t_vp_build.c revision 501ee87180047dd04afc69103c31e1eae5374bf1
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5
4 *
5 * Copyright (C) 2006  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "glheader.h"
34#include "macros.h"
35#include "enums.h"
36#include "program.h"
37#include "prog_instruction.h"
38#include "prog_parameter.h"
39#include "prog_print.h"
40#include "prog_statevars.h"
41#include "t_context.h" /* NOTE: very light dependency on this */
42#include "t_vp_build.h"
43
44
45struct state_key {
46   unsigned light_global_enabled:1;
47   unsigned light_local_viewer:1;
48   unsigned light_twoside:1;
49   unsigned light_color_material:1;
50   unsigned light_color_material_mask:12;
51   unsigned light_material_mask:12;
52
53   unsigned normalize:1;
54   unsigned rescale_normals:1;
55   unsigned fog_source_is_depth:1;
56   unsigned tnl_do_vertex_fog:1;
57   unsigned separate_specular:1;
58   unsigned fog_mode:2;
59   unsigned point_attenuated:1;
60   unsigned texture_enabled_global:1;
61   unsigned fragprog_inputs_read:12;
62
63   struct {
64      unsigned light_enabled:1;
65      unsigned light_eyepos3_is_zero:1;
66      unsigned light_spotcutoff_is_180:1;
67      unsigned light_attenuated:1;
68      unsigned texunit_really_enabled:1;
69      unsigned texmat_enabled:1;
70      unsigned texgen_enabled:4;
71      unsigned texgen_mode0:4;
72      unsigned texgen_mode1:4;
73      unsigned texgen_mode2:4;
74      unsigned texgen_mode3:4;
75   } unit[8];
76};
77
78
79
80#define FOG_NONE   0
81#define FOG_LINEAR 1
82#define FOG_EXP    2
83#define FOG_EXP2   3
84
85static GLuint translate_fog_mode( GLenum mode )
86{
87   switch (mode) {
88   case GL_LINEAR: return FOG_LINEAR;
89   case GL_EXP: return FOG_EXP;
90   case GL_EXP2: return FOG_EXP2;
91   default: return FOG_NONE;
92   }
93}
94
95#define TXG_NONE           0
96#define TXG_OBJ_LINEAR     1
97#define TXG_EYE_LINEAR     2
98#define TXG_SPHERE_MAP     3
99#define TXG_REFLECTION_MAP 4
100#define TXG_NORMAL_MAP     5
101
102static GLuint translate_texgen( GLboolean enabled, GLenum mode )
103{
104   if (!enabled)
105      return TXG_NONE;
106
107   switch (mode) {
108   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
109   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
110   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
111   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
112   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
113   default: return TXG_NONE;
114   }
115}
116
117static struct state_key *make_state_key( GLcontext *ctx )
118{
119   TNLcontext *tnl = TNL_CONTEXT(ctx);
120   struct vertex_buffer *VB = &tnl->vb;
121   const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
122   struct state_key *key = CALLOC_STRUCT(state_key);
123   GLuint i;
124
125   /* This now relies on texenvprogram.c being active:
126    */
127   assert(fp);
128
129   key->fragprog_inputs_read = fp->Base.InputsRead;
130
131   key->separate_specular = (ctx->Light.Model.ColorControl ==
132			     GL_SEPARATE_SPECULAR_COLOR);
133
134   if (ctx->Light.Enabled) {
135      key->light_global_enabled = 1;
136
137      if (ctx->Light.Model.LocalViewer)
138	 key->light_local_viewer = 1;
139
140      if (ctx->Light.Model.TwoSide)
141	 key->light_twoside = 1;
142
143      if (ctx->Light.ColorMaterialEnabled) {
144	 key->light_color_material = 1;
145	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
146      }
147
148      for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
149	 if (VB->AttribPtr[i]->stride)
150	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
151
152      for (i = 0; i < MAX_LIGHTS; i++) {
153	 struct gl_light *light = &ctx->Light.Light[i];
154
155	 if (light->Enabled) {
156	    key->unit[i].light_enabled = 1;
157
158	    if (light->EyePosition[3] == 0.0)
159	       key->unit[i].light_eyepos3_is_zero = 1;
160
161	    if (light->SpotCutoff == 180.0)
162	       key->unit[i].light_spotcutoff_is_180 = 1;
163
164	    if (light->ConstantAttenuation != 1.0 ||
165		light->LinearAttenuation != 0.0 ||
166		light->QuadraticAttenuation != 0.0)
167	       key->unit[i].light_attenuated = 1;
168	 }
169      }
170   }
171
172   if (ctx->Transform.Normalize)
173      key->normalize = 1;
174
175   if (ctx->Transform.RescaleNormals)
176      key->rescale_normals = 1;
177
178   key->fog_mode = translate_fog_mode(fp->FogOption);
179
180   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
181      key->fog_source_is_depth = 1;
182
183   if (tnl->_DoVertexFog)
184      key->tnl_do_vertex_fog = 1;
185
186   if (ctx->Point._Attenuated)
187      key->point_attenuated = 1;
188
189   if (ctx->Texture._TexGenEnabled ||
190       ctx->Texture._TexMatEnabled ||
191       ctx->Texture._EnabledUnits)
192      key->texture_enabled_global = 1;
193
194   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
195      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
196
197      if (texUnit->_ReallyEnabled)
198	 key->unit[i].texunit_really_enabled = 1;
199
200      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
201	 key->unit[i].texmat_enabled = 1;
202
203      if (texUnit->TexGenEnabled) {
204	 key->unit[i].texgen_enabled = 1;
205
206	 key->unit[i].texgen_mode0 =
207	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
208			      texUnit->GenModeS );
209	 key->unit[i].texgen_mode1 =
210	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
211			      texUnit->GenModeT );
212	 key->unit[i].texgen_mode2 =
213	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
214			      texUnit->GenModeR );
215	 key->unit[i].texgen_mode3 =
216	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
217			      texUnit->GenModeQ );
218      }
219   }
220
221   return key;
222}
223
224
225
226/* Very useful debugging tool - produces annotated listing of
227 * generated program with line/function references for each
228 * instruction back into this file:
229 */
230#define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
231
232/* Should be tunable by the driver - do we want to do matrix
233 * multiplications with DP4's or with MUL/MAD's?  SSE works better
234 * with the latter, drivers may differ.
