1// Amalgamated source file
2/*
3** Defs are upb's internal representation of the constructs that can appear
4** in a .proto file:
5**
6** - upb::MessageDef (upb_msgdef): describes a "message" construct.
7** - upb::FieldDef (upb_fielddef): describes a message field.
8** - upb::FileDef (upb_filedef): describes a .proto file and its defs.
9** - upb::EnumDef (upb_enumdef): describes an enum.
10** - upb::OneofDef (upb_oneofdef): describes a oneof.
11** - upb::Def (upb_def): base class of all the others.
12**
13** TODO: definitions of services.
14**
15** Like upb_refcounted objects, defs are mutable only until frozen, and are
16** only thread-safe once frozen.
17**
18** This is a mixed C/C++ interface that offers a full API to both languages.
19** See the top-level README for more information.
20*/
21
22#ifndef UPB_DEF_H_
23#define UPB_DEF_H_
24
25/*
26** upb::RefCounted (upb_refcounted)
27**
28** A refcounting scheme that supports circular refs.  It accomplishes this by
29** partitioning the set of objects into groups such that no cycle spans groups;
30** we can then reference-count the group as a whole and ignore refs within the
31** group.  When objects are mutable, these groups are computed very
32** conservatively; we group any objects that have ever had a link between them.
33** When objects are frozen, we compute strongly-connected components which
34** allows us to be precise and only group objects that are actually cyclic.
35**
36** This is a mixed C/C++ interface that offers a full API to both languages.
37** See the top-level README for more information.
38*/
39
40#ifndef UPB_REFCOUNTED_H_
41#define UPB_REFCOUNTED_H_
42
43/*
44** upb_table
45**
46** This header is INTERNAL-ONLY!  Its interfaces are not public or stable!
47** This file defines very fast int->upb_value (inttable) and string->upb_value
48** (strtable) hash tables.
49**
50** The table uses chained scatter with Brent's variation (inspired by the Lua
51** implementation of hash tables).  The hash function for strings is Austin
52** Appleby's "MurmurHash."
53**
54** The inttable uses uintptr_t as its key, which guarantees it can be used to
55** store pointers or integers of at least 32 bits (upb isn't really useful on
56** systems where sizeof(void*) < 4).
57**
58** The table must be homogenous (all values of the same type).  In debug
59** mode, we check this on insert and lookup.
60*/
61
62#ifndef UPB_TABLE_H_
63#define UPB_TABLE_H_
64
65#include <assert.h>
66#include <stdint.h>
67#include <string.h>
68/*
69** This file contains shared definitions that are widely used across upb.
70**
71** This is a mixed C/C++ interface that offers a full API to both languages.
72** See the top-level README for more information.
73*/
74
75#ifndef UPB_H_
76#define UPB_H_
77
78#include <assert.h>
79#include <stdarg.h>
80#include <stdbool.h>
81#include <stddef.h>
82
83#ifdef __cplusplus
84namespace upb {
85class Allocator;
86class Arena;
87class Environment;
88class ErrorSpace;
89class Status;
90template <int N> class InlinedArena;
91template <int N> class InlinedEnvironment;
92}
93#endif
94
95/* UPB_INLINE: inline if possible, emit standalone code if required. */
96#ifdef __cplusplus
97#define UPB_INLINE inline
98#elif defined (__GNUC__)
99#define UPB_INLINE static __inline__
100#else
101#define UPB_INLINE static
102#endif
103
104/* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
105 * doesn't provide these preprocessor symbols. */
106#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
107#define UPB_BIG_ENDIAN
108#endif
109
110/* Macros for function attributes on compilers that support them. */
111#ifdef __GNUC__
112#define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
113#define UPB_NOINLINE __attribute__((noinline))
114#define UPB_NORETURN __attribute__((__noreturn__))
115#else  /* !defined(__GNUC__) */
116#define UPB_FORCEINLINE
117#define UPB_NOINLINE
118#define UPB_NORETURN
119#endif
120
121/* A few hacky workarounds for functions not in C89.
122 * For internal use only!
123 * TODO(haberman): fix these by including our own implementations, or finding
124 * another workaround.
125 */
126#ifdef __GNUC__
127#define _upb_snprintf __builtin_snprintf
128#define _upb_vsnprintf __builtin_vsnprintf
129#define _upb_va_copy(a, b) __va_copy(a, b)
130#elif __STDC_VERSION__ >= 199901L
131/* C99 versions. */
132#define _upb_snprintf snprintf
133#define _upb_vsnprintf vsnprintf
134#define _upb_va_copy(a, b) va_copy(a, b)
135#else
136#error Need implementations of [v]snprintf and va_copy
137#endif
138
139
140#if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
141      defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
142#define UPB_CXX11
143#endif
144
145/* UPB_DISALLOW_COPY_AND_ASSIGN()
146 * UPB_DISALLOW_POD_OPS()
147 *
148 * Declare these in the "private" section of a C++ class to forbid copy/assign
149 * or all POD ops (construct, destruct, copy, assign) on that class. */
150#ifdef UPB_CXX11
151#include <type_traits>
152#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
153  class_name(const class_name&) = delete; \
154  void operator=(const class_name&) = delete;
155#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
156  class_name() = delete; \
157  ~class_name() = delete; \
158  UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
159#define UPB_ASSERT_STDLAYOUT(type) \
160  static_assert(std::is_standard_layout<type>::value, \
161                #type " must be standard layout");
162#define UPB_FINAL final
163#else  /* !defined(UPB_CXX11) */
164#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
165  class_name(const class_name&); \
166  void operator=(const class_name&);
167#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
168  class_name(); \
169  ~class_name(); \
170  UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
171#define UPB_ASSERT_STDLAYOUT(type)
172#define UPB_FINAL
173#endif
174
175/* UPB_DECLARE_TYPE()
176 * UPB_DECLARE_DERIVED_TYPE()
177 * UPB_DECLARE_DERIVED_TYPE2()
178 *
179 * Macros for declaring C and C++ types both, including inheritance.
180 * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
181 *
182 * These macros also provide upcasts:
183 *  - in C: types-specific functions (ie. upb_foo_upcast(foo))
184 *  - in C++: upb::upcast(foo) along with implicit conversions
185 *
186 * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
187
188#define UPB_C_UPCASTS(ty, base)                                      \
189  UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
190  UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
191
192#define UPB_C_UPCASTS2(ty, base, base2)                                 \
193  UPB_C_UPCASTS(ty, base)                                               \
194  UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
195  UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
196
197#ifdef __cplusplus
198
199#define UPB_BEGIN_EXTERN_C extern "C" {
200#define UPB_END_EXTERN_C }
201#define UPB_PRIVATE_FOR_CPP private:
202#define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
203
204#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase)  \
205  UPB_DECLARE_TYPE(cppname, cname)                                \
206  UPB_C_UPCASTS(cname, cbase)                                     \
207  namespace upb {                                                 \
208  template <>                                                     \
209  class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
210   public:                                                        \
211    explicit Pointer(cppname* ptr)                                \
212        : PointerBase<cppname, cppbase>(ptr) {}                   \
213  };                                                              \
214  template <>                                                     \
215  class Pointer<const cppname>                                    \
216      : public PointerBase<const cppname, const cppbase> {        \
217   public:                                                        \
218    explicit Pointer(const cppname* ptr)                          \
219        : PointerBase<const cppname, const cppbase>(ptr) {}       \
220  };                                                              \
221  }
222
223#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase,  \
224                                  cbase2)                                    \
225  UPB_DECLARE_TYPE(cppname, cname)                                           \
226  UPB_C_UPCASTS2(cname, cbase, cbase2)                                       \
227  namespace upb {                                                            \
228  template <>                                                                \
229  class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
230   public:                                                                   \
231    explicit Pointer(cppname* ptr)                                           \
232        : PointerBase2<cppname, cppbase, cppbase2>(ptr) {}                   \
233  };                                                                         \
234  template <>                                                                \
235  class Pointer<const cppname>                                               \
236      : public PointerBase2<const cppname, const cppbase, const cppbase2> {  \
237   public:                                                                   \
238    explicit Pointer(const cppname* ptr)                                     \
239        : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \
240  };                                                                         \
241  }
242
243#else  /* !defined(__cplusplus) */
244
245#define UPB_BEGIN_EXTERN_C
246#define UPB_END_EXTERN_C
247#define UPB_PRIVATE_FOR_CPP
248#define UPB_DECLARE_TYPE(cppname, cname) \
249  struct cname;                          \
250  typedef struct cname cname;
251#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
252  UPB_DECLARE_TYPE(cppname, cname)                               \
253  UPB_C_UPCASTS(cname, cbase)
254#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2,    \
255                                  cname, cbase, cbase2)          \
256  UPB_DECLARE_TYPE(cppname, cname)                               \
257  UPB_C_UPCASTS2(cname, cbase, cbase2)
258
259#endif  /* defined(__cplusplus) */
260
261#define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
262#define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
263
264#define UPB_UNUSED(var) (void)var
265
266/* For asserting something about a variable when the variable is not used for
267 * anything else.  This prevents "unused variable" warnings when compiling in
268 * debug mode. */
269#define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
270
271/* Generic function type. */
272typedef void upb_func();
273
274
275/* C++ Casts ******************************************************************/
276
277#ifdef __cplusplus
278
279namespace upb {
280
281template <class T> class Pointer;
282
283/* Casts to a subclass.  The caller must know that cast is correct; an
284 * incorrect cast will throw an assertion failure in debug mode.
285 *
286 * Example:
287 *   upb::Def* def = GetDef();
288 *   // Assert-fails if this was not actually a MessageDef.
289 *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
290 *
291 * Note that downcasts are only defined for some types (at the moment you can
292 * only downcast from a upb::Def to a specific Def type). */
293template<class To, class From> To down_cast(From* f);
294
295/* Casts to a subclass.  If the class does not actually match the given To type,
296 * returns NULL.
297 *
298 * Example:
299 *   upb::Def* def = GetDef();
300 *   // md will be NULL if this was not actually a MessageDef.
301 *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
302 *
303 * Note that dynamic casts are only defined for some types (at the moment you
304 * can only downcast from a upb::Def to a specific Def type).. */
305template<class To, class From> To dyn_cast(From* f);
306
307/* Casts to any base class, or the type itself (ie. can be a no-op).
308 *
309 * Example:
310 *   upb::MessageDef* md = GetDef();
311 *   // This will fail to compile if this wasn't actually a base class.
312 *   upb::Def* def = upb::upcast(md);
313 */
314template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
315
316/* Attempt upcast to specific base class.
317 *
318 * Example:
319 *   upb::MessageDef* md = GetDef();
320 *   upb::upcast_to<upb::Def>(md)->MethodOnDef();
321 */
322template <class T, class F> inline T* upcast_to(F *f) {
323  return static_cast<T*>(upcast(f));
324}
325
326/* PointerBase<T>: implementation detail of upb::upcast().
327 * It is implicitly convertable to pointers to the Base class(es).
328 */
329template <class T, class Base>
330class PointerBase {
331 public:
332  explicit PointerBase(T* ptr) : ptr_(ptr) {}
333  operator T*() { return ptr_; }
334  operator Base*() { return (Base*)ptr_; }
335
336 private:
337  T* ptr_;
338};
339
340template <class T, class Base, class Base2>
341class PointerBase2 : public PointerBase<T, Base> {
342 public:
343  explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
344  operator Base2*() { return Pointer<Base>(*this); }
345};
346
347}
348
349#endif
350
351
352/* upb::ErrorSpace ************************************************************/
353
354/* A upb::ErrorSpace represents some domain of possible error values.  This lets
355 * upb::Status attach specific error codes to operations, like POSIX/C errno,
356 * Win32 error codes, etc.  Clients who want to know the very specific error
357 * code can check the error space and then know the type of the integer code.
358 *
359 * NOTE: upb::ErrorSpace is currently not used and should be considered
360 * experimental.  It is important primarily in cases where upb is performing
361 * I/O, but upb doesn't currently have any components that do this. */
362
363UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
364
365#ifdef __cplusplus
366class upb::ErrorSpace {
367#else
368struct upb_errorspace {
369#endif
370  const char *name;
371};
372
373
374/* upb::Status ****************************************************************/
375
376/* upb::Status represents a success or failure status and error message.
377 * It owns no resources and allocates no memory, so it should work
378 * even in OOM situations. */
379UPB_DECLARE_TYPE(upb::Status, upb_status)
380
381/* The maximum length of an error message before it will get truncated. */
382#define UPB_STATUS_MAX_MESSAGE 128
383
384UPB_BEGIN_EXTERN_C
385
386const char *upb_status_errmsg(const upb_status *status);
387bool upb_ok(const upb_status *status);
388upb_errorspace *upb_status_errspace(const upb_status *status);
389int upb_status_errcode(const upb_status *status);
390
391/* Any of the functions that write to a status object allow status to be NULL,
392 * to support use cases where the function's caller does not care about the
393 * status message. */
394void upb_status_clear(upb_status *status);
395void upb_status_seterrmsg(upb_status *status, const char *msg);
396void upb_status_seterrf(upb_status *status, const char *fmt, ...);
397void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
398void upb_status_copy(upb_status *to, const upb_status *from);
399
400UPB_END_EXTERN_C
401
402#ifdef __cplusplus
403
404class upb::Status {
405 public:
406  Status() { upb_status_clear(this); }
407
408  /* Returns true if there is no error. */
409  bool ok() const { return upb_ok(this); }
410
411  /* Optional error space and code, useful if the caller wants to
412   * programmatically check the specific kind of error. */
413  ErrorSpace* error_space() { return upb_status_errspace(this); }
414  int error_code() const { return upb_status_errcode(this); }
415
416  /* The returned string is invalidated by any other call into the status. */
417  const char *error_message() const { return upb_status_errmsg(this); }
418
419  /* The error message will be truncated if it is longer than
420   * UPB_STATUS_MAX_MESSAGE-4. */
421  void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); }
422  void SetFormattedErrorMessage(const char* fmt, ...) {
423    va_list args;
424    va_start(args, fmt);
425    upb_status_vseterrf(this, fmt, args);
426    va_end(args);
427  }
428
429  /* Resets the status to a successful state with no message. */
430  void Clear() { upb_status_clear(this); }
431
432  void CopyFrom(const Status& other) { upb_status_copy(this, &other); }
433
434 private:
435  UPB_DISALLOW_COPY_AND_ASSIGN(Status)
436#else
437struct upb_status {
438#endif
439  bool ok_;
440
441  /* Specific status code defined by some error space (optional). */
442  int code_;
443  upb_errorspace *error_space_;
444
445  /* TODO(haberman): add file/line of error? */
446
447  /* Error message; NULL-terminated. */
448  char msg[UPB_STATUS_MAX_MESSAGE];
449};
450
451#define UPB_STATUS_INIT {true, 0, NULL, {0}}
452
453
454/** Built-in error spaces. ****************************************************/
455
456/* Errors raised by upb that we want to be able to detect programmatically. */
457typedef enum {
458  UPB_NOMEM   /* Can't reuse ENOMEM because it is POSIX, not ISO C. */
459} upb_errcode_t;
460
461extern upb_errorspace upb_upberr;
462
463void upb_upberr_setoom(upb_status *s);
464
465/* Since errno is defined by standard C, we define an error space for it in
466 * core upb.  Other error spaces should be defined in other, platform-specific
467 * modules. */
468
469extern upb_errorspace upb_errnoerr;
470
471
472/** upb::Allocator ************************************************************/
473
474/* A upb::Allocator is a possibly-stateful allocator object.
475 *
476 * It could either be an arena allocator (which doesn't require individual
477 * free() calls) or a regular malloc() (which does).  The client must therefore
478 * free memory unless it knows that the allocator is an arena allocator. */
479UPB_DECLARE_TYPE(upb::Allocator, upb_alloc)
480
481/* A malloc()/free() function.
482 * If "size" is 0 then the function acts like free(), otherwise it acts like
483 * realloc().  Only "oldsize" bytes from a previous allocation are preserved. */
484typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize,
485                             size_t size);
486
487#ifdef __cplusplus
488
489class upb::Allocator UPB_FINAL {
490 public:
491  Allocator() {}
492
493 private:
494  UPB_DISALLOW_COPY_AND_ASSIGN(Allocator)
495
496 public:
497#else
498struct upb_alloc {
499#endif  /* __cplusplus */
500  upb_alloc_func *func;
501};
502
503UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) {
504  assert(size > 0);
505  return alloc->func(alloc, NULL, 0, size);
506}
507
508UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize,
509                             size_t size) {
510  assert(size > 0);
511  return alloc->func(alloc, ptr, oldsize, size);
512}
513
514UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) {
515  alloc->func(alloc, ptr, 0, 0);
516}
517
518/* The global allocator used by upb.  Uses the standard malloc()/free(). */
519
520extern upb_alloc upb_alloc_global;
521
522/* Functions that hard-code the global malloc.
523 *
524 * We still get benefit because we can put custom logic into our global
525 * allocator, like injecting out-of-memory faults in debug/testing builds. */
526
527UPB_INLINE void *upb_gmalloc(size_t size) {
528  return upb_malloc(&upb_alloc_global, size);
529}
530
531UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) {
532  return upb_realloc(&upb_alloc_global, ptr, oldsize, size);
533}
534
535UPB_INLINE void upb_gfree(void *ptr) {
536  upb_free(&upb_alloc_global, ptr);
537}
538
539/* upb::Arena *****************************************************************/
540
541/* upb::Arena is a specific allocator implementation that uses arena allocation.
542 * The user provides an allocator that will be used to allocate the underlying
543 * arena blocks.  Arenas by nature do not require the individual allocations
544 * to be freed.  However the Arena does allow users to register cleanup
545 * functions that will run when the arena is destroyed.
546 *
547 * A upb::Arena is *not* thread-safe.
548 *
549 * You could write a thread-safe arena allocator that satisfies the
550 * upb::Allocator interface, but it would not be as efficient for the
551 * single-threaded case. */
552UPB_DECLARE_TYPE(upb::Arena, upb_arena)
553
554typedef void upb_cleanup_func(void *ud);
555
556#define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4)
557
558UPB_BEGIN_EXTERN_C
559
560void upb_arena_init(upb_arena *a);
561void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc);
562void upb_arena_uninit(upb_arena *a);
563upb_alloc *upb_arena_alloc(upb_arena *a);
564bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud);
565size_t upb_arena_bytesallocated(const upb_arena *a);
566void upb_arena_setnextblocksize(upb_arena *a, size_t size);
567void upb_arena_setmaxblocksize(upb_arena *a, size_t size);
568
569UPB_END_EXTERN_C
570
571#ifdef __cplusplus
572
573class upb::Arena {
574 public:
575  /* A simple arena with no initial memory block and the default allocator. */
576  Arena() { upb_arena_init(this); }
577
578  /* Constructs an arena with the given initial block which allocates blocks
579   * with the given allocator.  The given allocator must outlive the Arena.
580   *
581   * If you pass NULL for the allocator it will default to the global allocator
582   * upb_alloc_global, and NULL/0 for the initial block will cause there to be
583   * no initial block. */
584  Arena(void *mem, size_t len, Allocator* a) {
585    upb_arena_init2(this, mem, len, a);
586  }
587
588  ~Arena() { upb_arena_uninit(this); }
589
590  /* Sets the size of the next block the Arena will request (unless the
591   * requested allocation is larger).  Each block will double in size until the
592   * max limit is reached. */
593  void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); }
594
595  /* Sets the maximum block size.  No blocks larger than this will be requested
596   * from the underlying allocator unless individual arena allocations are
597   * larger. */
598  void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); }
599
600  /* Allows this arena to be used as a generic allocator.
601   *
602   * The arena does not need free() calls so when using Arena as an allocator
603   * it is safe to skip them.  However they are no-ops so there is no harm in
604   * calling free() either. */
605  Allocator* allocator() { return upb_arena_alloc(this); }
606
607  /* Add a cleanup function to run when the arena is destroyed.
608   * Returns false on out-of-memory. */
609  bool AddCleanup(upb_cleanup_func* func, void* ud) {
610    return upb_arena_addcleanup(this, func, ud);
611  }
612
613  /* Total number of bytes that have been allocated.  It is undefined what
614   * Realloc() does to this counter. */
615  size_t BytesAllocated() const {
616    return upb_arena_bytesallocated(this);
617  }
618
619 private:
620  UPB_DISALLOW_COPY_AND_ASSIGN(Arena)
621
622#else
623struct upb_arena {
624#endif  /* __cplusplus */
625  /* We implement the allocator interface.
626   * This must be the first member of upb_arena! */
627  upb_alloc alloc;
628
629  /* Allocator to allocate arena blocks.  We are responsible for freeing these
630   * when we are destroyed. */
631  upb_alloc *block_alloc;
632
633  size_t bytes_allocated;
634  size_t next_block_size;
635  size_t max_block_size;
636
637  /* Linked list of blocks.  Points to an arena_block, defined in env.c */
638  void *block_head;
639
640  /* Cleanup entries.  Pointer to a cleanup_ent, defined in env.c */
641  void *cleanup_head;
642
643  /* For future expansion, since the size of this struct is exposed to users. */
644  void *future1;
645  void *future2;
646};
647
648
649/* upb::Environment ***********************************************************/
650
651/* A upb::Environment provides a means for injecting malloc and an
652 * error-reporting callback into encoders/decoders.  This allows them to be
653 * independent of nearly all assumptions about their actual environment.
654 *
655 * It is also a container for allocating the encoders/decoders themselves that
656 * insulates clients from knowing their actual size.  This provides ABI
657 * compatibility even if the size of the objects change.  And this allows the
658 * structure definitions to be in the .c files instead of the .h files, making
659 * the .h files smaller and more readable.
660 *
661 * We might want to consider renaming this to "Pipeline" if/when the concept of
662 * a pipeline element becomes more formalized. */
663UPB_DECLARE_TYPE(upb::Environment, upb_env)
664
665/* A function that receives an error report from an encoder or decoder.  The
666 * callback can return true to request that the error should be recovered, but
667 * if the error is not recoverable this has no effect. */
668typedef bool upb_error_func(void *ud, const upb_status *status);
669
670UPB_BEGIN_EXTERN_C
671
672void upb_env_init(upb_env *e);
673void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc);
674void upb_env_uninit(upb_env *e);
675
676void upb_env_initonly(upb_env *e);
677
678upb_arena *upb_env_arena(upb_env *e);
679bool upb_env_ok(const upb_env *e);
680void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
681
682/* Convenience wrappers around the methods of the contained arena. */
683void upb_env_reporterrorsto(upb_env *e, upb_status *s);
684bool upb_env_reporterror(upb_env *e, const upb_status *s);
685void *upb_env_malloc(upb_env *e, size_t size);
686void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
687void upb_env_free(upb_env *e, void *ptr);
688bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
689size_t upb_env_bytesallocated(const upb_env *e);
690
691UPB_END_EXTERN_C
692
693#ifdef __cplusplus
694
695class upb::Environment {
696 public:
697  /* The given Arena must outlive this environment. */
698  Environment() { upb_env_initonly(this); }
699
700  Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) {
701    upb_env_initonly(this);
702  }
703
704  Arena* arena() { return upb_env_arena(this); }
705
706  /* Set a custom error reporting function. */
707  void SetErrorFunction(upb_error_func* func, void* ud) {
708    upb_env_seterrorfunc(this, func, ud);
709  }
710
711  /* Set the error reporting function to simply copy the status to the given
712   * status and abort. */
713  void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); }
714
715  /* Returns true if all allocations and AddCleanup() calls have succeeded,
716   * and no errors were reported with ReportError() (except ones that recovered
717   * successfully). */
718  bool ok() const { return upb_env_ok(this); }
719
720  /* Reports an error to this environment's callback, returning true if
721   * the caller should try to recover. */
722  bool ReportError(const Status* status) {
723    return upb_env_reporterror(this, status);
724  }
725
726 private:
727  UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
728
729#else
730struct upb_env {
731#endif  /* __cplusplus */
732  upb_arena arena_;
733  upb_error_func *error_func_;
734  void *error_ud_;
735  bool ok_;
736};
737
738
739/* upb::InlinedArena **********************************************************/
740/* upb::InlinedEnvironment ****************************************************/
741
742/* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a
743 * predefined amount of memory.  No heap memory will be allocated until the
744 * initial block is exceeded.
745 *
746 * These types only exist in C++ */
747
748#ifdef __cplusplus
749
750template <int N> class upb::InlinedArena : public upb::Arena {
751 public:
752  InlinedArena() : Arena(initial_block_, N, NULL) {}
753  explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {}
754
755 private:
756  UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena)
757
758  char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
759};
760
761template <int N> class upb::InlinedEnvironment : public upb::Environment {
762 public:
763  InlinedEnvironment() : Environment(initial_block_, N, NULL) {}
764  explicit InlinedEnvironment(Allocator *a)
765      : Environment(initial_block_, N, a) {}
766
767 private:
768  UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment)
769
770  char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
771};
772
773#endif  /* __cplusplus */
774
775
776
777#endif  /* UPB_H_ */
778
779#ifdef __cplusplus
780extern "C" {
781#endif
782
783
784/* upb_value ******************************************************************/
785
786/* A tagged union (stored untagged inside the table) so that we can check that
787 * clients calling table accessors are correctly typed without having to have
788 * an explosion of accessors. */
789typedef enum {
790  UPB_CTYPE_INT32    = 1,
791  UPB_CTYPE_INT64    = 2,
792  UPB_CTYPE_UINT32   = 3,
793  UPB_CTYPE_UINT64   = 4,
794  UPB_CTYPE_BOOL     = 5,
795  UPB_CTYPE_CSTR     = 6,
796  UPB_CTYPE_PTR      = 7,
797  UPB_CTYPE_CONSTPTR = 8,
798  UPB_CTYPE_FPTR     = 9
799} upb_ctype_t;
800
801typedef struct {
802  uint64_t val;
803#ifndef NDEBUG
804  /* In debug mode we carry the value type around also so we can check accesses
805   * to be sure the right member is being read. */
806  upb_ctype_t ctype;
807#endif
808} upb_value;
809
810#ifdef NDEBUG
811#define SET_TYPE(dest, val)      UPB_UNUSED(val)
812#else
813#define SET_TYPE(dest, val) dest = val
814#endif
815
816/* Like strdup(), which isn't always available since it's not ANSI C. */
817char *upb_strdup(const char *s, upb_alloc *a);
818/* Variant that works with a length-delimited rather than NULL-delimited string,
819 * as supported by strtable. */
820char *upb_strdup2(const char *s, size_t len, upb_alloc *a);
821
822UPB_INLINE char *upb_gstrdup(const char *s) {
823  return upb_strdup(s, &upb_alloc_global);
824}
825
826UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
827                                  upb_ctype_t ctype) {
828  v->val = val;
829  SET_TYPE(v->ctype, ctype);
830}
831
832UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
833  upb_value ret;
834  _upb_value_setval(&ret, val, ctype);
835  return ret;
836}
837
838/* For each value ctype, define the following set of functions:
839 *
840 * // Get/set an int32 from a upb_value.
841 * int32_t upb_value_getint32(upb_value val);
842 * void upb_value_setint32(upb_value *val, int32_t cval);
843 *
844 * // Construct a new upb_value from an int32.
845 * upb_value upb_value_int32(int32_t val); */
846#define FUNCS(name, membername, type_t, converter, proto_type) \
847  UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
848    val->val = (converter)cval; \
849    SET_TYPE(val->ctype, proto_type); \
850  } \
851  UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
852    upb_value ret; \
853    upb_value_set ## name(&ret, val); \
854    return ret; \
855  } \
856  UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
857    assert(val.ctype == proto_type); \
858    return (type_t)(converter)val.val; \
859  }
860
861FUNCS(int32,    int32,        int32_t,      int32_t,    UPB_CTYPE_INT32)
862FUNCS(int64,    int64,        int64_t,      int64_t,    UPB_CTYPE_INT64)
863FUNCS(uint32,   uint32,       uint32_t,     uint32_t,   UPB_CTYPE_UINT32)
864FUNCS(uint64,   uint64,       uint64_t,     uint64_t,   UPB_CTYPE_UINT64)
865FUNCS(bool,     _bool,        bool,         bool,       UPB_CTYPE_BOOL)
866FUNCS(cstr,     cstr,         char*,        uintptr_t,  UPB_CTYPE_CSTR)
867FUNCS(ptr,      ptr,          void*,        uintptr_t,  UPB_CTYPE_PTR)
868FUNCS(constptr, constptr,     const void*,  uintptr_t,  UPB_CTYPE_CONSTPTR)
869FUNCS(fptr,     fptr,         upb_func*,    uintptr_t,  UPB_CTYPE_FPTR)
870
871#undef FUNCS
872#undef SET_TYPE
873
874
875/* upb_tabkey *****************************************************************/
876
877/* Either:
878 *   1. an actual integer key, or
879 *   2. a pointer to a string prefixed by its uint32_t length, owned by us.
880 *
881 * ...depending on whether this is a string table or an int table.  We would
882 * make this a union of those two types, but C89 doesn't support statically
883 * initializing a non-first union member. */
884typedef uintptr_t upb_tabkey;
885
886#define UPB_TABKEY_NUM(n) n
887#define UPB_TABKEY_NONE 0
888/* The preprocessor isn't quite powerful enough to turn the compile-time string
889 * length into a byte-wise string representation, so code generation needs to
890 * help it along.
891 *
892 * "len1" is the low byte and len4 is the high byte. */
893#ifdef UPB_BIG_ENDIAN
894#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
895    (uintptr_t)(len4 len3 len2 len1 strval)
896#else
897#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
898    (uintptr_t)(len1 len2 len3 len4 strval)
899#endif
900
901UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
902  char* mem = (char*)key;
903  if (len) memcpy(len, mem, sizeof(*len));
904  return mem + sizeof(*len);
905}
906
907
908/* upb_tabval *****************************************************************/
909
910#ifdef __cplusplus
911
912/* Status initialization not supported.
913 *
914 * This separate definition is necessary because in C++, UINTPTR_MAX isn't
915 * reliably available. */
916typedef struct {
917  uint64_t val;
918} upb_tabval;
919
920#else
921
922/* C -- supports static initialization, but to support static initialization of
923 * both integers and points for both 32 and 64 bit targets, it takes a little
924 * bit of doing. */
925
926#if UINTPTR_MAX == 0xffffffffffffffffULL
927#define UPB_PTR_IS_64BITS
928#elif UINTPTR_MAX != 0xffffffff
929#error Could not determine how many bits pointers are.
930#endif
931
932typedef union {
933  /* For static initialization.
934   *
935   * Unfortunately this ugliness is necessary -- it is the only way that we can,
936   * with -std=c89 -pedantic, statically initialize this to either a pointer or
937   * an integer on 32-bit platforms. */
938  struct {
939#ifdef UPB_PTR_IS_64BITS
940    uintptr_t val;
941#else
942    uintptr_t val1;
943    uintptr_t val2;
944#endif
945  } staticinit;
946
947  /* The normal accessor that we use for everything at runtime. */
948  uint64_t val;
949} upb_tabval;
950
951#ifdef UPB_PTR_IS_64BITS
952#define UPB_TABVALUE_INT_INIT(v) {{v}}
953#define UPB_TABVALUE_EMPTY_INIT  {{-1}}
954#else
955
956/* 32-bit pointers */
957
958#ifdef UPB_BIG_ENDIAN
959#define UPB_TABVALUE_INT_INIT(v) {{0, v}}
960#define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
961#else
962#define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
963#define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
964#endif
965
966#endif
967
968#define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
969
970#undef UPB_PTR_IS_64BITS
971
972#endif  /* __cplusplus */
973
974
975/* upb_table ******************************************************************/
976
977typedef struct _upb_tabent {
978  upb_tabkey key;
979  upb_tabval val;
980
981  /* Internal chaining.  This is const so we can create static initializers for
982   * tables.  We cast away const sometimes, but *only* when the containing
983   * upb_table is known to be non-const.  This requires a bit of care, but
984   * the subtlety is confined to table.c. */
985  const struct _upb_tabent *next;
986} upb_tabent;
987
988typedef struct {
989  size_t count;          /* Number of entries in the hash part. */
990  size_t mask;           /* Mask to turn hash value -> bucket. */
991  upb_ctype_t ctype;     /* Type of all values. */
992  uint8_t size_lg2;      /* Size of the hashtable part is 2^size_lg2 entries. */
993
994  /* Hash table entries.
995   * Making this const isn't entirely accurate; what we really want is for it to
996   * have the same const-ness as the table it's inside.  But there's no way to
997   * declare that in C.  So we have to make it const so that we can statically
998   * initialize const hash tables.  Then we cast away const when we have to.
999   */
1000  const upb_tabent *entries;
1001
1002#ifndef NDEBUG
1003  /* This table's allocator.  We make the user pass it in to every relevant
1004   * function and only use this to check it in debug mode.  We do this solely
1005   * to keep upb_table as small as possible.  This might seem slightly paranoid
1006   * but the plan is to use upb_table for all map fields and extension sets in
1007   * a forthcoming message representation, so there could be a lot of these.
1008   * If this turns out to be too annoying later, we can change it (since this
1009   * is an internal-only header file). */
1010  upb_alloc *alloc;
1011#endif
1012} upb_table;
1013
1014#ifdef NDEBUG
1015#  define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1016     {count, mask, ctype, size_lg2, entries}
1017#else
1018#  ifdef UPB_DEBUG_REFS
1019/* At the moment the only mutable tables we statically initialize are debug
1020 * ref tables. */
1021#    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1022       {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs}
1023#  else
1024#    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1025       {count, mask, ctype, size_lg2, entries, NULL}
1026#  endif
1027#endif
1028
1029typedef struct {
1030  upb_table t;
1031} upb_strtable;
1032
1033#define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
1034  {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)}
1035
1036#define UPB_EMPTY_STRTABLE_INIT(ctype)                           \
1037  UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
1038
1039typedef struct {
1040  upb_table t;              /* For entries that don't fit in the array part. */
1041  const upb_tabval *array;  /* Array part of the table. See const note above. */
1042  size_t array_size;        /* Array part size. */
1043  size_t array_count;       /* Array part number of elements. */
1044} upb_inttable;
1045
1046#define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
1047  {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount}
1048
1049#define UPB_EMPTY_INTTABLE_INIT(ctype) \
1050  UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
1051
1052#define UPB_ARRAY_EMPTYENT -1
1053
1054UPB_INLINE size_t upb_table_size(const upb_table *t) {
1055  if (t->size_lg2 == 0)
1056    return 0;
1057  else
1058    return 1 << t->size_lg2;
1059}
1060
1061/* Internal-only functions, in .h file only out of necessity. */
1062UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
1063  return e->key == 0;
1064}
1065
1066/* Used by some of the unit tests for generic hashing functionality. */
1067uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
1068
1069UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
1070  return key;
1071}
1072
1073UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
1074  return (uint32_t)key;
1075}
1076
1077static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
1078  return t->entries + (hash & t->mask);
1079}
1080
1081UPB_INLINE bool upb_arrhas(upb_tabval key) {
1082  return key.val != (uint64_t)-1;
1083}
1084
1085/* Initialize and uninitialize a table, respectively.  If memory allocation
1086 * failed, false is returned that the table is uninitialized. */
1087bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a);
1088bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a);
1089void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a);
1090void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a);
1091
1092UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) {
1093  return upb_inttable_init2(table, ctype, &upb_alloc_global);
1094}
1095
1096UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) {
1097  return upb_strtable_init2(table, ctype, &upb_alloc_global);
1098}
1099
1100UPB_INLINE void upb_inttable_uninit(upb_inttable *table) {
1101  upb_inttable_uninit2(table, &upb_alloc_global);
1102}
1103
1104UPB_INLINE void upb_strtable_uninit(upb_strtable *table) {
1105  upb_strtable_uninit2(table, &upb_alloc_global);
1106}
1107
1108/* Returns the number of values in the table. */
1109size_t upb_inttable_count(const upb_inttable *t);
1110UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
1111  return t->t.count;
1112}
1113
1114/* Inserts the given key into the hashtable with the given value.  The key must
1115 * not already exist in the hash table.  For string tables, the key must be
1116 * NULL-terminated, and the table will make an internal copy of the key.
