t_vp_build.c revision bbd287103dad776d8a45c87c4e51fbc26d9b80d5
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.1
4 *
5 * Copyright (C) 2007  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "main/glheader.h"
34#include "main/macros.h"
35#include "main/enums.h"
36#include "shader/program.h"
37#include "shader/prog_instruction.h"
38#include "shader/prog_parameter.h"
39#include "shader/prog_print.h"
40#include "shader/prog_statevars.h"
41#include "t_context.h" /* NOTE: very light dependency on this */
42#include "t_vp_build.h"
43
44
45struct state_key {
46   unsigned light_global_enabled:1;
47   unsigned light_local_viewer:1;
48   unsigned light_twoside:1;
49   unsigned light_color_material:1;
50   unsigned light_color_material_mask:12;
51   unsigned light_material_mask:12;
52
53   unsigned normalize:1;
54   unsigned rescale_normals:1;
55   unsigned fog_source_is_depth:1;
56   unsigned tnl_do_vertex_fog:1;
57   unsigned separate_specular:1;
58   unsigned fog_mode:2;
59   unsigned point_attenuated:1;
60   unsigned texture_enabled_global:1;
61   unsigned fragprog_inputs_read:12;
62
63   struct {
64      unsigned light_enabled:1;
65      unsigned light_eyepos3_is_zero:1;
66      unsigned light_spotcutoff_is_180:1;
67      unsigned light_attenuated:1;
68      unsigned texunit_really_enabled:1;
69      unsigned texmat_enabled:1;
70      unsigned texgen_enabled:4;
71      unsigned texgen_mode0:4;
72      unsigned texgen_mode1:4;
73      unsigned texgen_mode2:4;
74      unsigned texgen_mode3:4;
75   } unit[8];
76};
77
78
79
80#define FOG_NONE   0
81#define FOG_LINEAR 1
82#define FOG_EXP    2
83#define FOG_EXP2   3
84
85static GLuint translate_fog_mode( GLenum mode )
86{
87   switch (mode) {
88   case GL_LINEAR: return FOG_LINEAR;
89   case GL_EXP: return FOG_EXP;
90   case GL_EXP2: return FOG_EXP2;
91   default: return FOG_NONE;
92   }
93}
94
95#define TXG_NONE           0
96#define TXG_OBJ_LINEAR     1
97#define TXG_EYE_LINEAR     2
98#define TXG_SPHERE_MAP     3
99#define TXG_REFLECTION_MAP 4
100#define TXG_NORMAL_MAP     5
101
102static GLuint translate_texgen( GLboolean enabled, GLenum mode )
103{
104   if (!enabled)
105      return TXG_NONE;
106
107   switch (mode) {
108   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
109   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
110   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
111   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
112   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
113   default: return TXG_NONE;
114   }
115}
116
117static struct state_key *make_state_key( GLcontext *ctx )
118{
119   TNLcontext *tnl = TNL_CONTEXT(ctx);
120   struct vertex_buffer *VB = &tnl->vb;
121   const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
122   struct state_key *key = CALLOC_STRUCT(state_key);
123   GLuint i;
124
125   /* This now relies on texenvprogram.c being active:
126    */
127   assert(fp);
128
129   key->fragprog_inputs_read = fp->Base.InputsRead;
130
131   key->separate_specular = (ctx->Light.Model.ColorControl ==
132			     GL_SEPARATE_SPECULAR_COLOR);
133
134   if (ctx->Light.Enabled) {
135      key->light_global_enabled = 1;
136
137      if (ctx->Light.Model.LocalViewer)
138	 key->light_local_viewer = 1;
139
140      if (ctx->Light.Model.TwoSide)
141	 key->light_twoside = 1;
142
143      if (ctx->Light.ColorMaterialEnabled) {
144	 key->light_color_material = 1;
145	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
146      }
147
148      for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
149	 if (VB->AttribPtr[i]->stride)
150	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
151
152      for (i = 0; i < MAX_LIGHTS; i++) {
153	 struct gl_light *light = &ctx->Light.Light[i];
154
155	 if (light->Enabled) {
156	    key->unit[i].light_enabled = 1;
157
158	    if (light->EyePosition[3] == 0.0)
159	       key->unit[i].light_eyepos3_is_zero = 1;
160
161	    if (light->SpotCutoff == 180.0)
162	       key->unit[i].light_spotcutoff_is_180 = 1;
163
164	    if (light->ConstantAttenuation != 1.0 ||
165		light->LinearAttenuation != 0.0 ||
166		light->QuadraticAttenuation != 0.0)
167	       key->unit[i].light_attenuated = 1;
168	 }
169      }
170   }
171
172   if (ctx->Transform.Normalize)
173      key->normalize = 1;
174
175   if (ctx->Transform.RescaleNormals)
176      key->rescale_normals = 1;
177
178   key->fog_mode = translate_fog_mode(fp->FogOption);
179
180   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
181      key->fog_source_is_depth = 1;
182
183   if (tnl->_DoVertexFog)
184      key->tnl_do_vertex_fog = 1;
185
186   if (ctx->Point._Attenuated)
187      key->point_attenuated = 1;
188
189   if (ctx->Texture._TexGenEnabled ||
190       ctx->Texture._TexMatEnabled ||
191       ctx->Texture._EnabledUnits)
192      key->texture_enabled_global = 1;
193
194   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
195      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
196
197      if (texUnit->_ReallyEnabled)
198	 key->unit[i].texunit_really_enabled = 1;
199
200      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
201	 key->unit[i].texmat_enabled = 1;
202
203      if (texUnit->TexGenEnabled) {
204	 key->unit[i].texgen_enabled = 1;
205
206	 key->unit[i].texgen_mode0 =
207	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
208			      texUnit->GenModeS );
209	 key->unit[i].texgen_mode1 =
210	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
211			      texUnit->GenModeT );
212	 key->unit[i].texgen_mode2 =
213	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
214			      texUnit->GenModeR );
215	 key->unit[i].texgen_mode3 =
216	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
217			      texUnit->GenModeQ );
218      }
219   }
220
221   return key;
222}
223
224
225
226/* Very useful debugging tool - produces annotated listing of
227 * generated program with line/function references for each
228 * instruction back into this file:
229 */
230#define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
231
232/* Should be tunable by the driver - do we want to do matrix
233 * multiplications with DP4's or with MUL/MAD's?  SSE works better
234 * with the latter, drivers may differ.
