decimal.py revision e85aa739ab0d396665908c0a489cfdeb49c88674
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves.  Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported.  At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24    www2.hursley.ibm.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point.  The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85  ...
86  ...
87  ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103  ...
104  ...
105  ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119    # Two major classes
120    'Decimal', 'Context',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129    # Constants for use in setting up contexts
130    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133    # Functions for manipulating contexts
134    'setcontext', 'getcontext', 'localcontext'
135]
136
137__version__ = '1.70'    # Highest version of the spec this complies with
138
139import copy as _copy
140import math as _math
141import numbers as _numbers
142
143try:
144    from collections import namedtuple as _namedtuple
145    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146except ImportError:
147    DecimalTuple = lambda *args: args
148
149# Rounding
150ROUND_DOWN = 'ROUND_DOWN'
151ROUND_HALF_UP = 'ROUND_HALF_UP'
152ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153ROUND_CEILING = 'ROUND_CEILING'
154ROUND_FLOOR = 'ROUND_FLOOR'
155ROUND_UP = 'ROUND_UP'
156ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157ROUND_05UP = 'ROUND_05UP'
158
159# Errors
160
161class DecimalException(ArithmeticError):
162    """Base exception class.
163
164    Used exceptions derive from this.
165    If an exception derives from another exception besides this (such as
166    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167    called if the others are present.  This isn't actually used for
168    anything, though.
169
170    handle  -- Called when context._raise_error is called and the
171               trap_enabler is not set.  First argument is self, second is the
172               context.  More arguments can be given, those being after
173               the explanation in _raise_error (For example,
174               context._raise_error(NewError, '(-x)!', self._sign) would
175               call NewError().handle(context, self._sign).)
176
177    To define a new exception, it should be sufficient to have it derive
178    from DecimalException.
179    """
180    def handle(self, context, *args):
181        pass
182
183
184class Clamped(DecimalException):
185    """Exponent of a 0 changed to fit bounds.
186
187    This occurs and signals clamped if the exponent of a result has been
188    altered in order to fit the constraints of a specific concrete
189    representation.  This may occur when the exponent of a zero result would
190    be outside the bounds of a representation, or when a large normal
191    number would have an encoded exponent that cannot be represented.  In
192    this latter case, the exponent is reduced to fit and the corresponding
193    number of zero digits are appended to the coefficient ("fold-down").
194    """
195
196class InvalidOperation(DecimalException):
197    """An invalid operation was performed.
198
199    Various bad things cause this:
200
201    Something creates a signaling NaN
202    -INF + INF
203    0 * (+-)INF
204    (+-)INF / (+-)INF
205    x % 0
206    (+-)INF % x
207    x._rescale( non-integer )
208    sqrt(-x) , x > 0
209    0 ** 0
210    x ** (non-integer)
211    x ** (+-)INF
212    An operand is invalid
213
214    The result of the operation after these is a quiet positive NaN,
215    except when the cause is a signaling NaN, in which case the result is
216    also a quiet NaN, but with the original sign, and an optional
217    diagnostic information.
218    """
219    def handle(self, context, *args):
220        if args:
221            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222            return ans._fix_nan(context)
223        return _NaN
224
225class ConversionSyntax(InvalidOperation):
226    """Trying to convert badly formed string.
227
228    This occurs and signals invalid-operation if an string is being
229    converted to a number and it does not conform to the numeric string
230    syntax.  The result is [0,qNaN].
231    """
232    def handle(self, context, *args):
233        return _NaN
234
235class DivisionByZero(DecimalException, ZeroDivisionError):
236    """Division by 0.
237
238    This occurs and signals division-by-zero if division of a finite number
239    by zero was attempted (during a divide-integer or divide operation, or a
240    power operation with negative right-hand operand), and the dividend was
241    not zero.
242
243    The result of the operation is [sign,inf], where sign is the exclusive
244    or of the signs of the operands for divide, or is 1 for an odd power of
245    -0, for power.
246    """
247
248    def handle(self, context, sign, *args):
249        return _SignedInfinity[sign]
250
251class DivisionImpossible(InvalidOperation):
252    """Cannot perform the division adequately.
253
254    This occurs and signals invalid-operation if the integer result of a
255    divide-integer or remainder operation had too many digits (would be
256    longer than precision).  The result is [0,qNaN].
257    """
258
259    def handle(self, context, *args):
260        return _NaN
261
262class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263    """Undefined result of division.
264
265    This occurs and signals invalid-operation if division by zero was
266    attempted (during a divide-integer, divide, or remainder operation), and
267    the dividend is also zero.  The result is [0,qNaN].
268    """
269
270    def handle(self, context, *args):
271        return _NaN
272
273class Inexact(DecimalException):
274    """Had to round, losing information.
275
276    This occurs and signals inexact whenever the result of an operation is
277    not exact (that is, it needed to be rounded and any discarded digits
278    were non-zero), or if an overflow or underflow condition occurs.  The
279    result in all cases is unchanged.
280
281    The inexact signal may be tested (or trapped) to determine if a given
282    operation (or sequence of operations) was inexact.
283    """
284
285class InvalidContext(InvalidOperation):
286    """Invalid context.  Unknown rounding, for example.
287
288    This occurs and signals invalid-operation if an invalid context was
289    detected during an operation.  This can occur if contexts are not checked
290    on creation and either the precision exceeds the capability of the
291    underlying concrete representation or an unknown or unsupported rounding
292    was specified.  These aspects of the context need only be checked when
293    the values are required to be used.  The result is [0,qNaN].
294    """
295
296    def handle(self, context, *args):
297        return _NaN
298
299class Rounded(DecimalException):
300    """Number got rounded (not  necessarily changed during rounding).
301
302    This occurs and signals rounded whenever the result of an operation is
303    rounded (that is, some zero or non-zero digits were discarded from the
304    coefficient), or if an overflow or underflow condition occurs.  The
305    result in all cases is unchanged.
306
307    The rounded signal may be tested (or trapped) to determine if a given
308    operation (or sequence of operations) caused a loss of precision.
309    """
310
311class Subnormal(DecimalException):
312    """Exponent < Emin before rounding.
313
314    This occurs and signals subnormal whenever the result of a conversion or
315    operation is subnormal (that is, its adjusted exponent is less than
316    Emin, before any rounding).  The result in all cases is unchanged.
317
318    The subnormal signal may be tested (or trapped) to determine if a given
319    or operation (or sequence of operations) yielded a subnormal result.
320    """
321
322class Overflow(Inexact, Rounded):
323    """Numerical overflow.
324
325    This occurs and signals overflow if the adjusted exponent of a result
326    (from a conversion or from an operation that is not an attempt to divide
327    by zero), after rounding, would be greater than the largest value that
328    can be handled by the implementation (the value Emax).
329
330    The result depends on the rounding mode:
331
332    For round-half-up and round-half-even (and for round-half-down and
333    round-up, if implemented), the result of the operation is [sign,inf],
334    where sign is the sign of the intermediate result.  For round-down, the
335    result is the largest finite number that can be represented in the
336    current precision, with the sign of the intermediate result.  For
337    round-ceiling, the result is the same as for round-down if the sign of
338    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
339    the result is the same as for round-down if the sign of the intermediate
340    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
341    will also be raised.
342    """
343
344    def handle(self, context, sign, *args):
345        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346                                ROUND_HALF_DOWN, ROUND_UP):
347            return _SignedInfinity[sign]
348        if sign == 0:
349            if context.rounding == ROUND_CEILING:
350                return _SignedInfinity[sign]
351            return _dec_from_triple(sign, '9'*context.prec,
352                            context.Emax-context.prec+1)
353        if sign == 1:
354            if context.rounding == ROUND_FLOOR:
355                return _SignedInfinity[sign]
356            return _dec_from_triple(sign, '9'*context.prec,
357                             context.Emax-context.prec+1)
358
359
360class Underflow(Inexact, Rounded, Subnormal):
361    """Numerical underflow with result rounded to 0.
362
363    This occurs and signals underflow if a result is inexact and the
364    adjusted exponent of the result would be smaller (more negative) than
365    the smallest value that can be handled by the implementation (the value
366    Emin).  That is, the result is both inexact and subnormal.
367
368    The result after an underflow will be a subnormal number rounded, if
369    necessary, so that its exponent is not less than Etiny.  This may result
370    in 0 with the sign of the intermediate result and an exponent of Etiny.
371
372    In all cases, Inexact, Rounded, and Subnormal will also be raised.
373    """
374
375# List of public traps and flags
376_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377           Underflow, InvalidOperation, Subnormal]
378
379# Map conditions (per the spec) to signals
380_condition_map = {ConversionSyntax:InvalidOperation,
381                  DivisionImpossible:InvalidOperation,
382                  DivisionUndefined:InvalidOperation,
383                  InvalidContext:InvalidOperation}
384
385##### Context Functions ##################################################
386
387# The getcontext() and setcontext() function manage access to a thread-local
388# current context.  Py2.4 offers direct support for thread locals.  If that
389# is not available, use threading.currentThread() which is slower but will
390# work for older Pythons.  If threads are not part of the build, create a
391# mock threading object with threading.local() returning the module namespace.
392
393try:
394    import threading
395except ImportError:
396    # Python was compiled without threads; create a mock object instead
397    import sys
398    class MockThreading(object):
399        def local(self, sys=sys):
400            return sys.modules[__name__]
401    threading = MockThreading()
402    del sys, MockThreading
403
404try:
405    threading.local
406
407except AttributeError:
408
409    # To fix reloading, force it to create a new context
410    # Old contexts have different exceptions in their dicts, making problems.
411    if hasattr(threading.currentThread(), '__decimal_context__'):
412        del threading.currentThread().__decimal_context__
413
414    def setcontext(context):
415        """Set this thread's context to context."""
416        if context in (DefaultContext, BasicContext, ExtendedContext):
417            context = context.copy()
418            context.clear_flags()
419        threading.currentThread().__decimal_context__ = context
420
421    def getcontext():
422        """Returns this thread's context.
423
424        If this thread does not yet have a context, returns
425        a new context and sets this thread's context.
426        New contexts are copies of DefaultContext.
427        """
428        try:
429            return threading.currentThread().__decimal_context__
430        except AttributeError:
431            context = Context()
432            threading.currentThread().__decimal_context__ = context
433            return context
434
435else:
436
437    local = threading.local()
438    if hasattr(local, '__decimal_context__'):
439        del local.__decimal_context__
440
441    def getcontext(_local=local):
442        """Returns this thread's context.
443
444        If this thread does not yet have a context, returns
445        a new context and sets this thread's context.
446        New contexts are copies of DefaultContext.
447        """
448        try:
449            return _local.__decimal_context__
450        except AttributeError:
451            context = Context()
452            _local.__decimal_context__ = context
453            return context
454
455    def setcontext(context, _local=local):
456        """Set this thread's context to context."""
457        if context in (DefaultContext, BasicContext, ExtendedContext):
458            context = context.copy()
459            context.clear_flags()
460        _local.__decimal_context__ = context
461
462    del threading, local        # Don't contaminate the namespace
463
464def localcontext(ctx=None):
465    """Return a context manager for a copy of the supplied context
466
467    Uses a copy of the current context if no context is specified
468    The returned context manager creates a local decimal context
469    in a with statement:
470        def sin(x):
471             with localcontext() as ctx:
472                 ctx.prec += 2
473                 # Rest of sin calculation algorithm
474                 # uses a precision 2 greater than normal
475             return +s  # Convert result to normal precision
476
477         def sin(x):
478             with localcontext(ExtendedContext):
479                 # Rest of sin calculation algorithm
480                 # uses the Extended Context from the
481                 # General Decimal Arithmetic Specification
482             return +s  # Convert result to normal context
483
484    >>> setcontext(DefaultContext)
485    >>> print getcontext().prec
486    28
487    >>> with localcontext():
488    ...     ctx = getcontext()
489    ...     ctx.prec += 2
490    ...     print ctx.prec
491    ...
492    30
493    >>> with localcontext(ExtendedContext):
494    ...     print getcontext().prec
495    ...
496    9
497    >>> print getcontext().prec
498    28
499    """
500    if ctx is None: ctx = getcontext()
501    return _ContextManager(ctx)
502
503
504##### Decimal class #######################################################
505
506class Decimal(object):
507    """Floating point class for decimal arithmetic."""
508
509    __slots__ = ('_exp','_int','_sign', '_is_special')
510    # Generally, the value of the Decimal instance is given by
511    #  (-1)**_sign * _int * 10**_exp
512    # Special values are signified by _is_special == True
513
514    # We're immutable, so use __new__ not __init__
515    def __new__(cls, value="0", context=None):
516        """Create a decimal point instance.
517
518        >>> Decimal('3.14')              # string input
519        Decimal('3.14')
520        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
521        Decimal('3.14')
522        >>> Decimal(314)                 # int or long
523        Decimal('314')
524        >>> Decimal(Decimal(314))        # another decimal instance
525        Decimal('314')
526        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
527        Decimal('3.14')
528        """
529
530        # Note that the coefficient, self._int, is actually stored as
531        # a string rather than as a tuple of digits.  This speeds up
532        # the "digits to integer" and "integer to digits" conversions
533        # that are used in almost every arithmetic operation on
534        # Decimals.  This is an internal detail: the as_tuple function
535        # and the Decimal constructor still deal with tuples of
536        # digits.
537
538        self = object.__new__(cls)
539
540        # From a string
541        # REs insist on real strings, so we can too.
542        if isinstance(value, basestring):
543            m = _parser(value.strip())
544            if m is None:
545                if context is None:
546                    context = getcontext()
547                return context._raise_error(ConversionSyntax,
548                                "Invalid literal for Decimal: %r" % value)
549
550            if m.group('sign') == "-":
551                self._sign = 1
552            else:
553                self._sign = 0
554            intpart = m.group('int')
555            if intpart is not None:
556                # finite number
557                fracpart = m.group('frac') or ''
558                exp = int(m.group('exp') or '0')
559                self._int = str(int(intpart+fracpart))
560                self._exp = exp - len(fracpart)
561                self._is_special = False
562            else:
563                diag = m.group('diag')
564                if diag is not None:
565                    # NaN
566                    self._int = str(int(diag or '0')).lstrip('0')
567                    if m.group('signal'):
568                        self._exp = 'N'
569                    else:
570                        self._exp = 'n'
571                else:
572                    # infinity
573                    self._int = '0'
574                    self._exp = 'F'
575                self._is_special = True
576            return self
577
578        # From an integer
579        if isinstance(value, (int,long)):
580            if value >= 0:
581                self._sign = 0
582            else:
583                self._sign = 1
584            self._exp = 0
585            self._int = str(abs(value))
586            self._is_special = False
587            return self
588
589        # From another decimal
590        if isinstance(value, Decimal):
591            self._exp  = value._exp
592            self._sign = value._sign
593            self._int  = value._int
594            self._is_special  = value._is_special
595            return self
596
597        # From an internal working value
598        if isinstance(value, _WorkRep):
599            self._sign = value.sign
600            self._int = str(value.int)
601            self._exp = int(value.exp)
602            self._is_special = False
603            return self
604
605        # tuple/list conversion (possibly from as_tuple())
606        if isinstance(value, (list,tuple)):
607            if len(value) != 3:
608                raise ValueError('Invalid tuple size in creation of Decimal '
609                                 'from list or tuple.  The list or tuple '
610                                 'should have exactly three elements.')
611            # process sign.  The isinstance test rejects floats
612            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
613                raise ValueError("Invalid sign.  The first value in the tuple "
614                                 "should be an integer; either 0 for a "
615                                 "positive number or 1 for a negative number.")
616            self._sign = value[0]
617            if value[2] == 'F':
618                # infinity: value[1] is ignored
619                self._int = '0'
620                self._exp = value[2]
621                self._is_special = True
622            else:
623                # process and validate the digits in value[1]
624                digits = []
625                for digit in value[1]:
626                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
627                        # skip leading zeros
628                        if digits or digit != 0:
629                            digits.append(digit)
630                    else:
631                        raise ValueError("The second value in the tuple must "
632                                         "be composed of integers in the range "
633                                         "0 through 9.")
634                if value[2] in ('n', 'N'):
635                    # NaN: digits form the diagnostic
636                    self._int = ''.join(map(str, digits))
637                    self._exp = value[2]
638                    self._is_special = True
639                elif isinstance(value[2], (int, long)):
640                    # finite number: digits give the coefficient
641                    self._int = ''.join(map(str, digits or [0]))
642                    self._exp = value[2]
643                    self._is_special = False
644                else:
645                    raise ValueError("The third value in the tuple must "
646                                     "be an integer, or one of the "
647                                     "strings 'F', 'n', 'N'.")
648            return self
649
650        if isinstance(value, float):
651            value = Decimal.from_float(value)
652            self._exp  = value._exp
653            self._sign = value._sign
654            self._int  = value._int
655            self._is_special  = value._is_special
656            return self
657
658        raise TypeError("Cannot convert %r to Decimal" % value)
659
660    # @classmethod, but @decorator is not valid Python 2.3 syntax, so
661    # don't use it (see notes on Py2.3 compatibility at top of file)
662    def from_float(cls, f):
663        """Converts a float to a decimal number, exactly.
664
665        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
666        Since 0.1 is not exactly representable in binary floating point, the
667        value is stored as the nearest representable value which is
668        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
669        is 0.1000000000000000055511151231257827021181583404541015625.
670
671        >>> Decimal.from_float(0.1)
672        Decimal('0.1000000000000000055511151231257827021181583404541015625')
673        >>> Decimal.from_float(float('nan'))
674        Decimal('NaN')
675        >>> Decimal.from_float(float('inf'))
676        Decimal('Infinity')
677        >>> Decimal.from_float(-float('inf'))
678        Decimal('-Infinity')
679        >>> Decimal.from_float(-0.0)
680        Decimal('-0')
681
682        """
683        if isinstance(f, (int, long)):        # handle integer inputs
684            return cls(f)
685        if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
686            return cls(repr(f))
687        if _math.copysign(1.0, f) == 1.0:
688            sign = 0
689        else:
690            sign = 1
691        n, d = abs(f).as_integer_ratio()
692        k = d.bit_length() - 1
693        result = _dec_from_triple(sign, str(n*5**k), -k)
694        if cls is Decimal:
695            return result
696        else:
697            return cls(result)
698    from_float = classmethod(from_float)
699
700    def _isnan(self):
701        """Returns whether the number is not actually one.
702
703        0 if a number
704        1 if NaN
705        2 if sNaN
706        """
707        if self._is_special:
708            exp = self._exp
709            if exp == 'n':
710                return 1
711            elif exp == 'N':
712                return 2
713        return 0
714
715    def _isinfinity(self):
716        """Returns whether the number is infinite
717
718        0 if finite or not a number
719        1 if +INF
720        -1 if -INF
721        """
722        if self._exp == 'F':
723            if self._sign:
724                return -1
725            return 1
726        return 0
727
728    def _check_nans(self, other=None, context=None):
729        """Returns whether the number is not actually one.
730
731        if self, other are sNaN, signal
732        if self, other are NaN return nan
733        return 0
734
735        Done before operations.
736        """
737
738        self_is_nan = self._isnan()
739        if other is None:
740            other_is_nan = False
741        else:
742            other_is_nan = other._isnan()
743
744        if self_is_nan or other_is_nan:
745            if context is None:
746                context = getcontext()
747
748            if self_is_nan == 2:
749                return context._raise_error(InvalidOperation, 'sNaN',
750                                        self)
751            if other_is_nan == 2:
752                return context._raise_error(InvalidOperation, 'sNaN',
753                                        other)
754            if self_is_nan:
755                return self._fix_nan(context)
756
757            return other._fix_nan(context)
758        return 0
759
760    def _compare_check_nans(self, other, context):
761        """Version of _check_nans used for the signaling comparisons
762        compare_signal, __le__, __lt__, __ge__, __gt__.
763
764        Signal InvalidOperation if either self or other is a (quiet
765        or signaling) NaN.  Signaling NaNs take precedence over quiet
766        NaNs.
767
768        Return 0 if neither operand is a NaN.
769
770        """
771        if context is None:
772            context = getcontext()
773
774        if self._is_special or other._is_special:
775            if self.is_snan():
776                return context._raise_error(InvalidOperation,
777                                            'comparison involving sNaN',
778                                            self)
779            elif other.is_snan():
780                return context._raise_error(InvalidOperation,
781                                            'comparison involving sNaN',
782                                            other)
783            elif self.is_qnan():
784                return context._raise_error(InvalidOperation,
785                                            'comparison involving NaN',
786                                            self)
787            elif other.is_qnan():
788                return context._raise_error(InvalidOperation,
789                                            'comparison involving NaN',
790                                            other)
791        return 0
792
793    def __nonzero__(self):
794        """Return True if self is nonzero; otherwise return False.
795
796        NaNs and infinities are considered nonzero.
797        """
798        return self._is_special or self._int != '0'
799
800    def _cmp(self, other):
801        """Compare the two non-NaN decimal instances self and other.
802
803        Returns -1 if self < other, 0 if self == other and 1
804        if self > other.  This routine is for internal use only."""
805
806        if self._is_special or other._is_special:
807            self_inf = self._isinfinity()
808            other_inf = other._isinfinity()
809            if self_inf == other_inf:
810                return 0
811            elif self_inf < other_inf:
812                return -1
813            else:
814                return 1
815
816        # check for zeros;  Decimal('0') == Decimal('-0')
817        if not self:
818            if not other:
819                return 0
820            else:
821                return -((-1)**other._sign)
822        if not other:
823            return (-1)**self._sign
824
825        # If different signs, neg one is less
826        if other._sign < self._sign:
827            return -1
828        if self._sign < other._sign:
829            return 1
830
831        self_adjusted = self.adjusted()
832        other_adjusted = other.adjusted()
833        if self_adjusted == other_adjusted:
834            self_padded = self._int + '0'*(self._exp - other._exp)
835            other_padded = other._int + '0'*(other._exp - self._exp)
836            if self_padded == other_padded:
837                return 0
838            elif self_padded < other_padded:
839                return -(-1)**self._sign
840            else:
841                return (-1)**self._sign
842        elif self_adjusted > other_adjusted:
843            return (-1)**self._sign
844        else: # self_adjusted < other_adjusted
845            return -((-1)**self._sign)
846
847    # Note: The Decimal standard doesn't cover rich comparisons for
848    # Decimals.  In particular, the specification is silent on the
849    # subject of what should happen for a comparison involving a NaN.
850    # We take the following approach:
851    #
852    #   == comparisons involving a quiet NaN always return False
853    #   != comparisons involving a quiet NaN always return True
854    #   == or != comparisons involving a signaling NaN signal
855    #      InvalidOperation, and return False or True as above if the
856    #      InvalidOperation is not trapped.
857    #   <, >, <= and >= comparisons involving a (quiet or signaling)
858    #      NaN signal InvalidOperation, and return False if the
859    #      InvalidOperation is not trapped.
860    #
861    # This behavior is designed to conform as closely as possible to
862    # that specified by IEEE 754.
863
864    def __eq__(self, other, context=None):
865        other = _convert_other(other, allow_float=True)
866        if other is NotImplemented:
867            return other
868        if self._check_nans(other, context):
869            return False
870        return self._cmp(other) == 0
871
872    def __ne__(self, other, context=None):
873        other = _convert_other(other, allow_float=True)
874        if other is NotImplemented:
875            return other
876        if self._check_nans(other, context):
877            return True
878        return self._cmp(other) != 0
879
880    def __lt__(self, other, context=None):
881        other = _convert_other(other, allow_float=True)
882        if other is NotImplemented:
883            return other
884        ans = self._compare_check_nans(other, context)
885        if ans:
886            return False
887        return self._cmp(other) < 0
888
889    def __le__(self, other, context=None):
890        other = _convert_other(other, allow_float=True)
891        if other is NotImplemented:
892            return other
893        ans = self._compare_check_nans(other, context)
894        if ans:
895            return False
896        return self._cmp(other) <= 0
897
898    def __gt__(self, other, context=None):
899        other = _convert_other(other, allow_float=True)
900        if other is NotImplemented:
901            return other
902        ans = self._compare_check_nans(other, context)
903        if ans:
904            return False
905        return self._cmp(other) > 0
906
907    def __ge__(self, other, context=None):
908        other = _convert_other(other, allow_float=True)
909        if other is NotImplemented:
910            return other
911        ans = self._compare_check_nans(other, context)
912        if ans:
913            return False
914        return self._cmp(other) >= 0
915
916    def compare(self, other, context=None):
917        """Compares one to another.