1117 * Inttables must not insert a value of UINTPTR_MAX.
1118 *
1119 * If a table resize was required but memory allocation failed, false is
1120 * returned and the table is unchanged. */
1121bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
1122                          upb_alloc *a);
1123bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len,
1124                          upb_value val, upb_alloc *a);
1125
1126UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key,
1127                                    upb_value val) {
1128  return upb_inttable_insert2(t, key, val, &upb_alloc_global);
1129}
1130
1131UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key,
1132                                     size_t len, upb_value val) {
1133  return upb_strtable_insert3(t, key, len, val, &upb_alloc_global);
1134}
1135
1136/* For NULL-terminated strings. */
1137UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
1138                                    upb_value val) {
1139  return upb_strtable_insert2(t, key, strlen(key), val);
1140}
1141
1142/* Looks up key in this table, returning "true" if the key was found.
1143 * If v is non-NULL, copies the value for this key into *v. */
1144bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
1145bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
1146                          upb_value *v);
1147
1148/* For NULL-terminated strings. */
1149UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
1150                                    upb_value *v) {
1151  return upb_strtable_lookup2(t, key, strlen(key), v);
1152}
1153
1154/* Removes an item from the table.  Returns true if the remove was successful,
1155 * and stores the removed item in *val if non-NULL. */
1156bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
1157bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
1158                          upb_value *val, upb_alloc *alloc);
1159
1160UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key,
1161                                     size_t len, upb_value *val) {
1162  return upb_strtable_remove3(t, key, len, val, &upb_alloc_global);
1163}
1164
1165/* For NULL-terminated strings. */
1166UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
1167                                    upb_value *v) {
1168  return upb_strtable_remove2(t, key, strlen(key), v);
1169}
1170
1171/* Updates an existing entry in an inttable.  If the entry does not exist,
1172 * returns false and does nothing.  Unlike insert/remove, this does not
1173 * invalidate iterators. */
1174bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
1175
1176/* Handy routines for treating an inttable like a stack.  May not be mixed with
1177 * other insert/remove calls. */
1178bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a);
1179upb_value upb_inttable_pop(upb_inttable *t);
1180
1181UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) {
1182  return upb_inttable_push2(t, val, &upb_alloc_global);
1183}
1184
1185/* Convenience routines for inttables with pointer keys. */
1186bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
1187                             upb_alloc *a);
1188bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
1189bool upb_inttable_lookupptr(
1190    const upb_inttable *t, const void *key, upb_value *val);
1191
1192UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key,
1193                                       upb_value val) {
1194  return upb_inttable_insertptr2(t, key, val, &upb_alloc_global);
1195}
1196
1197/* Optimizes the table for the current set of entries, for both memory use and
1198 * lookup time.  Client should call this after all entries have been inserted;
1199 * inserting more entries is legal, but will likely require a table resize. */
1200void upb_inttable_compact2(upb_inttable *t, upb_alloc *a);
1201
1202UPB_INLINE void upb_inttable_compact(upb_inttable *t) {
1203  upb_inttable_compact2(t, &upb_alloc_global);
1204}
1205
1206/* A special-case inlinable version of the lookup routine for 32-bit
1207 * integers. */
1208UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
1209                                      upb_value *v) {
1210  *v = upb_value_int32(0);  /* Silence compiler warnings. */
1211  if (key < t->array_size) {
1212    upb_tabval arrval = t->array[key];
1213    if (upb_arrhas(arrval)) {
1214      _upb_value_setval(v, arrval.val, t->t.ctype);
1215      return true;
1216    } else {
1217      return false;
1218    }
1219  } else {
1220    const upb_tabent *e;
1221    if (t->t.entries == NULL) return false;
1222    for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
1223      if ((uint32_t)e->key == key) {
1224        _upb_value_setval(v, e->val.val, t->t.ctype);
1225        return true;
1226      }
1227      if (e->next == NULL) return false;
1228    }
1229  }
1230}
1231
1232/* Exposed for testing only. */
1233bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a);
1234
1235/* Iterators ******************************************************************/
1236
1237/* Iterators for int and string tables.  We are subject to some kind of unusual
1238 * design constraints:
1239 *
1240 * For high-level languages:
1241 *  - we must be able to guarantee that we don't crash or corrupt memory even if
1242 *    the program accesses an invalidated iterator.
1243 *
1244 * For C++11 range-based for:
1245 *  - iterators must be copyable
1246 *  - iterators must be comparable
1247 *  - it must be possible to construct an "end" value.
1248 *
1249 * Iteration order is undefined.
1250 *
1251 * Modifying the table invalidates iterators.  upb_{str,int}table_done() is
1252 * guaranteed to work even on an invalidated iterator, as long as the table it
1253 * is iterating over has not been freed.  Calling next() or accessing data from
1254 * an invalidated iterator yields unspecified elements from the table, but it is
1255 * guaranteed not to crash and to return real table elements (except when done()
1256 * is true). */
1257
1258
1259/* upb_strtable_iter **********************************************************/
1260
1261/*   upb_strtable_iter i;
1262 *   upb_strtable_begin(&i, t);
1263 *   for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
1264 *     const char *key = upb_strtable_iter_key(&i);
1265 *     const upb_value val = upb_strtable_iter_value(&i);
1266 *     // ...
1267 *   }
1268 */
1269
1270typedef struct {
1271  const upb_strtable *t;
1272  size_t index;
1273} upb_strtable_iter;
1274
1275void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
1276void upb_strtable_next(upb_strtable_iter *i);
1277bool upb_strtable_done(const upb_strtable_iter *i);
1278const char *upb_strtable_iter_key(const upb_strtable_iter *i);
1279size_t upb_strtable_iter_keylength(const upb_strtable_iter *i);
1280upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
1281void upb_strtable_iter_setdone(upb_strtable_iter *i);
1282bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
1283                               const upb_strtable_iter *i2);
1284
1285
1286/* upb_inttable_iter **********************************************************/
1287
1288/*   upb_inttable_iter i;
1289 *   upb_inttable_begin(&i, t);
1290 *   for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
1291 *     uintptr_t key = upb_inttable_iter_key(&i);
1292 *     upb_value val = upb_inttable_iter_value(&i);
1293 *     // ...
1294 *   }
1295 */
1296
1297typedef struct {
1298  const upb_inttable *t;
1299  size_t index;
1300  bool array_part;
1301} upb_inttable_iter;
1302
1303void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
1304void upb_inttable_next(upb_inttable_iter *i);
1305bool upb_inttable_done(const upb_inttable_iter *i);
1306uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
1307upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
1308void upb_inttable_iter_setdone(upb_inttable_iter *i);
1309bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
1310                               const upb_inttable_iter *i2);
1311
1312
1313#ifdef __cplusplus
1314}  /* extern "C" */
1315#endif
1316
1317#endif  /* UPB_TABLE_H_ */
1318
1319/* Reference tracking will check ref()/unref() operations to make sure the
1320 * ref ownership is correct.  Where possible it will also make tools like
1321 * Valgrind attribute ref leaks to the code that took the leaked ref, not
1322 * the code that originally created the object.
1323 *
1324 * Enabling this requires the application to define upb_lock()/upb_unlock()
1325 * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
1326 * For this reason we don't enable it by default, even in debug builds.
1327 */
1328
1329/* #define UPB_DEBUG_REFS */
1330
1331#ifdef __cplusplus
1332namespace upb {
1333class RefCounted;
1334template <class T> class reffed_ptr;
1335}
1336#endif
1337
1338UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
1339
1340struct upb_refcounted_vtbl;
1341
1342#ifdef __cplusplus
1343
1344class upb::RefCounted {
1345 public:
1346  /* Returns true if the given object is frozen. */
1347  bool IsFrozen() const;
1348
1349  /* Increases the ref count, the new ref is owned by "owner" which must not
1350   * already own a ref (and should not itself be a refcounted object if the ref
1351   * could possibly be circular; see below).
1352   * Thread-safe iff "this" is frozen. */
1353  void Ref(const void *owner) const;
1354
1355  /* Release a ref that was acquired from upb_refcounted_ref() and collects any
1356   * objects it can. */
1357  void Unref(const void *owner) const;
1358
1359  /* Moves an existing ref from "from" to "to", without changing the overall
1360   * ref count.  DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
1361   * but "to" may not be NULL. */
1362  void DonateRef(const void *from, const void *to) const;
1363
1364  /* Verifies that a ref to the given object is currently held by the given
1365   * owner.  Only effective in UPB_DEBUG_REFS builds. */
1366  void CheckRef(const void *owner) const;
1367
1368 private:
1369  UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
1370#else
1371struct upb_refcounted {
1372#endif
1373  /* TODO(haberman): move the actual structure definition to structdefs.int.h.
1374   * The only reason they are here is because inline functions need to see the
1375   * definition of upb_handlers, which needs to see this definition.  But we
1376   * can change the upb_handlers inline functions to deal in raw offsets
1377   * instead.
1378   */
1379
1380  /* A single reference count shared by all objects in the group. */
1381  uint32_t *group;
1382
1383  /* A singly-linked list of all objects in the group. */
1384  upb_refcounted *next;
1385
1386  /* Table of function pointers for this type. */
1387  const struct upb_refcounted_vtbl *vtbl;
1388
1389  /* Maintained only when mutable, this tracks the number of refs (but not
1390   * ref2's) to this object.  *group should be the sum of all individual_count
1391   * in the group. */
1392  uint32_t individual_count;
1393
1394  bool is_frozen;
1395
1396#ifdef UPB_DEBUG_REFS
1397  upb_inttable *refs;  /* Maps owner -> trackedref for incoming refs. */
1398  upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
1399#endif
1400};
1401
1402#ifdef UPB_DEBUG_REFS
1403extern upb_alloc upb_alloc_debugrefs;
1404#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1405    {&static_refcount, NULL, vtbl, 0, true, refs, ref2s}
1406#else
1407#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1408    {&static_refcount, NULL, vtbl, 0, true}
1409#endif
1410
1411UPB_BEGIN_EXTERN_C
1412
1413/* It is better to use tracked refs when possible, for the extra debugging
1414 * capability.  But if this is not possible (because you don't have easy access
1415 * to a stable pointer value that is associated with the ref), you can pass
1416 * UPB_UNTRACKED_REF instead.  */
1417extern const void *UPB_UNTRACKED_REF;
1418
1419/* Native C API. */
1420bool upb_refcounted_isfrozen(const upb_refcounted *r);
1421void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
1422void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
1423void upb_refcounted_donateref(
1424    const upb_refcounted *r, const void *from, const void *to);
1425void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
1426
1427#define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
1428  UPB_INLINE bool type ## _isfrozen(const type *v) { \
1429    return upb_refcounted_isfrozen(upcastfunc(v)); \
1430  } \
1431  UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
1432    upb_refcounted_ref(upcastfunc(v), owner); \
1433  } \
1434  UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
1435    upb_refcounted_unref(upcastfunc(v), owner); \
1436  } \
1437  UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
1438    upb_refcounted_donateref(upcastfunc(v), from, to); \
1439  } \
1440  UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
1441    upb_refcounted_checkref(upcastfunc(v), owner); \
1442  }
1443
1444#define UPB_REFCOUNTED_CPPMETHODS \
1445  bool IsFrozen() const { \
1446    return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
1447  } \
1448  void Ref(const void *owner) const { \
1449    return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
1450  } \
1451  void Unref(const void *owner) const { \
1452    return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
1453  } \
1454  void DonateRef(const void *from, const void *to) const { \
1455    return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
1456  } \
1457  void CheckRef(const void *owner) const { \
1458    return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
1459  }
1460
1461/* Internal-to-upb Interface **************************************************/
1462
1463typedef void upb_refcounted_visit(const upb_refcounted *r,
1464                                  const upb_refcounted *subobj,
1465                                  void *closure);
1466
1467struct upb_refcounted_vtbl {
1468  /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
1469   * Must be longjmp()-safe. */
1470  void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
1471
1472  /* Must free the object and release all references to other objects. */
1473  void (*free)(upb_refcounted *r);
1474};
1475
1476/* Initializes the refcounted with a single ref for the given owner.  Returns
1477 * false if memory could not be allocated. */
1478bool upb_refcounted_init(upb_refcounted *r,
1479                         const struct upb_refcounted_vtbl *vtbl,
1480                         const void *owner);
1481
1482/* Adds a ref from one refcounted object to another ("from" must not already
1483 * own a ref).  These refs may be circular; cycles will be collected correctly
1484 * (if conservatively).  These refs do not need to be freed in from's free()
1485 * function. */
1486void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
1487
1488/* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
1489 * object it can.  This is only necessary when "from" no longer points to "r",
1490 * and not from from's "free" function. */
1491void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
1492
1493#define upb_ref2(r, from) \
1494    upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
1495#define upb_unref2(r, from) \
1496    upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
1497
1498/* Freezes all mutable object reachable by ref2() refs from the given roots.
1499 * This will split refcounting groups into precise SCC groups, so that
1500 * refcounting of frozen objects can be more aggressive.  If memory allocation
1501 * fails, or if more than 2**31 mutable objects are reachable from "roots", or
1502 * if the maximum depth of the graph exceeds "maxdepth", false is returned and
1503 * the objects are unchanged.
1504 *
1505 * After this operation succeeds, the objects are frozen/const, and may not be
1506 * used through non-const pointers.  In particular, they may not be passed as
1507 * the second parameter of upb_refcounted_{ref,unref}2().  On the upside, all
1508 * operations on frozen refcounteds are threadsafe, and objects will be freed
1509 * at the precise moment that they become unreachable.
1510 *
1511 * Caller must own refs on each object in the "roots" list. */
1512bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
1513                           int maxdepth);
1514
1515/* Shared by all compiled-in refcounted objects. */
1516extern uint32_t static_refcount;
1517
1518UPB_END_EXTERN_C
1519
1520#ifdef __cplusplus
1521/* C++ Wrappers. */
1522namespace upb {
1523inline bool RefCounted::IsFrozen() const {
1524  return upb_refcounted_isfrozen(this);
1525}
1526inline void RefCounted::Ref(const void *owner) const {
1527  upb_refcounted_ref(this, owner);
1528}
1529inline void RefCounted::Unref(const void *owner) const {
1530  upb_refcounted_unref(this, owner);
1531}
1532inline void RefCounted::DonateRef(const void *from, const void *to) const {
1533  upb_refcounted_donateref(this, from, to);
1534}
1535inline void RefCounted::CheckRef(const void *owner) const {
1536  upb_refcounted_checkref(this, owner);
1537}
1538}  /* namespace upb */
1539#endif
1540
1541
1542/* upb::reffed_ptr ************************************************************/
1543
1544#ifdef __cplusplus
1545
1546#include <algorithm>  /* For std::swap(). */
1547
1548/* Provides RAII semantics for upb refcounted objects.  Each reffed_ptr owns a
1549 * ref on whatever object it points to (if any). */
1550template <class T> class upb::reffed_ptr {
1551 public:
1552  reffed_ptr() : ptr_(NULL) {}
1553
1554  /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1555  template <class U>
1556  reffed_ptr(U* val, const void* ref_donor = NULL)
1557      : ptr_(upb::upcast(val)) {
1558    if (ref_donor) {
1559      assert(ptr_);
1560      ptr_->DonateRef(ref_donor, this);
1561    } else if (ptr_) {
1562      ptr_->Ref(this);
1563    }
1564  }
1565
1566  template <class U>
1567  reffed_ptr(const reffed_ptr<U>& other)
1568      : ptr_(upb::upcast(other.get())) {
1569    if (ptr_) ptr_->Ref(this);
1570  }
1571
1572  reffed_ptr(const reffed_ptr& other)
1573      : ptr_(upb::upcast(other.get())) {
1574    if (ptr_) ptr_->Ref(this);
1575  }
1576
1577  ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
1578
1579  template <class U>
1580  reffed_ptr& operator=(const reffed_ptr<U>& other) {
1581    reset(other.get());
1582    return *this;
1583  }
1584
1585  reffed_ptr& operator=(const reffed_ptr& other) {
1586    reset(other.get());
1587    return *this;
1588  }
1589
1590  /* TODO(haberman): add C++11 move construction/assignment for greater
1591   * efficiency. */
1592
1593  void swap(reffed_ptr& other) {
1594    if (ptr_ == other.ptr_) {
1595      return;
1596    }
1597
1598    if (ptr_) ptr_->DonateRef(this, &other);
1599    if (other.ptr_) other.ptr_->DonateRef(&other, this);
1600    std::swap(ptr_, other.ptr_);
1601  }
1602
1603  T& operator*() const {
1604    assert(ptr_);
1605    return *ptr_;
1606  }
1607
1608  T* operator->() const {
1609    assert(ptr_);
1610    return ptr_;
1611  }
1612
1613  T* get() const { return ptr_; }
1614
1615  /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1616  template <class U>
1617  void reset(U* ptr = NULL, const void* ref_donor = NULL) {
1618    reffed_ptr(ptr, ref_donor).swap(*this);
1619  }
1620
1621  template <class U>
1622  reffed_ptr<U> down_cast() {
1623    return reffed_ptr<U>(upb::down_cast<U*>(get()));
1624  }
1625
1626  template <class U>
1627  reffed_ptr<U> dyn_cast() {
1628    return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
1629  }
1630
1631  /* Plain release() is unsafe; if we were the only owner, it would leak the
1632   * object.  Instead we provide this: */
1633  T* ReleaseTo(const void* new_owner) {
1634    T* ret = NULL;
1635    ptr_->DonateRef(this, new_owner);
1636    std::swap(ret, ptr_);
1637    return ret;
1638  }
1639
1640 private:
1641  T* ptr_;
1642};
1643
1644#endif  /* __cplusplus */
1645
1646#endif  /* UPB_REFCOUNT_H_ */
1647
1648#ifdef __cplusplus
1649#include <cstring>
1650#include <string>
1651#include <vector>
1652
1653namespace upb {
1654class Def;
1655class EnumDef;
1656class FieldDef;
1657class FileDef;
1658class MessageDef;
1659class OneofDef;
1660}
1661#endif
1662
1663UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
1664UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
1665                         upb_refcounted)
1666UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
1667                         upb_refcounted)
1668
1669/* The maximum message depth that the type graph can have.  This is a resource
1670 * limit for the C stack since we sometimes need to recursively traverse the
1671 * graph.  Cycles are ok; the traversal will stop when it detects a cycle, but
1672 * we must hit the cycle before the maximum depth is reached.
1673 *
1674 * If having a single static limit is too inflexible, we can add another variant
1675 * of Def::Freeze that allows specifying this as a parameter. */
1676#define UPB_MAX_MESSAGE_DEPTH 64
1677
1678
1679/* upb::Def: base class for top-level defs  ***********************************/
1680
1681/* All the different kind of defs that can be defined at the top-level and put
1682 * in a SymbolTable or appear in a FileDef::defs() list.  This excludes some
1683 * defs (like oneofs and files).  It only includes fields because they can be
1684 * defined as extensions. */
1685typedef enum {
1686  UPB_DEF_MSG,
1687  UPB_DEF_FIELD,
1688  UPB_DEF_ENUM,
1689  UPB_DEF_SERVICE,   /* Not yet implemented. */
1690  UPB_DEF_ANY = -1   /* Wildcard for upb_symtab_get*() */
1691} upb_deftype_t;
1692
1693#ifdef __cplusplus
1694
1695/* The base class of all defs.  Its base is upb::RefCounted (use upb::upcast()
1696 * to convert). */
1697class upb::Def {
1698 public:
1699  typedef upb_deftype_t Type;
1700
1701  Def* Dup(const void *owner) const;
1702
1703  /* upb::RefCounted methods like Ref()/Unref(). */
1704  UPB_REFCOUNTED_CPPMETHODS
1705
1706  Type def_type() const;
1707
1708  /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
1709  const char *full_name() const;
1710
1711  /* The final part of a def's name (eg. Message). */
1712  const char *name() const;
1713
1714  /* The def must be mutable.  Caller retains ownership of fullname.  Defs are
1715   * not required to have a name; if a def has no name when it is frozen, it
1716   * will remain an anonymous def.  On failure, returns false and details in "s"
1717   * if non-NULL. */
1718  bool set_full_name(const char* fullname, upb::Status* s);
1719  bool set_full_name(const std::string &fullname, upb::Status* s);
1720
1721  /* The file in which this def appears.  It is not necessary to add a def to a
1722   * file (and consequently the accessor may return NULL).  Set this by calling
1723   * file->Add(def). */
1724  FileDef* file() const;
1725
1726  /* Freezes the given defs; this validates all constraints and marks the defs
1727   * as frozen (read-only).  "defs" may not contain any fielddefs, but fields
1728   * of any msgdefs will be frozen.
1729   *
1730   * Symbolic references to sub-types and enum defaults must have already been
1731   * resolved.  Any mutable defs reachable from any of "defs" must also be in
1732   * the list; more formally, "defs" must be a transitive closure of mutable
1733   * defs.
1734   *
1735   * After this operation succeeds, the finalized defs must only be accessed
1736   * through a const pointer! */
1737  static bool Freeze(Def* const* defs, size_t n, Status* status);
1738  static bool Freeze(const std::vector<Def*>& defs, Status* status);
1739
1740 private:
1741  UPB_DISALLOW_POD_OPS(Def, upb::Def)
1742};
1743
1744#endif  /* __cplusplus */
1745
1746UPB_BEGIN_EXTERN_C
1747
1748/* Native C API. */
1749upb_def *upb_def_dup(const upb_def *def, const void *owner);
1750
1751/* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
1752UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
1753
1754upb_deftype_t upb_def_type(const upb_def *d);
1755const char *upb_def_fullname(const upb_def *d);
1756const char *upb_def_name(const upb_def *d);
1757const upb_filedef *upb_def_file(const upb_def *d);
1758bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
1759bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s);
1760
1761/* Temporary API: for internal use only. */
1762bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s);
1763
1764UPB_END_EXTERN_C
1765
1766
1767/* upb::Def casts *************************************************************/
1768
1769#ifdef __cplusplus
1770#define UPB_CPP_CASTS(cname, cpptype)                                          \
1771  namespace upb {                                                              \
1772  template <>                                                                  \
1773  inline cpptype *down_cast<cpptype *, Def>(Def * def) {                       \
1774    return upb_downcast_##cname##_mutable(def);                                \
1775  }                                                                            \
1776  template <>                                                                  \
1777  inline cpptype *dyn_cast<cpptype *, Def>(Def * def) {                        \
1778    return upb_dyncast_##cname##_mutable(def);                                 \
1779  }                                                                            \
1780  template <>                                                                  \
1781  inline const cpptype *down_cast<const cpptype *, const Def>(                 \
1782      const Def *def) {                                                        \
1783    return upb_downcast_##cname(def);                                          \
1784  }                                                                            \
1785  template <>                                                                  \
1786  inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
1787    return upb_dyncast_##cname(def);                                           \
1788  }                                                                            \
1789  template <>                                                                  \
1790  inline const cpptype *down_cast<const cpptype *, Def>(Def * def) {           \
1791    return upb_downcast_##cname(def);                                          \
1792  }                                                                            \
1793  template <>                                                                  \
1794  inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) {            \
1795    return upb_dyncast_##cname(def);                                           \
1796  }                                                                            \
1797  }  /* namespace upb */
1798#else
1799#define UPB_CPP_CASTS(cname, cpptype)
1800#endif  /* __cplusplus */
1801
1802/* Dynamic casts, for determining if a def is of a particular type at runtime.
1803 * Downcasts, for when some wants to assert that a def is of a particular type.
1804 * These are only checked if we are building debug. */
1805#define UPB_DEF_CASTS(lower, upper, cpptype)                               \
1806  UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) {  \
1807    if (upb_def_type(def) != UPB_DEF_##upper) return NULL;                 \
1808    return (upb_##lower *)def;                                             \
1809  }                                                                        \
1810  UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
1811    assert(upb_def_type(def) == UPB_DEF_##upper);                          \
1812    return (const upb_##lower *)def;                                       \
1813  }                                                                        \
1814  UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) {    \
1815    return (upb_##lower *)upb_dyncast_##lower(def);                        \
1816  }                                                                        \
1817  UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) {   \
1818    return (upb_##lower *)upb_downcast_##lower(def);                       \
1819  }                                                                        \
1820  UPB_CPP_CASTS(lower, cpptype)
1821
1822#define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members)             \
1823  UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods,            \
1824                   members)                                                    \
1825  UPB_DEF_CASTS(lower, upper, cppname)
1826
1827#define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
1828  UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
1829                            upb_ ## lower, upb_def, upb_refcounted) \
1830  UPB_DEF_CASTS(lower, upper, cppname)
1831
1832UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
1833UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
1834UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
1835
1836#undef UPB_DECLARE_DEF_TYPE
1837#undef UPB_DEF_CASTS
1838#undef UPB_CPP_CASTS
1839
1840
1841/* upb::FieldDef **************************************************************/
1842
1843/* The types a field can have.  Note that this list is not identical to the
1844 * types defined in descriptor.proto, which gives INT32 and SINT32 separate
1845 * types (we distinguish the two with the "integer encoding" enum below). */
1846typedef enum {
1847  UPB_TYPE_FLOAT    = 1,
1848  UPB_TYPE_DOUBLE   = 2,
1849  UPB_TYPE_BOOL     = 3,
1850  UPB_TYPE_STRING   = 4,
1851  UPB_TYPE_BYTES    = 5,
1852  UPB_TYPE_MESSAGE  = 6,
1853  UPB_TYPE_ENUM     = 7,  /* Enum values are int32. */
1854  UPB_TYPE_INT32    = 8,
1855  UPB_TYPE_UINT32   = 9,
1856  UPB_TYPE_INT64    = 10,
1857  UPB_TYPE_UINT64   = 11
1858} upb_fieldtype_t;
1859
1860/* The repeated-ness of each field; this matches descriptor.proto. */
1861typedef enum {
1862  UPB_LABEL_OPTIONAL = 1,
1863  UPB_LABEL_REQUIRED = 2,
1864  UPB_LABEL_REPEATED = 3
1865} upb_label_t;
1866
1867/* How integers should be encoded in serializations that offer multiple
1868 * integer encoding methods. */
1869typedef enum {
1870  UPB_INTFMT_VARIABLE = 1,
1871  UPB_INTFMT_FIXED = 2,
1872  UPB_INTFMT_ZIGZAG = 3   /* Only for signed types (INT32/INT64). */
1873} upb_intfmt_t;
1874
1875/* Descriptor types, as defined in descriptor.proto. */
1876typedef enum {
1877  UPB_DESCRIPTOR_TYPE_DOUBLE   = 1,
1878  UPB_DESCRIPTOR_TYPE_FLOAT    = 2,
1879  UPB_DESCRIPTOR_TYPE_INT64    = 3,
1880  UPB_DESCRIPTOR_TYPE_UINT64   = 4,
1881  UPB_DESCRIPTOR_TYPE_INT32    = 5,
1882  UPB_DESCRIPTOR_TYPE_FIXED64  = 6,
1883  UPB_DESCRIPTOR_TYPE_FIXED32  = 7,
1884  UPB_DESCRIPTOR_TYPE_BOOL     = 8,
1885  UPB_DESCRIPTOR_TYPE_STRING   = 9,
1886  UPB_DESCRIPTOR_TYPE_GROUP    = 10,
1887  UPB_DESCRIPTOR_TYPE_MESSAGE  = 11,
1888  UPB_DESCRIPTOR_TYPE_BYTES    = 12,
1889  UPB_DESCRIPTOR_TYPE_UINT32   = 13,
1890  UPB_DESCRIPTOR_TYPE_ENUM     = 14,
1891  UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
1892  UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
1893  UPB_DESCRIPTOR_TYPE_SINT32   = 17,
1894  UPB_DESCRIPTOR_TYPE_SINT64   = 18
1895} upb_descriptortype_t;
1896
1897typedef enum {
1898  UPB_SYNTAX_PROTO2 = 2,
1899  UPB_SYNTAX_PROTO3 = 3
1900} upb_syntax_t;
1901
1902/* Maximum field number allowed for FieldDefs.  This is an inherent limit of the
1903 * protobuf wire format. */
1904#define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
1905
1906#ifdef __cplusplus
1907
1908/* A upb_fielddef describes a single field in a message.  It is most often
1909 * found as a part of a upb_msgdef, but can also stand alone to represent
1910 * an extension.
1911 *
1912 * Its base class is upb::Def (use upb::upcast() to convert). */
1913class upb::FieldDef {
1914 public:
1915  typedef upb_fieldtype_t Type;
1916  typedef upb_label_t Label;
1917  typedef upb_intfmt_t IntegerFormat;
1918  typedef upb_descriptortype_t DescriptorType;
1919
1920  /* These return true if the given value is a valid member of the enumeration. */
1921  static bool CheckType(int32_t val);
1922  static bool CheckLabel(int32_t val);
1923  static bool CheckDescriptorType(int32_t val);
1924  static bool CheckIntegerFormat(int32_t val);
1925
1926  /* These convert to the given enumeration; they require that the value is
1927   * valid. */
1928  static Type ConvertType(int32_t val);
1929  static Label ConvertLabel(int32_t val);
1930  static DescriptorType ConvertDescriptorType(int32_t val);
1931  static IntegerFormat ConvertIntegerFormat(int32_t val);
1932
1933  /* Returns NULL if memory allocation failed. */
1934  static reffed_ptr<FieldDef> New();
1935
1936  /* Duplicates the given field, returning NULL if memory allocation failed.
1937   * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
1938   * wasn't already.  If the subdef is set but has no name (which is possible
1939   * since msgdefs are not required to have a name) the new fielddef's subdef
1940   * will be unset. */
1941  FieldDef* Dup(const void* owner) const;
1942
1943  /* upb::RefCounted methods like Ref()/Unref(). */
1944  UPB_REFCOUNTED_CPPMETHODS
1945
1946  /* Functionality from upb::Def. */
1947  const char* full_name() const;
1948
1949  bool type_is_set() const;  /* set_[descriptor_]type() has been called? */
1950  Type type() const;         /* Requires that type_is_set() == true. */
1951  Label label() const;       /* Defaults to UPB_LABEL_OPTIONAL. */
1952  const char* name() const;  /* NULL if uninitialized. */
1953  uint32_t number() const;   /* Returns 0 if uninitialized. */
1954  bool is_extension() const;
1955
1956  /* Copies the JSON name for this field into the given buffer.  Returns the
1957   * actual size of the JSON name, including the NULL terminator.  If the
1958   * return value is 0, the JSON name is unset.  If the return value is
1959   * greater than len, the JSON name was truncated.  The buffer is always
1960   * NULL-terminated if len > 0.
1961   *
1962   * The JSON name always defaults to a camelCased version of the regular
1963   * name.  However if the regular name is unset, the JSON name will be unset
1964   * also.
1965   */
1966  size_t GetJsonName(char* buf, size_t len) const;
1967
1968  /* Convenience version of the above function which copies the JSON name
1969   * into the given string, returning false if the name is not set. */
1970  template <class T>
1971  bool GetJsonName(T* str) {
1972    str->resize(GetJsonName(NULL, 0));
1973    GetJsonName(&(*str)[0], str->size());
1974    return str->size() > 0;
1975  }
1976
1977  /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
1978   * indicates whether this field should have lazy parsing handlers that yield
1979   * the unparsed string for the submessage.
1980   *
1981   * TODO(haberman): I think we want to move this into a FieldOptions container
1982   * when we add support for custom options (the FieldOptions struct will
1983   * contain both regular FieldOptions like "lazy" *and* custom options). */
1984  bool lazy() const;
1985
1986  /* For non-string, non-submessage fields, this indicates whether binary
1987   * protobufs are encoded in packed or non-packed format.
1988   *
1989   * TODO(haberman): see note above about putting options like this into a
1990   * FieldOptions container. */
1991  bool packed() const;
1992
1993  /* An integer that can be used as an index into an array of fields for
1994   * whatever message this field belongs to.  Guaranteed to be less than
1995   * f->containing_type()->field_count().  May only be accessed once the def has
1996   * been finalized. */
1997  uint32_t index() const;
1998
1999  /* The MessageDef to which this field belongs.
2000   *
2001   * If this field has been added to a MessageDef, that message can be retrieved
2002   * directly (this is always the case for frozen FieldDefs).
2003   *
2004   * If the field has not yet been added to a MessageDef, you can set the name
2005   * of the containing type symbolically instead.  This is mostly useful for
2006   * extensions, where the extension is declared separately from the message. */
2007  const MessageDef* containing_type() const;
2008  const char* containing_type_name();
2009
2010  /* The OneofDef to which this field belongs, or NULL if this field is not part
2011   * of a oneof. */
2012  const OneofDef* containing_oneof() const;
2013
2014  /* The field's type according to the enum in descriptor.proto.  This is not
2015   * the same as UPB_TYPE_*, because it distinguishes between (for example)
2016   * INT32 and SINT32, whereas our "type" enum does not.  This return of
2017   * descriptor_type() is a function of type(), integer_format(), and
2018   * is_tag_delimited().  Likewise set_descriptor_type() sets all three
2019   * appropriately. */
2020  DescriptorType descriptor_type() const;
2021
2022  /* Convenient field type tests. */
2023  bool IsSubMessage() const;
2024  bool IsString() const;
2025  bool IsSequence() const;
2026  bool IsPrimitive() const;
2027  bool IsMap() const;
2028
2029  /* Whether this field must be able to explicitly represent presence:
2030   *
2031   * * This is always false for repeated fields (an empty repeated field is
2032   *   equivalent to a repeated field with zero entries).
2033   *
2034   * * This is always true for submessages.
2035   *
2036   * * For other fields, it depends on the message (see
2037   *   MessageDef::SetPrimitivesHavePresence())
2038   */
2039  bool HasPresence() const;
2040
2041  /* How integers are encoded.  Only meaningful for integer types.