235 */
236#define PREFER_DP4 0
237
238#define MAX_INSN 350
239
240/* Use uregs to represent registers internally, translate to Mesa's
241 * expected formats on emit.
242 *
243 * NOTE: These are passed by value extensively in this file rather
244 * than as usual by pointer reference.  If this disturbs you, try
245 * remembering they are just 32bits in size.
246 *
247 * GCC is smart enough to deal with these dword-sized structures in
248 * much the same way as if I had defined them as dwords and was using
249 * macros to access and set the fields.  This is much nicer and easier
250 * to evolve.
251 */
252struct ureg {
253   GLuint file:4;
254   GLint idx:8;      /* relative addressing may be negative */
255   GLuint negate:1;
256   GLuint swz:12;
257   GLuint pad:7;
258};
259
260
261struct tnl_program {
262   const struct state_key *state;
263   struct gl_vertex_program *program;
264
265   GLuint temp_in_use;
266   GLuint temp_reserved;
267
268   struct ureg eye_position;
269   struct ureg eye_position_normalized;
270   struct ureg eye_normal;
271   struct ureg identity;
272
273   GLuint materials;
274   GLuint color_materials;
275};
276
277
278static const struct ureg undef = {
279   PROGRAM_UNDEFINED,
280   ~0,
281   0,
282   0,
283   0
284};
285
286/* Local shorthand:
287 */
288#define X    SWIZZLE_X
289#define Y    SWIZZLE_Y
290#define Z    SWIZZLE_Z
291#define W    SWIZZLE_W
292
293
294/* Construct a ureg:
295 */
296static struct ureg make_ureg(GLuint file, GLint idx)
297{
298   struct ureg reg;
299   reg.file = file;
300   reg.idx = idx;
301   reg.negate = 0;
302   reg.swz = SWIZZLE_NOOP;
303   reg.pad = 0;
304   return reg;
305}
306
307
308
309static struct ureg negate( struct ureg reg )
310{
311   reg.negate ^= 1;
312   return reg;
313}
314
315
316static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
317{
318   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
319			   GET_SWZ(reg.swz, y),
320			   GET_SWZ(reg.swz, z),
321			   GET_SWZ(reg.swz, w));
322
323   return reg;
324}
325
326static struct ureg swizzle1( struct ureg reg, int x )
327{
328   return swizzle(reg, x, x, x, x);
329}
330
331static struct ureg get_temp( struct tnl_program *p )
332{
333   int bit = _mesa_ffs( ~p->temp_in_use );
334   if (!bit) {
335      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
336      _mesa_exit(1);
337   }
338
339   if ((GLuint) bit > p->program->Base.NumTemporaries)
340      p->program->Base.NumTemporaries = bit;
341
342   p->temp_in_use |= 1<<(bit-1);
343   return make_ureg(PROGRAM_TEMPORARY, bit-1);
344}
345
346static struct ureg reserve_temp( struct tnl_program *p )
347{
348   struct ureg temp = get_temp( p );
349   p->temp_reserved |= 1<<temp.idx;
350   return temp;
351}
352
353static void release_temp( struct tnl_program *p, struct ureg reg )
354{
355   if (reg.file == PROGRAM_TEMPORARY) {
356      p->temp_in_use &= ~(1<<reg.idx);
357      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
358   }
359}
360
361static void release_temps( struct tnl_program *p )
362{
363   p->temp_in_use = p->temp_reserved;
364}
365
366
367
368static struct ureg register_input( struct tnl_program *p, GLuint input )
369{
370   p->program->Base.InputsRead |= (1<<input);
371   return make_ureg(PROGRAM_INPUT, input);
372}
373
374static struct ureg register_output( struct tnl_program *p, GLuint output )
375{
376   p->program->Base.OutputsWritten |= (1<<output);
377   return make_ureg(PROGRAM_OUTPUT, output);
378}
379
380static struct ureg register_const4f( struct tnl_program *p,
381			      GLfloat s0,
382			      GLfloat s1,
383			      GLfloat s2,
384			      GLfloat s3)
385{
386   GLfloat values[4];
387   GLint idx;
388   GLuint swizzle;
389   values[0] = s0;
390   values[1] = s1;
391   values[2] = s2;
392   values[3] = s3;
393   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
394                                     &swizzle );
395   ASSERT(swizzle == SWIZZLE_NOOP);
396   return make_ureg(PROGRAM_STATE_VAR, idx);
397}
398
399#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
400#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
401#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
402#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
403
404static GLboolean is_undef( struct ureg reg )
405{
406   return reg.file == PROGRAM_UNDEFINED;
407}
408
409static struct ureg get_identity_param( struct tnl_program *p )
410{
411   if (is_undef(p->identity))
412      p->identity = register_const4f(p, 0,0,0,1);
413
414   return p->identity;
415}
416
417static struct ureg register_param5(struct tnl_program *p,
418				   GLint s0,
419				   GLint s1,
420				   GLint s2,
421				   GLint s3,
422                                   GLint s4)
423{
424   gl_state_index tokens[STATE_LENGTH];
425   GLint idx;
426   tokens[0] = s0;
427   tokens[1] = s1;
428   tokens[2] = s2;
429   tokens[3] = s3;
430   tokens[4] = s4;
431   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432   return make_ureg(PROGRAM_STATE_VAR, idx);
433}
434
435
436#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
437#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
438#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
439#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442static void register_matrix_param5( struct tnl_program *p,
443				    GLint s0, /* modelview, projection, etc */
444				    GLint s1, /* texture matrix number */
445				    GLint s2, /* first row */
446				    GLint s3, /* last row */
447				    GLint s4, /* inverse, transpose, etc */
448				    struct ureg *matrix )
449{
450   GLint i;
451
452   /* This is a bit sad as the support is there to pull the whole
453    * matrix out in one go:
454    */
455   for (i = 0; i <= s3 - s2; i++)
456      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
457}
458
459
460/**
461 * Convert a ureg source register to a prog_src_register.
