t_vp_build.c revision f6e7cfb60d3c4ceb2242cbc57c7e87c3c8e362fe
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3
4 *
5 * Copyright (C) 2005  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "glheader.h"
34#include "macros.h"
35#include "enums.h"
36#include "t_context.h"
37#include "t_vp_build.h"
38
39#include "shader/program.h"
40#include "shader/nvvertprog.h"
41#include "shader/arbvertparse.h"
42
43struct state_key {
44   unsigned light_global_enabled:1;
45   unsigned light_local_viewer:1;
46   unsigned light_twoside:1;
47   unsigned light_color_material:1;
48   unsigned light_color_material_mask:12;
49   unsigned light_material_mask:12;
50
51   unsigned normalize:1;
52   unsigned rescale_normals:1;
53   unsigned fog_source_is_depth:1;
54   unsigned tnl_do_vertex_fog:1;
55   unsigned separate_specular:1;
56   unsigned fog_enabled:1;
57   unsigned fog_mode:2;
58   unsigned point_attenuated:1;
59   unsigned texture_enabled_global:1;
60
61   struct {
62      unsigned light_enabled:1;
63      unsigned light_eyepos3_is_zero:1;
64      unsigned light_spotcutoff_is_180:1;
65      unsigned light_attenuated:1;
66      unsigned texunit_really_enabled:1;
67      unsigned texmat_enabled:1;
68      unsigned texgen_enabled:4;
69      unsigned texgen_mode0:4;
70      unsigned texgen_mode1:4;
71      unsigned texgen_mode2:4;
72      unsigned texgen_mode3:4;
73   } unit[8];
74};
75
76
77
78#define FOG_LINEAR   0
79#define FOG_EXP      1
80#define FOG_EXP2     2
81#define FOG_UNKNOWN  3
82
83static GLuint translate_fog_mode( GLenum mode )
84{
85   switch (mode) {
86   case GL_LINEAR: return FOG_LINEAR;
87   case GL_EXP: return FOG_EXP;
88   case GL_EXP2: return FOG_EXP2;
89   default: return FOG_UNKNOWN;
90   }
91}
92
93#define TXG_NONE           0
94#define TXG_OBJ_LINEAR     1
95#define TXG_EYE_LINEAR     2
96#define TXG_SPHERE_MAP     3
97#define TXG_REFLECTION_MAP 4
98#define TXG_NORMAL_MAP     5
99
100static GLuint translate_texgen( GLboolean enabled, GLenum mode )
101{
102   if (!enabled)
103      return TXG_NONE;
104
105   switch (mode) {
106   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
107   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
108   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
109   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
110   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
111   default: return TXG_NONE;
112   }
113}
114
115static struct state_key *make_state_key( GLcontext *ctx )
116{
117   TNLcontext *tnl = TNL_CONTEXT(ctx);
118   struct vertex_buffer *VB = &tnl->vb;
119   struct state_key *key = CALLOC_STRUCT(state_key);
120   GLuint i;
121
122   key->separate_specular = (ctx->Light.Model.ColorControl ==
123			     GL_SEPARATE_SPECULAR_COLOR);
124
125   if (ctx->Light.Enabled) {
126      key->light_global_enabled = 1;
127
128      if (ctx->Light.Model.LocalViewer)
129	 key->light_local_viewer = 1;
130
131      if (ctx->Light.Model.TwoSide)
132	 key->light_twoside = 1;
133
134      if (ctx->Light.ColorMaterialEnabled) {
135	 key->light_color_material = 1;
136	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
137	 _mesa_printf("ColorMaterialBitmask %x / %x\n", ctx->Light.ColorMaterialBitmask,
138		      key->light_color_material_mask);
139      }
140
141      for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
142	 if (VB->AttribPtr[i]->stride)
143	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
144
145      for (i = 0; i < MAX_LIGHTS; i++) {
146	 struct gl_light *light = &ctx->Light.Light[i];
147
148	 if (light->Enabled) {
149	    key->unit[i].light_enabled = 1;
150
151	    if (light->EyePosition[3] == 0.0)
152	       key->unit[i].light_eyepos3_is_zero = 1;
153
154	    if (light->SpotCutoff == 180.0)
155	       key->unit[i].light_spotcutoff_is_180 = 1;
156
157	    if (light->ConstantAttenuation != 1.0 ||
158		light->LinearAttenuation != 1.0 ||
159		light->QuadraticAttenuation != 1.0)
160	       key->unit[i].light_attenuated = 1;
161	 }
162      }
163   }
164
165   if (ctx->Transform.Normalize)
166      key->normalize = 1;
167
168   if (ctx->Transform.RescaleNormals)
169      key->rescale_normals = 1;
170
171   if (ctx->Fog.Enabled)
172      key->fog_enabled = 1;
173
174   if (key->fog_enabled) {
175      if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
176	 key->fog_source_is_depth = 1;
177
178      if (tnl->_DoVertexFog)
179	 key->tnl_do_vertex_fog = 1;
180
181      key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
182   }
183
184   if (ctx->Point._Attenuated)
185      key->point_attenuated = 1;
186
187   if (ctx->Texture._TexGenEnabled ||
188       ctx->Texture._TexMatEnabled ||
189       ctx->Texture._EnabledUnits)
190      key->texture_enabled_global = 1;
191
192   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
193      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
194
195      if (texUnit->_ReallyEnabled)
196	 key->unit[i].texunit_really_enabled = 1;
197
198      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
199	 key->unit[i].texmat_enabled = 1;
200
201      if (texUnit->TexGenEnabled) {
202	 key->unit[i].texgen_enabled = 1;
203
204	 key->unit[i].texgen_mode0 =
205	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
206			      texUnit->GenModeS );
207	 key->unit[i].texgen_mode1 =
208	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
209			      texUnit->GenModeT );
210	 key->unit[i].texgen_mode2 =
211	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
212			      texUnit->GenModeR );
213	 key->unit[i].texgen_mode3 =
214	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
215			      texUnit->GenModeQ );
216      }
217   }
218
219   return key;
220}
221
222
223
224/* Very useful debugging tool - produces annotated listing of
225 * generated program with line/function references for each
226 * instruction back into this file:
227 */
228#define DISASSEM 0
229
230/* Should be tunable by the driver - do we want to do matrix
231 * multiplications with DP4's or with MUL/MAD's?  SSE works better
232 * with the latter, drivers may differ.