2042   * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
2043  IntegerFormat integer_format() const;
2044
2045  /* Whether a submessage field is tag-delimited or not (if false, then
2046   * length-delimited).  May only be set when type() == UPB_TYPE_MESSAGE. */
2047  bool is_tag_delimited() const;
2048
2049  /* Returns the non-string default value for this fielddef, which may either
2050   * be something the client set explicitly or the "default default" (0 for
2051   * numbers, empty for strings).  The field's type indicates the type of the
2052   * returned value, except for enum fields that are still mutable.
2053   *
2054   * Requires that the given function matches the field's current type. */
2055  int64_t default_int64() const;
2056  int32_t default_int32() const;
2057  uint64_t default_uint64() const;
2058  uint32_t default_uint32() const;
2059  bool default_bool() const;
2060  float default_float() const;
2061  double default_double() const;
2062
2063  /* The resulting string is always NULL-terminated.  If non-NULL, the length
2064   * will be stored in *len. */
2065  const char *default_string(size_t* len) const;
2066
2067  /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
2068   * string or int32, and both of these methods will always return true.
2069   *
2070   * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
2071   * Enum defaults are unusual. They can be specified either as string or int32,
2072   * but to be valid the enum must have that value as a member.  And if no
2073   * default is specified, the "default default" comes from the EnumDef.
2074   *
2075   * We allow reading the default as either an int32 or a string, but only if
2076   * we have a meaningful value to report.  We have a meaningful value if it was
2077   * set explicitly, or if we could get the "default default" from the EnumDef.
2078   * Also if you explicitly set the name and we find the number in the EnumDef */
2079  bool EnumHasStringDefault() const;
2080  bool EnumHasInt32Default() const;
2081
2082  /* Submessage and enum fields must reference a "subdef", which is the
2083   * upb::MessageDef or upb::EnumDef that defines their type.  Note that when
2084   * the FieldDef is mutable it may not have a subdef *yet*, but this function
2085   * still returns true to indicate that the field's type requires a subdef. */
2086  bool HasSubDef() const;
2087
2088  /* Returns the enum or submessage def for this field, if any.  The field's
2089   * type must match (ie. you may only call enum_subdef() for fields where
2090   * type() == UPB_TYPE_ENUM).  Returns NULL if the subdef has not been set or
2091   * is currently set symbolically. */
2092  const EnumDef* enum_subdef() const;
2093  const MessageDef* message_subdef() const;
2094
2095  /* Returns the generic subdef for this field.  Requires that HasSubDef() (ie.
2096   * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
2097  const Def* subdef() const;
2098
2099  /* Returns the symbolic name of the subdef.  If the subdef is currently set
2100   * unresolved (ie. set symbolically) returns the symbolic name.  If it has
2101   * been resolved to a specific subdef, returns the name from that subdef. */
2102  const char* subdef_name() const;
2103
2104  /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
2105
2106  bool set_full_name(const char* fullname, upb::Status* s);
2107  bool set_full_name(const std::string& fullname, upb::Status* s);
2108
2109  /* This may only be called if containing_type() == NULL (ie. the field has not
2110   * been added to a message yet). */
2111  bool set_containing_type_name(const char *name, Status* status);
2112  bool set_containing_type_name(const std::string& name, Status* status);
2113
2114  /* Defaults to false.  When we freeze, we ensure that this can only be true
2115   * for length-delimited message fields.  Prior to freezing this can be true or
2116   * false with no restrictions. */
2117  void set_lazy(bool lazy);
2118
2119  /* Defaults to true.  Sets whether this field is encoded in packed format. */
2120  void set_packed(bool packed);
2121
2122  /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
2123   * finalized.  These setters require that the enum value is valid; if the
2124   * value did not come directly from an enum constant, the caller should
2125   * validate it first with the functions above (CheckFieldType(), etc). */
2126  void set_type(Type type);
2127  void set_label(Label label);
2128  void set_descriptor_type(DescriptorType type);
2129  void set_is_extension(bool is_extension);
2130
2131  /* "number" and "name" must be set before the FieldDef is added to a
2132   * MessageDef, and may not be set after that.
2133   *
2134   * "name" is the same as full_name()/set_full_name(), but since fielddefs
2135   * most often use simple, non-qualified names, we provide this accessor
2136   * also.  Generally only extensions will want to think of this name as
2137   * fully-qualified. */
2138  bool set_number(uint32_t number, upb::Status* s);
2139  bool set_name(const char* name, upb::Status* s);
2140  bool set_name(const std::string& name, upb::Status* s);
2141
2142  /* Sets the JSON name to the given string. */
2143  /* TODO(haberman): implement.  Right now only default json_name (camelCase)
2144   * is supported. */
2145  bool set_json_name(const char* json_name, upb::Status* s);
2146  bool set_json_name(const std::string& name, upb::Status* s);
2147
2148  /* Clears the JSON name. This will make it revert to its default, which is
2149   * a camelCased version of the regular field name. */
2150  void clear_json_name();
2151
2152  void set_integer_format(IntegerFormat format);
2153  bool set_tag_delimited(bool tag_delimited, upb::Status* s);
2154
2155  /* Sets default value for the field.  The call must exactly match the type
2156   * of the field.  Enum fields may use either setint32 or setstring to set
2157   * the default numerically or symbolically, respectively, but symbolic
2158   * defaults must be resolved before finalizing (see ResolveEnumDefault()).
2159   *
2160   * Changing the type of a field will reset its default. */
2161  void set_default_int64(int64_t val);
2162  void set_default_int32(int32_t val);
2163  void set_default_uint64(uint64_t val);
2164  void set_default_uint32(uint32_t val);
2165  void set_default_bool(bool val);
2166  void set_default_float(float val);
2167  void set_default_double(double val);
2168  bool set_default_string(const void *str, size_t len, Status *s);
2169  bool set_default_string(const std::string &str, Status *s);
2170  void set_default_cstr(const char *str, Status *s);
2171
2172  /* Before a fielddef is frozen, its subdef may be set either directly (with a
2173   * upb::Def*) or symbolically.  Symbolic refs must be resolved before the
2174   * containing msgdef can be frozen (see upb_resolve() above).  upb always
2175   * guarantees that any def reachable from a live def will also be kept alive.
2176   *
2177   * Both methods require that upb_hassubdef(f) (so the type must be set prior
2178   * to calling these methods).  Returns false if this is not the case, or if
2179   * the given subdef is not of the correct type.  The subdef is reset if the
2180   * field's type is changed.  The subdef can be set to NULL to clear it. */
2181  bool set_subdef(const Def* subdef, Status* s);
2182  bool set_enum_subdef(const EnumDef* subdef, Status* s);
2183  bool set_message_subdef(const MessageDef* subdef, Status* s);
2184  bool set_subdef_name(const char* name, Status* s);
2185  bool set_subdef_name(const std::string &name, Status* s);
2186
2187 private:
2188  UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
2189};
2190
2191# endif  /* defined(__cplusplus) */
2192
2193UPB_BEGIN_EXTERN_C
2194
2195/* Native C API. */
2196upb_fielddef *upb_fielddef_new(const void *owner);
2197upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
2198
2199/* Include upb_refcounted methods like upb_fielddef_ref(). */
2200UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
2201
2202/* Methods from upb_def. */
2203const char *upb_fielddef_fullname(const upb_fielddef *f);
2204bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
2205                              upb_status *s);
2206
2207bool upb_fielddef_typeisset(const upb_fielddef *f);
2208upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
2209upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
2210upb_label_t upb_fielddef_label(const upb_fielddef *f);
2211uint32_t upb_fielddef_number(const upb_fielddef *f);
2212const char *upb_fielddef_name(const upb_fielddef *f);
2213bool upb_fielddef_isextension(const upb_fielddef *f);
2214bool upb_fielddef_lazy(const upb_fielddef *f);
2215bool upb_fielddef_packed(const upb_fielddef *f);
2216size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len);
2217const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
2218const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
2219upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
2220const char *upb_fielddef_containingtypename(upb_fielddef *f);
2221upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
2222uint32_t upb_fielddef_index(const upb_fielddef *f);
2223bool upb_fielddef_istagdelim(const upb_fielddef *f);
2224bool upb_fielddef_issubmsg(const upb_fielddef *f);
2225bool upb_fielddef_isstring(const upb_fielddef *f);
2226bool upb_fielddef_isseq(const upb_fielddef *f);
2227bool upb_fielddef_isprimitive(const upb_fielddef *f);
2228bool upb_fielddef_ismap(const upb_fielddef *f);
2229bool upb_fielddef_haspresence(const upb_fielddef *f);
2230int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
2231int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
2232uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
2233uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
2234bool upb_fielddef_defaultbool(const upb_fielddef *f);
2235float upb_fielddef_defaultfloat(const upb_fielddef *f);
2236double upb_fielddef_defaultdouble(const upb_fielddef *f);
2237const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
2238bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
2239bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
2240bool upb_fielddef_hassubdef(const upb_fielddef *f);
2241const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
2242const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
2243const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
2244const char *upb_fielddef_subdefname(const upb_fielddef *f);
2245
2246void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
2247void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
2248void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
2249bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
2250bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
2251bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s);
2252bool upb_fielddef_clearjsonname(upb_fielddef *f);
2253bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
2254                                        upb_status *s);
2255void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
2256void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
2257void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
2258void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
2259void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
2260void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
2261void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
2262void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
2263void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
2264void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
2265void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
2266void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
2267bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
2268                                upb_status *s);
2269void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
2270                                 upb_status *s);
2271bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
2272                            upb_status *s);
2273bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
2274                               upb_status *s);
2275bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
2276                                upb_status *s);
2277bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
2278                                upb_status *s);
2279
2280bool upb_fielddef_checklabel(int32_t label);
2281bool upb_fielddef_checktype(int32_t type);
2282bool upb_fielddef_checkdescriptortype(int32_t type);
2283bool upb_fielddef_checkintfmt(int32_t fmt);
2284
2285UPB_END_EXTERN_C
2286
2287
2288/* upb::MessageDef ************************************************************/
2289
2290typedef upb_inttable_iter upb_msg_field_iter;
2291typedef upb_strtable_iter upb_msg_oneof_iter;
2292
2293/* Well-known field tag numbers for map-entry messages. */
2294#define UPB_MAPENTRY_KEY   1
2295#define UPB_MAPENTRY_VALUE 2
2296
2297#ifdef __cplusplus
2298
2299/* Structure that describes a single .proto message type.
2300 *
2301 * Its base class is upb::Def (use upb::upcast() to convert). */
2302class upb::MessageDef {
2303 public:
2304  /* Returns NULL if memory allocation failed. */
2305  static reffed_ptr<MessageDef> New();
2306
2307  /* upb::RefCounted methods like Ref()/Unref(). */
2308  UPB_REFCOUNTED_CPPMETHODS
2309
2310  /* Functionality from upb::Def. */
2311  const char* full_name() const;
2312  const char* name() const;
2313  bool set_full_name(const char* fullname, Status* s);
2314  bool set_full_name(const std::string& fullname, Status* s);
2315
2316  /* Call to freeze this MessageDef.
2317   * WARNING: this will fail if this message has any unfrozen submessages!
2318   * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
2319  bool Freeze(Status* s);
2320
2321  /* The number of fields that belong to the MessageDef. */
2322  int field_count() const;
2323
2324  /* The number of oneofs that belong to the MessageDef. */
2325  int oneof_count() const;
2326
2327  /* Adds a field (upb_fielddef object) to a msgdef.  Requires that the msgdef
2328   * and the fielddefs are mutable.  The fielddef's name and number must be
2329   * set, and the message may not already contain any field with this name or
2330   * number, and this fielddef may not be part of another message.  In error
2331   * cases false is returned and the msgdef is unchanged.
2332   *
2333   * If the given field is part of a oneof, this call succeeds if and only if
2334   * that oneof is already part of this msgdef. (Note that adding a oneof to a
2335   * msgdef automatically adds all of its fields to the msgdef at the time that
2336   * the oneof is added, so it is usually more idiomatic to add the oneof's
2337   * fields first then add the oneof to the msgdef. This case is supported for
2338   * convenience.)
2339   *
2340   * If |f| is already part of this MessageDef, this method performs no action
2341   * and returns true (success). Thus, this method is idempotent. */
2342  bool AddField(FieldDef* f, Status* s);
2343  bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
2344
2345  /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
2346   * oneof, and any fielddefs are mutable, that the fielddefs contained in the
2347   * oneof do not have any name or number conflicts with existing fields in the
2348   * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
2349   * If the oneof is added successfully, all of its fields will be added
2350   * directly to the msgdef as well. In error cases, false is returned and the
2351   * msgdef is unchanged. */
2352  bool AddOneof(OneofDef* o, Status* s);
2353  bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
2354
2355  upb_syntax_t syntax() const;
2356
2357  /* Returns false if we don't support this syntax value. */
2358  bool set_syntax(upb_syntax_t syntax);
2359
2360  /* Set this to false to indicate that primitive fields should not have
2361   * explicit presence information associated with them.  This will affect all
2362   * fields added to this message.  Defaults to true. */
2363  void SetPrimitivesHavePresence(bool have_presence);
2364
2365  /* These return NULL if the field is not found. */
2366  FieldDef* FindFieldByNumber(uint32_t number);
2367  FieldDef* FindFieldByName(const char *name, size_t len);
2368  const FieldDef* FindFieldByNumber(uint32_t number) const;
2369  const FieldDef* FindFieldByName(const char* name, size_t len) const;
2370
2371
2372  FieldDef* FindFieldByName(const char *name) {
2373    return FindFieldByName(name, strlen(name));
2374  }
2375  const FieldDef* FindFieldByName(const char *name) const {
2376    return FindFieldByName(name, strlen(name));
2377  }
2378
2379  template <class T>
2380  FieldDef* FindFieldByName(const T& str) {
2381    return FindFieldByName(str.c_str(), str.size());
2382  }
2383  template <class T>
2384  const FieldDef* FindFieldByName(const T& str) const {
2385    return FindFieldByName(str.c_str(), str.size());
2386  }
2387
2388  OneofDef* FindOneofByName(const char* name, size_t len);
2389  const OneofDef* FindOneofByName(const char* name, size_t len) const;
2390
2391  OneofDef* FindOneofByName(const char* name) {
2392    return FindOneofByName(name, strlen(name));
2393  }
2394  const OneofDef* FindOneofByName(const char* name) const {
2395    return FindOneofByName(name, strlen(name));
2396  }
2397
2398  template<class T>
2399  OneofDef* FindOneofByName(const T& str) {
2400    return FindOneofByName(str.c_str(), str.size());
2401  }
2402  template<class T>
2403  const OneofDef* FindOneofByName(const T& str) const {
2404    return FindOneofByName(str.c_str(), str.size());
2405  }
2406
2407  /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
2408   * the fields) but with any references to submessages broken and replaced
2409   * with just the name of the submessage.  Returns NULL if memory allocation
2410   * failed.
2411   *
2412   * TODO(haberman): which is more useful, keeping fields resolved or
2413   * unresolving them?  If there's no obvious answer, Should this functionality
2414   * just be moved into symtab.c? */
2415  MessageDef* Dup(const void* owner) const;
2416
2417  /* Is this message a map entry? */
2418  void setmapentry(bool map_entry);
2419  bool mapentry() const;
2420
2421  /* Iteration over fields.  The order is undefined. */
2422  class field_iterator
2423      : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2424   public:
2425    explicit field_iterator(MessageDef* md);
2426    static field_iterator end(MessageDef* md);
2427
2428    void operator++();
2429    FieldDef* operator*() const;
2430    bool operator!=(const field_iterator& other) const;
2431    bool operator==(const field_iterator& other) const;
2432
2433   private:
2434    upb_msg_field_iter iter_;
2435  };
2436
2437  class const_field_iterator
2438      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2439   public:
2440    explicit const_field_iterator(const MessageDef* md);
2441    static const_field_iterator end(const MessageDef* md);
2442
2443    void operator++();
2444    const FieldDef* operator*() const;
2445    bool operator!=(const const_field_iterator& other) const;
2446    bool operator==(const const_field_iterator& other) const;
2447
2448   private:
2449    upb_msg_field_iter iter_;
2450  };
2451
2452  /* Iteration over oneofs. The order is undefined. */
2453  class oneof_iterator
2454      : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2455   public:
2456    explicit oneof_iterator(MessageDef* md);
2457    static oneof_iterator end(MessageDef* md);
2458
2459    void operator++();
2460    OneofDef* operator*() const;
2461    bool operator!=(const oneof_iterator& other) const;
2462    bool operator==(const oneof_iterator& other) const;
2463
2464   private:
2465    upb_msg_oneof_iter iter_;
2466  };
2467
2468  class const_oneof_iterator
2469      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2470   public:
2471    explicit const_oneof_iterator(const MessageDef* md);
2472    static const_oneof_iterator end(const MessageDef* md);
2473
2474    void operator++();
2475    const OneofDef* operator*() const;
2476    bool operator!=(const const_oneof_iterator& other) const;
2477    bool operator==(const const_oneof_iterator& other) const;
2478
2479   private:
2480    upb_msg_oneof_iter iter_;
2481  };
2482
2483  class FieldAccessor {
2484   public:
2485    explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
2486    field_iterator begin() { return msg_->field_begin(); }
2487    field_iterator end() { return msg_->field_end(); }
2488   private:
2489    MessageDef* msg_;
2490  };
2491
2492  class ConstFieldAccessor {
2493   public:
2494    explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
2495    const_field_iterator begin() { return msg_->field_begin(); }
2496    const_field_iterator end() { return msg_->field_end(); }
2497   private:
2498    const MessageDef* msg_;
2499  };
2500
2501  class OneofAccessor {
2502   public:
2503    explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
2504    oneof_iterator begin() { return msg_->oneof_begin(); }
2505    oneof_iterator end() { return msg_->oneof_end(); }
2506   private:
2507    MessageDef* msg_;
2508  };
2509
2510  class ConstOneofAccessor {
2511   public:
2512    explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
2513    const_oneof_iterator begin() { return msg_->oneof_begin(); }
2514    const_oneof_iterator end() { return msg_->oneof_end(); }
2515   private:
2516    const MessageDef* msg_;
2517  };
2518
2519  field_iterator field_begin();
2520  field_iterator field_end();
2521  const_field_iterator field_begin() const;
2522  const_field_iterator field_end() const;
2523
2524  oneof_iterator oneof_begin();
2525  oneof_iterator oneof_end();
2526  const_oneof_iterator oneof_begin() const;
2527  const_oneof_iterator oneof_end() const;
2528
2529  FieldAccessor fields() { return FieldAccessor(this); }
2530  ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
2531  OneofAccessor oneofs() { return OneofAccessor(this); }
2532  ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
2533
2534 private:
2535  UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
2536};
2537
2538#endif  /* __cplusplus */
2539
2540UPB_BEGIN_EXTERN_C
2541
2542/* Returns NULL if memory allocation failed. */
2543upb_msgdef *upb_msgdef_new(const void *owner);
2544
2545/* Include upb_refcounted methods like upb_msgdef_ref(). */
2546UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
2547
2548bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
2549
2550upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
2551const char *upb_msgdef_fullname(const upb_msgdef *m);
2552const char *upb_msgdef_name(const upb_msgdef *m);
2553int upb_msgdef_numoneofs(const upb_msgdef *m);
2554upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m);
2555
2556bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
2557                         upb_status *s);
2558bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
2559                         upb_status *s);
2560bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
2561void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
2562bool upb_msgdef_mapentry(const upb_msgdef *m);
2563bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax);
2564
2565/* Field lookup in a couple of different variations:
2566 *   - itof = int to field
2567 *   - ntof = name to field
2568 *   - ntofz = name to field, null-terminated string. */
2569const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
2570const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
2571                                    size_t len);
2572int upb_msgdef_numfields(const upb_msgdef *m);
2573
2574UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
2575                                                const char *name) {
2576  return upb_msgdef_ntof(m, name, strlen(name));
2577}
2578
2579UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
2580  return (upb_fielddef*)upb_msgdef_itof(m, i);
2581}
2582
2583UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
2584                                                 const char *name, size_t len) {
2585  return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
2586}
2587
2588/* Oneof lookup:
2589 *   - ntoo = name to oneof
2590 *   - ntooz = name to oneof, null-terminated string. */
2591const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
2592                                    size_t len);
2593int upb_msgdef_numoneofs(const upb_msgdef *m);
2594
2595UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
2596                                               const char *name) {
2597  return upb_msgdef_ntoo(m, name, strlen(name));
2598}
2599
2600UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
2601                                                 const char *name, size_t len) {
2602  return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
2603}
2604
2605/* Lookup of either field or oneof by name.  Returns whether either was found.
2606 * If the return is true, then the found def will be set, and the non-found
2607 * one set to NULL. */
2608bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
2609                           const upb_fielddef **f, const upb_oneofdef **o);
2610
2611UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name,
2612                                       const upb_fielddef **f,
2613                                       const upb_oneofdef **o) {
2614  return upb_msgdef_lookupname(m, name, strlen(name), f, o);
2615}
2616
2617/* Iteration over fields and oneofs.  For example:
2618 *
2619 * upb_msg_field_iter i;
2620 * for(upb_msg_field_begin(&i, m);
2621 *     !upb_msg_field_done(&i);
2622 *     upb_msg_field_next(&i)) {
2623 *   upb_fielddef *f = upb_msg_iter_field(&i);
2624 *   // ...
2625 * }
2626 *
2627 * For C we don't have separate iterators for const and non-const.
2628 * It is the caller's responsibility to cast the upb_fielddef* to
2629 * const if the upb_msgdef* is const. */
2630void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
2631void upb_msg_field_next(upb_msg_field_iter *iter);
2632bool upb_msg_field_done(const upb_msg_field_iter *iter);
2633upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
2634void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
2635
2636/* Similar to above, we also support iterating through the oneofs in a
2637 * msgdef. */
2638void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
2639void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
2640bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
2641upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
2642void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
2643
2644UPB_END_EXTERN_C
2645
2646
2647/* upb::EnumDef ***************************************************************/
2648
2649typedef upb_strtable_iter upb_enum_iter;
2650
2651#ifdef __cplusplus
2652
2653/* Class that represents an enum.  Its base class is upb::Def (convert with
2654 * upb::upcast()). */
2655class upb::EnumDef {
2656 public:
2657  /* Returns NULL if memory allocation failed. */
2658  static reffed_ptr<EnumDef> New();
2659
2660  /* upb::RefCounted methods like Ref()/Unref(). */
2661  UPB_REFCOUNTED_CPPMETHODS
2662
2663  /* Functionality from upb::Def. */
2664  const char* full_name() const;
2665  const char* name() const;
2666  bool set_full_name(const char* fullname, Status* s);
2667  bool set_full_name(const std::string& fullname, Status* s);
2668
2669  /* Call to freeze this EnumDef. */
2670  bool Freeze(Status* s);
2671
2672  /* The value that is used as the default when no field default is specified.
2673   * If not set explicitly, the first value that was added will be used.
2674   * The default value must be a member of the enum.
2675   * Requires that value_count() > 0. */
2676  int32_t default_value() const;
2677
2678  /* Sets the default value.  If this value is not valid, returns false and an
2679   * error message in status. */
2680  bool set_default_value(int32_t val, Status* status);
2681
2682  /* Returns the number of values currently defined in the enum.  Note that
2683   * multiple names can refer to the same number, so this may be greater than
2684   * the total number of unique numbers. */
2685  int value_count() const;
2686
2687  /* Adds a single name/number pair to the enum.  Fails if this name has
2688   * already been used by another value. */
2689  bool AddValue(const char* name, int32_t num, Status* status);
2690  bool AddValue(const std::string& name, int32_t num, Status* status);
2691
2692  /* Lookups from name to integer, returning true if found. */
2693  bool FindValueByName(const char* name, int32_t* num) const;
2694
2695  /* Finds the name corresponding to the given number, or NULL if none was
2696   * found.  If more than one name corresponds to this number, returns the
2697   * first one that was added. */
2698  const char* FindValueByNumber(int32_t num) const;
2699
2700  /* Returns a new EnumDef with all the same values.  The new EnumDef will be
2701   * owned by the given owner. */
2702  EnumDef* Dup(const void* owner) const;
2703
2704  /* Iteration over name/value pairs.  The order is undefined.
2705   * Adding an enum val invalidates any iterators.
2706   *
2707   * TODO: make compatible with range-for, with elements as pairs? */
2708  class Iterator {
2709   public:
2710    explicit Iterator(const EnumDef*);
2711
2712    int32_t number();
2713    const char *name();
2714    bool Done();
2715    void Next();
2716
2717   private:
2718    upb_enum_iter iter_;
2719  };
2720
2721 private:
2722  UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
2723};
2724
2725#endif  /* __cplusplus */
2726
2727UPB_BEGIN_EXTERN_C
2728
2729/* Native C API. */
2730upb_enumdef *upb_enumdef_new(const void *owner);
2731upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
2732
2733/* Include upb_refcounted methods like upb_enumdef_ref(). */
2734UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
2735
2736bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
2737
2738/* From upb_def. */
2739const char *upb_enumdef_fullname(const upb_enumdef *e);
2740const char *upb_enumdef_name(const upb_enumdef *e);
2741bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
2742                             upb_status *s);
2743
2744int32_t upb_enumdef_default(const upb_enumdef *e);
2745bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
2746int upb_enumdef_numvals(const upb_enumdef *e);
2747bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
2748                        upb_status *status);
2749
2750/* Enum lookups:
2751 * - ntoi:  look up a name with specified length.
2752 * - ntoiz: look up a name provided as a null-terminated string.
2753 * - iton:  look up an integer, returning the name as a null-terminated
2754 *          string. */
2755bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
2756                      int32_t *num);
2757UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
2758                                  const char *name, int32_t *num) {
2759  return upb_enumdef_ntoi(e, name, strlen(name), num);
2760}
2761const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
2762
2763/*  upb_enum_iter i;
2764 *  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
2765 *    // ...
2766 *  }
2767 */
2768void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
2769void upb_enum_next(upb_enum_iter *iter);
2770bool upb_enum_done(upb_enum_iter *iter);
2771const char *upb_enum_iter_name(upb_enum_iter *iter);
2772int32_t upb_enum_iter_number(upb_enum_iter *iter);
2773
2774UPB_END_EXTERN_C
2775
2776/* upb::OneofDef **************************************************************/
2777
2778typedef upb_inttable_iter upb_oneof_iter;
2779
2780#ifdef __cplusplus
2781
2782/* Class that represents a oneof. */
2783class upb::OneofDef {
2784 public:
2785  /* Returns NULL if memory allocation failed. */
2786  static reffed_ptr<OneofDef> New();
2787
2788  /* upb::RefCounted methods like Ref()/Unref(). */
2789  UPB_REFCOUNTED_CPPMETHODS
2790
2791  /* Returns the MessageDef that owns this OneofDef. */
2792  const MessageDef* containing_type() const;
2793
2794  /* Returns the name of this oneof. This is the name used to look up the oneof
2795   * by name once added to a message def. */
2796  const char* name() const;
2797  bool set_name(const char* name, Status* s);
2798  bool set_name(const std::string& name, Status* s);
2799
2800  /* Returns the number of fields currently defined in the oneof. */
2801  int field_count() const;
2802
2803  /* Adds a field to the oneof. The field must not have been added to any other
2804   * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
2805   * oneof is eventually added to a msgdef, all fields added to the oneof will
2806   * also be added to the msgdef at that time. If the oneof is already part of a
2807   * msgdef, the field must either be a part of that msgdef already, or must not
2808   * be a part of any msgdef; in the latter case, the field is added to the
2809   * msgdef as a part of this operation.
2810   *
2811   * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
2812   *
2813   * If |f| is already part of this MessageDef, this method performs no action
2814   * and returns true (success). Thus, this method is idempotent. */
2815  bool AddField(FieldDef* field, Status* s);
2816  bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
2817
2818  /* Looks up by name. */
2819  const FieldDef* FindFieldByName(const char* name, size_t len) const;
2820  FieldDef* FindFieldByName(const char* name, size_t len);
2821  const FieldDef* FindFieldByName(const char* name) const {
2822    return FindFieldByName(name, strlen(name));
2823  }
2824  FieldDef* FindFieldByName(const char* name) {
2825    return FindFieldByName(name, strlen(name));
2826  }
2827
2828  template <class T>
2829  FieldDef* FindFieldByName(const T& str) {
2830    return FindFieldByName(str.c_str(), str.size());
2831  }
2832  template <class T>
2833  const FieldDef* FindFieldByName(const T& str) const {
2834    return FindFieldByName(str.c_str(), str.size());
2835  }
2836
2837  /* Looks up by tag number. */
2838  const FieldDef* FindFieldByNumber(uint32_t num) const;
2839
2840  /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
2841   * by the given owner. */
2842  OneofDef* Dup(const void* owner) const;
2843
2844  /* Iteration over fields.  The order is undefined. */
2845  class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2846   public:
2847    explicit iterator(OneofDef* md);
2848    static iterator end(OneofDef* md);
2849
2850    void operator++();
2851    FieldDef* operator*() const;
2852    bool operator!=(const iterator& other) const;
2853    bool operator==(const iterator& other) const;
2854
2855   private:
2856    upb_oneof_iter iter_;
2857  };
2858
2859  class const_iterator
2860      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2861   public:
2862    explicit const_iterator(const OneofDef* md);
2863    static const_iterator end(const OneofDef* md);
2864
2865    void operator++();
2866    const FieldDef* operator*() const;
2867    bool operator!=(const const_iterator& other) const;
2868    bool operator==(const const_iterator& other) const;
2869
2870   private:
2871    upb_oneof_iter iter_;
2872  };
2873
2874  iterator begin();
2875  iterator end();
2876  const_iterator begin() const;
2877  const_iterator end() const;
2878
2879 private:
2880  UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
2881};
2882
2883#endif  /* __cplusplus */
2884
2885UPB_BEGIN_EXTERN_C
2886
2887/* Native C API. */
2888upb_oneofdef *upb_oneofdef_new(const void *owner);
2889upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
2890
2891/* Include upb_refcounted methods like upb_oneofdef_ref(). */
2892UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast)
2893
2894const char *upb_oneofdef_name(const upb_oneofdef *o);
2895bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
2896
2897const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
2898int upb_oneofdef_numfields(const upb_oneofdef *o);
2899bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
2900                           const void *ref_donor,
2901                           upb_status *s);
2902
2903/* Oneof lookups:
2904 * - ntof:  look up a field by name.
2905 * - ntofz: look up a field by name (as a null-terminated string).
2906 * - itof:  look up a field by number. */
2907const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
2908                                      const char *name, size_t length);
2909UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
2910                                                  const char *name) {
2911  return upb_oneofdef_ntof(o, name, strlen(name));
2912}
2913const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
2914
2915/*  upb_oneof_iter i;
2916 *  for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
2917 *    // ...
2918 *  }
2919 */
2920void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
2921void upb_oneof_next(upb_oneof_iter *iter);
2922bool upb_oneof_done(upb_oneof_iter *iter);
2923upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
2924void upb_oneof_iter_setdone(upb_oneof_iter *iter);
2925
2926UPB_END_EXTERN_C
2927
2928
2929/* upb::FileDef ***************************************************************/
2930
2931#ifdef __cplusplus
2932
2933/* Class that represents a .proto file with some things defined in it.
2934 *
2935 * Many users won't care about FileDefs, but they are necessary if you want to
2936 * read the values of file-level options. */
2937class upb::FileDef {
2938 public:
2939  /* Returns NULL if memory allocation failed. */
2940  static reffed_ptr<FileDef> New();
2941
2942  /* upb::RefCounted methods like Ref()/Unref(). */
2943  UPB_REFCOUNTED_CPPMETHODS
2944
2945  /* Get/set name of the file (eg. "foo/bar.proto"). */
2946  const char* name() const;
2947  bool set_name(const char* name, Status* s);
2948  bool set_name(const std::string& name, Status* s);
2949
2950  /* Package name for definitions inside the file (eg. "foo.bar"). */
2951  const char* package() const;
2952  bool set_package(const char* package, Status* s);
2953
2954  /* Syntax for the file.  Defaults to proto2. */
2955  upb_syntax_t syntax() const;
2956  void set_syntax(upb_syntax_t syntax);
2957
2958  /* Get the list of defs from the file.  These are returned in the order that
2959   * they were added to the FileDef. */
2960  int def_count() const;
2961  const Def* def(int index) const;
2962  Def* def(int index);
2963
2964  /* Get the list of dependencies from the file.  These are returned in the
2965   * order that they were added to the FileDef. */
2966  int dependency_count() const;
2967  const FileDef* dependency(int index) const;
2968
2969  /* Adds defs to this file.  The def must not already belong to another
2970   * file.
2971   *
2972   * Note: this does *not* ensure that this def's name is unique in this file!
2973   * Use a SymbolTable if you want to check this property.  Especially since
2974   * properly checking uniqueness would require a check across *all* files
2975   * (including dependencies). */
2976  bool AddDef(Def* def, Status* s);
2977  bool AddMessage(MessageDef* m, Status* s);
2978  bool AddEnum(EnumDef* e, Status* s);
2979  bool AddExtension(FieldDef* f, Status* s);
2980
2981  /* Adds a dependency of this file. */
2982  bool AddDependency(const FileDef* file);
2983
2984  /* Freezes this FileDef and all messages/enums under it.  All subdefs must be
2985   * resolved and all messages/enums must validate.  Returns true if this
2986   * succeeded.
