	       struct ureg eye_hat = get_eye_position_normalized(p);
968	       emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat);
969	    }
970	    else {
971	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
972	       emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir);
973	    }
974
975	    emit_normalize_vec3(p, half, half);
976
977	    release_temp(p, dist);
978	 }
979
980	 /* Calculate dot products:
981	  */
982	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
983	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
984
985
986	 /* Front face lighting:
987	  */
988	 {
989	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
990	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
991	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
992	    struct ureg res0, res1;
993	    GLuint mask0, mask1;
994
995	    emit_op1(p, VP_OPCODE_LIT, lit, 0, dots);
996
997	    if (!is_undef(att))
998	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
999
1000
1001	    if (count == nr_lights) {
1002	       if (separate) {
1003		  mask0 = WRITEMASK_XYZ;
1004		  mask1 = WRITEMASK_XYZ;
1005		  res0 = register_output( p, VERT_RESULT_COL0 );
1006		  res1 = register_output( p, VERT_RESULT_COL1 );
1007	       }
1008	       else {
1009		  mask0 = 0;
1010		  mask1 = WRITEMASK_XYZ;
1011		  res0 = _col0;
1012		  res1 = register_output( p, VERT_RESULT_COL0 );
1013	       }
1014	    } else {
1015	       mask0 = 0;
1016	       mask1 = 0;
1017	       res0 = _col0;
1018	       res1 = _col1;
1019	    }
1020
1021	    emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1022	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1023	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1024
1025	    release_temp(p, ambient);
1026	    release_temp(p, diffuse);
1027	    release_temp(p, specular);
1028	 }
1029
1030	 /* Back face lighting:
1031	  */
1032	 if (twoside) {
1033	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1034	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1035	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1036	    struct ureg res0, res1;
1037	    GLuint mask0, mask1;
1038
1039	    emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1040
1041	    if (!is_undef(att))
1042	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1043
1044	    if (count == nr_lights) {
1045	       if (separate) {
1046		  mask0 = WRITEMASK_XYZ;
1047		  mask1 = WRITEMASK_XYZ;
1048		  res0 = register_output( p, VERT_RESULT_BFC0 );
1049		  res1 = register_output( p, VERT_RESULT_BFC1 );
1050	       }
1051	       else {
1052		  mask0 = 0;
1053		  mask1 = WRITEMASK_XYZ;
1054		  res0 = _bfc0;
1055		  res1 = register_output( p, VERT_RESULT_BFC0 );
1056	       }
1057	    } else {
1058	       res0 = _bfc0;
1059	       res1 = _bfc1;
1060	       mask0 = 0;
1061	       mask1 = 0;
1062	    }
1063
1064	    emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1065	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1066	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1067
1068	    release_temp(p, ambient);
1069	    release_temp(p, diffuse);
1070	    release_temp(p, specular);
1071	 }
1072
1073	 release_temp(p, half);
1074	 release_temp(p, VPpli);
1075	 release_temp(p, att);
1076      }
1077   }
1078
1079   release_temps( p );
1080}
1081
1082
1083static void build_fog( struct tnl_program *p )
1084{
1085   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1086   struct ureg input;
1087
1088   if (p->state->fog_source_is_depth) {
1089      input = swizzle1(get_eye_position(p), Z);
1090   }
1091   else {
1092      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1093   }
1094
1095   if (p->state->tnl_do_vertex_fog) {
1096      struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1097      struct ureg tmp = get_temp(p);
1098
1099      switch (p->state->fog_mode) {
1100      case FOG_LINEAR: {
1101	 struct ureg id = get_identity_param(p);
1102	 emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1103	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1104	 emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1105	 emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1106	 break;
1107      }
1108      case FOG_EXP:
1109	 emit_op1(p, VP_OPCODE_ABS, tmp, 0, input);
1110	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1111	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1112		  register_const1f(p, M_E), negate(tmp));
1113	 break;
1114      case FOG_EXP2:
1115	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1116	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp);
1117	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1118		  register_const1f(p, M_E), negate(tmp));
1119	 break;
1120      }
1121
1122      release_temp(p, tmp);
1123   }
1124   else {
1125      /* results = incoming fog coords (compute fog per-fragment later)
1126       *
1127       * KW:  Is it really necessary to do anything in this case?
