1/*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16 * Copyright (c) 2017, IntoPIX SA <support@intopix.com>
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
29 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41#include <assert.h>
42
43#define OPJ_SKIP_POISON
44#include "opj_includes.h"
45
46#ifdef __SSE__
47#include <xmmintrin.h>
48#endif
49#ifdef __SSE2__
50#include <emmintrin.h>
51#endif
52#ifdef __SSSE3__
53#include <tmmintrin.h>
54#endif
55#ifdef __AVX2__
56#include <immintrin.h>
57#endif
58
59#if defined(__GNUC__)
60#pragma GCC poison malloc calloc realloc free
61#endif
62
63/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
64/*@{*/
65
66#ifdef __AVX2__
67/** Number of int32 values in a AVX2 register */
68#define VREG_INT_COUNT       8
69#else
70/** Number of int32 values in a SSE2 register */
71#define VREG_INT_COUNT       4
72#endif
73
74/** Number of columns that we can process in parallel in the vertical pass */
75#define PARALLEL_COLS_53     (2*VREG_INT_COUNT)
76
77/** @name Local data structures */
78/*@{*/
79
80typedef struct dwt_local {
81    OPJ_INT32* mem;
82    OPJ_SIZE_T mem_count;
83    OPJ_INT32 dn;   /* number of elements in high pass band */
84    OPJ_INT32 sn;   /* number of elements in low pass band */
85    OPJ_INT32 cas;  /* 0 = start on even coord, 1 = start on odd coord */
86} opj_dwt_t;
87
88typedef union {
89    OPJ_FLOAT32 f[4];
90} opj_v4_t;
91
92typedef struct v4dwt_local {
93    opj_v4_t*   wavelet ;
94    OPJ_INT32       dn ;  /* number of elements in high pass band */
95    OPJ_INT32       sn ;  /* number of elements in low pass band */
96    OPJ_INT32       cas ; /* 0 = start on even coord, 1 = start on odd coord */
97    OPJ_UINT32      win_l_x0; /* start coord in low pass band */
98    OPJ_UINT32      win_l_x1; /* end coord in low pass band */
99    OPJ_UINT32      win_h_x0; /* start coord in high pass band */
100    OPJ_UINT32      win_h_x1; /* end coord in high pass band */
101} opj_v4dwt_t ;
102
103static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
104static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
105static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
106static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */
107
108static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
109static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
110
111/*@}*/
112
113/**
114Virtual function type for wavelet transform in 1-D
115*/
116typedef void (*DWT1DFN)(const opj_dwt_t* v);
117
118/** @name Local static functions */
119/*@{*/
120
121/**
122Forward lazy transform (horizontal)
123*/
124static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
125                                   OPJ_INT32 sn, OPJ_INT32 cas);
126/**
127Forward lazy transform (vertical)
128*/
129static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
130                                   OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
131/**
132Forward 5-3 wavelet transform in 1-D
133*/
134static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
135    OPJ_INT32 sn, OPJ_INT32 cas);
136/**
137Forward 9-7 wavelet transform in 1-D
138*/
139static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
140    OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
141
142
143/**
144Explicit calculation of the Quantization Stepsizes
145*/
146static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
147                                    opj_stepsize_t *bandno_stepsize);
148/**
149Inverse wavelet transform in 2-D.
150*/
151static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
152                                    const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
153
154static OPJ_BOOL opj_dwt_decode_partial_tile(
155    opj_tcd_tilecomp_t* tilec,
156    OPJ_UINT32 numres);
157
158static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
159        void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
160
161static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
162        OPJ_UINT32 i);
163
164/* <summary>                             */
165/* Inverse 9-7 wavelet transform in 1-D. */
166/* </summary>                            */
167static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt);
168
169static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
170                                   OPJ_FLOAT32* OPJ_RESTRICT a,
171                                   OPJ_UINT32 width,
172                                   OPJ_UINT32 remaining_height);
173
174static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
175                                   OPJ_FLOAT32* OPJ_RESTRICT a,
176                                   OPJ_UINT32 width,
177                                   OPJ_UINT32 nb_elts_read);
178
179#ifdef __SSE__
180static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
181                                       OPJ_UINT32 start,
182                                       OPJ_UINT32 end,
183                                       const __m128 c);
184
185static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
186                                       OPJ_UINT32 start,
187                                       OPJ_UINT32 end,
188                                       OPJ_UINT32 m, __m128 c);
189
190#else
191static void opj_v4dwt_decode_step1(opj_v4_t* w,
192                                   OPJ_UINT32 start,
193                                   OPJ_UINT32 end,
194                                   const OPJ_FLOAT32 c);
195
196static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
197                                   OPJ_UINT32 start,
198                                   OPJ_UINT32 end,
199                                   OPJ_UINT32 m,
200                                   OPJ_FLOAT32 c);
201
202#endif
203
204/*@}*/
205
206/*@}*/
207
208#define IDX_S(i) (i)*2
209#define IDX_D(i) 1 + (i)* 2
210#define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
211#define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
212#define OVERFLOW_S(i) (IDX_S(i) >= a_count)
213#define OVERFLOW_D(i) (IDX_D(i) >= a_count)
214
215#define OPJ_S(i) a[IDX_S(i)]
216#define OPJ_D(i) a[IDX_D(i)]
217#define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
218#define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
219/* new */
220#define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
221#define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
222
223/* <summary>                                                              */
224/* This table contains the norms of the 5-3 wavelets for different bands. */
225/* </summary>                                                             */
226/* FIXME! the array should really be extended up to 33 resolution levels */
227/* See https://github.com/uclouvain/openjpeg/issues/493 */
228static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
229    {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
230    {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
231    {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
232    {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
233};
234
235/* <summary>                                                              */
236/* This table contains the norms of the 9-7 wavelets for different bands. */
237/* </summary>                                                             */
238/* FIXME! the array should really be extended up to 33 resolution levels */
239/* See https://github.com/uclouvain/openjpeg/issues/493 */
240static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
241    {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
242    {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
243    {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
244    {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
245};
246
247/*
248==========================================================
249   local functions
250==========================================================
251*/
252
253/* <summary>                             */
254/* Forward lazy transform (horizontal).  */
255/* </summary>                            */
256static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
257                                   OPJ_INT32 sn, OPJ_INT32 cas)
258{
259    OPJ_INT32 i;
260    OPJ_INT32 * l_dest = b;
261    OPJ_INT32 * l_src = a + cas;
262
263    for (i = 0; i < sn; ++i) {
264        *l_dest++ = *l_src;
265        l_src += 2;
266    }
267
268    l_dest = b + sn;
269    l_src = a + 1 - cas;
270
271    for (i = 0; i < dn; ++i)  {
272        *l_dest++ = *l_src;
273        l_src += 2;
274    }
275}
276
277/* <summary>                             */
278/* Forward lazy transform (vertical).    */
279/* </summary>                            */
280static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
281                                   OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas)
282{
283    OPJ_INT32 i = sn;
284    OPJ_INT32 * l_dest = b;
285    OPJ_INT32 * l_src = a + cas;
286
287    while (i--) {
288        *l_dest = *l_src;
289        l_dest += x;
290        l_src += 2;
291    } /* b[i*x]=a[2*i+cas]; */
292
293    l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x;
294    l_src = a + 1 - cas;
295
296    i = dn;
297    while (i--) {
298        *l_dest = *l_src;
299        l_dest += x;
300        l_src += 2;
301    } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
302}
303
304#ifdef STANDARD_SLOW_VERSION
305/* <summary>                             */
306/* Inverse lazy transform (horizontal).  */
307/* </summary>                            */
308static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
309{
310    OPJ_INT32 *ai = a;
311    OPJ_INT32 *bi = h->mem + h->cas;
312    OPJ_INT32  i    = h->sn;
313    while (i--) {
314        *bi = *(ai++);
315        bi += 2;
316    }
317    ai  = a + h->sn;
318    bi  = h->mem + 1 - h->cas;
319    i   = h->dn ;
320    while (i--) {
321        *bi = *(ai++);
322        bi += 2;
323    }
324}
325
326/* <summary>                             */
327/* Inverse lazy transform (vertical).    */
328/* </summary>                            */
329static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
330{
331    OPJ_INT32 *ai = a;
332    OPJ_INT32 *bi = v->mem + v->cas;
333    OPJ_INT32  i = v->sn;
334    while (i--) {
335        *bi = *ai;
336        bi += 2;
337        ai += x;
338    }
339    ai = a + (v->sn * (OPJ_SIZE_T)x);
340    bi = v->mem + 1 - v->cas;
341    i = v->dn ;
342    while (i--) {
343        *bi = *ai;
344        bi += 2;
345        ai += x;
346    }
347}
348
349#endif /* STANDARD_SLOW_VERSION */
350
351/* <summary>                            */
352/* Forward 5-3 wavelet transform in 1-D. */
353/* </summary>                           */
354static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
355                             OPJ_INT32 sn, OPJ_INT32 cas)
356{
357    OPJ_INT32 i;
358
359    if (!cas) {
360        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
361            for (i = 0; i < dn; i++) {
362                OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
363            }
364            for (i = 0; i < sn; i++) {
365                OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
366            }
367        }
368    } else {
369        if (!sn && dn == 1) {       /* NEW :  CASE ONE ELEMENT */
370            OPJ_S(0) *= 2;
371        } else {
372            for (i = 0; i < dn; i++) {
373                OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
374            }
375            for (i = 0; i < sn; i++) {
376                OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
377            }
378        }
379    }
380}
381
382#ifdef STANDARD_SLOW_VERSION
383/* <summary>                            */
384/* Inverse 5-3 wavelet transform in 1-D. */
385/* </summary>                           */
386static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
387                              OPJ_INT32 sn, OPJ_INT32 cas)
388{
389    OPJ_INT32 i;
390
391    if (!cas) {
392        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
393            for (i = 0; i < sn; i++) {
394                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
395            }
396            for (i = 0; i < dn; i++) {
397                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
398            }
399        }
400    } else {
401        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
402            OPJ_S(0) /= 2;
403        } else {
404            for (i = 0; i < sn; i++) {
405                OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
406            }
407            for (i = 0; i < dn; i++) {
408                OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
409            }
410        }