233 */
234#define PREFER_DP4 0
235
236#define MAX_INSN 200
237
238/* Use uregs to represent registers internally, translate to Mesa's
239 * expected formats on emit.
240 *
241 * NOTE: These are passed by value extensively in this file rather
242 * than as usual by pointer reference.  If this disturbs you, try
243 * remembering they are just 32bits in size.
244 *
245 * GCC is smart enough to deal with these dword-sized structures in
246 * much the same way as if I had defined them as dwords and was using
247 * macros to access and set the fields.  This is much nicer and easier
248 * to evolve.
249 */
250struct ureg {
251   GLuint file:4;
252   GLuint idx:8;
253   GLuint negate:1;
254   GLuint swz:12;
255   GLuint pad:7;
256};
257
258
259struct tnl_program {
260   const struct state_key *state;
261   struct vertex_program *program;
262
263   GLuint temp_in_use;
264   GLuint temp_reserved;
265
266   struct ureg eye_position;
267   struct ureg eye_position_normalized;
268   struct ureg eye_normal;
269   struct ureg identity;
270
271   GLuint materials;
272   GLuint color_materials;
273};
274
275
276const static struct ureg undef = {
277   ~0,
278   ~0,
279   0,
280   0,
281   0
282};
283
284/* Local shorthand:
285 */
286#define X    SWIZZLE_X
287#define Y    SWIZZLE_Y
288#define Z    SWIZZLE_Z
289#define W    SWIZZLE_W
290
291
292/* Construct a ureg:
293 */
294static struct ureg make_ureg(GLuint file, GLuint idx)
295{
296   struct ureg reg;
297   reg.file = file;
298   reg.idx = idx;
299   reg.negate = 0;
300   reg.swz = SWIZZLE_NOOP;
301   reg.pad = 0;
302   return reg;
303}
304
305
306
307static struct ureg negate( struct ureg reg )
308{
309   reg.negate ^= 1;
310   return reg;
311}
312
313
314static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
315{
316   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
317			   GET_SWZ(reg.swz, y),
318			   GET_SWZ(reg.swz, z),
319			   GET_SWZ(reg.swz, w));
320
321   return reg;
322}
323
324static struct ureg swizzle1( struct ureg reg, int x )
325{
326   return swizzle(reg, x, x, x, x);
327}
328
329static struct ureg get_temp( struct tnl_program *p )
330{
331   int bit = ffs( ~p->temp_in_use );
332   if (!bit) {
333      fprintf(stderr, "%s: out of temporaries\n", __FILE__);
334      exit(1);
335   }
336
337   p->temp_in_use |= 1<<(bit-1);
338   return make_ureg(PROGRAM_TEMPORARY, bit-1);
339}
340
341static struct ureg reserve_temp( struct tnl_program *p )
342{
343   struct ureg temp = get_temp( p );
344   p->temp_reserved |= 1<<temp.idx;
345   return temp;
346}
347
348static void release_temp( struct tnl_program *p, struct ureg reg )
349{
350   if (reg.file == PROGRAM_TEMPORARY) {
351      p->temp_in_use &= ~(1<<reg.idx);
352      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
353   }
354}
355
356static void release_temps( struct tnl_program *p )
357{
358   p->temp_in_use = p->temp_reserved;
359}
360
361
362
363static struct ureg register_input( struct tnl_program *p, GLuint input )
364{
365   p->program->InputsRead |= (1<<input);
366   return make_ureg(PROGRAM_INPUT, input);
367}
368
369static struct ureg register_output( struct tnl_program *p, GLuint output )
370{
371   p->program->OutputsWritten |= (1<<output);
372   return make_ureg(PROGRAM_OUTPUT, output);
373}
374
375static struct ureg register_const4f( struct tnl_program *p,
376			      GLfloat s0,
377			      GLfloat s1,
378			      GLfloat s2,
379			      GLfloat s3)
380{
381   GLfloat values[4];
382   GLuint idx;
383   values[0] = s0;
384   values[1] = s1;
385   values[2] = s2;
386   values[3] = s3;
387   idx = _mesa_add_unnamed_constant( p->program->Parameters, values );
388   return make_ureg(PROGRAM_STATE_VAR, idx);
389}
390
391#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
392#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
393#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
394#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
395
396static GLboolean is_undef( struct ureg reg )
397{
398   return reg.file == 0xf;
399}
400
401static struct ureg get_identity_param( struct tnl_program *p )
402{
403   if (is_undef(p->identity))
404      p->identity = register_const4f(p, 0,0,0,1);
405
406   return p->identity;
407}
408
409static struct ureg register_param6( struct tnl_program *p,
410				   GLint s0,
411				   GLint s1,
412				   GLint s2,
