decimal.py revision fb136d19ff57d42cad9a7177ba8fdad3ef1577c6
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves.  Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported.  At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24    http://speleotrove.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28    http://en.wikipedia.org/wiki/IEEE_854-1987
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point.  The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85  ...
86  ...
87  ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103  ...
104  ...
105  ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119    # Two major classes
120    'Decimal', 'Context',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129    # Constants for use in setting up contexts
130    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133    # Functions for manipulating contexts
134    'setcontext', 'getcontext', 'localcontext'
135]
136
137__version__ = '1.70'    # Highest version of the spec this complies with
138
139import math as _math
140import numbers as _numbers
141
142try:
143    from collections import namedtuple as _namedtuple
144    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
145except ImportError:
146    DecimalTuple = lambda *args: args
147
148# Rounding
149ROUND_DOWN = 'ROUND_DOWN'
150ROUND_HALF_UP = 'ROUND_HALF_UP'
151ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
152ROUND_CEILING = 'ROUND_CEILING'
153ROUND_FLOOR = 'ROUND_FLOOR'
154ROUND_UP = 'ROUND_UP'
155ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
156ROUND_05UP = 'ROUND_05UP'
157
158# Errors
159
160class DecimalException(ArithmeticError):
161    """Base exception class.
162
163    Used exceptions derive from this.
164    If an exception derives from another exception besides this (such as
165    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
166    called if the others are present.  This isn't actually used for
167    anything, though.
168
169    handle  -- Called when context._raise_error is called and the
170               trap_enabler is not set.  First argument is self, second is the
171               context.  More arguments can be given, those being after
172               the explanation in _raise_error (For example,
173               context._raise_error(NewError, '(-x)!', self._sign) would
174               call NewError().handle(context, self._sign).)
175
176    To define a new exception, it should be sufficient to have it derive
177    from DecimalException.
178    """
179    def handle(self, context, *args):
180        pass
181
182
183class Clamped(DecimalException):
184    """Exponent of a 0 changed to fit bounds.
185
186    This occurs and signals clamped if the exponent of a result has been
187    altered in order to fit the constraints of a specific concrete
188    representation.  This may occur when the exponent of a zero result would
189    be outside the bounds of a representation, or when a large normal
190    number would have an encoded exponent that cannot be represented.  In
191    this latter case, the exponent is reduced to fit and the corresponding
192    number of zero digits are appended to the coefficient ("fold-down").
193    """
194
195class InvalidOperation(DecimalException):
196    """An invalid operation was performed.
197
198    Various bad things cause this:
199
200    Something creates a signaling NaN
201    -INF + INF
202    0 * (+-)INF
203    (+-)INF / (+-)INF
204    x % 0
205    (+-)INF % x
206    x._rescale( non-integer )
207    sqrt(-x) , x > 0
208    0 ** 0
209    x ** (non-integer)
210    x ** (+-)INF
211    An operand is invalid
212
213    The result of the operation after these is a quiet positive NaN,
214    except when the cause is a signaling NaN, in which case the result is
215    also a quiet NaN, but with the original sign, and an optional
216    diagnostic information.
217    """
218    def handle(self, context, *args):
219        if args:
220            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
221            return ans._fix_nan(context)
222        return _NaN
223
224class ConversionSyntax(InvalidOperation):
225    """Trying to convert badly formed string.
226
227    This occurs and signals invalid-operation if an string is being
228    converted to a number and it does not conform to the numeric string
229    syntax.  The result is [0,qNaN].
230    """
231    def handle(self, context, *args):
232        return _NaN
233
234class DivisionByZero(DecimalException, ZeroDivisionError):
235    """Division by 0.
236
237    This occurs and signals division-by-zero if division of a finite number
238    by zero was attempted (during a divide-integer or divide operation, or a
239    power operation with negative right-hand operand), and the dividend was
240    not zero.
241
242    The result of the operation is [sign,inf], where sign is the exclusive
243    or of the signs of the operands for divide, or is 1 for an odd power of
244    -0, for power.
245    """
246
247    def handle(self, context, sign, *args):
248        return _SignedInfinity[sign]
249
250class DivisionImpossible(InvalidOperation):
251    """Cannot perform the division adequately.
252
253    This occurs and signals invalid-operation if the integer result of a
254    divide-integer or remainder operation had too many digits (would be
255    longer than precision).  The result is [0,qNaN].
256    """
257
258    def handle(self, context, *args):
259        return _NaN
260
261class DivisionUndefined(InvalidOperation, ZeroDivisionError):
262    """Undefined result of division.
263
264    This occurs and signals invalid-operation if division by zero was
265    attempted (during a divide-integer, divide, or remainder operation), and
266    the dividend is also zero.  The result is [0,qNaN].
267    """
268
269    def handle(self, context, *args):
270        return _NaN
271
272class Inexact(DecimalException):
273    """Had to round, losing information.
274
275    This occurs and signals inexact whenever the result of an operation is
276    not exact (that is, it needed to be rounded and any discarded digits
277    were non-zero), or if an overflow or underflow condition occurs.  The
278    result in all cases is unchanged.
279
280    The inexact signal may be tested (or trapped) to determine if a given
281    operation (or sequence of operations) was inexact.
282    """
283
284class InvalidContext(InvalidOperation):
285    """Invalid context.  Unknown rounding, for example.
286
287    This occurs and signals invalid-operation if an invalid context was
288    detected during an operation.  This can occur if contexts are not checked
289    on creation and either the precision exceeds the capability of the
290    underlying concrete representation or an unknown or unsupported rounding
291    was specified.  These aspects of the context need only be checked when
292    the values are required to be used.  The result is [0,qNaN].
293    """
294
295    def handle(self, context, *args):
296        return _NaN
297
298class Rounded(DecimalException):
299    """Number got rounded (not  necessarily changed during rounding).
300
301    This occurs and signals rounded whenever the result of an operation is
302    rounded (that is, some zero or non-zero digits were discarded from the
303    coefficient), or if an overflow or underflow condition occurs.  The
304    result in all cases is unchanged.
305
306    The rounded signal may be tested (or trapped) to determine if a given
307    operation (or sequence of operations) caused a loss of precision.
308    """
309
310class Subnormal(DecimalException):
311    """Exponent < Emin before rounding.
312
313    This occurs and signals subnormal whenever the result of a conversion or
314    operation is subnormal (that is, its adjusted exponent is less than
315    Emin, before any rounding).  The result in all cases is unchanged.
316
317    The subnormal signal may be tested (or trapped) to determine if a given
318    or operation (or sequence of operations) yielded a subnormal result.
319    """
320
321class Overflow(Inexact, Rounded):
322    """Numerical overflow.
323
324    This occurs and signals overflow if the adjusted exponent of a result
325    (from a conversion or from an operation that is not an attempt to divide
326    by zero), after rounding, would be greater than the largest value that
327    can be handled by the implementation (the value Emax).
328
329    The result depends on the rounding mode:
330
331    For round-half-up and round-half-even (and for round-half-down and
332    round-up, if implemented), the result of the operation is [sign,inf],
333    where sign is the sign of the intermediate result.  For round-down, the
334    result is the largest finite number that can be represented in the
335    current precision, with the sign of the intermediate result.  For
336    round-ceiling, the result is the same as for round-down if the sign of
337    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
338    the result is the same as for round-down if the sign of the intermediate
339    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
340    will also be raised.
341    """
342
343    def handle(self, context, sign, *args):
344        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
345                                ROUND_HALF_DOWN, ROUND_UP):
346            return _SignedInfinity[sign]
347        if sign == 0:
348            if context.rounding == ROUND_CEILING:
349                return _SignedInfinity[sign]
350            return _dec_from_triple(sign, '9'*context.prec,
351                            context.Emax-context.prec+1)
352        if sign == 1:
353            if context.rounding == ROUND_FLOOR:
354                return _SignedInfinity[sign]
355            return _dec_from_triple(sign, '9'*context.prec,
356                             context.Emax-context.prec+1)
357
358
359class Underflow(Inexact, Rounded, Subnormal):
360    """Numerical underflow with result rounded to 0.
361
362    This occurs and signals underflow if a result is inexact and the
363    adjusted exponent of the result would be smaller (more negative) than
364    the smallest value that can be handled by the implementation (the value
365    Emin).  That is, the result is both inexact and subnormal.
366
367    The result after an underflow will be a subnormal number rounded, if
368    necessary, so that its exponent is not less than Etiny.  This may result
369    in 0 with the sign of the intermediate result and an exponent of Etiny.
370
371    In all cases, Inexact, Rounded, and Subnormal will also be raised.
372    """
373
374# List of public traps and flags
375_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
376           Underflow, InvalidOperation, Subnormal]
377
378# Map conditions (per the spec) to signals
379_condition_map = {ConversionSyntax:InvalidOperation,
380                  DivisionImpossible:InvalidOperation,
381                  DivisionUndefined:InvalidOperation,
382                  InvalidContext:InvalidOperation}
383
384##### Context Functions ##################################################
385
386# The getcontext() and setcontext() function manage access to a thread-local
387# current context.  Py2.4 offers direct support for thread locals.  If that
388# is not available, use threading.currentThread() which is slower but will
389# work for older Pythons.  If threads are not part of the build, create a
390# mock threading object with threading.local() returning the module namespace.
391
392try:
393    import threading
394except ImportError:
395    # Python was compiled without threads; create a mock object instead
396    import sys
397    class MockThreading(object):
398        def local(self, sys=sys):
399            return sys.modules[__name__]
400    threading = MockThreading()
401    del sys, MockThreading
402
403try:
404    threading.local
405
406except AttributeError:
407
408    # To fix reloading, force it to create a new context
409    # Old contexts have different exceptions in their dicts, making problems.
410    if hasattr(threading.currentThread(), '__decimal_context__'):
411        del threading.currentThread().__decimal_context__
412
413    def setcontext(context):
414        """Set this thread's context to context."""
415        if context in (DefaultContext, BasicContext, ExtendedContext):
416            context = context.copy()
417            context.clear_flags()
418        threading.currentThread().__decimal_context__ = context
419
420    def getcontext():
421        """Returns this thread's context.
422
423        If this thread does not yet have a context, returns
424        a new context and sets this thread's context.
425        New contexts are copies of DefaultContext.
426        """
427        try:
428            return threading.currentThread().__decimal_context__
429        except AttributeError:
430            context = Context()
431            threading.currentThread().__decimal_context__ = context
432            return context
433
434else:
435
436    local = threading.local()
437    if hasattr(local, '__decimal_context__'):
438        del local.__decimal_context__
439
440    def getcontext(_local=local):
441        """Returns this thread's context.
442
443        If this thread does not yet have a context, returns
444        a new context and sets this thread's context.
445        New contexts are copies of DefaultContext.
446        """
447        try:
448            return _local.__decimal_context__
449        except AttributeError:
450            context = Context()
451            _local.__decimal_context__ = context
452            return context
453
454    def setcontext(context, _local=local):
455        """Set this thread's context to context."""
456        if context in (DefaultContext, BasicContext, ExtendedContext):
457            context = context.copy()
458            context.clear_flags()
459        _local.__decimal_context__ = context
460
461    del threading, local        # Don't contaminate the namespace
462
463def localcontext(ctx=None):
464    """Return a context manager for a copy of the supplied context
465
466    Uses a copy of the current context if no context is specified
467    The returned context manager creates a local decimal context
468    in a with statement:
469        def sin(x):
470             with localcontext() as ctx:
471                 ctx.prec += 2
472                 # Rest of sin calculation algorithm
473                 # uses a precision 2 greater than normal
474             return +s  # Convert result to normal precision
475
476         def sin(x):
477             with localcontext(ExtendedContext):
478                 # Rest of sin calculation algorithm
479                 # uses the Extended Context from the
480                 # General Decimal Arithmetic Specification
481             return +s  # Convert result to normal context
482
483    >>> setcontext(DefaultContext)
484    >>> print getcontext().prec
485    28
486    >>> with localcontext():
487    ...     ctx = getcontext()
488    ...     ctx.prec += 2
489    ...     print ctx.prec
490    ...
491    30
492    >>> with localcontext(ExtendedContext):
493    ...     print getcontext().prec
494    ...
495    9
496    >>> print getcontext().prec
497    28
498    """
499    if ctx is None: ctx = getcontext()
500    return _ContextManager(ctx)
501
502
503##### Decimal class #######################################################
504
505class Decimal(object):
506    """Floating point class for decimal arithmetic."""
507
508    __slots__ = ('_exp','_int','_sign', '_is_special')
509    # Generally, the value of the Decimal instance is given by
510    #  (-1)**_sign * _int * 10**_exp
511    # Special values are signified by _is_special == True
512
513    # We're immutable, so use __new__ not __init__
514    def __new__(cls, value="0", context=None):
515        """Create a decimal point instance.
516
517        >>> Decimal('3.14')              # string input
518        Decimal('3.14')
519        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
520        Decimal('3.14')
521        >>> Decimal(314)                 # int or long
522        Decimal('314')
523        >>> Decimal(Decimal(314))        # another decimal instance
524        Decimal('314')
525        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
526        Decimal('3.14')
527        """
528
529        # Note that the coefficient, self._int, is actually stored as
530        # a string rather than as a tuple of digits.  This speeds up
531        # the "digits to integer" and "integer to digits" conversions
532        # that are used in almost every arithmetic operation on
533        # Decimals.  This is an internal detail: the as_tuple function
534        # and the Decimal constructor still deal with tuples of
535        # digits.