411    }
412}
413
414static void opj_dwt_decode_1(const opj_dwt_t *v)
415{
416    opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
417}
418
419#endif /* STANDARD_SLOW_VERSION */
420
421#if !defined(STANDARD_SLOW_VERSION)
422static void  opj_idwt53_h_cas0(OPJ_INT32* tmp,
423                               const OPJ_INT32 sn,
424                               const OPJ_INT32 len,
425                               OPJ_INT32* tiledp)
426{
427    OPJ_INT32 i, j;
428    const OPJ_INT32* in_even = &tiledp[0];
429    const OPJ_INT32* in_odd = &tiledp[sn];
430
431#ifdef TWO_PASS_VERSION
432    /* For documentation purpose: performs lifting in two iterations, */
433    /* but without explicit interleaving */
434
435    assert(len > 1);
436
437    /* Even */
438    tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
439    for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
440        tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
441    }
442    if (len & 1) { /* if len is odd */
443        tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
444    }
445
446    /* Odd */
447    for (i = 1, j = 0; i < len - 1; i += 2, j++) {
448        tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
449    }
450    if (!(len & 1)) { /* if len is even */
451        tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
452    }
453#else
454    OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
455
456    assert(len > 1);
457
458    /* Improved version of the TWO_PASS_VERSION: */
459    /* Performs lifting in one single iteration. Saves memory */
460    /* accesses and explicit interleaving. */
461    s1n = in_even[0];
462    d1n = in_odd[0];
463    s0n = s1n - ((d1n + 1) >> 1);
464
465    for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
466        d1c = d1n;
467        s0c = s0n;
468
469        s1n = in_even[j];
470        d1n = in_odd[j];
471
472        s0n = s1n - ((d1c + d1n + 2) >> 2);
473
474        tmp[i  ] = s0c;
475        tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
476    }
477
478    tmp[i] = s0n;
479
480    if (len & 1) {
481        tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
482        tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
483    } else {
484        tmp[len - 1] = d1n + s0n;
485    }
486#endif
487    memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
488}
489
490static void  opj_idwt53_h_cas1(OPJ_INT32* tmp,
491                               const OPJ_INT32 sn,
492                               const OPJ_INT32 len,
493                               OPJ_INT32* tiledp)
494{
495    OPJ_INT32 i, j;
496    const OPJ_INT32* in_even = &tiledp[sn];
497    const OPJ_INT32* in_odd = &tiledp[0];
498
499#ifdef TWO_PASS_VERSION
500    /* For documentation purpose: performs lifting in two iterations, */
501    /* but without explicit interleaving */
502
503    assert(len > 2);
504
505    /* Odd */
506    for (i = 1, j = 0; i < len - 1; i += 2, j++) {
507        tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
508    }
509    if (!(len & 1)) {
510        tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
511    }
512
513    /* Even */
514    tmp[0] = in_even[0] + tmp[1];
515    for (i = 2, j = 1; i < len - 1; i += 2, j++) {
516        tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
517    }
518    if (len & 1) {
519        tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
520    }
521#else
522    OPJ_INT32 s1, s2, dc, dn;
523
524    assert(len > 2);
525
526    /* Improved version of the TWO_PASS_VERSION: */
527    /* Performs lifting in one single iteration. Saves memory */
528    /* accesses and explicit interleaving. */
529
530    s1 = in_even[1];
531    dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
532    tmp[0] = in_even[0] + dc;
533
534    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
535
536        s2 = in_even[j + 1];
537
538        dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
539        tmp[i  ] = dc;
540        tmp[i + 1] = s1 + ((dn + dc) >> 1);
541
542        dc = dn;
543        s1 = s2;
544    }
545
546    tmp[i] = dc;
547
548    if (!(len & 1)) {
549        dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
550        tmp[len - 2] = s1 + ((dn + dc) >> 1);
551        tmp[len - 1] = dn;
552    } else {
553        tmp[len - 1] = s1 + dc;
554    }
555#endif
556    memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
557}
558
559
560#endif /* !defined(STANDARD_SLOW_VERSION) */
561
562/* <summary>                            */
563/* Inverse 5-3 wavelet transform in 1-D for one row. */
564/* </summary>                           */
565/* Performs interleave, inverse wavelet transform and copy back to buffer */
566static void opj_idwt53_h(const opj_dwt_t *dwt,
567                         OPJ_INT32* tiledp)
568{
569#ifdef STANDARD_SLOW_VERSION
570    /* For documentation purpose */
571    opj_dwt_interleave_h(dwt, tiledp);
572    opj_dwt_decode_1(dwt);
573    memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
574#else
575    const OPJ_INT32 sn = dwt->sn;
576    const OPJ_INT32 len = sn + dwt->dn;
577    if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
578        if (len > 1) {
579            opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
580        } else {
581            /* Unmodified value */
582        }
583    } else { /* Left-most sample is on odd coordinate */
584        if (len == 1) {
585            tiledp[0] /= 2;
586        } else if (len == 2) {
587            OPJ_INT32* out = dwt->mem;
588            const OPJ_INT32* in_even = &tiledp[sn];
589            const OPJ_INT32* in_odd = &tiledp[0];
590            out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
591            out[0] = in_even[0] + out[1];
592            memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
593        } else if (len > 2) {
594            opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
595        }
596    }
597#endif
598}
599
600#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
601
602/* Conveniency macros to improve the readabilty of the formulas */
603#if __AVX2__
604#define VREG        __m256i
605#define LOAD_CST(x) _mm256_set1_epi32(x)
606#define LOAD(x)     _mm256_load_si256((const VREG*)(x))
607#define LOADU(x)    _mm256_loadu_si256((const VREG*)(x))
608#define STORE(x,y)  _mm256_store_si256((VREG*)(x),(y))
609#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
610#define ADD(x,y)    _mm256_add_epi32((x),(y))
611#define SUB(x,y)    _mm256_sub_epi32((x),(y))
612#define SAR(x,y)    _mm256_srai_epi32((x),(y))
613#else
614#define VREG        __m128i
615#define LOAD_CST(x) _mm_set1_epi32(x)
616#define LOAD(x)     _mm_load_si128((const VREG*)(x))
617#define LOADU(x)    _mm_loadu_si128((const VREG*)(x))
618#define STORE(x,y)  _mm_store_si128((VREG*)(x),(y))
619#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
620#define ADD(x,y)    _mm_add_epi32((x),(y))
621#define SUB(x,y)    _mm_sub_epi32((x),(y))
622#define SAR(x,y)    _mm_srai_epi32((x),(y))
623#endif
624#define ADD3(x,y,z) ADD(ADD(x,y),z)
625
626static
627void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
628                               const OPJ_INT32* tmp,
629                               OPJ_INT32 len,
630                               OPJ_SIZE_T stride)
631{
632    OPJ_INT32 i;
633    for (i = 0; i < len; ++i) {
634        /* A memcpy(&tiledp_col[i * stride + 0],
635                    &tmp[PARALLEL_COLS_53 * i + 0],
636                    PARALLEL_COLS_53 * sizeof(OPJ_INT32))
637           would do but would be a tiny bit slower.
638           We can take here advantage of our knowledge of alignment */
639        STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
640               LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
641        STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
642               LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
643    }
644}
645
646/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
647 * 16 in AVX2, when top-most pixel is on even coordinate */
648static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
649    OPJ_INT32* tmp,
650    const OPJ_INT32 sn,
651    const OPJ_INT32 len,
652    OPJ_INT32* tiledp_col,
653    const OPJ_SIZE_T stride)
654{
655    const OPJ_INT32* in_even = &tiledp_col[0];
656    const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
657
658    OPJ_INT32 i;
659    OPJ_SIZE_T j;
660    VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
661    VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
662    const VREG two = LOAD_CST(2);
663
664    assert(len > 1);
665#if __AVX2__
666    assert(PARALLEL_COLS_53 == 16);
667    assert(VREG_INT_COUNT == 8);
668#else
669    assert(PARALLEL_COLS_53 == 8);
670    assert(VREG_INT_COUNT == 4);
671#endif
672
673    /* Note: loads of input even/odd values must be done in a unaligned */
674    /* fashion. But stores in tmp can be done with aligned store, since */
675    /* the temporary buffer is properly aligned */
676    assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
677
678    s1n_0 = LOADU(in_even + 0);
679    s1n_1 = LOADU(in_even + VREG_INT_COUNT);
680    d1n_0 = LOADU(in_odd);
681    d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
682
683    /* s0n = s1n - ((d1n + 1) >> 1); <==> */
684    /* s0n = s1n - ((d1n + d1n + 2) >> 2); */
685    s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
686    s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
687
688    for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
689        d1c_0 = d1n_0;
690        s0c_0 = s0n_0;
691        d1c_1 = d1n_1;
692        s0c_1 = s0n_1;
693
694        s1n_0 = LOADU(in_even + j * stride);
695        s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
696        d1n_0 = LOADU(in_odd + j * stride);
697        d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
698
699        /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
700        s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
701        s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
702
703        STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
704        STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
705
706        /* d1c + ((s0c + s0n) >> 1) */
707        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
708              ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
709        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
710              ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
711    }
712
713    STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
714    STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
715
716    if (len & 1) {
717        VREG tmp_len_minus_1;
718        s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
719        /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
720        tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
721        STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
722        /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
723        STORE(tmp + PARALLEL_COLS_53 * (len - 2),
724              ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
725
726        s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
727        /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
728        tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
729        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
730              tmp_len_minus_1);
731        /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
732        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
733              ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
734
735
736    } else {
737        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
738              ADD(d1n_0, s0n_0));
739        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
740              ADD(d1n_1, s0n_1));
741    }
742
743    opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
744}
745
746
747/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
748 * 16 in AVX2, when top-most pixel is on odd coordinate */
749static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
750    OPJ_INT32* tmp,
751    const OPJ_INT32 sn,
752    const OPJ_INT32 len,
753    OPJ_INT32* tiledp_col,
754    const OPJ_SIZE_T stride)
755{
756    OPJ_INT32 i;
757    OPJ_SIZE_T j;
758
759    VREG s1_0, s2_0, dc_0, dn_0;
760    VREG s1_1, s2_1, dc_1, dn_1;
761    const VREG two = LOAD_CST(2);
762
763    const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
764    const OPJ_INT32* in_odd = &tiledp_col[0];
765
766    assert(len > 2);
767#if __AVX2__
768    assert(PARALLEL_COLS_53 == 16);
769    assert(VREG_INT_COUNT == 8);
770#else
771    assert(PARALLEL_COLS_53 == 8);
772    assert(VREG_INT_COUNT == 4);
773#endif
774