918
919        -1 => a < b
920        0  => a = b
921        1  => a > b
922        NaN => one is NaN
923        Like __cmp__, but returns Decimal instances.
924        """
925        other = _convert_other(other, raiseit=True)
926
927        # Compare(NaN, NaN) = NaN
928        if (self._is_special or other and other._is_special):
929            ans = self._check_nans(other, context)
930            if ans:
931                return ans
932
933        return Decimal(self._cmp(other))
934
935    def __hash__(self):
936        """x.__hash__() <==> hash(x)"""
937        # Decimal integers must hash the same as the ints
938        #
939        # The hash of a nonspecial noninteger Decimal must depend only
940        # on the value of that Decimal, and not on its representation.
941        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
942
943        # Equality comparisons involving signaling nans can raise an
944        # exception; since equality checks are implicitly and
945        # unpredictably used when checking set and dict membership, we
946        # prevent signaling nans from being used as set elements or
947        # dict keys by making __hash__ raise an exception.
948        if self._is_special:
949            if self.is_snan():
950                raise TypeError('Cannot hash a signaling NaN value.')
951            elif self.is_nan():
952                # 0 to match hash(float('nan'))
953                return 0
954            else:
955                # values chosen to match hash(float('inf')) and
956                # hash(float('-inf')).
957                if self._sign:
958                    return -271828
959                else:
960                    return 314159
961
962        # In Python 2.7, we're allowing comparisons (but not
963        # arithmetic operations) between floats and Decimals;  so if
964        # a Decimal instance is exactly representable as a float then
965        # its hash should match that of the float.
966        self_as_float = float(self)
967        if Decimal.from_float(self_as_float) == self:
968            return hash(self_as_float)
969
970        if self._isinteger():
971            op = _WorkRep(self.to_integral_value())
972            # to make computation feasible for Decimals with large
973            # exponent, we use the fact that hash(n) == hash(m) for
974            # any two nonzero integers n and m such that (i) n and m
975            # have the same sign, and (ii) n is congruent to m modulo
976            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
977            # hash((-1)**s*c*pow(10, e, 2**64-1).
978            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
979        # The value of a nonzero nonspecial Decimal instance is
980        # faithfully represented by the triple consisting of its sign,
981        # its adjusted exponent, and its coefficient with trailing
982        # zeros removed.
983        return hash((self._sign,
984                     self._exp+len(self._int),
985                     self._int.rstrip('0')))
986
987    def as_tuple(self):
988        """Represents the number as a triple tuple.
989
990        To show the internals exactly as they are.
991        """
992        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
993
994    def __repr__(self):
995        """Represents the number as an instance of Decimal."""
996        # Invariant:  eval(repr(d)) == d
997        return "Decimal('%s')" % str(self)
998
999    def __str__(self, eng=False, context=None):
1000        """Return string representation of the number in scientific notation.
1001
1002        Captures all of the information in the underlying representation.
1003        """
1004
1005        sign = ['', '-'][self._sign]
1006        if self._is_special:
1007            if self._exp == 'F':
1008                return sign + 'Infinity'
1009            elif self._exp == 'n':
1010                return sign + 'NaN' + self._int
1011            else: # self._exp == 'N'
1012                return sign + 'sNaN' + self._int
1013
1014        # number of digits of self._int to left of decimal point
1015        leftdigits = self._exp + len(self._int)
1016
1017        # dotplace is number of digits of self._int to the left of the
1018        # decimal point in the mantissa of the output string (that is,
1019        # after adjusting the exponent)
1020        if self._exp <= 0 and leftdigits > -6:
1021            # no exponent required
1022            dotplace = leftdigits
1023        elif not eng:
1024            # usual scientific notation: 1 digit on left of the point
1025            dotplace = 1
1026        elif self._int == '0':
1027            # engineering notation, zero
1028            dotplace = (leftdigits + 1) % 3 - 1
1029        else:
1030            # engineering notation, nonzero
1031            dotplace = (leftdigits - 1) % 3 + 1
1032
1033        if dotplace <= 0:
1034            intpart = '0'
1035            fracpart = '.' + '0'*(-dotplace) + self._int
1036        elif dotplace >= len(self._int):
1037            intpart = self._int+'0'*(dotplace-len(self._int))
1038            fracpart = ''
1039        else:
1040            intpart = self._int[:dotplace]
1041            fracpart = '.' + self._int[dotplace:]
1042        if leftdigits == dotplace:
1043            exp = ''
1044        else:
1045            if context is None:
1046                context = getcontext()
1047            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1048
1049        return sign + intpart + fracpart + exp
1050
1051    def to_eng_string(self, context=None):
1052        """Convert to engineering-type string.
1053
1054        Engineering notation has an exponent which is a multiple of 3, so there
1055        are up to 3 digits left of the decimal place.
1056
1057        Same rules for when in exponential and when as a value as in __str__.
1058        """
1059        return self.__str__(eng=True, context=context)
1060
1061    def __neg__(self, context=None):
1062        """Returns a copy with the sign switched.
1063
1064        Rounds, if it has reason.
1065        """
1066        if self._is_special:
1067            ans = self._check_nans(context=context)
1068            if ans:
1069                return ans
1070
1071        if not self:
1072            # -Decimal('0') is Decimal('0'), not Decimal('-0')
1073            ans = self.copy_abs()
1074        else:
1075            ans = self.copy_negate()
1076
1077        if context is None:
1078            context = getcontext()
1079        return ans._fix(context)
1080
1081    def __pos__(self, context=None):
1082        """Returns a copy, unless it is a sNaN.
1083
1084        Rounds the number (if more then precision digits)
1085        """
1086        if self._is_special:
1087            ans = self._check_nans(context=context)
1088            if ans:
1089                return ans
1090
1091        if not self:
1092            # + (-0) = 0
1093            ans = self.copy_abs()
1094        else:
1095            ans = Decimal(self)
1096
1097        if context is None:
1098            context = getcontext()
1099        return ans._fix(context)
1100
1101    def __abs__(self, round=True, context=None):
1102        """Returns the absolute value of self.
1103
1104        If the keyword argument 'round' is false, do not round.  The
1105        expression self.__abs__(round=False) is equivalent to
1106        self.copy_abs().
1107        """
1108        if not round:
1109            return self.copy_abs()
1110
1111        if self._is_special:
1112            ans = self._check_nans(context=context)
1113            if ans:
1114                return ans
1115
1116        if self._sign:
1117            ans = self.__neg__(context=context)
1118        else:
1119            ans = self.__pos__(context=context)
1120
1121        return ans
1122
1123    def __add__(self, other, context=None):
1124        """Returns self + other.
1125
1126        -INF + INF (or the reverse) cause InvalidOperation errors.
1127        """
1128        other = _convert_other(other)
1129        if other is NotImplemented:
1130            return other
1131
1132        if context is None:
1133            context = getcontext()
1134
1135        if self._is_special or other._is_special:
1136            ans = self._check_nans(other, context)
1137            if ans:
1138                return ans
1139
1140            if self._isinfinity():
1141                # If both INF, same sign => same as both, opposite => error.
1142                if self._sign != other._sign and other._isinfinity():
1143                    return context._raise_error(InvalidOperation, '-INF + INF')
1144                return Decimal(self)
1145            if other._isinfinity():
1146                return Decimal(other)  # Can't both be infinity here
1147
1148        exp = min(self._exp, other._exp)
1149        negativezero = 0
1150        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1151            # If the answer is 0, the sign should be negative, in this case.
1152            negativezero = 1
1153
1154        if not self and not other:
1155            sign = min(self._sign, other._sign)
1156            if negativezero:
1157                sign = 1
1158            ans = _dec_from_triple(sign, '0', exp)
1159            ans = ans._fix(context)
1160            return ans
1161        if not self:
1162            exp = max(exp, other._exp - context.prec-1)
1163            ans = other._rescale(exp, context.rounding)
1164            ans = ans._fix(context)
1165            return ans
1166        if not other:
1167            exp = max(exp, self._exp - context.prec-1)
1168            ans = self._rescale(exp, context.rounding)
1169            ans = ans._fix(context)
1170            return ans
1171
1172        op1 = _WorkRep(self)
1173        op2 = _WorkRep(other)
1174        op1, op2 = _normalize(op1, op2, context.prec)
1175
1176        result = _WorkRep()
1177        if op1.sign != op2.sign:
1178            # Equal and opposite
1179            if op1.int == op2.int:
1180                ans = _dec_from_triple(negativezero, '0', exp)
1181                ans = ans._fix(context)
1182                return ans
1183            if op1.int < op2.int:
1184                op1, op2 = op2, op1
1185                # OK, now abs(op1) > abs(op2)
1186            if op1.sign == 1:
1187                result.sign = 1
1188                op1.sign, op2.sign = op2.sign, op1.sign
1189            else:
1190                result.sign = 0
1191                # So we know the sign, and op1 > 0.
1192        elif op1.sign == 1:
1193            result.sign = 1
1194            op1.sign, op2.sign = (0, 0)
1195        else:
1196            result.sign = 0
1197        # Now, op1 > abs(op2) > 0
1198
1199        if op2.sign == 0:
1200            result.int = op1.int + op2.int
1201        else:
1202            result.int = op1.int - op2.int
1203
1204        result.exp = op1.exp
1205        ans = Decimal(result)
1206        ans = ans._fix(context)
1207        return ans
1208
1209    __radd__ = __add__
1210
1211    def __sub__(self, other, context=None):
1212        """Return self - other"""
1213        other = _convert_other(other)
1214        if other is NotImplemented:
1215            return other
1216
1217        if self._is_special or other._is_special:
1218            ans = self._check_nans(other, context=context)
1219            if ans:
1220                return ans
1221
1222        # self - other is computed as self + other.copy_negate()
1223        return self.__add__(other.copy_negate(), context=context)
1224
1225    def __rsub__(self, other, context=None):
1226        """Return other - self"""
1227        other = _convert_other(other)
1228        if other is NotImplemented:
1229            return other
1230
1231        return other.__sub__(self, context=context)
1232
1233    def __mul__(self, other, context=None):
1234        """Return self * other.
1235
1236        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1237        """
1238        other = _convert_other(other)
1239        if other is NotImplemented:
1240            return other
1241
1242        if context is None:
1243            context = getcontext()
1244
1245        resultsign = self._sign ^ other._sign
1246
1247        if self._is_special or other._is_special:
1248            ans = self._check_nans(other, context)
1249            if ans:
1250                return ans
1251
1252            if self._isinfinity():
1253                if not other:
1254                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1255                return _SignedInfinity[resultsign]
1256
1257            if other._isinfinity():
1258                if not self:
1259                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1260                return _SignedInfinity[resultsign]
1261
1262        resultexp = self._exp + other._exp
1263
1264        # Special case for multiplying by zero
1265        if not self or not other:
1266            ans = _dec_from_triple(resultsign, '0', resultexp)
1267            # Fixing in case the exponent is out of bounds
1268            ans = ans._fix(context)
1269            return ans
1270
1271        # Special case for multiplying by power of 10
1272        if self._int == '1':
1273            ans = _dec_from_triple(resultsign, other._int, resultexp)
1274            ans = ans._fix(context)
1275            return ans
1276        if other._int == '1':
1277            ans = _dec_from_triple(resultsign, self._int, resultexp)
1278            ans = ans._fix(context)
1279            return ans
1280
1281        op1 = _WorkRep(self)
1282        op2 = _WorkRep(other)
1283
1284        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1285        ans = ans._fix(context)
1286
1287        return ans
1288    __rmul__ = __mul__
1289
1290    def __truediv__(self, other, context=None):
1291        """Return self / other."""
1292        other = _convert_other(other)
1293        if other is NotImplemented:
1294            return NotImplemented
1295
1296        if context is None:
1297            context = getcontext()
1298
1299        sign = self._sign ^ other._sign
1300
1301        if self._is_special or other._is_special:
1302            ans = self._check_nans(other, context)
1303            if ans:
1304                return ans
1305
1306            if self._isinfinity() and other._isinfinity():
1307                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1308
1309            if self._isinfinity():
1310                return _SignedInfinity[sign]
1311
1312            if other._isinfinity():
1313                context._raise_error(Clamped, 'Division by infinity')
1314                return _dec_from_triple(sign, '0', context.Etiny())
1315
1316        # Special cases for zeroes
1317        if not other:
1318            if not self:
1319                return context._raise_error(DivisionUndefined, '0 / 0')
1320            return context._raise_error(DivisionByZero, 'x / 0', sign)
1321
1322        if not self:
1323            exp = self._exp - other._exp
1324            coeff = 0
1325        else:
1326            # OK, so neither = 0, INF or NaN
1327            shift = len(other._int) - len(self._int) + context.prec + 1
1328            exp = self._exp - other._exp - shift
1329            op1 = _WorkRep(self)
1330            op2 = _WorkRep(other)
1331            if shift >= 0:
1332                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1333            else:
1334                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1335            if remainder:
1336                # result is not exact; adjust to ensure correct rounding
1337                if coeff % 5 == 0:
1338                    coeff += 1
1339            else:
1340                # result is exact; get as close to ideal exponent as possible
1341                ideal_exp = self._exp - other._exp
1342                while exp < ideal_exp and coeff % 10 == 0:
1343                    coeff //= 10
1344                    exp += 1
1345
1346        ans = _dec_from_triple(sign, str(coeff), exp)
1347        return ans._fix(context)
1348
1349    def _divide(self, other, context):
1350        """Return (self // other, self % other), to context.prec precision.
1351
1352        Assumes that neither self nor other is a NaN, that self is not
1353        infinite and that other is nonzero.
1354        """
1355        sign = self._sign ^ other._sign
1356        if other._isinfinity():
1357            ideal_exp = self._exp
1358        else:
1359            ideal_exp = min(self._exp, other._exp)
1360
1361        expdiff = self.adjusted() - other.adjusted()
1362        if not self or other._isinfinity() or expdiff <= -2:
1363            return (_dec_from_triple(sign, '0', 0),
1364                    self._rescale(ideal_exp, context.rounding))
1365        if expdiff <= context.prec:
1366            op1 = _WorkRep(self)
1367            op2 = _WorkRep(other)
1368            if op1.exp >= op2.exp:
1369                op1.int *= 10**(op1.exp - op2.exp)
1370            else:
1371                op2.int *= 10**(op2.exp - op1.exp)
1372            q, r = divmod(op1.int, op2.int)
1373            if q < 10**context.prec:
1374                return (_dec_from_triple(sign, str(q), 0),
1375                        _dec_from_triple(self._sign, str(r), ideal_exp))
1376
1377        # Here the quotient is too large to be representable
1378        ans = context._raise_error(DivisionImpossible,
1379                                   'quotient too large in //, % or divmod')
1380        return ans, ans
1381
1382    def __rtruediv__(self, other, context=None):
1383        """Swaps self/other and returns __truediv__."""
1384        other = _convert_other(other)
1385        if other is NotImplemented:
1386            return other
1387        return other.__truediv__(self, context=context)
1388
1389    __div__ = __truediv__
1390    __rdiv__ = __rtruediv__
1391
1392    def __divmod__(self, other, context=None):
1393        """
1394        Return (self // other, self % other)
1395        """
1396        other = _convert_other(other)
1397        if other is NotImplemented:
1398            return other
1399
1400        if context is None:
1401            context = getcontext()
1402
1403        ans = self._check_nans(other, context)
1404        if ans:
1405            return (ans, ans)
1406
1407        sign = self._sign ^ other._sign
1408        if self._isinfinity():
1409            if other._isinfinity():
1410                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1411                return ans, ans
1412            else:
1413                return (_SignedInfinity[sign],
1414                        context._raise_error(InvalidOperation, 'INF % x'))
1415
1416        if not other:
1417            if not self:
1418                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1419                return ans, ans
1420            else:
1421                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1422                        context._raise_error(InvalidOperation, 'x % 0'))
1423
1424        quotient, remainder = self._divide(other, context)
1425        remainder = remainder._fix(context)
1426        return quotient, remainder
1427
1428    def __rdivmod__(self, other, context=None):
1429        """Swaps self/other and returns __divmod__."""
1430        other = _convert_other(other)
1431        if other is NotImplemented:
1432            return other
1433        return other.__divmod__(self, context=context)
1434
1435    def __mod__(self, other, context=None):
1436        """
1437        self % other
1438        """
1439        other = _convert_other(other)
1440        if other is NotImplemented:
1441            return other
1442
1443        if context is None:
1444            context = getcontext()
1445
1446        ans = self._check_nans(other, context)
1447        if ans:
1448            return ans
1449
1450        if self._isinfinity():
1451            return context._raise_error(InvalidOperation, 'INF % x')
1452        elif not other:
1453            if self:
1454                return context._raise_error(InvalidOperation, 'x % 0')
1455            else:
1456                return context._raise_error(DivisionUndefined, '0 % 0')
1457
1458        remainder = self._divide(other, context)[1]
1459        remainder = remainder._fix(context)
1460        return remainder
1461
1462    def __rmod__(self, other, context=None):
1463        """Swaps self/other and returns __mod__."""
1464        other = _convert_other(other)
1465        if other is NotImplemented:
1466            return other
1467        return other.__mod__(self, context=context)
1468
1469    def remainder_near(self, other, context=None):
1470        """
1471        Remainder nearest to 0-  abs(remainder-near) <= other/2
1472        """
1473        if context is None:
1474            context = getcontext()
1475
1476        other = _convert_other(other, raiseit=True)
1477
1478        ans = self._check_nans(other, context)
1479        if ans:
1480            return ans
1481
1482        # self == +/-infinity -> InvalidOperation
1483        if self._isinfinity():
1484            return context._raise_error(InvalidOperation,
1485                                        'remainder_near(infinity, x)')
1486
1487        # other == 0 -> either InvalidOperation or DivisionUndefined
1488        if not other:
1489            if self:
1490                return context._raise_error(InvalidOperation,
1491                                            'remainder_near(x, 0)')
1492            else:
1493                return context._raise_error(DivisionUndefined,
1494                                            'remainder_near(0, 0)')
1495
1496        # other = +/-infinity -> remainder = self
1497        if other._isinfinity():
1498            ans = Decimal(self)
1499            return ans._fix(context)
1500
1501        # self = 0 -> remainder = self, with ideal exponent
1502        ideal_exponent = min(self._exp, other._exp)
1503        if not self:
1504            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1505            return ans._fix(context)
1506
1507        # catch most cases of large or small quotient
1508        expdiff = self.adjusted() - other.adjusted()
1509        if expdiff >= context.prec + 1:
1510            # expdiff >= prec+1 => abs(self/other) > 10**prec
1511            return context._raise_error(DivisionImpossible)
1512        if expdiff <= -2:
1513            # expdiff <= -2 => abs(self/other) < 0.1
1514            ans = self._rescale(ideal_exponent, context.rounding)
1515            return ans._fix(context)
1516
1517        # adjust both arguments to have the same exponent, then divide
1518        op1 = _WorkRep(self)
1519        op2 = _WorkRep(other)
1520        if op1.exp >= op2.exp:
1521            op1.int *= 10**(op1.exp - op2.exp)
1522        else:
1523            op2.int *= 10**(op2.exp - op1.exp)
1524        q, r = divmod(op1.int, op2.int)
1525        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1526        # 10**ideal_exponent.   Apply correction to ensure that
1527        # abs(remainder) <= abs(other)/2
1528        if 2*r + (q&1) > op2.int:
1529            r -= op2.int
1530            q += 1
1531
1532        if q >= 10**context.prec:
1533            return context._raise_error(DivisionImpossible)
1534
1535        # result has same sign as self unless r is negative
1536        sign = self._sign
1537        if r < 0:
1538            sign = 1-sign
1539            r = -r
1540
1541        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1542        return ans._fix(context)
1543
1544    def __floordiv__(self, other, context=None):
1545        """self // other"""
1546        other = _convert_other(other)
1547        if other is NotImplemented:
1548            return other
1549
1550        if context is None:
1551            context = getcontext()
1552
1553        ans = self._check_nans(other, context)
1554        if ans:
1555            return ans
1556
1557        if self._isinfinity():
1558            if other._isinfinity():
1559                return context._raise_error(InvalidOperation, 'INF // INF')
1560            else:
1561                return _SignedInfinity[self._sign ^ other._sign]
1562
1563        if not other:
1564            if self:
1565                return context._raise_error(DivisionByZero, 'x // 0',
1566                                            self._sign ^ other._sign)
1567            else:
1568                return context._raise_error(DivisionUndefined, '0 // 0')
1569
1570        return self._divide(other, context)[0]
1571
1572    def __rfloordiv__(self, other, context=None):
1573        """Swaps self/other and returns __floordiv__."""
1574        other = _convert_other(other)
1575        if other is NotImplemented:
1576            return other
1577        return other.__floordiv__(self, context=context)
1578
1579    def __float__(self):
1580        """Float representation."""
1581        return float(str(self))
1582
1583    def __int__(self):
1584        """Converts self to an int, truncating if necessary."""
1585        if self._is_special:
1586            if self._isnan():
1587                raise ValueError("Cannot convert NaN to integer")
1588            elif self._isinfinity():
1589                raise OverflowError("Cannot convert infinity to integer")
1590        s = (-1)**self._sign
1591        if self._exp >= 0:
1592            return s*int(self._int)*10**self._exp
1593        else:
1594            return s*int(self._int[:self._exp] or '0')
1595
1596    __trunc__ = __int__
1597
1598    def real(self):
1599        return self
1600    real = property(real)
1601
1602    def imag(self):
1603        return Decimal(0)
1604    imag = property(imag)
1605
1606    def conjugate(self):
1607        return self
1608
1609    def __complex__(self):
1610        return complex(float(self))
1611
1612    def __long__(self):
1613        """Converts to a long.
1614
1615        Equivalent to long(int(self))
1616        """
1617        return long(self.__int__())
1618
1619    def _fix_nan(self, context):
1620        """Decapitate the payload of a NaN to fit the context"""
1621        payload = self._int
1622
1623        # maximum length of payload is precision if _clamp=0,
1624        # precision-1 if _clamp=1.
1625        max_payload_len = context.prec - context._clamp
1626        if len(payload) > max_payload_len:
1627            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1628            return _dec_from_triple(self._sign, payload, self._exp, True)
1629        return Decimal(self)
1630
1631    def _fix(self, context):
1632        """Round if it is necessary to keep self within prec precision.
1633
1634        Rounds and fixes the exponent.  Does not raise on a sNaN.
1635
1636        Arguments:
1637        self - Decimal instance
1638        context - context used.
1639        """
1640
1641        if self._is_special:
1642            if self._isnan():
1643                # decapitate payload if necessary
1644                return self._fix_nan(context)
1645            else:
1646                # self is +/-Infinity; return unaltered
1647                return Decimal(self)
1648
1649        # if self is zero then exponent should be between Etiny and
1650        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1651        Etiny = context.Etiny()
1652        Etop = context.Etop()
1653        if not self:
1654            exp_max = [context.Emax, Etop][context._clamp]
1655            new_exp = min(max(self._exp, Etiny), exp_max)
1656            if new_exp != self._exp:
1657                context._raise_error(Clamped)
1658                return _dec_from_triple(self._sign, '0', new_exp)
1659            else:
1660                return Decimal(self)
1661
1662        # exp_min is the smallest allowable exponent of the result,
1663        # equal to max(self.adjusted()-context.prec+1, Etiny)
1664        exp_min = len(self._int) + self._exp - context.prec
1665        if exp_min > Etop:
1666            # overflow: exp_min > Etop iff self.adjusted() > Emax
1667            ans = context._raise_error(Overflow, 'above Emax', self._sign)
1668            context._raise_error(Inexact)
1669            context._raise_error(Rounded)
1670            return ans
1671
1672        self_is_subnormal = exp_min < Etiny
1673        if self_is_subnormal:
1674            exp_min = Etiny
1675
1676        # round if self has too many digits
1677        if self._exp < exp_min:
1678            digits = len(self._int) + self._exp - exp_min
1679            if digits < 0:
1680                self = _dec_from_triple(self._sign, '1', exp_min-1)
1681                digits = 0
1682            rounding_method = self._pick_rounding_function[context.rounding]
1683            changed = getattr(self, rounding_method)(digits)
1684            coeff = self._int[:digits] or '0'
1685            if changed > 0:
1686                coeff = str(int(coeff)+1)
1687                if len(coeff) > context.prec:
1688                    coeff = coeff[:-1]
1689                    exp_min += 1
1690
1691            # check whether the rounding pushed the exponent out of range
1692            if exp_min > Etop:
1693                ans = context._raise_error(Overflow, 'above Emax', self._sign)
1694            else:
1695                ans = _dec_from_triple(self._sign, coeff, exp_min)
1696
1697            # raise the appropriate signals, taking care to respect
1698            # the precedence described in the specification
1699            if changed and self_is_subnormal:
1700                context._raise_error(Underflow)
1701            if self_is_subnormal:
1702                context._raise_error(Subnormal)
1703            if changed:
1704                context._raise_error(Inexact)
1705            context._raise_error(Rounded)
1706            if not ans:
1707                # raise Clamped on underflow to 0
1708                context._raise_error(Clamped)
1709            return ans
1710
1711        if self_is_subnormal:
1712            context._raise_error(Subnormal)
1713
1714        # fold down if _clamp == 1 and self has too few digits
1715        if context._clamp == 1 and self._exp > Etop:
1716            context._raise_error(Clamped)
1717            self_padded = self._int + '0'*(self._exp - Etop)
1718            return _dec_from_triple(self._sign, self_padded, Etop)
1719
1720        # here self was representable to begin with; return unchanged
1721        return Decimal(self)
1722
1723    _pick_rounding_function = {}
1724
1725    # for each of the rounding functions below:
1726    #   self is a finite, nonzero Decimal
1727    #   prec is an integer satisfying 0 <= prec < len(self._int)
1728    #
1729    # each function returns either -1, 0, or 1, as follows:
1730    #   1 indicates that self should be rounded up (away from zero)
1731    #   0 indicates that self should be truncated, and that all the
1732    #     digits to be truncated are zeros (so the value is unchanged)
1733    #  -1 indicates that there are nonzero digits to be truncated
1734
1735    def _round_down(self, prec):
1736        """Also known as round-towards-0, truncate."""