536
537        self = object.__new__(cls)
538
539        # From a string
540        # REs insist on real strings, so we can too.
541        if isinstance(value, basestring):
542            m = _parser(value.strip())
543            if m is None:
544                if context is None:
545                    context = getcontext()
546                return context._raise_error(ConversionSyntax,
547                                "Invalid literal for Decimal: %r" % value)
548
549            if m.group('sign') == "-":
550                self._sign = 1
551            else:
552                self._sign = 0
553            intpart = m.group('int')
554            if intpart is not None:
555                # finite number
556                fracpart = m.group('frac') or ''
557                exp = int(m.group('exp') or '0')
558                self._int = str(int(intpart+fracpart))
559                self._exp = exp - len(fracpart)
560                self._is_special = False
561            else:
562                diag = m.group('diag')
563                if diag is not None:
564                    # NaN
565                    self._int = str(int(diag or '0')).lstrip('0')
566                    if m.group('signal'):
567                        self._exp = 'N'
568                    else:
569                        self._exp = 'n'
570                else:
571                    # infinity
572                    self._int = '0'
573                    self._exp = 'F'
574                self._is_special = True
575            return self
576
577        # From an integer
578        if isinstance(value, (int,long)):
579            if value >= 0:
580                self._sign = 0
581            else:
582                self._sign = 1
583            self._exp = 0
584            self._int = str(abs(value))
585            self._is_special = False
586            return self
587
588        # From another decimal
589        if isinstance(value, Decimal):
590            self._exp  = value._exp
591            self._sign = value._sign
592            self._int  = value._int
593            self._is_special  = value._is_special
594            return self
595
596        # From an internal working value
597        if isinstance(value, _WorkRep):
598            self._sign = value.sign
599            self._int = str(value.int)
600            self._exp = int(value.exp)
601            self._is_special = False
602            return self
603
604        # tuple/list conversion (possibly from as_tuple())
605        if isinstance(value, (list,tuple)):
606            if len(value) != 3:
607                raise ValueError('Invalid tuple size in creation of Decimal '
608                                 'from list or tuple.  The list or tuple '
609                                 'should have exactly three elements.')
610            # process sign.  The isinstance test rejects floats
611            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
612                raise ValueError("Invalid sign.  The first value in the tuple "
613                                 "should be an integer; either 0 for a "
614                                 "positive number or 1 for a negative number.")
615            self._sign = value[0]
616            if value[2] == 'F':
617                # infinity: value[1] is ignored
618                self._int = '0'
619                self._exp = value[2]
620                self._is_special = True
621            else:
622                # process and validate the digits in value[1]
623                digits = []
624                for digit in value[1]:
625                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
626                        # skip leading zeros
627                        if digits or digit != 0:
628                            digits.append(digit)
629                    else:
630                        raise ValueError("The second value in the tuple must "
631                                         "be composed of integers in the range "
632                                         "0 through 9.")
633                if value[2] in ('n', 'N'):
634                    # NaN: digits form the diagnostic
635                    self._int = ''.join(map(str, digits))
636                    self._exp = value[2]
637                    self._is_special = True
638                elif isinstance(value[2], (int, long)):
639                    # finite number: digits give the coefficient
640                    self._int = ''.join(map(str, digits or [0]))
641                    self._exp = value[2]
642                    self._is_special = False
643                else:
644                    raise ValueError("The third value in the tuple must "
645                                     "be an integer, or one of the "
646                                     "strings 'F', 'n', 'N'.")
647            return self
648
649        if isinstance(value, float):
650            value = Decimal.from_float(value)
651            self._exp  = value._exp
652            self._sign = value._sign
653            self._int  = value._int
654            self._is_special  = value._is_special
655            return self
656
657        raise TypeError("Cannot convert %r to Decimal" % value)
658
659    # @classmethod, but @decorator is not valid Python 2.3 syntax, so
660    # don't use it (see notes on Py2.3 compatibility at top of file)
661    def from_float(cls, f):
662        """Converts a float to a decimal number, exactly.
663
664        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
665        Since 0.1 is not exactly representable in binary floating point, the
666        value is stored as the nearest representable value which is
667        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
668        is 0.1000000000000000055511151231257827021181583404541015625.
669
670        >>> Decimal.from_float(0.1)
671        Decimal('0.1000000000000000055511151231257827021181583404541015625')
672        >>> Decimal.from_float(float('nan'))
673        Decimal('NaN')
674        >>> Decimal.from_float(float('inf'))
675        Decimal('Infinity')
676        >>> Decimal.from_float(-float('inf'))
677        Decimal('-Infinity')
678        >>> Decimal.from_float(-0.0)
679        Decimal('-0')
680
681        """
682        if isinstance(f, (int, long)):        # handle integer inputs
683            return cls(f)
684        if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
685            return cls(repr(f))
686        if _math.copysign(1.0, f) == 1.0:
687            sign = 0
688        else:
689            sign = 1
690        n, d = abs(f).as_integer_ratio()
691        k = d.bit_length() - 1
692        result = _dec_from_triple(sign, str(n*5**k), -k)
693        if cls is Decimal:
694            return result
695        else:
696            return cls(result)
697    from_float = classmethod(from_float)
698
699    def _isnan(self):
700        """Returns whether the number is not actually one.
701
702        0 if a number
703        1 if NaN
704        2 if sNaN
705        """
706        if self._is_special:
707            exp = self._exp
708            if exp == 'n':
709                return 1
710            elif exp == 'N':
711                return 2
712        return 0
713
714    def _isinfinity(self):
715        """Returns whether the number is infinite
716
717        0 if finite or not a number
718        1 if +INF
719        -1 if -INF
720        """
721        if self._exp == 'F':
722            if self._sign:
723                return -1
724            return 1
725        return 0
726
727    def _check_nans(self, other=None, context=None):
728        """Returns whether the number is not actually one.
729
730        if self, other are sNaN, signal
731        if self, other are NaN return nan
732        return 0
733
734        Done before operations.
735        """
736
737        self_is_nan = self._isnan()
738        if other is None:
739            other_is_nan = False
740        else:
741            other_is_nan = other._isnan()
742
743        if self_is_nan or other_is_nan:
744            if context is None:
745                context = getcontext()
746
747            if self_is_nan == 2:
748                return context._raise_error(InvalidOperation, 'sNaN',
749                                        self)
750            if other_is_nan == 2:
751                return context._raise_error(InvalidOperation, 'sNaN',
752                                        other)
753            if self_is_nan:
754                return self._fix_nan(context)
755
756            return other._fix_nan(context)
757        return 0
758
759    def _compare_check_nans(self, other, context):
760        """Version of _check_nans used for the signaling comparisons
761        compare_signal, __le__, __lt__, __ge__, __gt__.
762
763        Signal InvalidOperation if either self or other is a (quiet
764        or signaling) NaN.  Signaling NaNs take precedence over quiet
765        NaNs.
766
767        Return 0 if neither operand is a NaN.
768
769        """
770        if context is None:
771            context = getcontext()
772
773        if self._is_special or other._is_special:
774            if self.is_snan():
775                return context._raise_error(InvalidOperation,
776                                            'comparison involving sNaN',
777                                            self)
778            elif other.is_snan():
779                return context._raise_error(InvalidOperation,
780                                            'comparison involving sNaN',
781                                            other)
782            elif self.is_qnan():
783                return context._raise_error(InvalidOperation,
784                                            'comparison involving NaN',
785                                            self)
786            elif other.is_qnan():
787                return context._raise_error(InvalidOperation,
788                                            'comparison involving NaN',
789                                            other)
790        return 0
791
792    def __nonzero__(self):
793        """Return True if self is nonzero; otherwise return False.
794
795        NaNs and infinities are considered nonzero.
796        """
797        return self._is_special or self._int != '0'
798
799    def _cmp(self, other):
800        """Compare the two non-NaN decimal instances self and other.
801
802        Returns -1 if self < other, 0 if self == other and 1
803        if self > other.  This routine is for internal use only."""
804
805        if self._is_special or other._is_special:
806            self_inf = self._isinfinity()
807            other_inf = other._isinfinity()
808            if self_inf == other_inf:
809                return 0
810            elif self_inf < other_inf:
811                return -1
812            else:
813                return 1
814
815        # check for zeros;  Decimal('0') == Decimal('-0')
816        if not self:
817            if not other:
818                return 0
819            else:
820                return -((-1)**other._sign)
821        if not other:
822            return (-1)**self._sign
823
824        # If different signs, neg one is less
825        if other._sign < self._sign:
826            return -1
827        if self._sign < other._sign:
828            return 1
829
830        self_adjusted = self.adjusted()
831        other_adjusted = other.adjusted()
832        if self_adjusted == other_adjusted:
833            self_padded = self._int + '0'*(self._exp - other._exp)
834            other_padded = other._int + '0'*(other._exp - self._exp)
835            if self_padded == other_padded:
836                return 0
837            elif self_padded < other_padded:
838                return -(-1)**self._sign
839            else:
840                return (-1)**self._sign
841        elif self_adjusted > other_adjusted:
842            return (-1)**self._sign
843        else: # self_adjusted < other_adjusted
844            return -((-1)**self._sign)
845
846    # Note: The Decimal standard doesn't cover rich comparisons for
847    # Decimals.  In particular, the specification is silent on the
848    # subject of what should happen for a comparison involving a NaN.
849    # We take the following approach:
850    #
851    #   == comparisons involving a quiet NaN always return False
852    #   != comparisons involving a quiet NaN always return True
853    #   == or != comparisons involving a signaling NaN signal
854    #      InvalidOperation, and return False or True as above if the
855    #      InvalidOperation is not trapped.
856    #   <, >, <= and >= comparisons involving a (quiet or signaling)
857    #      NaN signal InvalidOperation, and return False if the
858    #      InvalidOperation is not trapped.
859    #
860    # This behavior is designed to conform as closely as possible to
861    # that specified by IEEE 754.
862
863    def __eq__(self, other, context=None):
864        other = _convert_other(other, allow_float=True)
865        if other is NotImplemented:
866            return other
867        if self._check_nans(other, context):
868            return False
869        return self._cmp(other) == 0
870
871    def __ne__(self, other, context=None):
872        other = _convert_other(other, allow_float=True)
873        if other is NotImplemented:
874            return other
875        if self._check_nans(other, context):
876            return True
877        return self._cmp(other) != 0
878
879    def __lt__(self, other, context=None):
880        other = _convert_other(other, allow_float=True)
881        if other is NotImplemented:
882            return other
883        ans = self._compare_check_nans(other, context)
884        if ans:
885            return False
886        return self._cmp(other) < 0
887
888    def __le__(self, other, context=None):
889        other = _convert_other(other, allow_float=True)
890        if other is NotImplemented:
891            return other
892        ans = self._compare_check_nans(other, context)
893        if ans:
894            return False
895        return self._cmp(other) <= 0
896
897    def __gt__(self, other, context=None):
898        other = _convert_other(other, allow_float=True)
899        if other is NotImplemented:
900            return other
901        ans = self._compare_check_nans(other, context)
902        if ans:
903            return False
904        return self._cmp(other) > 0
905
906    def __ge__(self, other, context=None):
907        other = _convert_other(other, allow_float=True)
908        if other is NotImplemented:
909            return other
910        ans = self._compare_check_nans(other, context)
911        if ans:
912            return False
913        return self._cmp(other) >= 0
914
915    def compare(self, other, context=None):
916        """Compares one to another.
917
918        -1 => a < b
919        0  => a = b
920        1  => a > b
921        NaN => one is NaN
922        Like __cmp__, but returns Decimal instances.
923        """
924        other = _convert_other(other, raiseit=True)
925
926        # Compare(NaN, NaN) = NaN
927        if (self._is_special or other and other._is_special):
928            ans = self._check_nans(other, context)
929            if ans:
930                return ans
931
932        return Decimal(self._cmp(other))
933
934    def __hash__(self):
935        """x.__hash__() <==> hash(x)"""
936        # Decimal integers must hash the same as the ints
937        #
938        # The hash of a nonspecial noninteger Decimal must depend only
939        # on the value of that Decimal, and not on its representation.
940        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
941
942        # Equality comparisons involving signaling nans can raise an
943        # exception; since equality checks are implicitly and
944        # unpredictably used when checking set and dict membership, we
945        # prevent signaling nans from being used as set elements or
946        # dict keys by making __hash__ raise an exception.
947        if self._is_special:
948            if self.is_snan():
949                raise TypeError('Cannot hash a signaling NaN value.')
950            elif self.is_nan():
951                # 0 to match hash(float('nan'))
952                return 0
953            else:
954                # values chosen to match hash(float('inf')) and
955                # hash(float('-inf')).
956                if self._sign:
957                    return -271828
958                else:
959                    return 314159
960
961        # In Python 2.7, we're allowing comparisons (but not
962        # arithmetic operations) between floats and Decimals;  so if
963        # a Decimal instance is exactly representable as a float then
964        # its hash should match that of the float.
965        self_as_float = float(self)
966        if Decimal.from_float(self_as_float) == self:
967            return hash(self_as_float)
968
969        if self._isinteger():
970            op = _WorkRep(self.to_integral_value())
971            # to make computation feasible for Decimals with large
972            # exponent, we use the fact that hash(n) == hash(m) for
973            # any two nonzero integers n and m such that (i) n and m
974            # have the same sign, and (ii) n is congruent to m modulo
975            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
976            # hash((-1)**s*c*pow(10, e, 2**64-1).
