decimal.py revision daeceb2de80047f25aedbf16bf40dc5d619e64dd
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves.  Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported.  At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24    www2.hursley.ibm.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point.  The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85  ...
86  ...
87  ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103  ...
104  ...
105  ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119    # Two major classes
120    'Decimal', 'Context',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129    # Constants for use in setting up contexts
130    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133    # Functions for manipulating contexts
134    'setcontext', 'getcontext', 'localcontext'
135]
136
137__version__ = '1.68'    # Highest version of the spec this complies with
138
139import copy as _copy
140import math as _math
141import numbers as _numbers
142
143try:
144    from collections import namedtuple as _namedtuple
145    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146except ImportError:
147    DecimalTuple = lambda *args: args
148
149# Rounding
150ROUND_DOWN = 'ROUND_DOWN'
151ROUND_HALF_UP = 'ROUND_HALF_UP'
152ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153ROUND_CEILING = 'ROUND_CEILING'
154ROUND_FLOOR = 'ROUND_FLOOR'
155ROUND_UP = 'ROUND_UP'
156ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157ROUND_05UP = 'ROUND_05UP'
158
159# Errors
160
161class DecimalException(ArithmeticError):
162    """Base exception class.
163
164    Used exceptions derive from this.
165    If an exception derives from another exception besides this (such as
166    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167    called if the others are present.  This isn't actually used for
168    anything, though.
169
170    handle  -- Called when context._raise_error is called and the
171               trap_enabler is set.  First argument is self, second is the
172               context.  More arguments can be given, those being after
173               the explanation in _raise_error (For example,
174               context._raise_error(NewError, '(-x)!', self._sign) would
175               call NewError().handle(context, self._sign).)
176
177    To define a new exception, it should be sufficient to have it derive
178    from DecimalException.
179    """
180    def handle(self, context, *args):
181        pass
182
183
184class Clamped(DecimalException):
185    """Exponent of a 0 changed to fit bounds.
186
187    This occurs and signals clamped if the exponent of a result has been
188    altered in order to fit the constraints of a specific concrete
189    representation.  This may occur when the exponent of a zero result would
190    be outside the bounds of a representation, or when a large normal
191    number would have an encoded exponent that cannot be represented.  In
192    this latter case, the exponent is reduced to fit and the corresponding
193    number of zero digits are appended to the coefficient ("fold-down").
194    """
195
196class InvalidOperation(DecimalException):
197    """An invalid operation was performed.
198
199    Various bad things cause this:
200
201    Something creates a signaling NaN
202    -INF + INF
203    0 * (+-)INF
204    (+-)INF / (+-)INF
205    x % 0
206    (+-)INF % x
207    x._rescale( non-integer )
208    sqrt(-x) , x > 0
209    0 ** 0
210    x ** (non-integer)
211    x ** (+-)INF
212    An operand is invalid
213
214    The result of the operation after these is a quiet positive NaN,
215    except when the cause is a signaling NaN, in which case the result is
216    also a quiet NaN, but with the original sign, and an optional
217    diagnostic information.
218    """
219    def handle(self, context, *args):
220        if args:
221            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222            return ans._fix_nan(context)
223        return _NaN
224
225class ConversionSyntax(InvalidOperation):
226    """Trying to convert badly formed string.
227
228    This occurs and signals invalid-operation if an string is being
229    converted to a number and it does not conform to the numeric string
230    syntax.  The result is [0,qNaN].
231    """
232    def handle(self, context, *args):
233        return _NaN
234
235class DivisionByZero(DecimalException, ZeroDivisionError):
236    """Division by 0.
237
238    This occurs and signals division-by-zero if division of a finite number
239    by zero was attempted (during a divide-integer or divide operation, or a
240    power operation with negative right-hand operand), and the dividend was
241    not zero.
242
243    The result of the operation is [sign,inf], where sign is the exclusive
244    or of the signs of the operands for divide, or is 1 for an odd power of
245    -0, for power.
246    """
247
248    def handle(self, context, sign, *args):
249        return _SignedInfinity[sign]
250
251class DivisionImpossible(InvalidOperation):
252    """Cannot perform the division adequately.
253
254    This occurs and signals invalid-operation if the integer result of a
255    divide-integer or remainder operation had too many digits (would be
256    longer than precision).  The result is [0,qNaN].
257    """
258
259    def handle(self, context, *args):
260        return _NaN
261
262class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263    """Undefined result of division.
264
265    This occurs and signals invalid-operation if division by zero was
266    attempted (during a divide-integer, divide, or remainder operation), and
267    the dividend is also zero.  The result is [0,qNaN].
268    """
269
270    def handle(self, context, *args):
271        return _NaN
272
273class Inexact(DecimalException):
274    """Had to round, losing information.
275
276    This occurs and signals inexact whenever the result of an operation is
277    not exact (that is, it needed to be rounded and any discarded digits
278    were non-zero), or if an overflow or underflow condition occurs.  The
279    result in all cases is unchanged.
280
281    The inexact signal may be tested (or trapped) to determine if a given
282    operation (or sequence of operations) was inexact.
283    """
284
285class InvalidContext(InvalidOperation):
286    """Invalid context.  Unknown rounding, for example.
287
288    This occurs and signals invalid-operation if an invalid context was
289    detected during an operation.  This can occur if contexts are not checked
290    on creation and either the precision exceeds the capability of the
291    underlying concrete representation or an unknown or unsupported rounding
292    was specified.  These aspects of the context need only be checked when
293    the values are required to be used.  The result is [0,qNaN].
294    """
295
296    def handle(self, context, *args):
297        return _NaN
298
299class Rounded(DecimalException):
300    """Number got rounded (not  necessarily changed during rounding).
301
302    This occurs and signals rounded whenever the result of an operation is
303    rounded (that is, some zero or non-zero digits were discarded from the
304    coefficient), or if an overflow or underflow condition occurs.  The
305    result in all cases is unchanged.
306
307    The rounded signal may be tested (or trapped) to determine if a given
308    operation (or sequence of operations) caused a loss of precision.
309    """
310
311class Subnormal(DecimalException):
312    """Exponent < Emin before rounding.
313
314    This occurs and signals subnormal whenever the result of a conversion or
315    operation is subnormal (that is, its adjusted exponent is less than
316    Emin, before any rounding).  The result in all cases is unchanged.
317
318    The subnormal signal may be tested (or trapped) to determine if a given
319    or operation (or sequence of operations) yielded a subnormal result.
320    """
321
322class Overflow(Inexact, Rounded):
323    """Numerical overflow.
324
325    This occurs and signals overflow if the adjusted exponent of a result
326    (from a conversion or from an operation that is not an attempt to divide
327    by zero), after rounding, would be greater than the largest value that
328    can be handled by the implementation (the value Emax).
329
330    The result depends on the rounding mode:
331
332    For round-half-up and round-half-even (and for round-half-down and
333    round-up, if implemented), the result of the operation is [sign,inf],
334    where sign is the sign of the intermediate result.  For round-down, the
335    result is the largest finite number that can be represented in the
336    current precision, with the sign of the intermediate result.  For
337    round-ceiling, the result is the same as for round-down if the sign of
338    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
339    the result is the same as for round-down if the sign of the intermediate
340    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
341    will also be raised.
342    """
343
344    def handle(self, context, sign, *args):
345        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346                                ROUND_HALF_DOWN, ROUND_UP):
347            return _SignedInfinity[sign]
348        if sign == 0:
349            if context.rounding == ROUND_CEILING:
350                return _SignedInfinity[sign]
351            return _dec_from_triple(sign, '9'*context.prec,
352                            context.Emax-context.prec+1)
353        if sign == 1:
354            if context.rounding == ROUND_FLOOR:
355                return _SignedInfinity[sign]
356            return _dec_from_triple(sign, '9'*context.prec,
357                             context.Emax-context.prec+1)
358
359
360class Underflow(Inexact, Rounded, Subnormal):
361    """Numerical underflow with result rounded to 0.
362
363    This occurs and signals underflow if a result is inexact and the
364    adjusted exponent of the result would be smaller (more negative) than
365    the smallest value that can be handled by the implementation (the value
366    Emin).  That is, the result is both inexact and subnormal.
367
368    The result after an underflow will be a subnormal number rounded, if
369    necessary, so that its exponent is not less than Etiny.  This may result
370    in 0 with the sign of the intermediate result and an exponent of Etiny.
371
372    In all cases, Inexact, Rounded, and Subnormal will also be raised.
373    """
374
375# List of public traps and flags
376_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377           Underflow, InvalidOperation, Subnormal]
378
379# Map conditions (per the spec) to signals
380_condition_map = {ConversionSyntax:InvalidOperation,
381                  DivisionImpossible:InvalidOperation,
382                  DivisionUndefined:InvalidOperation,
383                  InvalidContext:InvalidOperation}
384
385##### Context Functions ##################################################
386
387# The getcontext() and setcontext() function manage access to a thread-local
388# current context.  Py2.4 offers direct support for thread locals.  If that
389# is not available, use threading.currentThread() which is slower but will
390# work for older Pythons.  If threads are not part of the build, create a
391# mock threading object with threading.local() returning the module namespace.
392
393try:
394    import threading
395except ImportError:
396    # Python was compiled without threads; create a mock object instead
397    import sys
398    class MockThreading(object):
399        def local(self, sys=sys):
400            return sys.modules[__name__]
401    threading = MockThreading()
402    del sys, MockThreading
403
404try:
405    threading.local
406
407except AttributeError:
408
409    # To fix reloading, force it to create a new context
410    # Old contexts have different exceptions in their dicts, making problems.
411    if hasattr(threading.currentThread(), '__decimal_context__'):
412        del threading.currentThread().__decimal_context__
413
414    def setcontext(context):
415        """Set this thread's context to context."""
416        if context in (DefaultContext, BasicContext, ExtendedContext):
417            context = context.copy()
418            context.clear_flags()
419        threading.currentThread().__decimal_context__ = context
420
421    def getcontext():
422        """Returns this thread's context.
423
424        If this thread does not yet have a context, returns
425        a new context and sets this thread's context.
426        New contexts are copies of DefaultContext.
427        """
428        try:
429            return threading.currentThread().__decimal_context__
430        except AttributeError:
431            context = Context()
432            threading.currentThread().__decimal_context__ = context
433            return context
434
435else:
436
437    local = threading.local()
438    if hasattr(local, '__decimal_context__'):
439        del local.__decimal_context__
440
441    def getcontext(_local=local):
442        """Returns this thread's context.
443
444        If this thread does not yet have a context, returns
445        a new context and sets this thread's context.
446        New contexts are copies of DefaultContext.
447        """
448        try:
449            return _local.__decimal_context__
450        except AttributeError:
451            context = Context()
452            _local.__decimal_context__ = context
453            return context
454
455    def setcontext(context, _local=local):
456        """Set this thread's context to context."""
457        if context in (DefaultContext, BasicContext, ExtendedContext):
458            context = context.copy()
459            context.clear_flags()
460        _local.__decimal_context__ = context
461
462    del threading, local        # Don't contaminate the namespace
463
464def localcontext(ctx=None):
465    """Return a context manager for a copy of the supplied context
466
467    Uses a copy of the current context if no context is specified
468    The returned context manager creates a local decimal context
469    in a with statement:
470        def sin(x):
471             with localcontext() as ctx:
472                 ctx.prec += 2
473                 # Rest of sin calculation algorithm
474                 # uses a precision 2 greater than normal
475             return +s  # Convert result to normal precision
476
477         def sin(x):
478             with localcontext(ExtendedContext):
479                 # Rest of sin calculation algorithm
480                 # uses the Extended Context from the
481                 # General Decimal Arithmetic Specification
482             return +s  # Convert result to normal context
483
484    >>> setcontext(DefaultContext)
485    >>> print getcontext().prec
486    28
487    >>> with localcontext():
488    ...     ctx = getcontext()
489    ...     ctx.prec += 2
490    ...     print ctx.prec
491    ...
492    30
493    >>> with localcontext(ExtendedContext):
494    ...     print getcontext().prec
495    ...
496    9
497    >>> print getcontext().prec
498    28
499    """
500    if ctx is None: ctx = getcontext()
501    return _ContextManager(ctx)
502
503
504##### Decimal class #######################################################
505
506class Decimal(object):
507    """Floating point class for decimal arithmetic."""
508
509    __slots__ = ('_exp','_int','_sign', '_is_special')
510    # Generally, the value of the Decimal instance is given by
511    #  (-1)**_sign * _int * 10**_exp
512    # Special values are signified by _is_special == True
513
514    # We're immutable, so use __new__ not __init__
515    def __new__(cls, value="0", context=None):
516        """Create a decimal point instance.
517
518        >>> Decimal('3.14')              # string input
519        Decimal('3.14')
520        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
521        Decimal('3.14')
522        >>> Decimal(314)                 # int or long
523        Decimal('314')
524        >>> Decimal(Decimal(314))        # another decimal instance
525        Decimal('314')
526        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
527        Decimal('3.14')
528        """
529
530        # Note that the coefficient, self._int, is actually stored as
531        # a string rather than as a tuple of digits.  This speeds up
532        # the "digits to integer" and "integer to digits" conversions
533        # that are used in almost every arithmetic operation on
534        # Decimals.  This is an internal detail: the as_tuple function
535        # and the Decimal constructor still deal with tuples of
536        # digits.
537
538        self = object.__new__(cls)
539
540        # From a string
541        # REs insist on real strings, so we can too.
542        if isinstance(value, basestring):
543            m = _parser(value.strip())
544            if m is None:
545                if context is None:
546                    context = getcontext()
547                return context._raise_error(ConversionSyntax,
548                                "Invalid literal for Decimal: %r" % value)
549
550            if m.group('sign') == "-":
551                self._sign = 1
552            else:
553                self._sign = 0
554            intpart = m.group('int')
555            if intpart is not None:
556                # finite number
557                fracpart = m.group('frac')
558                exp = int(m.group('exp') or '0')
559                if fracpart is not None:
560                    self._int = str((intpart+fracpart).lstrip('0') or '0')
561                    self._exp = exp - len(fracpart)
562                else:
563                    self._int = str(intpart.lstrip('0') or '0')
564                    self._exp = exp
565                self._is_special = False
566            else:
567                diag = m.group('diag')
568                if diag is not None:
569                    # NaN
570                    self._int = str(diag.lstrip('0'))
571                    if m.group('signal'):
572                        self._exp = 'N'
573                    else:
574                        self._exp = 'n'
575                else:
576                    # infinity
577                    self._int = '0'
578                    self._exp = 'F'
579                self._is_special = True
580            return self
581
582        # From an integer
583        if isinstance(value, (int,long)):
584            if value >= 0:
585                self._sign = 0
586            else:
587                self._sign = 1
588            self._exp = 0
589            self._int = str(abs(value))
590            self._is_special = False
591            return self
592
593        # From another decimal
594        if isinstance(value, Decimal):
595            self._exp  = value._exp
596            self._sign = value._sign
597            self._int  = value._int
598            self._is_special  = value._is_special
599            return self
600
601        # From an internal working value
602        if isinstance(value, _WorkRep):
603            self._sign = value.sign
604            self._int = str(value.int)
605            self._exp = int(value.exp)
606            self._is_special = False
607            return self
608
609        # tuple/list conversion (possibly from as_tuple())
610        if isinstance(value, (list,tuple)):
611            if len(value) != 3:
612                raise ValueError('Invalid tuple size in creation of Decimal '
613                                 'from list or tuple.  The list or tuple '
614                                 'should have exactly three elements.')
615            # process sign.  The isinstance test rejects floats
616            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
617                raise ValueError("Invalid sign.  The first value in the tuple "
618                                 "should be an integer; either 0 for a "
619                                 "positive number or 1 for a negative number.")
620            self._sign = value[0]
621            if value[2] == 'F':
622                # infinity: value[1] is ignored
623                self._int = '0'
624                self._exp = value[2]
625                self._is_special = True
626            else:
627                # process and validate the digits in value[1]
628                digits = []
629                for digit in value[1]:
630                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
631                        # skip leading zeros
632                        if digits or digit != 0:
633                            digits.append(digit)
634                    else:
635                        raise ValueError("The second value in the tuple must "
636                                         "be composed of integers in the range "
637                                         "0 through 9.")
638                if value[2] in ('n', 'N'):
639                    # NaN: digits form the diagnostic
640                    self._int = ''.join(map(str, digits))
641                    self._exp = value[2]
642                    self._is_special = True
643                elif isinstance(value[2], (int, long)):
644                    # finite number: digits give the coefficient
645                    self._int = ''.join(map(str, digits or [0]))
646                    self._exp = value[2]
647                    self._is_special = False
648                else:
649                    raise ValueError("The third value in the tuple must "
650                                     "be an integer, or one of the "
651                                     "strings 'F', 'n', 'N'.")
652            return self
653
654        if isinstance(value, float):
655            raise TypeError("Cannot convert float to Decimal.  " +
656                            "First convert the float to a string")
657
658        raise TypeError("Cannot convert %r to Decimal" % value)
659
660    # @classmethod, but @decorator is not valid Python 2.3 syntax, so
661    # don't use it (see notes on Py2.3 compatibility at top of file)
662    def from_float(cls, f):
663        """Converts a float to a decimal number, exactly.
664
665        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
666        Since 0.1 is not exactly representable in binary floating point, the
667        value is stored as the nearest representable value which is
668        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
669        is 0.1000000000000000055511151231257827021181583404541015625.
670
671        >>> Decimal.from_float(0.1)
672        Decimal('0.1000000000000000055511151231257827021181583404541015625')
673        >>> Decimal.from_float(float('nan'))
674        Decimal('NaN')
675        >>> Decimal.from_float(float('inf'))
676        Decimal('Infinity')
677        >>> Decimal.from_float(-float('inf'))
678        Decimal('-Infinity')
679        >>> Decimal.from_float(-0.0)
680        Decimal('-0')
681
682        """
683        if isinstance(f, (int, long)):        # handle integer inputs
684            return cls(f)
685        if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
686            return cls(repr(f))
687        if _math.copysign(1.0, f) == 1.0:
688            sign = 0
689        else:
690            sign = 1
691        n, d = abs(f).as_integer_ratio()
692        k = d.bit_length() - 1
693        result = _dec_from_triple(sign, str(n*5**k), -k)
694        if cls is Decimal:
695            return result
696        else:
697            return cls(result)
698    from_float = classmethod(from_float)
699
700    def _isnan(self):
701        """Returns whether the number is not actually one.
702
703        0 if a number
704        1 if NaN
705        2 if sNaN
706        """
707        if self._is_special:
708            exp = self._exp
709            if exp == 'n':
710                return 1
711            elif exp == 'N':
712                return 2
713        return 0
714
715    def _isinfinity(self):
716        """Returns whether the number is infinite
717
718        0 if finite or not a number
719        1 if +INF
720        -1 if -INF
721        """
722        if self._exp == 'F':
723            if self._sign:
724                return -1
725            return 1
726        return 0
727
728    def _check_nans(self, other=None, context=None):
729        """Returns whether the number is not actually one.
730
731        if self, other are sNaN, signal
732        if self, other are NaN return nan
733        return 0
734
735        Done before operations.
736        """
737
738        self_is_nan = self._isnan()
739        if other is None:
740            other_is_nan = False
741        else:
742            other_is_nan = other._isnan()
743
744        if self_is_nan or other_is_nan:
745            if context is None:
746                context = getcontext()
747
748            if self_is_nan == 2:
749                return context._raise_error(InvalidOperation, 'sNaN',
750                                        self)
751            if other_is_nan == 2:
752                return context._raise_error(InvalidOperation, 'sNaN',
753                                        other)
754            if self_is_nan:
755                return self._fix_nan(context)
756
757            return other._fix_nan(context)
758        return 0
759
760    def _compare_check_nans(self, other, context):
761        """Version of _check_nans used for the signaling comparisons
762        compare_signal, __le__, __lt__, __ge__, __gt__.
763
764        Signal InvalidOperation if either self or other is a (quiet
765        or signaling) NaN.  Signaling NaNs take precedence over quiet
766        NaNs.
767
768        Return 0 if neither operand is a NaN.
769
770        """
771        if context is None:
772            context = getcontext()
773
774        if self._is_special or other._is_special:
775            if self.is_snan():
776                return context._raise_error(InvalidOperation,
777                                            'comparison involving sNaN',
778                                            self)
779            elif other.is_snan():
780                return context._raise_error(InvalidOperation,
781                                            'comparison involving sNaN',
782                                            other)
783            elif self.is_qnan():
784                return context._raise_error(InvalidOperation,
785                                            'comparison involving NaN',
786                                            self)
787            elif other.is_qnan():
788                return context._raise_error(InvalidOperation,
789                                            'comparison involving NaN',
790                                            other)
791        return 0
792
793    def __nonzero__(self):
794        """Return True if self is nonzero; otherwise return False.
795
796        NaNs and infinities are considered nonzero.
797        """
798        return self._is_special or self._int != '0'
799
800    def _cmp(self, other):
801        """Compare the two non-NaN decimal instances self and other.
802
803        Returns -1 if self < other, 0 if self == other and 1
804        if self > other.  This routine is for internal use only."""
805
806        if self._is_special or other._is_special:
807            self_inf = self._isinfinity()
808            other_inf = other._isinfinity()
809            if self_inf == other_inf:
810                return 0
811            elif self_inf < other_inf:
812                return -1
813            else:
814                return 1
815
816        # check for zeros;  Decimal('0') == Decimal('-0')
817        if not self:
818            if not other:
819                return 0
820            else:
821                return -((-1)**other._sign)
822        if not other:
823            return (-1)**self._sign
824
825        # If different signs, neg one is less
826        if other._sign < self._sign:
827            return -1
828        if self._sign < other._sign:
829            return 1
830
831        self_adjusted = self.adjusted()
832        other_adjusted = other.adjusted()
833        if self_adjusted == other_adjusted:
834            self_padded = self._int + '0'*(self._exp - other._exp)
835            other_padded = other._int + '0'*(other._exp - self._exp)
836            if self_padded == other_padded:
837                return 0
838            elif self_padded < other_padded:
839                return -(-1)**self._sign
840            else:
841                return (-1)**self._sign
842        elif self_adjusted > other_adjusted:
843            return (-1)**self._sign
844        else: # self_adjusted < other_adjusted
845            return -((-1)**self._sign)
846
847    # Note: The Decimal standard doesn't cover rich comparisons for
848    # Decimals.  In particular, the specification is silent on the
849    # subject of what should happen for a comparison involving a NaN.