1737        if _all_zeros(self._int, prec):
1738            return 0
1739        else:
1740            return -1
1741
1742    def _round_up(self, prec):
1743        """Rounds away from 0."""
1744        return -self._round_down(prec)
1745
1746    def _round_half_up(self, prec):
1747        """Rounds 5 up (away from 0)"""
1748        if self._int[prec] in '56789':
1749            return 1
1750        elif _all_zeros(self._int, prec):
1751            return 0
1752        else:
1753            return -1
1754
1755    def _round_half_down(self, prec):
1756        """Round 5 down"""
1757        if _exact_half(self._int, prec):
1758            return -1
1759        else:
1760            return self._round_half_up(prec)
1761
1762    def _round_half_even(self, prec):
1763        """Round 5 to even, rest to nearest."""
1764        if _exact_half(self._int, prec) and \
1765                (prec == 0 or self._int[prec-1] in '02468'):
1766            return -1
1767        else:
1768            return self._round_half_up(prec)
1769
1770    def _round_ceiling(self, prec):
1771        """Rounds up (not away from 0 if negative.)"""
1772        if self._sign:
1773            return self._round_down(prec)
1774        else:
1775            return -self._round_down(prec)
1776
1777    def _round_floor(self, prec):
1778        """Rounds down (not towards 0 if negative)"""
1779        if not self._sign:
1780            return self._round_down(prec)
1781        else:
1782            return -self._round_down(prec)
1783
1784    def _round_05up(self, prec):
1785        """Round down unless digit prec-1 is 0 or 5."""
1786        if prec and self._int[prec-1] not in '05':
1787            return self._round_down(prec)
1788        else:
1789            return -self._round_down(prec)
1790
1791    def fma(self, other, third, context=None):
1792        """Fused multiply-add.
1793
1794        Returns self*other+third with no rounding of the intermediate
1795        product self*other.
1796
1797        self and other are multiplied together, with no rounding of
1798        the result.  The third operand is then added to the result,
1799        and a single final rounding is performed.
1800        """
1801
1802        other = _convert_other(other, raiseit=True)
1803
1804        # compute product; raise InvalidOperation if either operand is
1805        # a signaling NaN or if the product is zero times infinity.
1806        if self._is_special or other._is_special:
1807            if context is None:
1808                context = getcontext()
1809            if self._exp == 'N':
1810                return context._raise_error(InvalidOperation, 'sNaN', self)
1811            if other._exp == 'N':
1812                return context._raise_error(InvalidOperation, 'sNaN', other)
1813            if self._exp == 'n':
1814                product = self
1815            elif other._exp == 'n':
1816                product = other
1817            elif self._exp == 'F':
1818                if not other:
1819                    return context._raise_error(InvalidOperation,
1820                                                'INF * 0 in fma')
1821                product = _SignedInfinity[self._sign ^ other._sign]
1822            elif other._exp == 'F':
1823                if not self:
1824                    return context._raise_error(InvalidOperation,
1825                                                '0 * INF in fma')
1826                product = _SignedInfinity[self._sign ^ other._sign]
1827        else:
1828            product = _dec_from_triple(self._sign ^ other._sign,
1829                                       str(int(self._int) * int(other._int)),
1830                                       self._exp + other._exp)
1831
1832        third = _convert_other(third, raiseit=True)
1833        return product.__add__(third, context)
1834
1835    def _power_modulo(self, other, modulo, context=None):
1836        """Three argument version of __pow__"""
1837
1838        # if can't convert other and modulo to Decimal, raise
1839        # TypeError; there's no point returning NotImplemented (no
1840        # equivalent of __rpow__ for three argument pow)
1841        other = _convert_other(other, raiseit=True)
1842        modulo = _convert_other(modulo, raiseit=True)
1843
1844        if context is None:
1845            context = getcontext()
1846
1847        # deal with NaNs: if there are any sNaNs then first one wins,
1848        # (i.e. behaviour for NaNs is identical to that of fma)
1849        self_is_nan = self._isnan()
1850        other_is_nan = other._isnan()
1851        modulo_is_nan = modulo._isnan()
1852        if self_is_nan or other_is_nan or modulo_is_nan:
1853            if self_is_nan == 2:
1854                return context._raise_error(InvalidOperation, 'sNaN',
1855                                        self)
1856            if other_is_nan == 2:
1857                return context._raise_error(InvalidOperation, 'sNaN',
1858                                        other)
1859            if modulo_is_nan == 2:
1860                return context._raise_error(InvalidOperation, 'sNaN',
1861                                        modulo)
1862            if self_is_nan:
1863                return self._fix_nan(context)
1864            if other_is_nan:
1865                return other._fix_nan(context)
1866            return modulo._fix_nan(context)
1867
1868        # check inputs: we apply same restrictions as Python's pow()
1869        if not (self._isinteger() and
1870                other._isinteger() and
1871                modulo._isinteger()):
1872            return context._raise_error(InvalidOperation,
1873                                        'pow() 3rd argument not allowed '
1874                                        'unless all arguments are integers')
1875        if other < 0:
1876            return context._raise_error(InvalidOperation,
1877                                        'pow() 2nd argument cannot be '
1878                                        'negative when 3rd argument specified')
1879        if not modulo:
1880            return context._raise_error(InvalidOperation,
1881                                        'pow() 3rd argument cannot be 0')
1882
1883        # additional restriction for decimal: the modulus must be less
1884        # than 10**prec in absolute value
1885        if modulo.adjusted() >= context.prec:
1886            return context._raise_error(InvalidOperation,
1887                                        'insufficient precision: pow() 3rd '
1888                                        'argument must not have more than '
1889                                        'precision digits')
1890
1891        # define 0**0 == NaN, for consistency with two-argument pow
1892        # (even though it hurts!)
1893        if not other and not self:
1894            return context._raise_error(InvalidOperation,
1895                                        'at least one of pow() 1st argument '
1896                                        'and 2nd argument must be nonzero ;'
1897                                        '0**0 is not defined')
1898
1899        # compute sign of result
1900        if other._iseven():
1901            sign = 0
1902        else:
1903            sign = self._sign
1904
1905        # convert modulo to a Python integer, and self and other to
1906        # Decimal integers (i.e. force their exponents to be >= 0)
1907        modulo = abs(int(modulo))
1908        base = _WorkRep(self.to_integral_value())
1909        exponent = _WorkRep(other.to_integral_value())
1910
1911        # compute result using integer pow()
1912        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1913        for i in xrange(exponent.exp):
1914            base = pow(base, 10, modulo)
1915        base = pow(base, exponent.int, modulo)
1916
1917        return _dec_from_triple(sign, str(base), 0)
1918
1919    def _power_exact(self, other, p):
1920        """Attempt to compute self**other exactly.
1921
1922        Given Decimals self and other and an integer p, attempt to
1923        compute an exact result for the power self**other, with p
1924        digits of precision.  Return None if self**other is not
1925        exactly representable in p digits.
1926
1927        Assumes that elimination of special cases has already been
1928        performed: self and other must both be nonspecial; self must
1929        be positive and not numerically equal to 1; other must be
1930        nonzero.  For efficiency, other._exp should not be too large,
1931        so that 10**abs(other._exp) is a feasible calculation."""
1932
1933        # In the comments below, we write x for the value of self and
1934        # y for the value of other.  Write x = xc*10**xe and y =
1935        # yc*10**ye.
1936
1937        # The main purpose of this method is to identify the *failure*
1938        # of x**y to be exactly representable with as little effort as
1939        # possible.  So we look for cheap and easy tests that
1940        # eliminate the possibility of x**y being exact.  Only if all
1941        # these tests are passed do we go on to actually compute x**y.
1942
1943        # Here's the main idea.  First normalize both x and y.  We
1944        # express y as a rational m/n, with m and n relatively prime
1945        # and n>0.  Then for x**y to be exactly representable (at
1946        # *any* precision), xc must be the nth power of a positive
1947        # integer and xe must be divisible by n.  If m is negative
1948        # then additionally xc must be a power of either 2 or 5, hence
1949        # a power of 2**n or 5**n.
1950        #
1951        # There's a limit to how small |y| can be: if y=m/n as above
1952        # then:
1953        #
1954        #  (1) if xc != 1 then for the result to be representable we
1955        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
1956        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1957        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
1958        #      representable.
1959        #
1960        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
1961        #      |y| < 1/|xe| then the result is not representable.
1962        #
1963        # Note that since x is not equal to 1, at least one of (1) and
1964        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1965        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1966        #
1967        # There's also a limit to how large y can be, at least if it's
1968        # positive: the normalized result will have coefficient xc**y,
1969        # so if it's representable then xc**y < 10**p, and y <
1970        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
1971        # not exactly representable.
1972
1973        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1974        # so |y| < 1/xe and the result is not representable.
1975        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1976        # < 1/nbits(xc).
1977
1978        x = _WorkRep(self)
1979        xc, xe = x.int, x.exp
1980        while xc % 10 == 0:
1981            xc //= 10
1982            xe += 1
1983
1984        y = _WorkRep(other)
1985        yc, ye = y.int, y.exp
1986        while yc % 10 == 0:
1987            yc //= 10
1988            ye += 1
1989
1990        # case where xc == 1: result is 10**(xe*y), with xe*y
1991        # required to be an integer
1992        if xc == 1:
1993            xe *= yc
1994            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
1995            while xe % 10 == 0:
1996                xe //= 10
1997                ye += 1
1998            if ye < 0:
1999                return None
2000            exponent = xe * 10**ye
2001            if y.sign == 1:
2002                exponent = -exponent
2003            # if other is a nonnegative integer, use ideal exponent
2004            if other._isinteger() and other._sign == 0:
2005                ideal_exponent = self._exp*int(other)
2006                zeros = min(exponent-ideal_exponent, p-1)
2007            else:
2008                zeros = 0
2009            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
2010
2011        # case where y is negative: xc must be either a power
2012        # of 2 or a power of 5.
2013        if y.sign == 1:
2014            last_digit = xc % 10
2015            if last_digit in (2,4,6,8):
2016                # quick test for power of 2
2017                if xc & -xc != xc:
2018                    return None
2019                # now xc is a power of 2; e is its exponent
2020                e = _nbits(xc)-1
2021                # find e*y and xe*y; both must be integers
2022                if ye >= 0:
2023                    y_as_int = yc*10**ye
2024                    e = e*y_as_int
2025                    xe = xe*y_as_int
2026                else:
2027                    ten_pow = 10**-ye
2028                    e, remainder = divmod(e*yc, ten_pow)
2029                    if remainder:
2030                        return None
2031                    xe, remainder = divmod(xe*yc, ten_pow)
2032                    if remainder:
2033                        return None
2034
2035                if e*65 >= p*93: # 93/65 > log(10)/log(5)
2036                    return None
2037                xc = 5**e
2038
2039            elif last_digit == 5:
2040                # e >= log_5(xc) if xc is a power of 5; we have
2041                # equality all the way up to xc=5**2658
2042                e = _nbits(xc)*28//65
2043                xc, remainder = divmod(5**e, xc)
2044                if remainder:
2045                    return None
2046                while xc % 5 == 0:
2047                    xc //= 5
2048                    e -= 1
2049                if ye >= 0:
2050                    y_as_integer = yc*10**ye
2051                    e = e*y_as_integer
2052                    xe = xe*y_as_integer
2053                else:
2054                    ten_pow = 10**-ye
2055                    e, remainder = divmod(e*yc, ten_pow)
2056                    if remainder:
2057                        return None
2058                    xe, remainder = divmod(xe*yc, ten_pow)
2059                    if remainder:
2060                        return None
2061                if e*3 >= p*10: # 10/3 > log(10)/log(2)
2062                    return None
2063                xc = 2**e
2064            else:
2065                return None
2066
2067            if xc >= 10**p:
2068                return None
2069            xe = -e-xe
2070            return _dec_from_triple(0, str(xc), xe)
2071
2072        # now y is positive; find m and n such that y = m/n
2073        if ye >= 0:
2074            m, n = yc*10**ye, 1
2075        else:
2076            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2077                return None
2078            xc_bits = _nbits(xc)
2079            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2080                return None
2081            m, n = yc, 10**(-ye)
2082            while m % 2 == n % 2 == 0:
2083                m //= 2
2084                n //= 2
2085            while m % 5 == n % 5 == 0:
2086                m //= 5
2087                n //= 5
2088
2089        # compute nth root of xc*10**xe
2090        if n > 1:
2091            # if 1 < xc < 2**n then xc isn't an nth power
2092            if xc != 1 and xc_bits <= n:
2093                return None
2094
2095            xe, rem = divmod(xe, n)
2096            if rem != 0:
2097                return None
2098
2099            # compute nth root of xc using Newton's method
2100            a = 1L << -(-_nbits(xc)//n) # initial estimate
2101            while True:
2102                q, r = divmod(xc, a**(n-1))
2103                if a <= q:
2104                    break
2105                else:
2106                    a = (a*(n-1) + q)//n
2107            if not (a == q and r == 0):
2108                return None
2109            xc = a
2110
2111        # now xc*10**xe is the nth root of the original xc*10**xe
2112        # compute mth power of xc*10**xe
2113
2114        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2115        # 10**p and the result is not representable.
2116        if xc > 1 and m > p*100//_log10_lb(xc):
2117            return None
2118        xc = xc**m
2119        xe *= m
2120        if xc > 10**p:
2121            return None
2122
2123        # by this point the result *is* exactly representable
2124        # adjust the exponent to get as close as possible to the ideal
2125        # exponent, if necessary
2126        str_xc = str(xc)
2127        if other._isinteger() and other._sign == 0:
2128            ideal_exponent = self._exp*int(other)
2129            zeros = min(xe-ideal_exponent, p-len(str_xc))
2130        else:
2131            zeros = 0
2132        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2133
2134    def __pow__(self, other, modulo=None, context=None):
2135        """Return self ** other [ % modulo].
2136
2137        With two arguments, compute self**other.
2138
2139        With three arguments, compute (self**other) % modulo.  For the
2140        three argument form, the following restrictions on the
2141        arguments hold:
2142
2143         - all three arguments must be integral
2144         - other must be nonnegative
2145         - either self or other (or both) must be nonzero
2146         - modulo must be nonzero and must have at most p digits,
2147           where p is the context precision.
2148
2149        If any of these restrictions is violated the InvalidOperation
2150        flag is raised.
2151
2152        The result of pow(self, other, modulo) is identical to the
2153        result that would be obtained by computing (self**other) %
2154        modulo with unbounded precision, but is computed more
2155        efficiently.  It is always exact.
2156        """
2157
2158        if modulo is not None:
2159            return self._power_modulo(other, modulo, context)
2160
2161        other = _convert_other(other)
2162        if other is NotImplemented:
2163            return other
2164
2165        if context is None:
2166            context = getcontext()
2167
2168        # either argument is a NaN => result is NaN
2169        ans = self._check_nans(other, context)
2170        if ans:
2171            return ans
2172
2173        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2174        if not other:
2175            if not self:
2176                return context._raise_error(InvalidOperation, '0 ** 0')
2177            else:
2178                return _One
2179
2180        # result has sign 1 iff self._sign is 1 and other is an odd integer
2181        result_sign = 0
2182        if self._sign == 1:
2183            if other._isinteger():
2184                if not other._iseven():
2185                    result_sign = 1
2186            else:
2187                # -ve**noninteger = NaN
2188                # (-0)**noninteger = 0**noninteger
2189                if self:
2190                    return context._raise_error(InvalidOperation,
2191                        'x ** y with x negative and y not an integer')
2192            # negate self, without doing any unwanted rounding
2193            self = self.copy_negate()
2194
2195        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2196        if not self:
2197            if other._sign == 0:
2198                return _dec_from_triple(result_sign, '0', 0)
2199            else:
2200                return _SignedInfinity[result_sign]
2201
2202        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2203        if self._isinfinity():
2204            if other._sign == 0:
2205                return _SignedInfinity[result_sign]
2206            else:
2207                return _dec_from_triple(result_sign, '0', 0)
2208
2209        # 1**other = 1, but the choice of exponent and the flags
2210        # depend on the exponent of self, and on whether other is a
2211        # positive integer, a negative integer, or neither
2212        if self == _One:
2213            if other._isinteger():
2214                # exp = max(self._exp*max(int(other), 0),
2215                # 1-context.prec) but evaluating int(other) directly
2216                # is dangerous until we know other is small (other
2217                # could be 1e999999999)
2218                if other._sign == 1:
2219                    multiplier = 0
2220                elif other > context.prec:
2221                    multiplier = context.prec
2222                else:
2223                    multiplier = int(other)
2224
2225                exp = self._exp * multiplier
2226                if exp < 1-context.prec:
2227                    exp = 1-context.prec
2228                    context._raise_error(Rounded)
2229            else:
2230                context._raise_error(Inexact)
2231                context._raise_error(Rounded)
2232                exp = 1-context.prec
2233
2234            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2235
2236        # compute adjusted exponent of self
2237        self_adj = self.adjusted()
2238
2239        # self ** infinity is infinity if self > 1, 0 if self < 1
2240        # self ** -infinity is infinity if self < 1, 0 if self > 1
2241        if other._isinfinity():
2242            if (other._sign == 0) == (self_adj < 0):
2243                return _dec_from_triple(result_sign, '0', 0)
2244            else:
2245                return _SignedInfinity[result_sign]
2246
2247        # from here on, the result always goes through the call
2248        # to _fix at the end of this function.
2249        ans = None
2250        exact = False
2251
2252        # crude test to catch cases of extreme overflow/underflow.  If
2253        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2254        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2255        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2256        # for underflow is similar.
2257        bound = self._log10_exp_bound() + other.adjusted()
2258        if (self_adj >= 0) == (other._sign == 0):
2259            # self > 1 and other +ve, or self < 1 and other -ve
2260            # possibility of overflow
2261            if bound >= len(str(context.Emax)):
2262                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2263        else:
2264            # self > 1 and other -ve, or self < 1 and other +ve
2265            # possibility of underflow to 0
2266            Etiny = context.Etiny()
2267            if bound >= len(str(-Etiny)):
2268                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2269
2270        # try for an exact result with precision +1
2271        if ans is None:
2272            ans = self._power_exact(other, context.prec + 1)
2273            if ans is not None:
2274                if result_sign == 1:
2275                    ans = _dec_from_triple(1, ans._int, ans._exp)
2276                exact = True
2277
2278        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2279        if ans is None:
2280            p = context.prec
2281            x = _WorkRep(self)
2282            xc, xe = x.int, x.exp
2283            y = _WorkRep(other)
2284            yc, ye = y.int, y.exp
2285            if y.sign == 1:
2286                yc = -yc
2287
2288            # compute correctly rounded result:  start with precision +3,
2289            # then increase precision until result is unambiguously roundable
2290            extra = 3
2291            while True:
2292                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2293                if coeff % (5*10**(len(str(coeff))-p-1)):
2294                    break
2295                extra += 3
2296
2297            ans = _dec_from_triple(result_sign, str(coeff), exp)
2298
2299        # unlike exp, ln and log10, the power function respects the
2300        # rounding mode; no need to switch to ROUND_HALF_EVEN here
2301
2302        # There's a difficulty here when 'other' is not an integer and
2303        # the result is exact.  In this case, the specification
2304        # requires that the Inexact flag be raised (in spite of
2305        # exactness), but since the result is exact _fix won't do this
2306        # for us.  (Correspondingly, the Underflow signal should also
2307        # be raised for subnormal results.)  We can't directly raise
2308        # these signals either before or after calling _fix, since
2309        # that would violate the precedence for signals.  So we wrap
2310        # the ._fix call in a temporary context, and reraise
2311        # afterwards.
2312        if exact and not other._isinteger():
2313            # pad with zeros up to length context.prec+1 if necessary; this
2314            # ensures that the Rounded signal will be raised.
2315            if len(ans._int) <= context.prec:
2316                expdiff = context.prec + 1 - len(ans._int)
2317                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2318                                       ans._exp-expdiff)
2319
2320            # create a copy of the current context, with cleared flags/traps
2321            newcontext = context.copy()
2322            newcontext.clear_flags()
2323            for exception in _signals:
2324                newcontext.traps[exception] = 0
2325
2326            # round in the new context
2327            ans = ans._fix(newcontext)
2328
2329            # raise Inexact, and if necessary, Underflow
2330            newcontext._raise_error(Inexact)
2331            if newcontext.flags[Subnormal]:
2332                newcontext._raise_error(Underflow)
2333
2334            # propagate signals to the original context; _fix could
2335            # have raised any of Overflow, Underflow, Subnormal,
2336            # Inexact, Rounded, Clamped.  Overflow needs the correct
2337            # arguments.  Note that the order of the exceptions is
2338            # important here.
2339            if newcontext.flags[Overflow]:
2340                context._raise_error(Overflow, 'above Emax', ans._sign)
2341            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
2342                if newcontext.flags[exception]:
2343                    context._raise_error(exception)
2344
2345        else:
2346            ans = ans._fix(context)
2347
2348        return ans
2349
2350    def __rpow__(self, other, context=None):
2351        """Swaps self/other and returns __pow__."""
2352        other = _convert_other(other)
2353        if other is NotImplemented:
2354            return other
2355        return other.__pow__(self, context=context)
2356
2357    def normalize(self, context=None):
2358        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2359
2360        if context is None:
2361            context = getcontext()
2362
2363        if self._is_special:
2364            ans = self._check_nans(context=context)
2365            if ans:
2366                return ans
2367
2368        dup = self._fix(context)
2369        if dup._isinfinity():
2370            return dup
2371
2372        if not dup:
2373            return _dec_from_triple(dup._sign, '0', 0)
2374        exp_max = [context.Emax, context.Etop()][context._clamp]
2375        end = len(dup._int)
2376        exp = dup._exp
2377        while dup._int[end-1] == '0' and exp < exp_max:
2378            exp += 1
2379            end -= 1
2380        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2381
2382    def quantize(self, exp, rounding=None, context=None, watchexp=True):
2383        """Quantize self so its exponent is the same as that of exp.