977            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
978        # The value of a nonzero nonspecial Decimal instance is
979        # faithfully represented by the triple consisting of its sign,
980        # its adjusted exponent, and its coefficient with trailing
981        # zeros removed.
982        return hash((self._sign,
983                     self._exp+len(self._int),
984                     self._int.rstrip('0')))
985
986    def as_tuple(self):
987        """Represents the number as a triple tuple.
988
989        To show the internals exactly as they are.
990        """
991        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
992
993    def __repr__(self):
994        """Represents the number as an instance of Decimal."""
995        # Invariant:  eval(repr(d)) == d
996        return "Decimal('%s')" % str(self)
997
998    def __str__(self, eng=False, context=None):
999        """Return string representation of the number in scientific notation.
1000
1001        Captures all of the information in the underlying representation.
1002        """
1003
1004        sign = ['', '-'][self._sign]
1005        if self._is_special:
1006            if self._exp == 'F':
1007                return sign + 'Infinity'
1008            elif self._exp == 'n':
1009                return sign + 'NaN' + self._int
1010            else: # self._exp == 'N'
1011                return sign + 'sNaN' + self._int
1012
1013        # number of digits of self._int to left of decimal point
1014        leftdigits = self._exp + len(self._int)
1015
1016        # dotplace is number of digits of self._int to the left of the
1017        # decimal point in the mantissa of the output string (that is,
1018        # after adjusting the exponent)
1019        if self._exp <= 0 and leftdigits > -6:
1020            # no exponent required
1021            dotplace = leftdigits
1022        elif not eng:
1023            # usual scientific notation: 1 digit on left of the point
1024            dotplace = 1
1025        elif self._int == '0':
1026            # engineering notation, zero
1027            dotplace = (leftdigits + 1) % 3 - 1
1028        else:
1029            # engineering notation, nonzero
1030            dotplace = (leftdigits - 1) % 3 + 1
1031
1032        if dotplace <= 0:
1033            intpart = '0'
1034            fracpart = '.' + '0'*(-dotplace) + self._int
1035        elif dotplace >= len(self._int):
1036            intpart = self._int+'0'*(dotplace-len(self._int))
1037            fracpart = ''
1038        else:
1039            intpart = self._int[:dotplace]
1040            fracpart = '.' + self._int[dotplace:]
1041        if leftdigits == dotplace:
1042            exp = ''
1043        else:
1044            if context is None:
1045                context = getcontext()
1046            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1047
1048        return sign + intpart + fracpart + exp
1049
1050    def to_eng_string(self, context=None):
1051        """Convert to engineering-type string.
1052
1053        Engineering notation has an exponent which is a multiple of 3, so there
1054        are up to 3 digits left of the decimal place.
1055
1056        Same rules for when in exponential and when as a value as in __str__.
1057        """
1058        return self.__str__(eng=True, context=context)
1059
1060    def __neg__(self, context=None):
1061        """Returns a copy with the sign switched.
1062
1063        Rounds, if it has reason.
1064        """
1065        if self._is_special:
1066            ans = self._check_nans(context=context)
1067            if ans:
1068                return ans
1069
1070        if context is None:
1071            context = getcontext()
1072
1073        if not self and context.rounding != ROUND_FLOOR:
1074            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
1075            # in ROUND_FLOOR rounding mode.
1076            ans = self.copy_abs()
1077        else:
1078            ans = self.copy_negate()
1079
1080        return ans._fix(context)
1081
1082    def __pos__(self, context=None):
1083        """Returns a copy, unless it is a sNaN.
1084
1085        Rounds the number (if more then precision digits)
1086        """
1087        if self._is_special:
1088            ans = self._check_nans(context=context)
1089            if ans:
1090                return ans
1091
1092        if context is None:
1093            context = getcontext()
1094
1095        if not self and context.rounding != ROUND_FLOOR:
1096            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
1097            ans = self.copy_abs()
1098        else:
1099            ans = Decimal(self)
1100
1101        return ans._fix(context)
1102
1103    def __abs__(self, round=True, context=None):
1104        """Returns the absolute value of self.
1105
1106        If the keyword argument 'round' is false, do not round.  The
1107        expression self.__abs__(round=False) is equivalent to
1108        self.copy_abs().
1109        """
1110        if not round:
1111            return self.copy_abs()
1112
1113        if self._is_special:
1114            ans = self._check_nans(context=context)
1115            if ans:
1116                return ans
1117
1118        if self._sign:
1119            ans = self.__neg__(context=context)
1120        else:
1121            ans = self.__pos__(context=context)
1122
1123        return ans
1124
1125    def __add__(self, other, context=None):
1126        """Returns self + other.
1127
1128        -INF + INF (or the reverse) cause InvalidOperation errors.
1129        """
1130        other = _convert_other(other)
1131        if other is NotImplemented:
1132            return other
1133
1134        if context is None:
1135            context = getcontext()
1136
1137        if self._is_special or other._is_special:
1138            ans = self._check_nans(other, context)
1139            if ans:
1140                return ans
1141
1142            if self._isinfinity():
1143                # If both INF, same sign => same as both, opposite => error.
1144                if self._sign != other._sign and other._isinfinity():
1145                    return context._raise_error(InvalidOperation, '-INF + INF')
1146                return Decimal(self)
1147            if other._isinfinity():
1148                return Decimal(other)  # Can't both be infinity here
1149
1150        exp = min(self._exp, other._exp)
1151        negativezero = 0
1152        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1153            # If the answer is 0, the sign should be negative, in this case.
1154            negativezero = 1
1155
1156        if not self and not other:
1157            sign = min(self._sign, other._sign)
1158            if negativezero:
1159                sign = 1
1160            ans = _dec_from_triple(sign, '0', exp)
1161            ans = ans._fix(context)
1162            return ans
1163        if not self:
1164            exp = max(exp, other._exp - context.prec-1)
1165            ans = other._rescale(exp, context.rounding)
1166            ans = ans._fix(context)
1167            return ans
1168        if not other:
1169            exp = max(exp, self._exp - context.prec-1)
1170            ans = self._rescale(exp, context.rounding)
1171            ans = ans._fix(context)
1172            return ans
1173
1174        op1 = _WorkRep(self)
1175        op2 = _WorkRep(other)
1176        op1, op2 = _normalize(op1, op2, context.prec)
1177
1178        result = _WorkRep()
1179        if op1.sign != op2.sign:
1180            # Equal and opposite
1181            if op1.int == op2.int:
1182                ans = _dec_from_triple(negativezero, '0', exp)
1183                ans = ans._fix(context)
1184                return ans
1185            if op1.int < op2.int:
1186                op1, op2 = op2, op1
1187                # OK, now abs(op1) > abs(op2)
1188            if op1.sign == 1:
1189                result.sign = 1
1190                op1.sign, op2.sign = op2.sign, op1.sign
1191            else:
1192                result.sign = 0
1193                # So we know the sign, and op1 > 0.
1194        elif op1.sign == 1:
1195            result.sign = 1
1196            op1.sign, op2.sign = (0, 0)
1197        else:
1198            result.sign = 0
1199        # Now, op1 > abs(op2) > 0
1200
1201        if op2.sign == 0:
1202            result.int = op1.int + op2.int
1203        else:
1204            result.int = op1.int - op2.int
1205
1206        result.exp = op1.exp
1207        ans = Decimal(result)
1208        ans = ans._fix(context)
1209        return ans
1210
1211    __radd__ = __add__
1212
1213    def __sub__(self, other, context=None):
1214        """Return self - other"""
1215        other = _convert_other(other)
1216        if other is NotImplemented:
1217            return other
1218
1219        if self._is_special or other._is_special:
1220            ans = self._check_nans(other, context=context)
1221            if ans:
1222                return ans
1223
1224        # self - other is computed as self + other.copy_negate()
1225        return self.__add__(other.copy_negate(), context=context)
1226
1227    def __rsub__(self, other, context=None):
1228        """Return other - self"""
1229        other = _convert_other(other)
1230        if other is NotImplemented:
1231            return other
1232
1233        return other.__sub__(self, context=context)
1234
1235    def __mul__(self, other, context=None):
1236        """Return self * other.
1237
1238        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1239        """
1240        other = _convert_other(other)
1241        if other is NotImplemented:
1242            return other
1243
1244        if context is None:
1245            context = getcontext()
1246
1247        resultsign = self._sign ^ other._sign
1248
1249        if self._is_special or other._is_special:
1250            ans = self._check_nans(other, context)
1251            if ans:
1252                return ans
1253
1254            if self._isinfinity():
1255                if not other:
1256                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1257                return _SignedInfinity[resultsign]
1258
1259            if other._isinfinity():
1260                if not self:
1261                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1262                return _SignedInfinity[resultsign]
1263
1264        resultexp = self._exp + other._exp
1265
1266        # Special case for multiplying by zero
1267        if not self or not other:
1268            ans = _dec_from_triple(resultsign, '0', resultexp)
1269            # Fixing in case the exponent is out of bounds
1270            ans = ans._fix(context)
1271            return ans
1272
1273        # Special case for multiplying by power of 10
1274        if self._int == '1':
1275            ans = _dec_from_triple(resultsign, other._int, resultexp)
1276            ans = ans._fix(context)
1277            return ans
1278        if other._int == '1':
1279            ans = _dec_from_triple(resultsign, self._int, resultexp)
1280            ans = ans._fix(context)
1281            return ans
1282
1283        op1 = _WorkRep(self)
1284        op2 = _WorkRep(other)
1285
1286        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1287        ans = ans._fix(context)
1288
1289        return ans
1290    __rmul__ = __mul__
1291
1292    def __truediv__(self, other, context=None):
1293        """Return self / other."""
1294        other = _convert_other(other)
1295        if other is NotImplemented:
1296            return NotImplemented
1297
1298        if context is None:
1299            context = getcontext()
1300
1301        sign = self._sign ^ other._sign
1302
1303        if self._is_special or other._is_special:
1304            ans = self._check_nans(other, context)
1305            if ans:
1306                return ans
1307
1308            if self._isinfinity() and other._isinfinity():
1309                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1310
1311            if self._isinfinity():
1312                return _SignedInfinity[sign]
1313
1314            if other._isinfinity():
1315                context._raise_error(Clamped, 'Division by infinity')
1316                return _dec_from_triple(sign, '0', context.Etiny())
1317
1318        # Special cases for zeroes
1319        if not other:
1320            if not self:
1321                return context._raise_error(DivisionUndefined, '0 / 0')
1322            return context._raise_error(DivisionByZero, 'x / 0', sign)
1323
1324        if not self:
1325            exp = self._exp - other._exp
1326            coeff = 0
1327        else:
1328            # OK, so neither = 0, INF or NaN
1329            shift = len(other._int) - len(self._int) + context.prec + 1
1330            exp = self._exp - other._exp - shift
1331            op1 = _WorkRep(self)
1332            op2 = _WorkRep(other)
1333            if shift >= 0:
1334                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1335            else:
1336                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1337            if remainder:
1338                # result is not exact; adjust to ensure correct rounding
1339                if coeff % 5 == 0:
1340                    coeff += 1
1341            else:
1342                # result is exact; get as close to ideal exponent as possible
1343                ideal_exp = self._exp - other._exp
1344                while exp < ideal_exp and coeff % 10 == 0:
1345                    coeff //= 10
1346                    exp += 1
1347
1348        ans = _dec_from_triple(sign, str(coeff), exp)
1349        return ans._fix(context)
1350
1351    def _divide(self, other, context):
1352        """Return (self // other, self % other), to context.prec precision.
1353
1354        Assumes that neither self nor other is a NaN, that self is not
1355        infinite and that other is nonzero.
1356        """
1357        sign = self._sign ^ other._sign
1358        if other._isinfinity():
1359            ideal_exp = self._exp
1360        else:
1361            ideal_exp = min(self._exp, other._exp)
1362
1363        expdiff = self.adjusted() - other.adjusted()
1364        if not self or other._isinfinity() or expdiff <= -2:
1365            return (_dec_from_triple(sign, '0', 0),
1366                    self._rescale(ideal_exp, context.rounding))
1367        if expdiff <= context.prec:
1368            op1 = _WorkRep(self)
1369            op2 = _WorkRep(other)
1370            if op1.exp >= op2.exp:
1371                op1.int *= 10**(op1.exp - op2.exp)
1372            else:
1373                op2.int *= 10**(op2.exp - op1.exp)
1374            q, r = divmod(op1.int, op2.int)
1375            if q < 10**context.prec:
1376                return (_dec_from_triple(sign, str(q), 0),
1377                        _dec_from_triple(self._sign, str(r), ideal_exp))
1378
1379        # Here the quotient is too large to be representable
1380        ans = context._raise_error(DivisionImpossible,
1381                                   'quotient too large in //, % or divmod')
1382        return ans, ans
1383
1384    def __rtruediv__(self, other, context=None):
1385        """Swaps self/other and returns __truediv__."""