775    /* Note: loads of input even/odd values must be done in a unaligned */
776    /* fashion. But stores in tmp can be done with aligned store, since */
777    /* the temporary buffer is properly aligned */
778    assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
779
780    s1_0 = LOADU(in_even + stride);
781    /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
782    dc_0 = SUB(LOADU(in_odd + 0),
783               SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
784    STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
785
786    s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
787    /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
788    dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
789               SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
790    STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
791          ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
792
793    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
794
795        s2_0 = LOADU(in_even + (j + 1) * stride);
796        s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
797
798        /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
799        dn_0 = SUB(LOADU(in_odd + j * stride),
800                   SAR(ADD3(s1_0, s2_0, two), 2));
801        dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
802                   SAR(ADD3(s1_1, s2_1, two), 2));
803
804        STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
805        STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
806
807        /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
808        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
809              ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
810        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
811              ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
812
813        dc_0 = dn_0;
814        s1_0 = s2_0;
815        dc_1 = dn_1;
816        s1_1 = s2_1;
817    }
818    STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
819    STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
820
821    if (!(len & 1)) {
822        /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
823        dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
824                   SAR(ADD3(s1_0, s1_0, two), 2));
825        dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
826                   SAR(ADD3(s1_1, s1_1, two), 2));
827
828        /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
829        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
830              ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
831        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
832              ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
833
834        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
835        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
836    } else {
837        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
838        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
839              ADD(s1_1, dc_1));
840    }
841
842    opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
843}
844
845#undef VREG
846#undef LOAD_CST
847#undef LOADU
848#undef LOAD
849#undef STORE
850#undef STOREU
851#undef ADD
852#undef ADD3
853#undef SUB
854#undef SAR
855
856#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
857
858#if !defined(STANDARD_SLOW_VERSION)
859/** Vertical inverse 5x3 wavelet transform for one column, when top-most
860 * pixel is on even coordinate */
861static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
862                             const OPJ_INT32 sn,
863                             const OPJ_INT32 len,
864                             OPJ_INT32* tiledp_col,
865                             const OPJ_SIZE_T stride)
866{
867    OPJ_INT32 i, j;
868    OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
869
870    assert(len > 1);
871
872    /* Performs lifting in one single iteration. Saves memory */
873    /* accesses and explicit interleaving. */
874
875    s1n = tiledp_col[0];
876    d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
877    s0n = s1n - ((d1n + 1) >> 1);
878
879    for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
880        d1c = d1n;
881        s0c = s0n;
882
883        s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
884        d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
885
886        s0n = s1n - ((d1c + d1n + 2) >> 2);
887
888        tmp[i  ] = s0c;
889        tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
890    }
891
892    tmp[i] = s0n;
893
894    if (len & 1) {
895        tmp[len - 1] =
896            tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
897            ((d1n + 1) >> 1);
898        tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
899    } else {
900        tmp[len - 1] = d1n + s0n;
901    }
902
903    for (i = 0; i < len; ++i) {
904        tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
905    }
906}
907
908
909/** Vertical inverse 5x3 wavelet transform for one column, when top-most
910 * pixel is on odd coordinate */
911static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
912                             const OPJ_INT32 sn,
913                             const OPJ_INT32 len,
914                             OPJ_INT32* tiledp_col,
915                             const OPJ_SIZE_T stride)
916{
917    OPJ_INT32 i, j;
918    OPJ_INT32 s1, s2, dc, dn;
919    const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
920    const OPJ_INT32* in_odd = &tiledp_col[0];
921
922    assert(len > 2);
923
924    /* Performs lifting in one single iteration. Saves memory */
925    /* accesses and explicit interleaving. */
926
927    s1 = in_even[stride];
928    dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
929    tmp[0] = in_even[0] + dc;
930    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
931
932        s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
933
934        dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
935        tmp[i  ] = dc;
936        tmp[i + 1] = s1 + ((dn + dc) >> 1);
937
938        dc = dn;
939        s1 = s2;
940    }
941    tmp[i] = dc;
942    if (!(len & 1)) {
943        dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
944        tmp[len - 2] = s1 + ((dn + dc) >> 1);
945        tmp[len - 1] = dn;
946    } else {
947        tmp[len - 1] = s1 + dc;
948    }
949
950    for (i = 0; i < len; ++i) {
951        tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
952    }
953}
954#endif /* !defined(STANDARD_SLOW_VERSION) */
955
956/* <summary>                            */
957/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
958/* </summary>                           */
959/* Performs interleave, inverse wavelet transform and copy back to buffer */
960static void opj_idwt53_v(const opj_dwt_t *dwt,
961                         OPJ_INT32* tiledp_col,
962                         OPJ_SIZE_T stride,
963                         OPJ_INT32 nb_cols)
964{
965#ifdef STANDARD_SLOW_VERSION
966    /* For documentation purpose */
967    OPJ_INT32 k, c;
968    for (c = 0; c < nb_cols; c ++) {
969        opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
970        opj_dwt_decode_1(dwt);
971        for (k = 0; k < dwt->sn + dwt->dn; ++k) {
972            tiledp_col[c + k * stride] = dwt->mem[k];
973        }
974    }
975#else
976    const OPJ_INT32 sn = dwt->sn;
977    const OPJ_INT32 len = sn + dwt->dn;
978    if (dwt->cas == 0) {
979        /* If len == 1, unmodified value */
980
981#if (defined(__SSE2__) || defined(__AVX2__))
982        if (len > 1 && nb_cols == PARALLEL_COLS_53) {
983            /* Same as below general case, except that thanks to SSE2/AVX2 */
984            /* we can efficently process 8/16 columns in parallel */
985            opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
986            return;
987        }
988#endif
989        if (len > 1) {
990            OPJ_INT32 c;
991            for (c = 0; c < nb_cols; c++, tiledp_col++) {
992                opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
993            }
994            return;
995        }
996    } else {
997        if (len == 1) {
998            OPJ_INT32 c;
999            for (c = 0; c < nb_cols; c++, tiledp_col++) {
1000                tiledp_col[0] /= 2;
1001            }
1002            return;
1003        }
1004
1005        if (len == 2) {
1006            OPJ_INT32 c;
1007            OPJ_INT32* out = dwt->mem;
1008            for (c = 0; c < nb_cols; c++, tiledp_col++) {
1009                OPJ_INT32 i;
1010                const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
1011                const OPJ_INT32* in_odd = &tiledp_col[0];
1012
1013                out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
1014                out[0] = in_even[0] + out[1];
1015
1016                for (i = 0; i < len; ++i) {
1017                    tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
1018                }
1019            }
1020
1021            return;
1022        }
1023
1024#if (defined(__SSE2__) || defined(__AVX2__))
1025        if (len > 2 && nb_cols == PARALLEL_COLS_53) {
1026            /* Same as below general case, except that thanks to SSE2/AVX2 */
1027            /* we can efficently process 8/16 columns in parallel */
1028            opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
1029            return;
1030        }
1031#endif
1032        if (len > 2) {
1033            OPJ_INT32 c;
1034            for (c = 0; c < nb_cols; c++, tiledp_col++) {
1035                opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
1036            }
1037            return;
1038        }
1039    }
1040#endif
1041}
1042
1043
1044/* <summary>                             */
1045/* Forward 9-7 wavelet transform in 1-D. */
1046/* </summary>                            */
1047static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1048                                  OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas)
1049{
1050    OPJ_INT32 i;
1051    if (!cas) {
1052        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1053            for (i = 0; i < dn; i++) {
1054                OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
1055            }
1056            for (i = 0; i < sn; i++) {
1057                OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
1058            }
1059            for (i = 0; i < dn; i++) {
1060                OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
1061            }
1062            for (i = 0; i < sn; i++) {
1063                OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
1064            }
1065            for (i = 0; i < dn; i++) {
1066                OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);    /*5038 */
1067            }
1068            for (i = 0; i < sn; i++) {
1069                OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);    /*6660 */
1070            }
1071        }
1072    } else {
1073        if ((sn > 0) || (dn > 1)) { /* NEW :  CASE ONE ELEMENT */
1074            for (i = 0; i < dn; i++) {
1075                OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
1076            }
1077            for (i = 0; i < sn; i++) {
1078                OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
1079            }
1080            for (i = 0; i < dn; i++) {
1081                OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
1082            }
1083            for (i = 0; i < sn; i++) {
1084                OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
1085            }
1086            for (i = 0; i < dn; i++) {
1087                OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);    /*5038 */
1088            }
1089            for (i = 0; i < sn; i++) {
1090                OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);    /*6660 */
1091            }
1092        }
1093    }
1094}
1095
1096static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
1097                                    opj_stepsize_t *bandno_stepsize)
1098{
1099    OPJ_INT32 p, n;
1100    p = opj_int_floorlog2(stepsize) - 13;
1101    n = 11 - opj_int_floorlog2(stepsize);
1102    bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
1103    bandno_stepsize->expn = numbps - p;
1104}
1105
1106/*
1107==========================================================
1108   DWT interface
1109==========================================================
1110*/
1111
1112
1113/* <summary>                            */
1114/* Forward 5-3 wavelet transform in 2-D. */
1115/* </summary>                           */
1116static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
