1/*
2 * Copyright © 2009,2012 Intel Corporation
3 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Except as contained in this notice, the names of the authors
25 * or their institutions shall not be used in advertising or
26 * otherwise to promote the sale, use or other dealings in this
27 * Software without prior written authorization from the
28 * authors.
29 *
30 * Authors:
31 *    Eric Anholt <eric@anholt.net>
32 *    Keith Packard <keithp@keithp.com>
33 */
34
35/**
36 * Implements an open-addressing, linear-reprobing hash table.
37 *
38 * For more information, see:
39 *
40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41 */
42
43#include <stdlib.h>
44#include <string.h>
45#include <assert.h>
46
47#include "hash_table.h"
48#include "ralloc.h"
49#include "macros.h"
50
51static const uint32_t deleted_key_value;
52
53/**
54 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
55 * p and p-2 are both prime.  These tables are sized to have an extra 10%
56 * free to avoid exponential performance degradation as the hash table fills
57 */
58static const struct {
59   uint32_t max_entries, size, rehash;
60} hash_sizes[] = {
61   { 2,			5,		3	  },
62   { 4,			7,		5	  },
63   { 8,			13,		11	  },
64   { 16,		19,		17	  },
65   { 32,		43,		41        },
66   { 64,		73,		71        },
67   { 128,		151,		149       },
68   { 256,		283,		281       },
69   { 512,		571,		569       },
70   { 1024,		1153,		1151      },
71   { 2048,		2269,		2267      },
72   { 4096,		4519,		4517      },
73   { 8192,		9013,		9011      },
74   { 16384,		18043,		18041     },
75   { 32768,		36109,		36107     },
76   { 65536,		72091,		72089     },
77   { 131072,		144409,		144407    },
78   { 262144,		288361,		288359    },
79   { 524288,		576883,		576881    },
80   { 1048576,		1153459,	1153457   },
81   { 2097152,		2307163,	2307161   },
82   { 4194304,		4613893,	4613891   },
83   { 8388608,		9227641,	9227639   },
84   { 16777216,		18455029,	18455027  },
85   { 33554432,		36911011,	36911009  },
86   { 67108864,		73819861,	73819859  },
87   { 134217728,		147639589,	147639587 },
88   { 268435456,		295279081,	295279079 },
89   { 536870912,		590559793,	590559791 },
90   { 1073741824,	1181116273,	1181116271},
91   { 2147483648ul,	2362232233ul,	2362232231ul}
92};
93
94static int
95entry_is_free(const struct hash_entry *entry)
96{
97   return entry->key == NULL;
98}
99
100static int
101entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
102{
103   return entry->key == ht->deleted_key;
104}
105
106static int
107entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
108{
109   return entry->key != NULL && entry->key != ht->deleted_key;
110}
111
112struct hash_table *
113_mesa_hash_table_create(void *mem_ctx,
114                        uint32_t (*key_hash_function)(const void *key),
115                        bool (*key_equals_function)(const void *a,
116                                                    const void *b))
117{
118   struct hash_table *ht;
119
120   ht = ralloc(mem_ctx, struct hash_table);
121   if (ht == NULL)
122      return NULL;
123
124   ht->size_index = 0;
125   ht->size = hash_sizes[ht->size_index].size;
126   ht->rehash = hash_sizes[ht->size_index].rehash;
127   ht->max_entries = hash_sizes[ht->size_index].max_entries;
128   ht->key_hash_function = key_hash_function;
129   ht->key_equals_function = key_equals_function;
130   ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
131   ht->entries = 0;
132   ht->deleted_entries = 0;
133   ht->deleted_key = &deleted_key_value;
134
135   if (ht->table == NULL) {
136      ralloc_free(ht);
137      return NULL;
138   }
139
140   return ht;
141}
142
143/**
144 * Frees the given hash table.
145 *
146 * If delete_function is passed, it gets called on each entry present before
147 * freeing.
148 */
149void
150_mesa_hash_table_destroy(struct hash_table *ht,
151                         void (*delete_function)(struct hash_entry *entry))
152{
153   if (!ht)
154      return;
155
156   if (delete_function) {
157      struct hash_entry *entry;
158
159      hash_table_foreach(ht, entry) {
160         delete_function(entry);
161      }
162   }
163   ralloc_free(ht);
164}
165
166/**
167 * Deletes all entries of the given hash table without deleting the table
168 * itself or changing its structure.
169 *
170 * If delete_function is passed, it gets called on each entry present.