850    # We take the following approach:
851    #
852    #   == comparisons involving a NaN always return False
853    #   != comparisons involving a NaN always return True
854    #   <, >, <= and >= comparisons involving a (quiet or signaling)
855    #      NaN signal InvalidOperation, and return False if the
856    #      InvalidOperation is not trapped.
857    #
858    # This behavior is designed to conform as closely as possible to
859    # that specified by IEEE 754.
860
861    def __eq__(self, other):
862        other = _convert_other(other)
863        if other is NotImplemented:
864            return other
865        if self.is_nan() or other.is_nan():
866            return False
867        return self._cmp(other) == 0
868
869    def __ne__(self, other):
870        other = _convert_other(other)
871        if other is NotImplemented:
872            return other
873        if self.is_nan() or other.is_nan():
874            return True
875        return self._cmp(other) != 0
876
877    def __lt__(self, other, context=None):
878        other = _convert_other(other)
879        if other is NotImplemented:
880            return other
881        ans = self._compare_check_nans(other, context)
882        if ans:
883            return False
884        return self._cmp(other) < 0
885
886    def __le__(self, other, context=None):
887        other = _convert_other(other)
888        if other is NotImplemented:
889            return other
890        ans = self._compare_check_nans(other, context)
891        if ans:
892            return False
893        return self._cmp(other) <= 0
894
895    def __gt__(self, other, context=None):
896        other = _convert_other(other)
897        if other is NotImplemented:
898            return other
899        ans = self._compare_check_nans(other, context)
900        if ans:
901            return False
902        return self._cmp(other) > 0
903
904    def __ge__(self, other, context=None):
905        other = _convert_other(other)
906        if other is NotImplemented:
907            return other
908        ans = self._compare_check_nans(other, context)
909        if ans:
910            return False
911        return self._cmp(other) >= 0
912
913    def compare(self, other, context=None):
914        """Compares one to another.
915
916        -1 => a < b
917        0  => a = b
918        1  => a > b
919        NaN => one is NaN
920        Like __cmp__, but returns Decimal instances.
921        """
922        other = _convert_other(other, raiseit=True)
923
924        # Compare(NaN, NaN) = NaN
925        if (self._is_special or other and other._is_special):
926            ans = self._check_nans(other, context)
927            if ans:
928                return ans
929
930        return Decimal(self._cmp(other))
931
932    def __hash__(self):
933        """x.__hash__() <==> hash(x)"""
934        # Decimal integers must hash the same as the ints
935        #
936        # The hash of a nonspecial noninteger Decimal must depend only
937        # on the value of that Decimal, and not on its representation.
938        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
939        if self._is_special:
940            if self._isnan():
941                raise TypeError('Cannot hash a NaN value.')
942            return hash(str(self))
943        if not self:
944            return 0
945        if self._isinteger():
946            op = _WorkRep(self.to_integral_value())
947            # to make computation feasible for Decimals with large
948            # exponent, we use the fact that hash(n) == hash(m) for
949            # any two nonzero integers n and m such that (i) n and m
950            # have the same sign, and (ii) n is congruent to m modulo
951            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
952            # hash((-1)**s*c*pow(10, e, 2**64-1).
953            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
954        # The value of a nonzero nonspecial Decimal instance is
955        # faithfully represented by the triple consisting of its sign,
956        # its adjusted exponent, and its coefficient with trailing
957        # zeros removed.
958        return hash((self._sign,
959                     self._exp+len(self._int),
960                     self._int.rstrip('0')))
961
962    def as_tuple(self):
963        """Represents the number as a triple tuple.
964
965        To show the internals exactly as they are.
966        """
967        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
968
969    def __repr__(self):
970        """Represents the number as an instance of Decimal."""
971        # Invariant:  eval(repr(d)) == d
972        return "Decimal('%s')" % str(self)
973
974    def __str__(self, eng=False, context=None):
975        """Return string representation of the number in scientific notation.
976
977        Captures all of the information in the underlying representation.
978        """
979
980        sign = ['', '-'][self._sign]
981        if self._is_special:
982            if self._exp == 'F':
983                return sign + 'Infinity'
984            elif self._exp == 'n':
985                return sign + 'NaN' + self._int
986            else: # self._exp == 'N'
987                return sign + 'sNaN' + self._int
988
989        # number of digits of self._int to left of decimal point
990        leftdigits = self._exp + len(self._int)
991
992        # dotplace is number of digits of self._int to the left of the
993        # decimal point in the mantissa of the output string (that is,
994        # after adjusting the exponent)
995        if self._exp <= 0 and leftdigits > -6:
996            # no exponent required
997            dotplace = leftdigits
998        elif not eng:
999            # usual scientific notation: 1 digit on left of the point
1000            dotplace = 1
1001        elif self._int == '0':
1002            # engineering notation, zero
1003            dotplace = (leftdigits + 1) % 3 - 1
1004        else:
1005            # engineering notation, nonzero
1006            dotplace = (leftdigits - 1) % 3 + 1
1007
1008        if dotplace <= 0:
1009            intpart = '0'
1010            fracpart = '.' + '0'*(-dotplace) + self._int
1011        elif dotplace >= len(self._int):
1012            intpart = self._int+'0'*(dotplace-len(self._int))
1013            fracpart = ''
1014        else:
1015            intpart = self._int[:dotplace]
1016            fracpart = '.' + self._int[dotplace:]
1017        if leftdigits == dotplace:
1018            exp = ''
1019        else:
1020            if context is None:
1021                context = getcontext()
1022            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1023
1024        return sign + intpart + fracpart + exp
1025
1026    def to_eng_string(self, context=None):
1027        """Convert to engineering-type string.
1028
1029        Engineering notation has an exponent which is a multiple of 3, so there
1030        are up to 3 digits left of the decimal place.
1031
1032        Same rules for when in exponential and when as a value as in __str__.
1033        """
1034        return self.__str__(eng=True, context=context)
1035
1036    def __neg__(self, context=None):
1037        """Returns a copy with the sign switched.
1038
1039        Rounds, if it has reason.
1040        """
1041        if self._is_special:
1042            ans = self._check_nans(context=context)
1043            if ans:
1044                return ans
1045
1046        if not self:
1047            # -Decimal('0') is Decimal('0'), not Decimal('-0')
1048            ans = self.copy_abs()
1049        else:
1050            ans = self.copy_negate()
1051
1052        if context is None:
1053            context = getcontext()
1054        return ans._fix(context)
1055
1056    def __pos__(self, context=None):
1057        """Returns a copy, unless it is a sNaN.
1058
1059        Rounds the number (if more then precision digits)
1060        """
1061        if self._is_special:
1062            ans = self._check_nans(context=context)
1063            if ans:
1064                return ans
1065
1066        if not self:
1067            # + (-0) = 0
1068            ans = self.copy_abs()
1069        else:
1070            ans = Decimal(self)
1071
1072        if context is None:
1073            context = getcontext()
1074        return ans._fix(context)
1075
1076    def __abs__(self, round=True, context=None):
1077        """Returns the absolute value of self.
1078
1079        If the keyword argument 'round' is false, do not round.  The
1080        expression self.__abs__(round=False) is equivalent to
1081        self.copy_abs().
1082        """
1083        if not round:
1084            return self.copy_abs()
1085
1086        if self._is_special:
1087            ans = self._check_nans(context=context)
1088            if ans:
1089                return ans
1090
1091        if self._sign:
1092            ans = self.__neg__(context=context)
1093        else:
1094            ans = self.__pos__(context=context)
1095
1096        return ans
1097
1098    def __add__(self, other, context=None):
1099        """Returns self + other.
1100
1101        -INF + INF (or the reverse) cause InvalidOperation errors.
1102        """
1103        other = _convert_other(other)
1104        if other is NotImplemented:
1105            return other
1106
1107        if context is None:
1108            context = getcontext()
1109
1110        if self._is_special or other._is_special:
1111            ans = self._check_nans(other, context)
1112            if ans:
1113                return ans
1114
1115            if self._isinfinity():
1116                # If both INF, same sign => same as both, opposite => error.
1117                if self._sign != other._sign and other._isinfinity():
1118                    return context._raise_error(InvalidOperation, '-INF + INF')
1119                return Decimal(self)
1120            if other._isinfinity():
1121                return Decimal(other)  # Can't both be infinity here
1122
1123        exp = min(self._exp, other._exp)
1124        negativezero = 0
1125        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1126            # If the answer is 0, the sign should be negative, in this case.
1127            negativezero = 1
1128
1129        if not self and not other:
1130            sign = min(self._sign, other._sign)
1131            if negativezero:
1132                sign = 1
1133            ans = _dec_from_triple(sign, '0', exp)
1134            ans = ans._fix(context)
1135            return ans
1136        if not self:
1137            exp = max(exp, other._exp - context.prec-1)
1138            ans = other._rescale(exp, context.rounding)
1139            ans = ans._fix(context)
1140            return ans
1141        if not other:
1142            exp = max(exp, self._exp - context.prec-1)
1143            ans = self._rescale(exp, context.rounding)
1144            ans = ans._fix(context)
1145            return ans
1146
1147        op1 = _WorkRep(self)
1148        op2 = _WorkRep(other)
1149        op1, op2 = _normalize(op1, op2, context.prec)
1150
1151        result = _WorkRep()
1152        if op1.sign != op2.sign:
1153            # Equal and opposite
1154            if op1.int == op2.int:
1155                ans = _dec_from_triple(negativezero, '0', exp)
1156                ans = ans._fix(context)
1157                return ans
1158            if op1.int < op2.int:
1159                op1, op2 = op2, op1
1160                # OK, now abs(op1) > abs(op2)
1161            if op1.sign == 1:
1162                result.sign = 1
1163                op1.sign, op2.sign = op2.sign, op1.sign
1164            else:
1165                result.sign = 0
1166                # So we know the sign, and op1 > 0.
1167        elif op1.sign == 1:
1168            result.sign = 1
1169            op1.sign, op2.sign = (0, 0)
1170        else:
1171            result.sign = 0
1172        # Now, op1 > abs(op2) > 0
1173
1174        if op2.sign == 0:
1175            result.int = op1.int + op2.int
1176        else:
1177            result.int = op1.int - op2.int
1178
1179        result.exp = op1.exp
1180        ans = Decimal(result)
1181        ans = ans._fix(context)
1182        return ans
1183
1184    __radd__ = __add__
1185
1186    def __sub__(self, other, context=None):
1187        """Return self - other"""
1188        other = _convert_other(other)
1189        if other is NotImplemented:
1190            return other
1191
1192        if self._is_special or other._is_special:
1193            ans = self._check_nans(other, context=context)
1194            if ans:
1195                return ans
1196
1197        # self - other is computed as self + other.copy_negate()
1198        return self.__add__(other.copy_negate(), context=context)
1199
1200    def __rsub__(self, other, context=None):
1201        """Return other - self"""
1202        other = _convert_other(other)
1203        if other is NotImplemented:
1204            return other
1205
1206        return other.__sub__(self, context=context)
1207
1208    def __mul__(self, other, context=None):
1209        """Return self * other.
1210
1211        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1212        """
1213        other = _convert_other(other)
1214        if other is NotImplemented:
1215            return other
1216
1217        if context is None:
1218            context = getcontext()
1219
1220        resultsign = self._sign ^ other._sign
1221
1222        if self._is_special or other._is_special:
1223            ans = self._check_nans(other, context)
1224            if ans:
1225                return ans
1226
1227            if self._isinfinity():
1228                if not other:
1229                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1230                return _SignedInfinity[resultsign]
1231
1232            if other._isinfinity():
1233                if not self:
1234                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1235                return _SignedInfinity[resultsign]
1236
1237        resultexp = self._exp + other._exp
1238
1239        # Special case for multiplying by zero
1240        if not self or not other:
1241            ans = _dec_from_triple(resultsign, '0', resultexp)
1242            # Fixing in case the exponent is out of bounds
1243            ans = ans._fix(context)
1244            return ans
1245
1246        # Special case for multiplying by power of 10
1247        if self._int == '1':
1248            ans = _dec_from_triple(resultsign, other._int, resultexp)
1249            ans = ans._fix(context)
1250            return ans
1251        if other._int == '1':
1252            ans = _dec_from_triple(resultsign, self._int, resultexp)
1253            ans = ans._fix(context)
1254            return ans
1255
1256        op1 = _WorkRep(self)
1257        op2 = _WorkRep(other)
1258
1259        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1260        ans = ans._fix(context)
1261
1262        return ans
1263    __rmul__ = __mul__
1264
1265    def __truediv__(self, other, context=None):
1266        """Return self / other."""
1267        other = _convert_other(other)
1268        if other is NotImplemented:
1269            return NotImplemented
1270
1271        if context is None:
1272            context = getcontext()
1273
1274        sign = self._sign ^ other._sign
1275
1276        if self._is_special or other._is_special:
1277            ans = self._check_nans(other, context)
1278            if ans:
1279                return ans
1280
1281            if self._isinfinity() and other._isinfinity():
1282                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1283
1284            if self._isinfinity():
1285                return _SignedInfinity[sign]
1286
1287            if other._isinfinity():
1288                context._raise_error(Clamped, 'Division by infinity')
1289                return _dec_from_triple(sign, '0', context.Etiny())
1290
1291        # Special cases for zeroes
1292        if not other:
1293            if not self:
1294                return context._raise_error(DivisionUndefined, '0 / 0')
1295            return context._raise_error(DivisionByZero, 'x / 0', sign)
1296
1297        if not self:
1298            exp = self._exp - other._exp
1299            coeff = 0
1300        else:
1301            # OK, so neither = 0, INF or NaN
1302            shift = len(other._int) - len(self._int) + context.prec + 1
1303            exp = self._exp - other._exp - shift
1304            op1 = _WorkRep(self)
1305            op2 = _WorkRep(other)
1306            if shift >= 0:
1307                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1308            else:
1309                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1310            if remainder:
1311                # result is not exact; adjust to ensure correct rounding
1312                if coeff % 5 == 0:
1313                    coeff += 1
1314            else:
1315                # result is exact; get as close to ideal exponent as possible
1316                ideal_exp = self._exp - other._exp
1317                while exp < ideal_exp and coeff % 10 == 0:
1318                    coeff //= 10
1319                    exp += 1
1320
1321        ans = _dec_from_triple(sign, str(coeff), exp)
1322        return ans._fix(context)
1323
1324    def _divide(self, other, context):
1325        """Return (self // other, self % other), to context.prec precision.
1326
1327        Assumes that neither self nor other is a NaN, that self is not
1328        infinite and that other is nonzero.
1329        """
1330        sign = self._sign ^ other._sign
1331        if other._isinfinity():
1332            ideal_exp = self._exp
1333        else:
1334            ideal_exp = min(self._exp, other._exp)
1335
1336        expdiff = self.adjusted() - other.adjusted()
1337        if not self or other._isinfinity() or expdiff <= -2:
1338            return (_dec_from_triple(sign, '0', 0),
1339                    self._rescale(ideal_exp, context.rounding))
1340        if expdiff <= context.prec:
1341            op1 = _WorkRep(self)
1342            op2 = _WorkRep(other)
1343            if op1.exp >= op2.exp:
1344                op1.int *= 10**(op1.exp - op2.exp)
1345            else:
1346                op2.int *= 10**(op2.exp - op1.exp)
1347            q, r = divmod(op1.int, op2.int)
1348            if q < 10**context.prec:
1349                return (_dec_from_triple(sign, str(q), 0),
1350                        _dec_from_triple(self._sign, str(r), ideal_exp))
1351
1352        # Here the quotient is too large to be representable
1353        ans = context._raise_error(DivisionImpossible,
1354                                   'quotient too large in //, % or divmod')
1355        return ans, ans
1356
1357    def __rtruediv__(self, other, context=None):
1358        """Swaps self/other and returns __truediv__."""
1359        other = _convert_other(other)
1360        if other is NotImplemented:
1361            return other
1362        return other.__truediv__(self, context=context)
1363
1364    __div__ = __truediv__
1365    __rdiv__ = __rtruediv__
1366
1367    def __divmod__(self, other, context=None):
1368        """
1369        Return (self // other, self % other)
1370        """
1371        other = _convert_other(other)
1372        if other is NotImplemented:
1373            return other
1374
1375        if context is None:
1376            context = getcontext()
1377
1378        ans = self._check_nans(other, context)
1379        if ans:
1380            return (ans, ans)
1381
1382        sign = self._sign ^ other._sign
1383        if self._isinfinity():
1384            if other._isinfinity():
1385                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1386                return ans, ans
1387            else:
1388                return (_SignedInfinity[sign],
1389                        context._raise_error(InvalidOperation, 'INF % x'))
1390
1391        if not other:
1392            if not self:
1393                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1394                return ans, ans
1395            else:
1396                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1397                        context._raise_error(InvalidOperation, 'x % 0'))
1398
1399        quotient, remainder = self._divide(other, context)
1400        remainder = remainder._fix(context)
1401        return quotient, remainder
1402
1403    def __rdivmod__(self, other, context=None):
1404        """Swaps self/other and returns __divmod__."""
1405        other = _convert_other(other)
1406        if other is NotImplemented:
1407            return other
1408        return other.__divmod__(self, context=context)
1409
1410    def __mod__(self, other, context=None):
1411        """
1412        self % other
1413        """
1414        other = _convert_other(other)
1415        if other is NotImplemented:
1416            return other
1417
1418        if context is None:
1419            context = getcontext()
1420
1421        ans = self._check_nans(other, context)
1422        if ans:
1423            return ans
1424
1425        if self._isinfinity():
1426            return context._raise_error(InvalidOperation, 'INF % x')
1427        elif not other:
1428            if self:
1429                return context._raise_error(InvalidOperation, 'x % 0')
1430            else:
1431                return context._raise_error(DivisionUndefined, '0 % 0')
1432
1433        remainder = self._divide(other, context)[1]
1434        remainder = remainder._fix(context)
1435        return remainder
1436
1437    def __rmod__(self, other, context=None):
1438        """Swaps self/other and returns __mod__."""
1439        other = _convert_other(other)
1440        if other is NotImplemented:
1441            return other
1442        return other.__mod__(self, context=context)
1443
1444    def remainder_near(self, other, context=None):
1445        """
1446        Remainder nearest to 0-  abs(remainder-near) <= other/2
1447        """
1448        if context is None:
1449            context = getcontext()
1450
1451        other = _convert_other(other, raiseit=True)
1452
1453        ans = self._check_nans(other, context)
1454        if ans:
1455            return ans
1456
1457        # self == +/-infinity -> InvalidOperation
1458        if self._isinfinity():
1459            return context._raise_error(InvalidOperation,
1460                                        'remainder_near(infinity, x)')
1461
1462        # other == 0 -> either InvalidOperation or DivisionUndefined
1463        if not other:
1464            if self:
1465                return context._raise_error(InvalidOperation,
1466                                            'remainder_near(x, 0)')
1467            else:
1468                return context._raise_error(DivisionUndefined,
1469                                            'remainder_near(0, 0)')
1470
1471        # other = +/-infinity -> remainder = self
1472        if other._isinfinity():
1473            ans = Decimal(self)
1474            return ans._fix(context)
1475
1476        # self = 0 -> remainder = self, with ideal exponent
1477        ideal_exponent = min(self._exp, other._exp)
1478        if not self:
1479            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1480            return ans._fix(context)
1481
1482        # catch most cases of large or small quotient
1483        expdiff = self.adjusted() - other.adjusted()
1484        if expdiff >= context.prec + 1:
1485            # expdiff >= prec+1 => abs(self/other) > 10**prec
1486            return context._raise_error(DivisionImpossible)
1487        if expdiff <= -2:
1488            # expdiff <= -2 => abs(self/other) < 0.1
1489            ans = self._rescale(ideal_exponent, context.rounding)
1490            return ans._fix(context)
1491
1492        # adjust both arguments to have the same exponent, then divide
1493        op1 = _WorkRep(self)
1494        op2 = _WorkRep(other)
1495        if op1.exp >= op2.exp:
1496            op1.int *= 10**(op1.exp - op2.exp)
1497        else:
1498            op2.int *= 10**(op2.exp - op1.exp)
1499        q, r = divmod(op1.int, op2.int)
1500        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1501        # 10**ideal_exponent.   Apply correction to ensure that
1502        # abs(remainder) <= abs(other)/2
1503        if 2*r + (q&1) > op2.int:
1504            r -= op2.int
1505            q += 1
1506
1507        if q >= 10**context.prec:
1508            return context._raise_error(DivisionImpossible)
1509
1510        # result has same sign as self unless r is negative
1511        sign = self._sign
1512        if r < 0:
1513            sign = 1-sign
1514            r = -r
1515
1516        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1517        return ans._fix(context)
1518
1519    def __floordiv__(self, other, context=None):
1520        """self // other"""
1521        other = _convert_other(other)
1522        if other is NotImplemented:
1523            return other
1524
1525        if context is None:
1526            context = getcontext()
1527
1528        ans = self._check_nans(other, context)
1529        if ans:
1530            return ans
1531
1532        if self._isinfinity():
1533            if other._isinfinity():
1534                return context._raise_error(InvalidOperation, 'INF // INF')
1535            else:
1536                return _SignedInfinity[self._sign ^ other._sign]
1537
1538        if not other:
1539            if self:
1540                return context._raise_error(DivisionByZero, 'x // 0',
1541                                            self._sign ^ other._sign)
1542            else:
1543                return context._raise_error(DivisionUndefined, '0 // 0')
1544
1545        return self._divide(other, context)[0]
1546
1547    def __rfloordiv__(self, other, context=None):
1548        """Swaps self/other and returns __floordiv__."""