462 */
463static void emit_arg( struct prog_src_register *src,
464		      struct ureg reg )
465{
466   assert(reg.file != PROGRAM_OUTPUT);
467   src->File = reg.file;
468   src->Index = reg.idx;
469   src->Swizzle = reg.swz;
470   src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
471   src->Abs = 0;
472   src->NegateAbs = 0;
473   src->RelAddr = 0;
474}
475
476/**
477 * Convert a ureg dest register to a prog_dst_register.
478 */
479static void emit_dst( struct prog_dst_register *dst,
480		      struct ureg reg, GLuint mask )
481{
482   /* Check for legal output register type.  UNDEFINED will occur in
483    * instruction that don't produce a result (like END).
484    */
485   assert(reg.file == PROGRAM_TEMPORARY ||
486          reg.file == PROGRAM_OUTPUT ||
487          reg.file == PROGRAM_UNDEFINED);
488   dst->File = reg.file;
489   dst->Index = reg.idx;
490   /* allow zero as a shorthand for xyzw */
491   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
492   dst->CondMask = COND_TR;  /* always pass cond test */
493   dst->CondSwizzle = SWIZZLE_NOOP;
494   dst->CondSrc = 0;
495   dst->pad = 0;
496}
497
498static void debug_insn( struct prog_instruction *inst, const char *fn,
499			GLuint line )
500{
501   if (DISASSEM) {
502      static const char *last_fn;
503
504      if (fn != last_fn) {
505	 last_fn = fn;
506	 _mesa_printf("%s:\n", fn);
507      }
508
509      _mesa_printf("%d:\t", line);
510      _mesa_print_instruction(inst);
511   }
512}
513
514
515static void emit_op3fn(struct tnl_program *p,
516                       enum prog_opcode op,
517		       struct ureg dest,
518		       GLuint mask,
519		       struct ureg src0,
520		       struct ureg src1,
521		       struct ureg src2,
522		       const char *fn,
523		       GLuint line)
524{
525   GLuint nr = p->program->Base.NumInstructions++;
526   struct prog_instruction *inst = &p->program->Base.Instructions[nr];
527
528   if (p->program->Base.NumInstructions > MAX_INSN) {
529      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
530      return;
531   }
532
533   inst->Opcode = (enum prog_opcode) op;
534   inst->StringPos = 0;
535   inst->Data = 0;
536
537   emit_arg( &inst->SrcReg[0], src0 );
538   emit_arg( &inst->SrcReg[1], src1 );
539   emit_arg( &inst->SrcReg[2], src2 );
540
541   emit_dst( &inst->DstReg, dest, mask );
542
543   debug_insn(inst, fn, line);
544}
545
546
547#define emit_op3(p, op, dst, mask, src0, src1, src2) \
548   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
549
550#define emit_op2(p, op, dst, mask, src0, src1) \
551    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
552
553#define emit_op1(p, op, dst, mask, src0) \
554    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
555
556
557static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
558{
559   if (reg.file == PROGRAM_TEMPORARY &&
560       !(p->temp_reserved & (1<<reg.idx)))
561      return reg;
562   else {
563      struct ureg temp = get_temp(p);
564      emit_op1(p, OPCODE_MOV, temp, 0, reg);
565      return temp;
566   }
567}
568
569
570/* Currently no tracking performed of input/output/register size or
571 * active elements.  Could be used to reduce these operations, as
572 * could the matrix type.
573 */
574static void emit_matrix_transform_vec4( struct tnl_program *p,
575					struct ureg dest,
576					const struct ureg *mat,
577					struct ureg src)
578{
579   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
580   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
581   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
582   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
583}
584
585/* This version is much easier to implement if writemasks are not
586 * supported natively on the target or (like SSE), the target doesn't
587 * have a clean/obvious dotproduct implementation.