1117        void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
1118{
1119    OPJ_INT32 i, j, k;
1120    OPJ_INT32 *a = 00;
1121    OPJ_INT32 *aj = 00;
1122    OPJ_INT32 *bj = 00;
1123    OPJ_INT32 w, l;
1124
1125    OPJ_INT32 rw;           /* width of the resolution level computed   */
1126    OPJ_INT32 rh;           /* height of the resolution level computed  */
1127    OPJ_SIZE_T l_data_count;
1128    OPJ_SIZE_T l_data_size;
1129
1130    opj_tcd_resolution_t * l_cur_res = 0;
1131    opj_tcd_resolution_t * l_last_res = 0;
1132
1133    w = tilec->x1 - tilec->x0;
1134    l = (OPJ_INT32)tilec->numresolutions - 1;
1135    a = tilec->data;
1136
1137    l_cur_res = tilec->resolutions + l;
1138    l_last_res = l_cur_res - 1;
1139
1140    l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
1141    /* overflow check */
1142    if (l_data_count > (SIZE_MAX / sizeof(OPJ_INT32))) {
1143        /* FIXME event manager error callback */
1144        return OPJ_FALSE;
1145    }
1146    l_data_size = l_data_count * sizeof(OPJ_INT32);
1147    bj = (OPJ_INT32*)opj_malloc(l_data_size);
1148    /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
1149    /* in that case, so do not error out */
1150    if (l_data_size != 0 && ! bj) {
1151        return OPJ_FALSE;
1152    }
1153    i = l;
1154
1155    while (i--) {
1156        OPJ_INT32 rw1;      /* width of the resolution level once lower than computed one                                       */
1157        OPJ_INT32 rh1;      /* height of the resolution level once lower than computed one                                      */
1158        OPJ_INT32 cas_col;  /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
1159        OPJ_INT32 cas_row;  /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
1160        OPJ_INT32 dn, sn;
1161
1162        rw  = l_cur_res->x1 - l_cur_res->x0;
1163        rh  = l_cur_res->y1 - l_cur_res->y0;
1164        rw1 = l_last_res->x1 - l_last_res->x0;
1165        rh1 = l_last_res->y1 - l_last_res->y0;
1166
1167        cas_row = l_cur_res->x0 & 1;
1168        cas_col = l_cur_res->y0 & 1;
1169
1170        sn = rh1;
1171        dn = rh - rh1;
1172        for (j = 0; j < rw; ++j) {
1173            aj = a + j;
1174            for (k = 0; k < rh; ++k) {
1175                bj[k] = aj[k * w];
1176            }
1177
1178            (*p_function) (bj, l_data_count, dn, sn, cas_col);
1179
1180            opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
1181        }
1182
1183        sn = rw1;
1184        dn = rw - rw1;
1185
1186        for (j = 0; j < rh; j++) {
1187            aj = a + j * w;
1188            for (k = 0; k < rw; k++) {
1189                bj[k] = aj[k];
1190            }
1191            (*p_function) (bj, l_data_count, dn, sn, cas_row);
1192            opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
1193        }
1194
1195        l_cur_res = l_last_res;
1196
1197        --l_last_res;
1198    }
1199
1200    opj_free(bj);
1201    return OPJ_TRUE;
1202}
1203
1204/* Forward 5-3 wavelet transform in 2-D. */
1205/* </summary>                           */
1206OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
1207{
1208    return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1);
1209}
1210
1211/* <summary>                            */
1212/* Inverse 5-3 wavelet transform in 2-D. */
1213/* </summary>                           */
1214OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
1215                        OPJ_UINT32 numres)
1216{
1217    if (p_tcd->whole_tile_decoding) {
1218        return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
1219    } else {
1220        return opj_dwt_decode_partial_tile(tilec, numres);
1221    }
1222}
1223
1224
1225/* <summary>                          */
1226/* Get gain of 5-3 wavelet transform. */
1227/* </summary>                         */
1228OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient)
1229{
1230    if (orient == 0) {
1231        return 0;
1232    }
1233    if (orient == 1 || orient == 2) {
1234        return 1;
1235    }
1236    return 2;
1237}
1238
1239/* <summary>                */
1240/* Get norm of 5-3 wavelet. */
1241/* </summary>               */
1242OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
1243{
1244    /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1245    /* but the array should really be extended up to 33 resolution levels */
1246    /* See https://github.com/uclouvain/openjpeg/issues/493 */
1247    if (orient == 0 && level >= 10) {
1248        level = 9;
1249    } else if (orient > 0 && level >= 9) {
1250        level = 8;
1251    }
1252    return opj_dwt_norms[orient][level];
1253}
1254
1255/* <summary>                             */
1256/* Forward 9-7 wavelet transform in 2-D. */
1257/* </summary>                            */
1258OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
1259{
1260    return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real);
1261}
1262
1263/* <summary>                          */
1264/* Get gain of 9-7 wavelet transform. */
1265/* </summary>                         */
1266OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient)
1267{
1268    (void)orient;
1269    return 0;
1270}
1271
1272/* <summary>                */
1273/* Get norm of 9-7 wavelet. */
1274/* </summary>               */
1275OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
1276{
1277    /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1278    /* but the array should really be extended up to 33 resolution levels */
1279    /* See https://github.com/uclouvain/openjpeg/issues/493 */
1280    if (orient == 0 && level >= 10) {
1281        level = 9;
1282    } else if (orient > 0 && level >= 9) {
1283        level = 8;
1284    }
1285    return opj_dwt_norms_real[orient][level];
1286}
1287
1288void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
1289{
1290    OPJ_UINT32 numbands, bandno;
1291    numbands = 3 * tccp->numresolutions - 2;
1292    for (bandno = 0; bandno < numbands; bandno++) {
1293        OPJ_FLOAT64 stepsize;
1294        OPJ_UINT32 resno, level, orient, gain;
1295
1296        resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
1297        orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
1298        level = tccp->numresolutions - 1 - resno;
1299        gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
1300                                          (orient == 2)) ? 1 : 2));
1301        if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
1302            stepsize = 1.0;
1303        } else {
1304            OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
1305            stepsize = (1 << (gain)) / norm;
1306        }
1307        opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
1308                                (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
1309    }
1310}
1311
1312/* <summary>                             */
1313/* Determine maximum computed resolution level for inverse wavelet transform */
1314/* </summary>                            */
1315static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
1316        OPJ_UINT32 i)
1317{
1318    OPJ_UINT32 mr   = 0;
1319    OPJ_UINT32 w;
1320    while (--i) {
1321        ++r;
1322        if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
1323            mr = w ;
1324        }
1325        if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
1326            mr = w ;
1327        }
1328    }
1329    return mr ;
1330}
1331
1332typedef struct {
1333    opj_dwt_t h;
1334    OPJ_UINT32 rw;
1335    OPJ_UINT32 w;
1336    OPJ_INT32 * OPJ_RESTRICT tiledp;
1337    OPJ_UINT32 min_j;
1338    OPJ_UINT32 max_j;
1339} opj_dwd_decode_h_job_t;
1340
1341static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
1342{
1343    OPJ_UINT32 j;
1344    opj_dwd_decode_h_job_t* job;
1345    (void)tls;
1346
1347    job = (opj_dwd_decode_h_job_t*)user_data;
1348    for (j = job->min_j; j < job->max_j; j++) {
1349        opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
1350    }
1351
1352    opj_aligned_free(job->h.mem);
1353    opj_free(job);
1354}
1355
1356typedef struct {
1357    opj_dwt_t v;
1358    OPJ_UINT32 rh;
1359    OPJ_UINT32 w;
1360    OPJ_INT32 * OPJ_RESTRICT tiledp;
1361    OPJ_UINT32 min_j;
1362    OPJ_UINT32 max_j;
1363} opj_dwd_decode_v_job_t;
1364
1365static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
1366{
1367    OPJ_UINT32 j;
1368    opj_dwd_decode_v_job_t* job;
1369    (void)tls;
1370
1371    job = (opj_dwd_decode_v_job_t*)user_data;
1372    for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
1373            j += PARALLEL_COLS_53) {
1374        opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1375                     PARALLEL_COLS_53);
1376    }
1377    if (j < job->max_j)
1378        opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1379                     (OPJ_INT32)(job->max_j - j));
1380
1381    opj_aligned_free(job->v.mem);
1382    opj_free(job);
1383}
1384
1385
1386/* <summary>                            */
1387/* Inverse wavelet transform in 2-D.    */
1388/* </summary>                           */
1389static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
1390        const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
1391{
1392    opj_dwt_t h;
1393    opj_dwt_t v;
1394
1395    opj_tcd_resolution_t* tr = tilec->resolutions;
1396
1397    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1398                                 tr->x0);  /* width of the resolution level computed */
1399    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1400                                 tr->y0);  /* height of the resolution level computed */
1401
1402    OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
1403                                                               1].x1 -
1404                                tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
1405    OPJ_SIZE_T h_mem_size;
1406    int num_threads;
1407
1408    if (numres == 1U) {
1409        return OPJ_TRUE;
1410    }
1411    num_threads = opj_thread_pool_get_thread_count(tp);
1412    h.mem_count = opj_dwt_max_resolution(tr, numres);
1413    /* overflow check */
1414    if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
1415        /* FIXME event manager error callback */
1416        return OPJ_FALSE;
1417    }
1418    /* We need PARALLEL_COLS_53 times the height of the array, */
1419    /* since for the vertical pass */
1420    /* we process PARALLEL_COLS_53 columns at a time */
1421    h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32);
1422    h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1423    if (! h.mem) {
1424        /* FIXME event manager error callback */
1425        return OPJ_FALSE;
1426    }
1427
1428    v.mem_count = h.mem_count;
1429    v.mem = h.mem;
1430
1431    while (--numres) {
1432        OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
1433        OPJ_UINT32 j;
1434
1435        ++tr;
1436        h.sn = (OPJ_INT32)rw;
1437        v.sn = (OPJ_INT32)rh;
1438
1439        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
1440        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
1441
1442        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
1443        h.cas = tr->x0 % 2;
1444
1445        if (num_threads <= 1 || rh <= 1) {
1446            for (j = 0; j < rh; ++j) {
1447                opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
1448            }
1449        } else {
1450            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1451            OPJ_UINT32 step_j;
1452
1453            if (rh < num_jobs) {
1454                num_jobs = rh;
1455            }
1456            step_j = (rh / num_jobs);
1457
1458            for (j = 0; j < num_jobs; j++) {
1459                opj_dwd_decode_h_job_t* job;
1460
1461                job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t));
1462                if (!job) {
1463                    /* It would be nice to fallback to single thread case, but */
1464                    /* unfortunately some jobs may be launched and have modified */
1465                    /* tiledp, so it is not practical to recover from that error */
1466                    /* FIXME event manager error callback */
1467                    opj_thread_pool_wait_completion(tp, 0);
1468                    opj_aligned_free(h.mem);
1469                    return OPJ_FALSE;
1470                }
1471                job->h = h;
1472                job->rw = rw;
1473                job->w = w;
1474                job->tiledp = tiledp;
1475                job->min_j = j * step_j;
1476                job->max_j = (j + 1U) * step_j; /* this can overflow */
1477                if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
1478                    job->max_j = rh;
1479                }