2384
2385        Similar to self._rescale(exp._exp) but with error checking.
2386        """
2387        exp = _convert_other(exp, raiseit=True)
2388
2389        if context is None:
2390            context = getcontext()
2391        if rounding is None:
2392            rounding = context.rounding
2393
2394        if self._is_special or exp._is_special:
2395            ans = self._check_nans(exp, context)
2396            if ans:
2397                return ans
2398
2399            if exp._isinfinity() or self._isinfinity():
2400                if exp._isinfinity() and self._isinfinity():
2401                    return Decimal(self)  # if both are inf, it is OK
2402                return context._raise_error(InvalidOperation,
2403                                        'quantize with one INF')
2404
2405        # if we're not watching exponents, do a simple rescale
2406        if not watchexp:
2407            ans = self._rescale(exp._exp, rounding)
2408            # raise Inexact and Rounded where appropriate
2409            if ans._exp > self._exp:
2410                context._raise_error(Rounded)
2411                if ans != self:
2412                    context._raise_error(Inexact)
2413            return ans
2414
2415        # exp._exp should be between Etiny and Emax
2416        if not (context.Etiny() <= exp._exp <= context.Emax):
2417            return context._raise_error(InvalidOperation,
2418                   'target exponent out of bounds in quantize')
2419
2420        if not self:
2421            ans = _dec_from_triple(self._sign, '0', exp._exp)
2422            return ans._fix(context)
2423
2424        self_adjusted = self.adjusted()
2425        if self_adjusted > context.Emax:
2426            return context._raise_error(InvalidOperation,
2427                                        'exponent of quantize result too large for current context')
2428        if self_adjusted - exp._exp + 1 > context.prec:
2429            return context._raise_error(InvalidOperation,
2430                                        'quantize result has too many digits for current context')
2431
2432        ans = self._rescale(exp._exp, rounding)
2433        if ans.adjusted() > context.Emax:
2434            return context._raise_error(InvalidOperation,
2435                                        'exponent of quantize result too large for current context')
2436        if len(ans._int) > context.prec:
2437            return context._raise_error(InvalidOperation,
2438                                        'quantize result has too many digits for current context')
2439
2440        # raise appropriate flags
2441        if ans and ans.adjusted() < context.Emin:
2442            context._raise_error(Subnormal)
2443        if ans._exp > self._exp:
2444            if ans != self:
2445                context._raise_error(Inexact)
2446            context._raise_error(Rounded)
2447
2448        # call to fix takes care of any necessary folddown, and
2449        # signals Clamped if necessary
2450        ans = ans._fix(context)
2451        return ans
2452
2453    def same_quantum(self, other):
2454        """Return True if self and other have the same exponent; otherwise
2455        return False.
2456
2457        If either operand is a special value, the following rules are used:
2458           * return True if both operands are infinities
2459           * return True if both operands are NaNs
2460           * otherwise, return False.
2461        """
2462        other = _convert_other(other, raiseit=True)
2463        if self._is_special or other._is_special:
2464            return (self.is_nan() and other.is_nan() or
2465                    self.is_infinite() and other.is_infinite())
2466        return self._exp == other._exp
2467
2468    def _rescale(self, exp, rounding):
2469        """Rescale self so that the exponent is exp, either by padding with zeros
2470        or by truncating digits, using the given rounding mode.
2471
2472        Specials are returned without change.  This operation is
2473        quiet: it raises no flags, and uses no information from the
2474        context.
2475
2476        exp = exp to scale to (an integer)
2477        rounding = rounding mode
2478        """
2479        if self._is_special:
2480            return Decimal(self)
2481        if not self:
2482            return _dec_from_triple(self._sign, '0', exp)
2483
2484        if self._exp >= exp:
2485            # pad answer with zeros if necessary
2486            return _dec_from_triple(self._sign,
2487                                        self._int + '0'*(self._exp - exp), exp)
2488
2489        # too many digits; round and lose data.  If self.adjusted() <
2490        # exp-1, replace self by 10**(exp-1) before rounding
2491        digits = len(self._int) + self._exp - exp
2492        if digits < 0:
2493            self = _dec_from_triple(self._sign, '1', exp-1)
2494            digits = 0
2495        this_function = getattr(self, self._pick_rounding_function[rounding])
2496        changed = this_function(digits)
2497        coeff = self._int[:digits] or '0'
2498        if changed == 1:
2499            coeff = str(int(coeff)+1)
2500        return _dec_from_triple(self._sign, coeff, exp)
2501
2502    def _round(self, places, rounding):
2503        """Round a nonzero, nonspecial Decimal to a fixed number of
2504        significant figures, using the given rounding mode.
2505
2506        Infinities, NaNs and zeros are returned unaltered.
2507
2508        This operation is quiet: it raises no flags, and uses no
2509        information from the context.
2510
2511        """
2512        if places <= 0:
2513            raise ValueError("argument should be at least 1 in _round")
2514        if self._is_special or not self:
2515            return Decimal(self)
2516        ans = self._rescale(self.adjusted()+1-places, rounding)
2517        # it can happen that the rescale alters the adjusted exponent;
2518        # for example when rounding 99.97 to 3 significant figures.
2519        # When this happens we end up with an extra 0 at the end of
2520        # the number; a second rescale fixes this.
2521        if ans.adjusted() != self.adjusted():
2522            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2523        return ans
2524
2525    def to_integral_exact(self, rounding=None, context=None):
2526        """Rounds to a nearby integer.
2527
2528        If no rounding mode is specified, take the rounding mode from
2529        the context.  This method raises the Rounded and Inexact flags
2530        when appropriate.
2531
2532        See also: to_integral_value, which does exactly the same as
2533        this method except that it doesn't raise Inexact or Rounded.
2534        """
2535        if self._is_special:
2536            ans = self._check_nans(context=context)
2537            if ans:
2538                return ans
2539            return Decimal(self)
2540        if self._exp >= 0:
2541            return Decimal(self)
2542        if not self:
2543            return _dec_from_triple(self._sign, '0', 0)
2544        if context is None:
2545            context = getcontext()
2546        if rounding is None:
2547            rounding = context.rounding
2548        ans = self._rescale(0, rounding)
2549        if ans != self:
2550            context._raise_error(Inexact)
2551        context._raise_error(Rounded)
2552        return ans
2553
2554    def to_integral_value(self, rounding=None, context=None):
2555        """Rounds to the nearest integer, without raising inexact, rounded."""
2556        if context is None:
2557            context = getcontext()
2558        if rounding is None:
2559            rounding = context.rounding
2560        if self._is_special:
2561            ans = self._check_nans(context=context)
2562            if ans:
2563                return ans
2564            return Decimal(self)
2565        if self._exp >= 0:
2566            return Decimal(self)
2567        else:
2568            return self._rescale(0, rounding)
2569
2570    # the method name changed, but we provide also the old one, for compatibility
2571    to_integral = to_integral_value
2572
2573    def sqrt(self, context=None):
2574        """Return the square root of self."""
2575        if context is None:
2576            context = getcontext()
2577
2578        if self._is_special:
2579            ans = self._check_nans(context=context)
2580            if ans:
2581                return ans
2582
2583            if self._isinfinity() and self._sign == 0:
2584                return Decimal(self)
2585
2586        if not self:
2587            # exponent = self._exp // 2.  sqrt(-0) = -0
2588            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2589            return ans._fix(context)
2590
2591        if self._sign == 1:
2592            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2593
2594        # At this point self represents a positive number.  Let p be
2595        # the desired precision and express self in the form c*100**e
2596        # with c a positive real number and e an integer, c and e
2597        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2598        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2599        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2600        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2601        # the closest integer to sqrt(c) with the even integer chosen
2602        # in the case of a tie.
2603        #
2604        # To ensure correct rounding in all cases, we use the
2605        # following trick: we compute the square root to an extra
2606        # place (precision p+1 instead of precision p), rounding down.
2607        # Then, if the result is inexact and its last digit is 0 or 5,
2608        # we increase the last digit to 1 or 6 respectively; if it's
2609        # exact we leave the last digit alone.  Now the final round to
2610        # p places (or fewer in the case of underflow) will round
2611        # correctly and raise the appropriate flags.
2612
2613        # use an extra digit of precision
2614        prec = context.prec+1
2615
2616        # write argument in the form c*100**e where e = self._exp//2
2617        # is the 'ideal' exponent, to be used if the square root is
2618        # exactly representable.  l is the number of 'digits' of c in
2619        # base 100, so that 100**(l-1) <= c < 100**l.
2620        op = _WorkRep(self)
2621        e = op.exp >> 1
2622        if op.exp & 1:
2623            c = op.int * 10
2624            l = (len(self._int) >> 1) + 1
2625        else:
2626            c = op.int
2627            l = len(self._int)+1 >> 1
2628
2629        # rescale so that c has exactly prec base 100 'digits'
2630        shift = prec-l
2631        if shift >= 0:
2632            c *= 100**shift
2633            exact = True
2634        else:
2635            c, remainder = divmod(c, 100**-shift)
2636            exact = not remainder
2637        e -= shift
2638
2639        # find n = floor(sqrt(c)) using Newton's method
2640        n = 10**prec
2641        while True:
2642            q = c//n
2643            if n <= q:
2644                break
2645            else:
2646                n = n + q >> 1
2647        exact = exact and n*n == c
2648
2649        if exact:
2650            # result is exact; rescale to use ideal exponent e
2651            if shift >= 0:
2652                # assert n % 10**shift == 0
2653                n //= 10**shift
2654            else:
2655                n *= 10**-shift
2656            e += shift
2657        else:
2658            # result is not exact; fix last digit as described above
2659            if n % 5 == 0:
2660                n += 1
2661
2662        ans = _dec_from_triple(0, str(n), e)
2663
2664        # round, and fit to current context
2665        context = context._shallow_copy()
2666        rounding = context._set_rounding(ROUND_HALF_EVEN)
2667        ans = ans._fix(context)
2668        context.rounding = rounding
2669
2670        return ans
2671
2672    def max(self, other, context=None):
2673        """Returns the larger value.
2674
2675        Like max(self, other) except if one is not a number, returns
2676        NaN (and signals if one is sNaN).  Also rounds.
2677        """
2678        other = _convert_other(other, raiseit=True)
2679
2680        if context is None:
2681            context = getcontext()
2682
2683        if self._is_special or other._is_special:
2684            # If one operand is a quiet NaN and the other is number, then the
2685            # number is always returned
2686            sn = self._isnan()
2687            on = other._isnan()
2688            if sn or on:
2689                if on == 1 and sn == 0:
2690                    return self._fix(context)
2691                if sn == 1 and on == 0:
2692                    return other._fix(context)
2693                return self._check_nans(other, context)
2694
2695        c = self._cmp(other)
2696        if c == 0:
2697            # If both operands are finite and equal in numerical value
2698            # then an ordering is applied:
2699            #
2700            # If the signs differ then max returns the operand with the
2701            # positive sign and min returns the operand with the negative sign
2702            #
2703            # If the signs are the same then the exponent is used to select
2704            # the result.  This is exactly the ordering used in compare_total.
2705            c = self.compare_total(other)
2706
2707        if c == -1:
2708            ans = other
2709        else:
2710            ans = self
2711
2712        return ans._fix(context)
2713
2714    def min(self, other, context=None):
2715        """Returns the smaller value.
2716
2717        Like min(self, other) except if one is not a number, returns
2718        NaN (and signals if one is sNaN).  Also rounds.
2719        """
2720        other = _convert_other(other, raiseit=True)
2721
2722        if context is None:
2723            context = getcontext()
2724
2725        if self._is_special or other._is_special:
2726            # If one operand is a quiet NaN and the other is number, then the
2727            # number is always returned
2728            sn = self._isnan()
2729            on = other._isnan()
2730            if sn or on:
2731                if on == 1 and sn == 0:
2732                    return self._fix(context)
2733                if sn == 1 and on == 0:
2734                    return other._fix(context)
2735                return self._check_nans(other, context)
2736
2737        c = self._cmp(other)
2738        if c == 0:
2739            c = self.compare_total(other)
2740
2741        if c == -1:
2742            ans = self
2743        else:
2744            ans = other
2745
2746        return ans._fix(context)
2747
2748    def _isinteger(self):
2749        """Returns whether self is an integer"""
2750        if self._is_special:
2751            return False
2752        if self._exp >= 0:
2753            return True
2754        rest = self._int[self._exp:]
2755        return rest == '0'*len(rest)
2756
2757    def _iseven(self):
2758        """Returns True if self is even.  Assumes self is an integer."""
2759        if not self or self._exp > 0:
2760            return True
2761        return self._int[-1+self._exp] in '02468'
2762
2763    def adjusted(self):
2764        """Return the adjusted exponent of self"""
2765        try:
2766            return self._exp + len(self._int) - 1
2767        # If NaN or Infinity, self._exp is string
2768        except TypeError:
2769            return 0
2770
2771    def canonical(self, context=None):
2772        """Returns the same Decimal object.
2773
2774        As we do not have different encodings for the same number, the
2775        received object already is in its canonical form.
2776        """
2777        return self
2778
2779    def compare_signal(self, other, context=None):
2780        """Compares self to the other operand numerically.
2781
2782        It's pretty much like compare(), but all NaNs signal, with signaling
2783        NaNs taking precedence over quiet NaNs.
2784        """
2785        other = _convert_other(other, raiseit = True)
2786        ans = self._compare_check_nans(other, context)
2787        if ans:
2788            return ans
2789        return self.compare(other, context=context)
2790
2791    def compare_total(self, other):
2792        """Compares self to other using the abstract representations.
2793
2794        This is not like the standard compare, which use their numerical
2795        value. Note that a total ordering is defined for all possible abstract
2796        representations.
2797        """
2798        other = _convert_other(other, raiseit=True)
2799
2800        # if one is negative and the other is positive, it's easy
2801        if self._sign and not other._sign:
2802            return _NegativeOne
2803        if not self._sign and other._sign:
2804            return _One
2805        sign = self._sign
2806
2807        # let's handle both NaN types
2808        self_nan = self._isnan()
2809        other_nan = other._isnan()
2810        if self_nan or other_nan:
2811            if self_nan == other_nan:
2812                # compare payloads as though they're integers
2813                self_key = len(self._int), self._int
2814                other_key = len(other._int), other._int
2815                if self_key < other_key:
2816                    if sign:
2817                        return _One
2818                    else:
2819                        return _NegativeOne
2820                if self_key > other_key:
2821                    if sign:
2822                        return _NegativeOne
2823                    else:
2824                        return _One
2825                return _Zero
2826
2827            if sign:
2828                if self_nan == 1:
2829                    return _NegativeOne
2830                if other_nan == 1:
2831                    return _One
2832                if self_nan == 2:
2833                    return _NegativeOne
2834                if other_nan == 2:
2835                    return _One
2836            else:
2837                if self_nan == 1:
2838                    return _One
2839                if other_nan == 1:
2840                    return _NegativeOne
2841                if self_nan == 2:
2842                    return _One
2843                if other_nan == 2:
2844                    return _NegativeOne
2845
2846        if self < other:
2847            return _NegativeOne
2848        if self > other:
2849            return _One
2850
2851        if self._exp < other._exp:
2852            if sign:
2853                return _One
2854            else:
2855                return _NegativeOne
2856        if self._exp > other._exp:
2857            if sign:
2858                return _NegativeOne
2859            else:
2860                return _One
2861        return _Zero
2862
2863
2864    def compare_total_mag(self, other):
2865        """Compares self to other using abstract repr., ignoring sign.
2866
2867        Like compare_total, but with operand's sign ignored and assumed to be 0.
2868        """
2869        other = _convert_other(other, raiseit=True)
2870
2871        s = self.copy_abs()
2872        o = other.copy_abs()
2873        return s.compare_total(o)
2874
2875    def copy_abs(self):
2876        """Returns a copy with the sign set to 0. """
2877        return _dec_from_triple(0, self._int, self._exp, self._is_special)
2878
2879    def copy_negate(self):
2880        """Returns a copy with the sign inverted."""
2881        if self._sign:
2882            return _dec_from_triple(0, self._int, self._exp, self._is_special)
2883        else:
2884            return _dec_from_triple(1, self._int, self._exp, self._is_special)
2885
2886    def copy_sign(self, other):
2887        """Returns self with the sign of other."""
2888        other = _convert_other(other, raiseit=True)
2889        return _dec_from_triple(other._sign, self._int,
2890                                self._exp, self._is_special)
2891
2892    def exp(self, context=None):
2893        """Returns e ** self."""
2894
2895        if context is None:
2896            context = getcontext()
2897
2898        # exp(NaN) = NaN
2899        ans = self._check_nans(context=context)
2900        if ans:
2901            return ans
2902
2903        # exp(-Infinity) = 0
2904        if self._isinfinity() == -1:
2905            return _Zero
2906
2907        # exp(0) = 1
2908        if not self:
2909            return _One
2910
2911        # exp(Infinity) = Infinity
2912        if self._isinfinity() == 1:
2913            return Decimal(self)
2914
2915        # the result is now guaranteed to be inexact (the true
2916        # mathematical result is transcendental). There's no need to
2917        # raise Rounded and Inexact here---they'll always be raised as
2918        # a result of the call to _fix.
2919        p = context.prec
2920        adj = self.adjusted()
2921
2922        # we only need to do any computation for quite a small range
2923        # of adjusted exponents---for example, -29 <= adj <= 10 for
2924        # the default context.  For smaller exponent the result is
2925        # indistinguishable from 1 at the given precision, while for
2926        # larger exponent the result either overflows or underflows.
2927        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2928            # overflow
2929            ans = _dec_from_triple(0, '1', context.Emax+1)
2930        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2931            # underflow to 0
2932            ans = _dec_from_triple(0, '1', context.Etiny()-1)
2933        elif self._sign == 0 and adj < -p:
2934            # p+1 digits; final round will raise correct flags
2935            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2936        elif self._sign == 1 and adj < -p-1:
2937            # p+1 digits; final round will raise correct flags
2938            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2939        # general case
2940        else:
2941            op = _WorkRep(self)
2942            c, e = op.int, op.exp
2943            if op.sign == 1:
2944                c = -c
2945
2946            # compute correctly rounded result: increase precision by
2947            # 3 digits at a time until we get an unambiguously
2948            # roundable result
2949            extra = 3
2950            while True:
2951                coeff, exp = _dexp(c, e, p+extra)
2952                if coeff % (5*10**(len(str(coeff))-p-1)):
2953                    break
2954                extra += 3
2955
2956            ans = _dec_from_triple(0, str(coeff), exp)
2957
2958        # at this stage, ans should round correctly with *any*
2959        # rounding mode, not just with ROUND_HALF_EVEN
2960        context = context._shallow_copy()
2961        rounding = context._set_rounding(ROUND_HALF_EVEN)
2962        ans = ans._fix(context)
2963        context.rounding = rounding
2964
2965        return ans
2966
2967    def is_canonical(self):
2968        """Return True if self is canonical; otherwise return False.
2969
2970        Currently, the encoding of a Decimal instance is always
2971        canonical, so this method returns True for any Decimal.
2972        """
2973        return True
2974
2975    def is_finite(self):
2976        """Return True if self is finite; otherwise return False.
2977
2978        A Decimal instance is considered finite if it is neither
2979        infinite nor a NaN.
2980        """
2981        return not self._is_special
2982
2983    def is_infinite(self):
2984        """Return True if self is infinite; otherwise return False."""
2985        return self._exp == 'F'
2986
2987    def is_nan(self):
2988        """Return True if self is a qNaN or sNaN; otherwise return False."""
2989        return self._exp in ('n', 'N')
2990
2991    def is_normal(self, context=None):
2992        """Return True if self is a normal number; otherwise return False."""
2993        if self._is_special or not self:
2994            return False
2995        if context is None:
2996            context = getcontext()
2997        return context.Emin <= self.adjusted()
2998
2999    def is_qnan(self):
3000        """Return True if self is a quiet NaN; otherwise return False."""
3001        return self._exp == 'n'
3002
3003    def is_signed(self):
3004        """Return True if self is negative; otherwise return False."""
3005        return self._sign == 1
3006
3007    def is_snan(self):
3008        """Return True if self is a signaling NaN; otherwise return False."""
3009        return self._exp == 'N'
3010
3011    def is_subnormal(self, context=None):
3012        """Return True if self is subnormal; otherwise return False."""
3013        if self._is_special or not self:
3014            return False
3015        if context is None:
3016            context = getcontext()
3017        return self.adjusted() < context.Emin
3018
3019    def is_zero(self):
3020        """Return True if self is a zero; otherwise return False."""
3021        return not self._is_special and self._int == '0'
3022
3023    def _ln_exp_bound(self):
3024        """Compute a lower bound for the adjusted exponent of self.ln().
3025        In other words, compute r such that self.ln() >= 10**r.  Assumes
3026        that self is finite and positive and that self != 1.
3027        """
3028
3029        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
3030        adj = self._exp + len(self._int) - 1
3031        if adj >= 1:
3032            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
3033            return len(str(adj*23//10)) - 1
3034        if adj <= -2:
3035            # argument <= 0.1
3036            return len(str((-1-adj)*23//10)) - 1
3037        op = _WorkRep(self)
3038        c, e = op.int, op.exp
3039        if adj == 0:
3040            # 1 < self < 10
3041            num = str(c-10**-e)
3042            den = str(c)
3043            return len(num) - len(den) - (num < den)
3044        # adj == -1, 0.1 <= self < 1
3045        return e + len(str(10**-e - c)) - 1
3046
3047
3048    def ln(self, context=None):
3049        """Returns the natural (base e) logarithm of self."""
3050
3051        if context is None:
3052            context = getcontext()
3053
3054        # ln(NaN) = NaN
3055        ans = self._check_nans(context=context)
3056        if ans:
3057            return ans
3058
3059        # ln(0.0) == -Infinity
3060        if not self:
3061            return _NegativeInfinity
3062
3063        # ln(Infinity) = Infinity
3064        if self._isinfinity() == 1:
3065            return _Infinity
3066
3067        # ln(1.0) == 0.0
3068        if self == _One:
3069            return _Zero
3070
3071        # ln(negative) raises InvalidOperation
3072        if self._sign == 1:
3073            return context._raise_error(InvalidOperation,
3074                                        'ln of a negative value')
3075
3076        # result is irrational, so necessarily inexact
3077        op = _WorkRep(self)
3078        c, e = op.int, op.exp
3079        p = context.prec
3080
3081        # correctly rounded result: repeatedly increase precision by 3
3082        # until we get an unambiguously roundable result
3083        places = p - self._ln_exp_bound() + 2 # at least p+3 places
3084        while True:
3085            coeff = _dlog(c, e, places)
3086            # assert len(str(abs(coeff)))-p >= 1
3087            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3088                break
3089            places += 3
3090        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3091
3092        context = context._shallow_copy()
3093        rounding = context._set_rounding(ROUND_HALF_EVEN)
3094        ans = ans._fix(context)
3095        context.rounding = rounding
3096        return ans
3097
3098    def _log10_exp_bound(self):
3099        """Compute a lower bound for the adjusted exponent of self.log10().
3100        In other words, find r such that self.log10() >= 10**r.
3101        Assumes that self is finite and positive and that self != 1.
3102        """
3103
3104        # For x >= 10 or x < 0.1 we only need a bound on the integer
3105        # part of log10(self), and this comes directly from the
3106        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
3107        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3108        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3109
3110        adj = self._exp + len(self._int) - 1
3111        if adj >= 1:
3112            # self >= 10
3113            return len(str(adj))-1
3114        if adj <= -2:
3115            # self < 0.1
3116            return len(str(-1-adj))-1
3117        op = _WorkRep(self)
3118        c, e = op.int, op.exp
3119        if adj == 0:
3120            # 1 < self < 10
3121            num = str(c-10**-e)
3122            den = str(231*c)
3123            return len(num) - len(den) - (num < den) + 2
3124        # adj == -1, 0.1 <= self < 1
3125        num = str(10**-e-c)
3126        return len(num) + e - (num < "231") - 1
3127
3128    def log10(self, context=None):
3129        """Returns the base 10 logarithm of self."""
3130
3131        if context is None:
3132            context = getcontext()
3133
3134        # log10(NaN) = NaN
3135        ans = self._check_nans(context=context)
3136        if ans:
3137            return ans
3138
3139        # log10(0.0) == -Infinity
3140        if not self:
3141            return _NegativeInfinity
3142
3143        # log10(Infinity) = Infinity
3144        if self._isinfinity() == 1:
3145            return _Infinity
3146
3147        # log10(negative or -Infinity) raises InvalidOperation
3148        if self._sign == 1:
3149            return context._raise_error(InvalidOperation,
3150                                        'log10 of a negative value')
3151
3152        # log10(10**n) = n
3153        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3154            # answer may need rounding
3155            ans = Decimal(self._exp + len(self._int) - 1)
3156        else:
3157            # result is irrational, so necessarily inexact
3158            op = _WorkRep(self)
3159            c, e = op.int, op.exp
3160            p = context.prec
3161
3162            # correctly rounded result: repeatedly increase precision
3163            # until result is unambiguously roundable
3164            places = p-self._log10_exp_bound()+2
3165            while True:
3166                coeff = _dlog10(c, e, places)
3167                # assert len(str(abs(coeff)))-p >= 1
3168                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3169                    break
3170                places += 3
3171            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3172
3173        context = context._shallow_copy()
3174        rounding = context._set_rounding(ROUND_HALF_EVEN)
3175        ans = ans._fix(context)
3176        context.rounding = rounding
3177        return ans
3178
3179    def logb(self, context=None):
3180        """ Returns the exponent of the magnitude of self's MSD.