588 */
589static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
590						  struct ureg dest,
591						  const struct ureg *mat,
592						  struct ureg src)
593{
594   struct ureg tmp;
595
596   if (dest.file != PROGRAM_TEMPORARY)
597      tmp = get_temp(p);
598   else
599      tmp = dest;
600
601   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
602   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
603   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
604   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
605
606   if (dest.file != PROGRAM_TEMPORARY)
607      release_temp(p, tmp);
608}
609
610static void emit_matrix_transform_vec3( struct tnl_program *p,
611					struct ureg dest,
612					const struct ureg *mat,
613					struct ureg src)
614{
615   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
616   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
617   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
618}
619
620
621static void emit_normalize_vec3( struct tnl_program *p,
622				 struct ureg dest,
623				 struct ureg src )
624{
625   struct ureg tmp = get_temp(p);
626   emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
627   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
628   emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
629   release_temp(p, tmp);
630}
631
632static void emit_passthrough( struct tnl_program *p,
633			      GLuint input,
634			      GLuint output )
635{
636   struct ureg out = register_output(p, output);
637   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
638}
639
640static struct ureg get_eye_position( struct tnl_program *p )
641{
642   if (is_undef(p->eye_position)) {
643      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
644      struct ureg modelview[4];
645
646      p->eye_position = reserve_temp(p);
647
648      if (PREFER_DP4) {
649	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
650                                 0, modelview );
651
652	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
653      }
654      else {
655	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
656				 STATE_MATRIX_TRANSPOSE, modelview );
657
658	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
659      }
660   }
661
662   return p->eye_position;
663}
664
665
666static struct ureg get_eye_position_normalized( struct tnl_program *p )
667{
668   if (is_undef(p->eye_position_normalized)) {
669      struct ureg eye = get_eye_position(p);
670      p->eye_position_normalized = reserve_temp(p);
671      emit_normalize_vec3(p, p->eye_position_normalized, eye);
672   }
673
674   return p->eye_position_normalized;
675}
676
677
678static struct ureg get_eye_normal( struct tnl_program *p )
679{
680   if (is_undef(p->eye_normal)) {
681      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
682      struct ureg mvinv[3];
683
684      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
685			      STATE_MATRIX_INVTRANS, mvinv );
686
687      p->eye_normal = reserve_temp(p);
688
689      /* Transform to eye space:
690       */
691      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
692
693      /* Normalize/Rescale:
694       */
695      if (p->state->normalize) {
696	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
697      }
698      else if (p->state->rescale_normals) {
699	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
700					       STATE_NORMAL_SCALE);
701
702	 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, p->eye_normal,
703		   swizzle1(rescale, X));
704      }
705   }
706
707   return p->eye_normal;
708}
709
710
711
712static void build_hpos( struct tnl_program *p )
713{
714   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
715   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
716   struct ureg mvp[4];
717
718   if (PREFER_DP4) {
719      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
720			      0, mvp );
721      emit_matrix_transform_vec4( p, hpos, mvp, pos );
722   }
723   else {
724      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
725			      STATE_MATRIX_TRANSPOSE, mvp );
726      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
727   }
728}
729
730
731static GLuint material_attrib( GLuint side, GLuint property )
732{
733   return ((property - STATE_AMBIENT) * 2 +
734	   side);
735}
736
737/* Get a bitmask of which material values vary on a per-vertex basis.
738 */
739static void set_material_flags( struct tnl_program *p )
740{
741   p->color_materials = 0;
742   p->materials = 0;
743
744   if (p->state->light_color_material) {
745      p->materials =
746	 p->color_materials = p->state->light_color_material_mask;
747   }
748
749   p->materials |= p->state->light_material_mask;
750}
751
752
753static struct ureg get_material( struct tnl_program *p, GLuint side,
754				 GLuint property )
755{
756   GLuint attrib = material_attrib(side, property);
757
758   if (p->color_materials & (1<<attrib))
759      return register_input(p, VERT_ATTRIB_COLOR0);
760   else if (p->materials & (1<<attrib))
761      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
762   else
763      return register_param3( p, STATE_MATERIAL, side, property );
764}
765
766#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
767				   MAT_BIT_FRONT_AMBIENT | \
768				   MAT_BIT_FRONT_DIFFUSE) << (side))
769
770/* Either return a precalculated constant value or emit code to
771 * calculate these values dynamically in the case where material calls
772 * are present between begin/end pairs.
773 *
774 * Probably want to shift this to the program compilation phase - if
775 * we always emitted the calculation here, a smart compiler could
776 * detect that it was constant (given a certain set of inputs), and
777 * lift it out of the main loop.  That way the programs created here
778 * would be independent of the vertex_buffer details.
779 */
780static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
781{
782   if (p->materials & SCENE_COLOR_BITS(side)) {
783      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
784      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
785      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
786      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
787      struct ureg tmp = make_temp(p, material_diffuse);
788      emit_op3(p, OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
789	       material_ambient, material_emission);
790      return tmp;
791   }
792   else
793      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
794}
795
796
797static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
798				  GLuint side, GLuint property )
799{
800   GLuint attrib = material_attrib(side, property);
801   if (p->materials & (1<<attrib)) {
802      struct ureg light_value =
803	 register_param3(p, STATE_LIGHT, light, property);
804      struct ureg material_value = get_material(p, side, property);
805      struct ureg tmp = get_temp(p);
806      emit_op2(p, OPCODE_MUL, tmp,  0, light_value, material_value);
807      return tmp;
808   }
809   else
810      return register_param4(p, STATE_LIGHTPROD, light, side, property);
811}
812
813static struct ureg calculate_light_attenuation( struct tnl_program *p,
814						GLuint i,
815						struct ureg VPpli,
816						struct ureg dist )
817{
818   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
819					     STATE_ATTENUATION);
820   struct ureg att = get_temp(p);
821
822   /* Calculate spot attenuation:
823    */
824   if (!p->state->unit[i].light_spotcutoff_is_180) {
825      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
826						  STATE_SPOT_DIR_NORMALIZED, i);
827      struct ureg spot = get_temp(p);
828      struct ureg slt = get_temp(p);
829
830      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
831      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
832      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
833      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
834
835      release_temp(p, spot);
836      release_temp(p, slt);
837   }
838
839   /* Calculate distance attenuation:
840    */
841   if (p->state->unit[i].light_attenuated) {
842
843      /* 1/d,d,d,1/d */
844      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
845      /* 1,d,d*d,1/d */
846      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
847      /* 1/dist-atten */
848      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
849
850      if (!p->state->unit[i].light_spotcutoff_is_180) {
851	 /* dist-atten */
852	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
853	 /* spot-atten * dist-atten */
854	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
855      } else {
856	 /* dist-atten */
857	 emit_op1(p, OPCODE_RCP, att, 0, dist);
858      }
859   }
860
861   return att;
862}
863
864
865
866
867
868/* Need to add some addtional parameters to allow lighting in object
869 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
870 * space lighting.