2987   *
2988   * TODO(haberman): should we care whether the file's dependencies are frozen
2989   * already? */
2990  bool Freeze(Status* s);
2991
2992 private:
2993  UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef)
2994};
2995
2996#endif
2997
2998UPB_BEGIN_EXTERN_C
2999
3000upb_filedef *upb_filedef_new(const void *owner);
3001
3002/* Include upb_refcounted methods like upb_msgdef_ref(). */
3003UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast)
3004
3005const char *upb_filedef_name(const upb_filedef *f);
3006const char *upb_filedef_package(const upb_filedef *f);
3007upb_syntax_t upb_filedef_syntax(const upb_filedef *f);
3008size_t upb_filedef_defcount(const upb_filedef *f);
3009size_t upb_filedef_depcount(const upb_filedef *f);
3010const upb_def *upb_filedef_def(const upb_filedef *f, size_t i);
3011const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i);
3012
3013bool upb_filedef_freeze(upb_filedef *f, upb_status *s);
3014bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s);
3015bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s);
3016bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s);
3017
3018bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor,
3019                        upb_status *s);
3020bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep);
3021
3022UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m,
3023                                   const void *ref_donor, upb_status *s) {
3024  return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s);
3025}
3026
3027UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e,
3028                                    const void *ref_donor, upb_status *s) {
3029  return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s);
3030}
3031
3032UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f,
3033                                   const void *ref_donor, upb_status *s) {
3034  return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s);
3035}
3036UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
3037  return (upb_def*)upb_filedef_def(f, i);
3038}
3039
3040UPB_END_EXTERN_C
3041
3042#ifdef __cplusplus
3043
3044UPB_INLINE const char* upb_safecstr(const std::string& str) {
3045  assert(str.size() == std::strlen(str.c_str()));
3046  return str.c_str();
3047}
3048
3049/* Inline C++ wrappers. */
3050namespace upb {
3051
3052inline Def* Def::Dup(const void* owner) const {
3053  return upb_def_dup(this, owner);
3054}
3055inline Def::Type Def::def_type() const { return upb_def_type(this); }
3056inline const char* Def::full_name() const { return upb_def_fullname(this); }
3057inline const char* Def::name() const { return upb_def_name(this); }
3058inline bool Def::set_full_name(const char* fullname, Status* s) {
3059  return upb_def_setfullname(this, fullname, s);
3060}
3061inline bool Def::set_full_name(const std::string& fullname, Status* s) {
3062  return upb_def_setfullname(this, upb_safecstr(fullname), s);
3063}
3064inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) {
3065  return upb_def_freeze(defs, n, status);
3066}
3067inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
3068  return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
3069}
3070
3071inline bool FieldDef::CheckType(int32_t val) {
3072  return upb_fielddef_checktype(val);
3073}
3074inline bool FieldDef::CheckLabel(int32_t val) {
3075  return upb_fielddef_checklabel(val);
3076}
3077inline bool FieldDef::CheckDescriptorType(int32_t val) {
3078  return upb_fielddef_checkdescriptortype(val);
3079}
3080inline bool FieldDef::CheckIntegerFormat(int32_t val) {
3081  return upb_fielddef_checkintfmt(val);
3082}
3083inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
3084  assert(CheckType(val));
3085  return static_cast<FieldDef::Type>(val);
3086}
3087inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
3088  assert(CheckLabel(val));
3089  return static_cast<FieldDef::Label>(val);
3090}
3091inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
3092  assert(CheckDescriptorType(val));
3093  return static_cast<FieldDef::DescriptorType>(val);
3094}
3095inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
3096  assert(CheckIntegerFormat(val));
3097  return static_cast<FieldDef::IntegerFormat>(val);
3098}
3099
3100inline reffed_ptr<FieldDef> FieldDef::New() {
3101  upb_fielddef *f = upb_fielddef_new(&f);
3102  return reffed_ptr<FieldDef>(f, &f);
3103}
3104inline FieldDef* FieldDef::Dup(const void* owner) const {
3105  return upb_fielddef_dup(this, owner);
3106}
3107inline const char* FieldDef::full_name() const {
3108  return upb_fielddef_fullname(this);
3109}
3110inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
3111  return upb_fielddef_setfullname(this, fullname, s);
3112}
3113inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
3114  return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
3115}
3116inline bool FieldDef::type_is_set() const {
3117  return upb_fielddef_typeisset(this);
3118}
3119inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
3120inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
3121  return upb_fielddef_descriptortype(this);
3122}
3123inline FieldDef::Label FieldDef::label() const {
3124  return upb_fielddef_label(this);
3125}
3126inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
3127inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
3128inline bool FieldDef::is_extension() const {
3129  return upb_fielddef_isextension(this);
3130}
3131inline size_t FieldDef::GetJsonName(char* buf, size_t len) const {
3132  return upb_fielddef_getjsonname(this, buf, len);
3133}
3134inline bool FieldDef::lazy() const {
3135  return upb_fielddef_lazy(this);
3136}
3137inline void FieldDef::set_lazy(bool lazy) {
3138  upb_fielddef_setlazy(this, lazy);
3139}
3140inline bool FieldDef::packed() const {
3141  return upb_fielddef_packed(this);
3142}
3143inline uint32_t FieldDef::index() const {
3144  return upb_fielddef_index(this);
3145}
3146inline void FieldDef::set_packed(bool packed) {
3147  upb_fielddef_setpacked(this, packed);
3148}
3149inline const MessageDef* FieldDef::containing_type() const {
3150  return upb_fielddef_containingtype(this);
3151}
3152inline const OneofDef* FieldDef::containing_oneof() const {
3153  return upb_fielddef_containingoneof(this);
3154}
3155inline const char* FieldDef::containing_type_name() {
3156  return upb_fielddef_containingtypename(this);
3157}
3158inline bool FieldDef::set_number(uint32_t number, Status* s) {
3159  return upb_fielddef_setnumber(this, number, s);
3160}
3161inline bool FieldDef::set_name(const char *name, Status* s) {
3162  return upb_fielddef_setname(this, name, s);
3163}
3164inline bool FieldDef::set_name(const std::string& name, Status* s) {
3165  return upb_fielddef_setname(this, upb_safecstr(name), s);
3166}
3167inline bool FieldDef::set_json_name(const char *name, Status* s) {
3168  return upb_fielddef_setjsonname(this, name, s);
3169}
3170inline bool FieldDef::set_json_name(const std::string& name, Status* s) {
3171  return upb_fielddef_setjsonname(this, upb_safecstr(name), s);
3172}
3173inline void FieldDef::clear_json_name() {
3174  upb_fielddef_clearjsonname(this);
3175}
3176inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
3177  return upb_fielddef_setcontainingtypename(this, name, s);
3178}
3179inline bool FieldDef::set_containing_type_name(const std::string &name,
3180                                               Status *s) {
3181  return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
3182}
3183inline void FieldDef::set_type(upb_fieldtype_t type) {
3184  upb_fielddef_settype(this, type);
3185}
3186inline void FieldDef::set_is_extension(bool is_extension) {
3187  upb_fielddef_setisextension(this, is_extension);
3188}
3189inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
3190  upb_fielddef_setdescriptortype(this, type);
3191}
3192inline void FieldDef::set_label(upb_label_t label) {
3193  upb_fielddef_setlabel(this, label);
3194}
3195inline bool FieldDef::IsSubMessage() const {
3196  return upb_fielddef_issubmsg(this);
3197}
3198inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
3199inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
3200inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
3201inline int64_t FieldDef::default_int64() const {
3202  return upb_fielddef_defaultint64(this);
3203}
3204inline int32_t FieldDef::default_int32() const {
3205  return upb_fielddef_defaultint32(this);
3206}
3207inline uint64_t FieldDef::default_uint64() const {
3208  return upb_fielddef_defaultuint64(this);
3209}
3210inline uint32_t FieldDef::default_uint32() const {
3211  return upb_fielddef_defaultuint32(this);
3212}
3213inline bool FieldDef::default_bool() const {
3214  return upb_fielddef_defaultbool(this);
3215}
3216inline float FieldDef::default_float() const {
3217  return upb_fielddef_defaultfloat(this);
3218}
3219inline double FieldDef::default_double() const {
3220  return upb_fielddef_defaultdouble(this);
3221}
3222inline const char* FieldDef::default_string(size_t* len) const {
3223  return upb_fielddef_defaultstr(this, len);
3224}
3225inline void FieldDef::set_default_int64(int64_t value) {
3226  upb_fielddef_setdefaultint64(this, value);
3227}
3228inline void FieldDef::set_default_int32(int32_t value) {
3229  upb_fielddef_setdefaultint32(this, value);
3230}
3231inline void FieldDef::set_default_uint64(uint64_t value) {
3232  upb_fielddef_setdefaultuint64(this, value);
3233}
3234inline void FieldDef::set_default_uint32(uint32_t value) {
3235  upb_fielddef_setdefaultuint32(this, value);
3236}
3237inline void FieldDef::set_default_bool(bool value) {
3238  upb_fielddef_setdefaultbool(this, value);
3239}
3240inline void FieldDef::set_default_float(float value) {
3241  upb_fielddef_setdefaultfloat(this, value);
3242}
3243inline void FieldDef::set_default_double(double value) {
3244  upb_fielddef_setdefaultdouble(this, value);
3245}
3246inline bool FieldDef::set_default_string(const void *str, size_t len,
3247                                         Status *s) {
3248  return upb_fielddef_setdefaultstr(this, str, len, s);
3249}
3250inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
3251  return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
3252}
3253inline void FieldDef::set_default_cstr(const char* str, Status* s) {
3254  return upb_fielddef_setdefaultcstr(this, str, s);
3255}
3256inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
3257inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
3258inline const MessageDef *FieldDef::message_subdef() const {
3259  return upb_fielddef_msgsubdef(this);
3260}
3261inline const EnumDef *FieldDef::enum_subdef() const {
3262  return upb_fielddef_enumsubdef(this);
3263}
3264inline const char* FieldDef::subdef_name() const {
3265  return upb_fielddef_subdefname(this);
3266}
3267inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
3268  return upb_fielddef_setsubdef(this, subdef, s);
3269}
3270inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
3271  return upb_fielddef_setenumsubdef(this, subdef, s);
3272}
3273inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
3274  return upb_fielddef_setmsgsubdef(this, subdef, s);
3275}
3276inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
3277  return upb_fielddef_setsubdefname(this, name, s);
3278}
3279inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
3280  return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
3281}
3282
3283inline reffed_ptr<MessageDef> MessageDef::New() {
3284  upb_msgdef *m = upb_msgdef_new(&m);
3285  return reffed_ptr<MessageDef>(m, &m);
3286}
3287inline const char *MessageDef::full_name() const {
3288  return upb_msgdef_fullname(this);
3289}
3290inline const char *MessageDef::name() const {
3291  return upb_msgdef_name(this);
3292}
3293inline upb_syntax_t MessageDef::syntax() const {
3294  return upb_msgdef_syntax(this);
3295}
3296inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
3297  return upb_msgdef_setfullname(this, fullname, s);
3298}
3299inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
3300  return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
3301}
3302inline bool MessageDef::set_syntax(upb_syntax_t syntax) {
3303  return upb_msgdef_setsyntax(this, syntax);
3304}
3305inline bool MessageDef::Freeze(Status* status) {
3306  return upb_msgdef_freeze(this, status);
3307}
3308inline int MessageDef::field_count() const {
3309  return upb_msgdef_numfields(this);
3310}
3311inline int MessageDef::oneof_count() const {
3312  return upb_msgdef_numoneofs(this);
3313}
3314inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
3315  return upb_msgdef_addfield(this, f, NULL, s);
3316}
3317inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
3318  return upb_msgdef_addfield(this, f.get(), NULL, s);
3319}
3320inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
3321  return upb_msgdef_addoneof(this, o, NULL, s);
3322}
3323inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
3324  return upb_msgdef_addoneof(this, o.get(), NULL, s);
3325}
3326inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
3327  return upb_msgdef_itof_mutable(this, number);
3328}
3329inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
3330  return upb_msgdef_ntof_mutable(this, name, len);
3331}
3332inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
3333  return upb_msgdef_itof(this, number);
3334}
3335inline const FieldDef *MessageDef::FindFieldByName(const char *name,
3336                                                   size_t len) const {
3337  return upb_msgdef_ntof(this, name, len);
3338}
3339inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
3340  return upb_msgdef_ntoo_mutable(this, name, len);
3341}
3342inline const OneofDef* MessageDef::FindOneofByName(const char* name,
3343                                                   size_t len) const {
3344  return upb_msgdef_ntoo(this, name, len);
3345}
3346inline MessageDef* MessageDef::Dup(const void *owner) const {
3347  return upb_msgdef_dup(this, owner);
3348}
3349inline void MessageDef::setmapentry(bool map_entry) {
3350  upb_msgdef_setmapentry(this, map_entry);
3351}
3352inline bool MessageDef::mapentry() const {
3353  return upb_msgdef_mapentry(this);
3354}
3355inline MessageDef::field_iterator MessageDef::field_begin() {
3356  return field_iterator(this);
3357}
3358inline MessageDef::field_iterator MessageDef::field_end() {
3359  return field_iterator::end(this);
3360}
3361inline MessageDef::const_field_iterator MessageDef::field_begin() const {
3362  return const_field_iterator(this);
3363}
3364inline MessageDef::const_field_iterator MessageDef::field_end() const {
3365  return const_field_iterator::end(this);
3366}
3367
3368inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
3369  return oneof_iterator(this);
3370}
3371inline MessageDef::oneof_iterator MessageDef::oneof_end() {
3372  return oneof_iterator::end(this);
3373}
3374inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
3375  return const_oneof_iterator(this);
3376}
3377inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
3378  return const_oneof_iterator::end(this);
3379}
3380
3381inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
3382  upb_msg_field_begin(&iter_, md);
3383}
3384inline MessageDef::field_iterator MessageDef::field_iterator::end(
3385    MessageDef* md) {
3386  MessageDef::field_iterator iter(md);
3387  upb_msg_field_iter_setdone(&iter.iter_);
3388  return iter;
3389}
3390inline FieldDef* MessageDef::field_iterator::operator*() const {
3391  return upb_msg_iter_field(&iter_);
3392}
3393inline void MessageDef::field_iterator::operator++() {
3394  return upb_msg_field_next(&iter_);
3395}
3396inline bool MessageDef::field_iterator::operator==(
3397    const field_iterator &other) const {
3398  return upb_inttable_iter_isequal(&iter_, &other.iter_);
3399}
3400inline bool MessageDef::field_iterator::operator!=(
3401    const field_iterator &other) const {
3402  return !(*this == other);
3403}
3404
3405inline MessageDef::const_field_iterator::const_field_iterator(
3406    const MessageDef* md) {
3407  upb_msg_field_begin(&iter_, md);
3408}
3409inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
3410    const MessageDef *md) {
3411  MessageDef::const_field_iterator iter(md);
3412  upb_msg_field_iter_setdone(&iter.iter_);
3413  return iter;
3414}
3415inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
3416  return upb_msg_iter_field(&iter_);
3417}
3418inline void MessageDef::const_field_iterator::operator++() {
3419  return upb_msg_field_next(&iter_);
3420}
3421inline bool MessageDef::const_field_iterator::operator==(
3422    const const_field_iterator &other) const {
3423  return upb_inttable_iter_isequal(&iter_, &other.iter_);
3424}
3425inline bool MessageDef::const_field_iterator::operator!=(
3426    const const_field_iterator &other) const {
3427  return !(*this == other);
3428}
3429
3430inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
3431  upb_msg_oneof_begin(&iter_, md);
3432}
3433inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
3434    MessageDef* md) {
3435  MessageDef::oneof_iterator iter(md);
3436  upb_msg_oneof_iter_setdone(&iter.iter_);
3437  return iter;
3438}
3439inline OneofDef* MessageDef::oneof_iterator::operator*() const {
3440  return upb_msg_iter_oneof(&iter_);
3441}
3442inline void MessageDef::oneof_iterator::operator++() {
3443  return upb_msg_oneof_next(&iter_);
3444}
3445inline bool MessageDef::oneof_iterator::operator==(
3446    const oneof_iterator &other) const {
3447  return upb_strtable_iter_isequal(&iter_, &other.iter_);
3448}
3449inline bool MessageDef::oneof_iterator::operator!=(
3450    const oneof_iterator &other) const {
3451  return !(*this == other);
3452}
3453
3454inline MessageDef::const_oneof_iterator::const_oneof_iterator(
3455    const MessageDef* md) {
3456  upb_msg_oneof_begin(&iter_, md);
3457}
3458inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
3459    const MessageDef *md) {
3460  MessageDef::const_oneof_iterator iter(md);
3461  upb_msg_oneof_iter_setdone(&iter.iter_);
3462  return iter;
3463}
3464inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
3465  return upb_msg_iter_oneof(&iter_);
3466}
3467inline void MessageDef::const_oneof_iterator::operator++() {
3468  return upb_msg_oneof_next(&iter_);
3469}
3470inline bool MessageDef::const_oneof_iterator::operator==(
3471    const const_oneof_iterator &other) const {
3472  return upb_strtable_iter_isequal(&iter_, &other.iter_);
3473}
3474inline bool MessageDef::const_oneof_iterator::operator!=(
3475    const const_oneof_iterator &other) const {
3476  return !(*this == other);
3477}
3478
3479inline reffed_ptr<EnumDef> EnumDef::New() {
3480  upb_enumdef *e = upb_enumdef_new(&e);
3481  return reffed_ptr<EnumDef>(e, &e);
3482}
3483inline const char* EnumDef::full_name() const {
3484  return upb_enumdef_fullname(this);
3485}
3486inline const char* EnumDef::name() const {
3487  return upb_enumdef_name(this);
3488}
3489inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
3490  return upb_enumdef_setfullname(this, fullname, s);
3491}
3492inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
3493  return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
3494}
3495inline bool EnumDef::Freeze(Status* status) {
3496  return upb_enumdef_freeze(this, status);
3497}
3498inline int32_t EnumDef::default_value() const {
3499  return upb_enumdef_default(this);
3500}
3501inline bool EnumDef::set_default_value(int32_t val, Status* status) {
3502  return upb_enumdef_setdefault(this, val, status);
3503}
3504inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
3505inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
3506  return upb_enumdef_addval(this, name, num, status);
3507}
3508inline bool EnumDef::AddValue(const std::string& name, int32_t num,
3509                              Status* status) {
3510  return upb_enumdef_addval(this, upb_safecstr(name), num, status);
3511}
3512inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
3513  return upb_enumdef_ntoiz(this, name, num);
3514}
3515inline const char* EnumDef::FindValueByNumber(int32_t num) const {
3516  return upb_enumdef_iton(this, num);
3517}
3518inline EnumDef* EnumDef::Dup(const void* owner) const {
3519  return upb_enumdef_dup(this, owner);
3520}
3521
3522inline EnumDef::Iterator::Iterator(const EnumDef* e) {
3523  upb_enum_begin(&iter_, e);
3524}
3525inline int32_t EnumDef::Iterator::number() {
3526  return upb_enum_iter_number(&iter_);
3527}
3528inline const char* EnumDef::Iterator::name() {
3529  return upb_enum_iter_name(&iter_);
3530}
3531inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
3532inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
3533
3534inline reffed_ptr<OneofDef> OneofDef::New() {
3535  upb_oneofdef *o = upb_oneofdef_new(&o);
3536  return reffed_ptr<OneofDef>(o, &o);
3537}
3538
3539inline const MessageDef* OneofDef::containing_type() const {
3540  return upb_oneofdef_containingtype(this);
3541}
3542inline const char* OneofDef::name() const {
3543  return upb_oneofdef_name(this);
3544}
3545inline bool OneofDef::set_name(const char* name, Status* s) {
3546  return upb_oneofdef_setname(this, name, s);
3547}
3548inline bool OneofDef::set_name(const std::string& name, Status* s) {
3549  return upb_oneofdef_setname(this, upb_safecstr(name), s);
3550}
3551inline int OneofDef::field_count() const {
3552  return upb_oneofdef_numfields(this);
3553}
3554inline bool OneofDef::AddField(FieldDef* field, Status* s) {
3555  return upb_oneofdef_addfield(this, field, NULL, s);
3556}
3557inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
3558  return upb_oneofdef_addfield(this, field.get(), NULL, s);
3559}
3560inline const FieldDef* OneofDef::FindFieldByName(const char* name,
3561                                                 size_t len) const {
3562  return upb_oneofdef_ntof(this, name, len);
3563}
3564inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
3565  return upb_oneofdef_itof(this, num);
3566}
3567inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
3568inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
3569inline OneofDef::const_iterator OneofDef::begin() const {
3570  return const_iterator(this);
3571}
3572inline OneofDef::const_iterator OneofDef::end() const {
3573  return const_iterator::end(this);
3574}
3575
3576inline OneofDef::iterator::iterator(OneofDef* o) {
3577  upb_oneof_begin(&iter_, o);
3578}
3579inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
3580  OneofDef::iterator iter(o);
3581  upb_oneof_iter_setdone(&iter.iter_);
3582  return iter;
3583}
3584inline FieldDef* OneofDef::iterator::operator*() const {
3585  return upb_oneof_iter_field(&iter_);
3586}
3587inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
3588inline bool OneofDef::iterator::operator==(const iterator &other) const {
3589  return upb_inttable_iter_isequal(&iter_, &other.iter_);
3590}
3591inline bool OneofDef::iterator::operator!=(const iterator &other) const {
3592  return !(*this == other);
3593}
3594
3595inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
3596  upb_oneof_begin(&iter_, md);
3597}
3598inline OneofDef::const_iterator OneofDef::const_iterator::end(
3599    const OneofDef *md) {
3600  OneofDef::const_iterator iter(md);
3601  upb_oneof_iter_setdone(&iter.iter_);
3602  return iter;
3603}
3604inline const FieldDef* OneofDef::const_iterator::operator*() const {
3605  return upb_msg_iter_field(&iter_);
3606}
3607inline void OneofDef::const_iterator::operator++() {
3608  return upb_oneof_next(&iter_);
3609}
3610inline bool OneofDef::const_iterator::operator==(
3611    const const_iterator &other) const {
3612  return upb_inttable_iter_isequal(&iter_, &other.iter_);
3613}
3614inline bool OneofDef::const_iterator::operator!=(
3615    const const_iterator &other) const {
3616  return !(*this == other);
3617}
3618
3619inline reffed_ptr<FileDef> FileDef::New() {
3620  upb_filedef *f = upb_filedef_new(&f);
3621  return reffed_ptr<FileDef>(f, &f);
3622}
3623
3624inline const char* FileDef::name() const {
3625  return upb_filedef_name(this);
3626}
3627inline bool FileDef::set_name(const char* name, Status* s) {
3628  return upb_filedef_setname(this, name, s);
3629}
3630inline bool FileDef::set_name(const std::string& name, Status* s) {
3631  return upb_filedef_setname(this, upb_safecstr(name), s);
3632}
3633inline const char* FileDef::package() const {
3634  return upb_filedef_package(this);
3635}
3636inline bool FileDef::set_package(const char* package, Status* s) {
3637  return upb_filedef_setpackage(this, package, s);
3638}
3639inline int FileDef::def_count() const {
3640  return upb_filedef_defcount(this);
3641}
3642inline const Def* FileDef::def(int index) const {
3643  return upb_filedef_def(this, index);
3644}
3645inline Def* FileDef::def(int index) {
3646  return const_cast<Def*>(upb_filedef_def(this, index));
3647}
3648inline int FileDef::dependency_count() const {
3649  return upb_filedef_depcount(this);
3650}
3651inline const FileDef* FileDef::dependency(int index) const {
3652  return upb_filedef_dep(this, index);
3653}
3654inline bool FileDef::AddDef(Def* def, Status* s) {
3655  return upb_filedef_adddef(this, def, NULL, s);
3656}
3657inline bool FileDef::AddMessage(MessageDef* m, Status* s) {
3658  return upb_filedef_addmsg(this, m, NULL, s);
3659}
3660inline bool FileDef::AddEnum(EnumDef* e, Status* s) {
3661  return upb_filedef_addenum(this, e, NULL, s);
3662}
3663inline bool FileDef::AddExtension(FieldDef* f, Status* s) {
3664  return upb_filedef_addext(this, f, NULL, s);
3665}
3666inline bool FileDef::AddDependency(const FileDef* file) {
3667  return upb_filedef_adddep(this, file);
3668}
3669
3670}  /* namespace upb */
3671#endif
3672
3673#endif /* UPB_DEF_H_ */
3674/*
3675** This file contains definitions of structs that should be considered private
3676** and NOT stable across versions of upb.
3677**
3678** The only reason they are declared here and not in .c files is to allow upb
3679** and the application (if desired) to embed statically-initialized instances
3680** of structures like defs.
3681**
3682** If you include this file, all guarantees of ABI compatibility go out the
3683** window!  Any code that includes this file needs to recompile against the
3684** exact same version of upb that they are linking against.
3685**
3686** You also need to recompile if you change the value of the UPB_DEBUG_REFS
3687** flag.
3688*/
3689
3690
3691#ifndef UPB_STATICINIT_H_
3692#define UPB_STATICINIT_H_
3693
3694#ifdef __cplusplus
3695/* Because of how we do our typedefs, this header can't be included from C++. */
3696#error This file cannot be included from C++
3697#endif
3698
3699/* upb_refcounted *************************************************************/
3700
3701
3702/* upb_def ********************************************************************/
3703
3704struct upb_def {
3705  upb_refcounted base;
3706
3707  const char *fullname;
3708  const upb_filedef* file;
3709  char type;  /* A upb_deftype_t (char to save space) */
3710
3711  /* Used as a flag during the def's mutable stage.  Must be false unless
3712   * it is currently being used by a function on the stack.  This allows
3713   * us to easily determine which defs were passed into the function's
3714   * current invocation. */
3715  bool came_from_user;
3716};
3717
3718#define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \
3719    { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false }
3720
3721
3722/* upb_fielddef ***************************************************************/
3723
3724struct upb_fielddef {
3725  upb_def base;
3726
3727  union {
3728    int64_t sint;
3729    uint64_t uint;
3730    double dbl;
3731    float flt;
3732    void *bytes;
3733  } defaultval;
3734  union {
3735    const upb_msgdef *def;  /* If !msg_is_symbolic. */
3736    char *name;             /* If msg_is_symbolic. */
3737  } msg;
3738  union {
3739    const upb_def *def;  /* If !subdef_is_symbolic. */
3740    char *name;          /* If subdef_is_symbolic. */
3741  } sub;  /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
3742  bool subdef_is_symbolic;
3743  bool msg_is_symbolic;
3744  const upb_oneofdef *oneof;
3745  bool default_is_string;
3746  bool type_is_set_;     /* False until type is explicitly set. */
3747  bool is_extension_;
3748  bool lazy_;
3749  bool packed_;
3750  upb_intfmt_t intfmt;
3751  bool tagdelim;
3752  upb_fieldtype_t type_;
3753  upb_label_t label_;
3754  uint32_t number_;
3755  uint32_t selector_base;  /* Used to index into a upb::Handlers table. */
3756  uint32_t index_;
3757};
3758
3759extern const struct upb_refcounted_vtbl upb_fielddef_vtbl;
3760
3761#define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy,   \
3762                          packed, name, num, msgdef, subdef, selector_base,    \
3763                          index, defaultval, refs, ref2s)                      \
3764  {                                                                            \
3765    UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s),        \
3766        defaultval, {msgdef}, {subdef}, NULL, false, false,                    \
3767        type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
3768        lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
3769  }
3770
3771
3772/* upb_msgdef *****************************************************************/
3773
3774struct upb_msgdef {
3775  upb_def base;
3776
3777  size_t selector_count;
3778  uint32_t submsg_field_count;
3779
3780  /* Tables for looking up fields by number and name. */
3781  upb_inttable itof;  /* int to field */
3782  upb_strtable ntof;  /* name to field/oneof */
3783
3784  /* Is this a map-entry message? */
3785  bool map_entry;
3786
3787  /* Whether this message has proto2 or proto3 semantics. */
3788  upb_syntax_t syntax;
3789
3790  /* TODO(haberman): proper extension ranges (there can be multiple). */
3791};
3792
3793extern const struct upb_refcounted_vtbl upb_msgdef_vtbl;
3794
3795/* TODO: also support static initialization of the oneofs table. This will be
3796 * needed if we compile in descriptors that contain oneofs. */
3797#define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
3798                        map_entry, syntax, refs, ref2s)                       \
3799  {                                                                           \
3800    UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s),         \
3801        selector_count, submsg_field_count, itof, ntof, map_entry, syntax     \
3802  }
3803
3804
3805/* upb_enumdef ****************************************************************/
3806
3807struct upb_enumdef {
3808  upb_def base;
3809
3810  upb_strtable ntoi;
3811  upb_inttable iton;
3812  int32_t defaultval;
3813};
3814
3815extern const struct upb_refcounted_vtbl upb_enumdef_vtbl;
3816
3817#define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
3818  { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi,    \
3819    iton, defaultval }
3820
3821
3822/* upb_oneofdef ***************************************************************/
3823
3824struct upb_oneofdef {
3825  upb_refcounted base;
3826
3827  const char *name;
3828  upb_strtable ntof;
3829  upb_inttable itof;
3830  const upb_msgdef *parent;
3831};
3832
3833extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl;
3834
3835#define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
3836  { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof }
3837
3838
3839/* upb_symtab *****************************************************************/
3840
3841struct upb_symtab {
3842  upb_refcounted base;
3843
3844  upb_strtable symtab;
3845};
3846
3847struct upb_filedef {
3848  upb_refcounted base;
3849
3850  const char *name;
3851  const char *package;
3852  upb_syntax_t syntax;
3853
3854  upb_inttable defs;
3855  upb_inttable deps;
3856};
3857
3858extern const struct upb_refcounted_vtbl upb_filedef_vtbl;
3859
3860#endif  /* UPB_STATICINIT_H_ */
3861/*
3862** upb::Handlers (upb_handlers)
3863**
3864** A upb_handlers is like a virtual table for a upb_msgdef.  Each field of the
3865** message can have associated functions that will be called when we are
3866** parsing or visiting a stream of data.  This is similar to how handlers work
3867** in SAX (the Simple API for XML).
3868**
3869** The handlers have no idea where the data is coming from, so a single set of
3870** handlers could be used with two completely different data sources (for
3871** example, a parser and a visitor over in-memory objects).  This decoupling is
3872** the most important feature of upb, because it allows parsers and serializers
3873** to be highly reusable.
3874**
3875** This is a mixed C/C++ interface that offers a full API to both languages.
3876** See the top-level README for more information.
3877*/
3878
3879#ifndef UPB_HANDLERS_H
3880#define UPB_HANDLERS_H
3881
3882
3883#ifdef __cplusplus
3884namespace upb {
3885class BufferHandle;
3886class BytesHandler;
3887class HandlerAttributes;
3888class Handlers;
3889template <class T> class Handler;
3890template <class T> struct CanonicalType;
3891}  /* namespace upb */
3892#endif
3893
3894UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
3895UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
3896UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
3897UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
3898                         upb_handlers, upb_refcounted)
3899
3900/* The maximum depth that the handler graph can have.  This is a resource limit
3901 * for the C stack since we sometimes need to recursively traverse the graph.
3902 * Cycles are ok; the traversal will stop when it detects a cycle, but we must
3903 * hit the cycle before the maximum depth is reached.
3904 *
3905 * If having a single static limit is too inflexible, we can add another variant
3906 * of Handlers::Freeze that allows specifying this as a parameter. */
3907#define UPB_MAX_HANDLER_DEPTH 64
3908
3909/* All the different types of handlers that can be registered.
3910 * Only needed for the advanced functions in upb::Handlers. */
3911typedef enum {
3912  UPB_HANDLER_INT32,
3913  UPB_HANDLER_INT64,
3914  UPB_HANDLER_UINT32,
3915  UPB_HANDLER_UINT64,
3916  UPB_HANDLER_FLOAT,
3917  UPB_HANDLER_DOUBLE,
3918  UPB_HANDLER_BOOL,
3919  UPB_HANDLER_STARTSTR,
3920  UPB_HANDLER_STRING,
3921  UPB_HANDLER_ENDSTR,
3922  UPB_HANDLER_STARTSUBMSG,
3923  UPB_HANDLER_ENDSUBMSG,
3924  UPB_HANDLER_STARTSEQ,
3925  UPB_HANDLER_ENDSEQ
3926} upb_handlertype_t;
3927
3928#define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
3929
3930#define UPB_BREAK NULL
3931
3932/* A convenient definition for when no closure is needed. */
3933extern char _upb_noclosure;
3934#define UPB_NO_CLOSURE &_upb_noclosure
3935
3936/* A selector refers to a specific field handler in the Handlers object
3937 * (for example: the STARTSUBMSG handler for field "field15"). */
3938typedef int32_t upb_selector_t;
3939
3940UPB_BEGIN_EXTERN_C
3941
3942/* Forward-declares for C inline accessors.  We need to declare these here
3943 * so we can "friend" them in the class declarations in C++. */
3944UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
3945                                             upb_selector_t s);
3946UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
3947UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
3948                                                   upb_selector_t s);
3949
3950UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
3951UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
3952                                     const void *type);
3953UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
3954                                     size_t ofs);
3955UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
3956UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
3957UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
3958
3959UPB_END_EXTERN_C
3960
3961
3962/* Static selectors for upb::Handlers. */
3963#define UPB_STARTMSG_SELECTOR 0
3964#define UPB_ENDMSG_SELECTOR 1
3965#define UPB_STATIC_SELECTOR_COUNT 2
3966
3967/* Static selectors for upb::BytesHandler. */
3968#define UPB_STARTSTR_SELECTOR 0
3969#define UPB_STRING_SELECTOR 1
3970#define UPB_ENDSTR_SELECTOR 2
3971
3972typedef void upb_handlerfree(void *d);
3973
3974#ifdef __cplusplus
3975
3976/* A set of attributes that accompanies a handler's function pointer. */
3977class upb::HandlerAttributes {
3978 public:
3979  HandlerAttributes();
3980  ~HandlerAttributes();
3981
3982  /* Sets the handler data that will be passed as the second parameter of the
3983   * handler.  To free this pointer when the handlers are freed, call
3984   * Handlers::AddCleanup(). */
3985  bool SetHandlerData(const void *handler_data);
3986  const void* handler_data() const;
3987
3988  /* Use this to specify the type of the closure.  This will be checked against
3989   * all other closure types for handler that use the same closure.
3990   * Registration will fail if this does not match all other non-NULL closure
3991   * types. */
3992  bool SetClosureType(const void *closure_type);
3993  const void* closure_type() const;
3994
3995  /* Use this to specify the type of the returned closure.  Only used for
3996   * Start*{String,SubMessage,Sequence} handlers.  This must match the closure
3997   * type of any handlers that use it (for example, the StringBuf handler must
3998   * match the closure returned from StartString). */
3999  bool SetReturnClosureType(const void *return_closure_type);
4000  const void* return_closure_type() const;
4001
4002  /* Set to indicate that the handler always returns "ok" (either "true" or a
4003   * non-NULL closure).  This is a hint that can allow code generators to
4004   * generate more efficient code. */
4005  bool SetAlwaysOk(bool always_ok);
4006  bool always_ok() const;
4007
4008 private:
4009  friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
4010      const upb_handlerattr *attr);
4011#else
4012struct upb_handlerattr {
4013#endif
4014  const void *handler_data_;
4015  const void *closure_type_;
4016  const void *return_closure_type_;
4017  bool alwaysok_;
4018};
4019
4020#define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
4021
4022typedef struct {
4023  upb_func *func;
4024
4025  /* It is wasteful to include the entire attributes here:
4026   *
4027   * * Some of the information is redundant (like storing the closure type
4028   *   separately for each handler that must match).
4029   * * Some of the info is only needed prior to freeze() (like closure types).
4030   * * alignment padding wastes a lot of space for alwaysok_.
4031   *
4032   * If/when the size and locality of handlers is an issue, we can optimize this
4033   * not to store the entire attr like this.  We do not expose the table's
4034   * layout to allow this optimization in the future. */
4035  upb_handlerattr attr;
4036} upb_handlers_tabent;
4037
4038#ifdef __cplusplus
4039
4040/* Extra information about a buffer that is passed to a StringBuf handler.