1549        other = _convert_other(other)
1550        if other is NotImplemented:
1551            return other
1552        return other.__floordiv__(self, context=context)
1553
1554    def __float__(self):
1555        """Float representation."""
1556        return float(str(self))
1557
1558    def __int__(self):
1559        """Converts self to an int, truncating if necessary."""
1560        if self._is_special:
1561            if self._isnan():
1562                context = getcontext()
1563                return context._raise_error(InvalidContext)
1564            elif self._isinfinity():
1565                raise OverflowError("Cannot convert infinity to int")
1566        s = (-1)**self._sign
1567        if self._exp >= 0:
1568            return s*int(self._int)*10**self._exp
1569        else:
1570            return s*int(self._int[:self._exp] or '0')
1571
1572    __trunc__ = __int__
1573
1574    def real(self):
1575        return self
1576    real = property(real)
1577
1578    def imag(self):
1579        return Decimal(0)
1580    imag = property(imag)
1581
1582    def conjugate(self):
1583        return self
1584
1585    def __complex__(self):
1586        return complex(float(self))
1587
1588    def __long__(self):
1589        """Converts to a long.
1590
1591        Equivalent to long(int(self))
1592        """
1593        return long(self.__int__())
1594
1595    def _fix_nan(self, context):
1596        """Decapitate the payload of a NaN to fit the context"""
1597        payload = self._int
1598
1599        # maximum length of payload is precision if _clamp=0,
1600        # precision-1 if _clamp=1.
1601        max_payload_len = context.prec - context._clamp
1602        if len(payload) > max_payload_len:
1603            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1604            return _dec_from_triple(self._sign, payload, self._exp, True)
1605        return Decimal(self)
1606
1607    def _fix(self, context):
1608        """Round if it is necessary to keep self within prec precision.
1609
1610        Rounds and fixes the exponent.  Does not raise on a sNaN.
1611
1612        Arguments:
1613        self - Decimal instance
1614        context - context used.
1615        """
1616
1617        if self._is_special:
1618            if self._isnan():
1619                # decapitate payload if necessary
1620                return self._fix_nan(context)
1621            else:
1622                # self is +/-Infinity; return unaltered
1623                return Decimal(self)
1624
1625        # if self is zero then exponent should be between Etiny and
1626        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1627        Etiny = context.Etiny()
1628        Etop = context.Etop()
1629        if not self:
1630            exp_max = [context.Emax, Etop][context._clamp]
1631            new_exp = min(max(self._exp, Etiny), exp_max)
1632            if new_exp != self._exp:
1633                context._raise_error(Clamped)
1634                return _dec_from_triple(self._sign, '0', new_exp)
1635            else:
1636                return Decimal(self)
1637
1638        # exp_min is the smallest allowable exponent of the result,
1639        # equal to max(self.adjusted()-context.prec+1, Etiny)
1640        exp_min = len(self._int) + self._exp - context.prec
1641        if exp_min > Etop:
1642            # overflow: exp_min > Etop iff self.adjusted() > Emax
1643            context._raise_error(Inexact)
1644            context._raise_error(Rounded)
1645            return context._raise_error(Overflow, 'above Emax', self._sign)
1646        self_is_subnormal = exp_min < Etiny
1647        if self_is_subnormal:
1648            context._raise_error(Subnormal)
1649            exp_min = Etiny
1650
1651        # round if self has too many digits
1652        if self._exp < exp_min:
1653            context._raise_error(Rounded)
1654            digits = len(self._int) + self._exp - exp_min
1655            if digits < 0:
1656                self = _dec_from_triple(self._sign, '1', exp_min-1)
1657                digits = 0
1658            this_function = getattr(self, self._pick_rounding_function[context.rounding])
1659            changed = this_function(digits)
1660            coeff = self._int[:digits] or '0'
1661            if changed == 1:
1662                coeff = str(int(coeff)+1)
1663            ans = _dec_from_triple(self._sign, coeff, exp_min)
1664
1665            if changed:
1666                context._raise_error(Inexact)
1667                if self_is_subnormal:
1668                    context._raise_error(Underflow)
1669                    if not ans:
1670                        # raise Clamped on underflow to 0
1671                        context._raise_error(Clamped)
1672                elif len(ans._int) == context.prec+1:
1673                    # we get here only if rescaling rounds the
1674                    # cofficient up to exactly 10**context.prec
1675                    if ans._exp < Etop:
1676                        ans = _dec_from_triple(ans._sign,
1677                                                   ans._int[:-1], ans._exp+1)
1678                    else:
1679                        # Inexact and Rounded have already been raised
1680                        ans = context._raise_error(Overflow, 'above Emax',
1681                                                   self._sign)
1682            return ans
1683
1684        # fold down if _clamp == 1 and self has too few digits
1685        if context._clamp == 1 and self._exp > Etop:
1686            context._raise_error(Clamped)
1687            self_padded = self._int + '0'*(self._exp - Etop)
1688            return _dec_from_triple(self._sign, self_padded, Etop)
1689
1690        # here self was representable to begin with; return unchanged
1691        return Decimal(self)
1692
1693    _pick_rounding_function = {}
1694
1695    # for each of the rounding functions below:
1696    #   self is a finite, nonzero Decimal
1697    #   prec is an integer satisfying 0 <= prec < len(self._int)
1698    #
1699    # each function returns either -1, 0, or 1, as follows:
1700    #   1 indicates that self should be rounded up (away from zero)
1701    #   0 indicates that self should be truncated, and that all the
1702    #     digits to be truncated are zeros (so the value is unchanged)
1703    #  -1 indicates that there are nonzero digits to be truncated
1704
1705    def _round_down(self, prec):
1706        """Also known as round-towards-0, truncate."""
1707        if _all_zeros(self._int, prec):
1708            return 0
1709        else:
1710            return -1
1711
1712    def _round_up(self, prec):
1713        """Rounds away from 0."""
1714        return -self._round_down(prec)
1715
1716    def _round_half_up(self, prec):
1717        """Rounds 5 up (away from 0)"""
1718        if self._int[prec] in '56789':
1719            return 1
1720        elif _all_zeros(self._int, prec):
1721            return 0
1722        else:
1723            return -1
1724
1725    def _round_half_down(self, prec):
1726        """Round 5 down"""
1727        if _exact_half(self._int, prec):
1728            return -1
1729        else:
1730            return self._round_half_up(prec)
1731
1732    def _round_half_even(self, prec):
1733        """Round 5 to even, rest to nearest."""
1734        if _exact_half(self._int, prec) and \
1735                (prec == 0 or self._int[prec-1] in '02468'):
1736            return -1
1737        else:
1738            return self._round_half_up(prec)
1739
1740    def _round_ceiling(self, prec):
1741        """Rounds up (not away from 0 if negative.)"""
1742        if self._sign:
1743            return self._round_down(prec)
1744        else:
1745            return -self._round_down(prec)
1746
1747    def _round_floor(self, prec):
1748        """Rounds down (not towards 0 if negative)"""
1749        if not self._sign:
1750            return self._round_down(prec)
1751        else:
1752            return -self._round_down(prec)
1753
1754    def _round_05up(self, prec):
1755        """Round down unless digit prec-1 is 0 or 5."""
1756        if prec and self._int[prec-1] not in '05':
1757            return self._round_down(prec)
1758        else:
1759            return -self._round_down(prec)
1760
1761    def fma(self, other, third, context=None):
1762        """Fused multiply-add.
1763
1764        Returns self*other+third with no rounding of the intermediate
1765        product self*other.
1766
1767        self and other are multiplied together, with no rounding of
1768        the result.  The third operand is then added to the result,
1769        and a single final rounding is performed.
1770        """
1771
1772        other = _convert_other(other, raiseit=True)
1773
1774        # compute product; raise InvalidOperation if either operand is
1775        # a signaling NaN or if the product is zero times infinity.
1776        if self._is_special or other._is_special:
1777            if context is None:
1778                context = getcontext()
1779            if self._exp == 'N':
1780                return context._raise_error(InvalidOperation, 'sNaN', self)
1781            if other._exp == 'N':
1782                return context._raise_error(InvalidOperation, 'sNaN', other)
1783            if self._exp == 'n':
1784                product = self
1785            elif other._exp == 'n':
1786                product = other
1787            elif self._exp == 'F':
1788                if not other:
1789                    return context._raise_error(InvalidOperation,
1790                                                'INF * 0 in fma')
1791                product = _SignedInfinity[self._sign ^ other._sign]
1792            elif other._exp == 'F':
1793                if not self:
1794                    return context._raise_error(InvalidOperation,
1795                                                '0 * INF in fma')
1796                product = _SignedInfinity[self._sign ^ other._sign]
1797        else:
1798            product = _dec_from_triple(self._sign ^ other._sign,
1799                                       str(int(self._int) * int(other._int)),
1800                                       self._exp + other._exp)
1801
1802        third = _convert_other(third, raiseit=True)
1803        return product.__add__(third, context)
1804
1805    def _power_modulo(self, other, modulo, context=None):
1806        """Three argument version of __pow__"""
1807
1808        # if can't convert other and modulo to Decimal, raise
1809        # TypeError; there's no point returning NotImplemented (no
1810        # equivalent of __rpow__ for three argument pow)
1811        other = _convert_other(other, raiseit=True)
1812        modulo = _convert_other(modulo, raiseit=True)
1813
1814        if context is None:
1815            context = getcontext()
1816
1817        # deal with NaNs: if there are any sNaNs then first one wins,
1818        # (i.e. behaviour for NaNs is identical to that of fma)
1819        self_is_nan = self._isnan()
1820        other_is_nan = other._isnan()
1821        modulo_is_nan = modulo._isnan()
1822        if self_is_nan or other_is_nan or modulo_is_nan:
1823            if self_is_nan == 2:
1824                return context._raise_error(InvalidOperation, 'sNaN',
1825                                        self)
1826            if other_is_nan == 2:
1827                return context._raise_error(InvalidOperation, 'sNaN',
1828                                        other)
1829            if modulo_is_nan == 2:
1830                return context._raise_error(InvalidOperation, 'sNaN',
1831                                        modulo)
1832            if self_is_nan:
1833                return self._fix_nan(context)
1834            if other_is_nan:
1835                return other._fix_nan(context)
1836            return modulo._fix_nan(context)
1837
1838        # check inputs: we apply same restrictions as Python's pow()
1839        if not (self._isinteger() and
1840                other._isinteger() and
1841                modulo._isinteger()):
1842            return context._raise_error(InvalidOperation,
1843                                        'pow() 3rd argument not allowed '
1844                                        'unless all arguments are integers')
1845        if other < 0:
1846            return context._raise_error(InvalidOperation,
1847                                        'pow() 2nd argument cannot be '
1848                                        'negative when 3rd argument specified')
1849        if not modulo:
1850            return context._raise_error(InvalidOperation,
1851                                        'pow() 3rd argument cannot be 0')
1852
1853        # additional restriction for decimal: the modulus must be less
1854        # than 10**prec in absolute value
1855        if modulo.adjusted() >= context.prec:
1856            return context._raise_error(InvalidOperation,
1857                                        'insufficient precision: pow() 3rd '
1858                                        'argument must not have more than '
1859                                        'precision digits')
1860
1861        # define 0**0 == NaN, for consistency with two-argument pow
1862        # (even though it hurts!)
1863        if not other and not self:
1864            return context._raise_error(InvalidOperation,
1865                                        'at least one of pow() 1st argument '
1866                                        'and 2nd argument must be nonzero ;'
1867                                        '0**0 is not defined')
1868
1869        # compute sign of result
1870        if other._iseven():
1871            sign = 0
1872        else:
1873            sign = self._sign
1874
1875        # convert modulo to a Python integer, and self and other to
1876        # Decimal integers (i.e. force their exponents to be >= 0)
1877        modulo = abs(int(modulo))
1878        base = _WorkRep(self.to_integral_value())
1879        exponent = _WorkRep(other.to_integral_value())
1880
1881        # compute result using integer pow()
1882        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1883        for i in xrange(exponent.exp):
1884            base = pow(base, 10, modulo)
1885        base = pow(base, exponent.int, modulo)
1886
1887        return _dec_from_triple(sign, str(base), 0)
1888
1889    def _power_exact(self, other, p):
1890        """Attempt to compute self**other exactly.
1891
1892        Given Decimals self and other and an integer p, attempt to
1893        compute an exact result for the power self**other, with p
1894        digits of precision.  Return None if self**other is not
1895        exactly representable in p digits.
1896
1897        Assumes that elimination of special cases has already been
1898        performed: self and other must both be nonspecial; self must
1899        be positive and not numerically equal to 1; other must be
1900        nonzero.  For efficiency, other._exp should not be too large,
1901        so that 10**abs(other._exp) is a feasible calculation."""
1902
1903        # In the comments below, we write x for the value of self and
1904        # y for the value of other.  Write x = xc*10**xe and y =
1905        # yc*10**ye.
1906
1907        # The main purpose of this method is to identify the *failure*
1908        # of x**y to be exactly representable with as little effort as
1909        # possible.  So we look for cheap and easy tests that
1910        # eliminate the possibility of x**y being exact.  Only if all
1911        # these tests are passed do we go on to actually compute x**y.
1912
1913        # Here's the main idea.  First normalize both x and y.  We
1914        # express y as a rational m/n, with m and n relatively prime
1915        # and n>0.  Then for x**y to be exactly representable (at
1916        # *any* precision), xc must be the nth power of a positive
1917        # integer and xe must be divisible by n.  If m is negative
1918        # then additionally xc must be a power of either 2 or 5, hence
1919        # a power of 2**n or 5**n.
1920        #
1921        # There's a limit to how small |y| can be: if y=m/n as above
1922        # then:
1923        #
1924        #  (1) if xc != 1 then for the result to be representable we
1925        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
1926        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1927        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
1928        #      representable.
1929        #
1930        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
1931        #      |y| < 1/|xe| then the result is not representable.
1932        #
1933        # Note that since x is not equal to 1, at least one of (1) and
1934        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1935        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1936        #
1937        # There's also a limit to how large y can be, at least if it's
1938        # positive: the normalized result will have coefficient xc**y,
1939        # so if it's representable then xc**y < 10**p, and y <
1940        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
1941        # not exactly representable.
1942
1943        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1944        # so |y| < 1/xe and the result is not representable.
1945        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1946        # < 1/nbits(xc).
1947
1948        x = _WorkRep(self)
1949        xc, xe = x.int, x.exp
1950        while xc % 10 == 0:
1951            xc //= 10
1952            xe += 1
1953
1954        y = _WorkRep(other)
1955        yc, ye = y.int, y.exp
1956        while yc % 10 == 0:
1957            yc //= 10
1958            ye += 1
1959
1960        # case where xc == 1: result is 10**(xe*y), with xe*y
1961        # required to be an integer
1962        if xc == 1:
1963            if ye >= 0:
1964                exponent = xe*yc*10**ye
1965            else:
1966                exponent, remainder = divmod(xe*yc, 10**-ye)
1967                if remainder:
1968                    return None
1969            if y.sign == 1:
1970                exponent = -exponent
1971            # if other is a nonnegative integer, use ideal exponent
1972            if other._isinteger() and other._sign == 0:
1973                ideal_exponent = self._exp*int(other)
1974                zeros = min(exponent-ideal_exponent, p-1)
1975            else:
1976                zeros = 0
1977            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1978
1979        # case where y is negative: xc must be either a power
1980        # of 2 or a power of 5.
1981        if y.sign == 1:
1982            last_digit = xc % 10
1983            if last_digit in (2,4,6,8):
1984                # quick test for power of 2
1985                if xc & -xc != xc:
1986                    return None
1987                # now xc is a power of 2; e is its exponent
1988                e = _nbits(xc)-1
1989                # find e*y and xe*y; both must be integers
1990                if ye >= 0:
1991                    y_as_int = yc*10**ye
1992                    e = e*y_as_int
1993                    xe = xe*y_as_int
1994                else:
1995                    ten_pow = 10**-ye
1996                    e, remainder = divmod(e*yc, ten_pow)
1997                    if remainder:
1998                        return None
1999                    xe, remainder = divmod(xe*yc, ten_pow)
2000                    if remainder:
2001                        return None
2002
2003                if e*65 >= p*93: # 93/65 > log(10)/log(5)
2004                    return None
2005                xc = 5**e
2006
2007            elif last_digit == 5:
2008                # e >= log_5(xc) if xc is a power of 5; we have
2009                # equality all the way up to xc=5**2658
2010                e = _nbits(xc)*28//65
2011                xc, remainder = divmod(5**e, xc)
2012                if remainder:
2013                    return None
2014                while xc % 5 == 0:
2015                    xc //= 5
2016                    e -= 1
2017                if ye >= 0:
2018                    y_as_integer = yc*10**ye
2019                    e = e*y_as_integer
2020                    xe = xe*y_as_integer
2021                else:
2022                    ten_pow = 10**-ye
2023                    e, remainder = divmod(e*yc, ten_pow)
2024                    if remainder:
2025                        return None
2026                    xe, remainder = divmod(xe*yc, ten_pow)
2027                    if remainder:
2028                        return None
2029                if e*3 >= p*10: # 10/3 > log(10)/log(2)
2030                    return None
2031                xc = 2**e
2032            else:
2033                return None
2034
2035            if xc >= 10**p:
2036                return None
2037            xe = -e-xe
2038            return _dec_from_triple(0, str(xc), xe)
2039
2040        # now y is positive; find m and n such that y = m/n
2041        if ye >= 0:
2042            m, n = yc*10**ye, 1
2043        else:
2044            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2045                return None
2046            xc_bits = _nbits(xc)
2047            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2048                return None
2049            m, n = yc, 10**(-ye)
2050            while m % 2 == n % 2 == 0:
2051                m //= 2
2052                n //= 2
2053            while m % 5 == n % 5 == 0:
2054                m //= 5
2055                n //= 5
2056
2057        # compute nth root of xc*10**xe
2058        if n > 1:
2059            # if 1 < xc < 2**n then xc isn't an nth power
2060            if xc != 1 and xc_bits <= n:
2061                return None
2062
2063            xe, rem = divmod(xe, n)
2064            if rem != 0:
2065                return None
2066
2067            # compute nth root of xc using Newton's method
2068            a = 1L << -(-_nbits(xc)//n) # initial estimate
2069            while True:
2070                q, r = divmod(xc, a**(n-1))
2071                if a <= q:
2072                    break
2073                else:
2074                    a = (a*(n-1) + q)//n
2075            if not (a == q and r == 0):
2076                return None
2077            xc = a
2078
2079        # now xc*10**xe is the nth root of the original xc*10**xe
2080        # compute mth power of xc*10**xe
2081
2082        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2083        # 10**p and the result is not representable.
2084        if xc > 1 and m > p*100//_log10_lb(xc):
2085            return None
2086        xc = xc**m
2087        xe *= m
2088        if xc > 10**p:
2089            return None
2090
2091        # by this point the result *is* exactly representable
2092        # adjust the exponent to get as close as possible to the ideal
2093        # exponent, if necessary
2094        str_xc = str(xc)
2095        if other._isinteger() and other._sign == 0:
2096            ideal_exponent = self._exp*int(other)
2097            zeros = min(xe-ideal_exponent, p-len(str_xc))
2098        else:
2099            zeros = 0
2100        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2101
2102    def __pow__(self, other, modulo=None, context=None):
2103        """Return self ** other [ % modulo].
2104
2105        With two arguments, compute self**other.
2106
2107        With three arguments, compute (self**other) % modulo.  For the
2108        three argument form, the following restrictions on the
2109        arguments hold:
2110
2111         - all three arguments must be integral
2112         - other must be nonnegative
2113         - either self or other (or both) must be nonzero
2114         - modulo must be nonzero and must have at most p digits,
2115           where p is the context precision.
2116
2117        If any of these restrictions is violated the InvalidOperation
2118        flag is raised.
2119
2120        The result of pow(self, other, modulo) is identical to the
2121        result that would be obtained by computing (self**other) %
2122        modulo with unbounded precision, but is computed more
2123        efficiently.  It is always exact.