871 */
872static void build_lighting( struct tnl_program *p )
873{
874   const GLboolean twoside = p->state->light_twoside;
875   const GLboolean separate = p->state->separate_specular;
876   GLuint nr_lights = 0, count = 0;
877   struct ureg normal = get_eye_normal(p);
878   struct ureg lit = get_temp(p);
879   struct ureg dots = get_temp(p);
880   struct ureg _col0 = undef, _col1 = undef;
881   struct ureg _bfc0 = undef, _bfc1 = undef;
882   GLuint i;
883
884   for (i = 0; i < MAX_LIGHTS; i++)
885      if (p->state->unit[i].light_enabled)
886	 nr_lights++;
887
888   set_material_flags(p);
889
890   {
891      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
892      emit_op1(p, OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
893
894      _col0 = make_temp(p, get_scenecolor(p, 0));
895      if (separate)
896	 _col1 = make_temp(p, get_identity_param(p));
897      else
898	 _col1 = _col0;
899
900   }
901
902   if (twoside) {
903      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
904      emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
905	       negate(swizzle1(shininess,X)));
906
907      _bfc0 = make_temp(p, get_scenecolor(p, 1));
908      if (separate)
909	 _bfc1 = make_temp(p, get_identity_param(p));
910      else
911	 _bfc1 = _bfc0;
912   }
913
914
915   /* If no lights, still need to emit the scenecolor.
916    */
917      {
918	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
919	 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
920      }
921
922      if (separate) {
923	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
924	 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
925      }
926
927      if (twoside) {
928	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
929	 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
930      }
931
932      if (twoside && separate) {
933	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
934	 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
935      }
936
937   if (nr_lights == 0) {
938      release_temps(p);
939      return;
940   }
941
942
943   for (i = 0; i < MAX_LIGHTS; i++) {
944      if (p->state->unit[i].light_enabled) {
945	 struct ureg half = undef;
946	 struct ureg att = undef, VPpli = undef;
947
948	 count++;
949
950	 if (p->state->unit[i].light_eyepos3_is_zero) {
951	    /* Can used precomputed constants in this case.
952	     * Attenuation never applies to infinite lights.
953	     */
954	    VPpli = register_param3(p, STATE_LIGHT, i,
955				    STATE_POSITION_NORMALIZED);
956            if (p->state->light_local_viewer) {
957                struct ureg eye_hat = get_eye_position_normalized(p);
958                half = get_temp(p);
959                emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
960                emit_normalize_vec3(p, half, half);
961            } else {
962                half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
963            }
964	 }
965	 else {
966	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
967					       STATE_POSITION);
968	    struct ureg V = get_eye_position(p);
969	    struct ureg dist = get_temp(p);
970	    struct ureg tmpPpli = get_temp(p);
971
972	    VPpli = get_temp(p);
973
974            /* In homogeneous object coordinates
975             */
976            emit_op1(p, OPCODE_RCP, dist, 0, swizzle1(Ppli, W));
977            emit_op2(p, OPCODE_MUL, tmpPpli, 0, Ppli, dist);
978
979	    /* Calculate VPpli vector
980	     */
981	    emit_op2(p, OPCODE_SUB, VPpli, 0, tmpPpli, V);
982
983            /* we're done with tmpPpli now */
984	    release_temp(p, tmpPpli);
985
986	    /* Normalize VPpli.  The dist value also used in
987	     * attenuation below.