1128       */
1129      emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input);
1130   }
1131}
1132
1133static void build_reflect_texgen( struct tnl_program *p,
1134				  struct ureg dest,
1135				  GLuint writemask )
1136{
1137   struct ureg normal = get_eye_normal(p);
1138   struct ureg eye_hat = get_eye_position_normalized(p);
1139   struct ureg tmp = get_temp(p);
1140
1141   /* n.u */
1142   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1143   /* 2n.u */
1144   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1145   /* (-2n.u)n + u */
1146   emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1147}
1148
1149static void build_sphere_texgen( struct tnl_program *p,
1150				 struct ureg dest,
1151				 GLuint writemask )
1152{
1153   struct ureg normal = get_eye_normal(p);
1154   struct ureg eye_hat = get_eye_position_normalized(p);
1155   struct ureg tmp = get_temp(p);
1156   struct ureg half = register_scalar_const(p, .5);
1157   struct ureg r = get_temp(p);
1158   struct ureg inv_m = get_temp(p);
1159   struct ureg id = get_identity_param(p);
1160
1161   /* Could share the above calculations, but it would be
1162    * a fairly odd state for someone to set (both sphere and
1163    * reflection active for different texture coordinate
1164    * components.  Of course - if two texture units enable
1165    * reflect and/or sphere, things start to tilt in favour
1166    * of seperating this out:
1167    */
1168
1169   /* n.u */
1170   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1171   /* 2n.u */
1172   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1173   /* (-2n.u)n + u */
1174   emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1175   /* r + 0,0,1 */
1176   emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1177   /* rx^2 + ry^2 + (rz+1)^2 */
1178   emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp);
1179   /* 2/m */
1180   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
1181   /* 1/m */
1182   emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, half);
1183   /* r/m + 1/2 */
1184   emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, half);
1185
1186   release_temp(p, tmp);
1187   release_temp(p, r);
1188   release_temp(p, inv_m);
1189}
1190
1191
1192static void build_texture_transform( struct tnl_program *p )
1193{
1194   GLuint i, j;
1195
1196   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1197      GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1198
1199      if (p->state->unit[i].texgen_enabled || texmat_enabled) {
1200	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1201	 struct ureg out_texgen = undef;
1202
1203	 if (p->state->unit[i].texgen_enabled) {
1204	    GLuint copy_mask = 0;
1205	    GLuint sphere_mask = 0;
1206	    GLuint reflect_mask = 0;
1207	    GLuint normal_mask = 0;
1208	    GLuint modes[4];
1209
1210	    if (texmat_enabled)
1211	       out_texgen = get_temp(p);
1212	    else
1213	       out_texgen = out;
1214
1215	    modes[0] = p->state->unit[i].texgen_mode0;
1216	    modes[1] = p->state->unit[i].texgen_mode1;
1217	    modes[2] = p->state->unit[i].texgen_mode2;
1218	    modes[3] = p->state->unit[i].texgen_mode3;
1219
1220	    for (j = 0; j < 4; j++) {
1221	       switch (modes[j]) {
1222	       case TXG_OBJ_LINEAR: {
1223		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1224		  struct ureg plane =
1225		     register_param3(p, STATE_TEXGEN, i,
1226				     STATE_TEXGEN_OBJECT_S + j);
1227
1228		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1229			   obj, plane );
1230		  break;
1231	       }
1232	       case TXG_EYE_LINEAR: {
1233		  struct ureg eye = get_eye_position(p);
1234		  struct ureg plane =
1235		     register_param3(p, STATE_TEXGEN, i,
1236				     STATE_TEXGEN_EYE_S + j);
1237
1238		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1239			   eye, plane );
1240		  break;
1241	       }
1242	       case TXG_SPHERE_MAP:
1243		  sphere_mask |= WRITEMASK_X << j;
1244		  break;
1245	       case TXG_REFLECTION_MAP:
1246		  reflect_mask |= WRITEMASK_X << j;
1247		  break;
1248	       case TXG_NORMAL_MAP:
1249		  normal_mask |= WRITEMASK_X << j;
1250		  break;
1251	       case TXG_NONE:
1252		  copy_mask |= WRITEMASK_X << j;
1253	       }
1254
1255	    }
1256
1257
1258	    if (sphere_mask) {
1259	       build_sphere_texgen(p, out_texgen, sphere_mask);
1260	    }
1261
1262	    if (reflect_mask) {
1263	       build_reflect_texgen(p, out_texgen, reflect_mask);
1264	    }
1265
1266	    if (normal_mask) {
1267	       struct ureg normal = get_eye_normal(p);
1268	       emit_op1(p, VP_OPCODE_MOV, out_texgen, normal_mask, normal );
1269	    }
1270
1271	    if (copy_mask) {
1272	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1273	       emit_op1(p, VP_OPCODE_MOV, out_texgen, copy_mask, in );
1274	    }
1275	 }
1276
1277	 if (texmat_enabled) {
1278	    struct ureg texmat[4];
1279	    struct ureg in = (!is_undef(out_texgen) ?