4041 * TODO(haberman): allow the handle to be pinned so that it will outlive
4042 * the handler invocation. */
4043class upb::BufferHandle {
4044 public:
4045  BufferHandle();
4046  ~BufferHandle();
4047
4048  /* The beginning of the buffer.  This may be different than the pointer
4049   * passed to a StringBuf handler because the handler may receive data
4050   * that is from the middle or end of a larger buffer. */
4051  const char* buffer() const;
4052
4053  /* The offset within the attached object where this buffer begins.  Only
4054   * meaningful if there is an attached object. */
4055  size_t object_offset() const;
4056
4057  /* Note that object_offset is the offset of "buf" within the attached
4058   * object. */
4059  void SetBuffer(const char* buf, size_t object_offset);
4060
4061  /* The BufferHandle can have an "attached object", which can be used to
4062   * tunnel through a pointer to the buffer's underlying representation. */
4063  template <class T>
4064  void SetAttachedObject(const T* obj);
4065
4066  /* Returns NULL if the attached object is not of this type. */
4067  template <class T>
4068  const T* GetAttachedObject() const;
4069
4070 private:
4071  friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
4072  friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
4073                                                const void *obj,
4074                                                const void *type);
4075  friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
4076                                                const char *buf, size_t ofs);
4077  friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
4078  friend UPB_INLINE const void* ::upb_bufhandle_objtype(
4079      const upb_bufhandle *h);
4080  friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
4081#else
4082struct upb_bufhandle {
4083#endif
4084  const char *buf_;
4085  const void *obj_;
4086  const void *objtype_;
4087  size_t objofs_;
4088};
4089
4090#ifdef __cplusplus
4091
4092/* A upb::Handlers object represents the set of handlers associated with a
4093 * message in the graph of messages.  You can think of it as a big virtual
4094 * table with functions corresponding to all the events that can fire while
4095 * parsing or visiting a message of a specific type.
4096 *
4097 * Any handlers that are not set behave as if they had successfully consumed
4098 * the value.  Any unset Start* handlers will propagate their closure to the
4099 * inner frame.
4100 *
4101 * The easiest way to create the *Handler objects needed by the Set* methods is
4102 * with the UpbBind() and UpbMakeHandler() macros; see below. */
4103class upb::Handlers {
4104 public:
4105  typedef upb_selector_t Selector;
4106  typedef upb_handlertype_t Type;
4107
4108  typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
4109  typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
4110  typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
4111  typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
4112  typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
4113  typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
4114                             const BufferHandle *)> StringHandler;
4115
4116  template <class T> struct ValueHandler {
4117    typedef Handler<bool(*)(void *, const void *, T)> H;
4118  };
4119
4120  typedef ValueHandler<int32_t>::H     Int32Handler;
4121  typedef ValueHandler<int64_t>::H     Int64Handler;
4122  typedef ValueHandler<uint32_t>::H    UInt32Handler;
4123  typedef ValueHandler<uint64_t>::H    UInt64Handler;
4124  typedef ValueHandler<float>::H       FloatHandler;
4125  typedef ValueHandler<double>::H      DoubleHandler;
4126  typedef ValueHandler<bool>::H        BoolHandler;
4127
4128  /* Any function pointer can be converted to this and converted back to its
4129   * correct type. */
4130  typedef void GenericFunction();
4131
4132  typedef void HandlersCallback(const void *closure, upb_handlers *h);
4133
4134  /* Returns a new handlers object for the given frozen msgdef.
4135   * Returns NULL if memory allocation failed. */
4136  static reffed_ptr<Handlers> New(const MessageDef *m);
4137
4138  /* Convenience function for registering a graph of handlers that mirrors the
4139   * graph of msgdefs for some message.  For "m" and all its children a new set
4140   * of handlers will be created and the given callback will be invoked,
4141   * allowing the client to register handlers for this message.  Note that any
4142   * subhandlers set by the callback will be overwritten. */
4143  static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
4144                                              HandlersCallback *callback,
4145                                              const void *closure);
4146
4147  /* Functionality from upb::RefCounted. */
4148  UPB_REFCOUNTED_CPPMETHODS
4149
4150  /* All handler registration functions return bool to indicate success or
4151   * failure; details about failures are stored in this status object.  If a
4152   * failure does occur, it must be cleared before the Handlers are frozen,
4153   * otherwise the freeze() operation will fail.  The functions may *only* be
4154   * used while the Handlers are mutable. */
4155  const Status* status();
4156  void ClearError();
4157
4158  /* Call to freeze these Handlers.  Requires that any SubHandlers are already
4159   * frozen.  For cycles, you must use the static version below and freeze the
4160   * whole graph at once. */
4161  bool Freeze(Status* s);
4162
4163  /* Freezes the given set of handlers.  You may not freeze a handler without
4164   * also freezing any handlers they point to. */
4165  static bool Freeze(Handlers*const* handlers, int n, Status* s);
4166  static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
4167
4168  /* Returns the msgdef associated with this handlers object. */
4169  const MessageDef* message_def() const;
4170
4171  /* Adds the given pointer and function to the list of cleanup functions that
4172   * will be run when these handlers are freed.  If this pointer has previously
4173   * been registered, the function returns false and does nothing. */
4174  bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
4175
4176  /* Sets the startmsg handler for the message, which is defined as follows:
4177   *
4178   *   bool startmsg(MyType* closure) {
4179   *     // Called when the message begins.  Returns true if processing should
4180   *     // continue.
4181   *     return true;
4182   *   }
4183   */
4184  bool SetStartMessageHandler(const StartMessageHandler& handler);
4185
4186  /* Sets the endmsg handler for the message, which is defined as follows:
4187   *
4188   *   bool endmsg(MyType* closure, upb_status *status) {
4189   *     // Called when processing of this message ends, whether in success or
4190   *     // failure.  "status" indicates the final status of processing, and
4191   *     // can also be modified in-place to update the final status.
4192   *   }
4193   */
4194  bool SetEndMessageHandler(const EndMessageHandler& handler);
4195
4196  /* Sets the value handler for the given field, which is defined as follows
4197   * (this is for an int32 field; other field types will pass their native
4198   * C/C++ type for "val"):
4199   *
4200   *   bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
4201   *     // Called when the field's value is encountered.  "d" contains
4202   *     // whatever data was bound to this field when it was registered.
4203   *     // Returns true if processing should continue.
4204   *     return true;
4205   *   }
4206   *
4207   *   handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
4208   *
4209   * The value type must exactly match f->type().
4210   * For example, a handler that takes an int32_t parameter may only be used for
4211   * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
4212   *
4213   * Returns false if the handler failed to register; in this case the cleanup
4214   * handler (if any) will be called immediately.
4215   */
4216  bool SetInt32Handler (const FieldDef* f,  const Int32Handler& h);
4217  bool SetInt64Handler (const FieldDef* f,  const Int64Handler& h);
4218  bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
4219  bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
4220  bool SetFloatHandler (const FieldDef* f,  const FloatHandler& h);
4221  bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
4222  bool SetBoolHandler  (const FieldDef* f,   const BoolHandler& h);
4223
4224  /* Like the previous, but templated on the type on the value (ie. int32).
4225   * This is mostly useful to call from other templates.  To call this you must
4226   * specify the template parameter explicitly, ie:
4227   *   h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
4228  template <class T>
4229  bool SetValueHandler(
4230      const FieldDef *f,
4231      const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
4232
4233  /* Sets handlers for a string field, which are defined as follows:
4234   *
4235   *   MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
4236   *                          size_t size_hint) {
4237   *     // Called when a string value begins.  The return value indicates the
4238   *     // closure for the string.  "size_hint" indicates the size of the
4239   *     // string if it is known, however if the string is length-delimited
4240   *     // and the end-of-string is not available size_hint will be zero.
4241   *     // This case is indistinguishable from the case where the size is
4242   *     // known to be zero.
4243   *     //
4244   *     // TODO(haberman): is it important to distinguish these cases?
4245   *     // If we had ssize_t as a type we could make -1 "unknown", but
4246   *     // ssize_t is POSIX (not ANSI) and therefore less portable.
4247   *     // In practice I suspect it won't be important to distinguish.
4248   *     return closure;
4249   *   }
4250   *
4251   *   size_t str(MyClosure* closure, const MyHandlerData* d,
4252   *              const char *str, size_t len) {
4253   *     // Called for each buffer of string data; the multiple physical buffers
4254   *     // are all part of the same logical string.  The return value indicates
4255   *     // how many bytes were consumed.  If this number is less than "len",
4256   *     // this will also indicate that processing should be halted for now,
4257   *     // like returning false or UPB_BREAK from any other callback.  If
4258   *     // number is greater than "len", the excess bytes will be skipped over
4259   *     // and not passed to the callback.
4260   *     return len;
4261   *   }
4262   *
4263   *   bool endstr(MyClosure* c, const MyHandlerData* d) {
4264   *     // Called when a string value ends.  Return value indicates whether
4265   *     // processing should continue.
4266   *     return true;
4267   *   }
4268   */
4269  bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
4270  bool SetStringHandler(const FieldDef* f, const StringHandler& h);
4271  bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
4272
4273  /* Sets the startseq handler, which is defined as follows:
4274   *
4275   *   MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
4276   *     // Called when a sequence (repeated field) begins.  The returned
4277   *     // pointer indicates the closure for the sequence (or UPB_BREAK
4278   *     // to interrupt processing).
4279   *     return closure;
4280   *   }
4281   *
4282   *   h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
4283   *
4284   * Returns "false" if "f" does not belong to this message or is not a
4285   * repeated field.
4286   */
4287  bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
4288
4289  /* Sets the startsubmsg handler for the given field, which is defined as
4290   * follows:
4291   *
4292   *   MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
4293   *     // Called when a submessage begins.  The returned pointer indicates the
4294   *     // closure for the sequence (or UPB_BREAK to interrupt processing).
4295   *     return closure;
4296   *   }
4297   *
4298   *   h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
4299   *                                           new MyHandlerData(...)));
4300   *
4301   * Returns "false" if "f" does not belong to this message or is not a
4302   * submessage/group field.
4303   */
4304  bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
4305
4306  /* Sets the endsubmsg handler for the given field, which is defined as
4307   * follows:
4308   *
4309   *   bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
4310   *     // Called when a submessage ends.  Returns true to continue processing.
4311   *     return true;
4312   *   }
4313   *
4314   * Returns "false" if "f" does not belong to this message or is not a
4315   * submessage/group field.
4316   */
4317  bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
4318
4319  /* Starts the endsubseq handler for the given field, which is defined as
4320   * follows:
4321   *
4322   *   bool endseq(MyClosure* c, const MyHandlerData* d) {
4323   *     // Called when a sequence ends.  Returns true continue processing.
4324   *     return true;
4325   *   }
4326   *
4327   * Returns "false" if "f" does not belong to this message or is not a
4328   * repeated field.
4329   */
4330  bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
4331
4332  /* Sets or gets the object that specifies handlers for the given field, which
4333   * must be a submessage or group.  Returns NULL if no handlers are set. */
4334  bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
4335  const Handlers* GetSubHandlers(const FieldDef* f) const;
4336
4337  /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
4338   * field. */
4339  const Handlers* GetSubHandlers(Selector startsubmsg) const;
4340
4341  /* A selector refers to a specific field handler in the Handlers object
4342   * (for example: the STARTSUBMSG handler for field "field15").
4343   * On success, returns true and stores the selector in "s".
4344   * If the FieldDef or Type are invalid, returns false.
4345   * The returned selector is ONLY valid for Handlers whose MessageDef
4346   * contains this FieldDef. */
4347  static bool GetSelector(const FieldDef* f, Type type, Selector* s);
4348
4349  /* Given a START selector of any kind, returns the corresponding END selector. */
4350  static Selector GetEndSelector(Selector start_selector);
4351
4352  /* Returns the function pointer for this handler.  It is the client's
4353   * responsibility to cast to the correct function type before calling it. */
4354  GenericFunction* GetHandler(Selector selector);
4355
4356  /* Sets the given attributes to the attributes for this selector. */
4357  bool GetAttributes(Selector selector, HandlerAttributes* attr);
4358
4359  /* Returns the handler data that was registered with this handler. */
4360  const void* GetHandlerData(Selector selector);
4361
4362  /* Could add any of the following functions as-needed, with some minor
4363   * implementation changes:
4364   *
4365   * const FieldDef* GetFieldDef(Selector selector);
4366   * static bool IsSequence(Selector selector); */
4367
4368 private:
4369  UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
4370
4371  friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
4372      const upb_handlers *h, upb_selector_t s);
4373  friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
4374      const upb_handlers *h, upb_selector_t s);
4375#else
4376struct upb_handlers {
4377#endif
4378  upb_refcounted base;
4379
4380  const upb_msgdef *msg;
4381  const upb_handlers **sub;
4382  const void *top_closure_type;
4383  upb_inttable cleanup_;
4384  upb_status status_;  /* Used only when mutable. */
4385  upb_handlers_tabent table[1];  /* Dynamically-sized field handler array. */
4386};
4387
4388#ifdef __cplusplus
4389
4390namespace upb {
4391
4392/* Convenience macros for creating a Handler object that is wrapped with a
4393 * type-safe wrapper function that converts the "void*" parameters/returns
4394 * of the underlying C API into nice C++ function.
4395 *
4396 * Sample usage:
4397 *   void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
4398 *     // do stuff ...
4399 *   }
4400 *
4401 *   // Handler that doesn't need any data bound to it.
4402 *   void OnValue2(MyClosure* c, int32_t val) {
4403 *     // do stuff ...
4404 *   }
4405 *
4406 *   // Handler that returns bool so it can return failure if necessary.
4407 *   bool OnValue3(MyClosure* c, int32_t val) {
4408 *     // do stuff ...
4409 *     return ok;
4410 *   }
4411 *
4412 *   // Member function handler.
4413 *   class MyClosure {
4414 *    public:
4415 *     void OnValue(int32_t val) {
4416 *       // do stuff ...
4417 *     }
4418 *   };
4419 *
4420 *   // Takes ownership of the MyHandlerData.
4421 *   handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
4422 *   handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
4423 *   handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
4424 *   handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
4425 */
4426
4427#ifdef UPB_CXX11
4428
4429/* In C++11, the "template" disambiguator can appear even outside templates,
4430 * so all calls can safely use this pair of macros. */
4431
4432#define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
4433
4434/* We have to be careful to only evaluate "d" once. */
4435#define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4436
4437#else
4438
4439/* Prior to C++11, the "template" disambiguator may only appear inside a
4440 * template, so the regular macro must not use "template" */
4441
4442#define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
4443
4444#define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
4445
4446#endif  /* UPB_CXX11 */
4447
4448/* This macro must be used in C++98 for calls from inside a template.  But we
4449 * define this variant in all cases; code that wants to be compatible with both
4450 * C++98 and C++11 should always use this macro when calling from a template. */
4451#define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
4452
4453/* We have to be careful to only evaluate "d" once. */
4454#define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4455
4456/* Handler: a struct that contains the (handler, data, deleter) tuple that is
4457 * used to register all handlers.  Users can Make() these directly but it's
4458 * more convenient to use the UpbMakeHandler/UpbBind macros above. */
4459template <class T> class Handler {
4460 public:
4461  /* The underlying, handler function signature that upb uses internally. */
4462  typedef T FuncPtr;
4463
4464  /* Intentionally implicit. */
4465  template <class F> Handler(F func);
4466  ~Handler();
4467
4468 private:
4469  void AddCleanup(Handlers* h) const {
4470    if (cleanup_func_) {
4471      bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
4472      UPB_ASSERT_VAR(ok, ok);
4473    }
4474  }
4475
4476  UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
4477  friend class Handlers;
4478  FuncPtr handler_;
4479  mutable HandlerAttributes attr_;
4480  mutable bool registered_;
4481  void *cleanup_data_;
4482  upb_handlerfree *cleanup_func_;
4483};
4484
4485}  /* namespace upb */
4486
4487#endif  /* __cplusplus */
4488
4489UPB_BEGIN_EXTERN_C
4490
4491/* Native C API. */
4492
4493/* Handler function typedefs. */
4494typedef bool upb_startmsg_handlerfunc(void *c, const void*);
4495typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
4496typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
4497typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
4498typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
4499typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
4500typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
4501typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
4502typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
4503typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
4504typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
4505typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
4506                                       size_t size_hint);
4507typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
4508                                      size_t n, const upb_bufhandle* handle);
4509
4510/* upb_bufhandle */
4511size_t upb_bufhandle_objofs(const upb_bufhandle *h);
4512
4513/* upb_handlerattr */
4514void upb_handlerattr_init(upb_handlerattr *attr);
4515void upb_handlerattr_uninit(upb_handlerattr *attr);
4516
4517bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
4518bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
4519const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
4520bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
4521                                          const void *type);
4522const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
4523bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
4524bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
4525
4526UPB_INLINE const void *upb_handlerattr_handlerdata(
4527    const upb_handlerattr *attr) {
4528  return attr->handler_data_;
4529}
4530
4531/* upb_handlers */
4532typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
4533upb_handlers *upb_handlers_new(const upb_msgdef *m,
4534                               const void *owner);
4535const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
4536                                           const void *owner,
4537                                           upb_handlers_callback *callback,
4538                                           const void *closure);
4539
4540/* Include refcounted methods like upb_handlers_ref(). */
4541UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
4542
4543const upb_status *upb_handlers_status(upb_handlers *h);
4544void upb_handlers_clearerr(upb_handlers *h);
4545const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
4546bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
4547
4548bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
4549                              upb_handlerattr *attr);
4550bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
4551                            upb_handlerattr *attr);
4552bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
4553                           upb_int32_handlerfunc *func, upb_handlerattr *attr);
4554bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
4555                           upb_int64_handlerfunc *func, upb_handlerattr *attr);
4556bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
4557                            upb_uint32_handlerfunc *func,
4558                            upb_handlerattr *attr);
4559bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
4560                            upb_uint64_handlerfunc *func,
4561                            upb_handlerattr *attr);
4562bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
4563                           upb_float_handlerfunc *func, upb_handlerattr *attr);
4564bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
4565                            upb_double_handlerfunc *func,
4566                            upb_handlerattr *attr);
4567bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
4568                          upb_bool_handlerfunc *func,
4569                          upb_handlerattr *attr);
4570bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
4571                              upb_startstr_handlerfunc *func,
4572                              upb_handlerattr *attr);
4573bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
4574                            upb_string_handlerfunc *func,
4575                            upb_handlerattr *attr);
4576bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
4577                            upb_endfield_handlerfunc *func,
4578                            upb_handlerattr *attr);
4579bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
4580                              upb_startfield_handlerfunc *func,
4581                              upb_handlerattr *attr);
4582bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
4583                                 upb_startfield_handlerfunc *func,
4584                                 upb_handlerattr *attr);
4585bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
4586                               upb_endfield_handlerfunc *func,
4587                               upb_handlerattr *attr);
4588bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
4589                            upb_endfield_handlerfunc *func,
4590                            upb_handlerattr *attr);
4591
4592bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
4593                                 const upb_handlers *sub);
4594const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
4595                                                const upb_fielddef *f);
4596const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
4597                                                    upb_selector_t sel);
4598
4599UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
4600                                             upb_selector_t s) {
4601  return (upb_func *)h->table[s].func;
4602}
4603
4604bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
4605                          upb_handlerattr *attr);
4606
4607UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
4608                                                   upb_selector_t s) {
4609  return upb_handlerattr_handlerdata(&h->table[s].attr);
4610}
4611
4612#ifdef __cplusplus
4613
4614/* Handler types for single fields.
4615 * Right now we only have one for TYPE_BYTES but ones for other types
4616 * should follow.
4617 *
4618 * These follow the same handlers protocol for fields of a message. */
4619class upb::BytesHandler {
4620 public:
4621  BytesHandler();
4622  ~BytesHandler();
4623#else
4624struct upb_byteshandler {
4625#endif
4626  upb_handlers_tabent table[3];
4627};
4628
4629void upb_byteshandler_init(upb_byteshandler *h);
4630
4631/* Caller must ensure that "d" outlives the handlers.
4632 * TODO(haberman): should this have a "freeze" operation?  It's not necessary
4633 * for memory management, but could be useful to force immutability and provide
4634 * a convenient moment to verify that all registration succeeded. */
4635bool upb_byteshandler_setstartstr(upb_byteshandler *h,
4636                                  upb_startstr_handlerfunc *func, void *d);
4637bool upb_byteshandler_setstring(upb_byteshandler *h,
4638                                upb_string_handlerfunc *func, void *d);
4639bool upb_byteshandler_setendstr(upb_byteshandler *h,
4640                                upb_endfield_handlerfunc *func, void *d);
4641
4642/* "Static" methods */
4643bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
4644upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
4645bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
4646                              upb_selector_t *s);
4647UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
4648  return start + 1;
4649}
4650
4651/* Internal-only. */
4652uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
4653uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
4654
4655UPB_END_EXTERN_C
4656
4657/*
4658** Inline definitions for handlers.h, which are particularly long and a bit
4659** tricky.
4660*/
4661
4662#ifndef UPB_HANDLERS_INL_H_
4663#define UPB_HANDLERS_INL_H_
4664
4665#include <limits.h>
4666
4667/* C inline methods. */
4668
4669/* upb_bufhandle */
4670UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
4671  h->obj_ = NULL;
4672  h->objtype_ = NULL;
4673  h->buf_ = NULL;
4674  h->objofs_ = 0;
4675}
4676UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
4677  UPB_UNUSED(h);
4678}
4679UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
4680                                     const void *type) {
4681  h->obj_ = obj;
4682  h->objtype_ = type;
4683}
4684UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
4685                                     size_t ofs) {
4686  h->buf_ = buf;
4687  h->objofs_ = ofs;
4688}
4689UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
4690  return h->obj_;
4691}
4692UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
4693  return h->objtype_;
4694}
4695UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
4696  return h->buf_;
4697}
4698
4699
4700#ifdef __cplusplus
4701
4702/* Type detection and typedefs for integer types.
4703 * For platforms where there are multiple 32-bit or 64-bit types, we need to be
4704 * able to enumerate them so we can properly create overloads for all variants.
4705 *
4706 * If any platform existed where there were three integer types with the same
4707 * size, this would have to become more complicated.  For example, short, int,
4708 * and long could all be 32-bits.  Even more diabolically, short, int, long,
4709 * and long long could all be 64 bits and still be standard-compliant.
4710 * However, few platforms are this strange, and it's unlikely that upb will be
4711 * used on the strangest ones. */
4712
4713/* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
4714 * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
4715 * of stdint.h.  We can't guarantee that someone else didn't include these first
4716 * without defining __STDC_LIMIT_MACROS. */
4717#define UPB_INT32_MAX 0x7fffffffLL
4718#define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
4719#define UPB_INT64_MAX 0x7fffffffffffffffLL
4720#define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
4721
4722#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
4723#define UPB_INT_IS_32BITS 1
4724#endif
4725
4726#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
4727#define UPB_LONG_IS_32BITS 1
4728#endif
4729
4730#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
4731#define UPB_LONG_IS_64BITS 1
4732#endif
4733
4734#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
4735#define UPB_LLONG_IS_64BITS 1
4736#endif
4737
4738/* We use macros instead of typedefs so we can undefine them later and avoid
4739 * leaking them outside this header file. */
4740#if UPB_INT_IS_32BITS
4741#define UPB_INT32_T int
4742#define UPB_UINT32_T unsigned int
4743
4744#if UPB_LONG_IS_32BITS
4745#define UPB_TWO_32BIT_TYPES 1
4746#define UPB_INT32ALT_T long
4747#define UPB_UINT32ALT_T unsigned long
4748#endif  /* UPB_LONG_IS_32BITS */
4749
4750#elif UPB_LONG_IS_32BITS  /* && !UPB_INT_IS_32BITS */
4751#define UPB_INT32_T long
4752#define UPB_UINT32_T unsigned long
4753#endif  /* UPB_INT_IS_32BITS */
4754
4755
4756#if UPB_LONG_IS_64BITS
4757#define UPB_INT64_T long
4758#define UPB_UINT64_T unsigned long
4759
4760#if UPB_LLONG_IS_64BITS
4761#define UPB_TWO_64BIT_TYPES 1
4762#define UPB_INT64ALT_T long long
4763#define UPB_UINT64ALT_T unsigned long long
4764#endif  /* UPB_LLONG_IS_64BITS */
4765
4766#elif UPB_LLONG_IS_64BITS  /* && !UPB_LONG_IS_64BITS */
4767#define UPB_INT64_T long long
4768#define UPB_UINT64_T unsigned long long
4769#endif  /* UPB_LONG_IS_64BITS */
4770
4771#undef UPB_INT32_MAX
4772#undef UPB_INT32_MIN
4773#undef UPB_INT64_MAX
4774#undef UPB_INT64_MIN
4775#undef UPB_INT_IS_32BITS
4776#undef UPB_LONG_IS_32BITS
4777#undef UPB_LONG_IS_64BITS
4778#undef UPB_LLONG_IS_64BITS
4779
4780
4781namespace upb {
4782
4783typedef void CleanupFunc(void *ptr);
4784
4785/* Template to remove "const" from "const T*" and just return "T*".
4786 *
4787 * We define a nonsense default because otherwise it will fail to instantiate as
4788 * a function parameter type even in cases where we don't expect any caller to
4789 * actually match the overload. */
4790class CouldntRemoveConst {};
4791template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
4792template <class T> struct remove_constptr<const T *> { typedef T *type; };
4793
4794/* Template that we use below to remove a template specialization from
4795 * consideration if it matches a specific type. */
4796template <class T, class U> struct disable_if_same { typedef void Type; };
4797template <class T> struct disable_if_same<T, T> {};
4798
4799template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
4800
4801template <class T1, class T2>
4802struct FirstUnlessVoidOrBool {
4803  typedef T1 value;
4804};
4805
4806template <class T2>
4807struct FirstUnlessVoidOrBool<void, T2> {
4808  typedef T2 value;
4809};
4810
4811template <class T2>
4812struct FirstUnlessVoidOrBool<bool, T2> {
4813  typedef T2 value;
4814};
4815
4816template<class T, class U>
4817struct is_same {
4818  static bool value;
4819};
4820
4821template<class T>
4822struct is_same<T, T> {
4823  static bool value;
4824};
4825
4826template<class T, class U>
4827bool is_same<T, U>::value = false;
4828
4829template<class T>
4830bool is_same<T, T>::value = true;
4831
4832/* FuncInfo *******************************************************************/
4833
4834/* Info about the user's original, pre-wrapped function. */
4835template <class C, class R = void>
4836struct FuncInfo {
4837  /* The type of the closure that the function takes (its first param). */
4838  typedef C Closure;
4839
4840  /* The return type. */
4841  typedef R Return;
4842};
4843
4844/* Func ***********************************************************************/
4845
4846/* Func1, Func2, Func3: Template classes representing a function and its
4847 * signature.
4848 *
4849 * Since the function is a template parameter, calling the function can be
4850 * inlined at compile-time and does not require a function pointer at runtime.
4851 * These functions are not bound to a handler data so have no data or cleanup
4852 * handler. */
4853struct UnboundFunc {
4854  CleanupFunc *GetCleanup() { return NULL; }
4855  void *GetData() { return NULL; }
4856};
4857
4858template <class R, class P1, R F(P1), class I>
4859struct Func1 : public UnboundFunc {
4860  typedef R Return;
4861  typedef I FuncInfo;
4862  static R Call(P1 p1) { return F(p1); }
4863};
4864
4865template <class R, class P1, class P2, R F(P1, P2), class I>
4866struct Func2 : public UnboundFunc {
4867  typedef R Return;
4868  typedef I FuncInfo;
4869  static R Call(P1 p1, P2 p2) { return F(p1, p2); }
4870};
4871
4872template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4873struct Func3 : public UnboundFunc {
4874  typedef R Return;
4875  typedef I FuncInfo;
4876  static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
4877};
4878
4879template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4880          class I>
4881struct Func4 : public UnboundFunc {
4882  typedef R Return;
4883  typedef I FuncInfo;
4884  static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
4885};
4886
4887template <class R, class P1, class P2, class P3, class P4, class P5,
4888          R F(P1, P2, P3, P4, P5), class I>
4889struct Func5 : public UnboundFunc {
4890  typedef R Return;
4891  typedef I FuncInfo;
4892  static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
4893    return F(p1, p2, p3, p4, p5);
4894  }
4895};
4896
4897/* BoundFunc ******************************************************************/
4898
4899/* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
4900 * shall be bound to the function's second parameter.
4901 *
4902 * Note that the second parameter is a const pointer, but our stored bound value
4903 * is non-const so we can free it when the handlers are destroyed. */
4904template <class T>
4905struct BoundFunc {
4906  typedef typename remove_constptr<T>::type MutableP2;
4907  explicit BoundFunc(MutableP2 data_) : data(data_) {}
4908  CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
4909  MutableP2 GetData() { return data; }
4910  MutableP2 data;
4911};
4912
4913template <class R, class P1, class P2, R F(P1, P2), class I>
4914struct BoundFunc2 : public BoundFunc<P2> {
4915  typedef BoundFunc<P2> Base;
4916  typedef I FuncInfo;
4917  explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
4918};
4919
4920template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4921struct BoundFunc3 : public BoundFunc<P2> {
4922  typedef BoundFunc<P2> Base;
4923  typedef I FuncInfo;
4924  explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
4925};
4926
4927template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4928          class I>
4929struct BoundFunc4 : public BoundFunc<P2> {
4930  typedef BoundFunc<P2> Base;
4931  typedef I FuncInfo;
4932  explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
4933};
4934
4935template <class R, class P1, class P2, class P3, class P4, class P5,
4936          R F(P1, P2, P3, P4, P5), class I>
4937struct BoundFunc5 : public BoundFunc<P2> {
4938  typedef BoundFunc<P2> Base;
4939  typedef I FuncInfo;
4940  explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
4941};
4942
4943/* FuncSig ********************************************************************/
4944
4945/* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
4946 * *signature*, but without a specific function attached.
4947 *
4948 * These classes contain member functions that can be invoked with a
4949 * specific function to return a Func/BoundFunc class. */
4950template <class R, class P1>
4951struct FuncSig1 {
4952  template <R F(P1)>
4953  Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
4954    return Func1<R, P1, F, FuncInfo<P1, R> >();
4955  }
4956};
4957
4958template <class R, class P1, class P2>
4959struct FuncSig2 {
4960  template <R F(P1, P2)>
4961  Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
4962    return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
4963  }
4964
4965  template <R F(P1, P2)>
4966  BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
4967      typename remove_constptr<P2>::type param2) {
4968    return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
4969  }
4970};
4971
4972template <class R, class P1, class P2, class P3>
4973struct FuncSig3 {
4974  template <R F(P1, P2, P3)>
4975  Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
4976    return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
4977  }
4978
4979  template <R F(P1, P2, P3)>
4980  BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
4981      typename remove_constptr<P2>::type param2) {
4982    return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
4983  }
4984};
4985
4986template <class R, class P1, class P2, class P3, class P4>
4987struct FuncSig4 {
4988  template <R F(P1, P2, P3, P4)>
4989  Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
4990    return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
4991  }
4992
4993  template <R F(P1, P2, P3, P4)>
4994  BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
4995      typename remove_constptr<P2>::type param2) {
4996    return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
4997  }
4998};
4999
5000template <class R, class P1, class P2, class P3, class P4, class P5>
5001struct FuncSig5 {
5002  template <R F(P1, P2, P3, P4, P5)>
5003  Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
5004    return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
5005  }
5006
5007  template <R F(P1, P2, P3, P4, P5)>
5008  BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
5009      typename remove_constptr<P2>::type param2) {
5010    return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
5011  }
5012};
5013
5014/* Overloaded template function that can construct the appropriate FuncSig*
5015 * class given a function pointer by deducing the template parameters. */
5016template <class R, class P1>
5017inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
5018  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5019  return FuncSig1<R, P1>();
5020}
5021
5022template <class R, class P1, class P2>
5023inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
5024  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5025  return FuncSig2<R, P1, P2>();
5026}
5027
5028template <class R, class P1, class P2, class P3>
5029inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
5030  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5031  return FuncSig3<R, P1, P2, P3>();
5032}
5033
5034template <class R, class P1, class P2, class P3, class P4>
5035inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
5036  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5037  return FuncSig4<R, P1, P2, P3, P4>();
5038}
5039
5040template <class R, class P1, class P2, class P3, class P4, class P5>
5041inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
5042  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5043  return FuncSig5<R, P1, P2, P3, P4, P5>();
5044}
5045
5046/* MethodSig ******************************************************************/
5047
5048/* CallMethod*: a function template that calls a given method. */
5049template <class R, class C, R (C::*F)()>
5050R CallMethod0(C *obj) {
5051  return ((*obj).*F)();
5052}
5053
5054template <class R, class C, class P1, R (C::*F)(P1)>
5055R CallMethod1(C *obj, P1 arg1) {
5056  return ((*obj).*F)(arg1);
5057}
5058
5059template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
5060R CallMethod2(C *obj, P1 arg1, P2 arg2) {
5061  return ((*obj).*F)(arg1, arg2);
5062}
5063
5064template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
5065R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
5066  return ((*obj).*F)(arg1, arg2, arg3);
5067}
5068
5069template <class R, class C, class P1, class P2, class P3, class P4,
5070          R (C::*F)(P1, P2, P3, P4)>
5071R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
5072  return ((*obj).*F)(arg1, arg2, arg3, arg4);
5073}
5074
5075/* MethodSig: like FuncSig, but for member functions.
5076 *
5077 * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
5078 * more logic is required to special-case methods. */
5079template <class R, class C>
5080struct MethodSig0 {
5081  template <R (C::*F)()>
5082  Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
5083    return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
5084  }
5085};
5086
5087template <class R, class C, class P1>
5088struct MethodSig1 {
5089  template <R (C::*F)(P1)>
5090  Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
5091    return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
5092  }
5093
5094  template <R (C::*F)(P1)>
5095  BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
5096      typename remove_constptr<P1>::type param1) {
5097    return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
5098        param1);
5099  }
5100};
5101
5102template <class R, class C, class P1, class P2>
5103struct MethodSig2 {
5104  template <R (C::*F)(P1, P2)>
5105  Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5106  GetFunc() {
5107    return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5108                 FuncInfo<C *, R> >();
5109  }
5110
5111  template <R (C::*F)(P1, P2)>
5112  BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5113  GetFunc(typename remove_constptr<P1>::type param1) {
5114    return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5115                      FuncInfo<C *, R> >(param1);
5116  }
5117};
5118
5119template <class R, class C, class P1, class P2, class P3>
5120struct MethodSig3 {
5121  template <R (C::*F)(P1, P2, P3)>
5122  Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
5123  GetFunc() {
5124    return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5125                 FuncInfo<C *, R> >();
5126  }
5127
5128  template <R (C::*F)(P1, P2, P3)>
5129  BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5130             FuncInfo<C *, R> >
5131  GetFunc(typename remove_constptr<P1>::type param1) {
5132    return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5133                      FuncInfo<C *, R> >(param1);
5134  }
5135};
5136
5137template <class R, class C, class P1, class P2, class P3, class P4>
5138struct MethodSig4 {
5139  template <R (C::*F)(P1, P2, P3, P4)>
5140  Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5141        FuncInfo<C *, R> >
5142  GetFunc() {
5143    return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5144                 FuncInfo<C *, R> >();
5145  }
5146
5147  template <R (C::*F)(P1, P2, P3, P4)>
5148  BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5149             FuncInfo<C *, R> >
5150  GetFunc(typename remove_constptr<P1>::type param1) {
5151    return BoundFunc5<R, C *, P1, P2, P3, P4,
5152                      CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
5153        param1);
5154  }
5155};
5156
5157template <class R, class C>
5158inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
5159  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5160  return MethodSig0<R, C>();
5161}
5162
5163template <class R, class C, class P1>
5164inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
5165  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5166  return MethodSig1<R, C, P1>();
5167}
5168
5169template <class R, class C, class P1, class P2>
5170inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
5171  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5172  return MethodSig2<R, C, P1, P2>();
5173}
5174
5175template <class R, class C, class P1, class P2, class P3>
5176inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
5177  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5178  return MethodSig3<R, C, P1, P2, P3>();
5179}
5180
5181template <class R, class C, class P1, class P2, class P3, class P4>
5182inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
5183  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5184  return MethodSig4<R, C, P1, P2, P3, P4>();
5185}
5186
5187/* MaybeWrapReturn ************************************************************/
5188
5189/* Template class that attempts to wrap the return value of the function so it
5190 * matches the expected type.  There are two main adjustments it may make:
5191 *
5192 *   1. If the function returns void, make it return the expected type and with
5193 *      a value that always indicates success.