988	     */
989	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
990	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
991	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
992
993
994	    /* Calculate  attenuation:
995	     */
996	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
997		p->state->unit[i].light_attenuated) {
998	       att = calculate_light_attenuation(p, i, VPpli, dist);
999	    }
1000
1001	    /* We're done with dist now */
1002	    release_temp(p, dist);
1003
1004
1005	    /* Calculate viewer direction, or use infinite viewer:
1006	     */
1007	    half = get_temp(p);
1008	    if (p->state->light_local_viewer) {
1009	       struct ureg eye_hat = get_eye_position_normalized(p);
1010	       emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1011	    }
1012	    else {
1013	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1014	       emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1015	    }
1016
1017	    emit_normalize_vec3(p, half, half);
1018	 }
1019
1020	 /* Calculate dot products:
1021	  */
1022	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1023	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1024
1025	 /* we're done with VPpli and half now, so free them as to not drive up
1026	    our temp usage unnecessary */
1027	 release_temp(p, VPpli);
1028	 release_temp(p, half);
1029
1030	 /* Front face lighting:
1031	  */
1032	 {
1033	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1034	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1035	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1036	    struct ureg res0, res1;
1037	    GLuint mask0, mask1;
1038
1039	    emit_op1(p, OPCODE_LIT, lit, 0, dots);
1040
1041	    if (!is_undef(att))
1042	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1043
1044
1045	    if (count == nr_lights) {
1046	       if (separate) {
1047		  mask0 = WRITEMASK_XYZ;
1048		  mask1 = WRITEMASK_XYZ;
1049		  res0 = register_output( p, VERT_RESULT_COL0 );
1050		  res1 = register_output( p, VERT_RESULT_COL1 );
1051	       }
1052	       else {
1053		  mask0 = 0;
1054		  mask1 = WRITEMASK_XYZ;
1055		  res0 = _col0;
1056		  res1 = register_output( p, VERT_RESULT_COL0 );
1057	       }
1058	    } else {
1059	       mask0 = 0;
1060	       mask1 = 0;
1061	       res0 = _col0;
1062	       res1 = _col1;
1063	    }
1064
1065	    emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1066	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1067	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1068
1069	    release_temp(p, ambient);
1070	    release_temp(p, diffuse);
1071	    release_temp(p, specular);
1072	 }
1073
1074	 /* Back face lighting:
1075	  */
1076	 if (twoside) {
1077	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1078	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1079	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1080	    struct ureg res0, res1;
1081	    GLuint mask0, mask1;
1082
1083	    emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1084
1085	    if (!is_undef(att))
1086	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1087
1088	    if (count == nr_lights) {
1089	       if (separate) {
1090		  mask0 = WRITEMASK_XYZ;
1091		  mask1 = WRITEMASK_XYZ;
1092		  res0 = register_output( p, VERT_RESULT_BFC0 );
1093		  res1 = register_output( p, VERT_RESULT_BFC1 );
1094	       }
1095	       else {
1096		  mask0 = 0;
1097		  mask1 = WRITEMASK_XYZ;
1098		  res0 = _bfc0;
1099		  res1 = register_output( p, VERT_RESULT_BFC0 );
1100	       }
1101	    } else {
1102	       res0 = _bfc0;
1103	       res1 = _bfc1;
1104	       mask0 = 0;
1105	       mask1 = 0;
1106	    }
1107
1108	    emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1109	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1110	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1111
1112	    release_temp(p, ambient);
1113	    release_temp(p, diffuse);
1114	    release_temp(p, specular);
1115	 }
1116
1117	 release_temp(p, att);
1118      }
1119   }
1120
1121   release_temps( p );
1122}
1123
1124
1125static void build_fog( struct tnl_program *p )
1126{
1127   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1128   struct ureg input;
1129
1130   if (p->state->fog_source_is_depth) {
1131      input = swizzle1(get_eye_position(p), Z);
1132   }
1133   else {
1134      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1135   }
1136
1137   if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1138      struct ureg params = register_param2(p, STATE_INTERNAL,
1139					   STATE_FOG_PARAMS_OPTIMIZED);
1140      struct ureg tmp = get_temp(p);
1141      GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1142
1143      if (useabs) {
1144	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1145      }
1146
1147      switch (p->state->fog_mode) {
1148      case FOG_LINEAR: {
1149	 struct ureg id = get_identity_param(p);
1150	 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1151			swizzle1(params,X), swizzle1(params,Y));
1152	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1153	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1154	 break;
1155      }
1156      case FOG_EXP:
1157	 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1158			swizzle1(params,Z));
1159	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1160	 break;
1161      case FOG_EXP2:
1162	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1163	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1164	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1165	 break;
1166      }
1167
1168      release_temp(p, tmp);
1169   }
1170   else {
1171      /* results = incoming fog coords (compute fog per-fragment later)
1172       *
1173       * KW:  Is it really necessary to do anything in this case?
1174       * BP: Yes, we always need to compute the absolute value, unless
1175       * we want to push that down into the fragment program...
1176       */
1177      GLboolean useabs = GL_TRUE;
1178      emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1179   }
1180}
1181
1182static void build_reflect_texgen( struct tnl_program *p,
1183				  struct ureg dest,
1184				  GLuint writemask )
1185{
1186   struct ureg normal = get_eye_normal(p);
1187   struct ureg eye_hat = get_eye_position_normalized(p);
1188   struct ureg tmp = get_temp(p);
1189
1190   /* n.u */
1191   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1192   /* 2n.u */
1193   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1194   /* (-2n.u)n + u */
1195   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1196