2124        """
2125
2126        if modulo is not None:
2127            return self._power_modulo(other, modulo, context)
2128
2129        other = _convert_other(other)
2130        if other is NotImplemented:
2131            return other
2132
2133        if context is None:
2134            context = getcontext()
2135
2136        # either argument is a NaN => result is NaN
2137        ans = self._check_nans(other, context)
2138        if ans:
2139            return ans
2140
2141        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2142        if not other:
2143            if not self:
2144                return context._raise_error(InvalidOperation, '0 ** 0')
2145            else:
2146                return _One
2147
2148        # result has sign 1 iff self._sign is 1 and other is an odd integer
2149        result_sign = 0
2150        if self._sign == 1:
2151            if other._isinteger():
2152                if not other._iseven():
2153                    result_sign = 1
2154            else:
2155                # -ve**noninteger = NaN
2156                # (-0)**noninteger = 0**noninteger
2157                if self:
2158                    return context._raise_error(InvalidOperation,
2159                        'x ** y with x negative and y not an integer')
2160            # negate self, without doing any unwanted rounding
2161            self = self.copy_negate()
2162
2163        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2164        if not self:
2165            if other._sign == 0:
2166                return _dec_from_triple(result_sign, '0', 0)
2167            else:
2168                return _SignedInfinity[result_sign]
2169
2170        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2171        if self._isinfinity():
2172            if other._sign == 0:
2173                return _SignedInfinity[result_sign]
2174            else:
2175                return _dec_from_triple(result_sign, '0', 0)
2176
2177        # 1**other = 1, but the choice of exponent and the flags
2178        # depend on the exponent of self, and on whether other is a
2179        # positive integer, a negative integer, or neither
2180        if self == _One:
2181            if other._isinteger():
2182                # exp = max(self._exp*max(int(other), 0),
2183                # 1-context.prec) but evaluating int(other) directly
2184                # is dangerous until we know other is small (other
2185                # could be 1e999999999)
2186                if other._sign == 1:
2187                    multiplier = 0
2188                elif other > context.prec:
2189                    multiplier = context.prec
2190                else:
2191                    multiplier = int(other)
2192
2193                exp = self._exp * multiplier
2194                if exp < 1-context.prec:
2195                    exp = 1-context.prec
2196                    context._raise_error(Rounded)
2197            else:
2198                context._raise_error(Inexact)
2199                context._raise_error(Rounded)
2200                exp = 1-context.prec
2201
2202            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2203
2204        # compute adjusted exponent of self
2205        self_adj = self.adjusted()
2206
2207        # self ** infinity is infinity if self > 1, 0 if self < 1
2208        # self ** -infinity is infinity if self < 1, 0 if self > 1
2209        if other._isinfinity():
2210            if (other._sign == 0) == (self_adj < 0):
2211                return _dec_from_triple(result_sign, '0', 0)
2212            else:
2213                return _SignedInfinity[result_sign]
2214
2215        # from here on, the result always goes through the call
2216        # to _fix at the end of this function.
2217        ans = None
2218
2219        # crude test to catch cases of extreme overflow/underflow.  If
2220        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2221        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2222        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2223        # for underflow is similar.
2224        bound = self._log10_exp_bound() + other.adjusted()
2225        if (self_adj >= 0) == (other._sign == 0):
2226            # self > 1 and other +ve, or self < 1 and other -ve
2227            # possibility of overflow
2228            if bound >= len(str(context.Emax)):
2229                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2230        else:
2231            # self > 1 and other -ve, or self < 1 and other +ve
2232            # possibility of underflow to 0
2233            Etiny = context.Etiny()
2234            if bound >= len(str(-Etiny)):
2235                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2236
2237        # try for an exact result with precision +1
2238        if ans is None:
2239            ans = self._power_exact(other, context.prec + 1)
2240            if ans is not None and result_sign == 1:
2241                ans = _dec_from_triple(1, ans._int, ans._exp)
2242
2243        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2244        if ans is None:
2245            p = context.prec
2246            x = _WorkRep(self)
2247            xc, xe = x.int, x.exp
2248            y = _WorkRep(other)
2249            yc, ye = y.int, y.exp
2250            if y.sign == 1:
2251                yc = -yc
2252
2253            # compute correctly rounded result:  start with precision +3,
2254            # then increase precision until result is unambiguously roundable
2255            extra = 3
2256            while True:
2257                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2258                if coeff % (5*10**(len(str(coeff))-p-1)):
2259                    break
2260                extra += 3
2261
2262            ans = _dec_from_triple(result_sign, str(coeff), exp)
2263
2264        # the specification says that for non-integer other we need to
2265        # raise Inexact, even when the result is actually exact.  In
2266        # the same way, we need to raise Underflow here if the result
2267        # is subnormal.  (The call to _fix will take care of raising
2268        # Rounded and Subnormal, as usual.)
2269        if not other._isinteger():
2270            context._raise_error(Inexact)
2271            # pad with zeros up to length context.prec+1 if necessary
2272            if len(ans._int) <= context.prec:
2273                expdiff = context.prec+1 - len(ans._int)
2274                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2275                                       ans._exp-expdiff)
2276            if ans.adjusted() < context.Emin:
2277                context._raise_error(Underflow)
2278
2279        # unlike exp, ln and log10, the power function respects the
2280        # rounding mode; no need to use ROUND_HALF_EVEN here
2281        ans = ans._fix(context)
2282        return ans
2283
2284    def __rpow__(self, other, context=None):
2285        """Swaps self/other and returns __pow__."""
2286        other = _convert_other(other)
2287        if other is NotImplemented:
2288            return other
2289        return other.__pow__(self, context=context)
2290
2291    def normalize(self, context=None):
2292        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2293
2294        if context is None:
2295            context = getcontext()
2296
2297        if self._is_special:
2298            ans = self._check_nans(context=context)
2299            if ans:
2300                return ans
2301
2302        dup = self._fix(context)
2303        if dup._isinfinity():
2304            return dup
2305
2306        if not dup:
2307            return _dec_from_triple(dup._sign, '0', 0)
2308        exp_max = [context.Emax, context.Etop()][context._clamp]
2309        end = len(dup._int)
2310        exp = dup._exp
2311        while dup._int[end-1] == '0' and exp < exp_max:
2312            exp += 1
2313            end -= 1
2314        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2315
2316    def quantize(self, exp, rounding=None, context=None, watchexp=True):
2317        """Quantize self so its exponent is the same as that of exp.
2318
2319        Similar to self._rescale(exp._exp) but with error checking.
2320        """
2321        exp = _convert_other(exp, raiseit=True)
2322
2323        if context is None:
2324            context = getcontext()
2325        if rounding is None:
2326            rounding = context.rounding
2327
2328        if self._is_special or exp._is_special:
2329            ans = self._check_nans(exp, context)
2330            if ans:
2331                return ans
2332
2333            if exp._isinfinity() or self._isinfinity():
2334                if exp._isinfinity() and self._isinfinity():
2335                    return Decimal(self)  # if both are inf, it is OK
2336                return context._raise_error(InvalidOperation,
2337                                        'quantize with one INF')
2338
2339        # if we're not watching exponents, do a simple rescale
2340        if not watchexp:
2341            ans = self._rescale(exp._exp, rounding)
2342            # raise Inexact and Rounded where appropriate
2343            if ans._exp > self._exp:
2344                context._raise_error(Rounded)
2345                if ans != self:
2346                    context._raise_error(Inexact)
2347            return ans
2348
2349        # exp._exp should be between Etiny and Emax
2350        if not (context.Etiny() <= exp._exp <= context.Emax):
2351            return context._raise_error(InvalidOperation,
2352                   'target exponent out of bounds in quantize')
2353
2354        if not self:
2355            ans = _dec_from_triple(self._sign, '0', exp._exp)
2356            return ans._fix(context)
2357
2358        self_adjusted = self.adjusted()
2359        if self_adjusted > context.Emax:
2360            return context._raise_error(InvalidOperation,
2361                                        'exponent of quantize result too large for current context')
2362        if self_adjusted - exp._exp + 1 > context.prec:
2363            return context._raise_error(InvalidOperation,
2364                                        'quantize result has too many digits for current context')
2365
2366        ans = self._rescale(exp._exp, rounding)
2367        if ans.adjusted() > context.Emax:
2368            return context._raise_error(InvalidOperation,
2369                                        'exponent of quantize result too large for current context')
2370        if len(ans._int) > context.prec:
2371            return context._raise_error(InvalidOperation,
2372                                        'quantize result has too many digits for current context')
2373
2374        # raise appropriate flags
2375        if ans._exp > self._exp:
2376            context._raise_error(Rounded)
2377            if ans != self:
2378                context._raise_error(Inexact)
2379        if ans and ans.adjusted() < context.Emin:
2380            context._raise_error(Subnormal)
2381
2382        # call to fix takes care of any necessary folddown
2383        ans = ans._fix(context)
2384        return ans
2385
2386    def same_quantum(self, other):
2387        """Return True if self and other have the same exponent; otherwise
2388        return False.
2389
2390        If either operand is a special value, the following rules are used:
2391           * return True if both operands are infinities
2392           * return True if both operands are NaNs
2393           * otherwise, return False.
2394        """
2395        other = _convert_other(other, raiseit=True)
2396        if self._is_special or other._is_special:
2397            return (self.is_nan() and other.is_nan() or
2398                    self.is_infinite() and other.is_infinite())
2399        return self._exp == other._exp
2400
2401    def _rescale(self, exp, rounding):
2402        """Rescale self so that the exponent is exp, either by padding with zeros
2403        or by truncating digits, using the given rounding mode.
2404
2405        Specials are returned without change.  This operation is
2406        quiet: it raises no flags, and uses no information from the
2407        context.
2408
2409        exp = exp to scale to (an integer)
2410        rounding = rounding mode
2411        """
2412        if self._is_special:
2413            return Decimal(self)
2414        if not self:
2415            return _dec_from_triple(self._sign, '0', exp)
2416
2417        if self._exp >= exp:
2418            # pad answer with zeros if necessary
2419            return _dec_from_triple(self._sign,
2420                                        self._int + '0'*(self._exp - exp), exp)
2421
2422        # too many digits; round and lose data.  If self.adjusted() <
2423        # exp-1, replace self by 10**(exp-1) before rounding
2424        digits = len(self._int) + self._exp - exp
2425        if digits < 0:
2426            self = _dec_from_triple(self._sign, '1', exp-1)
2427            digits = 0
2428        this_function = getattr(self, self._pick_rounding_function[rounding])
2429        changed = this_function(digits)
2430        coeff = self._int[:digits] or '0'
2431        if changed == 1:
2432            coeff = str(int(coeff)+1)
2433        return _dec_from_triple(self._sign, coeff, exp)
2434
2435    def _round(self, places, rounding):
2436        """Round a nonzero, nonspecial Decimal to a fixed number of
2437        significant figures, using the given rounding mode.
2438
2439        Infinities, NaNs and zeros are returned unaltered.
2440
2441        This operation is quiet: it raises no flags, and uses no
2442        information from the context.
2443
2444        """
2445        if places <= 0:
2446            raise ValueError("argument should be at least 1 in _round")
2447        if self._is_special or not self:
2448            return Decimal(self)
2449        ans = self._rescale(self.adjusted()+1-places, rounding)
2450        # it can happen that the rescale alters the adjusted exponent;
2451        # for example when rounding 99.97 to 3 significant figures.
2452        # When this happens we end up with an extra 0 at the end of
2453        # the number; a second rescale fixes this.
2454        if ans.adjusted() != self.adjusted():
2455            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2456        return ans
2457
2458    def to_integral_exact(self, rounding=None, context=None):
2459        """Rounds to a nearby integer.
2460
2461        If no rounding mode is specified, take the rounding mode from
2462        the context.  This method raises the Rounded and Inexact flags
2463        when appropriate.
2464
2465        See also: to_integral_value, which does exactly the same as
2466        this method except that it doesn't raise Inexact or Rounded.
2467        """
2468        if self._is_special:
2469            ans = self._check_nans(context=context)
2470            if ans:
2471                return ans
2472            return Decimal(self)
2473        if self._exp >= 0:
2474            return Decimal(self)
2475        if not self:
2476            return _dec_from_triple(self._sign, '0', 0)
2477        if context is None:
2478            context = getcontext()
2479        if rounding is None:
2480            rounding = context.rounding
2481        context._raise_error(Rounded)
2482        ans = self._rescale(0, rounding)
2483        if ans != self:
2484            context._raise_error(Inexact)
2485        return ans
2486
2487    def to_integral_value(self, rounding=None, context=None):
2488        """Rounds to the nearest integer, without raising inexact, rounded."""
2489        if context is None:
2490            context = getcontext()
2491        if rounding is None:
2492            rounding = context.rounding
2493        if self._is_special:
2494            ans = self._check_nans(context=context)
2495            if ans:
2496                return ans
2497            return Decimal(self)
2498        if self._exp >= 0:
2499            return Decimal(self)
2500        else:
2501            return self._rescale(0, rounding)
2502
2503    # the method name changed, but we provide also the old one, for compatibility
2504    to_integral = to_integral_value
2505
2506    def sqrt(self, context=None):
2507        """Return the square root of self."""
2508        if context is None:
2509            context = getcontext()
2510
2511        if self._is_special:
2512            ans = self._check_nans(context=context)
2513            if ans:
2514                return ans
2515
2516            if self._isinfinity() and self._sign == 0:
2517                return Decimal(self)
2518
2519        if not self:
2520            # exponent = self._exp // 2.  sqrt(-0) = -0
2521            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2522            return ans._fix(context)
2523
2524        if self._sign == 1:
2525            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2526
2527        # At this point self represents a positive number.  Let p be
2528        # the desired precision and express self in the form c*100**e
2529        # with c a positive real number and e an integer, c and e
2530        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2531        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2532        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2533        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2534        # the closest integer to sqrt(c) with the even integer chosen
2535        # in the case of a tie.
2536        #
2537        # To ensure correct rounding in all cases, we use the
2538        # following trick: we compute the square root to an extra
2539        # place (precision p+1 instead of precision p), rounding down.
2540        # Then, if the result is inexact and its last digit is 0 or 5,
2541        # we increase the last digit to 1 or 6 respectively; if it's
2542        # exact we leave the last digit alone.  Now the final round to
2543        # p places (or fewer in the case of underflow) will round
2544        # correctly and raise the appropriate flags.
2545
2546        # use an extra digit of precision
2547        prec = context.prec+1
2548
2549        # write argument in the form c*100**e where e = self._exp//2
2550        # is the 'ideal' exponent, to be used if the square root is
2551        # exactly representable.  l is the number of 'digits' of c in
2552        # base 100, so that 100**(l-1) <= c < 100**l.
2553        op = _WorkRep(self)
2554        e = op.exp >> 1
2555        if op.exp & 1:
2556            c = op.int * 10
2557            l = (len(self._int) >> 1) + 1
2558        else:
2559            c = op.int
2560            l = len(self._int)+1 >> 1
2561
2562        # rescale so that c has exactly prec base 100 'digits'
2563        shift = prec-l
2564        if shift >= 0:
2565            c *= 100**shift
2566            exact = True
2567        else:
2568            c, remainder = divmod(c, 100**-shift)
2569            exact = not remainder
2570        e -= shift
2571
2572        # find n = floor(sqrt(c)) using Newton's method
2573        n = 10**prec
2574        while True:
2575            q = c//n
2576            if n <= q:
2577                break
2578            else:
2579                n = n + q >> 1
2580        exact = exact and n*n == c
2581
2582        if exact:
2583            # result is exact; rescale to use ideal exponent e
2584            if shift >= 0:
2585                # assert n % 10**shift == 0
2586                n //= 10**shift
2587            else:
2588                n *= 10**-shift
2589            e += shift
2590        else:
2591            # result is not exact; fix last digit as described above
2592            if n % 5 == 0:
2593                n += 1
2594
2595        ans = _dec_from_triple(0, str(n), e)
2596
2597        # round, and fit to current context
2598        context = context._shallow_copy()
2599        rounding = context._set_rounding(ROUND_HALF_EVEN)
2600        ans = ans._fix(context)
2601        context.rounding = rounding
2602
2603        return ans
2604
2605    def max(self, other, context=None):
2606        """Returns the larger value.
2607
2608        Like max(self, other) except if one is not a number, returns
2609        NaN (and signals if one is sNaN).  Also rounds.
2610        """
2611        other = _convert_other(other, raiseit=True)
2612
2613        if context is None:
2614            context = getcontext()
2615
2616        if self._is_special or other._is_special:
2617            # If one operand is a quiet NaN and the other is number, then the
2618            # number is always returned
2619            sn = self._isnan()
2620            on = other._isnan()
2621            if sn or on:
2622                if on == 1 and sn == 0:
2623                    return self._fix(context)
2624                if sn == 1 and on == 0:
2625                    return other._fix(context)
2626                return self._check_nans(other, context)
2627
2628        c = self._cmp(other)
2629        if c == 0:
2630            # If both operands are finite and equal in numerical value
2631            # then an ordering is applied:
2632            #
2633            # If the signs differ then max returns the operand with the
2634            # positive sign and min returns the operand with the negative sign
2635            #
2636            # If the signs are the same then the exponent is used to select
2637            # the result.  This is exactly the ordering used in compare_total.
2638            c = self.compare_total(other)
2639
2640        if c == -1:
2641            ans = other
2642        else:
2643            ans = self
2644
2645        return ans._fix(context)
2646
2647    def min(self, other, context=None):
2648        """Returns the smaller value.
2649
2650        Like min(self, other) except if one is not a number, returns
2651        NaN (and signals if one is sNaN).  Also rounds.
2652        """
2653        other = _convert_other(other, raiseit=True)
2654
2655        if context is None:
2656            context = getcontext()
2657
2658        if self._is_special or other._is_special:
2659            # If one operand is a quiet NaN and the other is number, then the
2660            # number is always returned
2661            sn = self._isnan()
2662            on = other._isnan()
2663            if sn or on:
2664                if on == 1 and sn == 0:
2665                    return self._fix(context)
2666                if sn == 1 and on == 0:
2667                    return other._fix(context)
2668                return self._check_nans(other, context)
2669
2670        c = self._cmp(other)
2671        if c == 0:
2672            c = self.compare_total(other)
2673
2674        if c == -1:
2675            ans = self
2676        else:
2677            ans = other
2678
2679        return ans._fix(context)
2680
2681    def _isinteger(self):
2682        """Returns whether self is an integer"""
2683        if self._is_special:
2684            return False
2685        if self._exp >= 0:
2686            return True
2687        rest = self._int[self._exp:]
2688        return rest == '0'*len(rest)
2689
2690    def _iseven(self):
2691        """Returns True if self is even.  Assumes self is an integer."""
2692        if not self or self._exp > 0:
2693            return True
2694        return self._int[-1+self._exp] in '02468'
2695
2696    def adjusted(self):
2697        """Return the adjusted exponent of self"""
2698        try:
2699            return self._exp + len(self._int) - 1
2700        # If NaN or Infinity, self._exp is string
2701        except TypeError:
2702            return 0
2703
2704    def canonical(self, context=None):
2705        """Returns the same Decimal object.
2706
2707        As we do not have different encodings for the same number, the
2708        received object already is in its canonical form.
2709        """
2710        return self
2711
2712    def compare_signal(self, other, context=None):
2713        """Compares self to the other operand numerically.
2714
2715        It's pretty much like compare(), but all NaNs signal, with signaling
2716        NaNs taking precedence over quiet NaNs.
2717        """
2718        other = _convert_other(other, raiseit = True)
2719        ans = self._compare_check_nans(other, context)
2720        if ans:
2721            return ans
2722        return self.compare(other, context=context)
2723
2724    def compare_total(self, other):
2725        """Compares self to other using the abstract representations.
2726
2727        This is not like the standard compare, which use their numerical
2728        value. Note that a total ordering is defined for all possible abstract
2729        representations.
2730        """
2731        # if one is negative and the other is positive, it's easy
2732        if self._sign and not other._sign:
2733            return _NegativeOne
2734        if not self._sign and other._sign:
2735            return _One
2736        sign = self._sign
2737
2738        # let's handle both NaN types
2739        self_nan = self._isnan()
2740        other_nan = other._isnan()
2741        if self_nan or other_nan:
2742            if self_nan == other_nan:
2743                if self._int < other._int:
2744                    if sign:
2745                        return _One
2746                    else:
2747                        return _NegativeOne
2748                if self._int > other._int:
2749                    if sign:
2750                        return _NegativeOne
2751                    else:
2752                        return _One
2753                return _Zero
2754
2755            if sign:
2756                if self_nan == 1:
2757                    return _NegativeOne
2758                if other_nan == 1:
2759                    return _One
2760                if self_nan == 2:
2761                    return _NegativeOne
2762                if other_nan == 2:
2763                    return _One
2764            else:
2765                if self_nan == 1:
2766                    return _One
2767                if other_nan == 1:
2768                    return _NegativeOne
2769                if self_nan == 2:
2770                    return _One
2771                if other_nan == 2:
2772                    return _NegativeOne
2773
2774        if self < other:
2775            return _NegativeOne
2776        if self > other:
2777            return _One
2778
2779        if self._exp < other._exp:
2780            if sign:
2781                return _One
2782            else:
2783                return _NegativeOne
2784        if self._exp > other._exp:
2785            if sign:
2786                return _NegativeOne
2787            else:
2788                return _One
2789        return _Zero
2790
2791
2792    def compare_total_mag(self, other):
2793        """Compares self to other using abstract repr., ignoring sign.
2794
2795        Like compare_total, but with operand's sign ignored and assumed to be 0.
2796        """
2797        s = self.copy_abs()
2798        o = other.copy_abs()
2799        return s.compare_total(o)
2800
2801    def copy_abs(self):
2802        """Returns a copy with the sign set to 0. """
2803        return _dec_from_triple(0, self._int, self._exp, self._is_special)
2804
2805    def copy_negate(self):
2806        """Returns a copy with the sign inverted."""
2807        if self._sign:
2808            return _dec_from_triple(0, self._int, self._exp, self._is_special)
2809        else:
2810            return _dec_from_triple(1, self._int, self._exp, self._is_special)
2811
2812    def copy_sign(self, other):
2813        """Returns self with the sign of other."""
2814        return _dec_from_triple(other._sign, self._int,
2815                                self._exp, self._is_special)
2816
2817    def exp(self, context=None):
2818        """Returns e ** self."""
2819
2820        if context is None:
2821            context = getcontext()
2822
2823        # exp(NaN) = NaN
2824        ans = self._check_nans(context=context)
2825        if ans:
2826            return ans
2827
2828        # exp(-Infinity) = 0
2829        if self._isinfinity() == -1:
2830            return _Zero
2831
2832        # exp(0) = 1
2833        if not self:
2834            return _One
2835
2836        # exp(Infinity) = Infinity
2837        if self._isinfinity() == 1:
2838            return Decimal(self)
2839
2840        # the result is now guaranteed to be inexact (the true
2841        # mathematical result is transcendental). There's no need to
2842        # raise Rounded and Inexact here---they'll always be raised as
2843        # a result of the call to _fix.