235 */
236#define PREFER_DP4 0
237
238#define MAX_INSN 256
239
240/* Use uregs to represent registers internally, translate to Mesa's
241 * expected formats on emit.
242 *
243 * NOTE: These are passed by value extensively in this file rather
244 * than as usual by pointer reference.  If this disturbs you, try
245 * remembering they are just 32bits in size.
246 *
247 * GCC is smart enough to deal with these dword-sized structures in
248 * much the same way as if I had defined them as dwords and was using
249 * macros to access and set the fields.  This is much nicer and easier
250 * to evolve.
251 */
252struct ureg {
253   GLuint file:4;
254   GLint idx:8;      /* relative addressing may be negative */
255   GLuint negate:1;
256   GLuint swz:12;
257   GLuint pad:7;
258};
259
260
261struct tnl_program {
262   const struct state_key *state;
263   struct gl_vertex_program *program;
264
265   GLuint temp_in_use;
266   GLuint temp_reserved;
267
268   struct ureg eye_position;
269   struct ureg eye_position_normalized;
270   struct ureg eye_normal;
271   struct ureg identity;
272
273   GLuint materials;
274   GLuint color_materials;
275};
276
277
278static const struct ureg undef = {
279   PROGRAM_UNDEFINED,
280   ~0,
281   0,
282   0,
283   0
284};
285
286/* Local shorthand:
287 */
288#define X    SWIZZLE_X
289#define Y    SWIZZLE_Y
290#define Z    SWIZZLE_Z
291#define W    SWIZZLE_W
292
293
294/* Construct a ureg:
295 */
296static struct ureg make_ureg(GLuint file, GLint idx)
297{
298   struct ureg reg;
299   reg.file = file;
300   reg.idx = idx;
301   reg.negate = 0;
302   reg.swz = SWIZZLE_NOOP;
303   reg.pad = 0;
304   return reg;
305}
306
307
308
309static struct ureg negate( struct ureg reg )
310{
311   reg.negate ^= 1;
312   return reg;
313}
314
315
316static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
317{
318   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
319			   GET_SWZ(reg.swz, y),
320			   GET_SWZ(reg.swz, z),
321			   GET_SWZ(reg.swz, w));
322
323   return reg;
324}
325
326static struct ureg swizzle1( struct ureg reg, int x )
327{
328   return swizzle(reg, x, x, x, x);
329}
330
331static struct ureg get_temp( struct tnl_program *p )
332{
333   int bit = _mesa_ffs( ~p->temp_in_use );
334   if (!bit) {
335      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
336      _mesa_exit(1);
337   }
338
339   if ((GLuint) bit > p->program->Base.NumTemporaries)
340      p->program->Base.NumTemporaries = bit;
341
342   p->temp_in_use |= 1<<(bit-1);
343   return make_ureg(PROGRAM_TEMPORARY, bit-1);
344}
345
346static struct ureg reserve_temp( struct tnl_program *p )
347{
348   struct ureg temp = get_temp( p );
349   p->temp_reserved |= 1<<temp.idx;
350   return temp;
351}
352
353static void release_temp( struct tnl_program *p, struct ureg reg )
354{
355   if (reg.file == PROGRAM_TEMPORARY) {
356      p->temp_in_use &= ~(1<<reg.idx);
357      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
358   }
359}
360
361static void release_temps( struct tnl_program *p )
362{
363   p->temp_in_use = p->temp_reserved;
364}
365
366
367
368static struct ureg register_input( struct tnl_program *p, GLuint input )
369{
370   p->program->Base.InputsRead |= (1<<input);
371   return make_ureg(PROGRAM_INPUT, input);
372}
373
374static struct ureg register_output( struct tnl_program *p, GLuint output )
375{
376   p->program->Base.OutputsWritten |= (1<<output);
377   return make_ureg(PROGRAM_OUTPUT, output);
378}
379
380static struct ureg register_const4f( struct tnl_program *p,
381			      GLfloat s0,
382			      GLfloat s1,
383			      GLfloat s2,
384			      GLfloat s3)
385{
386   GLfloat values[4];
387   GLint idx;
388   GLuint swizzle;
389   values[0] = s0;
390   values[1] = s1;
391   values[2] = s2;
392   values[3] = s3;
393   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
394                                     &swizzle );
395   ASSERT(swizzle == SWIZZLE_NOOP);
396   return make_ureg(PROGRAM_STATE_VAR, idx);
397}
398
399#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
400#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
401#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
402#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
403
404static GLboolean is_undef( struct ureg reg )
405{
406   return reg.file == PROGRAM_UNDEFINED;
407}
408
409static struct ureg get_identity_param( struct tnl_program *p )
410{
411   if (is_undef(p->identity))
412      p->identity = register_const4f(p, 0,0,0,1);
413
414   return p->identity;
415}
416
417static struct ureg register_param6( struct tnl_program *p,