171 */
172void
173_mesa_hash_table_clear(struct hash_table *ht,
174                       void (*delete_function)(struct hash_entry *entry))
175{
176   struct hash_entry *entry;
177
178   for (entry = ht->table; entry != ht->table + ht->size; entry++) {
179      if (entry->key == NULL)
180         continue;
181
182      if (delete_function != NULL && entry->key != ht->deleted_key)
183         delete_function(entry);
184
185      entry->key = NULL;
186   }
187
188   ht->entries = 0;
189   ht->deleted_entries = 0;
190}
191
192/** Sets the value of the key pointer used for deleted entries in the table.
193 *
194 * The assumption is that usually keys are actual pointers, so we use a
195 * default value of a pointer to an arbitrary piece of storage in the library.
196 * But in some cases a consumer wants to store some other sort of value in the
197 * table, like a uint32_t, in which case that pointer may conflict with one of
198 * their valid keys.  This lets that user select a safe value.
199 *
200 * This must be called before any keys are actually deleted from the table.
201 */
202void
203_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
204{
205   ht->deleted_key = deleted_key;
206}
207
208static struct hash_entry *
209hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
210{
211   uint32_t start_hash_address = hash % ht->size;
212   uint32_t hash_address = start_hash_address;
213
214   do {
215      uint32_t double_hash;
216
217      struct hash_entry *entry = ht->table + hash_address;
218
219      if (entry_is_free(entry)) {
220         return NULL;
221      } else if (entry_is_present(ht, entry) && entry->hash == hash) {
222         if (ht->key_equals_function(key, entry->key)) {
223            return entry;
224         }
225      }
226
227      double_hash = 1 + hash % ht->rehash;
228
229      hash_address = (hash_address + double_hash) % ht->size;
230   } while (hash_address != start_hash_address);
231
232   return NULL;
233}
234
235/**
236 * Finds a hash table entry with the given key and hash of that key.
237 *
238 * Returns NULL if no entry is found.  Note that the data pointer may be
239 * modified by the user.
240 */
241struct hash_entry *
242_mesa_hash_table_search(struct hash_table *ht, const void *key)
243{
244   assert(ht->key_hash_function);
245   return hash_table_search(ht, ht->key_hash_function(key), key);
246}
247
248struct hash_entry *
249_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
250                                  const void *key)
251{
252   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
253   return hash_table_search(ht, hash, key);
254}
255
256static struct hash_entry *
257hash_table_insert(struct hash_table *ht, uint32_t hash,
258                  const void *key, void *data);
259
260static void
261_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
262{
263   struct hash_table old_ht;
264   struct hash_entry *table, *entry;
265
266   if (new_size_index >= ARRAY_SIZE(hash_sizes))
267      return;
268
269   table = rzalloc_array(ht, struct hash_entry,
270                         hash_sizes[new_size_index].size);
271   if (table == NULL)
272      return;
273
274   old_ht = *ht;
275
276   ht->table = table;
277   ht->size_index = new_size_index;
278   ht->size = hash_sizes[ht->size_index].size;
279   ht->rehash = hash_sizes[ht->size_index].rehash;
280   ht->max_entries = hash_sizes[ht->size_index].max_entries;
281   ht->entries = 0;
282   ht->deleted_entries = 0;
283
284   hash_table_foreach(&old_ht, entry) {
285      hash_table_insert(ht, entry->hash, entry->key, entry->data);
286   }
287
288   ralloc_free(old_ht.table);
289}
290
291static struct hash_entry *
292hash_table_insert(struct hash_table *ht, uint32_t hash,
293                  const void *key, void *data)
294{
295   uint32_t start_hash_address, hash_address;
296   struct hash_entry *available_entry = NULL;
297
298   assert(key != NULL);
299
300   if (ht->entries >= ht->max_entries) {
301      _mesa_hash_table_rehash(ht, ht->size_index + 1);
302   } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
303      _mesa_hash_table_rehash(ht, ht->size_index);
304   }
305
306   start_hash_address = hash % ht->size;
307   hash_address = start_hash_address;
308   do {
309      struct hash_entry *entry = ht->table + hash_address;
310      uint32_t double_hash;
311
312      if (!entry_is_present(ht, entry)) {
313         /* Stash the first available entry we find */
314         if (available_entry == NULL)
315            available_entry = entry;
316         if (entry_is_free(entry))
317            break;
318      }
319
320      /* Implement replacement when another insert happens
321       * with a matching key.  This is a relatively common
322       * feature of hash tables, with the alternative
323       * generally being "insert the new value as well, and
324       * return it first when the key is searched for".
325       *
326       * Note that the hash table doesn't have a delete
327       * callback.  If freeing of old data pointers is
328       * required to avoid memory leaks, perform a search
329       * before inserting.