413				   GLint s3,
414				   GLint s4,
415				   GLint s5)
416{
417   GLint tokens[6];
418   GLuint idx;
419   tokens[0] = s0;
420   tokens[1] = s1;
421   tokens[2] = s2;
422   tokens[3] = s3;
423   tokens[4] = s4;
424   tokens[5] = s5;
425   idx = _mesa_add_state_reference( p->program->Parameters, tokens );
426   return make_ureg(PROGRAM_STATE_VAR, idx);
427}
428
429
430#define register_param1(p,s0)          register_param6(p,s0,0,0,0,0,0)
431#define register_param2(p,s0,s1)       register_param6(p,s0,s1,0,0,0,0)
432#define register_param3(p,s0,s1,s2)    register_param6(p,s0,s1,s2,0,0,0)
433#define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
434
435
436static void register_matrix_param6( struct tnl_program *p,
437				    GLint s0,
438				    GLint s1,
439				    GLint s2,
440				    GLint s3,
441				    GLint s4,
442				    GLint s5,
443				    struct ureg *matrix )
444{
445   GLuint i;
446
447   /* This is a bit sad as the support is there to pull the whole
448    * matrix out in one go:
449    */
450   for (i = 0; i <= s4 - s3; i++)
451      matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
452}
453
454
455static void emit_arg( struct vp_src_register *src,
456		      struct ureg reg )
457{
458   src->File = reg.file;
459   src->Index = reg.idx;
460   src->Swizzle = reg.swz;
461   src->Negate = reg.negate;
462   src->RelAddr = 0;
463   src->pad = 0;
464}
465
466static void emit_dst( struct vp_dst_register *dst,
467		      struct ureg reg, GLuint mask )
468{
469   dst->File = reg.file;
470   dst->Index = reg.idx;
471   /* allow zero as a shorthand for xyzw */
472   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
473   dst->pad = 0;
474}
475
476static void debug_insn( struct vp_instruction *inst, const char *fn,
477			GLuint line )
478{
479#if DISASSEM
480   static const char *last_fn;
481
482   if (fn != last_fn) {
483      last_fn = fn;
484      _mesa_printf("%s:\n", fn);
485   }
486
487   _mesa_printf("%d:\t", line);
488   _mesa_debug_vp_inst(1, inst);
489#endif
490}
491
492
493static void emit_op3fn(struct tnl_program *p,
494		       GLuint op,
495		       struct ureg dest,
496		       GLuint mask,
497		       struct ureg src0,
498		       struct ureg src1,
499		       struct ureg src2,
500		       const char *fn,
501		       GLuint line)
502{
503   GLuint nr = p->program->Base.NumInstructions++;
504   struct vp_instruction *inst = &p->program->Instructions[nr];
505
506   if (p->program->Base.NumInstructions > MAX_INSN) {
507      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
508      return;
509   }
510
511   inst->Opcode = op;
512   inst->StringPos = 0;
513   inst->Data = 0;
514
515   emit_arg( &inst->SrcReg[0], src0 );
516   emit_arg( &inst->SrcReg[1], src1 );
517   emit_arg( &inst->SrcReg[2], src2 );
518
519   emit_dst( &inst->DstReg, dest, mask );
520
521   debug_insn(inst, fn, line);
522}
523
524
525
526#define emit_op3(p, op, dst, mask, src0, src1, src2) \
527   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
528
529#define emit_op2(p, op, dst, mask, src0, src1) \
530    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
531
532#define emit_op1(p, op, dst, mask, src0) \
533    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
534
535
536static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
537{
538   if (reg.file == PROGRAM_TEMPORARY &&
539       !(p->temp_reserved & (1<<reg.idx)))
540      return reg;
541   else {
542      struct ureg temp = get_temp(p);
543      emit_op1(p, VP_OPCODE_MOV, temp, 0, reg);
544      return temp;
545   }
546}
547
548
549/* Currently no tracking performed of input/output/register size or
550 * active elements.  Could be used to reduce these operations, as
551 * could the matrix type.
552 */
553static void emit_matrix_transform_vec4( struct tnl_program *p,
554					struct ureg dest,
555					const struct ureg *mat,
556					struct ureg src)
557{
558   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
559   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
560   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
561   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
562}
563
564/* This version is much easier to implement if writemasks are not
565 * supported natively on the target or (like SSE), the target doesn't
566 * have a clean/obvious dotproduct implementation.