418				   GLint s0,
419				   GLint s1,
420				   GLint s2,
421				   GLint s3,
422				   GLint s4,
423				   GLint s5)
424{
425   GLint tokens[6];
426   GLint idx;
427   tokens[0] = s0;
428   tokens[1] = s1;
429   tokens[2] = s2;
430   tokens[3] = s3;
431   tokens[4] = s4;
432   tokens[5] = s5;
433   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
434   return make_ureg(PROGRAM_STATE_VAR, idx);
435}
436
437
438#define register_param1(p,s0)          register_param6(p,s0,0,0,0,0,0)
439#define register_param2(p,s0,s1)       register_param6(p,s0,s1,0,0,0,0)
440#define register_param3(p,s0,s1,s2)    register_param6(p,s0,s1,s2,0,0,0)
441#define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
442
443
444static void register_matrix_param6( struct tnl_program *p,
445				    GLint s0,
446				    GLint s1,
447				    GLint s2,
448				    GLint s3,
449				    GLint s4,
450				    GLint s5,
451				    struct ureg *matrix )
452{
453   GLint i;
454
455   /* This is a bit sad as the support is there to pull the whole
456    * matrix out in one go:
457    */
458   for (i = 0; i <= s4 - s3; i++)
459      matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
460}
461
462
463static void emit_arg( struct prog_src_register *src,
464		      struct ureg reg )
465{
466   src->File = reg.file;
467   src->Index = reg.idx;
468   src->Swizzle = reg.swz;
469   src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
470   src->Abs = 0;
471   src->NegateAbs = 0;
472   src->RelAddr = 0;
473}
474
475static void emit_dst( struct prog_dst_register *dst,
476		      struct ureg reg, GLuint mask )
477{
478   dst->File = reg.file;
479   dst->Index = reg.idx;
480   /* allow zero as a shorthand for xyzw */
481   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
482   dst->CondMask = COND_TR;
483   dst->CondSwizzle = 0;
484   dst->CondSrc = 0;
485   dst->pad = 0;
486}
487
488static void debug_insn( struct prog_instruction *inst, const char *fn,
489			GLuint line )
490{
491   if (DISASSEM) {
492      static const char *last_fn;
493
494      if (fn != last_fn) {
495	 last_fn = fn;
496	 _mesa_printf("%s:\n", fn);
497      }
498
499      _mesa_printf("%d:\t", line);
500      _mesa_print_instruction(inst);
501   }
502}
503
504
505static void emit_op3fn(struct tnl_program *p,
506		       GLuint op,
507		       struct ureg dest,
508		       GLuint mask,
509		       struct ureg src0,
510		       struct ureg src1,
511		       struct ureg src2,
512		       const char *fn,
513		       GLuint line)
514{
515   GLuint nr = p->program->Base.NumInstructions++;
516   struct prog_instruction *inst = &p->program->Base.Instructions[nr];
517
518   if (p->program->Base.NumInstructions > MAX_INSN) {
519      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
520      return;
521   }
522
523   inst->Opcode = (enum prog_opcode) op;
524   inst->StringPos = 0;
525   inst->Data = 0;
526
527   emit_arg( &inst->SrcReg[0], src0 );
528   emit_arg( &inst->SrcReg[1], src1 );
529   emit_arg( &inst->SrcReg[2], src2 );
530
531   emit_dst( &inst->DstReg, dest, mask );
532
533   debug_insn(inst, fn, line);
534}
535
536
537#define emit_op3(p, op, dst, mask, src0, src1, src2) \
538   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
539
540#define emit_op2(p, op, dst, mask, src0, src1) \
541    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
542
543#define emit_op1(p, op, dst, mask, src0) \
544    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
545
546
547static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
548{
549   if (reg.file == PROGRAM_TEMPORARY &&
550       !(p->temp_reserved & (1<<reg.idx)))
551      return reg;
552   else {
553      struct ureg temp = get_temp(p);
554      emit_op1(p, OPCODE_MOV, temp, 0, reg);
555      return temp;
556   }
557}
558
559
560/* Currently no tracking performed of input/output/register size or
561 * active elements.  Could be used to reduce these operations, as
562 * could the matrix type.
563 */
564static void emit_matrix_transform_vec4( struct tnl_program *p,
565					struct ureg dest,
566					const struct ureg *mat,
567					struct ureg src)
568{
569   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
570   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
571   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
572   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
573}
574
575/* This version is much easier to implement if writemasks are not
576 * supported natively on the target or (like SSE), the target doesn't
577 * have a clean/obvious dotproduct implementation.