2844        p = context.prec
2845        adj = self.adjusted()
2846
2847        # we only need to do any computation for quite a small range
2848        # of adjusted exponents---for example, -29 <= adj <= 10 for
2849        # the default context.  For smaller exponent the result is
2850        # indistinguishable from 1 at the given precision, while for
2851        # larger exponent the result either overflows or underflows.
2852        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2853            # overflow
2854            ans = _dec_from_triple(0, '1', context.Emax+1)
2855        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2856            # underflow to 0
2857            ans = _dec_from_triple(0, '1', context.Etiny()-1)
2858        elif self._sign == 0 and adj < -p:
2859            # p+1 digits; final round will raise correct flags
2860            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2861        elif self._sign == 1 and adj < -p-1:
2862            # p+1 digits; final round will raise correct flags
2863            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2864        # general case
2865        else:
2866            op = _WorkRep(self)
2867            c, e = op.int, op.exp
2868            if op.sign == 1:
2869                c = -c
2870
2871            # compute correctly rounded result: increase precision by
2872            # 3 digits at a time until we get an unambiguously
2873            # roundable result
2874            extra = 3
2875            while True:
2876                coeff, exp = _dexp(c, e, p+extra)
2877                if coeff % (5*10**(len(str(coeff))-p-1)):
2878                    break
2879                extra += 3
2880
2881            ans = _dec_from_triple(0, str(coeff), exp)
2882
2883        # at this stage, ans should round correctly with *any*
2884        # rounding mode, not just with ROUND_HALF_EVEN
2885        context = context._shallow_copy()
2886        rounding = context._set_rounding(ROUND_HALF_EVEN)
2887        ans = ans._fix(context)
2888        context.rounding = rounding
2889
2890        return ans
2891
2892    def is_canonical(self):
2893        """Return True if self is canonical; otherwise return False.
2894
2895        Currently, the encoding of a Decimal instance is always
2896        canonical, so this method returns True for any Decimal.
2897        """
2898        return True
2899
2900    def is_finite(self):
2901        """Return True if self is finite; otherwise return False.
2902
2903        A Decimal instance is considered finite if it is neither
2904        infinite nor a NaN.
2905        """
2906        return not self._is_special
2907
2908    def is_infinite(self):
2909        """Return True if self is infinite; otherwise return False."""
2910        return self._exp == 'F'
2911
2912    def is_nan(self):
2913        """Return True if self is a qNaN or sNaN; otherwise return False."""
2914        return self._exp in ('n', 'N')
2915
2916    def is_normal(self, context=None):
2917        """Return True if self is a normal number; otherwise return False."""
2918        if self._is_special or not self:
2919            return False
2920        if context is None:
2921            context = getcontext()
2922        return context.Emin <= self.adjusted() <= context.Emax
2923
2924    def is_qnan(self):
2925        """Return True if self is a quiet NaN; otherwise return False."""
2926        return self._exp == 'n'
2927
2928    def is_signed(self):
2929        """Return True if self is negative; otherwise return False."""
2930        return self._sign == 1
2931
2932    def is_snan(self):
2933        """Return True if self is a signaling NaN; otherwise return False."""
2934        return self._exp == 'N'
2935
2936    def is_subnormal(self, context=None):
2937        """Return True if self is subnormal; otherwise return False."""
2938        if self._is_special or not self:
2939            return False
2940        if context is None:
2941            context = getcontext()
2942        return self.adjusted() < context.Emin
2943
2944    def is_zero(self):
2945        """Return True if self is a zero; otherwise return False."""
2946        return not self._is_special and self._int == '0'
2947
2948    def _ln_exp_bound(self):
2949        """Compute a lower bound for the adjusted exponent of self.ln().
2950        In other words, compute r such that self.ln() >= 10**r.  Assumes
2951        that self is finite and positive and that self != 1.
2952        """
2953
2954        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2955        adj = self._exp + len(self._int) - 1
2956        if adj >= 1:
2957            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2958            return len(str(adj*23//10)) - 1
2959        if adj <= -2:
2960            # argument <= 0.1
2961            return len(str((-1-adj)*23//10)) - 1
2962        op = _WorkRep(self)
2963        c, e = op.int, op.exp
2964        if adj == 0:
2965            # 1 < self < 10
2966            num = str(c-10**-e)
2967            den = str(c)
2968            return len(num) - len(den) - (num < den)
2969        # adj == -1, 0.1 <= self < 1
2970        return e + len(str(10**-e - c)) - 1
2971
2972
2973    def ln(self, context=None):
2974        """Returns the natural (base e) logarithm of self."""
2975
2976        if context is None:
2977            context = getcontext()
2978
2979        # ln(NaN) = NaN
2980        ans = self._check_nans(context=context)
2981        if ans:
2982            return ans
2983
2984        # ln(0.0) == -Infinity
2985        if not self:
2986            return _NegativeInfinity
2987
2988        # ln(Infinity) = Infinity
2989        if self._isinfinity() == 1:
2990            return _Infinity
2991
2992        # ln(1.0) == 0.0
2993        if self == _One:
2994            return _Zero
2995
2996        # ln(negative) raises InvalidOperation
2997        if self._sign == 1:
2998            return context._raise_error(InvalidOperation,
2999                                        'ln of a negative value')
3000
3001        # result is irrational, so necessarily inexact
3002        op = _WorkRep(self)
3003        c, e = op.int, op.exp
3004        p = context.prec
3005
3006        # correctly rounded result: repeatedly increase precision by 3
3007        # until we get an unambiguously roundable result
3008        places = p - self._ln_exp_bound() + 2 # at least p+3 places
3009        while True:
3010            coeff = _dlog(c, e, places)
3011            # assert len(str(abs(coeff)))-p >= 1
3012            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3013                break
3014            places += 3
3015        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3016
3017        context = context._shallow_copy()
3018        rounding = context._set_rounding(ROUND_HALF_EVEN)
3019        ans = ans._fix(context)
3020        context.rounding = rounding
3021        return ans
3022
3023    def _log10_exp_bound(self):
3024        """Compute a lower bound for the adjusted exponent of self.log10().
3025        In other words, find r such that self.log10() >= 10**r.
3026        Assumes that self is finite and positive and that self != 1.
3027        """
3028
3029        # For x >= 10 or x < 0.1 we only need a bound on the integer
3030        # part of log10(self), and this comes directly from the
3031        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
3032        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3033        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3034
3035        adj = self._exp + len(self._int) - 1
3036        if adj >= 1:
3037            # self >= 10
3038            return len(str(adj))-1
3039        if adj <= -2:
3040            # self < 0.1
3041            return len(str(-1-adj))-1
3042        op = _WorkRep(self)
3043        c, e = op.int, op.exp
3044        if adj == 0:
3045            # 1 < self < 10
3046            num = str(c-10**-e)
3047            den = str(231*c)
3048            return len(num) - len(den) - (num < den) + 2
3049        # adj == -1, 0.1 <= self < 1
3050        num = str(10**-e-c)
3051        return len(num) + e - (num < "231") - 1
3052
3053    def log10(self, context=None):
3054        """Returns the base 10 logarithm of self."""
3055
3056        if context is None:
3057            context = getcontext()
3058
3059        # log10(NaN) = NaN
3060        ans = self._check_nans(context=context)
3061        if ans:
3062            return ans
3063
3064        # log10(0.0) == -Infinity
3065        if not self:
3066            return _NegativeInfinity
3067
3068        # log10(Infinity) = Infinity
3069        if self._isinfinity() == 1:
3070            return _Infinity
3071
3072        # log10(negative or -Infinity) raises InvalidOperation
3073        if self._sign == 1:
3074            return context._raise_error(InvalidOperation,
3075                                        'log10 of a negative value')
3076
3077        # log10(10**n) = n
3078        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3079            # answer may need rounding
3080            ans = Decimal(self._exp + len(self._int) - 1)
3081        else:
3082            # result is irrational, so necessarily inexact
3083            op = _WorkRep(self)
3084            c, e = op.int, op.exp
3085            p = context.prec
3086
3087            # correctly rounded result: repeatedly increase precision
3088            # until result is unambiguously roundable
3089            places = p-self._log10_exp_bound()+2
3090            while True:
3091                coeff = _dlog10(c, e, places)
3092                # assert len(str(abs(coeff)))-p >= 1
3093                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3094                    break
3095                places += 3
3096            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3097
3098        context = context._shallow_copy()
3099        rounding = context._set_rounding(ROUND_HALF_EVEN)
3100        ans = ans._fix(context)
3101        context.rounding = rounding
3102        return ans
3103
3104    def logb(self, context=None):
3105        """ Returns the exponent of the magnitude of self's MSD.
3106
3107        The result is the integer which is the exponent of the magnitude
3108        of the most significant digit of self (as though it were truncated
3109        to a single digit while maintaining the value of that digit and
3110        without limiting the resulting exponent).
3111        """
3112        # logb(NaN) = NaN
3113        ans = self._check_nans(context=context)
3114        if ans:
3115            return ans
3116
3117        if context is None:
3118            context = getcontext()
3119
3120        # logb(+/-Inf) = +Inf
3121        if self._isinfinity():
3122            return _Infinity
3123
3124        # logb(0) = -Inf, DivisionByZero
3125        if not self:
3126            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3127
3128        # otherwise, simply return the adjusted exponent of self, as a
3129        # Decimal.  Note that no attempt is made to fit the result
3130        # into the current context.
3131        return Decimal(self.adjusted())
3132
3133    def _islogical(self):
3134        """Return True if self is a logical operand.
3135
3136        For being logical, it must be a finite number with a sign of 0,
3137        an exponent of 0, and a coefficient whose digits must all be
3138        either 0 or 1.
3139        """
3140        if self._sign != 0 or self._exp != 0:
3141            return False
3142        for dig in self._int:
3143            if dig not in '01':
3144                return False
3145        return True
3146
3147    def _fill_logical(self, context, opa, opb):
3148        dif = context.prec - len(opa)
3149        if dif > 0:
3150            opa = '0'*dif + opa
3151        elif dif < 0:
3152            opa = opa[-context.prec:]
3153        dif = context.prec - len(opb)
3154        if dif > 0:
3155            opb = '0'*dif + opb
3156        elif dif < 0:
3157            opb = opb[-context.prec:]
3158        return opa, opb
3159
3160    def logical_and(self, other, context=None):
3161        """Applies an 'and' operation between self and other's digits."""
3162        if context is None:
3163            context = getcontext()
3164        if not self._islogical() or not other._islogical():
3165            return context._raise_error(InvalidOperation)
3166
3167        # fill to context.prec
3168        (opa, opb) = self._fill_logical(context, self._int, other._int)
3169
3170        # make the operation, and clean starting zeroes
3171        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3172        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3173
3174    def logical_invert(self, context=None):
3175        """Invert all its digits."""
3176        if context is None:
3177            context = getcontext()
3178        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3179                                context)
3180
3181    def logical_or(self, other, context=None):
3182        """Applies an 'or' operation between self and other's digits."""
3183        if context is None:
3184            context = getcontext()
3185        if not self._islogical() or not other._islogical():
3186            return context._raise_error(InvalidOperation)
3187
3188        # fill to context.prec
3189        (opa, opb) = self._fill_logical(context, self._int, other._int)
3190
3191        # make the operation, and clean starting zeroes
3192        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3193        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3194
3195    def logical_xor(self, other, context=None):
3196        """Applies an 'xor' operation between self and other's digits."""
3197        if context is None:
3198            context = getcontext()
3199        if not self._islogical() or not other._islogical():
3200            return context._raise_error(InvalidOperation)
3201
3202        # fill to context.prec
3203        (opa, opb) = self._fill_logical(context, self._int, other._int)
3204
3205        # make the operation, and clean starting zeroes
3206        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3207        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3208
3209    def max_mag(self, other, context=None):
3210        """Compares the values numerically with their sign ignored."""
3211        other = _convert_other(other, raiseit=True)
3212
3213        if context is None:
3214            context = getcontext()
3215
3216        if self._is_special or other._is_special:
3217            # If one operand is a quiet NaN and the other is number, then the
3218            # number is always returned
3219            sn = self._isnan()
3220            on = other._isnan()
3221            if sn or on:
3222                if on == 1 and sn == 0:
3223                    return self._fix(context)
3224                if sn == 1 and on == 0:
3225                    return other._fix(context)
3226                return self._check_nans(other, context)
3227
3228        c = self.copy_abs()._cmp(other.copy_abs())
3229        if c == 0:
3230            c = self.compare_total(other)
3231
3232        if c == -1:
3233            ans = other
3234        else:
3235            ans = self
3236
3237        return ans._fix(context)
3238
3239    def min_mag(self, other, context=None):
3240        """Compares the values numerically with their sign ignored."""
3241        other = _convert_other(other, raiseit=True)
3242
3243        if context is None:
3244            context = getcontext()
3245
3246        if self._is_special or other._is_special:
3247            # If one operand is a quiet NaN and the other is number, then the
3248            # number is always returned
3249            sn = self._isnan()
3250            on = other._isnan()
3251            if sn or on:
3252                if on == 1 and sn == 0:
3253                    return self._fix(context)
3254                if sn == 1 and on == 0:
3255                    return other._fix(context)
3256                return self._check_nans(other, context)
3257
3258        c = self.copy_abs()._cmp(other.copy_abs())
3259        if c == 0:
3260            c = self.compare_total(other)
3261
3262        if c == -1:
3263            ans = self
3264        else:
3265            ans = other
3266
3267        return ans._fix(context)
3268
3269    def next_minus(self, context=None):
3270        """Returns the largest representable number smaller than itself."""
3271        if context is None:
3272            context = getcontext()
3273
3274        ans = self._check_nans(context=context)
3275        if ans:
3276            return ans
3277
3278        if self._isinfinity() == -1:
3279            return _NegativeInfinity
3280        if self._isinfinity() == 1:
3281            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3282
3283        context = context.copy()
3284        context._set_rounding(ROUND_FLOOR)
3285        context._ignore_all_flags()
3286        new_self = self._fix(context)
3287        if new_self != self:
3288            return new_self
3289        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3290                            context)
3291
3292    def next_plus(self, context=None):
3293        """Returns the smallest representable number larger than itself."""
3294        if context is None:
3295            context = getcontext()
3296
3297        ans = self._check_nans(context=context)
3298        if ans:
3299            return ans
3300
3301        if self._isinfinity() == 1:
3302            return _Infinity
3303        if self._isinfinity() == -1:
3304            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3305
3306        context = context.copy()
3307        context._set_rounding(ROUND_CEILING)
3308        context._ignore_all_flags()
3309        new_self = self._fix(context)
3310        if new_self != self:
3311            return new_self
3312        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3313                            context)
3314
3315    def next_toward(self, other, context=None):
3316        """Returns the number closest to self, in the direction towards other.
3317
3318        The result is the closest representable number to self
3319        (excluding self) that is in the direction towards other,
3320        unless both have the same value.  If the two operands are
3321        numerically equal, then the result is a copy of self with the
3322        sign set to be the same as the sign of other.
3323        """
3324        other = _convert_other(other, raiseit=True)
3325
3326        if context is None:
3327            context = getcontext()
3328
3329        ans = self._check_nans(other, context)
3330        if ans:
3331            return ans
3332
3333        comparison = self._cmp(other)
3334        if comparison == 0:
3335            return self.copy_sign(other)
3336
3337        if comparison == -1:
3338            ans = self.next_plus(context)
3339        else: # comparison == 1
3340            ans = self.next_minus(context)
3341
3342        # decide which flags to raise using value of ans
3343        if ans._isinfinity():
3344            context._raise_error(Overflow,
3345                                 'Infinite result from next_toward',
3346                                 ans._sign)
3347            context._raise_error(Rounded)
3348            context._raise_error(Inexact)
3349        elif ans.adjusted() < context.Emin:
3350            context._raise_error(Underflow)
3351            context._raise_error(Subnormal)
3352            context._raise_error(Rounded)
3353            context._raise_error(Inexact)
3354            # if precision == 1 then we don't raise Clamped for a
3355            # result 0E-Etiny.
3356            if not ans:
3357                context._raise_error(Clamped)
3358
3359        return ans
3360
3361    def number_class(self, context=None):
3362        """Returns an indication of the class of self.
3363
3364        The class is one of the following strings:
3365          sNaN
3366          NaN
3367          -Infinity
3368          -Normal
3369          -Subnormal
3370          -Zero
3371          +Zero
3372          +Subnormal
3373          +Normal
3374          +Infinity
3375        """
3376        if self.is_snan():
3377            return "sNaN"
3378        if self.is_qnan():
3379            return "NaN"
3380        inf = self._isinfinity()
3381        if inf == 1:
3382            return "+Infinity"
3383        if inf == -1:
3384            return "-Infinity"
3385        if self.is_zero():
3386            if self._sign:
3387                return "-Zero"
3388            else:
3389                return "+Zero"
3390        if context is None:
3391            context = getcontext()
3392        if self.is_subnormal(context=context):
3393            if self._sign:
3394                return "-Subnormal"
3395            else:
3396                return "+Subnormal"
3397        # just a normal, regular, boring number, :)
3398        if self._sign:
3399            return "-Normal"
3400        else:
3401            return "+Normal"
3402
3403    def radix(self):
3404        """Just returns 10, as this is Decimal, :)"""
3405        return Decimal(10)
3406
3407    def rotate(self, other, context=None):
3408        """Returns a rotated copy of self, value-of-other times."""
3409        if context is None:
3410            context = getcontext()
3411
3412        ans = self._check_nans(other, context)
3413        if ans:
3414            return ans
3415
3416        if other._exp != 0:
3417            return context._raise_error(InvalidOperation)
3418        if not (-context.prec <= int(other) <= context.prec):
3419            return context._raise_error(InvalidOperation)
3420
3421        if self._isinfinity():
3422            return Decimal(self)
3423
3424        # get values, pad if necessary
3425        torot = int(other)
3426        rotdig = self._int
3427        topad = context.prec - len(rotdig)
3428        if topad:
3429            rotdig = '0'*topad + rotdig
3430
3431        # let's rotate!
3432        rotated = rotdig[torot:] + rotdig[:torot]
3433        return _dec_from_triple(self._sign,
3434                                rotated.lstrip('0') or '0', self._exp)
3435
3436    def scaleb (self, other, context=None):
3437        """Returns self operand after adding the second value to its exp."""
3438        if context is None:
3439            context = getcontext()
3440
3441        ans = self._check_nans(other, context)
3442        if ans:
3443            return ans
3444
3445        if other._exp != 0:
3446            return context._raise_error(InvalidOperation)
3447        liminf = -2 * (context.Emax + context.prec)
3448        limsup =  2 * (context.Emax + context.prec)
3449        if not (liminf <= int(other) <= limsup):
3450            return context._raise_error(InvalidOperation)
3451
3452        if self._isinfinity():
3453            return Decimal(self)
3454
3455        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3456        d = d._fix(context)
3457        return d
3458
3459    def shift(self, other, context=None):
3460        """Returns a shifted copy of self, value-of-other times."""
3461        if context is None:
3462            context = getcontext()
3463
3464        ans = self._check_nans(other, context)
3465        if ans:
3466            return ans
3467
3468        if other._exp != 0:
3469            return context._raise_error(InvalidOperation)
3470        if not (-context.prec <= int(other) <= context.prec):
3471            return context._raise_error(InvalidOperation)
3472
3473        if self._isinfinity():
3474            return Decimal(self)
3475
3476        # get values, pad if necessary
3477        torot = int(other)
3478        if not torot:
3479            return Decimal(self)
3480        rotdig = self._int
3481        topad = context.prec - len(rotdig)
3482        if topad:
3483            rotdig = '0'*topad + rotdig
3484
3485        # let's shift!
3486        if torot < 0:
3487            rotated = rotdig[:torot]
3488        else:
3489            rotated = rotdig + '0'*torot
3490            rotated = rotated[-context.prec:]
3491
3492        return _dec_from_triple(self._sign,
3493                                    rotated.lstrip('0') or '0', self._exp)
3494
3495    # Support for pickling, copy, and deepcopy
3496    def __reduce__(self):
3497        return (self.__class__, (str(self),))
3498
3499    def __copy__(self):
3500        if type(self) == Decimal:
3501            return self     # I'm immutable; therefore I am my own clone
3502        return self.__class__(str(self))
3503
3504    def __deepcopy__(self, memo):
3505        if type(self) == Decimal:
3506            return self     # My components are also immutable
3507        return self.__class__(str(self))
3508
3509    # PEP 3101 support.  See also _parse_format_specifier and _format_align
3510    def __format__(self, specifier, context=None):
3511        """Format a Decimal instance according to the given specifier.
3512
3513        The specifier should be a standard format specifier, with the
3514        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3515        'F', 'g', 'G', and '%' are supported.  If the formatting type
3516        is omitted it defaults to 'g' or 'G', depending on the value
3517        of context.capitals.
3518
3519        At this time the 'n' format specifier type (which is supposed
3520        to use the current locale) is not supported.
3521        """
3522
3523        # Note: PEP 3101 says that if the type is not present then
3524        # there should be at least one digit after the decimal point.
3525        # We take the liberty of ignoring this requirement for
3526        # Decimal---it's presumably there to make sure that
3527        # format(float, '') behaves similarly to str(float).
3528        if context is None:
3529            context = getcontext()
3530
3531        spec = _parse_format_specifier(specifier)
3532
3533        # special values don't care about the type or precision...
3534        if self._is_special:
3535            return _format_align(str(self), spec)
3536
3537        # a type of None defaults to 'g' or 'G', depending on context
3538        # if type is '%', adjust exponent of self accordingly
3539        if spec['type'] is None:
3540            spec['type'] = ['g', 'G'][context.capitals]
3541        elif spec['type'] == '%':
3542            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3543
3544        # round if necessary, taking rounding mode from the context
3545        rounding = context.rounding
3546        precision = spec['precision']
3547        if precision is not None:
3548            if spec['type'] in 'eE':
3549                self = self._round(precision+1, rounding)
3550            elif spec['type'] in 'gG':
3551                if len(self._int) > precision:
3552                    self = self._round(precision, rounding)
3553            elif spec['type'] in 'fF%':
3554                self = self._rescale(-precision, rounding)
3555        # special case: zeros with a positive exponent can't be
3556        # represented in fixed point; rescale them to 0e0.