567 */
568static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
569						  struct ureg dest,
570						  const struct ureg *mat,
571						  struct ureg src)
572{
573   struct ureg tmp;
574
575   if (dest.file != PROGRAM_TEMPORARY)
576      tmp = get_temp(p);
577   else
578      tmp = dest;
579
580   emit_op2(p, VP_OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
581   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
582   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
583   emit_op3(p, VP_OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
584
585   if (dest.file != PROGRAM_TEMPORARY)
586      release_temp(p, tmp);
587}
588
589static void emit_matrix_transform_vec3( struct tnl_program *p,
590					struct ureg dest,
591					const struct ureg *mat,
592					struct ureg src)
593{
594   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
595   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
596   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
597}
598
599
600static void emit_normalize_vec3( struct tnl_program *p,
601				 struct ureg dest,
602				 struct ureg src )
603{
604   struct ureg tmp = get_temp(p);
605   emit_op2(p, VP_OPCODE_DP3, tmp, 0, src, src);
606   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
607   emit_op2(p, VP_OPCODE_MUL, dest, 0, src, tmp);
608   release_temp(p, tmp);
609}
610
611static void emit_passthrough( struct tnl_program *p,
612			      GLuint input,
613			      GLuint output )
614{
615   struct ureg out = register_output(p, output);
616   emit_op1(p, VP_OPCODE_MOV, out, 0, register_input(p, input));
617}
618
619static struct ureg get_eye_position( struct tnl_program *p )
620{
621   if (is_undef(p->eye_position)) {
622      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
623      struct ureg modelview[4];
624
625      p->eye_position = reserve_temp(p);
626
627      if (PREFER_DP4) {
628	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
629				 STATE_MATRIX, modelview );
630
631	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
632      }
633      else {
634	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
635				 STATE_MATRIX_TRANSPOSE, modelview );
636
637	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
638      }
639   }
640
641   return p->eye_position;
642}
643
644
645static struct ureg get_eye_position_normalized( struct tnl_program *p )
646{
647   if (is_undef(p->eye_position_normalized)) {
648      struct ureg eye = get_eye_position(p);
649      p->eye_position_normalized = reserve_temp(p);
650      emit_normalize_vec3(p, p->eye_position_normalized, eye);
651   }
652
653   return p->eye_position_normalized;
654}
655
656
657static struct ureg get_eye_normal( struct tnl_program *p )
658{
659   if (is_undef(p->eye_normal)) {
660      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
661      struct ureg mvinv[3];
662
663      register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
664			      STATE_MATRIX_INVTRANS, mvinv );
665
666      p->eye_normal = reserve_temp(p);
667
668      /* Transform to eye space:
669       */
670      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
671
672      /* Normalize/Rescale:
673       */
674      if (p->state->normalize) {
675	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
676      }
677      else if (p->state->rescale_normals) {
678	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
679					       STATE_NORMAL_SCALE);
680
681	 emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal,
682		   swizzle1(rescale, X));
683      }
684   }
685
686   return p->eye_normal;
687}
688
689
690
691static void build_hpos( struct tnl_program *p )
692{
693   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
694   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
695   struct ureg mvp[4];
696
697   if (PREFER_DP4) {
698      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
699			      STATE_MATRIX, mvp );
700      emit_matrix_transform_vec4( p, hpos, mvp, pos );
701   }
702   else {
703      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
704			      STATE_MATRIX_TRANSPOSE, mvp );
705      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
706   }
707}
708
709
710static GLuint material_attrib( GLuint side, GLuint property )
711{
712   return ((property - STATE_AMBIENT) * 2 +
713	   side);
714}
715
716static void set_material_flags( struct tnl_program *p )
717{
718   p->color_materials = 0;
719   p->materials = 0;
720
721   if (p->state->light_color_material) {
722      p->materials =
723	 p->color_materials = p->state->light_color_material_mask;
724   }
725
726   p->materials |= p->state->light_material_mask;
727}
728
729
730static struct ureg get_material( struct tnl_program *p, GLuint side,
731				 GLuint property )
732{
733   GLuint attrib = material_attrib(side, property);
734
735   if (p->color_materials & (1<<attrib))
736      return register_input(p, VERT_ATTRIB_COLOR0);
737   else if (p->materials & (1<<attrib))
738      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
739   else
740      return register_param3( p, STATE_MATERIAL, side, property );
741}
742
743#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
744				   MAT_BIT_FRONT_AMBIENT | \
745				   MAT_BIT_FRONT_DIFFUSE) << (side))
746
747/* Either return a precalculated constant value or emit code to
748 * calculate these values dynamically in the case where material calls
749 * are present between begin/end pairs.
750 *
751 * Probably want to shift this to the program compilation phase - if
752 * we always emitted the calculation here, a smart compiler could
753 * detect that it was constant (given a certain set of inputs), and
754 * lift it out of the main loop.  That way the programs created here
755 * would be independent of the vertex_buffer details.