578 */
579static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
580						  struct ureg dest,
581						  const struct ureg *mat,
582						  struct ureg src)
583{
584   struct ureg tmp;
585
586   if (dest.file != PROGRAM_TEMPORARY)
587      tmp = get_temp(p);
588   else
589      tmp = dest;
590
591   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
592   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
593   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
594   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
595
596   if (dest.file != PROGRAM_TEMPORARY)
597      release_temp(p, tmp);
598}
599
600static void emit_matrix_transform_vec3( struct tnl_program *p,
601					struct ureg dest,
602					const struct ureg *mat,
603					struct ureg src)
604{
605   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
606   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
607   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
608}
609
610
611static void emit_normalize_vec3( struct tnl_program *p,
612				 struct ureg dest,
613				 struct ureg src )
614{
615   struct ureg tmp = get_temp(p);
616   emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
617   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
618   emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
619   release_temp(p, tmp);
620}
621
622static void emit_passthrough( struct tnl_program *p,
623			      GLuint input,
624			      GLuint output )
625{
626   struct ureg out = register_output(p, output);
627   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
628}
629
630static struct ureg get_eye_position( struct tnl_program *p )
631{
632   if (is_undef(p->eye_position)) {
633      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
634      struct ureg modelview[4];
635
636      p->eye_position = reserve_temp(p);
637
638      if (PREFER_DP4) {
639	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
640				 STATE_MATRIX, modelview );
641
642	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
643      }
644      else {
645	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
646				 STATE_MATRIX_TRANSPOSE, modelview );
647
648	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
649      }
650   }
651
652   return p->eye_position;
653}
654
655
656static struct ureg get_eye_position_normalized( struct tnl_program *p )
657{
658   if (is_undef(p->eye_position_normalized)) {
659      struct ureg eye = get_eye_position(p);
660      p->eye_position_normalized = reserve_temp(p);
661      emit_normalize_vec3(p, p->eye_position_normalized, eye);
662   }
663
664   return p->eye_position_normalized;
665}
666
667
668static struct ureg get_eye_normal( struct tnl_program *p )
669{
670   if (is_undef(p->eye_normal)) {
671      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
672      struct ureg mvinv[3];
673
674      register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
675			      STATE_MATRIX_INVTRANS, mvinv );
676
677      p->eye_normal = reserve_temp(p);
678
679      /* Transform to eye space:
680       */
681      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
682
683      /* Normalize/Rescale:
684       */
685      if (p->state->normalize) {
686	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
687      }
688      else if (p->state->rescale_normals) {
689	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
690					       STATE_NORMAL_SCALE);
691
692	 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, normal,
693		   swizzle1(rescale, X));
694      }
695   }
696
697   return p->eye_normal;
698}
699
700
701
702static void build_hpos( struct tnl_program *p )
703{
704   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
705   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
706   struct ureg mvp[4];
707
708   if (PREFER_DP4) {
709      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
710			      STATE_MATRIX, mvp );
711      emit_matrix_transform_vec4( p, hpos, mvp, pos );
712   }
713   else {
714      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
715			      STATE_MATRIX_TRANSPOSE, mvp );
716      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
717   }
718}
719
720
721static GLuint material_attrib( GLuint side, GLuint property )
722{
723   return ((property - STATE_AMBIENT) * 2 +
724	   side);
725}
726
727/* Get a bitmask of which material values vary on a per-vertex basis.
728 */
729static void set_material_flags( struct tnl_program *p )
730{
731   p->color_materials = 0;
732   p->materials = 0;
733
734   if (p->state->light_color_material) {
735      p->materials =
736	 p->color_materials = p->state->light_color_material_mask;
737   }
738
739   p->materials |= p->state->light_material_mask;
740}
741
742
743static struct ureg get_material( struct tnl_program *p, GLuint side,
744				 GLuint property )
745{
746   GLuint attrib = material_attrib(side, property);
747
748   if (p->color_materials & (1<<attrib))
749      return register_input(p, VERT_ATTRIB_COLOR0);
750   else if (p->materials & (1<<attrib))
751      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
752   else
753      return register_param3( p, STATE_MATERIAL, side, property );
754}
755
756#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
757				   MAT_BIT_FRONT_AMBIENT | \
758				   MAT_BIT_FRONT_DIFFUSE) << (side))
759
760/* Either return a precalculated constant value or emit code to
761 * calculate these values dynamically in the case where material calls
762 * are present between begin/end pairs.
763 *
764 * Probably want to shift this to the program compilation phase - if
765 * we always emitted the calculation here, a smart compiler could
766 * detect that it was constant (given a certain set of inputs), and
767 * lift it out of the main loop.  That way the programs created here
768 * would be independent of the vertex_buffer details.
769 */
770static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
771{
772   if (p->materials & SCENE_COLOR_BITS(side)) {
773      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
774      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
775      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
776      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
777      struct ureg tmp = make_temp(p, material_diffuse);
778      emit_op3(p, OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
779	       material_ambient, material_emission);
780      return tmp;
781   }
782   else
783      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
784}
785
786
787static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
788				  GLuint side, GLuint property )
789{
790   GLuint attrib = material_attrib(side, property);
791   if (p->materials & (1<<attrib)) {
792      struct ureg light_value =
793	 register_param3(p, STATE_LIGHT, light, property);
794      struct ureg material_value = get_material(p, side, property);
795      struct ureg tmp = get_temp(p);
796      emit_op2(p, OPCODE_MUL, tmp,  0, light_value, material_value);
797      return tmp;
798   }
799   else
800      return register_param4(p, STATE_LIGHTPROD, light, side, property);
801}
802
803static struct ureg calculate_light_attenuation( struct tnl_program *p,
804						GLuint i,
805						struct ureg VPpli,
806						struct ureg dist )
807{
808   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
809					     STATE_ATTENUATION);
810   struct ureg att = get_temp(p);
811
812   /* Calculate spot attenuation:
813    */
814   if (!p->state->unit[i].light_spotcutoff_is_180) {
815      struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
816					     STATE_SPOT_DIRECTION);
817      struct ureg spot = get_temp(p);
818      struct ureg slt = get_temp(p);
819
820      emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
821      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot);
822      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
823      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
824      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
825
826      release_temp(p, spot);
827      release_temp(p, slt);
828   }
829
830   /* Calculate distance attenuation:
831    */
832   if (p->state->unit[i].light_attenuated) {
833
834      /* 1/d,d,d,1/d */
835      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
836      /* 1,d,d*d,1/d */
837      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
838      /* 1/dist-atten */
839      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
840
841      if (!p->state->unit[i].light_spotcutoff_is_180) {
842	 /* dist-atten */
843	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
844	 /* spot-atten * dist-atten */
845	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
846      } else {
847	 /* dist-atten */
848	 emit_op1(p, OPCODE_RCP, att, 0, dist);
849      }
850   }
851
852   return att;
853}
854
855
856
857
858
859/* Need to add some addtional parameters to allow lighting in object
860 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
861 * space lighting.