3181
3182        The result is the integer which is the exponent of the magnitude
3183        of the most significant digit of self (as though it were truncated
3184        to a single digit while maintaining the value of that digit and
3185        without limiting the resulting exponent).
3186        """
3187        # logb(NaN) = NaN
3188        ans = self._check_nans(context=context)
3189        if ans:
3190            return ans
3191
3192        if context is None:
3193            context = getcontext()
3194
3195        # logb(+/-Inf) = +Inf
3196        if self._isinfinity():
3197            return _Infinity
3198
3199        # logb(0) = -Inf, DivisionByZero
3200        if not self:
3201            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3202
3203        # otherwise, simply return the adjusted exponent of self, as a
3204        # Decimal.  Note that no attempt is made to fit the result
3205        # into the current context.
3206        ans = Decimal(self.adjusted())
3207        return ans._fix(context)
3208
3209    def _islogical(self):
3210        """Return True if self is a logical operand.
3211
3212        For being logical, it must be a finite number with a sign of 0,
3213        an exponent of 0, and a coefficient whose digits must all be
3214        either 0 or 1.
3215        """
3216        if self._sign != 0 or self._exp != 0:
3217            return False
3218        for dig in self._int:
3219            if dig not in '01':
3220                return False
3221        return True
3222
3223    def _fill_logical(self, context, opa, opb):
3224        dif = context.prec - len(opa)
3225        if dif > 0:
3226            opa = '0'*dif + opa
3227        elif dif < 0:
3228            opa = opa[-context.prec:]
3229        dif = context.prec - len(opb)
3230        if dif > 0:
3231            opb = '0'*dif + opb
3232        elif dif < 0:
3233            opb = opb[-context.prec:]
3234        return opa, opb
3235
3236    def logical_and(self, other, context=None):
3237        """Applies an 'and' operation between self and other's digits."""
3238        if context is None:
3239            context = getcontext()
3240
3241        other = _convert_other(other, raiseit=True)
3242
3243        if not self._islogical() or not other._islogical():
3244            return context._raise_error(InvalidOperation)
3245
3246        # fill to context.prec
3247        (opa, opb) = self._fill_logical(context, self._int, other._int)
3248
3249        # make the operation, and clean starting zeroes
3250        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3251        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3252
3253    def logical_invert(self, context=None):
3254        """Invert all its digits."""
3255        if context is None:
3256            context = getcontext()
3257        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3258                                context)
3259
3260    def logical_or(self, other, context=None):
3261        """Applies an 'or' operation between self and other's digits."""
3262        if context is None:
3263            context = getcontext()
3264
3265        other = _convert_other(other, raiseit=True)
3266
3267        if not self._islogical() or not other._islogical():
3268            return context._raise_error(InvalidOperation)
3269
3270        # fill to context.prec
3271        (opa, opb) = self._fill_logical(context, self._int, other._int)
3272
3273        # make the operation, and clean starting zeroes
3274        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3275        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3276
3277    def logical_xor(self, other, context=None):
3278        """Applies an 'xor' operation between self and other's digits."""
3279        if context is None:
3280            context = getcontext()
3281
3282        other = _convert_other(other, raiseit=True)
3283
3284        if not self._islogical() or not other._islogical():
3285            return context._raise_error(InvalidOperation)
3286
3287        # fill to context.prec
3288        (opa, opb) = self._fill_logical(context, self._int, other._int)
3289
3290        # make the operation, and clean starting zeroes
3291        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3292        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3293
3294    def max_mag(self, other, context=None):
3295        """Compares the values numerically with their sign ignored."""
3296        other = _convert_other(other, raiseit=True)
3297
3298        if context is None:
3299            context = getcontext()
3300
3301        if self._is_special or other._is_special:
3302            # If one operand is a quiet NaN and the other is number, then the
3303            # number is always returned
3304            sn = self._isnan()
3305            on = other._isnan()
3306            if sn or on:
3307                if on == 1 and sn == 0:
3308                    return self._fix(context)
3309                if sn == 1 and on == 0:
3310                    return other._fix(context)
3311                return self._check_nans(other, context)
3312
3313        c = self.copy_abs()._cmp(other.copy_abs())
3314        if c == 0:
3315            c = self.compare_total(other)
3316
3317        if c == -1:
3318            ans = other
3319        else:
3320            ans = self
3321
3322        return ans._fix(context)
3323
3324    def min_mag(self, other, context=None):
3325        """Compares the values numerically with their sign ignored."""
3326        other = _convert_other(other, raiseit=True)
3327
3328        if context is None:
3329            context = getcontext()
3330
3331        if self._is_special or other._is_special:
3332            # If one operand is a quiet NaN and the other is number, then the
3333            # number is always returned
3334            sn = self._isnan()
3335            on = other._isnan()
3336            if sn or on:
3337                if on == 1 and sn == 0:
3338                    return self._fix(context)
3339                if sn == 1 and on == 0:
3340                    return other._fix(context)
3341                return self._check_nans(other, context)
3342
3343        c = self.copy_abs()._cmp(other.copy_abs())
3344        if c == 0:
3345            c = self.compare_total(other)
3346
3347        if c == -1:
3348            ans = self
3349        else:
3350            ans = other
3351
3352        return ans._fix(context)
3353
3354    def next_minus(self, context=None):
3355        """Returns the largest representable number smaller than itself."""
3356        if context is None:
3357            context = getcontext()
3358
3359        ans = self._check_nans(context=context)
3360        if ans:
3361            return ans
3362
3363        if self._isinfinity() == -1:
3364            return _NegativeInfinity
3365        if self._isinfinity() == 1:
3366            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3367
3368        context = context.copy()
3369        context._set_rounding(ROUND_FLOOR)
3370        context._ignore_all_flags()
3371        new_self = self._fix(context)
3372        if new_self != self:
3373            return new_self
3374        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3375                            context)
3376
3377    def next_plus(self, context=None):
3378        """Returns the smallest representable number larger than itself."""
3379        if context is None:
3380            context = getcontext()
3381
3382        ans = self._check_nans(context=context)
3383        if ans:
3384            return ans
3385
3386        if self._isinfinity() == 1:
3387            return _Infinity
3388        if self._isinfinity() == -1:
3389            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3390
3391        context = context.copy()
3392        context._set_rounding(ROUND_CEILING)
3393        context._ignore_all_flags()
3394        new_self = self._fix(context)
3395        if new_self != self:
3396            return new_self
3397        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3398                            context)
3399
3400    def next_toward(self, other, context=None):
3401        """Returns the number closest to self, in the direction towards other.
3402
3403        The result is the closest representable number to self
3404        (excluding self) that is in the direction towards other,
3405        unless both have the same value.  If the two operands are
3406        numerically equal, then the result is a copy of self with the
3407        sign set to be the same as the sign of other.
3408        """
3409        other = _convert_other(other, raiseit=True)
3410
3411        if context is None:
3412            context = getcontext()
3413
3414        ans = self._check_nans(other, context)
3415        if ans:
3416            return ans
3417
3418        comparison = self._cmp(other)
3419        if comparison == 0:
3420            return self.copy_sign(other)
3421
3422        if comparison == -1:
3423            ans = self.next_plus(context)
3424        else: # comparison == 1
3425            ans = self.next_minus(context)
3426
3427        # decide which flags to raise using value of ans
3428        if ans._isinfinity():
3429            context._raise_error(Overflow,
3430                                 'Infinite result from next_toward',
3431                                 ans._sign)
3432            context._raise_error(Inexact)
3433            context._raise_error(Rounded)
3434        elif ans.adjusted() < context.Emin:
3435            context._raise_error(Underflow)
3436            context._raise_error(Subnormal)
3437            context._raise_error(Inexact)
3438            context._raise_error(Rounded)
3439            # if precision == 1 then we don't raise Clamped for a
3440            # result 0E-Etiny.
3441            if not ans:
3442                context._raise_error(Clamped)
3443
3444        return ans
3445
3446    def number_class(self, context=None):
3447        """Returns an indication of the class of self.
3448
3449        The class is one of the following strings:
3450          sNaN
3451          NaN
3452          -Infinity
3453          -Normal
3454          -Subnormal
3455          -Zero
3456          +Zero
3457          +Subnormal
3458          +Normal
3459          +Infinity
3460        """
3461        if self.is_snan():
3462            return "sNaN"
3463        if self.is_qnan():
3464            return "NaN"
3465        inf = self._isinfinity()
3466        if inf == 1:
3467            return "+Infinity"
3468        if inf == -1:
3469            return "-Infinity"
3470        if self.is_zero():
3471            if self._sign:
3472                return "-Zero"
3473            else:
3474                return "+Zero"
3475        if context is None:
3476            context = getcontext()
3477        if self.is_subnormal(context=context):
3478            if self._sign:
3479                return "-Subnormal"
3480            else:
3481                return "+Subnormal"
3482        # just a normal, regular, boring number, :)
3483        if self._sign:
3484            return "-Normal"
3485        else:
3486            return "+Normal"
3487
3488    def radix(self):
3489        """Just returns 10, as this is Decimal, :)"""
3490        return Decimal(10)
3491
3492    def rotate(self, other, context=None):
3493        """Returns a rotated copy of self, value-of-other times."""
3494        if context is None:
3495            context = getcontext()
3496
3497        other = _convert_other(other, raiseit=True)
3498
3499        ans = self._check_nans(other, context)
3500        if ans:
3501            return ans
3502
3503        if other._exp != 0:
3504            return context._raise_error(InvalidOperation)
3505        if not (-context.prec <= int(other) <= context.prec):
3506            return context._raise_error(InvalidOperation)
3507
3508        if self._isinfinity():
3509            return Decimal(self)
3510
3511        # get values, pad if necessary
3512        torot = int(other)
3513        rotdig = self._int
3514        topad = context.prec - len(rotdig)
3515        if topad > 0:
3516            rotdig = '0'*topad + rotdig
3517        elif topad < 0:
3518            rotdig = rotdig[-topad:]
3519
3520        # let's rotate!
3521        rotated = rotdig[torot:] + rotdig[:torot]
3522        return _dec_from_triple(self._sign,
3523                                rotated.lstrip('0') or '0', self._exp)
3524
3525    def scaleb(self, other, context=None):
3526        """Returns self operand after adding the second value to its exp."""
3527        if context is None:
3528            context = getcontext()
3529
3530        other = _convert_other(other, raiseit=True)
3531
3532        ans = self._check_nans(other, context)
3533        if ans:
3534            return ans
3535
3536        if other._exp != 0:
3537            return context._raise_error(InvalidOperation)
3538        liminf = -2 * (context.Emax + context.prec)
3539        limsup =  2 * (context.Emax + context.prec)
3540        if not (liminf <= int(other) <= limsup):
3541            return context._raise_error(InvalidOperation)
3542
3543        if self._isinfinity():
3544            return Decimal(self)
3545
3546        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3547        d = d._fix(context)
3548        return d
3549
3550    def shift(self, other, context=None):
3551        """Returns a shifted copy of self, value-of-other times."""
3552        if context is None:
3553            context = getcontext()
3554
3555        other = _convert_other(other, raiseit=True)
3556
3557        ans = self._check_nans(other, context)
3558        if ans:
3559            return ans
3560
3561        if other._exp != 0:
3562            return context._raise_error(InvalidOperation)
3563        if not (-context.prec <= int(other) <= context.prec):
3564            return context._raise_error(InvalidOperation)
3565
3566        if self._isinfinity():
3567            return Decimal(self)
3568
3569        # get values, pad if necessary
3570        torot = int(other)
3571        rotdig = self._int
3572        topad = context.prec - len(rotdig)
3573        if topad > 0:
3574            rotdig = '0'*topad + rotdig
3575        elif topad < 0:
3576            rotdig = rotdig[-topad:]
3577
3578        # let's shift!
3579        if torot < 0:
3580            shifted = rotdig[:torot]
3581        else:
3582            shifted = rotdig + '0'*torot
3583            shifted = shifted[-context.prec:]
3584
3585        return _dec_from_triple(self._sign,
3586                                    shifted.lstrip('0') or '0', self._exp)
3587
3588    # Support for pickling, copy, and deepcopy
3589    def __reduce__(self):
3590        return (self.__class__, (str(self),))
3591
3592    def __copy__(self):
3593        if type(self) is Decimal:
3594            return self     # I'm immutable; therefore I am my own clone
3595        return self.__class__(str(self))
3596
3597    def __deepcopy__(self, memo):
3598        if type(self) is Decimal:
3599            return self     # My components are also immutable
3600        return self.__class__(str(self))
3601
3602    # PEP 3101 support.  the _localeconv keyword argument should be
3603    # considered private: it's provided for ease of testing only.
3604    def __format__(self, specifier, context=None, _localeconv=None):
3605        """Format a Decimal instance according to the given specifier.
3606
3607        The specifier should be a standard format specifier, with the
3608        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3609        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
3610        type is omitted it defaults to 'g' or 'G', depending on the
3611        value of context.capitals.
3612        """
3613
3614        # Note: PEP 3101 says that if the type is not present then
3615        # there should be at least one digit after the decimal point.
3616        # We take the liberty of ignoring this requirement for
3617        # Decimal---it's presumably there to make sure that
3618        # format(float, '') behaves similarly to str(float).
3619        if context is None:
3620            context = getcontext()
3621
3622        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3623
3624        # special values don't care about the type or precision
3625        if self._is_special:
3626            sign = _format_sign(self._sign, spec)
3627            body = str(self.copy_abs())
3628            return _format_align(sign, body, spec)
3629
3630        # a type of None defaults to 'g' or 'G', depending on context
3631        if spec['type'] is None:
3632            spec['type'] = ['g', 'G'][context.capitals]
3633
3634        # if type is '%', adjust exponent of self accordingly
3635        if spec['type'] == '%':
3636            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3637
3638        # round if necessary, taking rounding mode from the context
3639        rounding = context.rounding
3640        precision = spec['precision']
3641        if precision is not None:
3642            if spec['type'] in 'eE':
3643                self = self._round(precision+1, rounding)
3644            elif spec['type'] in 'fF%':
3645                self = self._rescale(-precision, rounding)
3646            elif spec['type'] in 'gG' and len(self._int) > precision:
3647                self = self._round(precision, rounding)
3648        # special case: zeros with a positive exponent can't be
3649        # represented in fixed point; rescale them to 0e0.
3650        if not self and self._exp > 0 and spec['type'] in 'fF%':
3651            self = self._rescale(0, rounding)
3652
3653        # figure out placement of the decimal point
3654        leftdigits = self._exp + len(self._int)
3655        if spec['type'] in 'eE':
3656            if not self and precision is not None:
3657                dotplace = 1 - precision
3658            else:
3659                dotplace = 1
3660        elif spec['type'] in 'fF%':
3661            dotplace = leftdigits
3662        elif spec['type'] in 'gG':
3663            if self._exp <= 0 and leftdigits > -6:
3664                dotplace = leftdigits
3665            else:
3666                dotplace = 1
3667
3668        # find digits before and after decimal point, and get exponent
3669        if dotplace < 0:
3670            intpart = '0'
3671            fracpart = '0'*(-dotplace) + self._int
3672        elif dotplace > len(self._int):
3673            intpart = self._int + '0'*(dotplace-len(self._int))
3674            fracpart = ''
3675        else:
3676            intpart = self._int[:dotplace] or '0'
3677            fracpart = self._int[dotplace:]
3678        exp = leftdigits-dotplace
3679
3680        # done with the decimal-specific stuff;  hand over the rest
3681        # of the formatting to the _format_number function
3682        return _format_number(self._sign, intpart, fracpart, exp, spec)
3683
3684def _dec_from_triple(sign, coefficient, exponent, special=False):
3685    """Create a decimal instance directly, without any validation,
3686    normalization (e.g. removal of leading zeros) or argument
3687    conversion.
3688
3689    This function is for *internal use only*.
3690    """
3691
3692    self = object.__new__(Decimal)
3693    self._sign = sign
3694    self._int = coefficient
3695    self._exp = exponent
3696    self._is_special = special
3697
3698    return self
3699
3700# Register Decimal as a kind of Number (an abstract base class).
3701# However, do not register it as Real (because Decimals are not
3702# interoperable with floats).
3703_numbers.Number.register(Decimal)
3704
3705
3706##### Context class #######################################################
3707
3708
3709# get rounding method function:
3710rounding_functions = [name for name in Decimal.__dict__.keys()
3711                                    if name.startswith('_round_')]
3712for name in rounding_functions:
3713    # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3714    globalname = name[1:].upper()
3715    val = globals()[globalname]
3716    Decimal._pick_rounding_function[val] = name
3717
3718del name, val, globalname, rounding_functions
3719
3720class _ContextManager(object):
3721    """Context manager class to support localcontext().
3722
3723      Sets a copy of the supplied context in __enter__() and restores
3724      the previous decimal context in __exit__()
3725    """
3726    def __init__(self, new_context):
3727        self.new_context = new_context.copy()
3728    def __enter__(self):
3729        self.saved_context = getcontext()
3730        setcontext(self.new_context)
3731        return self.new_context
3732    def __exit__(self, t, v, tb):
3733        setcontext(self.saved_context)
3734
3735class Context(object):
3736    """Contains the context for a Decimal instance.
3737
3738    Contains:
3739    prec - precision (for use in rounding, division, square roots..)
3740    rounding - rounding type (how you round)
3741    traps - If traps[exception] = 1, then the exception is
3742                    raised when it is caused.  Otherwise, a value is
3743                    substituted in.
3744    flags  - When an exception is caused, flags[exception] is set.
3745             (Whether or not the trap_enabler is set)
3746             Should be reset by user of Decimal instance.
3747    Emin -   Minimum exponent
3748    Emax -   Maximum exponent
3749    capitals -      If 1, 1*10^1 is printed as 1E+1.
3750                    If 0, printed as 1e1
3751    _clamp - If 1, change exponents if too high (Default 0)
3752    """
3753
3754    def __init__(self, prec=None, rounding=None,
3755                 traps=None, flags=None,
3756                 Emin=None, Emax=None,
3757                 capitals=None, _clamp=0,
3758                 _ignored_flags=None):
3759        if flags is None:
3760            flags = []
3761        if _ignored_flags is None:
3762            _ignored_flags = []
3763        if not isinstance(flags, dict):
3764            flags = dict([(s, int(s in flags)) for s in _signals])
3765            del s
3766        if traps is not None and not isinstance(traps, dict):
3767            traps = dict([(s, int(s in traps)) for s in _signals])
3768            del s
3769        for name, val in locals().items():
3770            if val is None:
3771                setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3772            else:
3773                setattr(self, name, val)
3774        del self.self
3775
3776    def __repr__(self):
3777        """Show the current context."""
3778        s = []
3779        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3780                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3781                 % vars(self))
3782        names = [f.__name__ for f, v in self.flags.items() if v]
3783        s.append('flags=[' + ', '.join(names) + ']')
3784        names = [t.__name__ for t, v in self.traps.items() if v]
3785        s.append('traps=[' + ', '.join(names) + ']')
3786        return ', '.join(s) + ')'
3787
3788    def clear_flags(self):
3789        """Reset all flags to zero"""
3790        for flag in self.flags:
3791            self.flags[flag] = 0
3792
3793    def _shallow_copy(self):
3794        """Returns a shallow copy from self."""
3795        nc = Context(self.prec, self.rounding, self.traps,
3796                     self.flags, self.Emin, self.Emax,
3797                     self.capitals, self._clamp, self._ignored_flags)
3798        return nc
3799
3800    def copy(self):
3801        """Returns a deep copy from self."""
3802        nc = Context(self.prec, self.rounding, self.traps.copy(),
3803                     self.flags.copy(), self.Emin, self.Emax,
3804                     self.capitals, self._clamp, self._ignored_flags)
3805        return nc
3806    __copy__ = copy
3807
3808    def _raise_error(self, condition, explanation = None, *args):
3809        """Handles an error
3810
3811        If the flag is in _ignored_flags, returns the default response.
3812        Otherwise, it sets the flag, then, if the corresponding
3813        trap_enabler is set, it reraises the exception.  Otherwise, it returns
3814        the default value after setting the flag.
3815        """
3816        error = _condition_map.get(condition, condition)
3817        if error in self._ignored_flags:
3818            # Don't touch the flag
3819            return error().handle(self, *args)
3820
3821        self.flags[error] = 1
3822        if not self.traps[error]:
3823            # The errors define how to handle themselves.
3824            return condition().handle(self, *args)
3825
3826        # Errors should only be risked on copies of the context
3827        # self._ignored_flags = []
3828        raise error(explanation)
3829
3830    def _ignore_all_flags(self):
3831        """Ignore all flags, if they are raised"""
3832        return self._ignore_flags(*_signals)
3833
3834    def _ignore_flags(self, *flags):
3835        """Ignore the flags, if they are raised"""
3836        # Do not mutate-- This way, copies of a context leave the original
3837        # alone.
3838        self._ignored_flags = (self._ignored_flags + list(flags))
3839        return list(flags)
3840
3841    def _regard_flags(self, *flags):
3842        """Stop ignoring the flags, if they are raised"""
3843        if flags and isinstance(flags[0], (tuple,list)):
3844            flags = flags[0]
3845        for flag in flags:
3846            self._ignored_flags.remove(flag)
3847
3848    # We inherit object.__hash__, so we must deny this explicitly
3849    __hash__ = None
3850
3851    def Etiny(self):
3852        """Returns Etiny (= Emin - prec + 1)"""
3853        return int(self.Emin - self.prec + 1)
3854
3855    def Etop(self):
3856        """Returns maximum exponent (= Emax - prec + 1)"""
3857        return int(self.Emax - self.prec + 1)
3858
3859    def _set_rounding(self, type):
3860        """Sets the rounding type.
3861
3862        Sets the rounding type, and returns the current (previous)
3863        rounding type.  Often used like:
3864
3865        context = context.copy()
3866        # so you don't change the calling context
3867        # if an error occurs in the middle.
3868        rounding = context._set_rounding(ROUND_UP)
3869        val = self.__sub__(other, context=context)
3870        context._set_rounding(rounding)
3871
3872        This will make it round up for that operation.
3873        """
3874        rounding = self.rounding
3875        self.rounding= type
3876        return rounding
3877
3878    def create_decimal(self, num='0'):
3879        """Creates a new Decimal instance but using self as context.
3880
3881        This method implements the to-number operation of the
3882        IBM Decimal specification."""
3883
3884        if isinstance(num, basestring) and num != num.strip():
3885            return self._raise_error(ConversionSyntax,
3886                                     "no trailing or leading whitespace is "
3887                                     "permitted.")
3888
3889        d = Decimal(num, context=self)
3890        if d._isnan() and len(d._int) > self.prec - self._clamp:
3891            return self._raise_error(ConversionSyntax,
3892                                     "diagnostic info too long in NaN")
3893        return d._fix(self)
3894
3895    def create_decimal_from_float(self, f):
3896        """Creates a new Decimal instance from a float but rounding using self
3897        as the context.
3898
3899        >>> context = Context(prec=5, rounding=ROUND_DOWN)
3900        >>> context.create_decimal_from_float(3.1415926535897932)
3901        Decimal('3.1415')
3902        >>> context = Context(prec=5, traps=[Inexact])
3903        >>> context.create_decimal_from_float(3.1415926535897932)
3904        Traceback (most recent call last):
3905            ...
3906        Inexact: None
3907
3908        """
3909        d = Decimal.from_float(f)       # An exact conversion
3910        return d._fix(self)             # Apply the context rounding
3911
3912    # Methods
3913    def abs(self, a):
3914        """Returns the absolute value of the operand.
3915
3916        If the operand is negative, the result is the same as using the minus
3917        operation on the operand.  Otherwise, the result is the same as using
3918        the plus operation on the operand.
3919
3920        >>> ExtendedContext.abs(Decimal('2.1'))
3921        Decimal('2.1')
3922        >>> ExtendedContext.abs(Decimal('-100'))
3923        Decimal('100')
3924        >>> ExtendedContext.abs(Decimal('101.5'))
3925        Decimal('101.5')
3926        >>> ExtendedContext.abs(Decimal('-101.5'))
3927        Decimal('101.5')
3928        >>> ExtendedContext.abs(-1)
3929        Decimal('1')
3930        """
3931        a = _convert_other(a, raiseit=True)
3932        return a.__abs__(context=self)
3933
3934    def add(self, a, b):
3935        """Return the sum of the two operands.