756 */
757static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
758{
759   if (p->materials & SCENE_COLOR_BITS(side)) {
760      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
761      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
762      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
763      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
764      struct ureg tmp = make_temp(p, material_diffuse);
765      emit_op3(p, VP_OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
766	       material_ambient, material_emission);
767      return tmp;
768   }
769   else
770      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
771}
772
773
774static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
775				  GLuint side, GLuint property )
776{
777   GLuint attrib = material_attrib(side, property);
778   if (p->materials & (1<<attrib)) {
779      struct ureg light_value =
780	 register_param3(p, STATE_LIGHT, light, property);
781      struct ureg material_value = get_material(p, side, property);
782      struct ureg tmp = get_temp(p);
783      emit_op2(p, VP_OPCODE_MUL, tmp,  0, light_value, material_value);
784      return tmp;
785   }
786   else
787      return register_param4(p, STATE_LIGHTPROD, light, side, property);
788}
789
790static struct ureg calculate_light_attenuation( struct tnl_program *p,
791						GLuint i,
792						struct ureg VPpli,
793						struct ureg dist )
794{
795   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
796					     STATE_ATTENUATION);
797   struct ureg att = get_temp(p);
798
799   /* Calculate spot attenuation:
800    */
801   if (!p->state->unit[i].light_spotcutoff_is_180) {
802      struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
803					     STATE_SPOT_DIRECTION);
804      struct ureg spot = get_temp(p);
805      struct ureg slt = get_temp(p);
806
807      emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
808      emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot_dir);
809      emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
810      emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
811      emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot);
812
813      release_temp(p, spot);
814      release_temp(p, slt);
815   }
816
817   /* Calculate distance attenuation:
818    */
819   if (p->state->unit[i].light_attenuated) {
820
821      /* 1/d,d,d,1/d */
822      emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist);
823      /* 1,d,d*d,1/d */
824      emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
825      /* 1/dist-atten */
826      emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist);
827
828      if (!p->state->unit[i].light_spotcutoff_is_180) {
829	 /* dist-atten */
830	 emit_op1(p, VP_OPCODE_RCP, dist, 0, dist);
831	 /* spot-atten * dist-atten */
832	 emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att);
833      } else {
834	 /* dist-atten */
835	 emit_op1(p, VP_OPCODE_RCP, att, 0, dist);
836      }
837   }
838
839   return att;
840}
841
842
843
844
845
846/* Need to add some addtional parameters to allow lighting in object
847 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
848 * space lighting.
849 */
850static void build_lighting( struct tnl_program *p )
851{
852   const GLboolean twoside = p->state->light_twoside;
853   const GLboolean separate = p->state->separate_specular;
854   GLuint nr_lights = 0, count = 0;
855   struct ureg normal = get_eye_normal(p);
856   struct ureg lit = get_temp(p);
857   struct ureg dots = get_temp(p);
858   struct ureg _col0 = undef, _col1 = undef;
859   struct ureg _bfc0 = undef, _bfc1 = undef;
860   GLuint i;
861
862   for (i = 0; i < MAX_LIGHTS; i++)
863      if (p->state->unit[i].light_enabled)
864	 nr_lights++;
865
866   set_material_flags(p);
867
868   {
869      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
870      emit_op1(p, VP_OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
871      release_temp(p, shininess);
872
873      _col0 = make_temp(p, get_scenecolor(p, 0));
874      if (separate)
875	 _col1 = make_temp(p, get_identity_param(p));
876      else
877	 _col1 = _col0;
878
879   }
880
881   if (twoside) {
882      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
883      emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z,
884	       negate(swizzle1(shininess,X)));
885      release_temp(p, shininess);
886
887      _bfc0 = make_temp(p, get_scenecolor(p, 1));
888      if (separate)
889	 _bfc1 = make_temp(p, get_identity_param(p));
890      else
891	 _bfc1 = _bfc0;
892   }
893
894
895   /* If no lights, still need to emit the scenecolor.
896    */
897      {
898	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
899	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _col0);
900      }
901
902      if (separate) {
903	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
904	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _col1);
905      }
906
907      if (twoside) {
908	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
909	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _bfc0);
910      }
911
912      if (twoside && separate) {
913	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
914	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _bfc1);
915      }
916
917   if (nr_lights == 0) {
918      release_temps(p);
919      return;
920   }
921
922
923   for (i = 0; i < MAX_LIGHTS; i++) {
924      if (p->state->unit[i].light_enabled) {
925	 struct ureg half = undef;
926	 struct ureg att = undef, VPpli = undef;
927
928	 count++;
929
930	 if (p->state->unit[i].light_eyepos3_is_zero) {
931	    /* Can used precomputed constants in this case.
932	     * Attenuation never applies to infinite lights.
933	     */
934	    VPpli = register_param3(p, STATE_LIGHT, i,
935				    STATE_POSITION_NORMALIZED);
936	    half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
937	 }
938	 else {
939	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
940					       STATE_POSITION);
941	    struct ureg V = get_eye_position(p);
942	    struct ureg dist = get_temp(p);
943
944	    VPpli = get_temp(p);
945	    half = get_temp(p);
946
947	    /* Calulate VPpli vector
948	     */
949	    emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V);
950
951	    /* Normalize VPpli.  The dist value also used in
952	     * attenuation below.