862 */
863static void build_lighting( struct tnl_program *p )
864{
865   const GLboolean twoside = p->state->light_twoside;
866   const GLboolean separate = p->state->separate_specular;
867   GLuint nr_lights = 0, count = 0;
868   struct ureg normal = get_eye_normal(p);
869   struct ureg lit = get_temp(p);
870   struct ureg dots = get_temp(p);
871   struct ureg _col0 = undef, _col1 = undef;
872   struct ureg _bfc0 = undef, _bfc1 = undef;
873   GLuint i;
874
875   for (i = 0; i < MAX_LIGHTS; i++)
876      if (p->state->unit[i].light_enabled)
877	 nr_lights++;
878
879   set_material_flags(p);
880
881   {
882      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
883      emit_op1(p, OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
884      release_temp(p, shininess);
885
886      _col0 = make_temp(p, get_scenecolor(p, 0));
887      if (separate)
888	 _col1 = make_temp(p, get_identity_param(p));
889      else
890	 _col1 = _col0;
891
892   }
893
894   if (twoside) {
895      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
896      emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
897	       negate(swizzle1(shininess,X)));
898      release_temp(p, shininess);
899
900      _bfc0 = make_temp(p, get_scenecolor(p, 1));
901      if (separate)
902	 _bfc1 = make_temp(p, get_identity_param(p));
903      else
904	 _bfc1 = _bfc0;
905   }
906
907
908   /* If no lights, still need to emit the scenecolor.
909    */
910      {
911	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
912	 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
913      }
914
915      if (separate) {
916	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
917	 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
918      }
919
920      if (twoside) {
921	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
922	 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
923      }
924
925      if (twoside && separate) {
926	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
927	 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
928      }
929
930   if (nr_lights == 0) {
931      release_temps(p);
932      return;
933   }
934
935
936   for (i = 0; i < MAX_LIGHTS; i++) {
937      if (p->state->unit[i].light_enabled) {
938	 struct ureg half = undef;
939	 struct ureg att = undef, VPpli = undef;
940
941	 count++;
942
943	 if (p->state->unit[i].light_eyepos3_is_zero) {
944	    /* Can used precomputed constants in this case.
945	     * Attenuation never applies to infinite lights.
946	     */
947	    VPpli = register_param3(p, STATE_LIGHT, i,
948				    STATE_POSITION_NORMALIZED);
949	    half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
950	 }
951	 else {
952	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
953					       STATE_POSITION);
954	    struct ureg V = get_eye_position(p);
955	    struct ureg dist = get_temp(p);
956
957	    VPpli = get_temp(p);
958	    half = get_temp(p);
959
960	    /* Calulate VPpli vector
961	     */
962	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
963
964	    /* Normalize VPpli.  The dist value also used in
965	     * attenuation below.