5194 *   2. If the function returns bool, make it return the expected type with a
5195 *      value that indicates success or failure.
5196 *
5197 * The "expected type" for return is:
5198 *   1. void* for start handlers.  If the closure parameter has a different type
5199 *      we will cast it to void* for the return in the success case.
5200 *   2. size_t for string buffer handlers.
5201 *   3. bool for everything else. */
5202
5203/* Template parameters are FuncN type and desired return type. */
5204template <class F, class R, class Enable = void>
5205struct MaybeWrapReturn;
5206
5207/* If the return type matches, return the given function unwrapped. */
5208template <class F>
5209struct MaybeWrapReturn<F, typename F::Return> {
5210  typedef F Func;
5211};
5212
5213/* Function wrapper that munges the return value from void to (bool)true. */
5214template <class P1, class P2, void F(P1, P2)>
5215bool ReturnTrue2(P1 p1, P2 p2) {
5216  F(p1, p2);
5217  return true;
5218}
5219
5220template <class P1, class P2, class P3, void F(P1, P2, P3)>
5221bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
5222  F(p1, p2, p3);
5223  return true;
5224}
5225
5226/* Function wrapper that munges the return value from void to (void*)arg1  */
5227template <class P1, class P2, void F(P1, P2)>
5228void *ReturnClosure2(P1 p1, P2 p2) {
5229  F(p1, p2);
5230  return p1;
5231}
5232
5233template <class P1, class P2, class P3, void F(P1, P2, P3)>
5234void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
5235  F(p1, p2, p3);
5236  return p1;
5237}
5238
5239/* Function wrapper that munges the return value from R to void*. */
5240template <class R, class P1, class P2, R F(P1, P2)>
5241void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
5242  return F(p1, p2);
5243}
5244
5245template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5246void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
5247  return F(p1, p2, p3);
5248}
5249
5250/* Function wrapper that munges the return value from bool to void*. */
5251template <class P1, class P2, bool F(P1, P2)>
5252void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
5253  return F(p1, p2) ? p1 : UPB_BREAK;
5254}
5255
5256template <class P1, class P2, class P3, bool F(P1, P2, P3)>
5257void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
5258  return F(p1, p2, p3) ? p1 : UPB_BREAK;
5259}
5260
5261/* For the string callback, which takes five params, returns the size param. */
5262template <class P1, class P2,
5263          void F(P1, P2, const char *, size_t, const BufferHandle *)>
5264size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
5265                       const BufferHandle *p5) {
5266  F(p1, p2, p3, p4, p5);
5267  return p4;
5268}
5269
5270/* For the string callback, which takes five params, returns the size param or
5271 * zero. */
5272template <class P1, class P2,
5273          bool F(P1, P2, const char *, size_t, const BufferHandle *)>
5274size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
5275                  const BufferHandle *p5) {
5276  return F(p1, p2, p3, p4, p5) ? p4 : 0;
5277}
5278
5279/* If we have a function returning void but want a function returning bool, wrap
5280 * it in a function that returns true. */
5281template <class P1, class P2, void F(P1, P2), class I>
5282struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
5283  typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
5284};
5285
5286template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5287struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
5288  typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
5289};
5290
5291/* If our function returns void but we want one returning void*, wrap it in a
5292 * function that returns the first argument. */
5293template <class P1, class P2, void F(P1, P2), class I>
5294struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
5295  typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
5296};
5297
5298template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5299struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
5300  typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
5301};
5302
5303/* If our function returns R* but we want one returning void*, wrap it in a
5304 * function that casts to void*. */
5305template <class R, class P1, class P2, R *F(P1, P2), class I>
5306struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
5307                       typename disable_if_same<R *, void *>::Type> {
5308  typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
5309};
5310
5311template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
5312struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
5313                       typename disable_if_same<R *, void *>::Type> {
5314  typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
5315      Func;
5316};
5317
5318/* If our function returns bool but we want one returning void*, wrap it in a
5319 * function that returns either the first param or UPB_BREAK. */
5320template <class P1, class P2, bool F(P1, P2), class I>
5321struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
5322  typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
5323};
5324
5325template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
5326struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
5327  typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
5328      Func;
5329};
5330
5331/* If our function returns void but we want one returning size_t, wrap it in a
5332 * function that returns the size argument. */
5333template <class P1, class P2,
5334          void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5335struct MaybeWrapReturn<
5336    Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5337          size_t> {
5338  typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5339                ReturnStringLen<P1, P2, F>, I> Func;
5340};
5341
5342/* If our function returns bool but we want one returning size_t, wrap it in a
5343 * function that returns either 0 or the buf size. */
5344template <class P1, class P2,
5345          bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5346struct MaybeWrapReturn<
5347    Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5348    size_t> {
5349  typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5350                ReturnNOr0<P1, P2, F>, I> Func;
5351};
5352
5353/* ConvertParams **************************************************************/
5354
5355/* Template class that converts the function parameters if necessary, and
5356 * ignores the HandlerData parameter if appropriate.
5357 *
5358 * Template parameter is the are FuncN function type. */
5359template <class F, class T>
5360struct ConvertParams;
5361
5362/* Function that discards the handler data parameter. */
5363template <class R, class P1, R F(P1)>
5364R IgnoreHandlerData2(void *p1, const void *hd) {
5365  UPB_UNUSED(hd);
5366  return F(static_cast<P1>(p1));
5367}
5368
5369template <class R, class P1, class P2Wrapper, class P2Wrapped,
5370          R F(P1, P2Wrapped)>
5371R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
5372  UPB_UNUSED(hd);
5373  return F(static_cast<P1>(p1), p2);
5374}
5375
5376template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5377R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
5378  UPB_UNUSED(hd);
5379  return F(static_cast<P1>(p1), p2, p3);
5380}
5381
5382template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
5383R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
5384  UPB_UNUSED(hd);
5385  return F(static_cast<P1>(p1), p2, p3, p4);
5386}
5387
5388template <class R, class P1, R F(P1, const char*, size_t)>
5389R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
5390                                size_t p3, const BufferHandle *handle) {
5391  UPB_UNUSED(hd);
5392  UPB_UNUSED(handle);
5393  return F(static_cast<P1>(p1), p2, p3);
5394}
5395
5396/* Function that casts the handler data parameter. */
5397template <class R, class P1, class P2, R F(P1, P2)>
5398R CastHandlerData2(void *c, const void *hd) {
5399  return F(static_cast<P1>(c), static_cast<P2>(hd));
5400}
5401
5402template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
5403          R F(P1, P2, P3Wrapped)>
5404R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
5405  return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
5406}
5407
5408template <class R, class P1, class P2, class P3, class P4, class P5,
5409          R F(P1, P2, P3, P4, P5)>
5410R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
5411  return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
5412}
5413
5414template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
5415R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
5416                              size_t p4, const BufferHandle *handle) {
5417  UPB_UNUSED(handle);
5418  return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
5419}
5420
5421/* For unbound functions, ignore the handler data. */
5422template <class R, class P1, R F(P1), class I, class T>
5423struct ConvertParams<Func1<R, P1, F, I>, T> {
5424  typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
5425};
5426
5427template <class R, class P1, class P2, R F(P1, P2), class I,
5428          class R2, class P1_2, class P2_2, class P3_2>
5429struct ConvertParams<Func2<R, P1, P2, F, I>,
5430                     R2 (*)(P1_2, P2_2, P3_2)> {
5431  typedef Func3<R, void *, const void *, P3_2,
5432                IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
5433};
5434
5435/* For StringBuffer only; this ignores both the handler data and the
5436 * BufferHandle. */
5437template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
5438struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
5439  typedef Func5<R, void *, const void *, const char *, size_t,
5440                const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
5441                I> Func;
5442};
5443
5444template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
5445          class I, class T>
5446struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
5447  typedef Func5<R, void *, const void *, P2, P3, P4,
5448                IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
5449};
5450
5451/* For bound functions, cast the handler data. */
5452template <class R, class P1, class P2, R F(P1, P2), class I, class T>
5453struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
5454  typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
5455      Func;
5456};
5457
5458template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
5459          class R2, class P1_2, class P2_2, class P3_2>
5460struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
5461                     R2 (*)(P1_2, P2_2, P3_2)> {
5462  typedef Func3<R, void *, const void *, P3_2,
5463                CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
5464};
5465
5466/* For StringBuffer only; this ignores the BufferHandle. */
5467template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
5468          class I, class T>
5469struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
5470  typedef Func5<R, void *, const void *, const char *, size_t,
5471                const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
5472                I> Func;
5473};
5474
5475template <class R, class P1, class P2, class P3, class P4, class P5,
5476          R F(P1, P2, P3, P4, P5), class I, class T>
5477struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
5478  typedef Func5<R, void *, const void *, P3, P4, P5,
5479                CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
5480};
5481
5482/* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
5483 * variant C type. */
5484#define TYPE_METHODS(utype, ltype, ctype, vtype)                               \
5485  template <> struct CanonicalType<vtype> {                                    \
5486    typedef ctype Type;                                                        \
5487  };                                                                           \
5488  template <>                                                                  \
5489  inline bool Handlers::SetValueHandler<vtype>(                                \
5490      const FieldDef *f,                                                       \
5491      const Handlers::utype ## Handler& handler) {                             \
5492    assert(!handler.registered_);                                              \
5493    handler.AddCleanup(this);                                                  \
5494    handler.registered_ = true;                                                \
5495    return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
5496  }                                                                            \
5497
5498TYPE_METHODS(Double, double, double,   double)
5499TYPE_METHODS(Float,  float,  float,    float)
5500TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
5501TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
5502TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64_T)
5503TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32_T)
5504TYPE_METHODS(Bool,   bool,   bool,     bool)
5505
5506#ifdef UPB_TWO_32BIT_TYPES
5507TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32ALT_T)
5508TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
5509#endif
5510
5511#ifdef UPB_TWO_64BIT_TYPES
5512TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64ALT_T)
5513TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
5514#endif
5515#undef TYPE_METHODS
5516
5517template <> struct CanonicalType<Status*> {
5518  typedef Status* Type;
5519};
5520
5521/* Type methods that are only one-per-canonical-type and not
5522 * one-per-cvariant. */
5523
5524#define TYPE_METHODS(utype, ctype) \
5525    inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
5526                                              const utype##Handler &h) { \
5527      return SetValueHandler<ctype>(f, h); \
5528    } \
5529
5530TYPE_METHODS(Double, double)
5531TYPE_METHODS(Float,  float)
5532TYPE_METHODS(UInt64, uint64_t)
5533TYPE_METHODS(UInt32, uint32_t)
5534TYPE_METHODS(Int64,  int64_t)
5535TYPE_METHODS(Int32,  int32_t)
5536TYPE_METHODS(Bool,   bool)
5537#undef TYPE_METHODS
5538
5539template <class F> struct ReturnOf;
5540
5541template <class R, class P1, class P2>
5542struct ReturnOf<R (*)(P1, P2)> {
5543  typedef R Return;
5544};
5545
5546template <class R, class P1, class P2, class P3>
5547struct ReturnOf<R (*)(P1, P2, P3)> {
5548  typedef R Return;
5549};
5550
5551template <class R, class P1, class P2, class P3, class P4>
5552struct ReturnOf<R (*)(P1, P2, P3, P4)> {
5553  typedef R Return;
5554};
5555
5556template <class R, class P1, class P2, class P3, class P4, class P5>
5557struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
5558  typedef R Return;
5559};
5560
5561template<class T> const void *UniquePtrForType() {
5562  static const char ch = 0;
5563  return &ch;
5564}
5565
5566template <class T>
5567template <class F>
5568inline Handler<T>::Handler(F func)
5569    : registered_(false),
5570      cleanup_data_(func.GetData()),
5571      cleanup_func_(func.GetCleanup()) {
5572  upb_handlerattr_sethandlerdata(&attr_, func.GetData());
5573  typedef typename ReturnOf<T>::Return Return;
5574  typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
5575  typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
5576      ReturnWrappedFunc;
5577  handler_ = ReturnWrappedFunc().Call;
5578
5579  /* Set attributes based on what templates can statically tell us about the
5580   * user's function. */
5581
5582  /* If the original function returns void, then we know that we wrapped it to
5583   * always return ok. */
5584  bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
5585  attr_.SetAlwaysOk(always_ok);
5586
5587  /* Closure parameter and return type. */
5588  attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
5589
5590  /* We use the closure type (from the first parameter) if the return type is
5591   * void or bool, since these are the two cases we wrap to return the closure's
5592   * type anyway.
5593   *
5594   * This is all nonsense for non START* handlers, but it doesn't matter because
5595   * in that case the value will be ignored. */
5596  typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
5597                                         typename F::FuncInfo::Closure>::value
5598      EffectiveReturn;
5599  attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
5600}
5601
5602template <class T>
5603inline Handler<T>::~Handler() {
5604  assert(registered_);
5605}
5606
5607inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
5608inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
5609inline bool HandlerAttributes::SetHandlerData(const void *hd) {
5610  return upb_handlerattr_sethandlerdata(this, hd);
5611}
5612inline const void* HandlerAttributes::handler_data() const {
5613  return upb_handlerattr_handlerdata(this);
5614}
5615inline bool HandlerAttributes::SetClosureType(const void *type) {
5616  return upb_handlerattr_setclosuretype(this, type);
5617}
5618inline const void* HandlerAttributes::closure_type() const {
5619  return upb_handlerattr_closuretype(this);
5620}
5621inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
5622  return upb_handlerattr_setreturnclosuretype(this, type);
5623}
5624inline const void* HandlerAttributes::return_closure_type() const {
5625  return upb_handlerattr_returnclosuretype(this);
5626}
5627inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
5628  return upb_handlerattr_setalwaysok(this, always_ok);
5629}
5630inline bool HandlerAttributes::always_ok() const {
5631  return upb_handlerattr_alwaysok(this);
5632}
5633
5634inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
5635inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
5636inline const char* BufferHandle::buffer() const {
5637  return upb_bufhandle_buf(this);
5638}
5639inline size_t BufferHandle::object_offset() const {
5640  return upb_bufhandle_objofs(this);
5641}
5642inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
5643  upb_bufhandle_setbuf(this, buf, ofs);
5644}
5645template <class T>
5646void BufferHandle::SetAttachedObject(const T* obj) {
5647  upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
5648}
5649template <class T>
5650const T* BufferHandle::GetAttachedObject() const {
5651  return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
5652      ? static_cast<const T *>(upb_bufhandle_obj(this))
5653                               : NULL;
5654}
5655
5656inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
5657  upb_handlers *h = upb_handlers_new(m, &h);
5658  return reffed_ptr<Handlers>(h, &h);
5659}
5660inline reffed_ptr<const Handlers> Handlers::NewFrozen(
5661    const MessageDef *m, upb_handlers_callback *callback,
5662    const void *closure) {
5663  const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
5664  return reffed_ptr<const Handlers>(h, &h);
5665}
5666inline const Status* Handlers::status() {
5667  return upb_handlers_status(this);
5668}
5669inline void Handlers::ClearError() {
5670  return upb_handlers_clearerr(this);
5671}
5672inline bool Handlers::Freeze(Status *s) {
5673  upb::Handlers* h = this;
5674  return upb_handlers_freeze(&h, 1, s);
5675}
5676inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
5677  return upb_handlers_freeze(handlers, n, s);
5678}
5679inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
5680  return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
5681}
5682inline const MessageDef *Handlers::message_def() const {
5683  return upb_handlers_msgdef(this);
5684}
5685inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
5686  return upb_handlers_addcleanup(this, p, func);
5687}
5688inline bool Handlers::SetStartMessageHandler(
5689    const Handlers::StartMessageHandler &handler) {
5690  assert(!handler.registered_);
5691  handler.registered_ = true;
5692  handler.AddCleanup(this);
5693  return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
5694}
5695inline bool Handlers::SetEndMessageHandler(
5696    const Handlers::EndMessageHandler &handler) {
5697  assert(!handler.registered_);
5698  handler.registered_ = true;
5699  handler.AddCleanup(this);
5700  return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
5701}
5702inline bool Handlers::SetStartStringHandler(const FieldDef *f,
5703                                            const StartStringHandler &handler) {
5704  assert(!handler.registered_);
5705  handler.registered_ = true;
5706  handler.AddCleanup(this);
5707  return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
5708}
5709inline bool Handlers::SetEndStringHandler(const FieldDef *f,
5710                                          const EndFieldHandler &handler) {
5711  assert(!handler.registered_);
5712  handler.registered_ = true;
5713  handler.AddCleanup(this);
5714  return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
5715}
5716inline bool Handlers::SetStringHandler(const FieldDef *f,
5717                                       const StringHandler& handler) {
5718  assert(!handler.registered_);
5719  handler.registered_ = true;
5720  handler.AddCleanup(this);
5721  return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
5722}
5723inline bool Handlers::SetStartSequenceHandler(
5724    const FieldDef *f, const StartFieldHandler &handler) {
5725  assert(!handler.registered_);
5726  handler.registered_ = true;
5727  handler.AddCleanup(this);
5728  return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
5729}
5730inline bool Handlers::SetStartSubMessageHandler(
5731    const FieldDef *f, const StartFieldHandler &handler) {
5732  assert(!handler.registered_);
5733  handler.registered_ = true;
5734  handler.AddCleanup(this);
5735  return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
5736}
5737inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
5738                                              const EndFieldHandler &handler) {
5739  assert(!handler.registered_);
5740  handler.registered_ = true;
5741  handler.AddCleanup(this);
5742  return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
5743}
5744inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
5745                                            const EndFieldHandler &handler) {
5746  assert(!handler.registered_);
5747  handler.registered_ = true;
5748  handler.AddCleanup(this);
5749  return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
5750}
5751inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
5752  return upb_handlers_setsubhandlers(this, f, sub);
5753}
5754inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
5755  return upb_handlers_getsubhandlers(this, f);
5756}
5757inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
5758  return upb_handlers_getsubhandlers_sel(this, sel);
5759}
5760inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
5761                                  Handlers::Selector *s) {
5762  return upb_handlers_getselector(f, type, s);
5763}
5764inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
5765  return upb_handlers_getendselector(start);
5766}
5767inline Handlers::GenericFunction *Handlers::GetHandler(
5768    Handlers::Selector selector) {
5769  return upb_handlers_gethandler(this, selector);
5770}
5771inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
5772  return upb_handlers_gethandlerdata(this, selector);
5773}
5774
5775inline BytesHandler::BytesHandler() {
5776  upb_byteshandler_init(this);
5777}
5778
5779inline BytesHandler::~BytesHandler() {}
5780
5781}  /* namespace upb */
5782
5783#endif  /* __cplusplus */
5784
5785
5786#undef UPB_TWO_32BIT_TYPES
5787#undef UPB_TWO_64BIT_TYPES
5788#undef UPB_INT32_T
5789#undef UPB_UINT32_T
5790#undef UPB_INT32ALT_T
5791#undef UPB_UINT32ALT_T
5792#undef UPB_INT64_T
5793#undef UPB_UINT64_T
5794#undef UPB_INT64ALT_T
5795#undef UPB_UINT64ALT_T
5796
5797#endif  /* UPB_HANDLERS_INL_H_ */
5798
5799#endif  /* UPB_HANDLERS_H */
5800/*
5801** upb::Sink (upb_sink)
5802** upb::BytesSink (upb_bytessink)
5803**
5804** A upb_sink is an object that binds a upb_handlers object to some runtime
5805** state.  It is the object that can actually receive data via the upb_handlers
5806** interface.
5807**
5808** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
5809** thread-safe.  You can create as many of them as you want, but each one may
5810** only be used in a single thread at a time.
5811**
5812** If we compare with class-based OOP, a you can think of a upb_def as an
5813** abstract base class, a upb_handlers as a concrete derived class, and a
5814** upb_sink as an object (class instance).
5815*/
5816
5817#ifndef UPB_SINK_H
5818#define UPB_SINK_H
5819
5820
5821#ifdef __cplusplus
5822namespace upb {
5823class BufferSource;
5824class BytesSink;
5825class Sink;
5826}
5827#endif
5828
5829UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
5830UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
5831UPB_DECLARE_TYPE(upb::Sink, upb_sink)
5832
5833#ifdef __cplusplus
5834
5835/* A upb::Sink is an object that binds a upb::Handlers object to some runtime
5836 * state.  It represents an endpoint to which data can be sent.
5837 *
5838 * TODO(haberman): right now all of these functions take selectors.  Should they
5839 * take selectorbase instead?
5840 *
5841 * ie. instead of calling:
5842 *   sink->StartString(FOO_FIELD_START_STRING, ...)
5843 * a selector base would let you say:
5844 *   sink->StartString(FOO_FIELD, ...)
5845 *
5846 * This would make call sites a little nicer and require emitting fewer selector
5847 * definitions in .h files.
5848 *
5849 * But the current scheme has the benefit that you can retrieve a function
5850 * pointer for any handler with handlers->GetHandler(selector), without having
5851 * to have a separate GetHandler() function for each handler type.  The JIT
5852 * compiler uses this.  To accommodate we'd have to expose a separate
5853 * GetHandler() for every handler type.
5854 *
5855 * Also to ponder: selectors right now are independent of a specific Handlers
5856 * instance.  In other words, they allocate a number to every possible handler
5857 * that *could* be registered, without knowing anything about what handlers
5858 * *are* registered.  That means that using selectors as table offsets prohibits
5859 * us from compacting the handler table at Freeze() time.  If the table is very
5860 * sparse, this could be wasteful.
5861 *
5862 * Having another selector-like thing that is specific to a Handlers instance
5863 * would allow this compacting, but then it would be impossible to write code
5864 * ahead-of-time that can be bound to any Handlers instance at runtime.  For
5865 * example, a .proto file parser written as straight C will not know what
5866 * Handlers it will be bound to, so when it calls sink->StartString() what
5867 * selector will it pass?  It needs a selector like we have today, that is
5868 * independent of any particular upb::Handlers.
5869 *
5870 * Is there a way then to allow Handlers table compaction? */
5871class upb::Sink {
5872 public:
5873  /* Constructor with no initialization; must be Reset() before use. */
5874  Sink() {}
5875
5876  /* Constructs a new sink for the given frozen handlers and closure.
5877   *
5878   * TODO: once the Handlers know the expected closure type, verify that T
5879   * matches it. */
5880  template <class T> Sink(const Handlers* handlers, T* closure);
5881
5882  /* Resets the value of the sink. */
5883  template <class T> void Reset(const Handlers* handlers, T* closure);
5884
5885  /* Returns the top-level object that is bound to this sink.
5886   *
5887   * TODO: once the Handlers know the expected closure type, verify that T
5888   * matches it. */
5889  template <class T> T* GetObject() const;
5890
5891  /* Functions for pushing data into the sink.
5892   *
5893   * These return false if processing should stop (either due to error or just
5894   * to suspend).
5895   *
5896   * These may not be called from within one of the same sink's handlers (in
5897   * other words, handlers are not re-entrant). */
5898
5899  /* Should be called at the start and end of every message; both the top-level
5900   * message and submessages.  This means that submessages should use the
5901   * following sequence:
5902   *   sink->StartSubMessage(startsubmsg_selector);
5903   *   sink->StartMessage();
5904   *   // ...
5905   *   sink->EndMessage(&status);
5906   *   sink->EndSubMessage(endsubmsg_selector); */
5907  bool StartMessage();
5908  bool EndMessage(Status* status);
5909
5910  /* Putting of individual values.  These work for both repeated and
5911   * non-repeated fields, but for repeated fields you must wrap them in
5912   * calls to StartSequence()/EndSequence(). */
5913  bool PutInt32(Handlers::Selector s, int32_t val);
5914  bool PutInt64(Handlers::Selector s, int64_t val);
5915  bool PutUInt32(Handlers::Selector s, uint32_t val);
5916  bool PutUInt64(Handlers::Selector s, uint64_t val);
5917  bool PutFloat(Handlers::Selector s, float val);
5918  bool PutDouble(Handlers::Selector s, double val);
5919  bool PutBool(Handlers::Selector s, bool val);
5920
5921  /* Putting of string/bytes values.  Each string can consist of zero or more
5922   * non-contiguous buffers of data.
5923   *
5924   * For StartString(), the function will write a sink for the string to "sub."
5925   * The sub-sink must be used for any/all PutStringBuffer() calls. */
5926  bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
5927  size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
5928                         const BufferHandle *handle);
5929  bool EndString(Handlers::Selector s);
5930
5931  /* For submessage fields.
5932   *
5933   * For StartSubMessage(), the function will write a sink for the string to
5934   * "sub." The sub-sink must be used for any/all handlers called within the
5935   * submessage. */
5936  bool StartSubMessage(Handlers::Selector s, Sink* sub);
5937  bool EndSubMessage(Handlers::Selector s);
5938
5939  /* For repeated fields of any type, the sequence of values must be wrapped in
5940   * these calls.
5941   *
5942   * For StartSequence(), the function will write a sink for the string to
5943   * "sub." The sub-sink must be used for any/all handlers called within the
5944   * sequence. */
5945  bool StartSequence(Handlers::Selector s, Sink* sub);
5946  bool EndSequence(Handlers::Selector s);
5947
5948  /* Copy and assign specifically allowed.
5949   * We don't even bother making these members private because so many
5950   * functions need them and this is mainly just a dumb data container anyway.
5951   */
5952#else
5953struct upb_sink {
5954#endif
5955  const upb_handlers *handlers;
5956  void *closure;
5957};
5958
5959#ifdef __cplusplus
5960class upb::BytesSink {
5961 public:
5962  BytesSink() {}
5963
5964  /* Constructs a new sink for the given frozen handlers and closure.
5965   *
5966   * TODO(haberman): once the Handlers know the expected closure type, verify
5967   * that T matches it. */
5968  template <class T> BytesSink(const BytesHandler* handler, T* closure);
5969
5970  /* Resets the value of the sink. */
5971  template <class T> void Reset(const BytesHandler* handler, T* closure);
5972
5973  bool Start(size_t size_hint, void **subc);
5974  size_t PutBuffer(void *subc, const char *buf, size_t len,
5975                   const BufferHandle *handle);
5976  bool End();
5977#else
5978struct upb_bytessink {
5979#endif
5980  const upb_byteshandler *handler;
5981  void *closure;
5982};
5983
5984#ifdef __cplusplus
5985
5986/* A class for pushing a flat buffer of data to a BytesSink.
5987 * You can construct an instance of this to get a resumable source,
5988 * or just call the static PutBuffer() to do a non-resumable push all in one
5989 * go. */
5990class upb::BufferSource {
5991 public:
5992  BufferSource();
5993  BufferSource(const char* buf, size_t len, BytesSink* sink);
5994
5995  /* Returns true if the entire buffer was pushed successfully.  Otherwise the
5996   * next call to PutNext() will resume where the previous one left off.
5997   * TODO(haberman): implement this. */
5998  bool PutNext();
5999
6000  /* A static version; with this version is it not possible to resume in the
6001   * case of failure or a partially-consumed buffer. */
6002  static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
6003
6004  template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
6005    return PutBuffer(str.c_str(), str.size(), sink);
6006  }
6007#else
6008struct upb_bufsrc {
6009  char dummy;
6010#endif
6011};
6012
6013UPB_BEGIN_EXTERN_C
6014
6015/* Inline definitions. */
6016
6017UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
6018                                    void *closure) {
6019  s->handler = h;
6020  s->closure = closure;
6021}
6022
6023UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
6024                                    void **subc) {
6025  typedef upb_startstr_handlerfunc func;
6026  func *start;
6027  *subc = s->closure;
6028  if (!s->handler) return true;
6029  start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
6030
6031  if (!start) return true;
6032  *subc = start(s->closure, upb_handlerattr_handlerdata(
6033                                &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
6034                size_hint);
6035  return *subc != NULL;
6036}
6037
6038UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
6039                                       const char *buf, size_t size,
6040                                       const upb_bufhandle* handle) {
6041  typedef upb_string_handlerfunc func;
6042  func *putbuf;
6043  if (!s->handler) return true;
6044  putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
6045
6046  if (!putbuf) return true;
6047  return putbuf(subc, upb_handlerattr_handlerdata(
6048                          &s->handler->table[UPB_STRING_SELECTOR].attr),
6049                buf, size, handle);
6050}
6051
6052UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
6053  typedef upb_endfield_handlerfunc func;
6054  func *end;
6055  if (!s->handler) return true;
6056  end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
6057
6058  if (!end) return true;
6059  return end(s->closure,
6060             upb_handlerattr_handlerdata(
6061                 &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
6062}
6063
6064UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
6065                                  upb_bytessink *sink) {
6066  void *subc;
6067  bool ret;
6068  upb_bufhandle handle;
6069  upb_bufhandle_init(&handle);
6070  upb_bufhandle_setbuf(&handle, buf, 0);
6071  ret = upb_bytessink_start(sink, len, &subc);
6072  if (ret && len != 0) {
6073    ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
6074  }
6075  if (ret) {
6076    ret = upb_bytessink_end(sink);
6077  }
6078  upb_bufhandle_uninit(&handle);
6079  return ret;
6080}
6081
6082#define PUTVAL(type, ctype)                                                    \
6083  UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel,          \
6084                                     ctype val) {                              \
6085    typedef upb_##type##_handlerfunc functype;                                 \
6086    functype *func;                                                            \
6087    const void *hd;                                                            \
6088    if (!s->handlers) return true;                                             \
6089    func = (functype *)upb_handlers_gethandler(s->handlers, sel);              \
6090    if (!func) return true;                                                    \
6091    hd = upb_handlers_gethandlerdata(s->handlers, sel);                        \
6092    return func(s->closure, hd, val);                                          \
6093  }
6094
6095PUTVAL(int32,  int32_t)
6096PUTVAL(int64,  int64_t)
6097PUTVAL(uint32, uint32_t)
6098PUTVAL(uint64, uint64_t)
6099PUTVAL(float,  float)
6100PUTVAL(double, double)
6101PUTVAL(bool,   bool)
6102#undef PUTVAL
6103
6104UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
6105  s->handlers = h;
6106  s->closure = c;
6107}
6108
6109UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
6110                                     const char *buf, size_t n,
6111                                     const upb_bufhandle *handle) {
6112  typedef upb_string_handlerfunc func;
6113  func *handler;
6114  const void *hd;
6115  if (!s->handlers) return n;
6116  handler = (func *)upb_handlers_gethandler(s->handlers, sel);
6117
6118  if (!handler) return n;
6119  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6120  return handler(s->closure, hd, buf, n, handle);
6121}
6122
6123UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
6124  typedef upb_startmsg_handlerfunc func;
6125  func *startmsg;
6126  const void *hd;
6127  if (!s->handlers) return true;
6128  startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
6129
6130  if (!startmsg) return true;
6131  hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
6132  return startmsg(s->closure, hd);
6133}
6134
6135UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
6136  typedef upb_endmsg_handlerfunc func;
6137  func *endmsg;
6138  const void *hd;
6139  if (!s->handlers) return true;
6140  endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
6141
6142  if (!endmsg) return true;
6143  hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
6144  return endmsg(s->closure, hd, status);
6145}
6146
6147UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
6148                                  upb_sink *sub) {
6149  typedef upb_startfield_handlerfunc func;
6150  func *startseq;
6151  const void *hd;
6152  sub->closure = s->closure;
6153  sub->handlers = s->handlers;
6154  if (!s->handlers) return true;
6155  startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6156
6157  if (!startseq) return true;
6158  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6159  sub->closure = startseq(s->closure, hd);
6160  return sub->closure ? true : false;
6161}
6162
6163UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
6164  typedef upb_endfield_handlerfunc func;
6165  func *endseq;
6166  const void *hd;
6167  if (!s->handlers) return true;
6168  endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6169
6170  if (!endseq) return true;
6171  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6172  return endseq(s->closure, hd);
6173}
6174
6175UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
6176                                  size_t size_hint, upb_sink *sub) {
6177  typedef upb_startstr_handlerfunc func;
6178  func *startstr;
6179  const void *hd;
6180  sub->closure = s->closure;
6181  sub->handlers = s->handlers;
6182  if (!s->handlers) return true;
6183  startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6184
6185  if (!startstr) return true;
6186  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6187  sub->closure = startstr(s->closure, hd, size_hint);
6188  return sub->closure ? true : false;
6189}
6190
6191UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
6192  typedef upb_endfield_handlerfunc func;
6193  func *endstr;
6194  const void *hd;
6195  if (!s->handlers) return true;
6196  endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6197
6198  if (!endstr) return true;
6199  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6200  return endstr(s->closure, hd);
6201}
6202
6203UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
6204                                     upb_sink *sub) {
6205  typedef upb_startfield_handlerfunc func;
6206  func *startsubmsg;
6207  const void *hd;
6208  sub->closure = s->closure;
6209  if (!s->handlers) {
6210    sub->handlers = NULL;
6211    return true;
6212  }
6213  sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
6214  startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6215
6216  if (!startsubmsg) return true;
6217  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6218  sub->closure = startsubmsg(s->closure, hd);
6219  return sub->closure ? true : false;
6220}
6221
6222UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
6223  typedef upb_endfield_handlerfunc func;
6224  func *endsubmsg;
6225  const void *hd;
6226  if (!s->handlers) return true;
6227  endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6228
6229  if (!endsubmsg) return s->closure;
6230  hd = upb_handlers_gethandlerdata(s->handlers, sel);
6231  return endsubmsg(s->closure, hd);
6232}
6233
6234UPB_END_EXTERN_C
6235
6236#ifdef __cplusplus
6237
6238namespace upb {
6239
6240template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
6241  upb_sink_reset(this, handlers, closure);
6242}
6243template <class T>
6244inline void Sink::Reset(const Handlers* handlers, T* closure) {
6245  upb_sink_reset(this, handlers, closure);
6246}
6247inline bool Sink::StartMessage() {
6248  return upb_sink_startmsg(this);
6249}
6250inline bool Sink::EndMessage(Status* status) {
6251  return upb_sink_endmsg(this, status);
6252}
6253inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
6254  return upb_sink_putint32(this, sel, val);
6255}
6256inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
6257  return upb_sink_putint64(this, sel, val);
6258}
6259inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
6260  return upb_sink_putuint32(this, sel, val);
6261}
6262inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
6263  return upb_sink_putuint64(this, sel, val);
6264}
6265inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
6266  return upb_sink_putfloat(this, sel, val);
6267}
6268inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
6269  return upb_sink_putdouble(this, sel, val);
6270}
6271inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
6272  return upb_sink_putbool(this, sel, val);
6273}
6274inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
6275                              Sink *sub) {
6276  return upb_sink_startstr(this, sel, size_hint, sub);
6277}
6278inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
6279                                    size_t len, const BufferHandle* handle) {
6280  return upb_sink_putstring(this, sel, buf, len, handle);
6281}
6282inline bool Sink::EndString(Handlers::Selector sel) {
6283  return upb_sink_endstr(this, sel);
6284}
6285inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
6286  return upb_sink_startsubmsg(this, sel, sub);
6287}
6288inline bool Sink::EndSubMessage(Handlers::Selector sel) {
6289  return upb_sink_endsubmsg(this, sel);
6290}
6291inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
6292  return upb_sink_startseq(this, sel, sub);
6293}
6294inline bool Sink::EndSequence(Handlers::Selector sel) {
6295  return upb_sink_endseq(this, sel);
6296}
6297
6298template <class T>
6299BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
6300  Reset(handler, closure);
6301}
6302
6303template <class T>
6304void BytesSink::Reset(const BytesHandler *handler, T *closure) {
6305  upb_bytessink_reset(this, handler, closure);
6306}
6307inline bool BytesSink::Start(size_t size_hint, void **subc) {
6308  return upb_bytessink_start(this, size_hint, subc);
6309}
6310inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
6311                                   const BufferHandle *handle) {
6312  return upb_bytessink_putbuf(this, subc, buf, len, handle);
6313}
6314inline bool BytesSink::End() {
6315  return upb_bytessink_end(this);
6316}
6317
6318inline bool BufferSource::PutBuffer(const char *buf, size_t len,
6319                                    BytesSink *sink) {
6320  return upb_bufsrc_putbuf(buf, len, sink);
6321}
6322
6323}  /* namespace upb */
6324#endif
6325
6326#endif
6327/*
6328** For handlers that do very tiny, very simple operations, the function call
6329** overhead of calling a handler can be significant.  This file allows the
6330** user to define handlers that do something very simple like store the value
6331** to memory and/or set a hasbit.  JIT compilers can then special-case these
6332** handlers and emit specialized code for them instead of actually calling the
6333** handler.