1386        other = _convert_other(other)
1387        if other is NotImplemented:
1388            return other
1389        return other.__truediv__(self, context=context)
1390
1391    __div__ = __truediv__
1392    __rdiv__ = __rtruediv__
1393
1394    def __divmod__(self, other, context=None):
1395        """
1396        Return (self // other, self % other)
1397        """
1398        other = _convert_other(other)
1399        if other is NotImplemented:
1400            return other
1401
1402        if context is None:
1403            context = getcontext()
1404
1405        ans = self._check_nans(other, context)
1406        if ans:
1407            return (ans, ans)
1408
1409        sign = self._sign ^ other._sign
1410        if self._isinfinity():
1411            if other._isinfinity():
1412                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1413                return ans, ans
1414            else:
1415                return (_SignedInfinity[sign],
1416                        context._raise_error(InvalidOperation, 'INF % x'))
1417
1418        if not other:
1419            if not self:
1420                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1421                return ans, ans
1422            else:
1423                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1424                        context._raise_error(InvalidOperation, 'x % 0'))
1425
1426        quotient, remainder = self._divide(other, context)
1427        remainder = remainder._fix(context)
1428        return quotient, remainder
1429
1430    def __rdivmod__(self, other, context=None):
1431        """Swaps self/other and returns __divmod__."""
1432        other = _convert_other(other)
1433        if other is NotImplemented:
1434            return other
1435        return other.__divmod__(self, context=context)
1436
1437    def __mod__(self, other, context=None):
1438        """
1439        self % other
1440        """
1441        other = _convert_other(other)
1442        if other is NotImplemented:
1443            return other
1444
1445        if context is None:
1446            context = getcontext()
1447
1448        ans = self._check_nans(other, context)
1449        if ans:
1450            return ans
1451
1452        if self._isinfinity():
1453            return context._raise_error(InvalidOperation, 'INF % x')
1454        elif not other:
1455            if self:
1456                return context._raise_error(InvalidOperation, 'x % 0')
1457            else:
1458                return context._raise_error(DivisionUndefined, '0 % 0')
1459
1460        remainder = self._divide(other, context)[1]
1461        remainder = remainder._fix(context)
1462        return remainder
1463
1464    def __rmod__(self, other, context=None):
1465        """Swaps self/other and returns __mod__."""
1466        other = _convert_other(other)
1467        if other is NotImplemented:
1468            return other
1469        return other.__mod__(self, context=context)
1470
1471    def remainder_near(self, other, context=None):
1472        """
1473        Remainder nearest to 0-  abs(remainder-near) <= other/2
1474        """
1475        if context is None:
1476            context = getcontext()
1477
1478        other = _convert_other(other, raiseit=True)
1479
1480        ans = self._check_nans(other, context)
1481        if ans:
1482            return ans
1483
1484        # self == +/-infinity -> InvalidOperation
1485        if self._isinfinity():
1486            return context._raise_error(InvalidOperation,
1487                                        'remainder_near(infinity, x)')
1488
1489        # other == 0 -> either InvalidOperation or DivisionUndefined
1490        if not other:
1491            if self:
1492                return context._raise_error(InvalidOperation,
1493                                            'remainder_near(x, 0)')
1494            else:
1495                return context._raise_error(DivisionUndefined,
1496                                            'remainder_near(0, 0)')
1497
1498        # other = +/-infinity -> remainder = self
1499        if other._isinfinity():
1500            ans = Decimal(self)
1501            return ans._fix(context)
1502
1503        # self = 0 -> remainder = self, with ideal exponent
1504        ideal_exponent = min(self._exp, other._exp)
1505        if not self:
1506            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1507            return ans._fix(context)
1508
1509        # catch most cases of large or small quotient
1510        expdiff = self.adjusted() - other.adjusted()
1511        if expdiff >= context.prec + 1:
1512            # expdiff >= prec+1 => abs(self/other) > 10**prec
1513            return context._raise_error(DivisionImpossible)
1514        if expdiff <= -2:
1515            # expdiff <= -2 => abs(self/other) < 0.1
1516            ans = self._rescale(ideal_exponent, context.rounding)
1517            return ans._fix(context)
1518
1519        # adjust both arguments to have the same exponent, then divide
1520        op1 = _WorkRep(self)
1521        op2 = _WorkRep(other)
1522        if op1.exp >= op2.exp:
1523            op1.int *= 10**(op1.exp - op2.exp)
1524        else:
1525            op2.int *= 10**(op2.exp - op1.exp)
1526        q, r = divmod(op1.int, op2.int)
1527        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1528        # 10**ideal_exponent.   Apply correction to ensure that
1529        # abs(remainder) <= abs(other)/2
1530        if 2*r + (q&1) > op2.int:
1531            r -= op2.int
1532            q += 1
1533
1534        if q >= 10**context.prec:
1535            return context._raise_error(DivisionImpossible)
1536
1537        # result has same sign as self unless r is negative
1538        sign = self._sign
1539        if r < 0:
1540            sign = 1-sign
1541            r = -r
1542
1543        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1544        return ans._fix(context)
1545
1546    def __floordiv__(self, other, context=None):
1547        """self // other"""
1548        other = _convert_other(other)
1549        if other is NotImplemented:
1550            return other
1551
1552        if context is None:
1553            context = getcontext()
1554
1555        ans = self._check_nans(other, context)
1556        if ans:
1557            return ans
1558
1559        if self._isinfinity():
1560            if other._isinfinity():
1561                return context._raise_error(InvalidOperation, 'INF // INF')
1562            else:
1563                return _SignedInfinity[self._sign ^ other._sign]
1564
1565        if not other:
1566            if self:
1567                return context._raise_error(DivisionByZero, 'x // 0',
1568                                            self._sign ^ other._sign)
1569            else:
1570                return context._raise_error(DivisionUndefined, '0 // 0')
1571
1572        return self._divide(other, context)[0]
1573
1574    def __rfloordiv__(self, other, context=None):
1575        """Swaps self/other and returns __floordiv__."""
1576        other = _convert_other(other)
1577        if other is NotImplemented:
1578            return other
1579        return other.__floordiv__(self, context=context)
1580
1581    def __float__(self):
1582        """Float representation."""
1583        if self._isnan():
1584            if self.is_snan():
1585                raise ValueError("Cannot convert signaling NaN to float")
1586            s = "-nan" if self._sign else "nan"
1587        else:
1588            s = str(self)
1589        return float(s)
1590
1591    def __int__(self):
1592        """Converts self to an int, truncating if necessary."""
1593        if self._is_special:
1594            if self._isnan():
1595                raise ValueError("Cannot convert NaN to integer")
1596            elif self._isinfinity():
1597                raise OverflowError("Cannot convert infinity to integer")
1598        s = (-1)**self._sign
1599        if self._exp >= 0:
1600            return s*int(self._int)*10**self._exp
1601        else:
1602            return s*int(self._int[:self._exp] or '0')
1603
1604    __trunc__ = __int__
1605
1606    def real(self):
1607        return self
1608    real = property(real)
1609
1610    def imag(self):
1611        return Decimal(0)
1612    imag = property(imag)
1613
1614    def conjugate(self):
1615        return self
1616
1617    def __complex__(self):
1618        return complex(float(self))
1619
1620    def __long__(self):
1621        """Converts to a long.
1622
1623        Equivalent to long(int(self))
1624        """
1625        return long(self.__int__())
1626
1627    def _fix_nan(self, context):
1628        """Decapitate the payload of a NaN to fit the context"""
1629        payload = self._int
1630
1631        # maximum length of payload is precision if _clamp=0,
1632        # precision-1 if _clamp=1.
1633        max_payload_len = context.prec - context._clamp
1634        if len(payload) > max_payload_len:
1635            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1636            return _dec_from_triple(self._sign, payload, self._exp, True)
1637        return Decimal(self)
1638
1639    def _fix(self, context):
1640        """Round if it is necessary to keep self within prec precision.
1641
1642        Rounds and fixes the exponent.  Does not raise on a sNaN.
1643
1644        Arguments:
1645        self - Decimal instance
1646        context - context used.
1647        """
1648
1649        if self._is_special:
1650            if self._isnan():
1651                # decapitate payload if necessary
1652                return self._fix_nan(context)
1653            else:
1654                # self is +/-Infinity; return unaltered
1655                return Decimal(self)
1656
1657        # if self is zero then exponent should be between Etiny and
1658        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1659        Etiny = context.Etiny()
1660        Etop = context.Etop()
1661        if not self:
1662            exp_max = [context.Emax, Etop][context._clamp]
1663            new_exp = min(max(self._exp, Etiny), exp_max)
1664            if new_exp != self._exp:
1665                context._raise_error(Clamped)
1666                return _dec_from_triple(self._sign, '0', new_exp)
1667            else:
1668                return Decimal(self)
1669
1670        # exp_min is the smallest allowable exponent of the result,
1671        # equal to max(self.adjusted()-context.prec+1, Etiny)
1672        exp_min = len(self._int) + self._exp - context.prec
1673        if exp_min > Etop:
1674            # overflow: exp_min > Etop iff self.adjusted() > Emax
1675            ans = context._raise_error(Overflow, 'above Emax', self._sign)
1676            context._raise_error(Inexact)
1677            context._raise_error(Rounded)
1678            return ans
1679
1680        self_is_subnormal = exp_min < Etiny
1681        if self_is_subnormal:
1682            exp_min = Etiny
1683
1684        # round if self has too many digits
1685        if self._exp < exp_min:
1686            digits = len(self._int) + self._exp - exp_min
1687            if digits < 0:
1688                self = _dec_from_triple(self._sign, '1', exp_min-1)
1689                digits = 0
1690            rounding_method = self._pick_rounding_function[context.rounding]
1691            changed = rounding_method(self, digits)
1692            coeff = self._int[:digits] or '0'
1693            if changed > 0:
1694                coeff = str(int(coeff)+1)
1695                if len(coeff) > context.prec:
1696                    coeff = coeff[:-1]
1697                    exp_min += 1
1698
1699            # check whether the rounding pushed the exponent out of range
1700            if exp_min > Etop:
1701                ans = context._raise_error(Overflow, 'above Emax', self._sign)
1702            else:
1703                ans = _dec_from_triple(self._sign, coeff, exp_min)
1704
1705            # raise the appropriate signals, taking care to respect
1706            # the precedence described in the specification
1707            if changed and self_is_subnormal:
1708                context._raise_error(Underflow)
1709            if self_is_subnormal:
1710                context._raise_error(Subnormal)
1711            if changed:
1712                context._raise_error(Inexact)
1713            context._raise_error(Rounded)
1714            if not ans:
1715                # raise Clamped on underflow to 0
1716                context._raise_error(Clamped)
1717            return ans
1718
1719        if self_is_subnormal:
1720            context._raise_error(Subnormal)
1721
1722        # fold down if _clamp == 1 and self has too few digits
1723        if context._clamp == 1 and self._exp > Etop:
1724            context._raise_error(Clamped)
1725            self_padded = self._int + '0'*(self._exp - Etop)
1726            return _dec_from_triple(self._sign, self_padded, Etop)
1727
1728        # here self was representable to begin with; return unchanged
1729        return Decimal(self)
1730
1731    # for each of the rounding functions below:
1732    #   self is a finite, nonzero Decimal
1733    #   prec is an integer satisfying 0 <= prec < len(self._int)
1734    #
1735    # each function returns either -1, 0, or 1, as follows:
1736    #   1 indicates that self should be rounded up (away from zero)
1737    #   0 indicates that self should be truncated, and that all the
1738    #     digits to be truncated are zeros (so the value is unchanged)
1739    #  -1 indicates that there are nonzero digits to be truncated
1740
1741    def _round_down(self, prec):
1742        """Also known as round-towards-0, truncate."""
1743        if _all_zeros(self._int, prec):
1744            return 0
1745        else:
1746            return -1
1747
1748    def _round_up(self, prec):
1749        """Rounds away from 0."""
1750        return -self._round_down(prec)
1751
1752    def _round_half_up(self, prec):
1753        """Rounds 5 up (away from 0)"""
1754        if self._int[prec] in '56789':
1755            return 1
1756        elif _all_zeros(self._int, prec):
1757            return 0
1758        else:
1759            return -1
1760
1761    def _round_half_down(self, prec):
1762        """Round 5 down"""
1763        if _exact_half(self._int, prec):
1764            return -1
1765        else:
1766            return self._round_half_up(prec)
1767
1768    def _round_half_even(self, prec):
1769        """Round 5 to even, rest to nearest."""
1770        if _exact_half(self._int, prec) and \
1771                (prec == 0 or self._int[prec-1] in '02468'):
1772            return -1
1773        else:
1774            return self._round_half_up(prec)
1775
1776    def _round_ceiling(self, prec):
1777        """Rounds up (not away from 0 if negative.)"""
1778        if self._sign:
1779            return self._round_down(prec)
1780        else:
1781            return -self._round_down(prec)
1782
1783    def _round_floor(self, prec):
1784        """Rounds down (not towards 0 if negative)"""
1785        if not self._sign:
1786            return self._round_down(prec)
1787        else:
1788            return -self._round_down(prec)
1789
1790    def _round_05up(self, prec):
1791        """Round down unless digit prec-1 is 0 or 5."""
1792        if prec and self._int[prec-1] not in '05':
1793            return self._round_down(prec)
1794        else:
1795            return -self._round_down(prec)
1796
1797    _pick_rounding_function = dict(
1798        ROUND_DOWN = _round_down,
1799        ROUND_UP = _round_up,
1800        ROUND_HALF_UP = _round_half_up,
1801        ROUND_HALF_DOWN = _round_half_down,
1802        ROUND_HALF_EVEN = _round_half_even,
1803        ROUND_CEILING = _round_ceiling,
1804        ROUND_FLOOR = _round_floor,
1805        ROUND_05UP = _round_05up,
1806    )
1807
1808    def fma(self, other, third, context=None):
1809        """Fused multiply-add.