1480                job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1481                if (!job->h.mem) {
1482                    /* FIXME event manager error callback */
1483                    opj_thread_pool_wait_completion(tp, 0);
1484                    opj_free(job);
1485                    opj_aligned_free(h.mem);
1486                    return OPJ_FALSE;
1487                }
1488                opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
1489            }
1490            opj_thread_pool_wait_completion(tp, 0);
1491        }
1492
1493        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
1494        v.cas = tr->y0 % 2;
1495
1496        if (num_threads <= 1 || rw <= 1) {
1497            for (j = 0; j + PARALLEL_COLS_53 <= rw;
1498                    j += PARALLEL_COLS_53) {
1499                opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
1500            }
1501            if (j < rw) {
1502                opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
1503            }
1504        } else {
1505            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1506            OPJ_UINT32 step_j;
1507
1508            if (rw < num_jobs) {
1509                num_jobs = rw;
1510            }
1511            step_j = (rw / num_jobs);
1512
1513            for (j = 0; j < num_jobs; j++) {
1514                opj_dwd_decode_v_job_t* job;
1515
1516                job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t));
1517                if (!job) {
1518                    /* It would be nice to fallback to single thread case, but */
1519                    /* unfortunately some jobs may be launched and have modified */
1520                    /* tiledp, so it is not practical to recover from that error */
1521                    /* FIXME event manager error callback */
1522                    opj_thread_pool_wait_completion(tp, 0);
1523                    opj_aligned_free(v.mem);
1524                    return OPJ_FALSE;
1525                }
1526                job->v = v;
1527                job->rh = rh;
1528                job->w = w;
1529                job->tiledp = tiledp;
1530                job->min_j = j * step_j;
1531                job->max_j = (j + 1U) * step_j; /* this can overflow */
1532                if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
1533                    job->max_j = rw;
1534                }
1535                job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1536                if (!job->v.mem) {
1537                    /* FIXME event manager error callback */
1538                    opj_thread_pool_wait_completion(tp, 0);
1539                    opj_free(job);
1540                    opj_aligned_free(v.mem);
1541                    return OPJ_FALSE;
1542                }
1543                opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
1544            }
1545            opj_thread_pool_wait_completion(tp, 0);
1546        }
1547    }
1548    opj_aligned_free(h.mem);
1549    return OPJ_TRUE;
1550}
1551
1552static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
1553        OPJ_INT32 cas,
1554        opj_sparse_array_int32_t* sa,
1555        OPJ_UINT32 sa_line,
1556        OPJ_UINT32 sn,
1557        OPJ_UINT32 win_l_x0,
1558        OPJ_UINT32 win_l_x1,
1559        OPJ_UINT32 win_h_x0,
1560        OPJ_UINT32 win_h_x1)
1561{
1562    OPJ_BOOL ret;
1563    ret = opj_sparse_array_int32_read(sa,
1564                                      win_l_x0, sa_line,
1565                                      win_l_x1, sa_line + 1,
1566                                      dest + cas + 2 * win_l_x0,
1567                                      2, 0, OPJ_TRUE);
1568    assert(ret);
1569    ret = opj_sparse_array_int32_read(sa,
1570                                      sn + win_h_x0, sa_line,
1571                                      sn + win_h_x1, sa_line + 1,
1572                                      dest + 1 - cas + 2 * win_h_x0,
1573                                      2, 0, OPJ_TRUE);
1574    assert(ret);
1575    OPJ_UNUSED(ret);
1576}
1577
1578
1579static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
1580        OPJ_INT32 cas,
1581        opj_sparse_array_int32_t* sa,
1582        OPJ_UINT32 sa_col,
1583        OPJ_UINT32 nb_cols,
1584        OPJ_UINT32 sn,
1585        OPJ_UINT32 win_l_y0,
1586        OPJ_UINT32 win_l_y1,
1587        OPJ_UINT32 win_h_y0,
1588        OPJ_UINT32 win_h_y1)
1589{
1590    OPJ_BOOL ret;
1591    ret  = opj_sparse_array_int32_read(sa,
1592                                       sa_col, win_l_y0,
1593                                       sa_col + nb_cols, win_l_y1,
1594                                       dest + cas * 4 + 2 * 4 * win_l_y0,
1595                                       1, 2 * 4, OPJ_TRUE);
1596    assert(ret);
1597    ret = opj_sparse_array_int32_read(sa,
1598                                      sa_col, sn + win_h_y0,
1599                                      sa_col + nb_cols, sn + win_h_y1,
1600                                      dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
1601                                      1, 2 * 4, OPJ_TRUE);
1602    assert(ret);
1603    OPJ_UNUSED(ret);
1604}
1605
1606static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1607                                     OPJ_INT32 dn, OPJ_INT32 sn,
1608                                     OPJ_INT32 cas,
1609                                     OPJ_INT32 win_l_x0,
1610                                     OPJ_INT32 win_l_x1,
1611                                     OPJ_INT32 win_h_x0,
1612                                     OPJ_INT32 win_h_x1)
1613{
1614    OPJ_INT32 i;
1615
1616    if (!cas) {
1617        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1618
1619            /* Naive version is :
1620            for (i = win_l_x0; i < i_max; i++) {
1621                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1622            }
1623            for (i = win_h_x0; i < win_h_x1; i++) {
1624                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1625            }
1626            but the compiler doesn't manage to unroll it to avoid bound
1627            checking in OPJ_S_ and OPJ_D_ macros
1628            */
1629
1630            i = win_l_x0;
1631            if (i < win_l_x1) {
1632                OPJ_INT32 i_max;
1633
1634                /* Left-most case */
1635                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1636                i ++;
1637
1638                i_max = win_l_x1;
1639                if (i_max > dn) {
1640                    i_max = dn;
1641                }
1642                for (; i < i_max; i++) {
1643                    /* No bound checking */
1644                    OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
1645                }
1646                for (; i < win_l_x1; i++) {
1647                    /* Right-most case */
1648                    OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1649                }
1650            }
1651
1652            i = win_h_x0;
1653            if (i < win_h_x1) {
1654                OPJ_INT32 i_max = win_h_x1;
1655                if (i_max >= sn) {
1656                    i_max = sn - 1;
1657                }
1658                for (; i < i_max; i++) {
1659                    /* No bound checking */
1660                    OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
1661                }
1662                for (; i < win_h_x1; i++) {
1663                    /* Right-most case */
1664                    OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1665                }
1666            }
1667        }
1668    } else {
1669        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
1670            OPJ_S(0) /= 2;
1671        } else {
1672            for (i = win_l_x0; i < win_l_x1; i++) {
1673                OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
1674            }
1675            for (i = win_h_x0; i < win_h_x1; i++) {
1676                OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
1677            }
1678        }
1679    }
1680}
1681
1682#define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
1683#define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
1684#define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
1685#define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
1686#define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
1687#define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
1688
1689static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
1690        OPJ_UINT32 nb_cols,
1691        OPJ_INT32 dn, OPJ_INT32 sn,
1692        OPJ_INT32 cas,
1693        OPJ_INT32 win_l_x0,
1694        OPJ_INT32 win_l_x1,
1695        OPJ_INT32 win_h_x0,
1696        OPJ_INT32 win_h_x1)
1697{
1698    OPJ_INT32 i;
1699    OPJ_UINT32 off;
1700
1701    (void)nb_cols;
1702
1703    if (!cas) {
1704        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1705
1706            /* Naive version is :
1707            for (i = win_l_x0; i < i_max; i++) {
1708                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1709            }
1710            for (i = win_h_x0; i < win_h_x1; i++) {
1711                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1712            }
1713            but the compiler doesn't manage to unroll it to avoid bound
1714            checking in OPJ_S_ and OPJ_D_ macros
1715            */
1716
1717            i = win_l_x0;
1718            if (i < win_l_x1) {
1719                OPJ_INT32 i_max;
1720
1721                /* Left-most case */
1722                for (off = 0; off < 4; off++) {
1723                    OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1724                }
1725                i ++;
1726
1727                i_max = win_l_x1;
1728                if (i_max > dn) {
1729                    i_max = dn;
1730                }
1731
1732#ifdef __SSE2__
1733                if (i + 1 < i_max) {
1734                    const __m128i two = _mm_set1_epi32(2);
1735                    __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
1736                    for (; i + 1 < i_max; i += 2) {
1737                        /* No bound checking */
1738                        __m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
1739                        __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1740                        __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1741                        __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1742                        S = _mm_sub_epi32(S,
1743                                          _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
1744                        S1 = _mm_sub_epi32(S1,
1745                                           _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
1746                        _mm_store_si128((__m128i*)(a + i * 8), S);
1747                        _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
1748                        Dm1 = D1;
1749                    }
1750                }
1751#endif
1752
1753                for (; i < i_max; i++) {
1754                    /* No bound checking */
1755                    for (off = 0; off < 4; off++) {
1756                        OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
1757                    }
1758                }
1759                for (; i < win_l_x1; i++) {
1760                    /* Right-most case */
1761                    for (off = 0; off < 4; off++) {
1762                        OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1763                    }
1764                }
1765            }
1766
1767            i = win_h_x0;
1768            if (i < win_h_x1) {
1769                OPJ_INT32 i_max = win_h_x1;
1770                if (i_max >= sn) {
1771                    i_max = sn - 1;
1772                }
1773
1774#ifdef __SSE2__
1775                if (i + 1 < i_max) {
1776                    __m128i S =  _mm_load_si128((__m128i * const)(a + i * 8));
1777                    for (; i + 1 < i_max; i += 2) {
1778                        /* No bound checking */
1779                        __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1780                        __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1781                        __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1782                        __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
1783                        D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
1784                        D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
1785                        _mm_store_si128((__m128i*)(a + 4 + i * 8), D);
1786                        _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