966	     */
967	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
968	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
969	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
970
971
972	    /* Calculate  attenuation:
973	     */
974	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
975		p->state->unit[i].light_attenuated) {
976	       att = calculate_light_attenuation(p, i, VPpli, dist);
977	    }
978
979
980	    /* Calculate viewer direction, or use infinite viewer:
981	     */
982	    if (p->state->light_local_viewer) {
983	       struct ureg eye_hat = get_eye_position_normalized(p);
984	       emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
985	    }
986	    else {
987	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
988	       emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
989	    }
990
991	    emit_normalize_vec3(p, half, half);
992
993	    release_temp(p, dist);
994	 }
995
996	 /* Calculate dot products:
997	  */
998	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
999	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1000
1001
1002	 /* Front face lighting:
1003	  */
1004	 {
1005	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1006	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1007	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1008	    struct ureg res0, res1;
1009	    GLuint mask0, mask1;
1010
1011	    emit_op1(p, OPCODE_LIT, lit, 0, dots);
1012
1013	    if (!is_undef(att))
1014	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1015
1016
1017	    if (count == nr_lights) {
1018	       if (separate) {
1019		  mask0 = WRITEMASK_XYZ;
1020		  mask1 = WRITEMASK_XYZ;
1021		  res0 = register_output( p, VERT_RESULT_COL0 );
1022		  res1 = register_output( p, VERT_RESULT_COL1 );
1023	       }
1024	       else {
1025		  mask0 = 0;
1026		  mask1 = WRITEMASK_XYZ;
1027		  res0 = _col0;
1028		  res1 = register_output( p, VERT_RESULT_COL0 );
1029	       }
1030	    } else {
1031	       mask0 = 0;
1032	       mask1 = 0;
1033	       res0 = _col0;
1034	       res1 = _col1;
1035	    }
1036
1037	    emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1038	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1039	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1040
1041	    release_temp(p, ambient);
1042	    release_temp(p, diffuse);
1043	    release_temp(p, specular);
1044	 }
1045
1046	 /* Back face lighting:
1047	  */
1048	 if (twoside) {
1049	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1050	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1051	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1052	    struct ureg res0, res1;
1053	    GLuint mask0, mask1;
1054
1055	    emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1056
1057	    if (!is_undef(att))
1058	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1059
1060	    if (count == nr_lights) {
1061	       if (separate) {
1062		  mask0 = WRITEMASK_XYZ;
1063		  mask1 = WRITEMASK_XYZ;
1064		  res0 = register_output( p, VERT_RESULT_BFC0 );
1065		  res1 = register_output( p, VERT_RESULT_BFC1 );
1066	       }
1067	       else {
1068		  mask0 = 0;
1069		  mask1 = WRITEMASK_XYZ;
1070		  res0 = _bfc0;
1071		  res1 = register_output( p, VERT_RESULT_BFC0 );
1072	       }
1073	    } else {
1074	       res0 = _bfc0;
1075	       res1 = _bfc1;
1076	       mask0 = 0;
1077	       mask1 = 0;
1078	    }
1079
1080	    emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1081	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1082	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1083
1084	    release_temp(p, ambient);
1085	    release_temp(p, diffuse);
1086	    release_temp(p, specular);
1087	 }
1088
1089	 release_temp(p, half);
1090	 release_temp(p, VPpli);
1091	 release_temp(p, att);
1092      }
1093   }
1094
1095   release_temps( p );
1096}
1097
1098
1099static void build_fog( struct tnl_program *p )
1100{
1101   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1102   struct ureg input;
1103
1104   if (p->state->fog_source_is_depth) {
1105      input = swizzle1(get_eye_position(p), Z);
1106   }
1107   else {
1108      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1109   }
1110
1111   if (p->state->tnl_do_vertex_fog) {
1112      struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1113      struct ureg tmp = get_temp(p);
1114
1115      switch (p->state->fog_mode) {
1116      case FOG_LINEAR: {
1117	 struct ureg id = get_identity_param(p);
1118	 emit_op2(p, OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1119	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1120	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1121	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1122	 break;
1123      }
1124      case FOG_EXP:
1125	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1126	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1127	 emit_op2(p, OPCODE_POW, fog, WRITEMASK_X,
1128		  register_const1f(p, M_E), negate(tmp));
1129	 break;
1130      case FOG_EXP2:
1131	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1132	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1133	 emit_op2(p, OPCODE_POW, fog, WRITEMASK_X,
1134		  register_const1f(p, M_E), negate(tmp));
1135	 break;
1136      }
1137
1138      release_temp(p, tmp);
1139   }
1140   else {
1141      /* results = incoming fog coords (compute fog per-fragment later)
1142       *
1143       * KW:  Is it really necessary to do anything in this case?
1144       */
1145      emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1146   }
1147}
1148
1149static void build_reflect_texgen( struct tnl_program *p,
1150				  struct ureg dest,
1151				  GLuint writemask )
1152{
1153   struct ureg normal = get_eye_normal(p);
1154   struct ureg eye_hat = get_eye_position_normalized(p);
1155   struct ureg tmp = get_temp(p);
1156
1157   /* n.u */
1158   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1159   /* 2n.u */
1160   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1161   /* (-2n.u)n + u */
1162   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1163
1164   release_temp(p, tmp);
1165}
1166
1167static void build_sphere_texgen( struct tnl_program *p,
1168				 struct ureg dest,
1169				 GLuint writemask )
1170{
1171   struct ureg normal = get_eye_normal(p);