953	     */
954	    emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli);
955	    emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist);
956	    emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist);
957
958
959	    /* Calculate  attenuation:
960	     */
961	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
962		p->state->unit[i].light_attenuated) {
963	       att = calculate_light_attenuation(p, i, VPpli, dist);
964	    }
965
966
967	    /* Calculate viewer direction, or use infinite viewer:
968	     */
969	    if (p->state->light_local_viewer) {
970	       struct ureg eye_hat = get_eye_position_normalized(p);
971	       emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat);
972	    }
973	    else {
974	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
975	       emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir);
976	    }
977
978	    emit_normalize_vec3(p, half, half);
979
980	    release_temp(p, dist);
981	 }
982
983	 /* Calculate dot products:
984	  */
985	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
986	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
987
988
989	 /* Front face lighting:
990	  */
991	 {
992	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
993	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
994	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
995	    struct ureg res0, res1;
996	    GLuint mask0, mask1;
997
998	    emit_op1(p, VP_OPCODE_LIT, lit, 0, dots);
999
1000	    if (!is_undef(att))
1001	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1002
1003
1004	    if (count == nr_lights) {
1005	       if (separate) {
1006		  mask0 = WRITEMASK_XYZ;
1007		  mask1 = WRITEMASK_XYZ;
1008		  res0 = register_output( p, VERT_RESULT_COL0 );
1009		  res1 = register_output( p, VERT_RESULT_COL1 );
1010	       }
1011	       else {
1012		  mask0 = 0;
1013		  mask1 = WRITEMASK_XYZ;
1014		  res0 = _col0;
1015		  res1 = register_output( p, VERT_RESULT_COL0 );
1016	       }
1017	    } else {
1018	       mask0 = 0;
1019	       mask1 = 0;
1020	       res0 = _col0;
1021	       res1 = _col1;
1022	    }
1023
1024	    emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1025	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1026	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1027
1028	    release_temp(p, ambient);
1029	    release_temp(p, diffuse);
1030	    release_temp(p, specular);
1031	 }
1032
1033	 /* Back face lighting:
1034	  */
1035	 if (twoside) {
1036	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1037	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1038	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1039	    struct ureg res0, res1;
1040	    GLuint mask0, mask1;
1041
1042	    emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1043
1044	    if (!is_undef(att))
1045	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1046
1047	    if (count == nr_lights) {
1048	       if (separate) {
1049		  mask0 = WRITEMASK_XYZ;
1050		  mask1 = WRITEMASK_XYZ;
1051		  res0 = register_output( p, VERT_RESULT_BFC0 );
1052		  res1 = register_output( p, VERT_RESULT_BFC1 );
1053	       }
1054	       else {
1055		  mask0 = 0;
1056		  mask1 = WRITEMASK_XYZ;
1057		  res0 = _bfc0;
1058		  res1 = register_output( p, VERT_RESULT_BFC0 );
1059	       }
1060	    } else {
1061	       res0 = _bfc0;
1062	       res1 = _bfc1;
1063	       mask0 = 0;
1064	       mask1 = 0;
1065	    }
1066
1067	    emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1068	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1069	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1070
1071	    release_temp(p, ambient);
1072	    release_temp(p, diffuse);
1073	    release_temp(p, specular);
1074	 }
1075
1076	 release_temp(p, half);
1077	 release_temp(p, VPpli);
1078	 release_temp(p, att);
1079      }
1080   }
1081
1082   release_temps( p );
1083}
1084
1085
1086static void build_fog( struct tnl_program *p )
1087{
1088   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1089   struct ureg input;
1090
1091   if (p->state->fog_source_is_depth) {
1092      input = swizzle1(get_eye_position(p), Z);
1093   }
1094   else {
1095      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1096   }
1097
1098   if (p->state->tnl_do_vertex_fog) {
1099      struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1100      struct ureg tmp = get_temp(p);
1101
1102      switch (p->state->fog_mode) {
1103      case FOG_LINEAR: {
1104	 struct ureg id = get_identity_param(p);
1105	 emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1106	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1107	 emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1108	 emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1109	 break;
1110      }
1111      case FOG_EXP:
1112	 emit_op1(p, VP_OPCODE_ABS, tmp, 0, input);
1113	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1114	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1115		  register_const1f(p, M_E), negate(tmp));
1116	 break;
1117      case FOG_EXP2:
1118	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1119	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp);
1120	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1121		  register_const1f(p, M_E), negate(tmp));
1122	 break;
1123      }
1124
1125      release_temp(p, tmp);
1126   }
1127   else {
1128      /* results = incoming fog coords (compute fog per-fragment later)
1129       *
1130       * KW:  Is it really necessary to do anything in this case?