6334**
6335** The functionality is very simple/limited right now but may expand to be able
6336** to call another function.
6337*/
6338
6339#ifndef UPB_SHIM_H
6340#define UPB_SHIM_H
6341
6342
6343typedef struct {
6344  size_t offset;
6345  int32_t hasbit;
6346} upb_shim_data;
6347
6348#ifdef __cplusplus
6349
6350namespace upb {
6351
6352struct Shim {
6353  typedef upb_shim_data Data;
6354
6355  /* Sets a handler for the given field that writes the value to the given
6356   * offset and, if hasbit >= 0, sets a bit at the given bit offset.  Returns
6357   * true if the handler was set successfully. */
6358  static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
6359
6360  /* If this handler is a shim, returns the corresponding upb::Shim::Data and
6361   * stores the type in "type".  Otherwise returns NULL. */
6362  static const Data* GetData(const Handlers* h, Handlers::Selector s,
6363                             FieldDef::Type* type);
6364};
6365
6366}  /* namespace upb */
6367
6368#endif
6369
6370UPB_BEGIN_EXTERN_C
6371
6372/* C API. */
6373bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
6374                  int32_t hasbit);
6375const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
6376                                      upb_fieldtype_t *type);
6377
6378UPB_END_EXTERN_C
6379
6380#ifdef __cplusplus
6381/* C++ Wrappers. */
6382namespace upb {
6383inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
6384                      int32_t hasbit) {
6385  return upb_shim_set(h, f, ofs, hasbit);
6386}
6387inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
6388                                       FieldDef::Type* type) {
6389  return upb_shim_getdata(h, s, type);
6390}
6391}  /* namespace upb */
6392#endif
6393
6394#endif  /* UPB_SHIM_H */
6395/*
6396** upb::SymbolTable (upb_symtab)
6397**
6398** A symtab (symbol table) stores a name->def map of upb_defs.  Clients could
6399** always create such tables themselves, but upb_symtab has logic for resolving
6400** symbolic references, and in particular, for keeping a whole set of consistent
6401** defs when replacing some subset of those defs.  This logic is nontrivial.
6402**
6403** This is a mixed C/C++ interface that offers a full API to both languages.
6404** See the top-level README for more information.
6405*/
6406
6407#ifndef UPB_SYMTAB_H_
6408#define UPB_SYMTAB_H_
6409
6410
6411#ifdef __cplusplus
6412#include <vector>
6413namespace upb { class SymbolTable; }
6414#endif
6415
6416UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
6417                         upb_symtab, upb_refcounted)
6418
6419typedef struct {
6420 UPB_PRIVATE_FOR_CPP
6421  upb_strtable_iter iter;
6422  upb_deftype_t type;
6423} upb_symtab_iter;
6424
6425#ifdef __cplusplus
6426
6427/* Non-const methods in upb::SymbolTable are NOT thread-safe. */
6428class upb::SymbolTable {
6429 public:
6430  /* Returns a new symbol table with a single ref owned by "owner."
6431   * Returns NULL if memory allocation failed. */
6432  static reffed_ptr<SymbolTable> New();
6433
6434  /* Include RefCounted base methods. */
6435  UPB_REFCOUNTED_CPPMETHODS
6436
6437  /* For all lookup functions, the returned pointer is not owned by the
6438   * caller; it may be invalidated by any non-const call or unref of the
6439   * SymbolTable!  To protect against this, take a ref if desired. */
6440
6441  /* Freezes the symbol table: prevents further modification of it.
6442   * After the Freeze() operation is successful, the SymbolTable must only be
6443   * accessed via a const pointer.
6444   *
6445   * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
6446   * a necessary step in using a SymbolTable.  If you have no need for it to be
6447   * immutable, there is no need to freeze it ever.  However sometimes it is
6448   * useful, and SymbolTables that are statically compiled into the binary are
6449   * always frozen by nature. */
6450  void Freeze();
6451
6452  /* Resolves the given symbol using the rules described in descriptor.proto,
6453   * namely:
6454   *
6455   *    If the name starts with a '.', it is fully-qualified.  Otherwise,
6456   *    C++-like scoping rules are used to find the type (i.e. first the nested
6457   *    types within this message are searched, then within the parent, on up
6458   *    to the root namespace).
6459   *
6460   * If not found, returns NULL. */
6461  const Def* Resolve(const char* base, const char* sym) const;
6462
6463  /* Finds an entry in the symbol table with this exact name.  If not found,
6464   * returns NULL. */
6465  const Def* Lookup(const char *sym) const;
6466  const MessageDef* LookupMessage(const char *sym) const;
6467  const EnumDef* LookupEnum(const char *sym) const;
6468
6469  /* TODO: introduce a C++ iterator, but make it nice and templated so that if
6470   * you ask for an iterator of MessageDef the iterated elements are strongly
6471   * typed as MessageDef*. */
6472
6473  /* Adds the given mutable defs to the symtab, resolving all symbols
6474   * (including enum default values) and finalizing the defs.  Only one def per
6475   * name may be in the list, but defs can replace existing defs in the symtab.
6476   * All defs must have a name -- anonymous defs are not allowed.  Anonymous
6477   * defs can still be frozen by calling upb_def_freeze() directly.
6478   *
6479   * Any existing defs that can reach defs that are being replaced will
6480   * themselves be replaced also, so that the resulting set of defs is fully
6481   * consistent.
6482   *
6483   * This logic implemented in this method is a convenience; ultimately it
6484   * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
6485   * upb_freeze(), any of which the client could call themself.  However, since
6486   * the logic for doing so is nontrivial, we provide it here.
6487   *
6488   * The entire operation either succeeds or fails.  If the operation fails,
6489   * the symtab is unchanged, false is returned, and status indicates the
6490   * error.  The caller passes a ref on all defs to the symtab (even if the
6491   * operation fails).
6492   *
6493   * TODO(haberman): currently failure will leave the symtab unchanged, but may
6494   * leave the defs themselves partially resolved.  Does this matter?  If so we
6495   * could do a prepass that ensures that all symbols are resolvable and bail
6496   * if not, so we don't mutate anything until we know the operation will
6497   * succeed.
6498   *
6499   * TODO(haberman): since the defs must be mutable, refining a frozen def
6500   * requires making mutable copies of the entire tree.  This is wasteful if
6501   * only a few messages are changing.  We may want to add a way of adding a
6502   * tree of frozen defs to the symtab (perhaps an alternate constructor where
6503   * you pass the root of the tree?) */
6504  bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
6505
6506  bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
6507    return Add((Def*const*)&defs[0], defs.size(), owner, status);
6508  }
6509
6510  /* Resolves all subdefs for messages in this file and attempts to freeze the
6511   * file.  If this succeeds, adds all the symbols to this SymbolTable
6512   * (replacing any existing ones with the same names). */
6513  bool AddFile(FileDef* file, Status* s);
6514
6515 private:
6516  UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
6517};
6518
6519#endif  /* __cplusplus */
6520
6521UPB_BEGIN_EXTERN_C
6522
6523/* Native C API. */
6524
6525/* Include refcounted methods like upb_symtab_ref(). */
6526UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
6527
6528upb_symtab *upb_symtab_new(const void *owner);
6529void upb_symtab_freeze(upb_symtab *s);
6530const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
6531                                  const char *sym);
6532const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
6533const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
6534const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
6535bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
6536                    void *ref_donor, upb_status *status);
6537bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
6538
6539/* upb_symtab_iter i;
6540 * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
6541 *     upb_symtab_next(&i)) {
6542 *   const upb_def *def = upb_symtab_iter_def(&i);
6543 *    // ...
6544 * }
6545 *
6546 * For C we don't have separate iterators for const and non-const.
6547 * It is the caller's responsibility to cast the upb_fielddef* to
6548 * const if the upb_msgdef* is const. */
6549void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
6550                      upb_deftype_t type);
6551void upb_symtab_next(upb_symtab_iter *iter);
6552bool upb_symtab_done(const upb_symtab_iter *iter);
6553const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
6554
6555UPB_END_EXTERN_C
6556
6557#ifdef __cplusplus
6558/* C++ inline wrappers. */
6559namespace upb {
6560inline reffed_ptr<SymbolTable> SymbolTable::New() {
6561  upb_symtab *s = upb_symtab_new(&s);
6562  return reffed_ptr<SymbolTable>(s, &s);
6563}
6564
6565inline void SymbolTable::Freeze() {
6566  return upb_symtab_freeze(this);
6567}
6568inline const Def *SymbolTable::Resolve(const char *base,
6569                                       const char *sym) const {
6570  return upb_symtab_resolve(this, base, sym);
6571}
6572inline const Def* SymbolTable::Lookup(const char *sym) const {
6573  return upb_symtab_lookup(this, sym);
6574}
6575inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
6576  return upb_symtab_lookupmsg(this, sym);
6577}
6578inline bool SymbolTable::Add(
6579    Def*const* defs, size_t n, void* ref_donor, Status* status) {
6580  return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
6581}
6582inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
6583  return upb_symtab_addfile(this, file, s);
6584}
6585}  /* namespace upb */
6586#endif
6587
6588#endif  /* UPB_SYMTAB_H_ */
6589/*
6590** upb::descriptor::Reader (upb_descreader)
6591**
6592** Provides a way of building upb::Defs from data in descriptor.proto format.
6593*/
6594
6595#ifndef UPB_DESCRIPTOR_H
6596#define UPB_DESCRIPTOR_H
6597
6598
6599#ifdef __cplusplus
6600namespace upb {
6601namespace descriptor {
6602class Reader;
6603}  /* namespace descriptor */
6604}  /* namespace upb */
6605#endif
6606
6607UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
6608
6609#ifdef __cplusplus
6610
6611/* Class that receives descriptor data according to the descriptor.proto schema
6612 * and use it to build upb::Defs corresponding to that schema. */
6613class upb::descriptor::Reader {
6614 public:
6615  /* These handlers must have come from NewHandlers() and must outlive the
6616   * Reader.
6617   *
6618   * TODO: generate the handlers statically (like we do with the
6619   * descriptor.proto defs) so that there is no need to pass this parameter (or
6620   * to build/memory-manage the handlers at runtime at all).  Unfortunately this
6621   * is a bit tricky to implement for Handlers, but necessary to simplify this
6622   * interface. */
6623  static Reader* Create(Environment* env, const Handlers* handlers);
6624
6625  /* The reader's input; this is where descriptor.proto data should be sent. */
6626  Sink* input();
6627
6628  /* Use to get the FileDefs that have been parsed. */
6629  size_t file_count() const;
6630  FileDef* file(size_t i) const;
6631
6632  /* Builds and returns handlers for the reader, owned by "owner." */
6633  static Handlers* NewHandlers(const void* owner);
6634
6635 private:
6636  UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
6637};
6638
6639#endif
6640
6641UPB_BEGIN_EXTERN_C
6642
6643/* C API. */
6644upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
6645upb_sink *upb_descreader_input(upb_descreader *r);
6646size_t upb_descreader_filecount(const upb_descreader *r);
6647upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i);
6648const upb_handlers *upb_descreader_newhandlers(const void *owner);
6649
6650UPB_END_EXTERN_C
6651
6652#ifdef __cplusplus
6653/* C++ implementation details. ************************************************/
6654namespace upb {
6655namespace descriptor {
6656inline Reader* Reader::Create(Environment* e, const Handlers *h) {
6657  return upb_descreader_create(e, h);
6658}
6659inline Sink* Reader::input() { return upb_descreader_input(this); }
6660inline size_t Reader::file_count() const {
6661  return upb_descreader_filecount(this);
6662}
6663inline FileDef* Reader::file(size_t i) const {
6664  return upb_descreader_file(this, i);
6665}
6666}  /* namespace descriptor */
6667}  /* namespace upb */
6668#endif
6669
6670#endif  /* UPB_DESCRIPTOR_H */
6671/* This file contains accessors for a set of compiled-in defs.
6672 * Note that unlike Google's protobuf, it does *not* define
6673 * generated classes or any other kind of data structure for
6674 * actually storing protobufs.  It only contains *defs* which
6675 * let you reflect over a protobuf *schema*.
6676 */
6677/* This file was generated by upbc (the upb compiler) from the input
6678 * file:
6679 *
6680 *     upb/descriptor/descriptor.proto
6681 *
6682 * Do not edit -- your changes will be discarded when the file is
6683 * regenerated. */
6684
6685#ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6686#define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6687
6688
6689UPB_BEGIN_EXTERN_C
6690
6691/* Enums */
6692
6693typedef enum {
6694  google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1,
6695  google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2,
6696  google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3
6697} google_protobuf_FieldDescriptorProto_Label;
6698
6699typedef enum {
6700  google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1,
6701  google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2,
6702  google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3,
6703  google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4,
6704  google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5,
6705  google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6,
6706  google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7,
6707  google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8,
6708  google_protobuf_FieldDescriptorProto_TYPE_STRING = 9,
6709  google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10,
6710  google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11,
6711  google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12,
6712  google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13,
6713  google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14,
6714  google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15,
6715  google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16,
6716  google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17,
6717  google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18
6718} google_protobuf_FieldDescriptorProto_Type;
6719
6720typedef enum {
6721  google_protobuf_FieldOptions_STRING = 0,
6722  google_protobuf_FieldOptions_CORD = 1,
6723  google_protobuf_FieldOptions_STRING_PIECE = 2
6724} google_protobuf_FieldOptions_CType;
6725
6726typedef enum {
6727  google_protobuf_FieldOptions_JS_NORMAL = 0,
6728  google_protobuf_FieldOptions_JS_STRING = 1,
6729  google_protobuf_FieldOptions_JS_NUMBER = 2
6730} google_protobuf_FieldOptions_JSType;
6731
6732typedef enum {
6733  google_protobuf_FileOptions_SPEED = 1,
6734  google_protobuf_FileOptions_CODE_SIZE = 2,
6735  google_protobuf_FileOptions_LITE_RUNTIME = 3
6736} google_protobuf_FileOptions_OptimizeMode;
6737
6738/* MessageDefs: call these functions to get a ref to a msgdef. */
6739const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner);
6740const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner);
6741const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner);
6742const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner);
6743const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner);
6744const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner);
6745const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner);
6746const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner);
6747const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner);
6748const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner);
6749const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner);
6750const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner);
6751const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner);
6752const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner);
6753const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner);
6754const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner);
6755const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner);
6756const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner);
6757const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner);
6758const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner);
6759const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner);
6760const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner);
6761
6762/* EnumDefs: call these functions to get a ref to an enumdef. */
6763const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner);
6764const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner);
6765const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner);
6766const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner);
6767const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner);
6768
6769/* Functions to test whether this message is of a certain type. */
6770UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) {
6771  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0;
6772}
6773UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) {
6774  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0;
6775}
6776UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) {
6777  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0;
6778}
6779UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) {
6780  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0;
6781}
6782UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) {
6783  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0;
6784}
6785UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) {
6786  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0;
6787}
6788UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) {
6789  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0;
6790}
6791UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) {
6792  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0;
6793}
6794UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) {
6795  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0;
6796}
6797UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) {
6798  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0;
6799}
6800UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) {
6801  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0;
6802}
6803UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) {
6804  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0;
6805}
6806UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) {
6807  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0;
6808}
6809UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) {
6810  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0;
6811}
6812UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) {
6813  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0;
6814}
6815UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) {
6816  return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0;
6817}
6818UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) {
6819  return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0;
6820}
6821UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) {
6822  return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0;
6823}
6824UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) {
6825  return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0;
6826}
6827UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) {
6828  return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0;
6829}
6830UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) {
6831  return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0;
6832}
6833UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) {
6834  return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0;
6835}
6836
6837/* Functions to test whether this enum is of a certain type. */
6838UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) {
6839  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0;
6840}
6841UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) {
6842  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0;
6843}
6844UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) {
6845  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0;
6846}
6847UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) {
6848  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0;
6849}
6850UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) {
6851  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0;
6852}
6853
6854
6855/* Functions to get a fielddef from a msgdef reference. */
6856UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); }
6857UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); }
6858UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); }
6859UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); }
6860UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6861UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6862UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6863UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6864UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6865UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6866UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6867UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6868UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6869UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6870UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6871UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6872UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6873UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); }
6874UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); }
6875UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); }
6876UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6877UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6878UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6879UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); }
6880UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); }
6881UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6882UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6883UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6884UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6885UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6886UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6887UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6888UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6889UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6890UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6891UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); }
6892UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); }
6893UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); }
6894UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); }
6895UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); }
6896UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); }
6897UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); }
6898UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6899UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6900UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6901UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6902UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6903UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6904UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6905UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6906UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6907UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6908UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); }
6909UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); }
6910UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); }
6911UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); }
6912UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); }
6913UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); }
6914UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); }
6915UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); }
6916UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); }
6917UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); }
6918UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); }
6919UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); }
6920UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); }
6921UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); }
6922UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); }
6923UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); }
6924UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); }
6925UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); }
6926UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); }
6927UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); }
6928UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); }
6929UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); }
6930UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); }
6931UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); }
6932UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6933UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6934UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6935UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6936UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6937UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6938UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); }
6939UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); }
6940UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6941UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6942UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6943UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6944UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); }
6945UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); }
6946UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); }
6947UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); }
6948UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); }
6949UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); }
6950UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); }
6951UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); }
6952UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); }
6953UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); }
6954UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); }
6955UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); }
6956UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); }
6957UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); }
6958UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); }
6959UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); }
6960UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); }
6961
6962UPB_END_EXTERN_C
6963
6964#ifdef __cplusplus
6965
6966namespace upbdefs {
6967namespace google {
6968namespace protobuf {
6969
6970class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6971 public:
6972  DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6973      : reffed_ptr(m, ref_donor) {
6974    assert(upbdefs_google_protobuf_DescriptorProto_is(m));
6975  }
6976
6977  static DescriptorProto get() {
6978    const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m);
6979    return DescriptorProto(m, &m);
6980  }
6981
6982  class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6983   public:
6984    ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6985        : reffed_ptr(m, ref_donor) {
6986      assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m));
6987    }
6988
6989    static ExtensionRange get() {
6990      const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m);
6991      return ExtensionRange(m, &m);
6992    }
6993  };
6994
6995  class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6996   public:
6997    ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6998        : reffed_ptr(m, ref_donor) {
6999      assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m));
7000    }
7001
7002    static ReservedRange get() {
7003      const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m);
7004      return ReservedRange(m, &m);
7005    }
7006  };
7007};
7008
7009class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7010 public:
7011  EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7012      : reffed_ptr(m, ref_donor) {
7013    assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m));
7014  }
7015
7016  static EnumDescriptorProto get() {
7017    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m);
7018    return EnumDescriptorProto(m, &m);
7019  }
7020};
7021
7022class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7023 public:
7024  EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7025      : reffed_ptr(m, ref_donor) {
7026    assert(upbdefs_google_protobuf_EnumOptions_is(m));
7027  }
7028
7029  static EnumOptions get() {
7030    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m);
7031    return EnumOptions(m, &m);
7032  }
7033};
7034
7035class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7036 public:
7037  EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7038      : reffed_ptr(m, ref_donor) {
7039    assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m));
7040  }
7041
7042  static EnumValueDescriptorProto get() {
7043    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m);
7044    return EnumValueDescriptorProto(m, &m);
7045  }
7046};
7047
7048class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7049 public:
7050  EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7051      : reffed_ptr(m, ref_donor) {
7052    assert(upbdefs_google_protobuf_EnumValueOptions_is(m));
7053  }
7054
7055  static EnumValueOptions get() {
7056    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m);
7057    return EnumValueOptions(m, &m);
7058  }
7059};
7060
7061class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7062 public:
7063  FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7064      : reffed_ptr(m, ref_donor) {
7065    assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m));
7066  }
7067
7068  static FieldDescriptorProto get() {
7069    const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m);
7070    return FieldDescriptorProto(m, &m);
7071  }
7072
7073  class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7074   public:
7075    Label(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7076        : reffed_ptr(e, ref_donor) {
7077      assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e));
7078    }
7079    static Label get() {
7080      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e);
7081      return Label(e, &e);
7082    }
7083  };
7084
7085  class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7086   public:
7087    Type(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7088        : reffed_ptr(e, ref_donor) {
7089      assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e));
7090    }
7091    static Type get() {
7092      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e);
7093      return Type(e, &e);
7094    }
7095  };
7096};
7097
7098class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7099 public:
7100  FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7101      : reffed_ptr(m, ref_donor) {
7102    assert(upbdefs_google_protobuf_FieldOptions_is(m));
7103  }
7104
7105  static FieldOptions get() {
7106    const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m);
7107    return FieldOptions(m, &m);
7108  }
7109
7110  class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7111   public:
7112    CType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7113        : reffed_ptr(e, ref_donor) {
7114      assert(upbdefs_google_protobuf_FieldOptions_CType_is(e));
7115    }
7116    static CType get() {
7117      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e);
7118      return CType(e, &e);
7119    }
7120  };
7121
7122  class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7123   public:
7124    JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7125        : reffed_ptr(e, ref_donor) {
7126      assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e));
7127    }
7128    static JSType get() {
7129      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e);
7130      return JSType(e, &e);
7131    }
7132  };
7133};
7134
7135class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7136 public:
7137  FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7138      : reffed_ptr(m, ref_donor) {
7139    assert(upbdefs_google_protobuf_FileDescriptorProto_is(m));
7140  }
7141
7142  static FileDescriptorProto get() {
7143    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m);
7144    return FileDescriptorProto(m, &m);
7145  }
7146};
7147
7148class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7149 public:
7150  FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7151      : reffed_ptr(m, ref_donor) {
7152    assert(upbdefs_google_protobuf_FileDescriptorSet_is(m));
7153  }
7154
7155  static FileDescriptorSet get() {
7156    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m);
7157    return FileDescriptorSet(m, &m);
7158  }
7159};
7160
7161class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7162 public:
7163  FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7164      : reffed_ptr(m, ref_donor) {
7165    assert(upbdefs_google_protobuf_FileOptions_is(m));
7166  }
7167
7168  static FileOptions get() {
7169    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m);
7170    return FileOptions(m, &m);
7171  }
7172
7173  class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7174   public:
7175    OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7176        : reffed_ptr(e, ref_donor) {
7177      assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e));
7178    }
7179    static OptimizeMode get() {
7180      const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e);
7181      return OptimizeMode(e, &e);
7182    }
7183  };
7184};
7185
7186class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7187 public:
7188  MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7189      : reffed_ptr(m, ref_donor) {
7190    assert(upbdefs_google_protobuf_MessageOptions_is(m));
7191  }
7192
7193  static MessageOptions get() {
7194    const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m);
7195    return MessageOptions(m, &m);
7196  }
7197};
7198
7199class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7200 public:
7201  MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7202      : reffed_ptr(m, ref_donor) {
7203    assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m));
7204  }
7205
7206  static MethodDescriptorProto get() {
7207    const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m);
7208    return MethodDescriptorProto(m, &m);
7209  }
7210};
7211
7212class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7213 public:
7214  MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7215      : reffed_ptr(m, ref_donor) {
7216    assert(upbdefs_google_protobuf_MethodOptions_is(m));
7217  }
7218
7219  static MethodOptions get() {
7220    const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m);
7221    return MethodOptions(m, &m);
7222  }
7223};
7224
7225class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7226 public:
7227  OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7228      : reffed_ptr(m, ref_donor) {
7229    assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m));
7230  }
7231
7232  static OneofDescriptorProto get() {
7233    const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m);
7234    return OneofDescriptorProto(m, &m);
7235  }
7236};
7237
7238class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7239 public:
7240  ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7241      : reffed_ptr(m, ref_donor) {
7242    assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m));
7243  }
7244
7245  static ServiceDescriptorProto get() {
7246    const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m);
7247    return ServiceDescriptorProto(m, &m);
7248  }
7249};
7250
7251class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7252 public:
7253  ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7254      : reffed_ptr(m, ref_donor) {
7255    assert(upbdefs_google_protobuf_ServiceOptions_is(m));
7256  }
7257
7258  static ServiceOptions get() {
7259    const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m);
7260    return ServiceOptions(m, &m);
7261  }
7262};
7263
7264class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7265 public:
7266  SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7267      : reffed_ptr(m, ref_donor) {
7268    assert(upbdefs_google_protobuf_SourceCodeInfo_is(m));
7269  }
7270
7271  static SourceCodeInfo get() {
7272    const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m);
7273    return SourceCodeInfo(m, &m);
7274  }
7275
7276  class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7277   public:
7278    Location(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7279        : reffed_ptr(m, ref_donor) {
7280      assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m));
7281    }
7282
7283    static Location get() {
7284      const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m);
7285      return Location(m, &m);
7286    }
7287  };
7288};
7289
7290class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7291 public:
7292  UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7293      : reffed_ptr(m, ref_donor) {
7294    assert(upbdefs_google_protobuf_UninterpretedOption_is(m));
7295  }
7296
7297  static UninterpretedOption get() {
7298    const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m);
7299    return UninterpretedOption(m, &m);
7300  }
7301
7302  class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7303   public:
7304    NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7305        : reffed_ptr(m, ref_donor) {
7306      assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m));
7307    }
7308
7309    static NamePart get() {
7310      const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m);
7311      return NamePart(m, &m);
7312    }
7313  };
7314};
7315
7316}  /* namespace protobuf */
7317}  /* namespace google */
7318}  /* namespace upbdefs */
7319
7320#endif  /* __cplusplus */
7321
7322#endif  /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */
7323/*
7324** Internal-only definitions for the decoder.
7325*/
7326
7327#ifndef UPB_DECODER_INT_H_
7328#define UPB_DECODER_INT_H_
7329
7330/*
7331** upb::pb::Decoder
7332**
7333** A high performance, streaming, resumable decoder for the binary protobuf
7334** format.
7335**
7336** This interface works the same regardless of what decoder backend is being
7337** used.  A client of this class does not need to know whether decoding is using
7338** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder.  By default,
7339** it will always use the fastest available decoder.  However, you can call
7340** set_allow_jit(false) to disable any JIT decoder that might be available.
7341** This is primarily useful for testing purposes.
7342*/
7343
7344#ifndef UPB_DECODER_H_
7345#define UPB_DECODER_H_
7346
7347
7348#ifdef __cplusplus
7349namespace upb {
7350namespace pb {
7351class CodeCache;
7352class Decoder;
7353class DecoderMethod;
7354class DecoderMethodOptions;
7355}  /* namespace pb */
7356}  /* namespace upb */
7357#endif
7358
7359UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
7360UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
7361UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
7362
7363UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
7364                         upb_pbdecodermethod, upb_refcounted)
7365
7366/* The maximum number of bytes we are required to buffer internally between
7367 * calls to the decoder.  The value is 14: a 5 byte unknown tag plus ten-byte
7368 * varint, less one because we are buffering an incomplete value.
7369 *
7370 * Should only be used by unit tests. */
7371#define UPB_DECODER_MAX_RESIDUAL_BYTES 14
7372
7373#ifdef __cplusplus
7374
7375/* The parameters one uses to construct a DecoderMethod.
7376 * TODO(haberman): move allowjit here?  Seems more convenient for users.
7377 * TODO(haberman): move this to be heap allocated for ABI stability. */
7378class upb::pb::DecoderMethodOptions {
7379 public:
7380  /* Parameter represents the destination handlers that this method will push
7381   * to. */
7382  explicit DecoderMethodOptions(const Handlers* dest_handlers);
7383
7384  /* Should the decoder push submessages to lazy handlers for fields that have
7385   * them?  The caller should set this iff the lazy handlers expect data that is
7386   * in protobuf binary format and the caller wishes to lazy parse it. */
7387  void set_lazy(bool lazy);
7388#else
7389struct upb_pbdecodermethodopts {
7390#endif
7391  const upb_handlers *handlers;
7392  bool lazy;
7393};
7394
7395#ifdef __cplusplus
7396
7397/* Represents the code to parse a protobuf according to a destination
7398 * Handlers. */
7399class upb::pb::DecoderMethod {
7400 public:
7401  /* Include base methods from upb::ReferenceCounted. */
7402  UPB_REFCOUNTED_CPPMETHODS
7403
7404  /* The destination handlers that are statically bound to this method.
7405   * This method is only capable of outputting to a sink that uses these
7406   * handlers. */
7407  const Handlers* dest_handlers() const;
7408
7409  /* The input handlers for this decoder method. */
7410  const BytesHandler* input_handler() const;
7411
7412  /* Whether this method is native. */
7413  bool is_native() const;
7414
7415  /* Convenience method for generating a DecoderMethod without explicitly
7416   * creating a CodeCache. */
7417  static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
7418
7419 private:
7420  UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
7421};
7422
7423#endif
7424
7425/* Preallocation hint: decoder won't allocate more bytes than this when first
7426 * constructed.  This hint may be an overestimate for some build configurations.
7427 * But if the decoder library is upgraded without recompiling the application,
7428 * it may be an underestimate. */
7429#define UPB_PB_DECODER_SIZE 4416
7430
7431#ifdef __cplusplus
7432
7433/* A Decoder receives binary protobuf data on its input sink and pushes the
7434 * decoded data to its output sink. */
7435class upb::pb::Decoder {
7436 public:
7437  /* Constructs a decoder instance for the given method, which must outlive this
7438   * decoder.  Any errors during parsing will be set on the given status, which
7439   * must also outlive this decoder.
7440   *
7441   * The sink must match the given method. */
7442  static Decoder* Create(Environment* env, const DecoderMethod* method,
7443                         Sink* output);
7444
7445  /* Returns the DecoderMethod this decoder is parsing from. */
7446  const DecoderMethod* method() const;
7447
7448  /* The sink on which this decoder receives input. */
7449  BytesSink* input();
7450
7451  /* Returns number of bytes successfully parsed.
7452   *
7453   * This can be useful for determining the stream position where an error
7454   * occurred.
7455   *
7456   * This value may not be up-to-date when called from inside a parsing
7457   * callback. */
7458  uint64_t BytesParsed() const;
7459
7460  /* Gets/sets the parsing nexting limit.  If the total number of nested
7461   * submessages and repeated fields hits this limit, parsing will fail.  This
7462   * is a resource limit that controls the amount of memory used by the parsing
7463   * stack.
7464   *
7465   * Setting the limit will fail if the parser is currently suspended at a depth
7466   * greater than this, or if memory allocation of the stack fails. */
7467  size_t max_nesting() const;
7468  bool set_max_nesting(size_t max);
7469
7470  void Reset();
7471
7472  static const size_t kSize = UPB_PB_DECODER_SIZE;
7473
7474 private:
7475  UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
7476};
7477
7478#endif  /* __cplusplus */
7479
7480#ifdef __cplusplus
7481
7482/* A class for caching protobuf processing code, whether bytecode for the
7483 * interpreted decoder or machine code for the JIT.
7484 *
7485 * This class is not thread-safe.
7486 *
7487 * TODO(haberman): move this to be heap allocated for ABI stability. */
7488class upb::pb::CodeCache {
7489 public:
7490  CodeCache();
7491  ~CodeCache();
7492
7493  /* Whether the cache is allowed to generate machine code.  Defaults to true.
7494   * There is no real reason to turn it off except for testing or if you are
7495   * having a specific problem with the JIT.
7496   *
7497   * Note that allow_jit = true does not *guarantee* that the code will be JIT
7498   * compiled.  If this platform is not supported or the JIT was not compiled
7499   * in, the code may still be interpreted. */
7500  bool allow_jit() const;
7501
7502  /* This may only be called when the object is first constructed, and prior to
7503   * any code generation, otherwise returns false and does nothing. */
7504  bool set_allow_jit(bool allow);
7505
7506  /* Returns a DecoderMethod that can push data to the given handlers.
7507   * If a suitable method already exists, it will be returned from the cache.