1810
1811        Returns self*other+third with no rounding of the intermediate
1812        product self*other.
1813
1814        self and other are multiplied together, with no rounding of
1815        the result.  The third operand is then added to the result,
1816        and a single final rounding is performed.
1817        """
1818
1819        other = _convert_other(other, raiseit=True)
1820
1821        # compute product; raise InvalidOperation if either operand is
1822        # a signaling NaN or if the product is zero times infinity.
1823        if self._is_special or other._is_special:
1824            if context is None:
1825                context = getcontext()
1826            if self._exp == 'N':
1827                return context._raise_error(InvalidOperation, 'sNaN', self)
1828            if other._exp == 'N':
1829                return context._raise_error(InvalidOperation, 'sNaN', other)
1830            if self._exp == 'n':
1831                product = self
1832            elif other._exp == 'n':
1833                product = other
1834            elif self._exp == 'F':
1835                if not other:
1836                    return context._raise_error(InvalidOperation,
1837                                                'INF * 0 in fma')
1838                product = _SignedInfinity[self._sign ^ other._sign]
1839            elif other._exp == 'F':
1840                if not self:
1841                    return context._raise_error(InvalidOperation,
1842                                                '0 * INF in fma')
1843                product = _SignedInfinity[self._sign ^ other._sign]
1844        else:
1845            product = _dec_from_triple(self._sign ^ other._sign,
1846                                       str(int(self._int) * int(other._int)),
1847                                       self._exp + other._exp)
1848
1849        third = _convert_other(third, raiseit=True)
1850        return product.__add__(third, context)
1851
1852    def _power_modulo(self, other, modulo, context=None):
1853        """Three argument version of __pow__"""
1854
1855        # if can't convert other and modulo to Decimal, raise
1856        # TypeError; there's no point returning NotImplemented (no
1857        # equivalent of __rpow__ for three argument pow)
1858        other = _convert_other(other, raiseit=True)
1859        modulo = _convert_other(modulo, raiseit=True)
1860
1861        if context is None:
1862            context = getcontext()
1863
1864        # deal with NaNs: if there are any sNaNs then first one wins,
1865        # (i.e. behaviour for NaNs is identical to that of fma)
1866        self_is_nan = self._isnan()
1867        other_is_nan = other._isnan()
1868        modulo_is_nan = modulo._isnan()
1869        if self_is_nan or other_is_nan or modulo_is_nan:
1870            if self_is_nan == 2:
1871                return context._raise_error(InvalidOperation, 'sNaN',
1872                                        self)
1873            if other_is_nan == 2:
1874                return context._raise_error(InvalidOperation, 'sNaN',
1875                                        other)
1876            if modulo_is_nan == 2:
1877                return context._raise_error(InvalidOperation, 'sNaN',
1878                                        modulo)
1879            if self_is_nan:
1880                return self._fix_nan(context)
1881            if other_is_nan:
1882                return other._fix_nan(context)
1883            return modulo._fix_nan(context)
1884
1885        # check inputs: we apply same restrictions as Python's pow()
1886        if not (self._isinteger() and
1887                other._isinteger() and
1888                modulo._isinteger()):
1889            return context._raise_error(InvalidOperation,
1890                                        'pow() 3rd argument not allowed '
1891                                        'unless all arguments are integers')
1892        if other < 0:
1893            return context._raise_error(InvalidOperation,
1894                                        'pow() 2nd argument cannot be '
1895                                        'negative when 3rd argument specified')
1896        if not modulo:
1897            return context._raise_error(InvalidOperation,
1898                                        'pow() 3rd argument cannot be 0')
1899
1900        # additional restriction for decimal: the modulus must be less
1901        # than 10**prec in absolute value
1902        if modulo.adjusted() >= context.prec:
1903            return context._raise_error(InvalidOperation,
1904                                        'insufficient precision: pow() 3rd '
1905                                        'argument must not have more than '
1906                                        'precision digits')
1907
1908        # define 0**0 == NaN, for consistency with two-argument pow
1909        # (even though it hurts!)
1910        if not other and not self:
1911            return context._raise_error(InvalidOperation,
1912                                        'at least one of pow() 1st argument '
1913                                        'and 2nd argument must be nonzero ;'
1914                                        '0**0 is not defined')
1915
1916        # compute sign of result
1917        if other._iseven():
1918            sign = 0
1919        else:
1920            sign = self._sign
1921
1922        # convert modulo to a Python integer, and self and other to
1923        # Decimal integers (i.e. force their exponents to be >= 0)
1924        modulo = abs(int(modulo))
1925        base = _WorkRep(self.to_integral_value())
1926        exponent = _WorkRep(other.to_integral_value())
1927
1928        # compute result using integer pow()
1929        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1930        for i in xrange(exponent.exp):
1931            base = pow(base, 10, modulo)
1932        base = pow(base, exponent.int, modulo)
1933
1934        return _dec_from_triple(sign, str(base), 0)
1935
1936    def _power_exact(self, other, p):
1937        """Attempt to compute self**other exactly.
1938
1939        Given Decimals self and other and an integer p, attempt to
1940        compute an exact result for the power self**other, with p
1941        digits of precision.  Return None if self**other is not
1942        exactly representable in p digits.
1943
1944        Assumes that elimination of special cases has already been
1945        performed: self and other must both be nonspecial; self must
1946        be positive and not numerically equal to 1; other must be
1947        nonzero.  For efficiency, other._exp should not be too large,
1948        so that 10**abs(other._exp) is a feasible calculation."""
1949
1950        # In the comments below, we write x for the value of self and y for the
1951        # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
1952        # and yc positive integers not divisible by 10.
1953
1954        # The main purpose of this method is to identify the *failure*
1955        # of x**y to be exactly representable with as little effort as
1956        # possible.  So we look for cheap and easy tests that
1957        # eliminate the possibility of x**y being exact.  Only if all
1958        # these tests are passed do we go on to actually compute x**y.
1959
1960        # Here's the main idea.  Express y as a rational number m/n, with m and
1961        # n relatively prime and n>0.  Then for x**y to be exactly
1962        # representable (at *any* precision), xc must be the nth power of a
1963        # positive integer and xe must be divisible by n.  If y is negative
1964        # then additionally xc must be a power of either 2 or 5, hence a power
1965        # of 2**n or 5**n.
1966        #
1967        # There's a limit to how small |y| can be: if y=m/n as above
1968        # then:
1969        #
1970        #  (1) if xc != 1 then for the result to be representable we
1971        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
1972        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1973        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
1974        #      representable.
1975        #
1976        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
1977        #      |y| < 1/|xe| then the result is not representable.
1978        #
1979        # Note that since x is not equal to 1, at least one of (1) and
1980        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1981        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1982        #
1983        # There's also a limit to how large y can be, at least if it's
1984        # positive: the normalized result will have coefficient xc**y,
1985        # so if it's representable then xc**y < 10**p, and y <
1986        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
1987        # not exactly representable.
1988
1989        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1990        # so |y| < 1/xe and the result is not representable.
1991        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1992        # < 1/nbits(xc).
1993
1994        x = _WorkRep(self)
1995        xc, xe = x.int, x.exp
1996        while xc % 10 == 0:
1997            xc //= 10
1998            xe += 1
1999
2000        y = _WorkRep(other)
2001        yc, ye = y.int, y.exp
2002        while yc % 10 == 0:
2003            yc //= 10
2004            ye += 1
2005
2006        # case where xc == 1: result is 10**(xe*y), with xe*y
2007        # required to be an integer
2008        if xc == 1:
2009            xe *= yc
2010            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
2011            while xe % 10 == 0:
2012                xe //= 10
2013                ye += 1
2014            if ye < 0:
2015                return None
2016            exponent = xe * 10**ye
2017            if y.sign == 1:
2018                exponent = -exponent
2019            # if other is a nonnegative integer, use ideal exponent
2020            if other._isinteger() and other._sign == 0:
2021                ideal_exponent = self._exp*int(other)
2022                zeros = min(exponent-ideal_exponent, p-1)
2023            else:
2024                zeros = 0
2025            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
2026
2027        # case where y is negative: xc must be either a power
2028        # of 2 or a power of 5.
2029        if y.sign == 1:
2030            last_digit = xc % 10
2031            if last_digit in (2,4,6,8):
2032                # quick test for power of 2
2033                if xc & -xc != xc:
2034                    return None
2035                # now xc is a power of 2; e is its exponent
2036                e = _nbits(xc)-1
2037
2038                # We now have:
2039                #
2040                #   x = 2**e * 10**xe, e > 0, and y < 0.
2041                #
2042                # The exact result is:
2043                #
2044                #   x**y = 5**(-e*y) * 10**(e*y + xe*y)
2045                #
2046                # provided that both e*y and xe*y are integers.  Note that if
2047                # 5**(-e*y) >= 10**p, then the result can't be expressed
2048                # exactly with p digits of precision.
2049                #
2050                # Using the above, we can guard against large values of ye.
2051                # 93/65 is an upper bound for log(10)/log(5), so if
2052                #
2053                #   ye >= len(str(93*p//65))
2054                #
2055                # then
2056                #
2057                #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
2058                #
2059                # so 5**(-e*y) >= 10**p, and the coefficient of the result
2060                # can't be expressed in p digits.
2061
2062                # emax >= largest e such that 5**e < 10**p.
2063                emax = p*93//65
2064                if ye >= len(str(emax)):
2065                    return None
2066
2067                # Find -e*y and -xe*y; both must be integers
2068                e = _decimal_lshift_exact(e * yc, ye)
2069                xe = _decimal_lshift_exact(xe * yc, ye)
2070                if e is None or xe is None:
2071                    return None
2072
2073                if e > emax:
2074                    return None
2075                xc = 5**e
2076
2077            elif last_digit == 5:
2078                # e >= log_5(xc) if xc is a power of 5; we have
2079                # equality all the way up to xc=5**2658
2080                e = _nbits(xc)*28//65
2081                xc, remainder = divmod(5**e, xc)
2082                if remainder:
2083                    return None
2084                while xc % 5 == 0:
2085                    xc //= 5
2086                    e -= 1
2087
2088                # Guard against large values of ye, using the same logic as in
2089                # the 'xc is a power of 2' branch.  10/3 is an upper bound for
2090                # log(10)/log(2).
2091                emax = p*10//3
2092                if ye >= len(str(emax)):
2093                    return None
2094
2095                e = _decimal_lshift_exact(e * yc, ye)
2096                xe = _decimal_lshift_exact(xe * yc, ye)
2097                if e is None or xe is None:
2098                    return None
2099
2100                if e > emax:
2101                    return None
2102                xc = 2**e
2103            else:
2104                return None
2105
2106            if xc >= 10**p:
2107                return None
2108            xe = -e-xe
2109            return _dec_from_triple(0, str(xc), xe)
2110
2111        # now y is positive; find m and n such that y = m/n
2112        if ye >= 0:
2113            m, n = yc*10**ye, 1
2114        else:
2115            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2116                return None
2117            xc_bits = _nbits(xc)
2118            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2119                return None
2120            m, n = yc, 10**(-ye)
2121            while m % 2 == n % 2 == 0:
2122                m //= 2
2123                n //= 2
2124            while m % 5 == n % 5 == 0:
2125                m //= 5
2126                n //= 5
2127
2128        # compute nth root of xc*10**xe
2129        if n > 1:
2130            # if 1 < xc < 2**n then xc isn't an nth power
2131            if xc != 1 and xc_bits <= n:
2132                return None
2133
2134            xe, rem = divmod(xe, n)
2135            if rem != 0:
2136                return None
2137
2138            # compute nth root of xc using Newton's method
2139            a = 1L << -(-_nbits(xc)//n) # initial estimate
2140            while True:
2141                q, r = divmod(xc, a**(n-1))
2142                if a <= q:
2143                    break
2144                else:
2145                    a = (a*(n-1) + q)//n
2146            if not (a == q and r == 0):
2147                return None
2148            xc = a
2149
2150        # now xc*10**xe is the nth root of the original xc*10**xe
2151        # compute mth power of xc*10**xe
2152
2153        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2154        # 10**p and the result is not representable.
2155        if xc > 1 and m > p*100//_log10_lb(xc):
2156            return None
2157        xc = xc**m
2158        xe *= m
2159        if xc > 10**p:
2160            return None
2161
2162        # by this point the result *is* exactly representable
2163        # adjust the exponent to get as close as possible to the ideal
2164        # exponent, if necessary
2165        str_xc = str(xc)
2166        if other._isinteger() and other._sign == 0:
2167            ideal_exponent = self._exp*int(other)
2168            zeros = min(xe-ideal_exponent, p-len(str_xc))
2169        else:
2170            zeros = 0
2171        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2172
2173    def __pow__(self, other, modulo=None, context=None):
2174        """Return self ** other [ % modulo].
2175
2176        With two arguments, compute self**other.
2177
2178        With three arguments, compute (self**other) % modulo.  For the
2179        three argument form, the following restrictions on the
2180        arguments hold:
2181
2182         - all three arguments must be integral
2183         - other must be nonnegative
2184         - either self or other (or both) must be nonzero
2185         - modulo must be nonzero and must have at most p digits,
2186           where p is the context precision.
2187
2188        If any of these restrictions is violated the InvalidOperation
2189        flag is raised.