1280			      out_texgen :
1281			      register_input(p, VERT_ATTRIB_TEX0+i));
1282	    if (PREFER_DP4) {
1283	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1284				       0, 3, STATE_MATRIX, texmat );
1285	       emit_matrix_transform_vec4( p, out, texmat, in );
1286	    }
1287	    else {
1288	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1289				       0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1290	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1291	    }
1292	 }
1293
1294	 release_temps(p);
1295      }
1296      else if (p->state->unit[i].texunit_really_enabled) {
1297	 /* KW: _ReallyEnabled isn't sufficient?  Need to know whether
1298	  * this texture unit is referenced by the fragment shader.
1299	  */
1300	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1301      }
1302   }
1303}
1304
1305
1306/* Seems like it could be tighter:
1307 */
1308static void build_pointsize( struct tnl_program *p )
1309{
1310   struct ureg eye = get_eye_position(p);
1311   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1312   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1313   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1314   struct ureg ut = get_temp(p);
1315
1316   /* 1, -Z, Z * Z, 1 */
1317   emit_op1(p, VP_OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1318   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1319   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1320
1321
1322   /* p1 +  p2 * dist + p3 * dist * dist, 0 */
1323   emit_op2(p, VP_OPCODE_DP3, ut, 0, ut, state_attenuation);
1324
1325   /* 1 / factor */
1326   emit_op1(p, VP_OPCODE_RCP, ut, 0, ut );
1327
1328   /* out = pointSize / factor */
1329   emit_op2(p, VP_OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1330
1331   release_temp(p, ut);
1332}
1333
1334static void build_tnl_program( struct tnl_program *p )
1335{   /* Emit the program, starting with modelviewproject:
1336    */
1337   build_hpos(p);
1338
1339   /* Lighting calculations:
1340    */
1341   if (p->state->light_global_enabled)
1342      build_lighting(p);
1343   else
1344      emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1345
1346   if (p->state->fog_enabled)
1347      build_fog(p);
1348
1349   if (p->state->texture_enabled_global)
1350      build_texture_transform(p);
1351
1352   if (p->state->point_attenuated)
1353      build_pointsize(p);
1354
1355   /* Finish up:
1356    */
1357   emit_op1(p, VP_OPCODE_END, undef, 0, undef);
1358
1359   /* Disassemble:
1360    */
1361   if (DISASSEM) {
1362      _mesa_printf ("\n");
1363   }
1364}
1365
1366
1367static void
1368create_new_program( const struct state_key *key,
1369                    struct vertex_program *program,
1370                    GLuint max_temps)
1371{
1372   struct tnl_program p;
1373
1374   _mesa_memset(&p, 0, sizeof(p));
1375   p.state = key;
1376   p.program = program;
1377   p.eye_position = undef;
1378   p.eye_position_normalized = undef;
1379   p.eye_normal = undef;
1380   p.identity = undef;
1381   p.temp_in_use = 0;
1382
1383   if (max_temps >= sizeof(int) * 8)
1384      p.temp_reserved = 0;
1385   else
1386      p.temp_reserved = ~((1<<max_temps)-1);
1387
1388   p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * MAX_INSN);
1389   p.program->Base.String = 0;
1390   p.program->Base.NumInstructions =
1391   p.program->Base.NumTemporaries =
1392   p.program->Base.NumParameters =
1393   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1394   p.program->Parameters = _mesa_new_parameter_list();
1395   p.program->InputsRead = 0;
1396   p.program->OutputsWritten = 0;
1397
1398   build_tnl_program( &p );
1399}
1400
1401static void *search_cache( struct tnl_cache *cache,
1402			   GLuint hash,