1172   struct ureg eye_hat = get_eye_position_normalized(p);
1173   struct ureg tmp = get_temp(p);
1174   struct ureg half = register_scalar_const(p, .5);
1175   struct ureg r = get_temp(p);
1176   struct ureg inv_m = get_temp(p);
1177   struct ureg id = get_identity_param(p);
1178
1179   /* Could share the above calculations, but it would be
1180    * a fairly odd state for someone to set (both sphere and
1181    * reflection active for different texture coordinate
1182    * components.  Of course - if two texture units enable
1183    * reflect and/or sphere, things start to tilt in favour
1184    * of seperating this out:
1185    */
1186
1187   /* n.u */
1188   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1189   /* 2n.u */
1190   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1191   /* (-2n.u)n + u */
1192   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1193   /* r + 0,0,1 */
1194   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1195   /* rx^2 + ry^2 + (rz+1)^2 */
1196   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1197   /* 2/m */
1198   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1199   /* 1/m */
1200   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1201   /* r/m + 1/2 */
1202   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1203
1204   release_temp(p, tmp);
1205   release_temp(p, r);
1206   release_temp(p, inv_m);
1207}
1208
1209
1210static void build_texture_transform( struct tnl_program *p )
1211{
1212   GLuint i, j;
1213
1214   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1215
1216      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1217	 continue;
1218
1219      if (p->state->unit[i].texgen_enabled ||
1220	  p->state->unit[i].texmat_enabled) {
1221
1222	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1223	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1224	 struct ureg out_texgen = undef;
1225
1226	 if (p->state->unit[i].texgen_enabled) {
1227	    GLuint copy_mask = 0;
1228	    GLuint sphere_mask = 0;
1229	    GLuint reflect_mask = 0;
1230	    GLuint normal_mask = 0;
1231	    GLuint modes[4];
1232
1233	    if (texmat_enabled)
1234	       out_texgen = get_temp(p);
1235	    else
1236	       out_texgen = out;
1237
1238	    modes[0] = p->state->unit[i].texgen_mode0;
1239	    modes[1] = p->state->unit[i].texgen_mode1;
1240	    modes[2] = p->state->unit[i].texgen_mode2;
1241	    modes[3] = p->state->unit[i].texgen_mode3;
1242
1243	    for (j = 0; j < 4; j++) {
1244	       switch (modes[j]) {
1245	       case TXG_OBJ_LINEAR: {
1246		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1247		  struct ureg plane =
1248		     register_param3(p, STATE_TEXGEN, i,
1249				     STATE_TEXGEN_OBJECT_S + j);
1250
1251		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1252			   obj, plane );
1253		  break;
1254	       }
1255	       case TXG_EYE_LINEAR: {
1256		  struct ureg eye = get_eye_position(p);
1257		  struct ureg plane =
1258		     register_param3(p, STATE_TEXGEN, i,
1259				     STATE_TEXGEN_EYE_S + j);
1260
1261		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1262			   eye, plane );
1263		  break;
1264	       }
1265	       case TXG_SPHERE_MAP:
1266		  sphere_mask |= WRITEMASK_X << j;
1267		  break;
1268	       case TXG_REFLECTION_MAP:
1269		  reflect_mask |= WRITEMASK_X << j;
1270		  break;
1271	       case TXG_NORMAL_MAP:
1272		  normal_mask |= WRITEMASK_X << j;
1273		  break;
1274	       case TXG_NONE:
1275		  copy_mask |= WRITEMASK_X << j;
1276	       }
1277
1278	    }
1279
1280
1281	    if (sphere_mask) {
1282	       build_sphere_texgen(p, out_texgen, sphere_mask);
1283	    }
1284
1285	    if (reflect_mask) {
1286	       build_reflect_texgen(p, out_texgen, reflect_mask);
1287	    }
1288
1289	    if (normal_mask) {
1290	       struct ureg normal = get_eye_normal(p);
1291	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1292	    }
1293
1294	    if (copy_mask) {
1295	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1296	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1297	    }
1298	 }
1299
1300	 if (texmat_enabled) {
1301	    struct ureg texmat[4];
1302	    struct ureg in = (!is_undef(out_texgen) ?
1303			      out_texgen :
1304			      register_input(p, VERT_ATTRIB_TEX0+i));
1305	    if (PREFER_DP4) {
1306	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1307				       0, 3, STATE_MATRIX, texmat );
1308	       emit_matrix_transform_vec4( p, out, texmat, in );
1309	    }
1310	    else {
1311	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1312				       0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1313	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1314	    }
1315	 }
1316
1317	 release_temps(p);
1318      }
1319      else {
1320	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1321      }
1322   }
1323}
1324
1325
1326/* Seems like it could be tighter:
1327 */
1328static void build_pointsize( struct tnl_program *p )
1329{
1330   struct ureg eye = get_eye_position(p);
1331   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1332   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1333   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1334   struct ureg ut = get_temp(p);
1335
1336   /* 1, -Z, Z * Z, 1 */
1337   emit_op1(p, OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1338   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1339   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1340
1341
1342   /* p1 +  p2 * dist + p3 * dist * dist, 0 */
1343   emit_op2(p, OPCODE_DP3, ut, 0, ut, state_attenuation);
1344
1345   /* 1 / factor */
1346   emit_op1(p, OPCODE_RCP, ut, 0, ut );
1347
1348   /* out = pointSize / factor */
1349   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1350
1351   release_temp(p, ut);
1352}
1353
1354static void build_tnl_program( struct tnl_program *p )
1355{   /* Emit the program, starting with modelviewproject:
1356    */
1357   build_hpos(p);
1358
1359   /* Lighting calculations:
1360    */
1361   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1362      if (p->state->light_global_enabled)
1363	 build_lighting(p);
1364      else {
1365	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1366	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1367