330       */
331      if (!entry_is_deleted(ht, entry) &&
332          entry->hash == hash &&
333          ht->key_equals_function(key, entry->key)) {
334         entry->key = key;
335         entry->data = data;
336         return entry;
337      }
338
339
340      double_hash = 1 + hash % ht->rehash;
341
342      hash_address = (hash_address + double_hash) % ht->size;
343   } while (hash_address != start_hash_address);
344
345   if (available_entry) {
346      if (entry_is_deleted(ht, available_entry))
347         ht->deleted_entries--;
348      available_entry->hash = hash;
349      available_entry->key = key;
350      available_entry->data = data;
351      ht->entries++;
352      return available_entry;
353   }
354
355   /* We could hit here if a required resize failed. An unchecked-malloc
356    * application could ignore this result.
357    */
358   return NULL;
359}
360
361/**
362 * Inserts the key with the given hash into the table.
363 *
364 * Note that insertion may rearrange the table on a resize or rehash,
365 * so previously found hash_entries are no longer valid after this function.
366 */
367struct hash_entry *
368_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
369{
370   assert(ht->key_hash_function);
371   return hash_table_insert(ht, ht->key_hash_function(key), key, data);
372}
373
374struct hash_entry *
375_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
376                                   const void *key, void *data)
377{
378   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
379   return hash_table_insert(ht, hash, key, data);
380}
381
382/**
383 * This function deletes the given hash table entry.
384 *
385 * Note that deletion doesn't otherwise modify the table, so an iteration over
386 * the table deleting entries is safe.
387 */
388void
389_mesa_hash_table_remove(struct hash_table *ht,
390                        struct hash_entry *entry)
391{
392   if (!entry)
393      return;
394
395   entry->key = ht->deleted_key;
396   ht->entries--;
397   ht->deleted_entries++;
398}
399
400/**
401 * This function is an iterator over the hash table.
402 *
403 * Pass in NULL for the first entry, as in the start of a for loop.  Note that
404 * an iteration over the table is O(table_size) not O(entries).
405 */
406struct hash_entry *
407_mesa_hash_table_next_entry(struct hash_table *ht,
408                            struct hash_entry *entry)
409{
410   if (entry == NULL)
411      entry = ht->table;
412   else
413      entry = entry + 1;
414
415   for (; entry != ht->table + ht->size; entry++) {
416      if (entry_is_present(ht, entry)) {
417         return entry;
418      }
419   }
420
421   return NULL;
422}
423
424/**
425 * Returns a random entry from the hash table.
426 *
427 * This may be useful in implementing random replacement (as opposed
428 * to just removing everything) in caches based on this hash table
429 * implementation.  @predicate may be used to filter entries, or may
430 * be set to NULL for no filtering.
431 */
432struct hash_entry *
433_mesa_hash_table_random_entry(struct hash_table *ht,
434                              bool (*predicate)(struct hash_entry *entry))
435{
436   struct hash_entry *entry;
437   uint32_t i = rand() % ht->size;
438
439   if (ht->entries == 0)
440      return NULL;
441
442   for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
443      if (entry_is_present(ht, entry) &&
444          (!predicate || predicate(entry))) {
445         return entry;
446      }
447   }
448
449   for (entry = ht->table; entry != ht->table + i; entry++) {
450      if (entry_is_present(ht, entry) &&
451          (!predicate || predicate(entry))) {
452         return entry;
453      }
454   }
455
456   return NULL;
457}
458
459
460/**
461 * Quick FNV-1a hash implementation based on:
462 * http://www.isthe.com/chongo/tech/comp/fnv/
463 *
464 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
465 * to be quite good, and it probably beats FNV.  But FNV has the advantage
466 * that it involves almost no code.  For an improvement on both, see Paul
467 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
468 */
469uint32_t
470_mesa_hash_data(const void *data, size_t size)
471{
472   return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
473                                          data, size);
474}
475
476/** FNV-1a string hash implementation */
477uint32_t
478_mesa_hash_string(const char *key)
479{
480   uint32_t hash = _mesa_fnv32_1a_offset_bias;
481
482   while (*key != 0) {
483      hash = _mesa_fnv32_1a_accumulate(hash, *key);
484      key++;
485   }
486
487   return hash;
488}
489
490/**
491 * String compare function for use as the comparison callback in
492 * _mesa_hash_table_create().
493 */
494bool
495_mesa_key_string_equal(const void *a, const void *b)
496{
497   return strcmp(a, b) == 0;
498}
499
500bool
501_mesa_key_pointer_equal(const void *a, const void *b)
502{
503   return a == b;
504}
505