3936
3937        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3938        Decimal('19.00')
3939        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3940        Decimal('1.02E+4')
3941        >>> ExtendedContext.add(1, Decimal(2))
3942        Decimal('3')
3943        >>> ExtendedContext.add(Decimal(8), 5)
3944        Decimal('13')
3945        >>> ExtendedContext.add(5, 5)
3946        Decimal('10')
3947        """
3948        a = _convert_other(a, raiseit=True)
3949        r = a.__add__(b, context=self)
3950        if r is NotImplemented:
3951            raise TypeError("Unable to convert %s to Decimal" % b)
3952        else:
3953            return r
3954
3955    def _apply(self, a):
3956        return str(a._fix(self))
3957
3958    def canonical(self, a):
3959        """Returns the same Decimal object.
3960
3961        As we do not have different encodings for the same number, the
3962        received object already is in its canonical form.
3963
3964        >>> ExtendedContext.canonical(Decimal('2.50'))
3965        Decimal('2.50')
3966        """
3967        return a.canonical(context=self)
3968
3969    def compare(self, a, b):
3970        """Compares values numerically.
3971
3972        If the signs of the operands differ, a value representing each operand
3973        ('-1' if the operand is less than zero, '0' if the operand is zero or
3974        negative zero, or '1' if the operand is greater than zero) is used in
3975        place of that operand for the comparison instead of the actual
3976        operand.
3977
3978        The comparison is then effected by subtracting the second operand from
3979        the first and then returning a value according to the result of the
3980        subtraction: '-1' if the result is less than zero, '0' if the result is
3981        zero or negative zero, or '1' if the result is greater than zero.
3982
3983        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3984        Decimal('-1')
3985        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3986        Decimal('0')
3987        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3988        Decimal('0')
3989        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3990        Decimal('1')
3991        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3992        Decimal('1')
3993        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3994        Decimal('-1')
3995        >>> ExtendedContext.compare(1, 2)
3996        Decimal('-1')
3997        >>> ExtendedContext.compare(Decimal(1), 2)
3998        Decimal('-1')
3999        >>> ExtendedContext.compare(1, Decimal(2))
4000        Decimal('-1')
4001        """
4002        a = _convert_other(a, raiseit=True)
4003        return a.compare(b, context=self)
4004
4005    def compare_signal(self, a, b):
4006        """Compares the values of the two operands numerically.
4007
4008        It's pretty much like compare(), but all NaNs signal, with signaling
4009        NaNs taking precedence over quiet NaNs.
4010
4011        >>> c = ExtendedContext
4012        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
4013        Decimal('-1')
4014        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
4015        Decimal('0')
4016        >>> c.flags[InvalidOperation] = 0
4017        >>> print c.flags[InvalidOperation]
4018        0
4019        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
4020        Decimal('NaN')
4021        >>> print c.flags[InvalidOperation]
4022        1
4023        >>> c.flags[InvalidOperation] = 0
4024        >>> print c.flags[InvalidOperation]
4025        0
4026        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
4027        Decimal('NaN')
4028        >>> print c.flags[InvalidOperation]
4029        1
4030        >>> c.compare_signal(-1, 2)
4031        Decimal('-1')
4032        >>> c.compare_signal(Decimal(-1), 2)
4033        Decimal('-1')
4034        >>> c.compare_signal(-1, Decimal(2))
4035        Decimal('-1')
4036        """
4037        a = _convert_other(a, raiseit=True)
4038        return a.compare_signal(b, context=self)
4039
4040    def compare_total(self, a, b):
4041        """Compares two operands using their abstract representation.
4042
4043        This is not like the standard compare, which use their numerical
4044        value. Note that a total ordering is defined for all possible abstract
4045        representations.
4046
4047        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
4048        Decimal('-1')
4049        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
4050        Decimal('-1')
4051        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
4052        Decimal('-1')
4053        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
4054        Decimal('0')
4055        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
4056        Decimal('1')
4057        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
4058        Decimal('-1')
4059        >>> ExtendedContext.compare_total(1, 2)
4060        Decimal('-1')
4061        >>> ExtendedContext.compare_total(Decimal(1), 2)
4062        Decimal('-1')
4063        >>> ExtendedContext.compare_total(1, Decimal(2))
4064        Decimal('-1')
4065        """
4066        a = _convert_other(a, raiseit=True)
4067        return a.compare_total(b)
4068
4069    def compare_total_mag(self, a, b):
4070        """Compares two operands using their abstract representation ignoring sign.
4071
4072        Like compare_total, but with operand's sign ignored and assumed to be 0.
4073        """
4074        a = _convert_other(a, raiseit=True)
4075        return a.compare_total_mag(b)
4076
4077    def copy_abs(self, a):
4078        """Returns a copy of the operand with the sign set to 0.
4079
4080        >>> ExtendedContext.copy_abs(Decimal('2.1'))
4081        Decimal('2.1')
4082        >>> ExtendedContext.copy_abs(Decimal('-100'))
4083        Decimal('100')
4084        >>> ExtendedContext.copy_abs(-1)
4085        Decimal('1')
4086        """
4087        a = _convert_other(a, raiseit=True)
4088        return a.copy_abs()
4089
4090    def copy_decimal(self, a):
4091        """Returns a copy of the decimal object.
4092
4093        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
4094        Decimal('2.1')
4095        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
4096        Decimal('-1.00')
4097        >>> ExtendedContext.copy_decimal(1)
4098        Decimal('1')
4099        """
4100        a = _convert_other(a, raiseit=True)
4101        return Decimal(a)
4102
4103    def copy_negate(self, a):
4104        """Returns a copy of the operand with the sign inverted.
4105
4106        >>> ExtendedContext.copy_negate(Decimal('101.5'))
4107        Decimal('-101.5')
4108        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
4109        Decimal('101.5')
4110        >>> ExtendedContext.copy_negate(1)
4111        Decimal('-1')
4112        """
4113        a = _convert_other(a, raiseit=True)
4114        return a.copy_negate()
4115
4116    def copy_sign(self, a, b):
4117        """Copies the second operand's sign to the first one.
4118
4119        In detail, it returns a copy of the first operand with the sign
4120        equal to the sign of the second operand.
4121
4122        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
4123        Decimal('1.50')
4124        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
4125        Decimal('1.50')
4126        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
4127        Decimal('-1.50')
4128        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
4129        Decimal('-1.50')
4130        >>> ExtendedContext.copy_sign(1, -2)
4131        Decimal('-1')
4132        >>> ExtendedContext.copy_sign(Decimal(1), -2)
4133        Decimal('-1')
4134        >>> ExtendedContext.copy_sign(1, Decimal(-2))
4135        Decimal('-1')
4136        """
4137        a = _convert_other(a, raiseit=True)
4138        return a.copy_sign(b)
4139
4140    def divide(self, a, b):
4141        """Decimal division in a specified context.
4142
4143        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4144        Decimal('0.333333333')
4145        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4146        Decimal('0.666666667')
4147        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4148        Decimal('2.5')
4149        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4150        Decimal('0.1')
4151        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4152        Decimal('1')
4153        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4154        Decimal('4.00')
4155        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4156        Decimal('1.20')
4157        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4158        Decimal('10')
4159        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4160        Decimal('1000')
4161        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4162        Decimal('1.20E+6')
4163        >>> ExtendedContext.divide(5, 5)
4164        Decimal('1')
4165        >>> ExtendedContext.divide(Decimal(5), 5)
4166        Decimal('1')
4167        >>> ExtendedContext.divide(5, Decimal(5))
4168        Decimal('1')
4169        """
4170        a = _convert_other(a, raiseit=True)
4171        r = a.__div__(b, context=self)
4172        if r is NotImplemented:
4173            raise TypeError("Unable to convert %s to Decimal" % b)
4174        else:
4175            return r
4176
4177    def divide_int(self, a, b):
4178        """Divides two numbers and returns the integer part of the result.
4179
4180        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4181        Decimal('0')
4182        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4183        Decimal('3')
4184        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4185        Decimal('3')
4186        >>> ExtendedContext.divide_int(10, 3)
4187        Decimal('3')
4188        >>> ExtendedContext.divide_int(Decimal(10), 3)
4189        Decimal('3')
4190        >>> ExtendedContext.divide_int(10, Decimal(3))
4191        Decimal('3')
4192        """
4193        a = _convert_other(a, raiseit=True)
4194        r = a.__floordiv__(b, context=self)
4195        if r is NotImplemented:
4196            raise TypeError("Unable to convert %s to Decimal" % b)
4197        else:
4198            return r
4199
4200    def divmod(self, a, b):
4201        """Return (a // b, a % b).
4202
4203        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4204        (Decimal('2'), Decimal('2'))
4205        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4206        (Decimal('2'), Decimal('0'))
4207        >>> ExtendedContext.divmod(8, 4)
4208        (Decimal('2'), Decimal('0'))
4209        >>> ExtendedContext.divmod(Decimal(8), 4)
4210        (Decimal('2'), Decimal('0'))
4211        >>> ExtendedContext.divmod(8, Decimal(4))
4212        (Decimal('2'), Decimal('0'))
4213        """
4214        a = _convert_other(a, raiseit=True)
4215        r = a.__divmod__(b, context=self)
4216        if r is NotImplemented:
4217            raise TypeError("Unable to convert %s to Decimal" % b)
4218        else:
4219            return r
4220
4221    def exp(self, a):
4222        """Returns e ** a.
4223
4224        >>> c = ExtendedContext.copy()
4225        >>> c.Emin = -999
4226        >>> c.Emax = 999
4227        >>> c.exp(Decimal('-Infinity'))
4228        Decimal('0')
4229        >>> c.exp(Decimal('-1'))
4230        Decimal('0.367879441')
4231        >>> c.exp(Decimal('0'))
4232        Decimal('1')
4233        >>> c.exp(Decimal('1'))
4234        Decimal('2.71828183')
4235        >>> c.exp(Decimal('0.693147181'))
4236        Decimal('2.00000000')
4237        >>> c.exp(Decimal('+Infinity'))
4238        Decimal('Infinity')
4239        >>> c.exp(10)
4240        Decimal('22026.4658')
4241        """
4242        a =_convert_other(a, raiseit=True)
4243        return a.exp(context=self)
4244
4245    def fma(self, a, b, c):
4246        """Returns a multiplied by b, plus c.
4247
4248        The first two operands are multiplied together, using multiply,
4249        the third operand is then added to the result of that
4250        multiplication, using add, all with only one final rounding.
4251
4252        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4253        Decimal('22')
4254        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4255        Decimal('-8')
4256        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4257        Decimal('1.38435736E+12')
4258        >>> ExtendedContext.fma(1, 3, 4)
4259        Decimal('7')
4260        >>> ExtendedContext.fma(1, Decimal(3), 4)
4261        Decimal('7')
4262        >>> ExtendedContext.fma(1, 3, Decimal(4))
4263        Decimal('7')
4264        """
4265        a = _convert_other(a, raiseit=True)
4266        return a.fma(b, c, context=self)
4267
4268    def is_canonical(self, a):
4269        """Return True if the operand is canonical; otherwise return False.
4270
4271        Currently, the encoding of a Decimal instance is always
4272        canonical, so this method returns True for any Decimal.
4273
4274        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4275        True
4276        """
4277        return a.is_canonical()
4278
4279    def is_finite(self, a):
4280        """Return True if the operand is finite; otherwise return False.
4281
4282        A Decimal instance is considered finite if it is neither
4283        infinite nor a NaN.
4284
4285        >>> ExtendedContext.is_finite(Decimal('2.50'))
4286        True
4287        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4288        True
4289        >>> ExtendedContext.is_finite(Decimal('0'))
4290        True
4291        >>> ExtendedContext.is_finite(Decimal('Inf'))
4292        False
4293        >>> ExtendedContext.is_finite(Decimal('NaN'))
4294        False
4295        >>> ExtendedContext.is_finite(1)
4296        True
4297        """
4298        a = _convert_other(a, raiseit=True)
4299        return a.is_finite()
4300
4301    def is_infinite(self, a):
4302        """Return True if the operand is infinite; otherwise return False.
4303
4304        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4305        False
4306        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4307        True
4308        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4309        False
4310        >>> ExtendedContext.is_infinite(1)
4311        False
4312        """
4313        a = _convert_other(a, raiseit=True)
4314        return a.is_infinite()
4315
4316    def is_nan(self, a):
4317        """Return True if the operand is a qNaN or sNaN;
4318        otherwise return False.
4319
4320        >>> ExtendedContext.is_nan(Decimal('2.50'))
4321        False
4322        >>> ExtendedContext.is_nan(Decimal('NaN'))
4323        True
4324        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4325        True
4326        >>> ExtendedContext.is_nan(1)
4327        False
4328        """
4329        a = _convert_other(a, raiseit=True)
4330        return a.is_nan()
4331
4332    def is_normal(self, a):
4333        """Return True if the operand is a normal number;
4334        otherwise return False.
4335
4336        >>> c = ExtendedContext.copy()
4337        >>> c.Emin = -999
4338        >>> c.Emax = 999
4339        >>> c.is_normal(Decimal('2.50'))
4340        True
4341        >>> c.is_normal(Decimal('0.1E-999'))
4342        False
4343        >>> c.is_normal(Decimal('0.00'))
4344        False
4345        >>> c.is_normal(Decimal('-Inf'))
4346        False
4347        >>> c.is_normal(Decimal('NaN'))
4348        False
4349        >>> c.is_normal(1)
4350        True
4351        """
4352        a = _convert_other(a, raiseit=True)
4353        return a.is_normal(context=self)
4354
4355    def is_qnan(self, a):
4356        """Return True if the operand is a quiet NaN; otherwise return False.
4357
4358        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4359        False
4360        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4361        True
4362        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4363        False
4364        >>> ExtendedContext.is_qnan(1)
4365        False
4366        """
4367        a = _convert_other(a, raiseit=True)
4368        return a.is_qnan()
4369
4370    def is_signed(self, a):
4371        """Return True if the operand is negative; otherwise return False.
4372
4373        >>> ExtendedContext.is_signed(Decimal('2.50'))
4374        False
4375        >>> ExtendedContext.is_signed(Decimal('-12'))
4376        True
4377        >>> ExtendedContext.is_signed(Decimal('-0'))
4378        True
4379        >>> ExtendedContext.is_signed(8)
4380        False
4381        >>> ExtendedContext.is_signed(-8)
4382        True
4383        """
4384        a = _convert_other(a, raiseit=True)
4385        return a.is_signed()
4386
4387    def is_snan(self, a):
4388        """Return True if the operand is a signaling NaN;
4389        otherwise return False.
4390
4391        >>> ExtendedContext.is_snan(Decimal('2.50'))
4392        False
4393        >>> ExtendedContext.is_snan(Decimal('NaN'))
4394        False
4395        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4396        True
4397        >>> ExtendedContext.is_snan(1)
4398        False
4399        """
4400        a = _convert_other(a, raiseit=True)
4401        return a.is_snan()
4402
4403    def is_subnormal(self, a):
4404        """Return True if the operand is subnormal; otherwise return False.
4405
4406        >>> c = ExtendedContext.copy()
4407        >>> c.Emin = -999
4408        >>> c.Emax = 999
4409        >>> c.is_subnormal(Decimal('2.50'))
4410        False
4411        >>> c.is_subnormal(Decimal('0.1E-999'))
4412        True
4413        >>> c.is_subnormal(Decimal('0.00'))
4414        False
4415        >>> c.is_subnormal(Decimal('-Inf'))
4416        False
4417        >>> c.is_subnormal(Decimal('NaN'))
4418        False
4419        >>> c.is_subnormal(1)
4420        False
4421        """
4422        a = _convert_other(a, raiseit=True)
4423        return a.is_subnormal(context=self)
4424
4425    def is_zero(self, a):
4426        """Return True if the operand is a zero; otherwise return False.
4427
4428        >>> ExtendedContext.is_zero(Decimal('0'))
4429        True
4430        >>> ExtendedContext.is_zero(Decimal('2.50'))
4431        False
4432        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4433        True
4434        >>> ExtendedContext.is_zero(1)
4435        False
4436        >>> ExtendedContext.is_zero(0)
4437        True
4438        """
4439        a = _convert_other(a, raiseit=True)
4440        return a.is_zero()
4441
4442    def ln(self, a):
4443        """Returns the natural (base e) logarithm of the operand.
4444
4445        >>> c = ExtendedContext.copy()
4446        >>> c.Emin = -999
4447        >>> c.Emax = 999
4448        >>> c.ln(Decimal('0'))
4449        Decimal('-Infinity')
4450        >>> c.ln(Decimal('1.000'))
4451        Decimal('0')
4452        >>> c.ln(Decimal('2.71828183'))
4453        Decimal('1.00000000')
4454        >>> c.ln(Decimal('10'))
4455        Decimal('2.30258509')
4456        >>> c.ln(Decimal('+Infinity'))
4457        Decimal('Infinity')
4458        >>> c.ln(1)
4459        Decimal('0')
4460        """
4461        a = _convert_other(a, raiseit=True)
4462        return a.ln(context=self)
4463
4464    def log10(self, a):
4465        """Returns the base 10 logarithm of the operand.
4466
4467        >>> c = ExtendedContext.copy()
4468        >>> c.Emin = -999
4469        >>> c.Emax = 999
4470        >>> c.log10(Decimal('0'))
4471        Decimal('-Infinity')
4472        >>> c.log10(Decimal('0.001'))
4473        Decimal('-3')
4474        >>> c.log10(Decimal('1.000'))
4475        Decimal('0')
4476        >>> c.log10(Decimal('2'))
4477        Decimal('0.301029996')
4478        >>> c.log10(Decimal('10'))
4479        Decimal('1')
4480        >>> c.log10(Decimal('70'))
4481        Decimal('1.84509804')
4482        >>> c.log10(Decimal('+Infinity'))
4483        Decimal('Infinity')
4484        >>> c.log10(0)
4485        Decimal('-Infinity')
4486        >>> c.log10(1)
4487        Decimal('0')
4488        """
4489        a = _convert_other(a, raiseit=True)
4490        return a.log10(context=self)
4491
4492    def logb(self, a):
4493        """ Returns the exponent of the magnitude of the operand's MSD.
4494
4495        The result is the integer which is the exponent of the magnitude
4496        of the most significant digit of the operand (as though the
4497        operand were truncated to a single digit while maintaining the
4498        value of that digit and without limiting the resulting exponent).
4499
4500        >>> ExtendedContext.logb(Decimal('250'))
4501        Decimal('2')
4502        >>> ExtendedContext.logb(Decimal('2.50'))
4503        Decimal('0')
4504        >>> ExtendedContext.logb(Decimal('0.03'))
4505        Decimal('-2')
4506        >>> ExtendedContext.logb(Decimal('0'))
4507        Decimal('-Infinity')
4508        >>> ExtendedContext.logb(1)
4509        Decimal('0')
4510        >>> ExtendedContext.logb(10)
4511        Decimal('1')
4512        >>> ExtendedContext.logb(100)
4513        Decimal('2')
4514        """
4515        a = _convert_other(a, raiseit=True)
4516        return a.logb(context=self)
4517
4518    def logical_and(self, a, b):
4519        """Applies the logical operation 'and' between each operand's digits.
4520
4521        The operands must be both logical numbers.
4522
4523        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4524        Decimal('0')
4525        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4526        Decimal('0')
4527        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4528        Decimal('0')
4529        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4530        Decimal('1')
4531        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4532        Decimal('1000')
4533        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4534        Decimal('10')
4535        >>> ExtendedContext.logical_and(110, 1101)
4536        Decimal('100')
4537        >>> ExtendedContext.logical_and(Decimal(110), 1101)
4538        Decimal('100')
4539        >>> ExtendedContext.logical_and(110, Decimal(1101))
4540        Decimal('100')
4541        """
4542        a = _convert_other(a, raiseit=True)
4543        return a.logical_and(b, context=self)
4544
4545    def logical_invert(self, a):
4546        """Invert all the digits in the operand.
4547
4548        The operand must be a logical number.
4549
4550        >>> ExtendedContext.logical_invert(Decimal('0'))
4551        Decimal('111111111')
4552        >>> ExtendedContext.logical_invert(Decimal('1'))
4553        Decimal('111111110')
4554        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4555        Decimal('0')
4556        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4557        Decimal('10101010')
4558        >>> ExtendedContext.logical_invert(1101)
4559        Decimal('111110010')
4560        """
4561        a = _convert_other(a, raiseit=True)
4562        return a.logical_invert(context=self)
4563
4564    def logical_or(self, a, b):
4565        """Applies the logical operation 'or' between each operand's digits.
4566
4567        The operands must be both logical numbers.
4568
4569        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4570        Decimal('0')
4571        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4572        Decimal('1')
4573        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4574        Decimal('1')
4575        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4576        Decimal('1')
4577        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4578        Decimal('1110')
4579        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4580        Decimal('1110')
4581        >>> ExtendedContext.logical_or(110, 1101)
4582        Decimal('1111')
4583        >>> ExtendedContext.logical_or(Decimal(110), 1101)
4584        Decimal('1111')
4585        >>> ExtendedContext.logical_or(110, Decimal(1101))
4586        Decimal('1111')
4587        """
4588        a = _convert_other(a, raiseit=True)
4589        return a.logical_or(b, context=self)
4590
4591    def logical_xor(self, a, b):
4592        """Applies the logical operation 'xor' between each operand's digits.
4593
4594        The operands must be both logical numbers.
4595
4596        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4597        Decimal('0')
4598        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4599        Decimal('1')
4600        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4601        Decimal('1')
4602        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4603        Decimal('0')
4604        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4605        Decimal('110')
4606        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4607        Decimal('1101')
4608        >>> ExtendedContext.logical_xor(110, 1101)
4609        Decimal('1011')
4610        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
4611        Decimal('1011')
4612        >>> ExtendedContext.logical_xor(110, Decimal(1101))
4613        Decimal('1011')
4614        """
4615        a = _convert_other(a, raiseit=True)
4616        return a.logical_xor(b, context=self)
4617
4618    def max(self, a, b):
4619        """max compares two values numerically and returns the maximum.
4620
4621        If either operand is a NaN then the general rules apply.
4622        Otherwise, the operands are compared as though by the compare
4623        operation.  If they are numerically equal then the left-hand operand
4624        is chosen as the result.  Otherwise the maximum (closer to positive
4625        infinity) of the two operands is chosen as the result.
4626
4627        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4628        Decimal('3')
4629        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4630        Decimal('3')
4631        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4632        Decimal('1')
4633        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4634        Decimal('7')
4635        >>> ExtendedContext.max(1, 2)
4636        Decimal('2')
4637        >>> ExtendedContext.max(Decimal(1), 2)
4638        Decimal('2')
4639        >>> ExtendedContext.max(1, Decimal(2))
4640        Decimal('2')
4641        """
4642        a = _convert_other(a, raiseit=True)
4643        return a.max(b, context=self)
4644
4645    def max_mag(self, a, b):
4646        """Compares the values numerically with their sign ignored.
4647
4648        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
4649        Decimal('7')
4650        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
4651        Decimal('-10')
4652        >>> ExtendedContext.max_mag(1, -2)
4653        Decimal('-2')
4654        >>> ExtendedContext.max_mag(Decimal(1), -2)
4655        Decimal('-2')
4656        >>> ExtendedContext.max_mag(1, Decimal(-2))
4657        Decimal('-2')
4658        """
4659        a = _convert_other(a, raiseit=True)
4660        return a.max_mag(b, context=self)
4661
4662    def min(self, a, b):
4663        """min compares two values numerically and returns the minimum.
4664
4665        If either operand is a NaN then the general rules apply.
4666        Otherwise, the operands are compared as though by the compare
4667        operation.  If they are numerically equal then the left-hand operand
4668        is chosen as the result.  Otherwise the minimum (closer to negative
4669        infinity) of the two operands is chosen as the result.
4670
4671        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4672        Decimal('2')
4673        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4674        Decimal('-10')
4675        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4676        Decimal('1.0')
4677        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4678        Decimal('7')
4679        >>> ExtendedContext.min(1, 2)
4680        Decimal('1')
4681        >>> ExtendedContext.min(Decimal(1), 2)
4682        Decimal('1')
4683        >>> ExtendedContext.min(1, Decimal(29))
4684        Decimal('1')
4685        """
4686        a = _convert_other(a, raiseit=True)
4687        return a.min(b, context=self)
4688
4689    def min_mag(self, a, b):
4690        """Compares the values numerically with their sign ignored.