3557        elif not self and self._exp > 0 and spec['type'] in 'fF%':
3558            self = self._rescale(0, rounding)
3559
3560        # figure out placement of the decimal point
3561        leftdigits = self._exp + len(self._int)
3562        if spec['type'] in 'fF%':
3563            dotplace = leftdigits
3564        elif spec['type'] in 'eE':
3565            if not self and precision is not None:
3566                dotplace = 1 - precision
3567            else:
3568                dotplace = 1
3569        elif spec['type'] in 'gG':
3570            if self._exp <= 0 and leftdigits > -6:
3571                dotplace = leftdigits
3572            else:
3573                dotplace = 1
3574
3575        # figure out main part of numeric string...
3576        if dotplace <= 0:
3577            num = '0.' + '0'*(-dotplace) + self._int
3578        elif dotplace >= len(self._int):
3579            # make sure we're not padding a '0' with extra zeros on the right
3580            assert dotplace==len(self._int) or self._int != '0'
3581            num = self._int + '0'*(dotplace-len(self._int))
3582        else:
3583            num = self._int[:dotplace] + '.' + self._int[dotplace:]
3584
3585        # ...then the trailing exponent, or trailing '%'
3586        if leftdigits != dotplace or spec['type'] in 'eE':
3587            echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
3588            num = num + "{0}{1:+}".format(echar, leftdigits-dotplace)
3589        elif spec['type'] == '%':
3590            num = num + '%'
3591
3592        # add sign
3593        if self._sign == 1:
3594            num = '-' + num
3595        return _format_align(num, spec)
3596
3597
3598def _dec_from_triple(sign, coefficient, exponent, special=False):
3599    """Create a decimal instance directly, without any validation,
3600    normalization (e.g. removal of leading zeros) or argument
3601    conversion.
3602
3603    This function is for *internal use only*.
3604    """
3605
3606    self = object.__new__(Decimal)
3607    self._sign = sign
3608    self._int = coefficient
3609    self._exp = exponent
3610    self._is_special = special
3611
3612    return self
3613
3614# Register Decimal as a kind of Number (an abstract base class).
3615# However, do not register it as Real (because Decimals are not
3616# interoperable with floats).
3617_numbers.Number.register(Decimal)
3618
3619
3620##### Context class #######################################################
3621
3622
3623# get rounding method function:
3624rounding_functions = [name for name in Decimal.__dict__.keys()
3625                                    if name.startswith('_round_')]
3626for name in rounding_functions:
3627    # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3628    globalname = name[1:].upper()
3629    val = globals()[globalname]
3630    Decimal._pick_rounding_function[val] = name
3631
3632del name, val, globalname, rounding_functions
3633
3634class _ContextManager(object):
3635    """Context manager class to support localcontext().
3636
3637      Sets a copy of the supplied context in __enter__() and restores
3638      the previous decimal context in __exit__()
3639    """
3640    def __init__(self, new_context):
3641        self.new_context = new_context.copy()
3642    def __enter__(self):
3643        self.saved_context = getcontext()
3644        setcontext(self.new_context)
3645        return self.new_context
3646    def __exit__(self, t, v, tb):
3647        setcontext(self.saved_context)
3648
3649class Context(object):
3650    """Contains the context for a Decimal instance.
3651
3652    Contains:
3653    prec - precision (for use in rounding, division, square roots..)
3654    rounding - rounding type (how you round)
3655    traps - If traps[exception] = 1, then the exception is
3656                    raised when it is caused.  Otherwise, a value is
3657                    substituted in.
3658    flags  - When an exception is caused, flags[exception] is set.
3659             (Whether or not the trap_enabler is set)
3660             Should be reset by user of Decimal instance.
3661    Emin -   Minimum exponent
3662    Emax -   Maximum exponent
3663    capitals -      If 1, 1*10^1 is printed as 1E+1.
3664                    If 0, printed as 1e1
3665    _clamp - If 1, change exponents if too high (Default 0)
3666    """
3667
3668    def __init__(self, prec=None, rounding=None,
3669                 traps=None, flags=None,
3670                 Emin=None, Emax=None,
3671                 capitals=None, _clamp=0,
3672                 _ignored_flags=None):
3673        if flags is None:
3674            flags = []
3675        if _ignored_flags is None:
3676            _ignored_flags = []
3677        if not isinstance(flags, dict):
3678            flags = dict([(s, int(s in flags)) for s in _signals])
3679            del s
3680        if traps is not None and not isinstance(traps, dict):
3681            traps = dict([(s, int(s in traps)) for s in _signals])
3682            del s
3683        for name, val in locals().items():
3684            if val is None:
3685                setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3686            else:
3687                setattr(self, name, val)
3688        del self.self
3689
3690    def __repr__(self):
3691        """Show the current context."""
3692        s = []
3693        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3694                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3695                 % vars(self))
3696        names = [f.__name__ for f, v in self.flags.items() if v]
3697        s.append('flags=[' + ', '.join(names) + ']')
3698        names = [t.__name__ for t, v in self.traps.items() if v]
3699        s.append('traps=[' + ', '.join(names) + ']')
3700        return ', '.join(s) + ')'
3701
3702    def clear_flags(self):
3703        """Reset all flags to zero"""
3704        for flag in self.flags:
3705            self.flags[flag] = 0
3706
3707    def _shallow_copy(self):
3708        """Returns a shallow copy from self."""
3709        nc = Context(self.prec, self.rounding, self.traps,
3710                     self.flags, self.Emin, self.Emax,
3711                     self.capitals, self._clamp, self._ignored_flags)
3712        return nc
3713
3714    def copy(self):
3715        """Returns a deep copy from self."""
3716        nc = Context(self.prec, self.rounding, self.traps.copy(),
3717                     self.flags.copy(), self.Emin, self.Emax,
3718                     self.capitals, self._clamp, self._ignored_flags)
3719        return nc
3720    __copy__ = copy
3721
3722    def _raise_error(self, condition, explanation = None, *args):
3723        """Handles an error
3724
3725        If the flag is in _ignored_flags, returns the default response.
3726        Otherwise, it sets the flag, then, if the corresponding
3727        trap_enabler is set, it reaises the exception.  Otherwise, it returns
3728        the default value after setting the flag.
3729        """
3730        error = _condition_map.get(condition, condition)
3731        if error in self._ignored_flags:
3732            # Don't touch the flag
3733            return error().handle(self, *args)
3734
3735        self.flags[error] = 1
3736        if not self.traps[error]:
3737            # The errors define how to handle themselves.
3738            return condition().handle(self, *args)
3739
3740        # Errors should only be risked on copies of the context
3741        # self._ignored_flags = []
3742        raise error(explanation)
3743
3744    def _ignore_all_flags(self):
3745        """Ignore all flags, if they are raised"""
3746        return self._ignore_flags(*_signals)
3747
3748    def _ignore_flags(self, *flags):
3749        """Ignore the flags, if they are raised"""
3750        # Do not mutate-- This way, copies of a context leave the original
3751        # alone.
3752        self._ignored_flags = (self._ignored_flags + list(flags))
3753        return list(flags)
3754
3755    def _regard_flags(self, *flags):
3756        """Stop ignoring the flags, if they are raised"""
3757        if flags and isinstance(flags[0], (tuple,list)):
3758            flags = flags[0]
3759        for flag in flags:
3760            self._ignored_flags.remove(flag)
3761
3762    # We inherit object.__hash__, so we must deny this explicitly
3763    __hash__ = None
3764
3765    def Etiny(self):
3766        """Returns Etiny (= Emin - prec + 1)"""
3767        return int(self.Emin - self.prec + 1)
3768
3769    def Etop(self):
3770        """Returns maximum exponent (= Emax - prec + 1)"""
3771        return int(self.Emax - self.prec + 1)
3772
3773    def _set_rounding(self, type):
3774        """Sets the rounding type.
3775
3776        Sets the rounding type, and returns the current (previous)
3777        rounding type.  Often used like:
3778
3779        context = context.copy()
3780        # so you don't change the calling context
3781        # if an error occurs in the middle.
3782        rounding = context._set_rounding(ROUND_UP)
3783        val = self.__sub__(other, context=context)
3784        context._set_rounding(rounding)
3785
3786        This will make it round up for that operation.
3787        """
3788        rounding = self.rounding
3789        self.rounding= type
3790        return rounding
3791
3792    def create_decimal(self, num='0'):
3793        """Creates a new Decimal instance but using self as context.
3794
3795        This method implements the to-number operation of the
3796        IBM Decimal specification."""
3797
3798        if isinstance(num, basestring) and num != num.strip():
3799            return self._raise_error(ConversionSyntax,
3800                                     "no trailing or leading whitespace is "
3801                                     "permitted.")
3802
3803        d = Decimal(num, context=self)
3804        if d._isnan() and len(d._int) > self.prec - self._clamp:
3805            return self._raise_error(ConversionSyntax,
3806                                     "diagnostic info too long in NaN")
3807        return d._fix(self)
3808
3809    def create_decimal_from_float(self, f):
3810        """Creates a new Decimal instance from a float but rounding using self
3811        as the context.
3812
3813        >>> context = Context(prec=5, rounding=ROUND_DOWN)
3814        >>> context.create_decimal_from_float(3.1415926535897932)
3815        Decimal('3.1415')
3816        >>> context = Context(prec=5, traps=[Inexact])
3817        >>> context.create_decimal_from_float(3.1415926535897932)
3818        Traceback (most recent call last):
3819            ...
3820        Inexact: None
3821
3822        """
3823        d = Decimal.from_float(f)       # An exact conversion
3824        return d._fix(self)             # Apply the context rounding
3825
3826    # Methods
3827    def abs(self, a):
3828        """Returns the absolute value of the operand.
3829
3830        If the operand is negative, the result is the same as using the minus
3831        operation on the operand.  Otherwise, the result is the same as using
3832        the plus operation on the operand.
3833
3834        >>> ExtendedContext.abs(Decimal('2.1'))
3835        Decimal('2.1')
3836        >>> ExtendedContext.abs(Decimal('-100'))
3837        Decimal('100')
3838        >>> ExtendedContext.abs(Decimal('101.5'))
3839        Decimal('101.5')
3840        >>> ExtendedContext.abs(Decimal('-101.5'))
3841        Decimal('101.5')
3842        """
3843        return a.__abs__(context=self)
3844
3845    def add(self, a, b):
3846        """Return the sum of the two operands.
3847
3848        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3849        Decimal('19.00')
3850        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3851        Decimal('1.02E+4')
3852        """
3853        return a.__add__(b, context=self)
3854
3855    def _apply(self, a):
3856        return str(a._fix(self))
3857
3858    def canonical(self, a):
3859        """Returns the same Decimal object.
3860
3861        As we do not have different encodings for the same number, the
3862        received object already is in its canonical form.
3863
3864        >>> ExtendedContext.canonical(Decimal('2.50'))
3865        Decimal('2.50')
3866        """
3867        return a.canonical(context=self)
3868
3869    def compare(self, a, b):
3870        """Compares values numerically.
3871
3872        If the signs of the operands differ, a value representing each operand
3873        ('-1' if the operand is less than zero, '0' if the operand is zero or
3874        negative zero, or '1' if the operand is greater than zero) is used in
3875        place of that operand for the comparison instead of the actual
3876        operand.
3877
3878        The comparison is then effected by subtracting the second operand from
3879        the first and then returning a value according to the result of the
3880        subtraction: '-1' if the result is less than zero, '0' if the result is
3881        zero or negative zero, or '1' if the result is greater than zero.
3882
3883        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3884        Decimal('-1')
3885        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3886        Decimal('0')
3887        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3888        Decimal('0')
3889        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3890        Decimal('1')
3891        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3892        Decimal('1')
3893        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3894        Decimal('-1')
3895        """
3896        return a.compare(b, context=self)
3897
3898    def compare_signal(self, a, b):
3899        """Compares the values of the two operands numerically.
3900
3901        It's pretty much like compare(), but all NaNs signal, with signaling
3902        NaNs taking precedence over quiet NaNs.
3903
3904        >>> c = ExtendedContext
3905        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3906        Decimal('-1')
3907        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3908        Decimal('0')
3909        >>> c.flags[InvalidOperation] = 0
3910        >>> print c.flags[InvalidOperation]
3911        0
3912        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3913        Decimal('NaN')
3914        >>> print c.flags[InvalidOperation]
3915        1
3916        >>> c.flags[InvalidOperation] = 0
3917        >>> print c.flags[InvalidOperation]
3918        0
3919        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3920        Decimal('NaN')
3921        >>> print c.flags[InvalidOperation]
3922        1
3923        """
3924        return a.compare_signal(b, context=self)
3925
3926    def compare_total(self, a, b):
3927        """Compares two operands using their abstract representation.
3928
3929        This is not like the standard compare, which use their numerical
3930        value. Note that a total ordering is defined for all possible abstract
3931        representations.
3932
3933        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3934        Decimal('-1')
3935        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
3936        Decimal('-1')
3937        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3938        Decimal('-1')
3939        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3940        Decimal('0')
3941        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
3942        Decimal('1')
3943        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
3944        Decimal('-1')
3945        """
3946        return a.compare_total(b)
3947
3948    def compare_total_mag(self, a, b):
3949        """Compares two operands using their abstract representation ignoring sign.
3950
3951        Like compare_total, but with operand's sign ignored and assumed to be 0.
3952        """
3953        return a.compare_total_mag(b)
3954
3955    def copy_abs(self, a):
3956        """Returns a copy of the operand with the sign set to 0.
3957
3958        >>> ExtendedContext.copy_abs(Decimal('2.1'))
3959        Decimal('2.1')
3960        >>> ExtendedContext.copy_abs(Decimal('-100'))
3961        Decimal('100')
3962        """
3963        return a.copy_abs()
3964
3965    def copy_decimal(self, a):
3966        """Returns a copy of the decimal objet.
3967
3968        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3969        Decimal('2.1')
3970        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3971        Decimal('-1.00')
3972        """
3973        return Decimal(a)
3974
3975    def copy_negate(self, a):
3976        """Returns a copy of the operand with the sign inverted.
3977
3978        >>> ExtendedContext.copy_negate(Decimal('101.5'))
3979        Decimal('-101.5')
3980        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3981        Decimal('101.5')
3982        """
3983        return a.copy_negate()
3984
3985    def copy_sign(self, a, b):
3986        """Copies the second operand's sign to the first one.
3987
3988        In detail, it returns a copy of the first operand with the sign
3989        equal to the sign of the second operand.
3990
3991        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3992        Decimal('1.50')
3993        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3994        Decimal('1.50')
3995        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3996        Decimal('-1.50')
3997        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3998        Decimal('-1.50')
3999        """
4000        return a.copy_sign(b)
4001
4002    def divide(self, a, b):
4003        """Decimal division in a specified context.
4004
4005        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4006        Decimal('0.333333333')
4007        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4008        Decimal('0.666666667')
4009        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4010        Decimal('2.5')
4011        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4012        Decimal('0.1')
4013        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4014        Decimal('1')
4015        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4016        Decimal('4.00')
4017        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4018        Decimal('1.20')
4019        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4020        Decimal('10')
4021        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4022        Decimal('1000')
4023        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4024        Decimal('1.20E+6')
4025        """
4026        return a.__div__(b, context=self)
4027
4028    def divide_int(self, a, b):
4029        """Divides two numbers and returns the integer part of the result.
4030
4031        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4032        Decimal('0')
4033        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4034        Decimal('3')
4035        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4036        Decimal('3')
4037        """
4038        return a.__floordiv__(b, context=self)
4039
4040    def divmod(self, a, b):
4041        return a.__divmod__(b, context=self)
4042
4043    def exp(self, a):
4044        """Returns e ** a.
4045
4046        >>> c = ExtendedContext.copy()
4047        >>> c.Emin = -999
4048        >>> c.Emax = 999
4049        >>> c.exp(Decimal('-Infinity'))
4050        Decimal('0')
4051        >>> c.exp(Decimal('-1'))
4052        Decimal('0.367879441')
4053        >>> c.exp(Decimal('0'))
4054        Decimal('1')
4055        >>> c.exp(Decimal('1'))
4056        Decimal('2.71828183')
4057        >>> c.exp(Decimal('0.693147181'))
4058        Decimal('2.00000000')
4059        >>> c.exp(Decimal('+Infinity'))
4060        Decimal('Infinity')
4061        """
4062        return a.exp(context=self)
4063
4064    def fma(self, a, b, c):
4065        """Returns a multiplied by b, plus c.
4066
4067        The first two operands are multiplied together, using multiply,
4068        the third operand is then added to the result of that
4069        multiplication, using add, all with only one final rounding.
4070
4071        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4072        Decimal('22')
4073        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4074        Decimal('-8')
4075        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4076        Decimal('1.38435736E+12')
4077        """
4078        return a.fma(b, c, context=self)
4079
4080    def is_canonical(self, a):
4081        """Return True if the operand is canonical; otherwise return False.
4082
4083        Currently, the encoding of a Decimal instance is always
4084        canonical, so this method returns True for any Decimal.
4085
4086        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4087        True
4088        """
4089        return a.is_canonical()
4090
4091    def is_finite(self, a):
4092        """Return True if the operand is finite; otherwise return False.
4093
4094        A Decimal instance is considered finite if it is neither
4095        infinite nor a NaN.
4096
4097        >>> ExtendedContext.is_finite(Decimal('2.50'))
4098        True
4099        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4100        True
4101        >>> ExtendedContext.is_finite(Decimal('0'))
4102        True
4103        >>> ExtendedContext.is_finite(Decimal('Inf'))
4104        False
4105        >>> ExtendedContext.is_finite(Decimal('NaN'))
4106        False
4107        """
4108        return a.is_finite()
4109
4110    def is_infinite(self, a):
4111        """Return True if the operand is infinite; otherwise return False.
4112
4113        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4114        False
4115        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4116        True
4117        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4118        False
4119        """
4120        return a.is_infinite()
4121
4122    def is_nan(self, a):
4123        """Return True if the operand is a qNaN or sNaN;
4124        otherwise return False.
4125
4126        >>> ExtendedContext.is_nan(Decimal('2.50'))
4127        False
4128        >>> ExtendedContext.is_nan(Decimal('NaN'))
4129        True
4130        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4131        True
4132        """
4133        return a.is_nan()
4134
4135    def is_normal(self, a):
4136        """Return True if the operand is a normal number;
4137        otherwise return False.
4138
4139        >>> c = ExtendedContext.copy()
4140        >>> c.Emin = -999
4141        >>> c.Emax = 999
4142        >>> c.is_normal(Decimal('2.50'))
4143        True
4144        >>> c.is_normal(Decimal('0.1E-999'))
4145        False
4146        >>> c.is_normal(Decimal('0.00'))
4147        False
4148        >>> c.is_normal(Decimal('-Inf'))
4149        False
4150        >>> c.is_normal(Decimal('NaN'))
4151        False
4152        """
4153        return a.is_normal(context=self)
4154
4155    def is_qnan(self, a):
4156        """Return True if the operand is a quiet NaN; otherwise return False.
4157
4158        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4159        False
4160        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4161        True
4162        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4163        False
4164        """
4165        return a.is_qnan()
4166
4167    def is_signed(self, a):
4168        """Return True if the operand is negative; otherwise return False.
4169
4170        >>> ExtendedContext.is_signed(Decimal('2.50'))
4171        False
4172        >>> ExtendedContext.is_signed(Decimal('-12'))
4173        True
4174        >>> ExtendedContext.is_signed(Decimal('-0'))
4175        True
4176        """
4177        return a.is_signed()
4178
4179    def is_snan(self, a):
4180        """Return True if the operand is a signaling NaN;
4181        otherwise return False.
4182
4183        >>> ExtendedContext.is_snan(Decimal('2.50'))
4184        False
4185        >>> ExtendedContext.is_snan(Decimal('NaN'))
4186        False
4187        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4188        True
4189        """
4190        return a.is_snan()
4191
4192    def is_subnormal(self, a):
4193        """Return True if the operand is subnormal; otherwise return False.
4194
4195        >>> c = ExtendedContext.copy()
4196        >>> c.Emin = -999
4197        >>> c.Emax = 999
4198        >>> c.is_subnormal(Decimal('2.50'))
4199        False
4200        >>> c.is_subnormal(Decimal('0.1E-999'))
4201        True
4202        >>> c.is_subnormal(Decimal('0.00'))
4203        False
4204        >>> c.is_subnormal(Decimal('-Inf'))
4205        False
4206        >>> c.is_subnormal(Decimal('NaN'))
4207        False
4208        """
4209        return a.is_subnormal(context=self)
4210
4211    def is_zero(self, a):
4212        """Return True if the operand is a zero; otherwise return False.
4213
4214        >>> ExtendedContext.is_zero(Decimal('0'))
4215        True
4216        >>> ExtendedContext.is_zero(Decimal('2.50'))
4217        False
4218        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4219        True
4220        """
4221        return a.is_zero()
4222
4223    def ln(self, a):
4224        """Returns the natural (base e) logarithm of the operand.
4225
4226        >>> c = ExtendedContext.copy()
4227        >>> c.Emin = -999
4228        >>> c.Emax = 999
4229        >>> c.ln(Decimal('0'))
4230        Decimal('-Infinity')
4231        >>> c.ln(Decimal('1.000'))
4232        Decimal('0')
4233        >>> c.ln(Decimal('2.71828183'))
4234        Decimal('1.00000000')
4235        >>> c.ln(Decimal('10'))
4236        Decimal('2.30258509')
4237        >>> c.ln(Decimal('+Infinity'))
4238        Decimal('Infinity')
4239        """
4240        return a.ln(context=self)
4241
4242    def log10(self, a):
4243        """Returns the base 10 logarithm of the operand.