1131       */
1132      emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input);
1133   }
1134}
1135
1136static void build_reflect_texgen( struct tnl_program *p,
1137				  struct ureg dest,
1138				  GLuint writemask )
1139{
1140   struct ureg normal = get_eye_normal(p);
1141   struct ureg eye_hat = get_eye_position_normalized(p);
1142   struct ureg tmp = get_temp(p);
1143
1144   /* n.u */
1145   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1146   /* 2n.u */
1147   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1148   /* (-2n.u)n + u */
1149   emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1150}
1151
1152static void build_sphere_texgen( struct tnl_program *p,
1153				 struct ureg dest,
1154				 GLuint writemask )
1155{
1156   struct ureg normal = get_eye_normal(p);
1157   struct ureg eye_hat = get_eye_position_normalized(p);
1158   struct ureg tmp = get_temp(p);
1159   struct ureg half = register_scalar_const(p, .5);
1160   struct ureg r = get_temp(p);
1161   struct ureg inv_m = get_temp(p);
1162   struct ureg id = get_identity_param(p);
1163
1164   /* Could share the above calculations, but it would be
1165    * a fairly odd state for someone to set (both sphere and
1166    * reflection active for different texture coordinate
1167    * components.  Of course - if two texture units enable
1168    * reflect and/or sphere, things start to tilt in favour
1169    * of seperating this out:
1170    */
1171
1172   /* n.u */
1173   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1174   /* 2n.u */
1175   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1176   /* (-2n.u)n + u */
1177   emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1178   /* r + 0,0,1 */
1179   emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1180   /* rx^2 + ry^2 + (rz+1)^2 */
1181   emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp);
1182   /* 2/m */
1183   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
1184   /* 1/m */
1185   emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, half);
1186   /* r/m + 1/2 */
1187   emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, half);
1188
1189   release_temp(p, tmp);
1190   release_temp(p, r);
1191   release_temp(p, inv_m);
1192}
1193
1194
1195static void build_texture_transform( struct tnl_program *p )
1196{
1197   GLuint i, j;
1198
1199   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1200      GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1201
1202      if (p->state->unit[i].texgen_enabled || texmat_enabled) {
1203	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1204	 struct ureg out_texgen = undef;
1205
1206	 if (p->state->unit[i].texgen_enabled) {
1207	    GLuint copy_mask = 0;
1208	    GLuint sphere_mask = 0;
1209	    GLuint reflect_mask = 0;
1210	    GLuint normal_mask = 0;
1211	    GLuint modes[4];
1212
1213	    if (texmat_enabled)
1214	       out_texgen = get_temp(p);
1215	    else
1216	       out_texgen = out;
1217
1218	    modes[0] = p->state->unit[i].texgen_mode0;
1219	    modes[1] = p->state->unit[i].texgen_mode1;
1220	    modes[2] = p->state->unit[i].texgen_mode2;
1221	    modes[3] = p->state->unit[i].texgen_mode3;
1222
1223	    for (j = 0; j < 4; j++) {
1224	       switch (modes[j]) {
1225	       case TXG_OBJ_LINEAR: {
1226		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1227		  struct ureg plane =
1228		     register_param3(p, STATE_TEXGEN, i,
1229				     STATE_TEXGEN_OBJECT_S + j);
1230
1231		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1232			   obj, plane );
1233		  break;
1234	       }
1235	       case TXG_EYE_LINEAR: {
1236		  struct ureg eye = get_eye_position(p);
1237		  struct ureg plane =
1238		     register_param3(p, STATE_TEXGEN, i,
1239				     STATE_TEXGEN_EYE_S + j);
1240
1241		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1242			   eye, plane );
1243		  break;
1244	       }
1245	       case TXG_SPHERE_MAP:
1246		  sphere_mask |= WRITEMASK_X << j;
1247		  break;
1248	       case TXG_REFLECTION_MAP:
1249		  reflect_mask |= WRITEMASK_X << j;
1250		  break;
1251	       case TXG_NORMAL_MAP:
1252		  normal_mask |= WRITEMASK_X << j;
1253		  break;
1254	       case TXG_NONE:
1255		  copy_mask |= WRITEMASK_X << j;
1256	       }
1257
1258	    }
1259
1260
1261	    if (sphere_mask) {
1262	       build_sphere_texgen(p, out_texgen, sphere_mask);
1263	    }
1264
1265	    if (reflect_mask) {
1266	       build_reflect_texgen(p, out_texgen, reflect_mask);
1267	    }
1268
1269	    if (normal_mask) {
1270	       struct ureg normal = get_eye_normal(p);
1271	       emit_op1(p, VP_OPCODE_MOV, out_texgen, normal_mask, normal );
1272	    }
1273
1274	    if (copy_mask) {
1275	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1276	       emit_op1(p, VP_OPCODE_MOV, out_texgen, copy_mask, in );
1277	    }
1278	 }
1279
1280	 if (texmat_enabled) {
1281	    struct ureg texmat[4];
1282	    struct ureg in = (!is_undef(out_texgen) ?
1283			      out_texgen :
1284			      register_input(p, VERT_ATTRIB_TEX0+i));
1285	    if (PREFER_DP4) {
1286	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1287				       0, 3, STATE_MATRIX, texmat );
1288	       emit_matrix_transform_vec4( p, out, texmat, in );
1289	    }
1290	    else {
1291	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1292				       0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1293	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1294	    }
1295	 }
1296
1297	 release_temps(p);
1298      }
1299      else if (p->state->unit[i].texunit_really_enabled) {
1300	 /* KW: _ReallyEnabled isn't sufficient?  Need to know whether
1301	  * this texture unit is referenced by the fragment shader.