2190
2191        The result of pow(self, other, modulo) is identical to the
2192        result that would be obtained by computing (self**other) %
2193        modulo with unbounded precision, but is computed more
2194        efficiently.  It is always exact.
2195        """
2196
2197        if modulo is not None:
2198            return self._power_modulo(other, modulo, context)
2199
2200        other = _convert_other(other)
2201        if other is NotImplemented:
2202            return other
2203
2204        if context is None:
2205            context = getcontext()
2206
2207        # either argument is a NaN => result is NaN
2208        ans = self._check_nans(other, context)
2209        if ans:
2210            return ans
2211
2212        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2213        if not other:
2214            if not self:
2215                return context._raise_error(InvalidOperation, '0 ** 0')
2216            else:
2217                return _One
2218
2219        # result has sign 1 iff self._sign is 1 and other is an odd integer
2220        result_sign = 0
2221        if self._sign == 1:
2222            if other._isinteger():
2223                if not other._iseven():
2224                    result_sign = 1
2225            else:
2226                # -ve**noninteger = NaN
2227                # (-0)**noninteger = 0**noninteger
2228                if self:
2229                    return context._raise_error(InvalidOperation,
2230                        'x ** y with x negative and y not an integer')
2231            # negate self, without doing any unwanted rounding
2232            self = self.copy_negate()
2233
2234        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2235        if not self:
2236            if other._sign == 0:
2237                return _dec_from_triple(result_sign, '0', 0)
2238            else:
2239                return _SignedInfinity[result_sign]
2240
2241        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2242        if self._isinfinity():
2243            if other._sign == 0:
2244                return _SignedInfinity[result_sign]
2245            else:
2246                return _dec_from_triple(result_sign, '0', 0)
2247
2248        # 1**other = 1, but the choice of exponent and the flags
2249        # depend on the exponent of self, and on whether other is a
2250        # positive integer, a negative integer, or neither
2251        if self == _One:
2252            if other._isinteger():
2253                # exp = max(self._exp*max(int(other), 0),
2254                # 1-context.prec) but evaluating int(other) directly
2255                # is dangerous until we know other is small (other
2256                # could be 1e999999999)
2257                if other._sign == 1:
2258                    multiplier = 0
2259                elif other > context.prec:
2260                    multiplier = context.prec
2261                else:
2262                    multiplier = int(other)
2263
2264                exp = self._exp * multiplier
2265                if exp < 1-context.prec:
2266                    exp = 1-context.prec
2267                    context._raise_error(Rounded)
2268            else:
2269                context._raise_error(Inexact)
2270                context._raise_error(Rounded)
2271                exp = 1-context.prec
2272
2273            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2274
2275        # compute adjusted exponent of self
2276        self_adj = self.adjusted()
2277
2278        # self ** infinity is infinity if self > 1, 0 if self < 1
2279        # self ** -infinity is infinity if self < 1, 0 if self > 1
2280        if other._isinfinity():
2281            if (other._sign == 0) == (self_adj < 0):
2282                return _dec_from_triple(result_sign, '0', 0)
2283            else:
2284                return _SignedInfinity[result_sign]
2285
2286        # from here on, the result always goes through the call
2287        # to _fix at the end of this function.
2288        ans = None
2289        exact = False
2290
2291        # crude test to catch cases of extreme overflow/underflow.  If
2292        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2293        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2294        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2295        # for underflow is similar.
2296        bound = self._log10_exp_bound() + other.adjusted()
2297        if (self_adj >= 0) == (other._sign == 0):
2298            # self > 1 and other +ve, or self < 1 and other -ve
2299            # possibility of overflow
2300            if bound >= len(str(context.Emax)):
2301                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2302        else:
2303            # self > 1 and other -ve, or self < 1 and other +ve
2304            # possibility of underflow to 0
2305            Etiny = context.Etiny()
2306            if bound >= len(str(-Etiny)):
2307                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2308
2309        # try for an exact result with precision +1
2310        if ans is None:
2311            ans = self._power_exact(other, context.prec + 1)
2312            if ans is not None:
2313                if result_sign == 1:
2314                    ans = _dec_from_triple(1, ans._int, ans._exp)
2315                exact = True
2316
2317        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2318        if ans is None:
2319            p = context.prec
2320            x = _WorkRep(self)
2321            xc, xe = x.int, x.exp
2322            y = _WorkRep(other)
2323            yc, ye = y.int, y.exp
2324            if y.sign == 1:
2325                yc = -yc
2326
2327            # compute correctly rounded result:  start with precision +3,
2328            # then increase precision until result is unambiguously roundable
2329            extra = 3
2330            while True:
2331                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2332                if coeff % (5*10**(len(str(coeff))-p-1)):
2333                    break
2334                extra += 3
2335
2336            ans = _dec_from_triple(result_sign, str(coeff), exp)
2337
2338        # unlike exp, ln and log10, the power function respects the
2339        # rounding mode; no need to switch to ROUND_HALF_EVEN here
2340
2341        # There's a difficulty here when 'other' is not an integer and
2342        # the result is exact.  In this case, the specification
2343        # requires that the Inexact flag be raised (in spite of
2344        # exactness), but since the result is exact _fix won't do this
2345        # for us.  (Correspondingly, the Underflow signal should also
2346        # be raised for subnormal results.)  We can't directly raise
2347        # these signals either before or after calling _fix, since
2348        # that would violate the precedence for signals.  So we wrap
2349        # the ._fix call in a temporary context, and reraise
2350        # afterwards.
2351        if exact and not other._isinteger():
2352            # pad with zeros up to length context.prec+1 if necessary; this
2353            # ensures that the Rounded signal will be raised.
2354            if len(ans._int) <= context.prec:
2355                expdiff = context.prec + 1 - len(ans._int)
2356                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2357                                       ans._exp-expdiff)
2358
2359            # create a copy of the current context, with cleared flags/traps
2360            newcontext = context.copy()
2361            newcontext.clear_flags()
2362            for exception in _signals:
2363                newcontext.traps[exception] = 0
2364
2365            # round in the new context
2366            ans = ans._fix(newcontext)
2367
2368            # raise Inexact, and if necessary, Underflow
2369            newcontext._raise_error(Inexact)
2370            if newcontext.flags[Subnormal]:
2371                newcontext._raise_error(Underflow)
2372
2373            # propagate signals to the original context; _fix could
2374            # have raised any of Overflow, Underflow, Subnormal,
2375            # Inexact, Rounded, Clamped.  Overflow needs the correct
2376            # arguments.  Note that the order of the exceptions is
2377            # important here.
2378            if newcontext.flags[Overflow]:
2379                context._raise_error(Overflow, 'above Emax', ans._sign)
2380            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
2381                if newcontext.flags[exception]:
2382                    context._raise_error(exception)
2383
2384        else:
2385            ans = ans._fix(context)
2386
2387        return ans
2388
2389    def __rpow__(self, other, context=None):
2390        """Swaps self/other and returns __pow__."""
2391        other = _convert_other(other)
2392        if other is NotImplemented:
2393            return other
2394        return other.__pow__(self, context=context)
2395
2396    def normalize(self, context=None):
2397        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2398
2399        if context is None:
2400            context = getcontext()
2401
2402        if self._is_special:
2403            ans = self._check_nans(context=context)
2404            if ans:
2405                return ans
2406
2407        dup = self._fix(context)
2408        if dup._isinfinity():
2409            return dup
2410
2411        if not dup:
2412            return _dec_from_triple(dup._sign, '0', 0)
2413        exp_max = [context.Emax, context.Etop()][context._clamp]
2414        end = len(dup._int)
2415        exp = dup._exp
2416        while dup._int[end-1] == '0' and exp < exp_max:
2417            exp += 1
2418            end -= 1
2419        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2420
2421    def quantize(self, exp, rounding=None, context=None, watchexp=True):
2422        """Quantize self so its exponent is the same as that of exp.
2423
2424        Similar to self._rescale(exp._exp) but with error checking.
2425        """
2426        exp = _convert_other(exp, raiseit=True)
2427
2428        if context is None:
2429            context = getcontext()
2430        if rounding is None:
2431            rounding = context.rounding
2432
2433        if self._is_special or exp._is_special:
2434            ans = self._check_nans(exp, context)
2435            if ans:
2436                return ans
2437
2438            if exp._isinfinity() or self._isinfinity():
2439                if exp._isinfinity() and self._isinfinity():
2440                    return Decimal(self)  # if both are inf, it is OK
2441                return context._raise_error(InvalidOperation,
2442                                        'quantize with one INF')
2443
2444        # if we're not watching exponents, do a simple rescale
2445        if not watchexp:
2446            ans = self._rescale(exp._exp, rounding)
2447            # raise Inexact and Rounded where appropriate
2448            if ans._exp > self._exp:
2449                context._raise_error(Rounded)
2450                if ans != self:
2451                    context._raise_error(Inexact)
2452            return ans
2453
2454        # exp._exp should be between Etiny and Emax
2455        if not (context.Etiny() <= exp._exp <= context.Emax):
2456            return context._raise_error(InvalidOperation,
2457                   'target exponent out of bounds in quantize')
2458
2459        if not self:
2460            ans = _dec_from_triple(self._sign, '0', exp._exp)
2461            return ans._fix(context)
2462
2463        self_adjusted = self.adjusted()
2464        if self_adjusted > context.Emax:
2465            return context._raise_error(InvalidOperation,
2466                                        'exponent of quantize result too large for current context')
2467        if self_adjusted - exp._exp + 1 > context.prec:
2468            return context._raise_error(InvalidOperation,
2469                                        'quantize result has too many digits for current context')
2470
2471        ans = self._rescale(exp._exp, rounding)
2472        if ans.adjusted() > context.Emax:
2473            return context._raise_error(InvalidOperation,
2474                                        'exponent of quantize result too large for current context')
2475        if len(ans._int) > context.prec:
2476            return context._raise_error(InvalidOperation,
2477                                        'quantize result has too many digits for current context')
2478
2479        # raise appropriate flags
2480        if ans and ans.adjusted() < context.Emin:
2481            context._raise_error(Subnormal)
2482        if ans._exp > self._exp:
2483            if ans != self:
2484                context._raise_error(Inexact)
2485            context._raise_error(Rounded)
2486
2487        # call to fix takes care of any necessary folddown, and
2488        # signals Clamped if necessary
2489        ans = ans._fix(context)
2490        return ans
2491
2492    def same_quantum(self, other):
2493        """Return True if self and other have the same exponent; otherwise
2494        return False.
2495
2496        If either operand is a special value, the following rules are used:
2497           * return True if both operands are infinities
2498           * return True if both operands are NaNs
2499           * otherwise, return False.
2500        """
2501        other = _convert_other(other, raiseit=True)
2502        if self._is_special or other._is_special:
2503            return (self.is_nan() and other.is_nan() or
2504                    self.is_infinite() and other.is_infinite())
2505        return self._exp == other._exp
2506
2507    def _rescale(self, exp, rounding):
2508        """Rescale self so that the exponent is exp, either by padding with zeros
2509        or by truncating digits, using the given rounding mode.
2510
2511        Specials are returned without change.  This operation is
2512        quiet: it raises no flags, and uses no information from the
2513        context.
2514
2515        exp = exp to scale to (an integer)
2516        rounding = rounding mode
2517        """
2518        if self._is_special:
2519            return Decimal(self)
2520        if not self:
2521            return _dec_from_triple(self._sign, '0', exp)
2522
2523        if self._exp >= exp:
2524            # pad answer with zeros if necessary
2525            return _dec_from_triple(self._sign,
2526                                        self._int + '0'*(self._exp - exp), exp)
2527
2528        # too many digits; round and lose data.  If self.adjusted() <
2529        # exp-1, replace self by 10**(exp-1) before rounding
2530        digits = len(self._int) + self._exp - exp
2531        if digits < 0:
2532            self = _dec_from_triple(self._sign, '1', exp-1)
2533            digits = 0
2534        this_function = self._pick_rounding_function[rounding]
2535        changed = this_function(self, digits)
2536        coeff = self._int[:digits] or '0'
2537        if changed == 1:
2538            coeff = str(int(coeff)+1)
2539        return _dec_from_triple(self._sign, coeff, exp)
2540
2541    def _round(self, places, rounding):
2542        """Round a nonzero, nonspecial Decimal to a fixed number of
2543        significant figures, using the given rounding mode.
2544
2545        Infinities, NaNs and zeros are returned unaltered.
2546
2547        This operation is quiet: it raises no flags, and uses no
2548        information from the context.
2549
2550        """
2551        if places <= 0:
2552            raise ValueError("argument should be at least 1 in _round")
2553        if self._is_special or not self:
2554            return Decimal(self)
2555        ans = self._rescale(self.adjusted()+1-places, rounding)
2556        # it can happen that the rescale alters the adjusted exponent;
2557        # for example when rounding 99.97 to 3 significant figures.
2558        # When this happens we end up with an extra 0 at the end of
2559        # the number; a second rescale fixes this.
2560        if ans.adjusted() != self.adjusted():
2561            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2562        return ans
2563
2564    def to_integral_exact(self, rounding=None, context=None):
2565        """Rounds to a nearby integer.
2566
2567        If no rounding mode is specified, take the rounding mode from
2568        the context.  This method raises the Rounded and Inexact flags
2569        when appropriate.
2570
2571        See also: to_integral_value, which does exactly the same as
2572        this method except that it doesn't raise Inexact or Rounded.