4244
4245        >>> c = ExtendedContext.copy()
4246        >>> c.Emin = -999
4247        >>> c.Emax = 999
4248        >>> c.log10(Decimal('0'))
4249        Decimal('-Infinity')
4250        >>> c.log10(Decimal('0.001'))
4251        Decimal('-3')
4252        >>> c.log10(Decimal('1.000'))
4253        Decimal('0')
4254        >>> c.log10(Decimal('2'))
4255        Decimal('0.301029996')
4256        >>> c.log10(Decimal('10'))
4257        Decimal('1')
4258        >>> c.log10(Decimal('70'))
4259        Decimal('1.84509804')
4260        >>> c.log10(Decimal('+Infinity'))
4261        Decimal('Infinity')
4262        """
4263        return a.log10(context=self)
4264
4265    def logb(self, a):
4266        """ Returns the exponent of the magnitude of the operand's MSD.
4267
4268        The result is the integer which is the exponent of the magnitude
4269        of the most significant digit of the operand (as though the
4270        operand were truncated to a single digit while maintaining the
4271        value of that digit and without limiting the resulting exponent).
4272
4273        >>> ExtendedContext.logb(Decimal('250'))
4274        Decimal('2')
4275        >>> ExtendedContext.logb(Decimal('2.50'))
4276        Decimal('0')
4277        >>> ExtendedContext.logb(Decimal('0.03'))
4278        Decimal('-2')
4279        >>> ExtendedContext.logb(Decimal('0'))
4280        Decimal('-Infinity')
4281        """
4282        return a.logb(context=self)
4283
4284    def logical_and(self, a, b):
4285        """Applies the logical operation 'and' between each operand's digits.
4286
4287        The operands must be both logical numbers.
4288
4289        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4290        Decimal('0')
4291        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4292        Decimal('0')
4293        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4294        Decimal('0')
4295        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4296        Decimal('1')
4297        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4298        Decimal('1000')
4299        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4300        Decimal('10')
4301        """
4302        return a.logical_and(b, context=self)
4303
4304    def logical_invert(self, a):
4305        """Invert all the digits in the operand.
4306
4307        The operand must be a logical number.
4308
4309        >>> ExtendedContext.logical_invert(Decimal('0'))
4310        Decimal('111111111')
4311        >>> ExtendedContext.logical_invert(Decimal('1'))
4312        Decimal('111111110')
4313        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4314        Decimal('0')
4315        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4316        Decimal('10101010')
4317        """
4318        return a.logical_invert(context=self)
4319
4320    def logical_or(self, a, b):
4321        """Applies the logical operation 'or' between each operand's digits.
4322
4323        The operands must be both logical numbers.
4324
4325        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4326        Decimal('0')
4327        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4328        Decimal('1')
4329        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4330        Decimal('1')
4331        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4332        Decimal('1')
4333        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4334        Decimal('1110')
4335        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4336        Decimal('1110')
4337        """
4338        return a.logical_or(b, context=self)
4339
4340    def logical_xor(self, a, b):
4341        """Applies the logical operation 'xor' between each operand's digits.
4342
4343        The operands must be both logical numbers.
4344
4345        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4346        Decimal('0')
4347        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4348        Decimal('1')
4349        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4350        Decimal('1')
4351        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4352        Decimal('0')
4353        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4354        Decimal('110')
4355        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4356        Decimal('1101')
4357        """
4358        return a.logical_xor(b, context=self)
4359
4360    def max(self, a,b):
4361        """max compares two values numerically and returns the maximum.
4362
4363        If either operand is a NaN then the general rules apply.
4364        Otherwise, the operands are compared as though by the compare
4365        operation.  If they are numerically equal then the left-hand operand
4366        is chosen as the result.  Otherwise the maximum (closer to positive
4367        infinity) of the two operands is chosen as the result.
4368
4369        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4370        Decimal('3')
4371        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4372        Decimal('3')
4373        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4374        Decimal('1')
4375        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4376        Decimal('7')
4377        """
4378        return a.max(b, context=self)
4379
4380    def max_mag(self, a, b):
4381        """Compares the values numerically with their sign ignored."""
4382        return a.max_mag(b, context=self)
4383
4384    def min(self, a,b):
4385        """min compares two values numerically and returns the minimum.
4386
4387        If either operand is a NaN then the general rules apply.
4388        Otherwise, the operands are compared as though by the compare
4389        operation.  If they are numerically equal then the left-hand operand
4390        is chosen as the result.  Otherwise the minimum (closer to negative
4391        infinity) of the two operands is chosen as the result.
4392
4393        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4394        Decimal('2')
4395        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4396        Decimal('-10')
4397        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4398        Decimal('1.0')
4399        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4400        Decimal('7')
4401        """
4402        return a.min(b, context=self)
4403
4404    def min_mag(self, a, b):
4405        """Compares the values numerically with their sign ignored."""
4406        return a.min_mag(b, context=self)
4407
4408    def minus(self, a):
4409        """Minus corresponds to unary prefix minus in Python.
4410
4411        The operation is evaluated using the same rules as subtract; the
4412        operation minus(a) is calculated as subtract('0', a) where the '0'
4413        has the same exponent as the operand.
4414
4415        >>> ExtendedContext.minus(Decimal('1.3'))
4416        Decimal('-1.3')
4417        >>> ExtendedContext.minus(Decimal('-1.3'))
4418        Decimal('1.3')
4419        """
4420        return a.__neg__(context=self)
4421
4422    def multiply(self, a, b):
4423        """multiply multiplies two operands.
4424
4425        If either operand is a special value then the general rules apply.
4426        Otherwise, the operands are multiplied together ('long multiplication'),
4427        resulting in a number which may be as long as the sum of the lengths
4428        of the two operands.
4429
4430        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4431        Decimal('3.60')
4432        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4433        Decimal('21')
4434        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4435        Decimal('0.72')
4436        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4437        Decimal('-0.0')
4438        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4439        Decimal('4.28135971E+11')
4440        """
4441        return a.__mul__(b, context=self)
4442
4443    def next_minus(self, a):
4444        """Returns the largest representable number smaller than a.
4445
4446        >>> c = ExtendedContext.copy()
4447        >>> c.Emin = -999
4448        >>> c.Emax = 999
4449        >>> ExtendedContext.next_minus(Decimal('1'))
4450        Decimal('0.999999999')
4451        >>> c.next_minus(Decimal('1E-1007'))
4452        Decimal('0E-1007')
4453        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4454        Decimal('-1.00000004')
4455        >>> c.next_minus(Decimal('Infinity'))
4456        Decimal('9.99999999E+999')
4457        """
4458        return a.next_minus(context=self)
4459
4460    def next_plus(self, a):
4461        """Returns the smallest representable number larger than a.
4462
4463        >>> c = ExtendedContext.copy()
4464        >>> c.Emin = -999
4465        >>> c.Emax = 999
4466        >>> ExtendedContext.next_plus(Decimal('1'))
4467        Decimal('1.00000001')
4468        >>> c.next_plus(Decimal('-1E-1007'))
4469        Decimal('-0E-1007')
4470        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4471        Decimal('-1.00000002')
4472        >>> c.next_plus(Decimal('-Infinity'))
4473        Decimal('-9.99999999E+999')
4474        """
4475        return a.next_plus(context=self)
4476
4477    def next_toward(self, a, b):
4478        """Returns the number closest to a, in direction towards b.
4479
4480        The result is the closest representable number from the first
4481        operand (but not the first operand) that is in the direction
4482        towards the second operand, unless the operands have the same
4483        value.
4484
4485        >>> c = ExtendedContext.copy()
4486        >>> c.Emin = -999
4487        >>> c.Emax = 999
4488        >>> c.next_toward(Decimal('1'), Decimal('2'))
4489        Decimal('1.00000001')
4490        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4491        Decimal('-0E-1007')
4492        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4493        Decimal('-1.00000002')
4494        >>> c.next_toward(Decimal('1'), Decimal('0'))
4495        Decimal('0.999999999')
4496        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4497        Decimal('0E-1007')
4498        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4499        Decimal('-1.00000004')
4500        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4501        Decimal('-0.00')
4502        """
4503        return a.next_toward(b, context=self)
4504
4505    def normalize(self, a):
4506        """normalize reduces an operand to its simplest form.
4507
4508        Essentially a plus operation with all trailing zeros removed from the
4509        result.
4510
4511        >>> ExtendedContext.normalize(Decimal('2.1'))
4512        Decimal('2.1')
4513        >>> ExtendedContext.normalize(Decimal('-2.0'))
4514        Decimal('-2')
4515        >>> ExtendedContext.normalize(Decimal('1.200'))
4516        Decimal('1.2')
4517        >>> ExtendedContext.normalize(Decimal('-120'))
4518        Decimal('-1.2E+2')
4519        >>> ExtendedContext.normalize(Decimal('120.00'))
4520        Decimal('1.2E+2')
4521        >>> ExtendedContext.normalize(Decimal('0.00'))
4522        Decimal('0')
4523        """
4524        return a.normalize(context=self)
4525
4526    def number_class(self, a):
4527        """Returns an indication of the class of the operand.
4528
4529        The class is one of the following strings:
4530          -sNaN
4531          -NaN
4532          -Infinity
4533          -Normal
4534          -Subnormal
4535          -Zero
4536          +Zero
4537          +Subnormal
4538          +Normal
4539          +Infinity
4540
4541        >>> c = Context(ExtendedContext)
4542        >>> c.Emin = -999
4543        >>> c.Emax = 999
4544        >>> c.number_class(Decimal('Infinity'))
4545        '+Infinity'
4546        >>> c.number_class(Decimal('1E-10'))
4547        '+Normal'
4548        >>> c.number_class(Decimal('2.50'))
4549        '+Normal'
4550        >>> c.number_class(Decimal('0.1E-999'))
4551        '+Subnormal'
4552        >>> c.number_class(Decimal('0'))
4553        '+Zero'
4554        >>> c.number_class(Decimal('-0'))
4555        '-Zero'
4556        >>> c.number_class(Decimal('-0.1E-999'))
4557        '-Subnormal'
4558        >>> c.number_class(Decimal('-1E-10'))
4559        '-Normal'
4560        >>> c.number_class(Decimal('-2.50'))
4561        '-Normal'
4562        >>> c.number_class(Decimal('-Infinity'))
4563        '-Infinity'
4564        >>> c.number_class(Decimal('NaN'))
4565        'NaN'
4566        >>> c.number_class(Decimal('-NaN'))
4567        'NaN'
4568        >>> c.number_class(Decimal('sNaN'))
4569        'sNaN'
4570        """
4571        return a.number_class(context=self)
4572
4573    def plus(self, a):
4574        """Plus corresponds to unary prefix plus in Python.
4575
4576        The operation is evaluated using the same rules as add; the
4577        operation plus(a) is calculated as add('0', a) where the '0'
4578        has the same exponent as the operand.
4579
4580        >>> ExtendedContext.plus(Decimal('1.3'))
4581        Decimal('1.3')
4582        >>> ExtendedContext.plus(Decimal('-1.3'))
4583        Decimal('-1.3')
4584        """
4585        return a.__pos__(context=self)
4586
4587    def power(self, a, b, modulo=None):
4588        """Raises a to the power of b, to modulo if given.
4589
4590        With two arguments, compute a**b.  If a is negative then b
4591        must be integral.  The result will be inexact unless b is
4592        integral and the result is finite and can be expressed exactly
4593        in 'precision' digits.
4594
4595        With three arguments, compute (a**b) % modulo.  For the
4596        three argument form, the following restrictions on the
4597        arguments hold:
4598
4599         - all three arguments must be integral
4600         - b must be nonnegative
4601         - at least one of a or b must be nonzero
4602         - modulo must be nonzero and have at most 'precision' digits
4603
4604        The result of pow(a, b, modulo) is identical to the result
4605        that would be obtained by computing (a**b) % modulo with
4606        unbounded precision, but is computed more efficiently.  It is
4607        always exact.
4608
4609        >>> c = ExtendedContext.copy()
4610        >>> c.Emin = -999
4611        >>> c.Emax = 999
4612        >>> c.power(Decimal('2'), Decimal('3'))
4613        Decimal('8')
4614        >>> c.power(Decimal('-2'), Decimal('3'))
4615        Decimal('-8')
4616        >>> c.power(Decimal('2'), Decimal('-3'))
4617        Decimal('0.125')
4618        >>> c.power(Decimal('1.7'), Decimal('8'))
4619        Decimal('69.7575744')
4620        >>> c.power(Decimal('10'), Decimal('0.301029996'))
4621        Decimal('2.00000000')
4622        >>> c.power(Decimal('Infinity'), Decimal('-1'))
4623        Decimal('0')
4624        >>> c.power(Decimal('Infinity'), Decimal('0'))
4625        Decimal('1')
4626        >>> c.power(Decimal('Infinity'), Decimal('1'))
4627        Decimal('Infinity')
4628        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4629        Decimal('-0')
4630        >>> c.power(Decimal('-Infinity'), Decimal('0'))
4631        Decimal('1')
4632        >>> c.power(Decimal('-Infinity'), Decimal('1'))
4633        Decimal('-Infinity')
4634        >>> c.power(Decimal('-Infinity'), Decimal('2'))
4635        Decimal('Infinity')
4636        >>> c.power(Decimal('0'), Decimal('0'))
4637        Decimal('NaN')
4638
4639        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4640        Decimal('11')
4641        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4642        Decimal('-11')
4643        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4644        Decimal('1')
4645        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4646        Decimal('11')
4647        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4648        Decimal('11729830')
4649        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4650        Decimal('-0')
4651        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4652        Decimal('1')
4653        """
4654        return a.__pow__(b, modulo, context=self)
4655
4656    def quantize(self, a, b):
4657        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4658
4659        The coefficient of the result is derived from that of the left-hand
4660        operand.  It may be rounded using the current rounding setting (if the
4661        exponent is being increased), multiplied by a positive power of ten (if
4662        the exponent is being decreased), or is unchanged (if the exponent is
4663        already equal to that of the right-hand operand).
4664
4665        Unlike other operations, if the length of the coefficient after the
4666        quantize operation would be greater than precision then an Invalid
4667        operation condition is raised.  This guarantees that, unless there is
4668        an error condition, the exponent of the result of a quantize is always
4669        equal to that of the right-hand operand.
4670
4671        Also unlike other operations, quantize will never raise Underflow, even
4672        if the result is subnormal and inexact.
4673
4674        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4675        Decimal('2.170')
4676        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4677        Decimal('2.17')
4678        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4679        Decimal('2.2')
4680        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4681        Decimal('2')
4682        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4683        Decimal('0E+1')
4684        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4685        Decimal('-Infinity')
4686        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4687        Decimal('NaN')
4688        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4689        Decimal('-0')
4690        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4691        Decimal('-0E+5')
4692        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4693        Decimal('NaN')
4694        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4695        Decimal('NaN')
4696        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4697        Decimal('217.0')
4698        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4699        Decimal('217')
4700        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4701        Decimal('2.2E+2')
4702        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4703        Decimal('2E+2')
4704        """
4705        return a.quantize(b, context=self)
4706
4707    def radix(self):
4708        """Just returns 10, as this is Decimal, :)
4709
4710        >>> ExtendedContext.radix()
4711        Decimal('10')
4712        """
4713        return Decimal(10)
4714
4715    def remainder(self, a, b):
4716        """Returns the remainder from integer division.
4717
4718        The result is the residue of the dividend after the operation of
4719        calculating integer division as described for divide-integer, rounded
4720        to precision digits if necessary.  The sign of the result, if
4721        non-zero, is the same as that of the original dividend.
4722
4723        This operation will fail under the same conditions as integer division
4724        (that is, if integer division on the same two operands would fail, the
4725        remainder cannot be calculated).
4726
4727        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4728        Decimal('2.1')
4729        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4730        Decimal('1')
4731        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4732        Decimal('-1')
4733        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4734        Decimal('0.2')
4735        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4736        Decimal('0.1')
4737        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4738        Decimal('1.0')
4739        """
4740        return a.__mod__(b, context=self)
4741
4742    def remainder_near(self, a, b):
4743        """Returns to be "a - b * n", where n is the integer nearest the exact
4744        value of "x / b" (if two integers are equally near then the even one
4745        is chosen).  If the result is equal to 0 then its sign will be the
4746        sign of a.
4747
4748        This operation will fail under the same conditions as integer division
4749        (that is, if integer division on the same two operands would fail, the
4750        remainder cannot be calculated).
4751
4752        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4753        Decimal('-0.9')
4754        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4755        Decimal('-2')
4756        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4757        Decimal('1')
4758        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4759        Decimal('-1')
4760        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4761        Decimal('0.2')
4762        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4763        Decimal('0.1')
4764        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4765        Decimal('-0.3')
4766        """
4767        return a.remainder_near(b, context=self)
4768
4769    def rotate(self, a, b):
4770        """Returns a rotated copy of a, b times.
4771
4772        The coefficient of the result is a rotated copy of the digits in
4773        the coefficient of the first operand.  The number of places of
4774        rotation is taken from the absolute value of the second operand,
4775        with the rotation being to the left if the second operand is
4776        positive or to the right otherwise.
4777
4778        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4779        Decimal('400000003')
4780        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4781        Decimal('12')
4782        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4783        Decimal('891234567')
4784        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4785        Decimal('123456789')
4786        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4787        Decimal('345678912')
4788        """
4789        return a.rotate(b, context=self)
4790
4791    def same_quantum(self, a, b):
4792        """Returns True if the two operands have the same exponent.
4793
4794        The result is never affected by either the sign or the coefficient of
4795        either operand.
4796
4797        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4798        False
4799        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4800        True
4801        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4802        False
4803        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4804        True
4805        """
4806        return a.same_quantum(b)
4807
4808    def scaleb (self, a, b):
4809        """Returns the first operand after adding the second value its exp.
4810
4811        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4812        Decimal('0.0750')
4813        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4814        Decimal('7.50')
4815        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4816        Decimal('7.50E+3')
4817        """
4818        return a.scaleb (b, context=self)
4819
4820    def shift(self, a, b):
4821        """Returns a shifted copy of a, b times.
4822
4823        The coefficient of the result is a shifted copy of the digits
4824        in the coefficient of the first operand.  The number of places
4825        to shift is taken from the absolute value of the second operand,
4826        with the shift being to the left if the second operand is
4827        positive or to the right otherwise.  Digits shifted into the
4828        coefficient are zeros.
4829
4830        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4831        Decimal('400000000')
4832        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4833        Decimal('0')
4834        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4835        Decimal('1234567')
4836        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4837        Decimal('123456789')
4838        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4839        Decimal('345678900')
4840        """
4841        return a.shift(b, context=self)
4842
4843    def sqrt(self, a):
4844        """Square root of a non-negative number to context precision.
4845
4846        If the result must be inexact, it is rounded using the round-half-even
4847        algorithm.
4848
4849        >>> ExtendedContext.sqrt(Decimal('0'))
4850        Decimal('0')
4851        >>> ExtendedContext.sqrt(Decimal('-0'))
4852        Decimal('-0')
4853        >>> ExtendedContext.sqrt(Decimal('0.39'))
4854        Decimal('0.624499800')
4855        >>> ExtendedContext.sqrt(Decimal('100'))
4856        Decimal('10')
4857        >>> ExtendedContext.sqrt(Decimal('1'))
4858        Decimal('1')
4859        >>> ExtendedContext.sqrt(Decimal('1.0'))
4860        Decimal('1.0')
4861        >>> ExtendedContext.sqrt(Decimal('1.00'))
4862        Decimal('1.0')
4863        >>> ExtendedContext.sqrt(Decimal('7'))
4864        Decimal('2.64575131')
4865        >>> ExtendedContext.sqrt(Decimal('10'))
4866        Decimal('3.16227766')
4867        >>> ExtendedContext.prec
4868        9
4869        """
4870        return a.sqrt(context=self)
4871
4872    def subtract(self, a, b):
4873        """Return the difference between the two operands.
4874
4875        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4876        Decimal('0.23')
4877        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4878        Decimal('0.00')
4879        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4880        Decimal('-0.77')
4881        """
4882        return a.__sub__(b, context=self)
4883
4884    def to_eng_string(self, a):
4885        """Converts a number to a string, using scientific notation.
4886
4887        The operation is not affected by the context.
4888        """
4889        return a.to_eng_string(context=self)
4890
4891    def to_sci_string(self, a):
4892        """Converts a number to a string, using scientific notation.
4893
4894        The operation is not affected by the context.
4895        """
4896        return a.__str__(context=self)
4897
4898    def to_integral_exact(self, a):
4899        """Rounds to an integer.
4900
4901        When the operand has a negative exponent, the result is the same
4902        as using the quantize() operation using the given operand as the
4903        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4904        of the operand as the precision setting; Inexact and Rounded flags
4905        are allowed in this operation.  The rounding mode is taken from the
4906        context.
4907
4908        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4909        Decimal('2')
4910        >>> ExtendedContext.to_integral_exact(Decimal('100'))
4911        Decimal('100')
4912        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4913        Decimal('100')
4914        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4915        Decimal('102')
4916        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4917        Decimal('-102')
4918        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4919        Decimal('1.0E+6')
4920        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4921        Decimal('7.89E+77')
4922        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4923        Decimal('-Infinity')
4924        """
4925        return a.to_integral_exact(context=self)
4926
4927    def to_integral_value(self, a):
4928        """Rounds to an integer.
4929
4930        When the operand has a negative exponent, the result is the same
4931        as using the quantize() operation using the given operand as the
4932        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4933        of the operand as the precision setting, except that no flags will
4934        be set.  The rounding mode is taken from the context.