1302	  */
1303	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1304      }
1305   }
1306}
1307
1308
1309/* Seems like it could be tighter:
1310 */
1311static void build_pointsize( struct tnl_program *p )
1312{
1313   struct ureg eye = get_eye_position(p);
1314   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1315   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1316   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1317   struct ureg ut = get_temp(p);
1318
1319   /* 1, -Z, Z * Z, 1 */
1320   emit_op1(p, VP_OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1321   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1322   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1323
1324
1325   /* p1 +  p2 * dist + p3 * dist * dist, 0 */
1326   emit_op2(p, VP_OPCODE_DP3, ut, 0, ut, state_attenuation);
1327
1328   /* 1 / factor */
1329   emit_op1(p, VP_OPCODE_RCP, ut, 0, ut );
1330
1331   /* out = pointSize / factor */
1332   emit_op2(p, VP_OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1333
1334   release_temp(p, ut);
1335}
1336
1337static void build_tnl_program( struct tnl_program *p )
1338{   /* Emit the program, starting with modelviewproject:
1339    */
1340   build_hpos(p);
1341
1342   /* Lighting calculations:
1343    */
1344   if (p->state->light_global_enabled)
1345      build_lighting(p);
1346   else
1347      emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1348
1349   if (p->state->fog_enabled)
1350      build_fog(p);
1351
1352   if (p->state->texture_enabled_global)
1353      build_texture_transform(p);
1354
1355   if (p->state->point_attenuated)
1356      build_pointsize(p);
1357
1358   /* Finish up:
1359    */
1360   emit_op1(p, VP_OPCODE_END, undef, 0, undef);
1361
1362   /* Disassemble:
1363    */
1364   if (DISASSEM) {
1365      _mesa_printf ("\n");
1366   }
1367}
1368
1369
1370void create_new_program( const struct state_key *key,
1371			 struct vertex_program *program,
1372			 GLuint max_temps)
1373{
1374   struct tnl_program p;
1375
1376   _mesa_memset(&p, 0, sizeof(p));
1377   p.state = key;
1378   p.program = program;
1379   p.eye_position = undef;
1380   p.eye_position_normalized = undef;
1381   p.eye_normal = undef;
1382   p.identity = undef;
1383   p.temp_in_use = 0;
1384
1385   if (max_temps >= sizeof(int) * 8)
1386      p.temp_reserved = 0;
1387   else
1388      p.temp_reserved = ~((1<<max_temps)-1);
1389
1390   p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * MAX_INSN);
1391   p.program->Base.String = 0;
1392   p.program->Base.NumInstructions =
1393   p.program->Base.NumTemporaries =
1394   p.program->Base.NumParameters =
1395   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1396   p.program->Parameters = _mesa_new_parameter_list();
1397   p.program->InputsRead = 0;
1398   p.program->OutputsWritten = 0;
1399
1400   build_tnl_program( &p );
1401}
1402
1403static void *search_cache( struct tnl_cache *cache,
1404			   GLuint hash,
1405			   const void *key,
1406			   GLuint keysize)
1407{
1408   struct tnl_cache *c;
1409
1410   for (c = cache; c; c = c->next) {
1411      if (c->hash == hash && memcmp(c->key, key, keysize) == 0)
1412	 return c->data;
1413   }
1414
1415   return NULL;
1416}
1417
1418static void cache_item( struct tnl_cache **cache,
1419			GLuint hash,
1420			void *key,
1421			void *data )
1422{
1423   struct tnl_cache *c = MALLOC(sizeof(*c));
1424   c->hash = hash;
1425   c->key = key;
1426   c->data = data;
1427   c->next = *cache;
1428   *cache = c;
1429}
1430
1431static GLuint hash_key( struct state_key *key )
1432{
1433   GLuint *ikey = (GLuint *)key;
1434   GLuint hash = 0, i;
1435
1436   /* I'm sure this can be improved on, but speed is important:
1437    */
1438   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1439      hash ^= ikey[i];
1440
1441   return hash;
1442}
1443
1444void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1445{
1446   TNLcontext *tnl = TNL_CONTEXT(ctx);
1447   struct state_key *key;
1448   GLuint hash;
1449
1450   if (ctx->VertexProgram._Enabled)
1451      return;
1452
1453   /* Grab all the relevent state and put it in a single structure:
1454    */
1455   key = make_state_key(ctx);
1456   hash = hash_key(key);
1457
1458   /* Look for an already-prepared program for this state:
1459    */
1460   ctx->_TnlProgram = (struct vertex_program *)
1461      search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1462
1463   /* OK, we'll have to build a new one:
1464    */
1465   if (!ctx->_TnlProgram) {
1466      if (0)
1467	 _mesa_printf("Build new TNL program\n");
1468
1469      ctx->_TnlProgram = (struct vertex_program *)
1470	 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1471
1472      create_new_program( key, ctx->_TnlProgram,
1473			  ctx->Const.MaxVertexProgramTemps );
1474
1475      cache_item(&tnl->vp_cache, hash, key, ctx->_TnlProgram );
1476   }
1477   else {
1478      if (0)
1479	 _mesa_printf("Found existing TNL program for key %x\n", hash);
1480   }
1481
1482   /* Need a BindProgram callback for the driver?
1483    */
1484}
1485
1486
1487void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1488{
1489   TNLcontext *tnl = TNL_CONTEXT(ctx);
1490   struct tnl_cache *a, *tmp;
1491
1492   for (a = tnl->vp_cache ; a; a = tmp) {
1493      tmp = a->next;
1494      FREE(a->key);
1495      FREE(a->data);
1496      FREE(a);
1497   }
1498}
1499