1787                        S = S2;
1788                    }
1789                }
1790#endif
1791
1792                for (; i < i_max; i++) {
1793                    /* No bound checking */
1794                    for (off = 0; off < 4; off++) {
1795                        OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
1796                    }
1797                }
1798                for (; i < win_h_x1; i++) {
1799                    /* Right-most case */
1800                    for (off = 0; off < 4; off++) {
1801                        OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
1802                    }
1803                }
1804            }
1805        }
1806    } else {
1807        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
1808            for (off = 0; off < 4; off++) {
1809                OPJ_S_off(0, off) /= 2;
1810            }
1811        } else {
1812            for (i = win_l_x0; i < win_l_x1; i++) {
1813                for (off = 0; off < 4; off++) {
1814                    OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2;
1815                }
1816            }
1817            for (i = win_h_x0; i < win_h_x1; i++) {
1818                for (off = 0; off < 4; off++) {
1819                    OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1;
1820                }
1821            }
1822        }
1823    }
1824}
1825
1826static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
1827        OPJ_UINT32 resno,
1828        OPJ_UINT32 bandno,
1829        OPJ_UINT32 tcx0,
1830        OPJ_UINT32 tcy0,
1831        OPJ_UINT32 tcx1,
1832        OPJ_UINT32 tcy1,
1833        OPJ_UINT32* tbx0,
1834        OPJ_UINT32* tby0,
1835        OPJ_UINT32* tbx1,
1836        OPJ_UINT32* tby1)
1837{
1838    /* Compute number of decomposition for this band. See table F-1 */
1839    OPJ_UINT32 nb = (resno == 0) ?
1840                    tilec->numresolutions - 1 :
1841                    tilec->numresolutions - resno;
1842    /* Map above tile-based coordinates to sub-band-based coordinates per */
1843    /* equation B-15 of the standard */
1844    OPJ_UINT32 x0b = bandno & 1;
1845    OPJ_UINT32 y0b = bandno >> 1;
1846    if (tbx0) {
1847        *tbx0 = (nb == 0) ? tcx0 :
1848                (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
1849                opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
1850    }
1851    if (tby0) {
1852        *tby0 = (nb == 0) ? tcy0 :
1853                (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
1854                opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
1855    }
1856    if (tbx1) {
1857        *tbx1 = (nb == 0) ? tcx1 :
1858                (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
1859                opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
1860    }
1861    if (tby1) {
1862        *tby1 = (nb == 0) ? tcy1 :
1863                (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
1864                opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
1865    }
1866}
1867
1868static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
1869                                 OPJ_UINT32 max_size,
1870                                 OPJ_UINT32* start,
1871                                 OPJ_UINT32* end)
1872{
1873    *start = opj_uint_subs(*start, filter_width);
1874    *end = opj_uint_adds(*end, filter_width);
1875    *end = opj_uint_min(*end, max_size);
1876}
1877
1878
1879static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
1880    opj_tcd_tilecomp_t* tilec,
1881    OPJ_UINT32 numres)
1882{
1883    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1884    OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
1885    OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
1886    OPJ_UINT32 resno, bandno, precno, cblkno;
1887    opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
1888                                       w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
1889    if (sa == NULL) {
1890        return NULL;
1891    }
1892
1893    for (resno = 0; resno < numres; ++resno) {
1894        opj_tcd_resolution_t* res = &tilec->resolutions[resno];
1895
1896        for (bandno = 0; bandno < res->numbands; ++bandno) {
1897            opj_tcd_band_t* band = &res->bands[bandno];
1898
1899            for (precno = 0; precno < res->pw * res->ph; ++precno) {
1900                opj_tcd_precinct_t* precinct = &band->precincts[precno];
1901                for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
1902                    opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
1903                    if (cblk->decoded_data != NULL) {
1904                        OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
1905                        OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
1906                        OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
1907                        OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
1908
1909                        if (band->bandno & 1) {
1910                            opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1911                            x += (OPJ_UINT32)(pres->x1 - pres->x0);
1912                        }
1913                        if (band->bandno & 2) {
1914                            opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1915                            y += (OPJ_UINT32)(pres->y1 - pres->y0);
1916                        }
1917
1918                        if (!opj_sparse_array_int32_write(sa, x, y,
1919                                                          x + cblk_w, y + cblk_h,
1920                                                          cblk->decoded_data,
1921                                                          1, cblk_w, OPJ_TRUE)) {
1922                            opj_sparse_array_int32_free(sa);
1923                            return NULL;
1924                        }
1925                    }
1926                }
1927            }
1928        }
1929    }
1930
1931    return sa;
1932}
1933
1934
1935static OPJ_BOOL opj_dwt_decode_partial_tile(
1936    opj_tcd_tilecomp_t* tilec,
1937    OPJ_UINT32 numres)
1938{
1939    opj_sparse_array_int32_t* sa;
1940    opj_dwt_t h;
1941    opj_dwt_t v;
1942    OPJ_UINT32 resno;
1943    /* This value matches the maximum left/right extension given in tables */
1944    /* F.2 and F.3 of the standard. */
1945    const OPJ_UINT32 filter_width = 2U;
1946
1947    opj_tcd_resolution_t* tr = tilec->resolutions;
1948    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1949
1950    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1951                                 tr->x0);  /* width of the resolution level computed */
1952    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1953                                 tr->y0);  /* height of the resolution level computed */
1954
1955    OPJ_SIZE_T h_mem_size;
1956
1957    /* Compute the intersection of the area of interest, expressed in tile coordinates */
1958    /* with the tile coordinates */
1959    OPJ_UINT32 win_tcx0 = tilec->win_x0;
1960    OPJ_UINT32 win_tcy0 = tilec->win_y0;
1961    OPJ_UINT32 win_tcx1 = tilec->win_x1;
1962    OPJ_UINT32 win_tcy1 = tilec->win_y1;
1963
1964    if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
1965        return OPJ_TRUE;
1966    }
1967
1968    sa = opj_dwt_init_sparse_array(tilec, numres);
1969    if (sa == NULL) {
1970        return OPJ_FALSE;
1971    }
1972
1973    if (numres == 1U) {
1974        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
1975                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
1976                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
1977                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
1978                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
1979                       tilec->data_win,
1980                       1, tr_max->win_x1 - tr_max->win_x0,
1981                       OPJ_TRUE);
1982        assert(ret);
1983        OPJ_UNUSED(ret);
1984        opj_sparse_array_int32_free(sa);
1985        return OPJ_TRUE;
1986    }
1987    h.mem_count = opj_dwt_max_resolution(tr, numres);
1988    /* overflow check */
1989    /* in vertical pass, we process 4 columns at a time */
1990    if (h.mem_count > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) {
1991        /* FIXME event manager error callback */
1992        opj_sparse_array_int32_free(sa);
1993        return OPJ_FALSE;
1994    }
1995
1996    h_mem_size = h.mem_count * 4 * sizeof(OPJ_INT32);
1997    h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1998    if (! h.mem) {
1999        /* FIXME event manager error callback */
2000        opj_sparse_array_int32_free(sa);
2001        return OPJ_FALSE;
2002    }
2003
2004    v.mem_count = h.mem_count;
2005    v.mem = h.mem;
2006
2007    for (resno = 1; resno < numres; resno ++) {
2008        OPJ_UINT32 i, j;
2009        /* Window of interest subband-based coordinates */
2010        OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2011        OPJ_UINT32 win_hl_x0, win_hl_x1;
2012        OPJ_UINT32 win_lh_y0, win_lh_y1;
2013        /* Window of interest tile-resolution-based coordinates */
2014        OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2015        /* Tile-resolution subband-based coordinates */
2016        OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2017
2018        ++tr;
2019
2020        h.sn = (OPJ_INT32)rw;
2021        v.sn = (OPJ_INT32)rh;
2022
2023        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2024        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2025
2026        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2027        h.cas = tr->x0 % 2;
2028
2029        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2030        v.cas = tr->y0 % 2;
2031
2032        /* Get the subband coordinates for the window of interest */
2033        /* LL band */
2034        opj_dwt_get_band_coordinates(tilec, resno, 0,
2035                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2036                                     &win_ll_x0, &win_ll_y0,
2037                                     &win_ll_x1, &win_ll_y1);
2038
2039        /* HL band */
2040        opj_dwt_get_band_coordinates(tilec, resno, 1,
2041                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2042                                     &win_hl_x0, NULL, &win_hl_x1, NULL);
2043
2044        /* LH band */
2045        opj_dwt_get_band_coordinates(tilec, resno, 2,
2046                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2047                                     NULL, &win_lh_y0, NULL, &win_lh_y1);
2048
2049        /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2050        tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2051        tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2052        tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2053        tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2054
2055        /* Substract the origin of the bands for this tile, to the subwindow */
2056        /* of interest band coordinates, so as to get them relative to the */
2057        /* tile */
2058        win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2059        win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2060        win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2061        win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2062        win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2063        win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2064        win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2065        win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2066
2067        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2068        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2069
2070        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2071        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2072
2073        /* Compute the tile-resolution-based coordinates for the window of interest */
2074        if (h.cas == 0) {
2075            win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2076            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2077        } else {
2078            win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2079            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2080        }
2081
2082        if (v.cas == 0) {
2083            win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2084            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2085        } else {
2086            win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2087            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2088        }
2089
2090        for (j = 0; j < rh; ++j) {
2091            if ((j >= win_ll_y0 && j < win_ll_y1) ||
2092                    (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2093
2094                /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */
2095                /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */
2096                /* on opj_decompress -i  ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */
2097                /* This is less extreme than memsetting the whole buffer to 0 */
2098                /* although we could potentially do better with better handling of edge conditions */
2099                if (win_tr_x1 >= 1 && win_tr_x1 < rw) {
2100                    h.mem[win_tr_x1 - 1] = 0;
2101                }
2102                if (win_tr_x1 < rw) {
2103                    h.mem[win_tr_x1] = 0;
2104                }
2105
2106                opj_dwt_interleave_partial_h(h.mem,
2107                                             h.cas,
2108                                             sa,
2109                                             j,
2110                                             (OPJ_UINT32)h.sn,
2111                                             win_ll_x0,
2112                                             win_ll_x1,
2113                                             win_hl_x0,
2114                                             win_hl_x1);
2115                opj_dwt_decode_partial_1(h.mem, h.mem_count, h.dn, h.sn, h.cas,
2116                                         (OPJ_INT32)win_ll_x0,
2117                                         (OPJ_INT32)win_ll_x1,
2118                                         (OPJ_INT32)win_hl_x0,
2119                                         (OPJ_INT32)win_hl_x1);
2120                if (!opj_sparse_array_int32_write(sa,
2121                                                  win_tr_x0, j,
2122                                                  win_tr_x1, j + 1,
2123                                                  h.mem + win_tr_x0,
2124                                                  1, 0, OPJ_TRUE)) {
2125                    /* FIXME event manager error callback */
2126                    opj_sparse_array_int32_free(sa);
2127                    opj_aligned_free(h.mem);
2128                    return OPJ_FALSE;
2129                }
2130            }
2131        }
2132
2133        for (i = win_tr_x0; i < win_tr_x1;) {
2134            OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i);
2135            opj_dwt_interleave_partial_v(v.mem,
2136                                         v.cas,
2137                                         sa,
2138                                         i,
2139                                         nb_cols,