1197   release_temp(p, tmp);
1198}
1199
1200static void build_sphere_texgen( struct tnl_program *p,
1201				 struct ureg dest,
1202				 GLuint writemask )
1203{
1204   struct ureg normal = get_eye_normal(p);
1205   struct ureg eye_hat = get_eye_position_normalized(p);
1206   struct ureg tmp = get_temp(p);
1207   struct ureg half = register_scalar_const(p, .5);
1208   struct ureg r = get_temp(p);
1209   struct ureg inv_m = get_temp(p);
1210   struct ureg id = get_identity_param(p);
1211
1212   /* Could share the above calculations, but it would be
1213    * a fairly odd state for someone to set (both sphere and
1214    * reflection active for different texture coordinate
1215    * components.  Of course - if two texture units enable
1216    * reflect and/or sphere, things start to tilt in favour
1217    * of seperating this out:
1218    */
1219
1220   /* n.u */
1221   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1222   /* 2n.u */
1223   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1224   /* (-2n.u)n + u */
1225   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1226   /* r + 0,0,1 */
1227   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1228   /* rx^2 + ry^2 + (rz+1)^2 */
1229   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1230   /* 2/m */
1231   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1232   /* 1/m */
1233   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1234   /* r/m + 1/2 */
1235   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1236
1237   release_temp(p, tmp);
1238   release_temp(p, r);
1239   release_temp(p, inv_m);
1240}
1241
1242
1243static void build_texture_transform( struct tnl_program *p )
1244{
1245   GLuint i, j;
1246
1247   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1248
1249      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1250	 continue;
1251
1252      if (p->state->unit[i].texgen_enabled ||
1253	  p->state->unit[i].texmat_enabled) {
1254
1255	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1256	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1257	 struct ureg out_texgen = undef;
1258
1259	 if (p->state->unit[i].texgen_enabled) {
1260	    GLuint copy_mask = 0;
1261	    GLuint sphere_mask = 0;
1262	    GLuint reflect_mask = 0;
1263	    GLuint normal_mask = 0;
1264	    GLuint modes[4];
1265
1266	    if (texmat_enabled)
1267	       out_texgen = get_temp(p);
1268	    else
1269	       out_texgen = out;
1270
1271	    modes[0] = p->state->unit[i].texgen_mode0;
1272	    modes[1] = p->state->unit[i].texgen_mode1;
1273	    modes[2] = p->state->unit[i].texgen_mode2;
1274	    modes[3] = p->state->unit[i].texgen_mode3;
1275
1276	    for (j = 0; j < 4; j++) {
1277	       switch (modes[j]) {
1278	       case TXG_OBJ_LINEAR: {
1279		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1280		  struct ureg plane =
1281		     register_param3(p, STATE_TEXGEN, i,
1282				     STATE_TEXGEN_OBJECT_S + j);
1283
1284		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1285			   obj, plane );
1286		  break;
1287	       }
1288	       case TXG_EYE_LINEAR: {
1289		  struct ureg eye = get_eye_position(p);
1290		  struct ureg plane =
1291		     register_param3(p, STATE_TEXGEN, i,
1292				     STATE_TEXGEN_EYE_S + j);
1293
1294		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1295			   eye, plane );
1296		  break;
1297	       }
1298	       case TXG_SPHERE_MAP:
1299		  sphere_mask |= WRITEMASK_X << j;
1300		  break;
1301	       case TXG_REFLECTION_MAP:
1302		  reflect_mask |= WRITEMASK_X << j;
1303		  break;
1304	       case TXG_NORMAL_MAP:
1305		  normal_mask |= WRITEMASK_X << j;
1306		  break;
1307	       case TXG_NONE:
1308		  copy_mask |= WRITEMASK_X << j;
1309	       }
1310
1311	    }
1312
1313
1314	    if (sphere_mask) {
1315	       build_sphere_texgen(p, out_texgen, sphere_mask);
1316	    }
1317
1318	    if (reflect_mask) {
1319	       build_reflect_texgen(p, out_texgen, reflect_mask);
1320	    }
1321
1322	    if (normal_mask) {
1323	       struct ureg normal = get_eye_normal(p);
1324	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1325	    }
1326
1327	    if (copy_mask) {
1328	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1329	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1330	    }
1331	 }
1332
1333	 if (texmat_enabled) {
1334	    struct ureg texmat[4];
1335	    struct ureg in = (!is_undef(out_texgen) ?
1336			      out_texgen :
1337			      register_input(p, VERT_ATTRIB_TEX0+i));
1338	    if (PREFER_DP4) {
1339	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1340				       0, texmat );
1341	       emit_matrix_transform_vec4( p, out, texmat, in );
1342	    }
1343	    else {
1344	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1345				       STATE_MATRIX_TRANSPOSE, texmat );
1346	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1347	    }
1348	 }
1349
1350	 release_temps(p);
1351      }
1352      else {
1353	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1354      }
1355   }
1356}
1357
1358
1359static void build_pointsize( struct tnl_program *p )
1360{
1361   struct ureg eye = get_eye_position(p);
1362   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1363   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1364   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1365   struct ureg ut = get_temp(p);
1366
1367   /* dist = |eyez| */
1368   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1369   /* p1 + dist * (p2 + dist * p3); */
1370   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1371		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1372   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1373		ut, swizzle1(state_attenuation, X));
1374
1375   /* 1 / sqrt(factor) */
1376   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1377
1378#if 1
1379   /* out = pointSize / sqrt(factor) */
1380   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1381#else
1382   /* not sure, might make sense to do clamping here,
1383      but it's not done in t_vb_points neither */
1384   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1385   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1386   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1387#endif
1388
1389   release_temp(p, ut);
1390}
1391
1392static void build_tnl_program( struct tnl_program *p )
1393{   /* Emit the program, starting with modelviewproject:
1394    */
1395   build_hpos(p);
1396
1397   /* Lighting calculations:
1398    */
1399   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1400      if (p->state->light_global_enabled)