7508   *
7509   * Specifying the destination handlers here allows the DecoderMethod to be
7510   * statically bound to the destination handlers if possible, which can allow
7511   * more efficient decoding.  However the returned method may or may not
7512   * actually be statically bound.  But in all cases, the returned method can
7513   * push data to the given handlers. */
7514  const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
7515
7516  /* If/when someone needs to explicitly create a dynamically-bound
7517   * DecoderMethod*, we can add a method to get it here. */
7518
7519 private:
7520  UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
7521#else
7522struct upb_pbcodecache {
7523#endif
7524  bool allow_jit_;
7525
7526  /* Array of mgroups. */
7527  upb_inttable groups;
7528};
7529
7530UPB_BEGIN_EXTERN_C
7531
7532upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
7533                                    const upb_pbdecodermethod *method,
7534                                    upb_sink *output);
7535const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
7536upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
7537uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
7538size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
7539bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
7540void upb_pbdecoder_reset(upb_pbdecoder *d);
7541
7542void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
7543                                  const upb_handlers *h);
7544void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
7545
7546
7547/* Include refcounted methods like upb_pbdecodermethod_ref(). */
7548UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
7549
7550const upb_handlers *upb_pbdecodermethod_desthandlers(
7551    const upb_pbdecodermethod *m);
7552const upb_byteshandler *upb_pbdecodermethod_inputhandler(
7553    const upb_pbdecodermethod *m);
7554bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
7555const upb_pbdecodermethod *upb_pbdecodermethod_new(
7556    const upb_pbdecodermethodopts *opts, const void *owner);
7557
7558void upb_pbcodecache_init(upb_pbcodecache *c);
7559void upb_pbcodecache_uninit(upb_pbcodecache *c);
7560bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
7561bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
7562const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
7563    upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
7564
7565UPB_END_EXTERN_C
7566
7567#ifdef __cplusplus
7568
7569namespace upb {
7570
7571namespace pb {
7572
7573/* static */
7574inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
7575                                Sink* sink) {
7576  return upb_pbdecoder_create(env, m, sink);
7577}
7578inline const DecoderMethod* Decoder::method() const {
7579  return upb_pbdecoder_method(this);
7580}
7581inline BytesSink* Decoder::input() {
7582  return upb_pbdecoder_input(this);
7583}
7584inline uint64_t Decoder::BytesParsed() const {
7585  return upb_pbdecoder_bytesparsed(this);
7586}
7587inline size_t Decoder::max_nesting() const {
7588  return upb_pbdecoder_maxnesting(this);
7589}
7590inline bool Decoder::set_max_nesting(size_t max) {
7591  return upb_pbdecoder_setmaxnesting(this, max);
7592}
7593inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
7594
7595inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
7596  upb_pbdecodermethodopts_init(this, h);
7597}
7598inline void DecoderMethodOptions::set_lazy(bool lazy) {
7599  upb_pbdecodermethodopts_setlazy(this, lazy);
7600}
7601
7602inline const Handlers* DecoderMethod::dest_handlers() const {
7603  return upb_pbdecodermethod_desthandlers(this);
7604}
7605inline const BytesHandler* DecoderMethod::input_handler() const {
7606  return upb_pbdecodermethod_inputhandler(this);
7607}
7608inline bool DecoderMethod::is_native() const {
7609  return upb_pbdecodermethod_isnative(this);
7610}
7611/* static */
7612inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
7613    const DecoderMethodOptions &opts) {
7614  const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
7615  return reffed_ptr<const DecoderMethod>(m, &m);
7616}
7617
7618inline CodeCache::CodeCache() {
7619  upb_pbcodecache_init(this);
7620}
7621inline CodeCache::~CodeCache() {
7622  upb_pbcodecache_uninit(this);
7623}
7624inline bool CodeCache::allow_jit() const {
7625  return upb_pbcodecache_allowjit(this);
7626}
7627inline bool CodeCache::set_allow_jit(bool allow) {
7628  return upb_pbcodecache_setallowjit(this, allow);
7629}
7630inline const DecoderMethod *CodeCache::GetDecoderMethod(
7631    const DecoderMethodOptions& opts) {
7632  return upb_pbcodecache_getdecodermethod(this, &opts);
7633}
7634
7635}  /* namespace pb */
7636}  /* namespace upb */
7637
7638#endif  /* __cplusplus */
7639
7640#endif  /* UPB_DECODER_H_ */
7641
7642/* C++ names are not actually used since this type isn't exposed to users. */
7643#ifdef __cplusplus
7644namespace upb {
7645namespace pb {
7646class MessageGroup;
7647}  /* namespace pb */
7648}  /* namespace upb */
7649#endif
7650UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
7651                         mgroup, upb_refcounted)
7652
7653/* Opcode definitions.  The canonical meaning of each opcode is its
7654 * implementation in the interpreter (the JIT is written to match this).
7655 *
7656 * All instructions have the opcode in the low byte.
7657 * Instruction format for most instructions is:
7658 *
7659 * +-------------------+--------+
7660 * |     arg (24)      | op (8) |
7661 * +-------------------+--------+
7662 *
7663 * Exceptions are indicated below.  A few opcodes are multi-word. */
7664typedef enum {
7665  /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
7666   * Arg for all of these is the upb selector for this field. */
7667#define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
7668  T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
7669  T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
7670#undef T
7671  OP_STARTMSG       = 9,   /* No arg. */
7672  OP_ENDMSG         = 10,  /* No arg. */
7673  OP_STARTSEQ       = 11,
7674  OP_ENDSEQ         = 12,
7675  OP_STARTSUBMSG    = 14,
7676  OP_ENDSUBMSG      = 19,
7677  OP_STARTSTR       = 20,
7678  OP_STRING         = 21,
7679  OP_ENDSTR         = 22,
7680
7681  OP_PUSHTAGDELIM   = 23,  /* No arg. */
7682  OP_PUSHLENDELIM   = 24,  /* No arg. */
7683  OP_POP            = 25,  /* No arg. */
7684  OP_SETDELIM       = 26,  /* No arg. */
7685  OP_SETBIGGROUPNUM = 27,  /* two words:
7686                            *   | unused (24)     | opc (8) |
7687                            *   |        groupnum (32)      | */
7688  OP_CHECKDELIM     = 28,
7689  OP_CALL           = 29,
7690  OP_RET            = 30,
7691  OP_BRANCH         = 31,
7692
7693  /* Different opcodes depending on how many bytes expected. */
7694  OP_TAG1           = 32,  /* | match tag (16) | jump target (8) | opc (8) | */
7695  OP_TAG2           = 33,  /* | match tag (16) | jump target (8) | opc (8) | */
7696  OP_TAGN           = 34,  /* three words: */
7697                           /*   | unused (16) | jump target(8) | opc (8) | */
7698                           /*   |           match tag 1 (32)             | */
7699                           /*   |           match tag 2 (32)             | */
7700
7701  OP_SETDISPATCH    = 35,  /* N words: */
7702                           /*   | unused (24)         | opc | */
7703                           /*   | upb_inttable* (32 or 64)  | */
7704
7705  OP_DISPATCH       = 36,  /* No arg. */
7706
7707  OP_HALT           = 37   /* No arg. */
7708} opcode;
7709
7710#define OP_MAX OP_HALT
7711
7712UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
7713
7714/* Method group; represents a set of decoder methods that had their code
7715 * emitted together, and must therefore be freed together.  Immutable once
7716 * created.  It is possible we may want to expose this to users at some point.
7717 *
7718 * Overall ownership of Decoder objects looks like this:
7719 *
7720 *                +----------+
7721 *                |          | <---> DecoderMethod
7722 *                | method   |
7723 * CodeCache ---> |  group   | <---> DecoderMethod
7724 *                |          |
7725 *                | (mgroup) | <---> DecoderMethod
7726 *                +----------+
7727 */
7728struct mgroup {
7729  upb_refcounted base;
7730
7731  /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod.  We own refs on the
7732   * methods. */
7733  upb_inttable methods;
7734
7735  /* When we add the ability to link to previously existing mgroups, we'll
7736   * need an array of mgroups we reference here, and own refs on them. */
7737
7738  /* The bytecode for our methods, if any exists.  Owned by us. */
7739  uint32_t *bytecode;
7740  uint32_t *bytecode_end;
7741
7742#ifdef UPB_USE_JIT_X64
7743  /* JIT-generated machine code, if any. */
7744  upb_string_handlerfunc *jit_code;
7745  /* The size of the jit_code (required to munmap()). */
7746  size_t jit_size;
7747  char *debug_info;
7748  void *dl;
7749#endif
7750};
7751
7752/* The maximum that any submessages can be nested.  Matches proto2's limit.
7753 * This specifies the size of the decoder's statically-sized array and therefore
7754 * setting it high will cause the upb::pb::Decoder object to be larger.
7755 *
7756 * If necessary we can add a runtime-settable property to Decoder that allow
7757 * this to be larger than the compile-time setting, but this would add
7758 * complexity, particularly since we would have to decide how/if to give users
7759 * the ability to set a custom memory allocation function. */
7760#define UPB_DECODER_MAX_NESTING 64
7761
7762/* Internal-only struct used by the decoder. */
7763typedef struct {
7764  /* Space optimization note: we store two pointers here that the JIT
7765   * doesn't need at all; the upb_handlers* inside the sink and
7766   * the dispatch table pointer.  We can optimze so that the JIT uses
7767   * smaller stack frames than the interpreter.  The only thing we need
7768   * to guarantee is that the fallback routines can find end_ofs. */
7769  upb_sink sink;
7770
7771  /* The absolute stream offset of the end-of-frame delimiter.
7772   * Non-delimited frames (groups and non-packed repeated fields) reuse the
7773   * delimiter of their parent, even though the frame may not end there.
7774   *
7775   * NOTE: the JIT stores a slightly different value here for non-top frames.
7776   * It stores the value relative to the end of the enclosed message.  But the
7777   * top frame is still stored the same way, which is important for ensuring
7778   * that calls from the JIT into C work correctly. */
7779  uint64_t end_ofs;
7780  const uint32_t *base;
7781
7782  /* 0 indicates a length-delimited field.
7783   * A positive number indicates a known group.
7784   * A negative number indicates an unknown group. */
7785  int32_t groupnum;
7786  upb_inttable *dispatch;  /* Not used by the JIT. */
7787} upb_pbdecoder_frame;
7788
7789struct upb_pbdecodermethod {
7790  upb_refcounted base;
7791
7792  /* While compiling, the base is relative in "ofs", after compiling it is
7793   * absolute in "ptr". */
7794  union {
7795    uint32_t ofs;     /* PC offset of method. */
7796    void *ptr;        /* Pointer to bytecode or machine code for this method. */
7797  } code_base;
7798
7799  /* The decoder method group to which this method belongs.  We own a ref.
7800   * Owning a ref on the entire group is more coarse-grained than is strictly
7801   * necessary; all we truly require is that methods we directly reference
7802   * outlive us, while the group could contain many other messages we don't
7803   * require.  But the group represents the messages that were
7804   * allocated+compiled together, so it makes the most sense to free them
7805   * together also. */
7806  const upb_refcounted *group;
7807
7808  /* Whether this method is native code or bytecode. */
7809  bool is_native_;
7810
7811  /* The handler one calls to invoke this method. */
7812  upb_byteshandler input_handler_;
7813
7814  /* The destination handlers this method is bound to.  We own a ref. */
7815  const upb_handlers *dest_handlers_;
7816
7817  /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
7818   * field number that wasn't the one we were expecting to see.  See
7819   * decoder.int.h for the layout of this table. */
7820  upb_inttable dispatch;
7821};
7822
7823struct upb_pbdecoder {
7824  upb_env *env;
7825
7826  /* Our input sink. */
7827  upb_bytessink input_;
7828
7829  /* The decoder method we are parsing with (owned). */
7830  const upb_pbdecodermethod *method_;
7831
7832  size_t call_len;
7833  const uint32_t *pc, *last;
7834
7835  /* Current input buffer and its stream offset. */
7836  const char *buf, *ptr, *end, *checkpoint;
7837
7838  /* End of the delimited region, relative to ptr, NULL if not in this buf. */
7839  const char *delim_end;
7840
7841  /* End of the delimited region, relative to ptr, end if not in this buf. */
7842  const char *data_end;
7843
7844  /* Overall stream offset of "buf." */
7845  uint64_t bufstart_ofs;
7846
7847  /* Buffer for residual bytes not parsed from the previous buffer. */
7848  char residual[UPB_DECODER_MAX_RESIDUAL_BYTES];
7849  char *residual_end;
7850
7851  /* Bytes of data that should be discarded from the input beore we start
7852   * parsing again.  We set this when we internally determine that we can
7853   * safely skip the next N bytes, but this region extends past the current
7854   * user buffer. */
7855  size_t skip;
7856
7857  /* Stores the user buffer passed to our decode function. */
7858  const char *buf_param;
7859  size_t size_param;
7860  const upb_bufhandle *handle;
7861
7862  /* Our internal stack. */
7863  upb_pbdecoder_frame *stack, *top, *limit;
7864  const uint32_t **callstack;
7865  size_t stack_size;
7866
7867  upb_status *status;
7868
7869#ifdef UPB_USE_JIT_X64
7870  /* Used momentarily by the generated code to store a value while a user
7871   * function is called. */
7872  uint32_t tmp_len;
7873
7874  const void *saved_rsp;
7875#endif
7876};
7877
7878/* Decoder entry points; used as handlers. */
7879void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
7880void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
7881size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
7882                            size_t size, const upb_bufhandle *handle);
7883bool upb_pbdecoder_end(void *closure, const void *handler_data);
7884
7885/* Decoder-internal functions that the JIT calls to handle fallback paths. */
7886int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
7887                             size_t size, const upb_bufhandle *handle);
7888size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
7889int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
7890                                  uint8_t wire_type);
7891int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
7892int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
7893int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
7894int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
7895void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
7896
7897/* Error messages that are shared between the bytecode and JIT decoders. */
7898extern const char *kPbDecoderStackOverflow;
7899extern const char *kPbDecoderSubmessageTooLong;
7900
7901/* Access to decoderplan members needed by the decoder. */
7902const char *upb_pbdecoder_getopname(unsigned int op);
7903
7904/* JIT codegen entry point. */
7905void upb_pbdecoder_jit(mgroup *group);
7906void upb_pbdecoder_freejit(mgroup *group);
7907UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
7908
7909/* A special label that means "do field dispatch for this message and branch to
7910 * wherever that takes you." */
7911#define LABEL_DISPATCH 0
7912
7913/* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
7914 * RET) for branching to when we find an appropriate ENDGROUP tag. */
7915#define DISPATCH_ENDMSG 0
7916
7917/* It's important to use this invalid wire type instead of 0 (which is a valid
7918 * wire type). */
7919#define NO_WIRE_TYPE 0xff
7920
7921/* The dispatch table layout is:
7922 *   [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
7923 *
7924 * If wt1 matches, jump to the 48-bit offset.  If wt2 matches, lookup
7925 * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
7926 *
7927 * We need two wire types because of packed/non-packed compatibility.  A
7928 * primitive repeated field can use either wire type and be valid.  While we
7929 * could key the table on fieldnum+wiretype, the table would be 8x sparser.
7930 *
7931 * Storing two wire types in the primary value allows us to quickly rule out
7932 * the second wire type without needing to do a separate lookup (this case is
7933 * less common than an unknown field). */
7934UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
7935                                               uint8_t wt2) {
7936  return (ofs << 16) | (wt2 << 8) | wt1;
7937}
7938
7939UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
7940                                             uint8_t *wt1, uint8_t *wt2) {
7941  *wt1 = (uint8_t)dispatch;
7942  *wt2 = (uint8_t)(dispatch >> 8);
7943  *ofs = dispatch >> 16;
7944}
7945
7946/* All of the functions in decoder.c that return int32_t return values according
7947 * to the following scheme:
7948 *   1. negative values indicate a return code from the following list.
7949 *   2. positive values indicate that error or end of buffer was hit, and
7950 *      that the decode function should immediately return the given value
7951 *      (the decoder state has already been suspended and is ready to be
7952 *      resumed). */
7953#define DECODE_OK -1
7954#define DECODE_MISMATCH -2  /* Used only from checktag_slow(). */
7955#define DECODE_ENDGROUP -3  /* Used only from checkunknown(). */
7956
7957#define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
7958
7959#endif  /* UPB_DECODER_INT_H_ */
7960/*
7961** A number of routines for varint manipulation (we keep them all around to
7962** have multiple approaches available for benchmarking).
7963*/
7964
7965#ifndef UPB_VARINT_DECODER_H_
7966#define UPB_VARINT_DECODER_H_
7967
7968#include <assert.h>
7969#include <stdint.h>
7970#include <string.h>
7971
7972#ifdef __cplusplus
7973extern "C" {
7974#endif
7975
7976/* A list of types as they are encoded on-the-wire. */
7977typedef enum {
7978  UPB_WIRE_TYPE_VARINT      = 0,
7979  UPB_WIRE_TYPE_64BIT       = 1,
7980  UPB_WIRE_TYPE_DELIMITED   = 2,
7981  UPB_WIRE_TYPE_START_GROUP = 3,
7982  UPB_WIRE_TYPE_END_GROUP   = 4,
7983  UPB_WIRE_TYPE_32BIT       = 5
7984} upb_wiretype_t;
7985
7986#define UPB_MAX_WIRE_TYPE 5
7987
7988/* The maximum number of bytes that it takes to encode a 64-bit varint.
7989 * Note that with a better encoding this could be 9 (TODO: write up a
7990 * wiki document about this). */
7991#define UPB_PB_VARINT_MAX_LEN 10
7992
7993/* Array of the "native" (ie. non-packed-repeated) wire type for the given a
7994 * descriptor type (upb_descriptortype_t). */
7995extern const uint8_t upb_pb_native_wire_types[];
7996
7997/* Zig-zag encoding/decoding **************************************************/
7998
7999UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
8000  return (n >> 1) ^ -(int32_t)(n & 1);
8001}
8002UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
8003  return (n >> 1) ^ -(int64_t)(n & 1);
8004}
8005UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
8006UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
8007
8008/* Decoding *******************************************************************/
8009
8010/* All decoding functions return this struct by value. */
8011typedef struct {
8012  const char *p;  /* NULL if the varint was unterminated. */
8013  uint64_t val;
8014} upb_decoderet;
8015
8016UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
8017  upb_decoderet ret;
8018  ret.p = p;
8019  ret.val = val;
8020  return ret;
8021}
8022
8023/* Four functions for decoding a varint of at most eight bytes.  They are all
8024 * functionally identical, but are implemented in different ways and likely have
8025 * different performance profiles.  We keep them around for performance testing.
8026 *
8027 * Note that these functions may not read byte-by-byte, so they must not be used
8028 * unless there are at least eight bytes left in the buffer! */
8029upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
8030upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
8031upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
8032upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
8033
8034/* Template for a function that checks the first two bytes with branching
8035 * and dispatches 2-10 bytes with a separate function.  Note that this may read
8036 * up to 10 bytes, so it must not be used unless there are at least ten bytes
8037 * left in the buffer! */
8038#define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function)                  \
8039UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) {         \
8040  uint8_t *p = (uint8_t*)_p;                                                   \
8041  upb_decoderet r;                                                             \
8042  if ((*p & 0x80) == 0) {                                                      \
8043  /* Common case: one-byte varint. */                                          \
8044    return upb_decoderet_make(_p + 1, *p & 0x7fU);                             \
8045  }                                                                            \
8046  r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7));    \
8047  if ((*(p + 1) & 0x80) == 0) {                                                \
8048    /* Two-byte varint. */                                                     \
8049    return r;                                                                  \
8050  }                                                                            \
8051  /* Longer varint, fallback to out-of-line function. */                       \
8052  return decode_max8_function(r);                                              \
8053}
8054
8055UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
8056UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
8057UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
8058UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
8059#undef UPB_VARINT_DECODER_CHECK2
8060
8061/* Our canonical functions for decoding varints, based on the currently
8062 * favored best-performing implementations. */
8063UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
8064  if (sizeof(long) == 8)
8065    return upb_vdecode_check2_branch64(p);
8066  else
8067    return upb_vdecode_check2_branch32(p);
8068}
8069
8070UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
8071  return upb_vdecode_max8_massimino(r);
8072}
8073
8074
8075/* Encoding *******************************************************************/
8076
8077UPB_INLINE int upb_value_size(uint64_t val) {
8078#ifdef __GNUC__
8079  int high_bit = 63 - __builtin_clzll(val);  /* 0-based, undef if val == 0. */
8080#else
8081  int high_bit = 0;
8082  uint64_t tmp = val;
8083  while(tmp >>= 1) high_bit++;
8084#endif
8085  return val == 0 ? 1 : high_bit / 8 + 1;
8086}
8087
8088/* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
8089 * bytes long), returning how many bytes were used.
8090 *
8091 * TODO: benchmark and optimize if necessary. */
8092UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
8093  size_t i;
8094  if (val == 0) { buf[0] = 0; return 1; }
8095  i = 0;
8096  while (val) {
8097    uint8_t byte = val & 0x7fU;
8098    val >>= 7;
8099    if (val) byte |= 0x80U;
8100    buf[i++] = byte;
8101  }
8102  return i;
8103}
8104
8105UPB_INLINE size_t upb_varint_size(uint64_t val) {
8106  char buf[UPB_PB_VARINT_MAX_LEN];
8107  return upb_vencode64(val, buf);
8108}
8109
8110/* Encodes a 32-bit varint, *not* sign-extended. */
8111UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
8112  char buf[UPB_PB_VARINT_MAX_LEN];
8113  size_t bytes = upb_vencode64(val, buf);
8114  uint64_t ret = 0;
8115  assert(bytes <= 5);
8116  memcpy(&ret, buf, bytes);
8117  assert(ret <= 0xffffffffffU);
8118  return ret;
8119}
8120
8121#ifdef __cplusplus
8122}  /* extern "C" */
8123#endif
8124
8125#endif  /* UPB_VARINT_DECODER_H_ */
8126/*
8127** upb::pb::Encoder (upb_pb_encoder)
8128**
8129** Implements a set of upb_handlers that write protobuf data to the binary wire
8130** format.
8131**
8132** This encoder implementation does not have any access to any out-of-band or
8133** precomputed lengths for submessages, so it must buffer submessages internally
8134** before it can emit the first byte.
8135*/
8136
8137#ifndef UPB_ENCODER_H_
8138#define UPB_ENCODER_H_
8139
8140
8141#ifdef __cplusplus
8142namespace upb {
8143namespace pb {
8144class Encoder;
8145}  /* namespace pb */
8146}  /* namespace upb */
8147#endif
8148
8149UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
8150
8151#define UPB_PBENCODER_MAX_NESTING 100
8152
8153/* upb::pb::Encoder ***********************************************************/
8154
8155/* Preallocation hint: decoder won't allocate more bytes than this when first
8156 * constructed.  This hint may be an overestimate for some build configurations.
8157 * But if the decoder library is upgraded without recompiling the application,
8158 * it may be an underestimate. */
8159#define UPB_PB_ENCODER_SIZE 768
8160
8161#ifdef __cplusplus
8162
8163class upb::pb::Encoder {
8164 public:
8165  /* Creates a new encoder in the given environment.  The Handlers must have
8166   * come from NewHandlers() below. */
8167  static Encoder* Create(Environment* env, const Handlers* handlers,
8168                         BytesSink* output);
8169
8170  /* The input to the encoder. */
8171  Sink* input();
8172
8173  /* Creates a new set of handlers for this MessageDef. */
8174  static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
8175
8176  static const size_t kSize = UPB_PB_ENCODER_SIZE;
8177
8178 private:
8179  UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
8180};
8181
8182#endif
8183
8184UPB_BEGIN_EXTERN_C
8185
8186const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
8187                                               const void *owner);
8188upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
8189upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
8190                                      upb_bytessink* output);
8191
8192UPB_END_EXTERN_C
8193
8194#ifdef __cplusplus
8195
8196namespace upb {
8197namespace pb {
8198inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
8199                                BytesSink* output) {
8200  return upb_pb_encoder_create(env, handlers, output);
8201}
8202inline Sink* Encoder::input() {
8203  return upb_pb_encoder_input(this);
8204}
8205inline reffed_ptr<const Handlers> Encoder::NewHandlers(
8206    const upb::MessageDef *md) {
8207  const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
8208  return reffed_ptr<const Handlers>(h, &h);
8209}
8210}  /* namespace pb */
8211}  /* namespace upb */
8212
8213#endif
8214
8215#endif  /* UPB_ENCODER_H_ */
8216/*
8217** upb's core components like upb_decoder and upb_msg are carefully designed to
8218** avoid depending on each other for maximum orthogonality.  In other words,
8219** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
8220** just one such structure.  A upb_msg can be serialized/deserialized into any
8221** format, protobuf binary format is just one such format.
8222**
8223** However, for convenience we provide functions here for doing common
8224** operations like deserializing protobuf binary format into a upb_msg.  The
8225** compromise is that this file drags in almost all of upb as a dependency,
8226** which could be undesirable if you're trying to use a trimmed-down build of
8227** upb.
8228**
8229** While these routines are convenient, they do not reuse any encoding/decoding
8230** state.  For example, if a decoder is JIT-based, it will be re-JITted every
8231** time these functions are called.  For this reason, if you are parsing lots
8232** of data and efficiency is an issue, these may not be the best functions to
8233** use (though they are useful for prototyping, before optimizing).
8234*/
8235
8236#ifndef UPB_GLUE_H
8237#define UPB_GLUE_H
8238
8239#include <stdbool.h>
8240
8241#ifdef __cplusplus
8242#include <vector>
8243
8244extern "C" {
8245#endif
8246
8247/* Loads a binary descriptor and returns a NULL-terminated array of unfrozen
8248 * filedefs.  The caller owns the returned array, which must be freed with
8249 * upb_gfree(). */
8250upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner,
8251                                 upb_status *status);
8252
8253#ifdef __cplusplus
8254}  /* extern "C" */
8255
8256namespace upb {
8257
8258inline bool LoadDescriptor(const char* buf, size_t n, Status* status,
8259                           std::vector<reffed_ptr<FileDef> >* files) {
8260  FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status);
8261
8262  if (parsed_files) {
8263    FileDef** p = parsed_files;
8264    while (*p) {
8265      files->push_back(reffed_ptr<FileDef>(*p, &parsed_files));
8266      ++p;
8267    }
8268    free(parsed_files);
8269    return true;
8270  } else {
8271    return false;
8272  }
8273}
8274
8275/* Templated so it can accept both string and std::string. */
8276template <typename T>
8277bool LoadDescriptor(const T& desc, Status* status,
8278                    std::vector<reffed_ptr<FileDef> >* files) {
8279  return LoadDescriptor(desc.c_str(), desc.size(), status, files);
8280}
8281
8282}  /* namespace upb */
8283
8284#endif
8285
8286#endif  /* UPB_GLUE_H */
8287/*
8288** upb::pb::TextPrinter (upb_textprinter)
8289**
8290** Handlers for writing to protobuf text format.
8291*/
8292
8293#ifndef UPB_TEXT_H_
8294#define UPB_TEXT_H_
8295
8296
8297#ifdef __cplusplus
8298namespace upb {
8299namespace pb {
8300class TextPrinter;
8301}  /* namespace pb */
8302}  /* namespace upb */
8303#endif
8304
8305UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
8306
8307#ifdef __cplusplus
8308
8309class upb::pb::TextPrinter {
8310 public:
8311  /* The given handlers must have come from NewHandlers().  It must outlive the
8312   * TextPrinter. */
8313  static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
8314                             BytesSink *output);
8315
8316  void SetSingleLineMode(bool single_line);
8317
8318  Sink* input();
8319
8320  /* If handler caching becomes a requirement we can add a code cache as in
8321   * decoder.h */
8322  static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
8323};
8324
8325#endif
8326
8327UPB_BEGIN_EXTERN_C
8328
8329/* C API. */
8330upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
8331                                        upb_bytessink *output);
8332void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
8333upb_sink *upb_textprinter_input(upb_textprinter *p);
8334
8335const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
8336                                                const void *owner);
8337
8338UPB_END_EXTERN_C
8339
8340#ifdef __cplusplus
8341
8342namespace upb {
8343namespace pb {
8344inline TextPrinter *TextPrinter::Create(Environment *env,
8345                                        const upb::Handlers *handlers,
8346                                        BytesSink *output) {
8347  return upb_textprinter_create(env, handlers, output);
8348}
8349inline void TextPrinter::SetSingleLineMode(bool single_line) {
8350  upb_textprinter_setsingleline(this, single_line);
8351}
8352inline Sink* TextPrinter::input() {
8353  return upb_textprinter_input(this);
8354}
8355inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
8356    const MessageDef *md) {
8357  const Handlers* h = upb_textprinter_newhandlers(md, &h);
8358  return reffed_ptr<const Handlers>(h, &h);
8359}
8360}  /* namespace pb */
8361}  /* namespace upb */
8362
8363#endif
8364
8365#endif  /* UPB_TEXT_H_ */
8366/*
8367** upb::json::Parser (upb_json_parser)
8368**
8369** Parses JSON according to a specific schema.
8370** Support for parsing arbitrary JSON (schema-less) will be added later.
8371*/
8372
8373#ifndef UPB_JSON_PARSER_H_
8374#define UPB_JSON_PARSER_H_
8375
8376
8377#ifdef __cplusplus
8378namespace upb {
8379namespace json {
8380class Parser;
8381class ParserMethod;
8382}  /* namespace json */
8383}  /* namespace upb */
8384#endif
8385
8386UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
8387UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted,
8388                         upb_json_parsermethod, upb_refcounted)
8389
8390/* upb::json::Parser **********************************************************/
8391
8392/* Preallocation hint: parser won't allocate more bytes than this when first
8393 * constructed.  This hint may be an overestimate for some build configurations.
8394 * But if the parser library is upgraded without recompiling the application,
8395 * it may be an underestimate. */
8396#define UPB_JSON_PARSER_SIZE 4112
8397
8398#ifdef __cplusplus
8399
8400/* Parses an incoming BytesStream, pushing the results to the destination
8401 * sink. */
8402class upb::json::Parser {
8403 public:
8404  static Parser* Create(Environment* env, const ParserMethod* method,
8405                        Sink* output);
8406
8407  BytesSink* input();
8408
8409 private:
8410  UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
8411};
8412
8413class upb::json::ParserMethod {
8414 public:
8415  /* Include base methods from upb::ReferenceCounted. */
8416  UPB_REFCOUNTED_CPPMETHODS
8417
8418  /* Returns handlers for parsing according to the specified schema. */
8419  static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md);
8420
8421  /* The destination handlers that are statically bound to this method.
8422   * This method is only capable of outputting to a sink that uses these
8423   * handlers. */
8424  const Handlers* dest_handlers() const;
8425
8426  /* The input handlers for this decoder method. */
8427  const BytesHandler* input_handler() const;
8428
8429 private:
8430  UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod)
8431};
8432
8433#endif
8434
8435UPB_BEGIN_EXTERN_C
8436
8437upb_json_parser* upb_json_parser_create(upb_env* e,
8438                                        const upb_json_parsermethod* m,
8439                                        upb_sink* output);
8440upb_bytessink *upb_json_parser_input(upb_json_parser *p);
8441
8442upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md,
8443                                                 const void* owner);
8444const upb_handlers *upb_json_parsermethod_desthandlers(
8445    const upb_json_parsermethod *m);
8446const upb_byteshandler *upb_json_parsermethod_inputhandler(
8447    const upb_json_parsermethod *m);
8448
8449/* Include refcounted methods like upb_json_parsermethod_ref(). */
8450UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast)
8451
8452UPB_END_EXTERN_C
8453
8454#ifdef __cplusplus
8455
8456namespace upb {
8457namespace json {
8458inline Parser* Parser::Create(Environment* env, const ParserMethod* method,
8459                              Sink* output) {
8460  return upb_json_parser_create(env, method, output);
8461}
8462inline BytesSink* Parser::input() {
8463  return upb_json_parser_input(this);
8464}
8465
8466inline const Handlers* ParserMethod::dest_handlers() const {
8467  return upb_json_parsermethod_desthandlers(this);
8468}
8469inline const BytesHandler* ParserMethod::input_handler() const {
8470  return upb_json_parsermethod_inputhandler(this);
8471}
8472/* static */
8473inline reffed_ptr<const ParserMethod> ParserMethod::New(
8474    const MessageDef* md) {
8475  const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m);
8476  return reffed_ptr<const ParserMethod>(m, &m);
8477}
8478
8479}  /* namespace json */
8480}  /* namespace upb */
8481
8482#endif
8483
8484
8485#endif  /* UPB_JSON_PARSER_H_ */
8486/*
8487** upb::json::Printer
8488**
8489** Handlers that emit JSON according to a specific protobuf schema.
8490*/
8491
8492#ifndef UPB_JSON_TYPED_PRINTER_H_
8493#define UPB_JSON_TYPED_PRINTER_H_
8494
8495
8496#ifdef __cplusplus
8497namespace upb {
8498namespace json {
8499class Printer;
8500}  /* namespace json */
8501}  /* namespace upb */
8502#endif
8503
8504UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
8505
8506
8507/* upb::json::Printer *********************************************************/
8508
8509#define UPB_JSON_PRINTER_SIZE 176
8510
8511#ifdef __cplusplus
8512
8513/* Prints an incoming stream of data to a BytesSink in JSON format. */
8514class upb::json::Printer {
8515 public:
8516  static Printer* Create(Environment* env, const upb::Handlers* handlers,
8517                         BytesSink* output);
8518
8519  /* The input to the printer. */
8520  Sink* input();
8521
8522  /* Returns handlers for printing according to the specified schema.
8523   * If preserve_proto_fieldnames is true, the output JSON will use the
8524   * original .proto field names (ie. {"my_field":3}) instead of using
8525   * camelCased names, which is the default: (eg. {"myField":3}). */
8526  static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md,
8527                                                bool preserve_proto_fieldnames);
8528
8529  static const size_t kSize = UPB_JSON_PRINTER_SIZE;
8530
8531 private:
8532  UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
8533};
8534
8535#endif
8536
8537UPB_BEGIN_EXTERN_C
8538
8539/* Native C API. */
8540upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
8541                                          upb_bytessink *output);
8542upb_sink *upb_json_printer_input(upb_json_printer *p);
8543const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
8544                                                 bool preserve_fieldnames,
8545                                                 const void *owner);
8546
8547UPB_END_EXTERN_C
8548
8549#ifdef __cplusplus
8550
8551namespace upb {
8552namespace json {
8553inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
8554                                BytesSink* output) {
8555  return upb_json_printer_create(env, handlers, output);
8556}
8557inline Sink* Printer::input() { return upb_json_printer_input(this); }
8558inline reffed_ptr<const Handlers> Printer::NewHandlers(
8559    const upb::MessageDef *md, bool preserve_proto_fieldnames) {
8560  const Handlers* h = upb_json_printer_newhandlers(
8561      md, preserve_proto_fieldnames, &h);
8562  return reffed_ptr<const Handlers>(h, &h);
8563}
8564}  /* namespace json */
8565}  /* namespace upb */
8566
8567#endif
8568
8569#endif  /* UPB_JSON_TYPED_PRINTER_H_ */
8570