4691
4692        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
4693        Decimal('-2')
4694        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
4695        Decimal('-3')
4696        >>> ExtendedContext.min_mag(1, -2)
4697        Decimal('1')
4698        >>> ExtendedContext.min_mag(Decimal(1), -2)
4699        Decimal('1')
4700        >>> ExtendedContext.min_mag(1, Decimal(-2))
4701        Decimal('1')
4702        """
4703        a = _convert_other(a, raiseit=True)
4704        return a.min_mag(b, context=self)
4705
4706    def minus(self, a):
4707        """Minus corresponds to unary prefix minus in Python.
4708
4709        The operation is evaluated using the same rules as subtract; the
4710        operation minus(a) is calculated as subtract('0', a) where the '0'
4711        has the same exponent as the operand.
4712
4713        >>> ExtendedContext.minus(Decimal('1.3'))
4714        Decimal('-1.3')
4715        >>> ExtendedContext.minus(Decimal('-1.3'))
4716        Decimal('1.3')
4717        >>> ExtendedContext.minus(1)
4718        Decimal('-1')
4719        """
4720        a = _convert_other(a, raiseit=True)
4721        return a.__neg__(context=self)
4722
4723    def multiply(self, a, b):
4724        """multiply multiplies two operands.
4725
4726        If either operand is a special value then the general rules apply.
4727        Otherwise, the operands are multiplied together
4728        ('long multiplication'), resulting in a number which may be as long as
4729        the sum of the lengths of the two operands.
4730
4731        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4732        Decimal('3.60')
4733        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4734        Decimal('21')
4735        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4736        Decimal('0.72')
4737        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4738        Decimal('-0.0')
4739        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4740        Decimal('4.28135971E+11')
4741        >>> ExtendedContext.multiply(7, 7)
4742        Decimal('49')
4743        >>> ExtendedContext.multiply(Decimal(7), 7)
4744        Decimal('49')
4745        >>> ExtendedContext.multiply(7, Decimal(7))
4746        Decimal('49')
4747        """
4748        a = _convert_other(a, raiseit=True)
4749        r = a.__mul__(b, context=self)
4750        if r is NotImplemented:
4751            raise TypeError("Unable to convert %s to Decimal" % b)
4752        else:
4753            return r
4754
4755    def next_minus(self, a):
4756        """Returns the largest representable number smaller than a.
4757
4758        >>> c = ExtendedContext.copy()
4759        >>> c.Emin = -999
4760        >>> c.Emax = 999
4761        >>> ExtendedContext.next_minus(Decimal('1'))
4762        Decimal('0.999999999')
4763        >>> c.next_minus(Decimal('1E-1007'))
4764        Decimal('0E-1007')
4765        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4766        Decimal('-1.00000004')
4767        >>> c.next_minus(Decimal('Infinity'))
4768        Decimal('9.99999999E+999')
4769        >>> c.next_minus(1)
4770        Decimal('0.999999999')
4771        """
4772        a = _convert_other(a, raiseit=True)
4773        return a.next_minus(context=self)
4774
4775    def next_plus(self, a):
4776        """Returns the smallest representable number larger than a.
4777
4778        >>> c = ExtendedContext.copy()
4779        >>> c.Emin = -999
4780        >>> c.Emax = 999
4781        >>> ExtendedContext.next_plus(Decimal('1'))
4782        Decimal('1.00000001')
4783        >>> c.next_plus(Decimal('-1E-1007'))
4784        Decimal('-0E-1007')
4785        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4786        Decimal('-1.00000002')
4787        >>> c.next_plus(Decimal('-Infinity'))
4788        Decimal('-9.99999999E+999')
4789        >>> c.next_plus(1)
4790        Decimal('1.00000001')
4791        """
4792        a = _convert_other(a, raiseit=True)
4793        return a.next_plus(context=self)
4794
4795    def next_toward(self, a, b):
4796        """Returns the number closest to a, in direction towards b.
4797
4798        The result is the closest representable number from the first
4799        operand (but not the first operand) that is in the direction
4800        towards the second operand, unless the operands have the same
4801        value.
4802
4803        >>> c = ExtendedContext.copy()
4804        >>> c.Emin = -999
4805        >>> c.Emax = 999
4806        >>> c.next_toward(Decimal('1'), Decimal('2'))
4807        Decimal('1.00000001')
4808        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4809        Decimal('-0E-1007')
4810        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4811        Decimal('-1.00000002')
4812        >>> c.next_toward(Decimal('1'), Decimal('0'))
4813        Decimal('0.999999999')
4814        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4815        Decimal('0E-1007')
4816        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4817        Decimal('-1.00000004')
4818        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4819        Decimal('-0.00')
4820        >>> c.next_toward(0, 1)
4821        Decimal('1E-1007')
4822        >>> c.next_toward(Decimal(0), 1)
4823        Decimal('1E-1007')
4824        >>> c.next_toward(0, Decimal(1))
4825        Decimal('1E-1007')
4826        """
4827        a = _convert_other(a, raiseit=True)
4828        return a.next_toward(b, context=self)
4829
4830    def normalize(self, a):
4831        """normalize reduces an operand to its simplest form.
4832
4833        Essentially a plus operation with all trailing zeros removed from the
4834        result.
4835
4836        >>> ExtendedContext.normalize(Decimal('2.1'))
4837        Decimal('2.1')
4838        >>> ExtendedContext.normalize(Decimal('-2.0'))
4839        Decimal('-2')
4840        >>> ExtendedContext.normalize(Decimal('1.200'))
4841        Decimal('1.2')
4842        >>> ExtendedContext.normalize(Decimal('-120'))
4843        Decimal('-1.2E+2')
4844        >>> ExtendedContext.normalize(Decimal('120.00'))
4845        Decimal('1.2E+2')
4846        >>> ExtendedContext.normalize(Decimal('0.00'))
4847        Decimal('0')
4848        >>> ExtendedContext.normalize(6)
4849        Decimal('6')
4850        """
4851        a = _convert_other(a, raiseit=True)
4852        return a.normalize(context=self)
4853
4854    def number_class(self, a):
4855        """Returns an indication of the class of the operand.
4856
4857        The class is one of the following strings:
4858          -sNaN
4859          -NaN
4860          -Infinity
4861          -Normal
4862          -Subnormal
4863          -Zero
4864          +Zero
4865          +Subnormal
4866          +Normal
4867          +Infinity
4868
4869        >>> c = Context(ExtendedContext)
4870        >>> c.Emin = -999
4871        >>> c.Emax = 999
4872        >>> c.number_class(Decimal('Infinity'))
4873        '+Infinity'
4874        >>> c.number_class(Decimal('1E-10'))
4875        '+Normal'
4876        >>> c.number_class(Decimal('2.50'))
4877        '+Normal'
4878        >>> c.number_class(Decimal('0.1E-999'))
4879        '+Subnormal'
4880        >>> c.number_class(Decimal('0'))
4881        '+Zero'
4882        >>> c.number_class(Decimal('-0'))
4883        '-Zero'
4884        >>> c.number_class(Decimal('-0.1E-999'))
4885        '-Subnormal'
4886        >>> c.number_class(Decimal('-1E-10'))
4887        '-Normal'
4888        >>> c.number_class(Decimal('-2.50'))
4889        '-Normal'
4890        >>> c.number_class(Decimal('-Infinity'))
4891        '-Infinity'
4892        >>> c.number_class(Decimal('NaN'))
4893        'NaN'
4894        >>> c.number_class(Decimal('-NaN'))
4895        'NaN'
4896        >>> c.number_class(Decimal('sNaN'))
4897        'sNaN'
4898        >>> c.number_class(123)
4899        '+Normal'
4900        """
4901        a = _convert_other(a, raiseit=True)
4902        return a.number_class(context=self)
4903
4904    def plus(self, a):
4905        """Plus corresponds to unary prefix plus in Python.
4906
4907        The operation is evaluated using the same rules as add; the
4908        operation plus(a) is calculated as add('0', a) where the '0'
4909        has the same exponent as the operand.
4910
4911        >>> ExtendedContext.plus(Decimal('1.3'))
4912        Decimal('1.3')
4913        >>> ExtendedContext.plus(Decimal('-1.3'))
4914        Decimal('-1.3')
4915        >>> ExtendedContext.plus(-1)
4916        Decimal('-1')
4917        """
4918        a = _convert_other(a, raiseit=True)
4919        return a.__pos__(context=self)
4920
4921    def power(self, a, b, modulo=None):
4922        """Raises a to the power of b, to modulo if given.
4923
4924        With two arguments, compute a**b.  If a is negative then b
4925        must be integral.  The result will be inexact unless b is
4926        integral and the result is finite and can be expressed exactly
4927        in 'precision' digits.
4928
4929        With three arguments, compute (a**b) % modulo.  For the
4930        three argument form, the following restrictions on the
4931        arguments hold:
4932
4933         - all three arguments must be integral
4934         - b must be nonnegative
4935         - at least one of a or b must be nonzero
4936         - modulo must be nonzero and have at most 'precision' digits
4937
4938        The result of pow(a, b, modulo) is identical to the result
4939        that would be obtained by computing (a**b) % modulo with
4940        unbounded precision, but is computed more efficiently.  It is
4941        always exact.
4942
4943        >>> c = ExtendedContext.copy()
4944        >>> c.Emin = -999
4945        >>> c.Emax = 999
4946        >>> c.power(Decimal('2'), Decimal('3'))
4947        Decimal('8')
4948        >>> c.power(Decimal('-2'), Decimal('3'))
4949        Decimal('-8')
4950        >>> c.power(Decimal('2'), Decimal('-3'))
4951        Decimal('0.125')
4952        >>> c.power(Decimal('1.7'), Decimal('8'))
4953        Decimal('69.7575744')
4954        >>> c.power(Decimal('10'), Decimal('0.301029996'))
4955        Decimal('2.00000000')
4956        >>> c.power(Decimal('Infinity'), Decimal('-1'))
4957        Decimal('0')
4958        >>> c.power(Decimal('Infinity'), Decimal('0'))
4959        Decimal('1')
4960        >>> c.power(Decimal('Infinity'), Decimal('1'))
4961        Decimal('Infinity')
4962        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4963        Decimal('-0')
4964        >>> c.power(Decimal('-Infinity'), Decimal('0'))
4965        Decimal('1')
4966        >>> c.power(Decimal('-Infinity'), Decimal('1'))
4967        Decimal('-Infinity')
4968        >>> c.power(Decimal('-Infinity'), Decimal('2'))
4969        Decimal('Infinity')
4970        >>> c.power(Decimal('0'), Decimal('0'))
4971        Decimal('NaN')
4972
4973        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4974        Decimal('11')
4975        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4976        Decimal('-11')
4977        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4978        Decimal('1')
4979        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4980        Decimal('11')
4981        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4982        Decimal('11729830')
4983        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4984        Decimal('-0')
4985        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4986        Decimal('1')
4987        >>> ExtendedContext.power(7, 7)
4988        Decimal('823543')
4989        >>> ExtendedContext.power(Decimal(7), 7)
4990        Decimal('823543')
4991        >>> ExtendedContext.power(7, Decimal(7), 2)
4992        Decimal('1')
4993        """
4994        a = _convert_other(a, raiseit=True)
4995        r = a.__pow__(b, modulo, context=self)
4996        if r is NotImplemented:
4997            raise TypeError("Unable to convert %s to Decimal" % b)
4998        else:
4999            return r
5000
5001    def quantize(self, a, b):
5002        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
5003
5004        The coefficient of the result is derived from that of the left-hand
5005        operand.  It may be rounded using the current rounding setting (if the
5006        exponent is being increased), multiplied by a positive power of ten (if
5007        the exponent is being decreased), or is unchanged (if the exponent is
5008        already equal to that of the right-hand operand).
5009
5010        Unlike other operations, if the length of the coefficient after the
5011        quantize operation would be greater than precision then an Invalid
5012        operation condition is raised.  This guarantees that, unless there is
5013        an error condition, the exponent of the result of a quantize is always
5014        equal to that of the right-hand operand.
5015
5016        Also unlike other operations, quantize will never raise Underflow, even
5017        if the result is subnormal and inexact.
5018
5019        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
5020        Decimal('2.170')
5021        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
5022        Decimal('2.17')
5023        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
5024        Decimal('2.2')
5025        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
5026        Decimal('2')
5027        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
5028        Decimal('0E+1')
5029        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
5030        Decimal('-Infinity')
5031        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
5032        Decimal('NaN')
5033        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
5034        Decimal('-0')
5035        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
5036        Decimal('-0E+5')
5037        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
5038        Decimal('NaN')
5039        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
5040        Decimal('NaN')
5041        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
5042        Decimal('217.0')
5043        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
5044        Decimal('217')
5045        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
5046        Decimal('2.2E+2')
5047        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
5048        Decimal('2E+2')
5049        >>> ExtendedContext.quantize(1, 2)
5050        Decimal('1')
5051        >>> ExtendedContext.quantize(Decimal(1), 2)
5052        Decimal('1')
5053        >>> ExtendedContext.quantize(1, Decimal(2))
5054        Decimal('1')
5055        """
5056        a = _convert_other(a, raiseit=True)
5057        return a.quantize(b, context=self)
5058
5059    def radix(self):
5060        """Just returns 10, as this is Decimal, :)
5061
5062        >>> ExtendedContext.radix()
5063        Decimal('10')
5064        """
5065        return Decimal(10)
5066
5067    def remainder(self, a, b):
5068        """Returns the remainder from integer division.
5069
5070        The result is the residue of the dividend after the operation of
5071        calculating integer division as described for divide-integer, rounded
5072        to precision digits if necessary.  The sign of the result, if
5073        non-zero, is the same as that of the original dividend.
5074
5075        This operation will fail under the same conditions as integer division
5076        (that is, if integer division on the same two operands would fail, the
5077        remainder cannot be calculated).
5078
5079        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
5080        Decimal('2.1')
5081        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
5082        Decimal('1')
5083        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
5084        Decimal('-1')
5085        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
5086        Decimal('0.2')
5087        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
5088        Decimal('0.1')
5089        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
5090        Decimal('1.0')
5091        >>> ExtendedContext.remainder(22, 6)
5092        Decimal('4')
5093        >>> ExtendedContext.remainder(Decimal(22), 6)
5094        Decimal('4')
5095        >>> ExtendedContext.remainder(22, Decimal(6))
5096        Decimal('4')
5097        """
5098        a = _convert_other(a, raiseit=True)
5099        r = a.__mod__(b, context=self)
5100        if r is NotImplemented:
5101            raise TypeError("Unable to convert %s to Decimal" % b)
5102        else:
5103            return r
5104
5105    def remainder_near(self, a, b):
5106        """Returns to be "a - b * n", where n is the integer nearest the exact
5107        value of "x / b" (if two integers are equally near then the even one
5108        is chosen).  If the result is equal to 0 then its sign will be the
5109        sign of a.
5110
5111        This operation will fail under the same conditions as integer division
5112        (that is, if integer division on the same two operands would fail, the
5113        remainder cannot be calculated).
5114
5115        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
5116        Decimal('-0.9')
5117        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
5118        Decimal('-2')
5119        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
5120        Decimal('1')
5121        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
5122        Decimal('-1')
5123        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
5124        Decimal('0.2')
5125        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
5126        Decimal('0.1')
5127        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
5128        Decimal('-0.3')
5129        >>> ExtendedContext.remainder_near(3, 11)
5130        Decimal('3')
5131        >>> ExtendedContext.remainder_near(Decimal(3), 11)
5132        Decimal('3')
5133        >>> ExtendedContext.remainder_near(3, Decimal(11))
5134        Decimal('3')
5135        """
5136        a = _convert_other(a, raiseit=True)
5137        return a.remainder_near(b, context=self)
5138
5139    def rotate(self, a, b):
5140        """Returns a rotated copy of a, b times.
5141
5142        The coefficient of the result is a rotated copy of the digits in
5143        the coefficient of the first operand.  The number of places of
5144        rotation is taken from the absolute value of the second operand,
5145        with the rotation being to the left if the second operand is
5146        positive or to the right otherwise.
5147
5148        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
5149        Decimal('400000003')
5150        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
5151        Decimal('12')
5152        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
5153        Decimal('891234567')
5154        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
5155        Decimal('123456789')
5156        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
5157        Decimal('345678912')
5158        >>> ExtendedContext.rotate(1333333, 1)
5159        Decimal('13333330')
5160        >>> ExtendedContext.rotate(Decimal(1333333), 1)
5161        Decimal('13333330')
5162        >>> ExtendedContext.rotate(1333333, Decimal(1))
5163        Decimal('13333330')
5164        """
5165        a = _convert_other(a, raiseit=True)
5166        return a.rotate(b, context=self)
5167
5168    def same_quantum(self, a, b):
5169        """Returns True if the two operands have the same exponent.
5170
5171        The result is never affected by either the sign or the coefficient of
5172        either operand.
5173
5174        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
5175        False
5176        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
5177        True
5178        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
5179        False
5180        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
5181        True
5182        >>> ExtendedContext.same_quantum(10000, -1)
5183        True
5184        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
5185        True
5186        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
5187        True
5188        """
5189        a = _convert_other(a, raiseit=True)
5190        return a.same_quantum(b)
5191
5192    def scaleb (self, a, b):
5193        """Returns the first operand after adding the second value its exp.
5194
5195        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
5196        Decimal('0.0750')
5197        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
5198        Decimal('7.50')
5199        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
5200        Decimal('7.50E+3')
5201        >>> ExtendedContext.scaleb(1, 4)
5202        Decimal('1E+4')
5203        >>> ExtendedContext.scaleb(Decimal(1), 4)
5204        Decimal('1E+4')
5205        >>> ExtendedContext.scaleb(1, Decimal(4))
5206        Decimal('1E+4')
5207        """
5208        a = _convert_other(a, raiseit=True)
5209        return a.scaleb(b, context=self)
5210
5211    def shift(self, a, b):
5212        """Returns a shifted copy of a, b times.
5213
5214        The coefficient of the result is a shifted copy of the digits
5215        in the coefficient of the first operand.  The number of places
5216        to shift is taken from the absolute value of the second operand,
5217        with the shift being to the left if the second operand is
5218        positive or to the right otherwise.  Digits shifted into the
5219        coefficient are zeros.
5220
5221        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
5222        Decimal('400000000')
5223        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
5224        Decimal('0')
5225        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
5226        Decimal('1234567')
5227        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
5228        Decimal('123456789')
5229        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
5230        Decimal('345678900')
5231        >>> ExtendedContext.shift(88888888, 2)
5232        Decimal('888888800')
5233        >>> ExtendedContext.shift(Decimal(88888888), 2)
5234        Decimal('888888800')
5235        >>> ExtendedContext.shift(88888888, Decimal(2))
5236        Decimal('888888800')
5237        """
5238        a = _convert_other(a, raiseit=True)
5239        return a.shift(b, context=self)
5240
5241    def sqrt(self, a):
5242        """Square root of a non-negative number to context precision.
5243
5244        If the result must be inexact, it is rounded using the round-half-even
5245        algorithm.
5246
5247        >>> ExtendedContext.sqrt(Decimal('0'))
5248        Decimal('0')
5249        >>> ExtendedContext.sqrt(Decimal('-0'))
5250        Decimal('-0')
5251        >>> ExtendedContext.sqrt(Decimal('0.39'))
5252        Decimal('0.624499800')
5253        >>> ExtendedContext.sqrt(Decimal('100'))
5254        Decimal('10')
5255        >>> ExtendedContext.sqrt(Decimal('1'))
5256        Decimal('1')
5257        >>> ExtendedContext.sqrt(Decimal('1.0'))
5258        Decimal('1.0')
5259        >>> ExtendedContext.sqrt(Decimal('1.00'))
5260        Decimal('1.0')
5261        >>> ExtendedContext.sqrt(Decimal('7'))
5262        Decimal('2.64575131')
5263        >>> ExtendedContext.sqrt(Decimal('10'))
5264        Decimal('3.16227766')
5265        >>> ExtendedContext.sqrt(2)
5266        Decimal('1.41421356')
5267        >>> ExtendedContext.prec
5268        9
5269        """
5270        a = _convert_other(a, raiseit=True)
5271        return a.sqrt(context=self)
5272
5273    def subtract(self, a, b):
5274        """Return the difference between the two operands.
5275
5276        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
5277        Decimal('0.23')
5278        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
5279        Decimal('0.00')
5280        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
5281        Decimal('-0.77')
5282        >>> ExtendedContext.subtract(8, 5)
5283        Decimal('3')
5284        >>> ExtendedContext.subtract(Decimal(8), 5)
5285        Decimal('3')
5286        >>> ExtendedContext.subtract(8, Decimal(5))
5287        Decimal('3')
5288        """
5289        a = _convert_other(a, raiseit=True)
5290        r = a.__sub__(b, context=self)
5291        if r is NotImplemented:
5292            raise TypeError("Unable to convert %s to Decimal" % b)
5293        else:
5294            return r
5295
5296    def to_eng_string(self, a):
5297        """Converts a number to a string, using scientific notation.
5298
5299        The operation is not affected by the context.
5300        """
5301        a = _convert_other(a, raiseit=True)
5302        return a.to_eng_string(context=self)
5303
5304    def to_sci_string(self, a):
5305        """Converts a number to a string, using scientific notation.
5306
5307        The operation is not affected by the context.
5308        """
5309        a = _convert_other(a, raiseit=True)
5310        return a.__str__(context=self)
5311
5312    def to_integral_exact(self, a):
5313        """Rounds to an integer.
5314
5315        When the operand has a negative exponent, the result is the same
5316        as using the quantize() operation using the given operand as the
5317        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5318        of the operand as the precision setting; Inexact and Rounded flags
5319        are allowed in this operation.  The rounding mode is taken from the
5320        context.
5321
5322        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
5323        Decimal('2')
5324        >>> ExtendedContext.to_integral_exact(Decimal('100'))
5325        Decimal('100')
5326        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
5327        Decimal('100')
5328        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
5329        Decimal('102')
5330        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
5331        Decimal('-102')
5332        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
5333        Decimal('1.0E+6')
5334        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
5335        Decimal('7.89E+77')
5336        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
5337        Decimal('-Infinity')
5338        """
5339        a = _convert_other(a, raiseit=True)
5340        return a.to_integral_exact(context=self)
5341
5342    def to_integral_value(self, a):
5343        """Rounds to an integer.
5344
5345        When the operand has a negative exponent, the result is the same
5346        as using the quantize() operation using the given operand as the
5347        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5348        of the operand as the precision setting, except that no flags will
5349        be set.  The rounding mode is taken from the context.
5350
5351        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
5352        Decimal('2')
5353        >>> ExtendedContext.to_integral_value(Decimal('100'))
5354        Decimal('100')
5355        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
5356        Decimal('100')
5357        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
5358        Decimal('102')
5359        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
5360        Decimal('-102')
5361        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
5362        Decimal('1.0E+6')
5363        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
5364        Decimal('7.89E+77')
5365        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
5366        Decimal('-Infinity')
5367        """
5368        a = _convert_other(a, raiseit=True)
5369        return a.to_integral_value(context=self)
5370
5371    # the method name changed, but we provide also the old one, for compatibility
5372    to_integral = to_integral_value
5373
5374class _WorkRep(object):
5375    __slots__ = ('sign','int','exp')
5376    # sign: 0 or 1
5377    # int:  int or long
5378    # exp:  None, int, or string
5379
5380    def __init__(self, value=None):
5381        if value is None:
5382            self.sign = None
5383            self.int = 0
5384            self.exp = None
5385        elif isinstance(value, Decimal):
5386            self.sign = value._sign
5387            self.int = int(value._int)
5388            self.exp = value._exp
5389        else:
5390            # assert isinstance(value, tuple)
5391            self.sign = value[0]
5392            self.int = value[1]
5393            self.exp = value[2]
5394
5395    def __repr__(self):
5396        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
5397
5398    __str__ = __repr__
5399
5400
5401
5402def _normalize(op1, op2, prec = 0):
5403    """Normalizes op1, op2 to have the same exp and length of coefficient.
5404
5405    Done during addition.
5406    """
5407    if op1.exp < op2.exp:
5408        tmp = op2
5409        other = op1
5410    else:
5411        tmp = op1
5412        other = op2
5413
5414    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
5415    # Then adding 10**exp to tmp has the same effect (after rounding)
5416    # as adding any positive quantity smaller than 10**exp; similarly
5417    # for subtraction.  So if other is smaller than 10**exp we replace
5418    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
5419    tmp_len = len(str(tmp.int))
5420    other_len = len(str(other.int))
5421    exp = tmp.exp + min(-1, tmp_len - prec - 2)
5422    if other_len + other.exp - 1 < exp:
5423        other.int = 1
5424        other.exp = exp
5425
5426    tmp.int *= 10 ** (tmp.exp - other.exp)
5427    tmp.exp = other.exp
5428    return op1, op2
5429
5430##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5431
5432# This function from Tim Peters was taken from here:
5433# http://mail.python.org/pipermail/python-list/1999-July/007758.html
5434# The correction being in the function definition is for speed, and
5435# the whole function is not resolved with math.log because of avoiding
5436# the use of floats.