2140                                         (OPJ_UINT32)v.sn,
2141                                         win_ll_y0,
2142                                         win_ll_y1,
2143                                         win_lh_y0,
2144                                         win_lh_y1);
2145            opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas,
2146                                              (OPJ_INT32)win_ll_y0,
2147                                              (OPJ_INT32)win_ll_y1,
2148                                              (OPJ_INT32)win_lh_y0,
2149                                              (OPJ_INT32)win_lh_y1);
2150            if (!opj_sparse_array_int32_write(sa,
2151                                              i, win_tr_y0,
2152                                              i + nb_cols, win_tr_y1,
2153                                              v.mem + 4 * win_tr_y0,
2154                                              1, 4, OPJ_TRUE)) {
2155                /* FIXME event manager error callback */
2156                opj_sparse_array_int32_free(sa);
2157                opj_aligned_free(h.mem);
2158                return OPJ_FALSE;
2159            }
2160
2161            i += nb_cols;
2162        }
2163    }
2164    opj_aligned_free(h.mem);
2165
2166    {
2167        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2168                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2169                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2170                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2171                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2172                       tilec->data_win,
2173                       1, tr_max->win_x1 - tr_max->win_x0,
2174                       OPJ_TRUE);
2175        assert(ret);
2176        OPJ_UNUSED(ret);
2177    }
2178    opj_sparse_array_int32_free(sa);
2179    return OPJ_TRUE;
2180}
2181
2182static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
2183                                   OPJ_FLOAT32* OPJ_RESTRICT a,
2184                                   OPJ_UINT32 width,
2185                                   OPJ_UINT32 remaining_height)
2186{
2187    OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas);
2188    OPJ_UINT32 i, k;
2189    OPJ_UINT32 x0 = dwt->win_l_x0;
2190    OPJ_UINT32 x1 = dwt->win_l_x1;
2191
2192    for (k = 0; k < 2; ++k) {
2193        if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 &&
2194                ((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) {
2195            /* Fast code path */
2196            for (i = x0; i < x1; ++i) {
2197                OPJ_UINT32 j = i;
2198                bi[i * 8    ] = a[j];
2199                j += width;
2200                bi[i * 8 + 1] = a[j];
2201                j += width;
2202                bi[i * 8 + 2] = a[j];
2203                j += width;
2204                bi[i * 8 + 3] = a[j];
2205            }
2206        } else {
2207            /* Slow code path */
2208            for (i = x0; i < x1; ++i) {
2209                OPJ_UINT32 j = i;
2210                bi[i * 8    ] = a[j];
2211                j += width;
2212                if (remaining_height == 1) {
2213                    continue;
2214                }
2215                bi[i * 8 + 1] = a[j];
2216                j += width;
2217                if (remaining_height == 2) {
2218                    continue;
2219                }
2220                bi[i * 8 + 2] = a[j];
2221                j += width;
2222                if (remaining_height == 3) {
2223                    continue;
2224                }
2225                bi[i * 8 + 3] = a[j]; /* This one*/
2226            }
2227        }
2228
2229        bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas);
2230        a += dwt->sn;
2231        x0 = dwt->win_h_x0;
2232        x1 = dwt->win_h_x1;
2233    }
2234}
2235
2236static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt,
2237        opj_sparse_array_int32_t* sa,
2238        OPJ_UINT32 sa_line,
2239        OPJ_UINT32 remaining_height)
2240{
2241    OPJ_UINT32 i;
2242    for (i = 0; i < remaining_height; i++) {
2243        OPJ_BOOL ret;
2244        ret = opj_sparse_array_int32_read(sa,
2245                                          dwt->win_l_x0, sa_line + i,
2246                                          dwt->win_l_x1, sa_line + i + 1,
2247                                          /* Nasty cast from float* to int32* */
2248                                          (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
2249                                          8, 0, OPJ_TRUE);
2250        assert(ret);
2251        ret = opj_sparse_array_int32_read(sa,
2252                                          (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
2253                                          (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
2254                                          /* Nasty cast from float* to int32* */
2255                                          (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
2256                                          8, 0, OPJ_TRUE);
2257        assert(ret);
2258        OPJ_UNUSED(ret);
2259    }
2260}
2261
2262static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2263                                   OPJ_FLOAT32* OPJ_RESTRICT a,
2264                                   OPJ_UINT32 width,
2265                                   OPJ_UINT32 nb_elts_read)
2266{
2267    opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas;
2268    OPJ_UINT32 i;
2269
2270    for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) {
2271        memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2272               (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2273    }
2274
2275    a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width;
2276    bi = dwt->wavelet + 1 - dwt->cas;
2277
2278    for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) {
2279        memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2280               (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2281    }
2282}
2283
2284static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2285        opj_sparse_array_int32_t* sa,
2286        OPJ_UINT32 sa_col,
2287        OPJ_UINT32 nb_elts_read)
2288{
2289    OPJ_BOOL ret;
2290    ret = opj_sparse_array_int32_read(sa,
2291                                      sa_col, dwt->win_l_x0,
2292                                      sa_col + nb_elts_read, dwt->win_l_x1,
2293                                      (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0),
2294                                      1, 8, OPJ_TRUE);
2295    assert(ret);
2296    ret = opj_sparse_array_int32_read(sa,
2297                                      sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
2298                                      sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
2299                                      (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0),
2300                                      1, 8, OPJ_TRUE);
2301    assert(ret);
2302    OPJ_UNUSED(ret);
2303}
2304
2305#ifdef __SSE__
2306
2307static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
2308                                       OPJ_UINT32 start,
2309                                       OPJ_UINT32 end,
2310                                       const __m128 c)
2311{
2312    __m128* OPJ_RESTRICT vw = (__m128*) w;
2313    OPJ_UINT32 i;
2314    /* 4x unrolled loop */
2315    vw += 2 * start;
2316    for (i = start; i + 3 < end; i += 4, vw += 8) {
2317        __m128 xmm0 = _mm_mul_ps(vw[0], c);
2318        __m128 xmm2 = _mm_mul_ps(vw[2], c);
2319        __m128 xmm4 = _mm_mul_ps(vw[4], c);
2320        __m128 xmm6 = _mm_mul_ps(vw[6], c);
2321        vw[0] = xmm0;
2322        vw[2] = xmm2;
2323        vw[4] = xmm4;
2324        vw[6] = xmm6;
2325    }
2326    for (; i < end; ++i, vw += 2) {
2327        vw[0] = _mm_mul_ps(vw[0], c);
2328    }
2329}
2330
2331static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
2332                                       OPJ_UINT32 start,
2333                                       OPJ_UINT32 end,
2334                                       OPJ_UINT32 m,
2335                                       __m128 c)
2336{
2337    __m128* OPJ_RESTRICT vl = (__m128*) l;
2338    __m128* OPJ_RESTRICT vw = (__m128*) w;
2339    OPJ_UINT32 i;
2340    OPJ_UINT32 imax = opj_uint_min(end, m);
2341    __m128 tmp1, tmp2, tmp3;
2342    if (start == 0) {
2343        tmp1 = vl[0];
2344    } else {
2345        vw += start * 2;
2346        tmp1 = vw[-3];
2347    }
2348
2349    i = start;
2350
2351    /* 4x loop unrolling */
2352    for (; i + 3 < imax; i += 4) {
2353        __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
2354        tmp2 = vw[-1];
2355        tmp3 = vw[ 0];
2356        tmp4 = vw[ 1];
2357        tmp5 = vw[ 2];
2358        tmp6 = vw[ 3];
2359        tmp7 = vw[ 4];
2360        tmp8 = vw[ 5];
2361        tmp9 = vw[ 6];
2362        vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2363        vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c));
2364        vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c));
2365        vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c));
2366        tmp1 = tmp9;
2367        vw += 8;
2368    }
2369
2370    for (; i < imax; ++i) {
2371        tmp2 = vw[-1];
2372        tmp3 = vw[ 0];
2373        vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2374        tmp1 = tmp3;
2375        vw += 2;
2376    }
2377    if (m < end) {
2378        assert(m + 1 == end);
2379        c = _mm_add_ps(c, c);
2380        c = _mm_mul_ps(c, vw[-2]);
2381        vw[-1] = _mm_add_ps(vw[-1], c);
2382    }
2383}
2384
2385#else
2386
2387static void opj_v4dwt_decode_step1(opj_v4_t* w,
2388                                   OPJ_UINT32 start,
2389                                   OPJ_UINT32 end,
2390                                   const OPJ_FLOAT32 c)
2391{
2392    OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w;
2393    OPJ_UINT32 i;
2394    for (i = start; i < end; ++i) {
2395        OPJ_FLOAT32 tmp1 = fw[i * 8    ];
2396        OPJ_FLOAT32 tmp2 = fw[i * 8 + 1];
2397        OPJ_FLOAT32 tmp3 = fw[i * 8 + 2];
2398        OPJ_FLOAT32 tmp4 = fw[i * 8 + 3];
2399        fw[i * 8    ] = tmp1 * c;
2400        fw[i * 8 + 1] = tmp2 * c;
2401        fw[i * 8 + 2] = tmp3 * c;
2402        fw[i * 8 + 3] = tmp4 * c;
2403    }
2404}
2405
2406static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
2407                                   OPJ_UINT32 start,
2408                                   OPJ_UINT32 end,
2409                                   OPJ_UINT32 m,
2410                                   OPJ_FLOAT32 c)
2411{
2412    OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l;
2413    OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w;
2414    OPJ_UINT32 i;
2415    OPJ_UINT32 imax = opj_uint_min(end, m);
2416    if (start > 0) {
2417        fw += 8 * start;
2418        fl = fw - 8;
2419    }
2420    for (i = start; i < imax; ++i) {
2421        OPJ_FLOAT32 tmp1_1 = fl[0];
2422        OPJ_FLOAT32 tmp1_2 = fl[1];
2423        OPJ_FLOAT32 tmp1_3 = fl[2];
2424        OPJ_FLOAT32 tmp1_4 = fl[3];
2425        OPJ_FLOAT32 tmp2_1 = fw[-4];
2426        OPJ_FLOAT32 tmp2_2 = fw[-3];
2427        OPJ_FLOAT32 tmp2_3 = fw[-2];
2428        OPJ_FLOAT32 tmp2_4 = fw[-1];
2429        OPJ_FLOAT32 tmp3_1 = fw[0];
2430        OPJ_FLOAT32 tmp3_2 = fw[1];
2431        OPJ_FLOAT32 tmp3_3 = fw[2];
2432        OPJ_FLOAT32 tmp3_4 = fw[3];
2433        fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
2434        fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
2435        fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
2436        fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
2437        fl = fw;
2438        fw += 8;
2439    }
2440    if (m < end) {
2441        assert(m + 1 == end);
2442        c += c;
2443        fw[-4] = fw[-4] + fl[0] * c;
2444        fw[-3] = fw[-3] + fl[1] * c;
2445        fw[-2] = fw[-2] + fl[2] * c;
2446        fw[-1] = fw[-1] + fl[3] * c;
2447    }
2448}
2449
2450#endif
2451
2452/* <summary>                             */
2453/* Inverse 9-7 wavelet transform in 1-D. */
2454/* </summary>                            */
2455static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt)
2456{
2457    OPJ_INT32 a, b;
2458    if (dwt->cas == 0) {
2459        if (!((dwt->dn > 0) || (dwt->sn > 1))) {
2460            return;
2461        }
2462        a = 0;
2463        b = 1;
2464    } else {
2465        if (!((dwt->sn > 0) || (dwt->dn > 1))) {
2466            return;
2467        }
2468        a = 1;
2469        b = 0;
2470    }
2471#ifdef __SSE__
2472    opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2473                               _mm_set1_ps(opj_K));
2474    opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2475                               _mm_set1_ps(opj_c13318));
2476    opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2477                               dwt->win_l_x0, dwt->win_l_x1,
2478                               (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2479                               _mm_set1_ps(opj_dwt_delta));
2480    opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2481                               dwt->win_h_x0, dwt->win_h_x1,
2482                               (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2483                               _mm_set1_ps(opj_dwt_gamma));
2484    opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2485                               dwt->win_l_x0, dwt->win_l_x1,
2486                               (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2487                               _mm_set1_ps(opj_dwt_beta));
2488    opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2489                               dwt->win_h_x0, dwt->win_h_x1,
2490                               (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2491                               _mm_set1_ps(opj_dwt_alpha));
2492#else
2493    opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2494                           opj_K);
2495    opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2496                           opj_c13318);
2497    opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2498                           dwt->win_l_x0, dwt->win_l_x1,
2499                           (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2500                           opj_dwt_delta);
2501    opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2502                           dwt->win_h_x0, dwt->win_h_x1,
2503                           (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2504                           opj_dwt_gamma);
2505    opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2506                           dwt->win_l_x0, dwt->win_l_x1,
2507                           (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2508                           opj_dwt_beta);
2509    opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2510                           dwt->win_h_x0, dwt->win_h_x1,
2511                           (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2512                           opj_dwt_alpha);
2513#endif
2514}
2515
2516
2517/* <summary>                             */
2518/* Inverse 9-7 wavelet transform in 2-D. */
2519/* </summary>                            */
2520static