1401	 build_lighting(p);
1402      else {
1403	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1404	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1405
1406	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1407	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1408      }
1409   }
1410
1411   if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1412       p->state->fog_mode != FOG_NONE)
1413      build_fog(p);
1414
1415   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1416      build_texture_transform(p);
1417
1418   if (p->state->point_attenuated)
1419      build_pointsize(p);
1420
1421   /* Finish up:
1422    */
1423   emit_op1(p, OPCODE_END, undef, 0, undef);
1424
1425   /* Disassemble:
1426    */
1427   if (DISASSEM) {
1428      _mesa_printf ("\n");
1429   }
1430}
1431
1432
1433static void
1434create_new_program( const struct state_key *key,
1435                    struct gl_vertex_program *program,
1436                    GLuint max_temps)
1437{
1438   struct tnl_program p;
1439
1440   _mesa_memset(&p, 0, sizeof(p));
1441   p.state = key;
1442   p.program = program;
1443   p.eye_position = undef;
1444   p.eye_position_normalized = undef;
1445   p.eye_normal = undef;
1446   p.identity = undef;
1447   p.temp_in_use = 0;
1448
1449   if (max_temps >= sizeof(int) * 8)
1450      p.temp_reserved = 0;
1451   else
1452      p.temp_reserved = ~((1<<max_temps)-1);
1453
1454   p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN);
1455   p.program->Base.String = NULL;
1456   p.program->Base.NumInstructions =
1457   p.program->Base.NumTemporaries =
1458   p.program->Base.NumParameters =
1459   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1460   p.program->Base.Parameters = _mesa_new_parameter_list();
1461   p.program->Base.InputsRead = 0;
1462   p.program->Base.OutputsWritten = 0;
1463
1464   build_tnl_program( &p );
1465}
1466
1467
1468static struct gl_vertex_program *
1469search_cache(struct tnl_cache *cache, GLuint hash,
1470             const void *key, GLuint keysize)
1471{
1472   struct tnl_cache_item *c;
1473
1474   for (c = cache->items[hash % cache->size]; c; c = c->next) {
1475      if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1476	 return c->prog;
1477   }
1478
1479   return NULL;
1480}
1481
1482
1483static void rehash( struct tnl_cache *cache )
1484{
1485   struct tnl_cache_item **items;
1486   struct tnl_cache_item *c, *next;
1487   GLuint size, i;
1488
1489   size = cache->size * 3;
1490   items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1491   _mesa_memset(items, 0, size * sizeof(*items));
1492
1493   for (i = 0; i < cache->size; i++)
1494      for (c = cache->items[i]; c; c = next) {
1495	 next = c->next;
1496	 c->next = items[c->hash % size];
1497	 items[c->hash % size] = c;
1498      }
1499
1500   FREE(cache->items);
1501   cache->items = items;
1502   cache->size = size;
1503}
1504
1505static void cache_item( GLcontext *ctx,
1506                        struct tnl_cache *cache,
1507			GLuint hash,
1508			void *key,
1509			struct gl_vertex_program *prog )
1510{
1511   struct tnl_cache_item *c = CALLOC_STRUCT(tnl_cache_item);
1512   c->hash = hash;
1513   c->key = key;
1514
1515   c->prog = prog;
1516
1517   if (++cache->n_items > cache->size * 1.5)
1518      rehash(cache);
1519
1520   c->next = cache->items[hash % cache->size];
1521   cache->items[hash % cache->size] = c;
1522}
1523
1524static GLuint hash_key( struct state_key *key )
1525{
1526   GLuint *ikey = (GLuint *)key;
1527   GLuint hash = 0, i;
1528
1529   /* I'm sure this can be improved on, but speed is important:
1530    */
1531   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1532      hash ^= ikey[i];
1533
1534   return hash;
1535}
1536
1537void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1538{
1539   TNLcontext *tnl = TNL_CONTEXT(ctx);
1540   struct state_key *key;
1541   GLuint hash;
1542   const struct gl_vertex_program *prev = ctx->VertexProgram._Current;
1543
1544   if (!ctx->VertexProgram._Current ||
1545       ctx->VertexProgram._Current == ctx->VertexProgram._TnlProgram) {
1546      struct gl_vertex_program *newProg;
1547
1548      /* Grab all the relevent state and put it in a single structure:
1549       */
1550      key = make_state_key(ctx);
1551      hash = hash_key(key);
1552
1553      /* Look for an already-prepared program for this state:
1554       */
1555      newProg = search_cache( tnl->vp_cache, hash, key, sizeof(*key));
1556
1557      /* OK, we'll have to build a new one:
1558       */
1559      if (!newProg) {
1560
1561	 if (0)
1562	    _mesa_printf("Build new TNL program\n");
1563
1564	 newProg = (struct gl_vertex_program *)
1565	    ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1566
1567	 create_new_program( key, newProg, ctx->Const.VertexProgram.MaxTemps );
1568
1569	 if (ctx->Driver.ProgramStringNotify)
1570	    ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1571                                             &newProg->Base );
1572
1573         /* Our ownership of newProg is transferred to the cache */
1574	 cache_item(ctx, tnl->vp_cache, hash, key, newProg);
1575      }
1576      else {
1577	 FREE(key);
1578      }
1579
1580      _mesa_reference_vertprog(ctx, &ctx->VertexProgram._TnlProgram, newProg);
1581      _mesa_reference_vertprog(ctx, &ctx->VertexProgram._Current, newProg);
1582   }
1583
1584   /* Tell the driver about the change.  Could define a new target for
1585    * this?
1586    */
1587   if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) {
1588      ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB,
1589                            (struct gl_program *) ctx->VertexProgram._Current);
1590   }
1591}
1592
1593void _tnl_ProgramCacheInit( GLcontext *ctx )
1594{
1595   TNLcontext *tnl = TNL_CONTEXT(ctx);
1596
1597   tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache));
1598   tnl->vp_cache->size = 17;
1599   tnl->vp_cache->n_items = 0;
1600   tnl->vp_cache->items = (struct tnl_cache_item**)
1601      _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items));
1602}
1603
1604void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1605{
1606   TNLcontext *tnl = TNL_CONTEXT(ctx);
1607   struct tnl_cache_item *c, *next;
1608   GLuint i;
1609
1610   for (i = 0; i < tnl->vp_cache->size; i++)
1611      for (c = tnl->vp_cache->items[i]; c; c = next) {
1612	 next = c->next;
1613	 FREE(c->key);
1614	 _mesa_reference_vertprog(ctx, &c->prog, NULL);
1615	 FREE(c);
1616      }
1617
1618   FREE(tnl->vp_cache->items);
1619   FREE(tnl->vp_cache);
1620}
1621