1368	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1369	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1370      }
1371   }
1372
1373   if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1374       p->state->fog_mode != FOG_NONE)
1375      build_fog(p);
1376
1377   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1378      build_texture_transform(p);
1379
1380   if (p->state->point_attenuated)
1381      build_pointsize(p);
1382
1383   /* Finish up:
1384    */
1385   emit_op1(p, OPCODE_END, undef, 0, undef);
1386
1387   /* Disassemble:
1388    */
1389   if (DISASSEM) {
1390      _mesa_printf ("\n");
1391   }
1392}
1393
1394
1395static void
1396create_new_program( const struct state_key *key,
1397                    struct gl_vertex_program *program,
1398                    GLuint max_temps)
1399{
1400   struct tnl_program p;
1401
1402   _mesa_memset(&p, 0, sizeof(p));
1403   p.state = key;
1404   p.program = program;
1405   p.eye_position = undef;
1406   p.eye_position_normalized = undef;
1407   p.eye_normal = undef;
1408   p.identity = undef;
1409   p.temp_in_use = 0;
1410
1411   if (max_temps >= sizeof(int) * 8)
1412      p.temp_reserved = 0;
1413   else
1414      p.temp_reserved = ~((1<<max_temps)-1);
1415
1416   p.program->Base.Instructions
1417      = (struct prog_instruction*) MALLOC(sizeof(struct prog_instruction) * MAX_INSN);
1418   p.program->Base.String = 0;
1419   p.program->Base.NumInstructions =
1420   p.program->Base.NumTemporaries =
1421   p.program->Base.NumParameters =
1422   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1423   p.program->Base.Parameters = _mesa_new_parameter_list();
1424   p.program->Base.InputsRead = 0;
1425   p.program->Base.OutputsWritten = 0;
1426
1427   build_tnl_program( &p );
1428}
1429
1430static void *search_cache( struct tnl_cache *cache,
1431			   GLuint hash,
1432			   const void *key,
1433			   GLuint keysize)
1434{
1435   struct tnl_cache_item *c;
1436
1437   for (c = cache->items[hash % cache->size]; c; c = c->next) {
1438      if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1439	 return c->data;
1440   }
1441
1442   return NULL;
1443}
1444
1445static void rehash( struct tnl_cache *cache )
1446{
1447   struct tnl_cache_item **items;
1448   struct tnl_cache_item *c, *next;
1449   GLuint size, i;
1450
1451   size = cache->size * 3;
1452   items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1453   _mesa_memset(items, 0, size * sizeof(*items));
1454
1455   for (i = 0; i < cache->size; i++)
1456      for (c = cache->items[i]; c; c = next) {
1457	 next = c->next;
1458	 c->next = items[c->hash % size];
1459	 items[c->hash % size] = c;
1460      }
1461
1462   FREE(cache->items);
1463   cache->items = items;
1464   cache->size = size;
1465}
1466
1467static void cache_item( struct tnl_cache *cache,
1468			GLuint hash,
1469			void *key,
1470			void *data )
1471{
1472   struct tnl_cache_item *c = (struct tnl_cache_item*) _mesa_malloc(sizeof(*c));
1473   c->hash = hash;
1474   c->key = key;
1475   c->data = data;
1476
1477   if (++cache->n_items > cache->size * 1.5)
1478      rehash(cache);
1479
1480   c->next = cache->items[hash % cache->size];
1481   cache->items[hash % cache->size] = c;
1482}
1483
1484static GLuint hash_key( struct state_key *key )
1485{
1486   GLuint *ikey = (GLuint *)key;
1487   GLuint hash = 0, i;
1488
1489   /* I'm sure this can be improved on, but speed is important:
1490    */
1491   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1492      hash ^= ikey[i];
1493
1494   return hash;
1495}
1496
1497void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1498{
1499   TNLcontext *tnl = TNL_CONTEXT(ctx);
1500   struct state_key *key;
1501   GLuint hash;
1502   const struct gl_vertex_program *prev = ctx->VertexProgram._Current;
1503
1504   if (!ctx->VertexProgram._Current) {
1505      /* Grab all the relevent state and put it in a single structure:
1506       */
1507      key = make_state_key(ctx);
1508      hash = hash_key(key);
1509
1510      /* Look for an already-prepared program for this state:
1511       */
1512      ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1513	 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1514
1515      /* OK, we'll have to build a new one:
1516       */
1517      if (!ctx->VertexProgram._TnlProgram) {
1518	 if (0)
1519	    _mesa_printf("Build new TNL program\n");
1520
1521	 ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1522	    ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1523
1524	 create_new_program( key, ctx->VertexProgram._TnlProgram,
1525			     ctx->Const.VertexProgram.MaxTemps );
1526
1527	 if (ctx->Driver.ProgramStringNotify)
1528	    ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1529                                       &ctx->VertexProgram._TnlProgram->Base );
1530
1531	 cache_item(tnl->vp_cache, hash, key, ctx->VertexProgram._TnlProgram );
1532      }
1533      else {
1534	 FREE(key);
1535	 if (0)
1536	    _mesa_printf("Found existing TNL program for key %x\n", hash);
1537      }
1538      ctx->VertexProgram._Current = ctx->VertexProgram._TnlProgram;
1539   }
1540
1541   /* Tell the driver about the change.  Could define a new target for
1542    * this?
1543    */
1544   if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) {
1545      ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB,
1546                            (struct gl_program *) ctx->VertexProgram._Current);
1547   }
1548}
1549
1550void _tnl_ProgramCacheInit( GLcontext *ctx )
1551{
1552   TNLcontext *tnl = TNL_CONTEXT(ctx);
1553
1554   tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache));
1555   tnl->vp_cache->size = 17;
1556   tnl->vp_cache->n_items = 0;
1557   tnl->vp_cache->items = (struct tnl_cache_item**)
1558      _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items));
1559}
1560
1561void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1562{
1563   TNLcontext *tnl = TNL_CONTEXT(ctx);
1564   struct tnl_cache_item *c, *next;
1565   GLuint i;
1566
1567   for (i = 0; i < tnl->vp_cache->size; i++)
1568      for (c = tnl->vp_cache->items[i]; c; c = next) {
1569	 next = c->next;
1570	 FREE(c->key);
1571	 FREE(c->data);
1572	 FREE(c);
1573      }
1574
1575   FREE(tnl->vp_cache->items);
1576   FREE(tnl->vp_cache);
1577}
1578