2521OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2522                                OPJ_UINT32 numres)
2523{
2524    opj_v4dwt_t h;
2525    opj_v4dwt_t v;
2526
2527    opj_tcd_resolution_t* res = tilec->resolutions;
2528
2529    OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 -
2530                                 res->x0);    /* width of the resolution level computed */
2531    OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
2532                                 res->y0);    /* height of the resolution level computed */
2533
2534    OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
2535                                                               1].x1 -
2536                                tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
2537
2538    OPJ_SIZE_T l_data_size;
2539
2540    l_data_size = opj_dwt_max_resolution(res, numres);
2541    /* overflow check */
2542    if (l_data_size > (SIZE_MAX - 5U)) {
2543        /* FIXME event manager error callback */
2544        return OPJ_FALSE;
2545    }
2546    l_data_size += 5U;
2547    /* overflow check */
2548    if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2549        /* FIXME event manager error callback */
2550        return OPJ_FALSE;
2551    }
2552    h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2553    if (!h.wavelet) {
2554        /* FIXME event manager error callback */
2555        return OPJ_FALSE;
2556    }
2557    v.wavelet = h.wavelet;
2558
2559    while (--numres) {
2560        OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
2561        OPJ_UINT32 j;
2562
2563        h.sn = (OPJ_INT32)rw;
2564        v.sn = (OPJ_INT32)rh;
2565
2566        ++res;
2567
2568        rw = (OPJ_UINT32)(res->x1 -
2569                          res->x0);   /* width of the resolution level computed */
2570        rh = (OPJ_UINT32)(res->y1 -
2571                          res->y0);   /* height of the resolution level computed */
2572
2573        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2574        h.cas = res->x0 % 2;
2575
2576        h.win_l_x0 = 0;
2577        h.win_l_x1 = (OPJ_UINT32)h.sn;
2578        h.win_h_x0 = 0;
2579        h.win_h_x1 = (OPJ_UINT32)h.dn;
2580        for (j = 0; j + 3 < rh; j += 4) {
2581            OPJ_UINT32 k;
2582            opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2583            opj_v4dwt_decode(&h);
2584
2585            for (k = 0; k < rw; k++) {
2586                aj[k      ] = h.wavelet[k].f[0];
2587                aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1];
2588                aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2589                aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3];
2590            }
2591
2592            aj += w * 4;
2593        }
2594
2595        if (j < rh) {
2596            OPJ_UINT32 k;
2597            opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2598            opj_v4dwt_decode(&h);
2599            for (k = 0; k < rw; k++) {
2600                switch (rh - j) {
2601                case 3:
2602                    aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2603                /* FALLTHRU */
2604                case 2:
2605                    aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1];
2606                /* FALLTHRU */
2607                case 1:
2608                    aj[k] = h.wavelet[k].f[0];
2609                }
2610            }
2611        }
2612
2613        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2614        v.cas = res->y0 % 2;
2615        v.win_l_x0 = 0;
2616        v.win_l_x1 = (OPJ_UINT32)v.sn;
2617        v.win_h_x0 = 0;
2618        v.win_h_x1 = (OPJ_UINT32)v.dn;
2619
2620        aj = (OPJ_FLOAT32*) tilec->data;
2621        for (j = rw; j > 3; j -= 4) {
2622            OPJ_UINT32 k;
2623
2624            opj_v4dwt_interleave_v(&v, aj, w, 4);
2625            opj_v4dwt_decode(&v);
2626
2627            for (k = 0; k < rh; ++k) {
2628                memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
2629            }
2630            aj += 4;
2631        }
2632
2633        if (rw & 0x03) {
2634            OPJ_UINT32 k;
2635
2636            j = rw & 0x03;
2637
2638            opj_v4dwt_interleave_v(&v, aj, w, j);
2639            opj_v4dwt_decode(&v);
2640
2641            for (k = 0; k < rh; ++k) {
2642                memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k],
2643                       (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32));
2644            }
2645        }
2646    }
2647
2648    opj_aligned_free(h.wavelet);
2649    return OPJ_TRUE;
2650}
2651
2652static
2653OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2654                                   OPJ_UINT32 numres)
2655{
2656    opj_sparse_array_int32_t* sa;
2657    opj_v4dwt_t h;
2658    opj_v4dwt_t v;
2659    OPJ_UINT32 resno;
2660    /* This value matches the maximum left/right extension given in tables */
2661    /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */
2662    /* we currently use 3. */
2663    const OPJ_UINT32 filter_width = 4U;
2664
2665    opj_tcd_resolution_t* tr = tilec->resolutions;
2666    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
2667
2668    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
2669                                 tr->x0);    /* width of the resolution level computed */
2670    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
2671                                 tr->y0);    /* height of the resolution level computed */
2672
2673    OPJ_SIZE_T l_data_size;
2674
2675    /* Compute the intersection of the area of interest, expressed in tile coordinates */
2676    /* with the tile coordinates */
2677    OPJ_UINT32 win_tcx0 = tilec->win_x0;
2678    OPJ_UINT32 win_tcy0 = tilec->win_y0;
2679    OPJ_UINT32 win_tcx1 = tilec->win_x1;
2680    OPJ_UINT32 win_tcy1 = tilec->win_y1;
2681
2682    if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
2683        return OPJ_TRUE;
2684    }
2685
2686    sa = opj_dwt_init_sparse_array(tilec, numres);
2687    if (sa == NULL) {
2688        return OPJ_FALSE;
2689    }
2690
2691    if (numres == 1U) {
2692        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2693                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2694                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2695                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2696                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2697                       tilec->data_win,
2698                       1, tr_max->win_x1 - tr_max->win_x0,
2699                       OPJ_TRUE);
2700        assert(ret);
2701        OPJ_UNUSED(ret);
2702        opj_sparse_array_int32_free(sa);
2703        return OPJ_TRUE;
2704    }
2705
2706    l_data_size = opj_dwt_max_resolution(tr, numres);
2707    /* overflow check */
2708    if (l_data_size > (SIZE_MAX - 5U)) {
2709        /* FIXME event manager error callback */
2710        return OPJ_FALSE;
2711    }
2712    l_data_size += 5U;
2713    /* overflow check */
2714    if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2715        /* FIXME event manager error callback */
2716        return OPJ_FALSE;
2717    }
2718    h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2719    if (!h.wavelet) {
2720        /* FIXME event manager error callback */
2721        return OPJ_FALSE;
2722    }
2723    v.wavelet = h.wavelet;
2724
2725    for (resno = 1; resno < numres; resno ++) {
2726        OPJ_UINT32 j;
2727        /* Window of interest subband-based coordinates */
2728        OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2729        OPJ_UINT32 win_hl_x0, win_hl_x1;
2730        OPJ_UINT32 win_lh_y0, win_lh_y1;
2731        /* Window of interest tile-resolution-based coordinates */
2732        OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2733        /* Tile-resolution subband-based coordinates */
2734        OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2735
2736        ++tr;
2737
2738        h.sn = (OPJ_INT32)rw;
2739        v.sn = (OPJ_INT32)rh;
2740
2741        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2742        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2743
2744        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2745        h.cas = tr->x0 % 2;
2746
2747        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2748        v.cas = tr->y0 % 2;
2749
2750        /* Get the subband coordinates for the window of interest */
2751        /* LL band */
2752        opj_dwt_get_band_coordinates(tilec, resno, 0,
2753                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2754                                     &win_ll_x0, &win_ll_y0,
2755                                     &win_ll_x1, &win_ll_y1);
2756
2757        /* HL band */
2758        opj_dwt_get_band_coordinates(tilec, resno, 1,
2759                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2760                                     &win_hl_x0, NULL, &win_hl_x1, NULL);
2761
2762        /* LH band */
2763        opj_dwt_get_band_coordinates(tilec, resno, 2,
2764                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2765                                     NULL, &win_lh_y0, NULL, &win_lh_y1);
2766
2767        /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2768        tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2769        tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2770        tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2771        tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2772
2773        /* Substract the origin of the bands for this tile, to the subwindow */
2774        /* of interest band coordinates, so as to get them relative to the */
2775        /* tile */
2776        win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2777        win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2778        win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2779        win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2780        win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2781        win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2782        win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2783        win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2784
2785        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2786        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2787
2788        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2789        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2790
2791        /* Compute the tile-resolution-based coordinates for the window of interest */
2792        if (h.cas == 0) {
2793            win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2794            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2795        } else {
2796            win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2797            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2798        }
2799
2800        if (v.cas == 0) {
2801            win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2802            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2803        } else {
2804            win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2805            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2806        }
2807
2808        h.win_l_x0 = win_ll_x0;
2809        h.win_l_x1 = win_ll_x1;
2810        h.win_h_x0 = win_hl_x0;
2811        h.win_h_x1 = win_hl_x1;
2812        for (j = 0; j + 3 < rh; j += 4) {
2813            if ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2814                    (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2815                     j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2816                opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j));
2817                opj_v4dwt_decode(&h);
2818                if (!opj_sparse_array_int32_write(sa,
2819                                                  win_tr_x0, j,
2820                                                  win_tr_x1, j + 4,
2821                                                  (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2822                                                  4, 1, OPJ_TRUE)) {
2823                    /* FIXME event manager error callback */
2824                    opj_sparse_array_int32_free(sa);
2825                    opj_aligned_free(h.wavelet);
2826                    return OPJ_FALSE;
2827                }
2828            }
2829        }
2830
2831        if (j < rh &&
2832                ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2833                 (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2834                  j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
2835            opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j);
2836            opj_v4dwt_decode(&h);
2837            if (!opj_sparse_array_int32_write(sa,
2838                                              win_tr_x0, j,
2839                                              win_tr_x1, rh,
2840                                              (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2841                                              4, 1, OPJ_TRUE)) {
2842                /* FIXME event manager error callback */
2843                opj_sparse_array_int32_free(sa);
2844                opj_aligned_free(h.wavelet);
2845                return OPJ_FALSE;
2846            }
2847        }
2848
2849        v.win_l_x0 = win_ll_y0;
2850        v.win_l_x1 = win_ll_y1;
2851        v.win_h_x0 = win_lh_y0;
2852        v.win_h_x1 = win_lh_y1;
2853        for (j = win_tr_x0; j < win_tr_x1; j += 4) {
2854            OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j);
2855
2856            opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts);
2857            opj_v4dwt_decode(&v);
2858
2859            if (!opj_sparse_array_int32_write(sa,
2860                                              j, win_tr_y0,
2861                                              j + nb_elts, win_tr_y1,
2862                                              (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0],
2863                                              1, 4, OPJ_TRUE)) {
2864                /* FIXME event manager error callback */
2865                opj_sparse_array_int32_free(sa);
2866                opj_aligned_free(h.wavelet);
2867                return OPJ_FALSE;
2868            }
2869        }
2870    }
2871
2872    {
2873        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2874                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2875                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2876                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2877                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2878                       tilec->data_win,
2879                       1, tr_max->win_x1 - tr_max->win_x0,
2880                       OPJ_TRUE);
2881        assert(ret);
2882        OPJ_UNUSED(ret);
2883    }
2884    opj_sparse_array_int32_free(sa);
2885
2886    opj_aligned_free(h.wavelet);
2887    return OPJ_TRUE;
2888}
2889
2890
2891OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
2892                             opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2893                             OPJ_UINT32 numres)
2894{
2895    if (p_tcd->whole_tile_decoding) {
2896        return opj_dwt_decode_tile_97(tilec, numres);
2897    } else {
2898        return opj_dwt_decode_partial_97(tilec, numres);
2899    }
2900}
2901