4935
4936        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4937        Decimal('2')
4938        >>> ExtendedContext.to_integral_value(Decimal('100'))
4939        Decimal('100')
4940        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4941        Decimal('100')
4942        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4943        Decimal('102')
4944        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4945        Decimal('-102')
4946        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4947        Decimal('1.0E+6')
4948        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4949        Decimal('7.89E+77')
4950        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4951        Decimal('-Infinity')
4952        """
4953        return a.to_integral_value(context=self)
4954
4955    # the method name changed, but we provide also the old one, for compatibility
4956    to_integral = to_integral_value
4957
4958class _WorkRep(object):
4959    __slots__ = ('sign','int','exp')
4960    # sign: 0 or 1
4961    # int:  int or long
4962    # exp:  None, int, or string
4963
4964    def __init__(self, value=None):
4965        if value is None:
4966            self.sign = None
4967            self.int = 0
4968            self.exp = None
4969        elif isinstance(value, Decimal):
4970            self.sign = value._sign
4971            self.int = int(value._int)
4972            self.exp = value._exp
4973        else:
4974            # assert isinstance(value, tuple)
4975            self.sign = value[0]
4976            self.int = value[1]
4977            self.exp = value[2]
4978
4979    def __repr__(self):
4980        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4981
4982    __str__ = __repr__
4983
4984
4985
4986def _normalize(op1, op2, prec = 0):
4987    """Normalizes op1, op2 to have the same exp and length of coefficient.
4988
4989    Done during addition.
4990    """
4991    if op1.exp < op2.exp:
4992        tmp = op2
4993        other = op1
4994    else:
4995        tmp = op1
4996        other = op2
4997
4998    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4999    # Then adding 10**exp to tmp has the same effect (after rounding)
5000    # as adding any positive quantity smaller than 10**exp; similarly
5001    # for subtraction.  So if other is smaller than 10**exp we replace
5002    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
5003    tmp_len = len(str(tmp.int))
5004    other_len = len(str(other.int))
5005    exp = tmp.exp + min(-1, tmp_len - prec - 2)
5006    if other_len + other.exp - 1 < exp:
5007        other.int = 1
5008        other.exp = exp
5009
5010    tmp.int *= 10 ** (tmp.exp - other.exp)
5011    tmp.exp = other.exp
5012    return op1, op2
5013
5014##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5015
5016# This function from Tim Peters was taken from here:
5017# http://mail.python.org/pipermail/python-list/1999-July/007758.html
5018# The correction being in the function definition is for speed, and
5019# the whole function is not resolved with math.log because of avoiding
5020# the use of floats.
5021def _nbits(n, correction = {
5022        '0': 4, '1': 3, '2': 2, '3': 2,
5023        '4': 1, '5': 1, '6': 1, '7': 1,
5024        '8': 0, '9': 0, 'a': 0, 'b': 0,
5025        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5026    """Number of bits in binary representation of the positive integer n,
5027    or 0 if n == 0.
5028    """
5029    if n < 0:
5030        raise ValueError("The argument to _nbits should be nonnegative.")
5031    hex_n = "%x" % n
5032    return 4*len(hex_n) - correction[hex_n[0]]
5033
5034def _sqrt_nearest(n, a):
5035    """Closest integer to the square root of the positive integer n.  a is
5036    an initial approximation to the square root.  Any positive integer
5037    will do for a, but the closer a is to the square root of n the
5038    faster convergence will be.
5039
5040    """
5041    if n <= 0 or a <= 0:
5042        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5043
5044    b=0
5045    while a != b:
5046        b, a = a, a--n//a>>1
5047    return a
5048
5049def _rshift_nearest(x, shift):
5050    """Given an integer x and a nonnegative integer shift, return closest
5051    integer to x / 2**shift; use round-to-even in case of a tie.
5052
5053    """
5054    b, q = 1L << shift, x >> shift
5055    return q + (2*(x & (b-1)) + (q&1) > b)
5056
5057def _div_nearest(a, b):
5058    """Closest integer to a/b, a and b positive integers; rounds to even
5059    in the case of a tie.
5060
5061    """
5062    q, r = divmod(a, b)
5063    return q + (2*r + (q&1) > b)
5064
5065def _ilog(x, M, L = 8):
5066    """Integer approximation to M*log(x/M), with absolute error boundable
5067    in terms only of x/M.
5068
5069    Given positive integers x and M, return an integer approximation to
5070    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
5071    between the approximation and the exact result is at most 22.  For
5072    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
5073    both cases these are upper bounds on the error; it will usually be
5074    much smaller."""
5075
5076    # The basic algorithm is the following: let log1p be the function
5077    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
5078    # the reduction
5079    #
5080    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5081    #
5082    # repeatedly until the argument to log1p is small (< 2**-L in
5083    # absolute value).  For small y we can use the Taylor series
5084    # expansion
5085    #
5086    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5087    #
5088    # truncating at T such that y**T is small enough.  The whole
5089    # computation is carried out in a form of fixed-point arithmetic,
5090    # with a real number z being represented by an integer
5091    # approximation to z*M.  To avoid loss of precision, the y below
5092    # is actually an integer approximation to 2**R*y*M, where R is the
5093    # number of reductions performed so far.
5094
5095    y = x-M
5096    # argument reduction; R = number of reductions performed
5097    R = 0
5098    while (R <= L and long(abs(y)) << L-R >= M or
5099           R > L and abs(y) >> R-L >= M):
5100        y = _div_nearest(long(M*y) << 1,
5101                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5102        R += 1
5103
5104    # Taylor series with T terms
5105    T = -int(-10*len(str(M))//(3*L))
5106    yshift = _rshift_nearest(y, R)
5107    w = _div_nearest(M, T)
5108    for k in xrange(T-1, 0, -1):
5109        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5110
5111    return _div_nearest(w*y, M)
5112
5113def _dlog10(c, e, p):
5114    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5115    approximation to 10**p * log10(c*10**e), with an absolute error of
5116    at most 1.  Assumes that c*10**e is not exactly 1."""
5117
5118    # increase precision by 2; compensate for this by dividing
5119    # final result by 100
5120    p += 2
5121
5122    # write c*10**e as d*10**f with either:
5123    #   f >= 0 and 1 <= d <= 10, or
5124    #   f <= 0 and 0.1 <= d <= 1.
5125    # Thus for c*10**e close to 1, f = 0
5126    l = len(str(c))
5127    f = e+l - (e+l >= 1)
5128
5129    if p > 0:
5130        M = 10**p
5131        k = e+p-f
5132        if k >= 0:
5133            c *= 10**k
5134        else:
5135            c = _div_nearest(c, 10**-k)
5136
5137        log_d = _ilog(c, M) # error < 5 + 22 = 27
5138        log_10 = _log10_digits(p) # error < 1
5139        log_d = _div_nearest(log_d*M, log_10)
5140        log_tenpower = f*M # exact
5141    else:
5142        log_d = 0  # error < 2.31
5143        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5144
5145    return _div_nearest(log_tenpower+log_d, 100)
5146
5147def _dlog(c, e, p):
5148    """Given integers c, e and p with c > 0, compute an integer
5149    approximation to 10**p * log(c*10**e), with an absolute error of
5150    at most 1.  Assumes that c*10**e is not exactly 1."""
5151
5152    # Increase precision by 2. The precision increase is compensated
5153    # for at the end with a division by 100.
5154    p += 2
5155
5156    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5157    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5158    # as 10**p * log(d) + 10**p*f * log(10).
5159    l = len(str(c))
5160    f = e+l - (e+l >= 1)
5161
5162    # compute approximation to 10**p*log(d), with error < 27
5163    if p > 0:
5164        k = e+p-f
5165        if k >= 0:
5166            c *= 10**k
5167        else:
5168            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5169
5170        # _ilog magnifies existing error in c by a factor of at most 10
5171        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5172    else:
5173        # p <= 0: just approximate the whole thing by 0; error < 2.31
5174        log_d = 0
5175
5176    # compute approximation to f*10**p*log(10), with error < 11.
5177    if f:
5178        extra = len(str(abs(f)))-1
5179        if p + extra >= 0:
5180            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5181            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5182            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5183        else:
5184            f_log_ten = 0
5185    else:
5186        f_log_ten = 0
5187
5188    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5189    return _div_nearest(f_log_ten + log_d, 100)
5190
5191class _Log10Memoize(object):
5192    """Class to compute, store, and allow retrieval of, digits of the
5193    constant log(10) = 2.302585....  This constant is needed by
5194    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5195    def __init__(self):
5196        self.digits = "23025850929940456840179914546843642076011014886"
5197
5198    def getdigits(self, p):
5199        """Given an integer p >= 0, return floor(10**p)*log(10).
5200
5201        For example, self.getdigits(3) returns 2302.
5202        """
5203        # digits are stored as a string, for quick conversion to
5204        # integer in the case that we've already computed enough
5205        # digits; the stored digits should always be correct
5206        # (truncated, not rounded to nearest).
5207        if p < 0:
5208            raise ValueError("p should be nonnegative")
5209
5210        if p >= len(self.digits):
5211            # compute p+3, p+6, p+9, ... digits; continue until at
5212            # least one of the extra digits is nonzero
5213            extra = 3
5214            while True:
5215                # compute p+extra digits, correct to within 1ulp
5216                M = 10**(p+extra+2)
5217                digits = str(_div_nearest(_ilog(10*M, M), 100))
5218                if digits[-extra:] != '0'*extra:
5219                    break
5220                extra += 3
5221            # keep all reliable digits so far; remove trailing zeros
5222            # and next nonzero digit
5223            self.digits = digits.rstrip('0')[:-1]
5224        return int(self.digits[:p+1])
5225
5226_log10_digits = _Log10Memoize().getdigits
5227
5228def _iexp(x, M, L=8):
5229    """Given integers x and M, M > 0, such that x/M is small in absolute
5230    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5231    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5232    is usually much smaller)."""
5233
5234    # Algorithm: to compute exp(z) for a real number z, first divide z
5235    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5236    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5237    # series
5238    #
5239    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5240    #
5241    # Now use the identity
5242    #
5243    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5244    #
5245    # R times to compute the sequence expm1(z/2**R),
5246    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5247
5248    # Find R such that x/2**R/M <= 2**-L
5249    R = _nbits((long(x)<<L)//M)
5250
5251    # Taylor series.  (2**L)**T > M
5252    T = -int(-10*len(str(M))//(3*L))
5253    y = _div_nearest(x, T)
5254    Mshift = long(M)<<R
5255    for i in xrange(T-1, 0, -1):
5256        y = _div_nearest(x*(Mshift + y), Mshift * i)
5257
5258    # Expansion
5259    for k in xrange(R-1, -1, -1):
5260        Mshift = long(M)<<(k+2)
5261        y = _div_nearest(y*(y+Mshift), Mshift)
5262
5263    return M+y
5264
5265def _dexp(c, e, p):
5266    """Compute an approximation to exp(c*10**e), with p decimal places of
5267    precision.
5268
5269    Returns integers d, f such that:
5270
5271      10**(p-1) <= d <= 10**p, and
5272      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5273
5274    In other words, d*10**f is an approximation to exp(c*10**e) with p
5275    digits of precision, and with an error in d of at most 1.  This is
5276    almost, but not quite, the same as the error being < 1ulp: when d
5277    = 10**(p-1) the error could be up to 10 ulp."""
5278
5279    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5280    p += 2
5281
5282    # compute log(10) with extra precision = adjusted exponent of c*10**e
5283    extra = max(0, e + len(str(c)) - 1)
5284    q = p + extra
5285
5286    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5287    # rounding down
5288    shift = e+q
5289    if shift >= 0:
5290        cshift = c*10**shift
5291    else:
5292        cshift = c//10**-shift
5293    quot, rem = divmod(cshift, _log10_digits(q))
5294
5295    # reduce remainder back to original precision
5296    rem = _div_nearest(rem, 10**extra)
5297
5298    # error in result of _iexp < 120;  error after division < 0.62
5299    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5300
5301def _dpower(xc, xe, yc, ye, p):
5302    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5303    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5304
5305      10**(p-1) <= c <= 10**p, and
5306      (c-1)*10**e < x**y < (c+1)*10**e
5307
5308    in other words, c*10**e is an approximation to x**y with p digits
5309    of precision, and with an error in c of at most 1.  (This is
5310    almost, but not quite, the same as the error being < 1ulp: when c
5311    == 10**(p-1) we can only guarantee error < 10ulp.)
5312
5313    We assume that: x is positive and not equal to 1, and y is nonzero.
5314    """
5315
5316    # Find b such that 10**(b-1) <= |y| <= 10**b
5317    b = len(str(abs(yc))) + ye
5318
5319    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5320    lxc = _dlog(xc, xe, p+b+1)
5321
5322    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5323    shift = ye-b
5324    if shift >= 0:
5325        pc = lxc*yc*10**shift
5326    else:
5327        pc = _div_nearest(lxc*yc, 10**-shift)
5328
5329    if pc == 0:
5330        # we prefer a result that isn't exactly 1; this makes it
5331        # easier to compute a correctly rounded result in __pow__
5332        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5333            coeff, exp = 10**(p-1)+1, 1-p
5334        else:
5335            coeff, exp = 10**p-1, -p
5336    else:
5337        coeff, exp = _dexp(pc, -(p+1), p+1)
5338        coeff = _div_nearest(coeff, 10)
5339        exp += 1
5340
5341    return coeff, exp
5342
5343def _log10_lb(c, correction = {
5344        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5345        '6': 23, '7': 16, '8': 10, '9': 5}):
5346    """Compute a lower bound for 100*log10(c) for a positive integer c."""
5347    if c <= 0:
5348        raise ValueError("The argument to _log10_lb should be nonnegative.")
5349    str_c = str(c)
5350    return 100*len(str_c) - correction[str_c[0]]
5351
5352##### Helper Functions ####################################################
5353
5354def _convert_other(other, raiseit=False):
5355    """Convert other to Decimal.
5356
5357    Verifies that it's ok to use in an implicit construction.
5358    """
5359    if isinstance(other, Decimal):
5360        return other
5361    if isinstance(other, (int, long)):
5362        return Decimal(other)
5363    if raiseit:
5364        raise TypeError("Unable to convert %s to Decimal" % other)
5365    return NotImplemented
5366
5367##### Setup Specific Contexts ############################################
5368
5369# The default context prototype used by Context()
5370# Is mutable, so that new contexts can have different default values
5371
5372DefaultContext = Context(
5373        prec=28, rounding=ROUND_HALF_EVEN,
5374        traps=[DivisionByZero, Overflow, InvalidOperation],
5375        flags=[],
5376        Emax=999999999,
5377        Emin=-999999999,
5378        capitals=1
5379)
5380
5381# Pre-made alternate contexts offered by the specification
5382# Don't change these; the user should be able to select these
5383# contexts and be able to reproduce results from other implementations
5384# of the spec.
5385
5386BasicContext = Context(
5387        prec=9, rounding=ROUND_HALF_UP,
5388        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5389        flags=[],
5390)
5391
5392ExtendedContext = Context(
5393        prec=9, rounding=ROUND_HALF_EVEN,
5394        traps=[],
5395        flags=[],
5396)
5397
5398
5399##### crud for parsing strings #############################################
5400#
5401# Regular expression used for parsing numeric strings.  Additional
5402# comments:
5403#
5404# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5405# whitespace.  But note that the specification disallows whitespace in
5406# a numeric string.
5407#
5408# 2. For finite numbers (not infinities and NaNs) the body of the
5409# number between the optional sign and the optional exponent must have
5410# at least one decimal digit, possibly after the decimal point.  The
5411# lookahead expression '(?=\d|\.\d)' checks this.
5412#
5413# As the flag UNICODE is not enabled here, we're explicitly avoiding any
5414# other meaning for \d than the numbers [0-9].
5415
5416import re
5417_parser = re.compile(r"""        # A numeric string consists of:
5418#    \s*
5419    (?P<sign>[-+])?              # an optional sign, followed by either...
5420    (
5421        (?=[0-9]|\.[0-9])        # ...a number (with at least one digit)
5422        (?P<int>[0-9]*)          # having a (possibly empty) integer part
5423        (\.(?P<frac>[0-9]*))?    # followed by an optional fractional part
5424        (E(?P<exp>[-+]?[0-9]+))? # followed by an optional exponent, or...
5425    |
5426        Inf(inity)?              # ...an infinity, or...
5427    |
5428        (?P<signal>s)?           # ...an (optionally signaling)
5429        NaN                      # NaN
5430        (?P<diag>[0-9]*)         # with (possibly empty) diagnostic info.
5431    )
5432#    \s*
5433    \Z
5434""", re.VERBOSE | re.IGNORECASE).match
5435
5436_all_zeros = re.compile('0*$').match
5437_exact_half = re.compile('50*$').match
5438
5439##### PEP3101 support functions ##############################################
5440# The functions parse_format_specifier and format_align have little to do
5441# with the Decimal class, and could potentially be reused for other pure
5442# Python numeric classes that want to implement __format__
5443#
5444# A format specifier for Decimal looks like:
5445#
5446#   [[fill]align][sign][0][minimumwidth][.precision][type]
5447#
5448
5449_parse_format_specifier_regex = re.compile(r"""\A
5450(?:
5451   (?P<fill>.)?
5452   (?P<align>[<>=^])
5453)?
5454(?P<sign>[-+ ])?
5455(?P<zeropad>0)?
5456(?P<minimumwidth>(?!0)\d+)?
5457(?:\.(?P<precision>0|(?!0)\d+))?
5458(?P<type>[eEfFgG%])?
5459\Z
5460""", re.VERBOSE)
5461
5462del re
5463
5464def _parse_format_specifier(format_spec):
5465    """Parse and validate a format specifier.
5466
5467    Turns a standard numeric format specifier into a dict, with the
5468    following entries:
5469
5470      fill: fill character to pad field to minimum width
5471      align: alignment type, either '<', '>', '=' or '^'
5472      sign: either '+', '-' or ' '
5473      minimumwidth: nonnegative integer giving minimum width
5474      precision: nonnegative integer giving precision, or None
5475      type: one of the characters 'eEfFgG%', or None
5476      unicode: either True or False (always True for Python 3.x)
5477
5478    """
5479    m = _parse_format_specifier_regex.match(format_spec)
5480    if m is None:
5481        raise ValueError("Invalid format specifier: " + format_spec)
5482
5483    # get the dictionary
5484    format_dict = m.groupdict()
5485
5486    # defaults for fill and alignment
5487    fill = format_dict['fill']
5488    align = format_dict['align']
5489    if format_dict.pop('zeropad') is not None:
5490        # in the face of conflict, refuse the temptation to guess
5491        if fill is not None and fill != '0':
5492            raise ValueError("Fill character conflicts with '0'"
5493                             " in format specifier: " + format_spec)
5494        if align is not None and align != '=':
5495            raise ValueError("Alignment conflicts with '0' in "
5496                             "format specifier: " + format_spec)
5497        fill = '0'
5498        align = '='
5499    format_dict['fill'] = fill or ' '
5500    format_dict['align'] = align or '<'
5501
5502    if format_dict['sign'] is None:
5503        format_dict['sign'] = '-'
5504
5505    # turn minimumwidth and precision entries into integers.
5506    # minimumwidth defaults to 0; precision remains None if not given
5507    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5508    if format_dict['precision'] is not None:
5509        format_dict['precision'] = int(format_dict['precision'])
5510
5511    # if format type is 'g' or 'G' then a precision of 0 makes little
5512    # sense; convert it to 1.  Same if format type is unspecified.
5513    if format_dict['precision'] == 0:
5514        if format_dict['type'] in 'gG' or format_dict['type'] is None:
5515            format_dict['precision'] = 1
5516
5517    # record whether return type should be str or unicode
5518    format_dict['unicode'] = isinstance(format_spec, unicode)
5519
5520    return format_dict
5521
5522def _format_align(body, spec_dict):
5523    """Given an unpadded, non-aligned numeric string, add padding and
5524    aligment to conform with the given format specifier dictionary (as
5525    output from parse_format_specifier).
5526
5527    It's assumed that if body is negative then it starts with '-'.
5528    Any leading sign ('-' or '+') is stripped from the body before
5529    applying the alignment and padding rules, and replaced in the
5530    appropriate position.
5531
5532    """
5533    # figure out the sign; we only examine the first character, so if
5534    # body has leading whitespace the results may be surprising.
5535    if len(body) > 0 and body[0] in '-+':
5536        sign = body[0]
5537        body = body[1:]
5538    else:
5539        sign = ''
5540
5541    if sign != '-':
5542        if spec_dict['sign'] in ' +':
5543            sign = spec_dict['sign']
5544        else:
5545            sign = ''
5546
5547    # how much extra space do we have to play with?
5548    minimumwidth = spec_dict['minimumwidth']
5549    fill = spec_dict['fill']
5550    padding = fill*(max(minimumwidth - (len(sign+body)), 0))
5551
5552    align = spec_dict['align']
5553    if align == '<':
5554        result = padding + sign + body
5555    elif align == '>':
5556        result = sign + body + padding
5557    elif align == '=':
5558        result = sign + padding + body
5559    else: #align == '^'
5560        half = len(padding)//2
5561        result = padding[:half] + sign + body + padding[half:]
5562
5563    # make sure that result is unicode if necessary
5564    if spec_dict['unicode']:
5565        result = unicode(result)
5566
5567    return result
5568
5569##### Useful Constants (internal use only) ################################
5570
5571# Reusable defaults
5572_Infinity = Decimal('Inf')
5573_NegativeInfinity = Decimal('-Inf')
5574_NaN = Decimal('NaN')
5575_Zero = Decimal(0)
5576_One = Decimal(1)
5577_NegativeOne = Decimal(-1)
5578
5579# _SignedInfinity[sign] is infinity w/ that sign
5580_SignedInfinity = (_Infinity, _NegativeInfinity)
5581
5582
5583
5584if __name__ == '__main__':
5585    import doctest, sys
5586    doctest.testmod(sys.modules[__name__])
5587