5437def _nbits(n, correction = {
5438        '0': 4, '1': 3, '2': 2, '3': 2,
5439        '4': 1, '5': 1, '6': 1, '7': 1,
5440        '8': 0, '9': 0, 'a': 0, 'b': 0,
5441        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5442    """Number of bits in binary representation of the positive integer n,
5443    or 0 if n == 0.
5444    """
5445    if n < 0:
5446        raise ValueError("The argument to _nbits should be nonnegative.")
5447    hex_n = "%x" % n
5448    return 4*len(hex_n) - correction[hex_n[0]]
5449
5450def _sqrt_nearest(n, a):
5451    """Closest integer to the square root of the positive integer n.  a is
5452    an initial approximation to the square root.  Any positive integer
5453    will do for a, but the closer a is to the square root of n the
5454    faster convergence will be.
5455
5456    """
5457    if n <= 0 or a <= 0:
5458        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5459
5460    b=0
5461    while a != b:
5462        b, a = a, a--n//a>>1
5463    return a
5464
5465def _rshift_nearest(x, shift):
5466    """Given an integer x and a nonnegative integer shift, return closest
5467    integer to x / 2**shift; use round-to-even in case of a tie.
5468
5469    """
5470    b, q = 1L << shift, x >> shift
5471    return q + (2*(x & (b-1)) + (q&1) > b)
5472
5473def _div_nearest(a, b):
5474    """Closest integer to a/b, a and b positive integers; rounds to even
5475    in the case of a tie.
5476
5477    """
5478    q, r = divmod(a, b)
5479    return q + (2*r + (q&1) > b)
5480
5481def _ilog(x, M, L = 8):
5482    """Integer approximation to M*log(x/M), with absolute error boundable
5483    in terms only of x/M.
5484
5485    Given positive integers x and M, return an integer approximation to
5486    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
5487    between the approximation and the exact result is at most 22.  For
5488    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
5489    both cases these are upper bounds on the error; it will usually be
5490    much smaller."""
5491
5492    # The basic algorithm is the following: let log1p be the function
5493    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
5494    # the reduction
5495    #
5496    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5497    #
5498    # repeatedly until the argument to log1p is small (< 2**-L in
5499    # absolute value).  For small y we can use the Taylor series
5500    # expansion
5501    #
5502    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5503    #
5504    # truncating at T such that y**T is small enough.  The whole
5505    # computation is carried out in a form of fixed-point arithmetic,
5506    # with a real number z being represented by an integer
5507    # approximation to z*M.  To avoid loss of precision, the y below
5508    # is actually an integer approximation to 2**R*y*M, where R is the
5509    # number of reductions performed so far.
5510
5511    y = x-M
5512    # argument reduction; R = number of reductions performed
5513    R = 0
5514    while (R <= L and long(abs(y)) << L-R >= M or
5515           R > L and abs(y) >> R-L >= M):
5516        y = _div_nearest(long(M*y) << 1,
5517                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5518        R += 1
5519
5520    # Taylor series with T terms
5521    T = -int(-10*len(str(M))//(3*L))
5522    yshift = _rshift_nearest(y, R)
5523    w = _div_nearest(M, T)
5524    for k in xrange(T-1, 0, -1):
5525        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5526
5527    return _div_nearest(w*y, M)
5528
5529def _dlog10(c, e, p):
5530    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5531    approximation to 10**p * log10(c*10**e), with an absolute error of
5532    at most 1.  Assumes that c*10**e is not exactly 1."""
5533
5534    # increase precision by 2; compensate for this by dividing
5535    # final result by 100
5536    p += 2
5537
5538    # write c*10**e as d*10**f with either:
5539    #   f >= 0 and 1 <= d <= 10, or
5540    #   f <= 0 and 0.1 <= d <= 1.
5541    # Thus for c*10**e close to 1, f = 0
5542    l = len(str(c))
5543    f = e+l - (e+l >= 1)
5544
5545    if p > 0:
5546        M = 10**p
5547        k = e+p-f
5548        if k >= 0:
5549            c *= 10**k
5550        else:
5551            c = _div_nearest(c, 10**-k)
5552
5553        log_d = _ilog(c, M) # error < 5 + 22 = 27
5554        log_10 = _log10_digits(p) # error < 1
5555        log_d = _div_nearest(log_d*M, log_10)
5556        log_tenpower = f*M # exact
5557    else:
5558        log_d = 0  # error < 2.31
5559        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5560
5561    return _div_nearest(log_tenpower+log_d, 100)
5562
5563def _dlog(c, e, p):
5564    """Given integers c, e and p with c > 0, compute an integer
5565    approximation to 10**p * log(c*10**e), with an absolute error of
5566    at most 1.  Assumes that c*10**e is not exactly 1."""
5567
5568    # Increase precision by 2. The precision increase is compensated
5569    # for at the end with a division by 100.
5570    p += 2
5571
5572    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5573    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5574    # as 10**p * log(d) + 10**p*f * log(10).
5575    l = len(str(c))
5576    f = e+l - (e+l >= 1)
5577
5578    # compute approximation to 10**p*log(d), with error < 27
5579    if p > 0:
5580        k = e+p-f
5581        if k >= 0:
5582            c *= 10**k
5583        else:
5584            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5585
5586        # _ilog magnifies existing error in c by a factor of at most 10
5587        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5588    else:
5589        # p <= 0: just approximate the whole thing by 0; error < 2.31
5590        log_d = 0
5591
5592    # compute approximation to f*10**p*log(10), with error < 11.
5593    if f:
5594        extra = len(str(abs(f)))-1
5595        if p + extra >= 0:
5596            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5597            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5598            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5599        else:
5600            f_log_ten = 0
5601    else:
5602        f_log_ten = 0
5603
5604    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5605    return _div_nearest(f_log_ten + log_d, 100)
5606
5607class _Log10Memoize(object):
5608    """Class to compute, store, and allow retrieval of, digits of the
5609    constant log(10) = 2.302585....  This constant is needed by
5610    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5611    def __init__(self):
5612        self.digits = "23025850929940456840179914546843642076011014886"
5613
5614    def getdigits(self, p):
5615        """Given an integer p >= 0, return floor(10**p)*log(10).
5616
5617        For example, self.getdigits(3) returns 2302.
5618        """
5619        # digits are stored as a string, for quick conversion to
5620        # integer in the case that we've already computed enough
5621        # digits; the stored digits should always be correct
5622        # (truncated, not rounded to nearest).
5623        if p < 0:
5624            raise ValueError("p should be nonnegative")
5625
5626        if p >= len(self.digits):
5627            # compute p+3, p+6, p+9, ... digits; continue until at
5628            # least one of the extra digits is nonzero
5629            extra = 3
5630            while True:
5631                # compute p+extra digits, correct to within 1ulp
5632                M = 10**(p+extra+2)
5633                digits = str(_div_nearest(_ilog(10*M, M), 100))
5634                if digits[-extra:] != '0'*extra:
5635                    break
5636                extra += 3
5637            # keep all reliable digits so far; remove trailing zeros
5638            # and next nonzero digit
5639            self.digits = digits.rstrip('0')[:-1]
5640        return int(self.digits[:p+1])
5641
5642_log10_digits = _Log10Memoize().getdigits
5643
5644def _iexp(x, M, L=8):
5645    """Given integers x and M, M > 0, such that x/M is small in absolute
5646    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5647    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5648    is usually much smaller)."""
5649
5650    # Algorithm: to compute exp(z) for a real number z, first divide z
5651    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5652    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5653    # series
5654    #
5655    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5656    #
5657    # Now use the identity
5658    #
5659    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5660    #
5661    # R times to compute the sequence expm1(z/2**R),
5662    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5663
5664    # Find R such that x/2**R/M <= 2**-L
5665    R = _nbits((long(x)<<L)//M)
5666
5667    # Taylor series.  (2**L)**T > M
5668    T = -int(-10*len(str(M))//(3*L))
5669    y = _div_nearest(x, T)
5670    Mshift = long(M)<<R
5671    for i in xrange(T-1, 0, -1):
5672        y = _div_nearest(x*(Mshift + y), Mshift * i)
5673
5674    # Expansion
5675    for k in xrange(R-1, -1, -1):
5676        Mshift = long(M)<<(k+2)
5677        y = _div_nearest(y*(y+Mshift), Mshift)
5678
5679    return M+y
5680
5681def _dexp(c, e, p):
5682    """Compute an approximation to exp(c*10**e), with p decimal places of
5683    precision.
5684
5685    Returns integers d, f such that:
5686
5687      10**(p-1) <= d <= 10**p, and
5688      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5689
5690    In other words, d*10**f is an approximation to exp(c*10**e) with p
5691    digits of precision, and with an error in d of at most 1.  This is
5692    almost, but not quite, the same as the error being < 1ulp: when d
5693    = 10**(p-1) the error could be up to 10 ulp."""
5694
5695    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5696    p += 2
5697
5698    # compute log(10) with extra precision = adjusted exponent of c*10**e
5699    extra = max(0, e + len(str(c)) - 1)
5700    q = p + extra
5701
5702    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5703    # rounding down
5704    shift = e+q
5705    if shift >= 0:
5706        cshift = c*10**shift
5707    else:
5708        cshift = c//10**-shift
5709    quot, rem = divmod(cshift, _log10_digits(q))
5710
5711    # reduce remainder back to original precision
5712    rem = _div_nearest(rem, 10**extra)
5713
5714    # error in result of _iexp < 120;  error after division < 0.62
5715    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5716
5717def _dpower(xc, xe, yc, ye, p):
5718    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5719    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5720
5721      10**(p-1) <= c <= 10**p, and
5722      (c-1)*10**e < x**y < (c+1)*10**e
5723
5724    in other words, c*10**e is an approximation to x**y with p digits
5725    of precision, and with an error in c of at most 1.  (This is
5726    almost, but not quite, the same as the error being < 1ulp: when c
5727    == 10**(p-1) we can only guarantee error < 10ulp.)
5728
5729    We assume that: x is positive and not equal to 1, and y is nonzero.
5730    """
5731
5732    # Find b such that 10**(b-1) <= |y| <= 10**b
5733    b = len(str(abs(yc))) + ye
5734
5735    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5736    lxc = _dlog(xc, xe, p+b+1)
5737
5738    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5739    shift = ye-b
5740    if shift >= 0:
5741        pc = lxc*yc*10**shift
5742    else:
5743        pc = _div_nearest(lxc*yc, 10**-shift)
5744
5745    if pc == 0:
5746        # we prefer a result that isn't exactly 1; this makes it
5747        # easier to compute a correctly rounded result in __pow__
5748        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5749            coeff, exp = 10**(p-1)+1, 1-p
5750        else:
5751            coeff, exp = 10**p-1, -p
5752    else:
5753        coeff, exp = _dexp(pc, -(p+1), p+1)
5754        coeff = _div_nearest(coeff, 10)
5755        exp += 1
5756
5757    return coeff, exp
5758
5759def _log10_lb(c, correction = {
5760        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5761        '6': 23, '7': 16, '8': 10, '9': 5}):
5762    """Compute a lower bound for 100*log10(c) for a positive integer c."""
5763    if c <= 0:
5764        raise ValueError("The argument to _log10_lb should be nonnegative.")
5765    str_c = str(c)
5766    return 100*len(str_c) - correction[str_c[0]]
5767
5768##### Helper Functions ####################################################
5769
5770def _convert_other(other, raiseit=False, allow_float=False):
5771    """Convert other to Decimal.
5772
5773    Verifies that it's ok to use in an implicit construction.
5774    If allow_float is true, allow conversion from float;  this
5775    is used in the comparison methods (__eq__ and friends).
5776
5777    """
5778    if isinstance(other, Decimal):
5779        return other
5780    if isinstance(other, (int, long)):
5781        return Decimal(other)
5782    if allow_float and isinstance(other, float):
5783        return Decimal.from_float(other)
5784
5785    if raiseit:
5786        raise TypeError("Unable to convert %s to Decimal" % other)
5787    return NotImplemented
5788
5789##### Setup Specific Contexts ############################################
5790
5791# The default context prototype used by Context()
5792# Is mutable, so that new contexts can have different default values
5793
5794DefaultContext = Context(
5795        prec=28, rounding=ROUND_HALF_EVEN,
5796        traps=[DivisionByZero, Overflow, InvalidOperation],
5797        flags=[],
5798        Emax=999999999,
5799        Emin=-999999999,
5800        capitals=1
5801)
5802
5803# Pre-made alternate contexts offered by the specification
5804# Don't change these; the user should be able to select these
5805# contexts and be able to reproduce results from other implementations
5806# of the spec.
5807
5808BasicContext = Context(
5809        prec=9, rounding=ROUND_HALF_UP,
5810        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5811        flags=[],
5812)
5813
5814ExtendedContext = Context(
5815        prec=9, rounding=ROUND_HALF_EVEN,
5816        traps=[],
5817        flags=[],
5818)
5819
5820
5821##### crud for parsing strings #############################################
5822#
5823# Regular expression used for parsing numeric strings.  Additional
5824# comments:
5825#
5826# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5827# whitespace.  But note that the specification disallows whitespace in
5828# a numeric string.
5829#
5830# 2. For finite numbers (not infinities and NaNs) the body of the
5831# number between the optional sign and the optional exponent must have
5832# at least one decimal digit, possibly after the decimal point.  The
5833# lookahead expression '(?=\d|\.\d)' checks this.
5834
5835import re
5836_parser = re.compile(r"""        # A numeric string consists of:
5837#    \s*
5838    (?P<sign>[-+])?              # an optional sign, followed by either...
5839    (
5840        (?=\d|\.\d)              # ...a number (with at least one digit)
5841        (?P<int>\d*)             # having a (possibly empty) integer part
5842        (\.(?P<frac>\d*))?       # followed by an optional fractional part
5843        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
5844    |
5845        Inf(inity)?              # ...an infinity, or...
5846    |
5847        (?P<signal>s)?           # ...an (optionally signaling)
5848        NaN                      # NaN
5849        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
5850    )
5851#    \s*
5852    \Z
5853""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5854
5855_all_zeros = re.compile('0*$').match
5856_exact_half = re.compile('50*$').match
5857
5858##### PEP3101 support functions ##############################################
5859# The functions in this section have little to do with the Decimal
5860# class, and could potentially be reused or adapted for other pure
5861# Python numeric classes that want to implement __format__
5862#
5863# A format specifier for Decimal looks like:
5864#
5865#   [[fill]align][sign][0][minimumwidth][,][.precision][type]
5866
5867_parse_format_specifier_regex = re.compile(r"""\A
5868(?:
5869   (?P<fill>.)?
5870   (?P<align>[<>=^])
5871)?
5872(?P<sign>[-+ ])?
5873(?P<zeropad>0)?
5874(?P<minimumwidth>(?!0)\d+)?
5875(?P<thousands_sep>,)?
5876(?:\.(?P<precision>0|(?!0)\d+))?
5877(?P<type>[eEfFgGn%])?
5878\Z
5879""", re.VERBOSE)
5880
5881del re
5882
5883# The locale module is only needed for the 'n' format specifier.  The
5884# rest of the PEP 3101 code functions quite happily without it, so we
5885# don't care too much if locale isn't present.
5886try:
5887    import locale as _locale
5888except ImportError:
5889    pass
5890
5891def _parse_format_specifier(format_spec, _localeconv=None):
5892    """Parse and validate a format specifier.
5893
5894    Turns a standard numeric format specifier into a dict, with the
5895    following entries:
5896
5897      fill: fill character to pad field to minimum width
5898      align: alignment type, either '<', '>', '=' or '^'
5899      sign: either '+', '-' or ' '
5900      minimumwidth: nonnegative integer giving minimum width
5901      zeropad: boolean, indicating whether to pad with zeros
5902      thousands_sep: string to use as thousands separator, or ''
5903      grouping: grouping for thousands separators, in format
5904        used by localeconv
5905      decimal_point: string to use for decimal point
5906      precision: nonnegative integer giving precision, or None
5907      type: one of the characters 'eEfFgG%', or None
5908      unicode: boolean (always True for Python 3.x)
5909
5910    """
5911    m = _parse_format_specifier_regex.match(format_spec)
5912    if m is None:
5913        raise ValueError("Invalid format specifier: " + format_spec)
5914
5915    # get the dictionary
5916    format_dict = m.groupdict()
5917
5918    # zeropad; defaults for fill and alignment.  If zero padding
5919    # is requested, the fill and align fields should be absent.
5920    fill = format_dict['fill']
5921    align = format_dict['align']
5922    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5923    if format_dict['zeropad']:
5924        if fill is not None:
5925            raise ValueError("Fill character conflicts with '0'"
5926                             " in format specifier: " + format_spec)
5927        if align is not None:
5928            raise ValueError("Alignment conflicts with '0' in "
5929                             "format specifier: " + format_spec)
5930    format_dict['fill'] = fill or ' '
5931    # PEP 3101 originally specified that the default alignment should
5932    # be left;  it was later agreed that right-aligned makes more sense
5933    # for numeric types.  See http://bugs.python.org/issue6857.
5934    format_dict['align'] = align or '>'
5935
5936    # default sign handling: '-' for negative, '' for positive
5937    if format_dict['sign'] is None:
5938        format_dict['sign'] = '-'
5939
5940    # minimumwidth defaults to 0; precision remains None if not given
5941    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5942    if format_dict['precision'] is not None:
5943        format_dict['precision'] = int(format_dict['precision'])
5944
5945    # if format type is 'g' or 'G' then a precision of 0 makes little
5946    # sense; convert it to 1.  Same if format type is unspecified.
5947    if format_dict['precision'] == 0:
5948        if format_dict['type'] is None or format_dict['type'] in 'gG':
5949            format_dict['precision'] = 1
5950
5951    # determine thousands separator, grouping, and decimal separator, and
5952    # add appropriate entries to format_dict
5953    if format_dict['type'] == 'n':
5954        # apart from separators, 'n' behaves just like 'g'
5955        format_dict['type'] = 'g'
5956        if _localeconv is None:
5957            _localeconv = _locale.localeconv()
5958        if format_dict['thousands_sep'] is not None:
5959            raise ValueError("Explicit thousands separator conflicts with "
5960                             "'n' type in format specifier: " + format_spec)
5961        format_dict['thousands_sep'] = _localeconv['thousands_sep']
5962        format_dict['grouping'] = _localeconv['grouping']
5963        format_dict['decimal_point'] = _localeconv['decimal_point']
5964    else:
5965        if format_dict['thousands_sep'] is None:
5966            format_dict['thousands_sep'] = ''
5967        format_dict['grouping'] = [3, 0]
5968        format_dict['decimal_point'] = '.'
5969
5970    # record whether return type should be str or unicode
5971    format_dict['unicode'] = isinstance(format_spec, unicode)
5972
5973    return format_dict
5974
5975def _format_align(sign, body, spec):
5976    """Given an unpadded, non-aligned numeric string 'body' and sign
5977    string 'sign', add padding and aligment conforming to the given
5978    format specifier dictionary 'spec' (as produced by
5979    parse_format_specifier).
5980
5981    Also converts result to unicode if necessary.
5982
5983    """
5984    # how much extra space do we have to play with?
5985    minimumwidth = spec['minimumwidth']
5986    fill = spec['fill']
5987    padding = fill*(minimumwidth - len(sign) - len(body))
5988
5989    align = spec['align']
5990    if align == '<':
5991        result = sign + body + padding
5992    elif align == '>':
5993        result = padding + sign + body
5994    elif align == '=':
5995        result = sign + padding + body
5996    elif align == '^':
5997        half = len(padding)//2
5998        result = padding[:half] + sign + body + padding[half:]
5999    else:
6000        raise ValueError('Unrecognised alignment field')
6001
6002    # make sure that result is unicode if necessary
6003    if spec['unicode']:
6004        result = unicode(result)
6005
6006    return result
6007
6008def _group_lengths(grouping):
6009    """Convert a localeconv-style grouping into a (possibly infinite)
6010    iterable of integers representing group lengths.
6011
6012    """
6013    # The result from localeconv()['grouping'], and the input to this
6014    # function, should be a list of integers in one of the
6015    # following three forms:
6016    #
6017    #   (1) an empty list, or
6018    #   (2) nonempty list of positive integers + [0]
6019    #   (3) list of positive integers + [locale.CHAR_MAX], or
6020
6021    from itertools import chain, repeat
6022    if not grouping:
6023        return []
6024    elif grouping[-1] == 0 and len(grouping) >= 2:
6025        return chain(grouping[:-1], repeat(grouping[-2]))
6026    elif grouping[-1] == _locale.CHAR_MAX:
6027        return grouping[:-1]
6028    else:
6029        raise ValueError('unrecognised format for grouping')
6030
6031def _insert_thousands_sep(digits, spec, min_width=1):
6032    """Insert thousands separators into a digit string.
6033
6034    spec is a dictionary whose keys should include 'thousands_sep' and
6035    'grouping'; typically it's the result of parsing the format
6036    specifier using _parse_format_specifier.
6037
6038    The min_width keyword argument gives the minimum length of the
6039    result, which will be padded on the left with zeros if necessary.
6040
6041    If necessary, the zero padding adds an extra '0' on the left to
6042    avoid a leading thousands separator.  For example, inserting
6043    commas every three digits in '123456', with min_width=8, gives
6044    '0,123,456', even though that has length 9.
6045
6046    """
6047
6048    sep = spec['thousands_sep']
6049    grouping = spec['grouping']
6050
6051    groups = []
6052    for l in _group_lengths(grouping):
6053        if l <= 0:
6054            raise ValueError("group length should be positive")
6055        # max(..., 1) forces at least 1 digit to the left of a separator
6056        l = min(max(len(digits), min_width, 1), l)
6057        groups.append('0'*(l - len(digits)) + digits[-l:])
6058        digits = digits[:-l]
6059        min_width -= l
6060        if not digits and min_width <= 0:
6061            break
6062        min_width -= len(sep)
6063    else:
6064        l = max(len(digits), min_width, 1)
6065        groups.append('0'*(l - len(digits)) + digits[-l:])
6066    return sep.join(reversed(groups))
6067
6068def _format_sign(is_negative, spec):
6069    """Determine sign character."""
6070
6071    if is_negative:
6072        return '-'
6073    elif spec['sign'] in ' +':
6074        return spec['sign']
6075    else:
6076        return ''
6077
6078def _format_number(is_negative, intpart, fracpart, exp, spec):
6079    """Format a number, given the following data:
6080
6081    is_negative: true if the number is negative, else false
6082    intpart: string of digits that must appear before the decimal point
6083    fracpart: string of digits that must come after the point
6084    exp: exponent, as an integer
6085    spec: dictionary resulting from parsing the format specifier
6086
6087    This function uses the information in spec to:
6088      insert separators (decimal separator and thousands separators)
6089      format the sign
6090      format the exponent
6091      add trailing '%' for the '%' type
6092      zero-pad if necessary
6093      fill and align if necessary
6094    """
6095
6096    sign = _format_sign(is_negative, spec)
6097
6098    if fracpart:
6099        fracpart = spec['decimal_point'] + fracpart
6100
6101    if exp != 0 or spec['type'] in 'eE':
6102        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
6103        fracpart += "{0}{1:+}".format(echar, exp)
6104    if spec['type'] == '%':
6105        fracpart += '%'
6106
6107    if spec['zeropad']:
6108        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
6109    else:
6110        min_width = 0
6111    intpart = _insert_thousands_sep(intpart, spec, min_width)
6112
6113    return _format_align(sign, intpart+fracpart, spec)
6114
6115
6116##### Useful Constants (internal use only) ################################
6117
6118# Reusable defaults
6119_Infinity = Decimal('Inf')
6120_NegativeInfinity = Decimal('-Inf')
6121_NaN = Decimal('NaN')
6122_Zero = Decimal(0)
6123_One = Decimal(1)
6124_NegativeOne = Decimal(-1)
6125
6126# _SignedInfinity[sign] is infinity w/ that sign
6127_SignedInfinity = (_Infinity, _NegativeInfinity)
6128
6129
6130
6131if __name__ == '__main__':
6132    import doctest, sys
6133    doctest.testmod(sys.modules[__name__])
6134