2573        """
2574        if self._is_special:
2575            ans = self._check_nans(context=context)
2576            if ans:
2577                return ans
2578            return Decimal(self)
2579        if self._exp >= 0:
2580            return Decimal(self)
2581        if not self:
2582            return _dec_from_triple(self._sign, '0', 0)
2583        if context is None:
2584            context = getcontext()
2585        if rounding is None:
2586            rounding = context.rounding
2587        ans = self._rescale(0, rounding)
2588        if ans != self:
2589            context._raise_error(Inexact)
2590        context._raise_error(Rounded)
2591        return ans
2592
2593    def to_integral_value(self, rounding=None, context=None):
2594        """Rounds to the nearest integer, without raising inexact, rounded."""
2595        if context is None:
2596            context = getcontext()
2597        if rounding is None:
2598            rounding = context.rounding
2599        if self._is_special:
2600            ans = self._check_nans(context=context)
2601            if ans:
2602                return ans
2603            return Decimal(self)
2604        if self._exp >= 0:
2605            return Decimal(self)
2606        else:
2607            return self._rescale(0, rounding)
2608
2609    # the method name changed, but we provide also the old one, for compatibility
2610    to_integral = to_integral_value
2611
2612    def sqrt(self, context=None):
2613        """Return the square root of self."""
2614        if context is None:
2615            context = getcontext()
2616
2617        if self._is_special:
2618            ans = self._check_nans(context=context)
2619            if ans:
2620                return ans
2621
2622            if self._isinfinity() and self._sign == 0:
2623                return Decimal(self)
2624
2625        if not self:
2626            # exponent = self._exp // 2.  sqrt(-0) = -0
2627            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2628            return ans._fix(context)
2629
2630        if self._sign == 1:
2631            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2632
2633        # At this point self represents a positive number.  Let p be
2634        # the desired precision and express self in the form c*100**e
2635        # with c a positive real number and e an integer, c and e
2636        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2637        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2638        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2639        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2640        # the closest integer to sqrt(c) with the even integer chosen
2641        # in the case of a tie.
2642        #
2643        # To ensure correct rounding in all cases, we use the
2644        # following trick: we compute the square root to an extra
2645        # place (precision p+1 instead of precision p), rounding down.
2646        # Then, if the result is inexact and its last digit is 0 or 5,
2647        # we increase the last digit to 1 or 6 respectively; if it's
2648        # exact we leave the last digit alone.  Now the final round to
2649        # p places (or fewer in the case of underflow) will round
2650        # correctly and raise the appropriate flags.
2651
2652        # use an extra digit of precision
2653        prec = context.prec+1
2654
2655        # write argument in the form c*100**e where e = self._exp//2
2656        # is the 'ideal' exponent, to be used if the square root is
2657        # exactly representable.  l is the number of 'digits' of c in
2658        # base 100, so that 100**(l-1) <= c < 100**l.
2659        op = _WorkRep(self)
2660        e = op.exp >> 1
2661        if op.exp & 1:
2662            c = op.int * 10
2663            l = (len(self._int) >> 1) + 1
2664        else:
2665            c = op.int
2666            l = len(self._int)+1 >> 1
2667
2668        # rescale so that c has exactly prec base 100 'digits'
2669        shift = prec-l
2670        if shift >= 0:
2671            c *= 100**shift
2672            exact = True
2673        else:
2674            c, remainder = divmod(c, 100**-shift)
2675            exact = not remainder
2676        e -= shift
2677
2678        # find n = floor(sqrt(c)) using Newton's method
2679        n = 10**prec
2680        while True:
2681            q = c//n
2682            if n <= q:
2683                break
2684            else:
2685                n = n + q >> 1
2686        exact = exact and n*n == c
2687
2688        if exact:
2689            # result is exact; rescale to use ideal exponent e
2690            if shift >= 0:
2691                # assert n % 10**shift == 0
2692                n //= 10**shift
2693            else:
2694                n *= 10**-shift
2695            e += shift
2696        else:
2697            # result is not exact; fix last digit as described above
2698            if n % 5 == 0:
2699                n += 1
2700
2701        ans = _dec_from_triple(0, str(n), e)
2702
2703        # round, and fit to current context
2704        context = context._shallow_copy()
2705        rounding = context._set_rounding(ROUND_HALF_EVEN)
2706        ans = ans._fix(context)
2707        context.rounding = rounding
2708
2709        return ans
2710
2711    def max(self, other, context=None):
2712        """Returns the larger value.
2713
2714        Like max(self, other) except if one is not a number, returns
2715        NaN (and signals if one is sNaN).  Also rounds.
2716        """
2717        other = _convert_other(other, raiseit=True)
2718
2719        if context is None:
2720            context = getcontext()
2721
2722        if self._is_special or other._is_special:
2723            # If one operand is a quiet NaN and the other is number, then the
2724            # number is always returned
2725            sn = self._isnan()
2726            on = other._isnan()
2727            if sn or on:
2728                if on == 1 and sn == 0:
2729                    return self._fix(context)
2730                if sn == 1 and on == 0:
2731                    return other._fix(context)
2732                return self._check_nans(other, context)
2733
2734        c = self._cmp(other)
2735        if c == 0:
2736            # If both operands are finite and equal in numerical value
2737            # then an ordering is applied:
2738            #
2739            # If the signs differ then max returns the operand with the
2740            # positive sign and min returns the operand with the negative sign
2741            #
2742            # If the signs are the same then the exponent is used to select
2743            # the result.  This is exactly the ordering used in compare_total.
2744            c = self.compare_total(other)
2745
2746        if c == -1:
2747            ans = other
2748        else:
2749            ans = self
2750
2751        return ans._fix(context)
2752
2753    def min(self, other, context=None):
2754        """Returns the smaller value.
2755
2756        Like min(self, other) except if one is not a number, returns
2757        NaN (and signals if one is sNaN).  Also rounds.
2758        """
2759        other = _convert_other(other, raiseit=True)
2760
2761        if context is None:
2762            context = getcontext()
2763
2764        if self._is_special or other._is_special:
2765            # If one operand is a quiet NaN and the other is number, then the
2766            # number is always returned
2767            sn = self._isnan()
2768            on = other._isnan()
2769            if sn or on:
2770                if on == 1 and sn == 0:
2771                    return self._fix(context)
2772                if sn == 1 and on == 0:
2773                    return other._fix(context)
2774                return self._check_nans(other, context)
2775
2776        c = self._cmp(other)
2777        if c == 0:
2778            c = self.compare_total(other)
2779
2780        if c == -1:
2781            ans = self
2782        else:
2783            ans = other
2784
2785        return ans._fix(context)
2786
2787    def _isinteger(self):
2788        """Returns whether self is an integer"""
2789        if self._is_special:
2790            return False
2791        if self._exp >= 0:
2792            return True
2793        rest = self._int[self._exp:]
2794        return rest == '0'*len(rest)
2795
2796    def _iseven(self):
2797        """Returns True if self is even.  Assumes self is an integer."""
2798        if not self or self._exp > 0:
2799            return True
2800        return self._int[-1+self._exp] in '02468'
2801
2802    def adjusted(self):
2803        """Return the adjusted exponent of self"""
2804        try:
2805            return self._exp + len(self._int) - 1
2806        # If NaN or Infinity, self._exp is string
2807        except TypeError:
2808            return 0
2809
2810    def canonical(self, context=None):
2811        """Returns the same Decimal object.
2812
2813        As we do not have different encodings for the same number, the
2814        received object already is in its canonical form.
2815        """
2816        return self
2817
2818    def compare_signal(self, other, context=None):
2819        """Compares self to the other operand numerically.
2820
2821        It's pretty much like compare(), but all NaNs signal, with signaling
2822        NaNs taking precedence over quiet NaNs.
2823        """
2824        other = _convert_other(other, raiseit = True)
2825        ans = self._compare_check_nans(other, context)
2826        if ans:
2827            return ans
2828        return self.compare(other, context=context)
2829
2830    def compare_total(self, other):
2831        """Compares self to other using the abstract representations.
2832
2833        This is not like the standard compare, which use their numerical
2834        value. Note that a total ordering is defined for all possible abstract
2835        representations.
2836        """
2837        other = _convert_other(other, raiseit=True)
2838
2839        # if one is negative and the other is positive, it's easy
2840        if self._sign and not other._sign:
2841            return _NegativeOne
2842        if not self._sign and other._sign:
2843            return _One
2844        sign = self._sign
2845
2846        # let's handle both NaN types
2847        self_nan = self._isnan()
2848        other_nan = other._isnan()
2849        if self_nan or other_nan:
2850            if self_nan == other_nan:
2851                # compare payloads as though they're integers
2852                self_key = len(self._int), self._int
2853                other_key = len(other._int), other._int
2854                if self_key < other_key:
2855                    if sign:
2856                        return _One
2857                    else:
2858                        return _NegativeOne
2859                if self_key > other_key:
2860                    if sign:
2861                        return _NegativeOne
2862                    else:
2863                        return _One
2864                return _Zero
2865
2866            if sign:
2867                if self_nan == 1:
2868                    return _NegativeOne
2869                if other_nan == 1:
2870                    return _One
2871                if self_nan == 2:
2872                    return _NegativeOne
2873                if other_nan == 2:
2874                    return _One
2875            else:
2876                if self_nan == 1:
2877                    return _One
2878                if other_nan == 1:
2879                    return _NegativeOne
2880                if self_nan == 2:
2881                    return _One
2882                if other_nan == 2:
2883                    return _NegativeOne
2884
2885        if self < other:
2886            return _NegativeOne
2887        if self > other:
2888            return _One
2889
2890        if self._exp < other._exp:
2891            if sign:
2892                return _One
2893            else:
2894                return _NegativeOne
2895        if self._exp > other._exp:
2896            if sign:
2897                return _NegativeOne
2898            else:
2899                return _One
2900        return _Zero
2901
2902
2903    def compare_total_mag(self, other):
2904        """Compares self to other using abstract repr., ignoring sign.
2905
2906        Like compare_total, but with operand's sign ignored and assumed to be 0.
2907        """
2908        other = _convert_other(other, raiseit=True)
2909
2910        s = self.copy_abs()
2911        o = other.copy_abs()
2912        return s.compare_total(o)
2913
2914    def copy_abs(self):
2915        """Returns a copy with the sign set to 0. """
2916        return _dec_from_triple(0, self._int, self._exp, self._is_special)
2917
2918    def copy_negate(self):
2919        """Returns a copy with the sign inverted."""
2920        if self._sign:
2921            return _dec_from_triple(0, self._int, self._exp, self._is_special)
2922        else:
2923            return _dec_from_triple(1, self._int, self._exp, self._is_special)
2924
2925    def copy_sign(self, other):
2926        """Returns self with the sign of other."""
2927        other = _convert_other(other, raiseit=True)
2928        return _dec_from_triple(other._sign, self._int,
2929                                self._exp, self._is_special)
2930
2931    def exp(self, context=None):
2932        """Returns e ** self."""
2933
2934        if context is None:
2935            context = getcontext()
2936
2937        # exp(NaN) = NaN
2938        ans = self._check_nans(context=context)
2939        if ans:
2940            return ans
2941
2942        # exp(-Infinity) = 0
2943        if self._isinfinity() == -1:
2944            return _Zero
2945
2946        # exp(0) = 1
2947        if not self:
2948            return _One
2949
2950        # exp(Infinity) = Infinity
2951        if self._isinfinity() == 1:
2952            return Decimal(self)
2953
2954        # the result is now guaranteed to be inexact (the true
2955        # mathematical result is transcendental). There's no need to
2956        # raise Rounded and Inexact here---they'll always be raised as
2957        # a result of the call to _fix.
2958        p = context.prec
2959        adj = self.adjusted()
2960
2961        # we only need to do any computation for quite a small range
2962        # of adjusted exponents---for example, -29 <= adj <= 10 for
2963        # the default context.  For smaller exponent the result is
2964        # indistinguishable from 1 at the given precision, while for
2965        # larger exponent the result either overflows or underflows.
2966        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2967            # overflow
2968            ans = _dec_from_triple(0, '1', context.Emax+1)
2969        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2970            # underflow to 0
2971            ans = _dec_from_triple(0, '1', context.Etiny()-1)
2972        elif self._sign == 0 and adj < -p:
2973            # p+1 digits; final round will raise correct flags
2974            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2975        elif self._sign == 1 and adj < -p-1:
2976            # p+1 digits; final round will raise correct flags
2977            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2978        # general case
2979        else:
2980            op = _WorkRep(self)
2981            c, e = op.int, op.exp
2982            if op.sign == 1:
2983                c = -c
2984
2985            # compute correctly rounded result: increase precision by
2986            # 3 digits at a time until we get an unambiguously
2987            # roundable result
2988            extra = 3
2989            while True:
2990                coeff, exp = _dexp(c, e, p+extra)
2991                if coeff % (5*10**(len(str(coeff))-p-1)):
2992                    break
2993                extra += 3
2994
2995            ans = _dec_from_triple(0, str(coeff), exp)
2996
2997        # at this stage, ans should round correctly with *any*
2998        # rounding mode, not just with ROUND_HALF_EVEN
2999        context = context._shallow_copy()
3000        rounding = context._set_rounding(ROUND_HALF_EVEN)
3001        ans = ans._fix(context)
3002        context.rounding = rounding
3003
3004        return ans
3005
3006    def is_canonical(self):
3007        """Return True if self is canonical; otherwise return False.