1403			   const void *key,
1404			   GLuint keysize)
1405{
1406   struct tnl_cache_item *c;
1407
1408   for (c = cache->items[hash % cache->size]; c; c = c->next) {
1409      if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1410	 return c->data;
1411   }
1412
1413   return NULL;
1414}
1415
1416static void rehash( struct tnl_cache *cache )
1417{
1418   struct tnl_cache_item **items;
1419   struct tnl_cache_item *c, *next;
1420   GLuint size, i;
1421
1422   size = cache->size * 3;
1423   items = MALLOC(size * sizeof(*items));
1424   _mesa_memset(items, 0, size * sizeof(*items));
1425
1426   for (i = 0; i < cache->size; i++)
1427      for (c = cache->items[i]; c; c = next) {
1428	 next = c->next;
1429	 c->next = items[c->hash % size];
1430	 items[c->hash % size] = c;
1431      }
1432
1433   FREE(cache->items);
1434   cache->items = items;
1435   cache->size = size;
1436}
1437
1438static void cache_item( struct tnl_cache *cache,
1439			GLuint hash,
1440			void *key,
1441			void *data )
1442{
1443   struct tnl_cache_item *c = MALLOC(sizeof(*c));
1444   c->hash = hash;
1445   c->key = key;
1446   c->data = data;
1447
1448   if (++cache->n_items > cache->size * 1.5)
1449      rehash(cache);
1450
1451   c->next = cache->items[hash % cache->size];
1452   cache->items[hash % cache->size] = c;
1453}
1454
1455static GLuint hash_key( struct state_key *key )
1456{
1457   GLuint *ikey = (GLuint *)key;
1458   GLuint hash = 0, i;
1459
1460   /* I'm sure this can be improved on, but speed is important:
1461    */
1462   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1463      hash ^= ikey[i];
1464
1465   return hash;
1466}
1467
1468void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1469{
1470   TNLcontext *tnl = TNL_CONTEXT(ctx);
1471   struct state_key *key;
1472   GLuint hash;
1473
1474   if (ctx->VertexProgram._Enabled)
1475      return;
1476
1477   /* Grab all the relevent state and put it in a single structure:
1478    */
1479   key = make_state_key(ctx);
1480   hash = hash_key(key);
1481
1482   if (tnl->vp_cache == NULL) {
1483      tnl->vp_cache = MALLOC(sizeof(*tnl->vp_cache));
1484      tnl->vp_cache->size = 5;
1485      tnl->vp_cache->n_items = 0;
1486      tnl->vp_cache->items = MALLOC(tnl->vp_cache->size *
1487				sizeof(*tnl->vp_cache->items));
1488      _mesa_memset(tnl->vp_cache->items, 0, tnl->vp_cache->size *
1489				sizeof(*tnl->vp_cache->items));
1490   }
1491
1492   /* Look for an already-prepared program for this state:
1493    */
1494   ctx->_TnlProgram = (struct vertex_program *)
1495      search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1496
1497   /* OK, we'll have to build a new one:
1498    */
1499   if (!ctx->_TnlProgram) {
1500      if (0)
1501	 _mesa_printf("Build new TNL program\n");
1502
1503      ctx->_TnlProgram = (struct vertex_program *)
1504	 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1505
1506      create_new_program( key, ctx->_TnlProgram,
1507			  ctx->Const.MaxVertexProgramTemps );
1508
1509      cache_item(tnl->vp_cache, hash, key, ctx->_TnlProgram );
1510   }
1511   else {
1512      FREE(key);
1513      if (0)
1514	 _mesa_printf("Found existing TNL program for key %x\n", hash);
1515   }
1516
1517   /* Need a BindProgram callback for the driver?
1518    */
1519}
1520
1521
1522void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1523{
1524   TNLcontext *tnl = TNL_CONTEXT(ctx);
1525   struct tnl_cache_item *c, *next;
1526   GLuint i;
1527
1528   for (i = 0; i < tnl->vp_cache->size; i++)
1529      for (c = tnl->vp_cache->items[i]; c; c = next) {
1530	 next = c->next;
1531	 FREE(c->key);
1532	 FREE(c->data);
1533	 FREE(c);
1534      }
1535
1536   FREE(tnl->vp_cache->items);
1537   FREE(tnl->vp_cache);
1538}
1539