3008
3009        Currently, the encoding of a Decimal instance is always
3010        canonical, so this method returns True for any Decimal.
3011        """
3012        return True
3013
3014    def is_finite(self):
3015        """Return True if self is finite; otherwise return False.
3016
3017        A Decimal instance is considered finite if it is neither
3018        infinite nor a NaN.
3019        """
3020        return not self._is_special
3021
3022    def is_infinite(self):
3023        """Return True if self is infinite; otherwise return False."""
3024        return self._exp == 'F'
3025
3026    def is_nan(self):
3027        """Return True if self is a qNaN or sNaN; otherwise return False."""
3028        return self._exp in ('n', 'N')
3029
3030    def is_normal(self, context=None):
3031        """Return True if self is a normal number; otherwise return False."""
3032        if self._is_special or not self:
3033            return False
3034        if context is None:
3035            context = getcontext()
3036        return context.Emin <= self.adjusted()
3037
3038    def is_qnan(self):
3039        """Return True if self is a quiet NaN; otherwise return False."""
3040        return self._exp == 'n'
3041
3042    def is_signed(self):
3043        """Return True if self is negative; otherwise return False."""
3044        return self._sign == 1
3045
3046    def is_snan(self):
3047        """Return True if self is a signaling NaN; otherwise return False."""
3048        return self._exp == 'N'
3049
3050    def is_subnormal(self, context=None):
3051        """Return True if self is subnormal; otherwise return False."""
3052        if self._is_special or not self:
3053            return False
3054        if context is None:
3055            context = getcontext()
3056        return self.adjusted() < context.Emin
3057
3058    def is_zero(self):
3059        """Return True if self is a zero; otherwise return False."""
3060        return not self._is_special and self._int == '0'
3061
3062    def _ln_exp_bound(self):
3063        """Compute a lower bound for the adjusted exponent of self.ln().
3064        In other words, compute r such that self.ln() >= 10**r.  Assumes
3065        that self is finite and positive and that self != 1.
3066        """
3067
3068        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
3069        adj = self._exp + len(self._int) - 1
3070        if adj >= 1:
3071            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
3072            return len(str(adj*23//10)) - 1
3073        if adj <= -2:
3074            # argument <= 0.1
3075            return len(str((-1-adj)*23//10)) - 1
3076        op = _WorkRep(self)
3077        c, e = op.int, op.exp
3078        if adj == 0:
3079            # 1 < self < 10
3080            num = str(c-10**-e)
3081            den = str(c)
3082            return len(num) - len(den) - (num < den)
3083        # adj == -1, 0.1 <= self < 1
3084        return e + len(str(10**-e - c)) - 1
3085
3086
3087    def ln(self, context=None):
3088        """Returns the natural (base e) logarithm of self."""
3089
3090        if context is None:
3091            context = getcontext()
3092
3093        # ln(NaN) = NaN
3094        ans = self._check_nans(context=context)
3095        if ans:
3096            return ans
3097
3098        # ln(0.0) == -Infinity
3099        if not self:
3100            return _NegativeInfinity
3101
3102        # ln(Infinity) = Infinity
3103        if self._isinfinity() == 1:
3104            return _Infinity
3105
3106        # ln(1.0) == 0.0
3107        if self == _One:
3108            return _Zero
3109
3110        # ln(negative) raises InvalidOperation
3111        if self._sign == 1:
3112            return context._raise_error(InvalidOperation,
3113                                        'ln of a negative value')
3114
3115        # result is irrational, so necessarily inexact
3116        op = _WorkRep(self)
3117        c, e = op.int, op.exp
3118        p = context.prec
3119
3120        # correctly rounded result: repeatedly increase precision by 3
3121        # until we get an unambiguously roundable result
3122        places = p - self._ln_exp_bound() + 2 # at least p+3 places
3123        while True:
3124            coeff = _dlog(c, e, places)
3125            # assert len(str(abs(coeff)))-p >= 1
3126            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3127                break
3128            places += 3
3129        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3130
3131        context = context._shallow_copy()
3132        rounding = context._set_rounding(ROUND_HALF_EVEN)
3133        ans = ans._fix(context)
3134        context.rounding = rounding
3135        return ans
3136
3137    def _log10_exp_bound(self):
3138        """Compute a lower bound for the adjusted exponent of self.log10().
3139        In other words, find r such that self.log10() >= 10**r.
3140        Assumes that self is finite and positive and that self != 1.
3141        """
3142
3143        # For x >= 10 or x < 0.1 we only need a bound on the integer
3144        # part of log10(self), and this comes directly from the
3145        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
3146        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3147        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3148
3149        adj = self._exp + len(self._int) - 1
3150        if adj >= 1:
3151            # self >= 10
3152            return len(str(adj))-1
3153        if adj <= -2:
3154            # self < 0.1
3155            return len(str(-1-adj))-1
3156        op = _WorkRep(self)
3157        c, e = op.int, op.exp
3158        if adj == 0:
3159            # 1 < self < 10
3160            num = str(c-10**-e)
3161            den = str(231*c)
3162            return len(num) - len(den) - (num < den) + 2
3163        # adj == -1, 0.1 <= self < 1
3164        num = str(10**-e-c)
3165        return len(num) + e - (num < "231") - 1
3166
3167    def log10(self, context=None):
3168        """Returns the base 10 logarithm of self."""
3169
3170        if context is None:
3171            context = getcontext()
3172
3173        # log10(NaN) = NaN
3174        ans = self._check_nans(context=context)
3175        if ans:
3176            return ans
3177
3178        # log10(0.0) == -Infinity
3179        if not self:
3180            return _NegativeInfinity
3181
3182        # log10(Infinity) = Infinity
3183        if self._isinfinity() == 1:
3184            return _Infinity
3185
3186        # log10(negative or -Infinity) raises InvalidOperation
3187        if self._sign == 1:
3188            return context._raise_error(InvalidOperation,
3189                                        'log10 of a negative value')
3190
3191        # log10(10**n) = n
3192        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3193            # answer may need rounding
3194            ans = Decimal(self._exp + len(self._int) - 1)
3195        else:
3196            # result is irrational, so necessarily inexact
3197            op = _WorkRep(self)
3198            c, e = op.int, op.exp
3199            p = context.prec
3200
3201            # correctly rounded result: repeatedly increase precision
3202            # until result is unambiguously roundable
3203            places = p-self._log10_exp_bound()+2
3204            while True:
3205                coeff = _dlog10(c, e, places)
3206                # assert len(str(abs(coeff)))-p >= 1
3207                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3208                    break
3209                places += 3
3210            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3211
3212        context = context._shallow_copy()
3213        rounding = context._set_rounding(ROUND_HALF_EVEN)
3214        ans = ans._fix(context)
3215        context.rounding = rounding
3216        return ans
3217
3218    def logb(self, context=None):
3219        """ Returns the exponent of the magnitude of self's MSD.
3220
3221        The result is the integer which is the exponent of the magnitude
3222        of the most significant digit of self (as though it were truncated
3223        to a single digit while maintaining the value of that digit and
3224        without limiting the resulting exponent).
3225        """
3226        # logb(NaN) = NaN
3227        ans = self._check_nans(context=context)
3228        if ans:
3229            return ans
3230
3231        if context is None:
3232            context = getcontext()
3233
3234        # logb(+/-Inf) = +Inf
3235        if self._isinfinity():
3236            return _Infinity
3237
3238        # logb(0) = -Inf, DivisionByZero
3239        if not self:
3240            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3241
3242        # otherwise, simply return the adjusted exponent of self, as a
3243        # Decimal.  Note that no attempt is made to fit the result
3244        # into the current context.
3245        ans = Decimal(self.adjusted())
3246        return ans._fix(context)
3247
3248    def _islogical(self):
3249        """Return True if self is a logical operand.
3250
3251        For being logical, it must be a finite number with a sign of 0,
3252        an exponent of 0, and a coefficient whose digits must all be
3253        either 0 or 1.
3254        """
3255        if self._sign != 0 or self._exp != 0:
3256            return False
3257        for dig in self._int:
3258            if dig not in '01':
3259                return False
3260        return True
3261
3262    def _fill_logical(self, context, opa, opb):
3263        dif = context.prec - len(opa)
3264        if dif > 0:
3265            opa = '0'*dif + opa
3266        elif dif < 0:
3267            opa = opa[-context.prec:]
3268        dif = context.prec - len(opb)
3269        if dif > 0:
3270            opb = '0'*dif + opb
3271        elif dif < 0:
3272            opb = opb[-context.prec:]
3273        return opa, opb
3274
3275    def logical_and(self, other, context=None):
3276        """Applies an 'and' operation between self and other's digits."""
3277        if context is None:
3278            context = getcontext()
3279
3280        other = _convert_other(other, raiseit=True)
3281
3282        if not self._islogical() or not other._islogical():
3283            return context._raise_error(InvalidOperation)
3284
3285        # fill to context.prec
3286        (opa, opb) = self._fill_logical(context, self._int, other._int)
3287
3288        # make the operation, and clean starting zeroes
3289        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3290        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3291
3292    def logical_invert(self, context=None):
3293        """Invert all its digits."""
3294        if context is None:
3295            context = getcontext()
3296        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3297                                context)
3298
3299    def logical_or(self, other, context=None):
3300        """Applies an 'or' operation between self and other's digits."""
3301        if context is None:
3302            context = getcontext()
3303
3304        other = _convert_other(other, raiseit=True)
3305
3306        if not self._islogical() or not other._islogical():
3307            return context._raise_error(InvalidOperation)
3308
3309        # fill to context.prec
3310        (opa, opb) = self._fill_logical(context, self._int, other._int)
3311
3312        # make the operation, and clean starting zeroes
3313        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3314        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3315
3316    def logical_xor(self, other, context=None):
3317        """Applies an 'xor' operation between self and other's digits."""
3318        if context is None:
3319            context = getcontext()
3320
3321        other = _convert_other(other, raiseit=True)
3322
3323        if not self._islogical() or not other._islogical():
3324            return context._raise_error(InvalidOperation)
3325
3326        # fill to context.prec
3327        (opa, opb) = self._fill_logical(context, self._int, other._int)
3328
3329        # make the operation, and clean starting zeroes
3330        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3331        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3332
3333    def max_mag(self, other, context=None):
3334        """Compares the values numerically with their sign ignored."""
3335        other = _convert_other(other, raiseit=True)
3336
3337        if context is None:
3338            context = getcontext()
3339
3340        if self._is_special or other._is_special:
3341            # If one operand is a quiet NaN and the other is number, then the
3342            # number is always returned
3343            sn = self._isnan()
3344            on = other._isnan()
3345            if sn or on:
3346                if on == 1 and sn == 0:
3347                    return self._fix(context)
3348                if sn == 1 and on == 0:
3349                    return other._fix(context)
3350                return self._check_nans(other, context)
3351
3352        c = self.copy_abs()._cmp(other.copy_abs())
3353        if c == 0:
3354            c = self.compare_total(other)
3355
3356        if c == -1:
3357            ans = other
3358        else:
3359            ans = self
3360
3361        return ans._fix(context)
3362
3363    def min_mag(self, other, context=None):
3364        """Compares the values numerically with their sign ignored."""
3365        other = _convert_other(other, raiseit=True)
3366
3367        if context is None:
3368            context = getcontext()
3369
3370        if self._is_special or other._is_special:
3371            # If one operand is a quiet NaN and the other is number, then the
3372            # number is always returned
3373            sn = self._isnan()
3374            on = other._isnan()
3375            if sn or on:
3376                if on == 1 and sn == 0:
3377                    return self._fix(context)
3378                if sn == 1 and on == 0:
3379                    return other._fix(context)
3380                return self._check_nans(other, context)
3381
3382        c = self.copy_abs()._cmp(other.copy_abs())
3383        if c == 0:
3384            c = self.compare_total(other)
3385
3386        if c == -1:
3387            ans = self
3388        else:
3389            ans = other
3390
3391        return ans._fix(context)
3392
3393    def next_minus(self, context=None):
3394        """Returns the largest representable number smaller than itself."""
3395        if context is None:
3396            context = getcontext()
3397
3398        ans = self._check_nans(context=context)
3399        if ans:
3400            return ans
3401
3402        if self._isinfinity() == -1:
3403            return _NegativeInfinity
3404        if self._isinfinity() == 1:
3405            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3406
3407        context = context.copy()
3408        context._set_rounding(ROUND_FLOOR)
3409        context._ignore_all_flags()
3410        new_self = self._fix(context)
3411        if new_self != self:
3412            return new_self
3413        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3414                            context)
3415
3416    def next_plus(self, context=None):
3417        """Returns the smallest representable number larger than itself."""
3418        if context is None:
3419            context = getcontext()
3420
3421        ans = self._check_nans(context=context)
3422        if ans:
3423            return ans
3424
3425        if self._isinfinity() == 1:
3426            return _Infinity
3427        if self._isinfinity() == -1:
3428            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3429
3430        context = context.copy()
3431        context._set_rounding(ROUND_CEILING)
3432        context._ignore_all_flags()
3433        new_self = self._fix(context)
3434        if new_self != self:
3435            return new_self
3436        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3437                            context)
3438
3439    def next_toward(self, other, context=None):
3440        """Returns the number closest to self, in the direction towards other.
3441
3442        The result is the closest representable number to self
3443        (excluding self) that is in the direction towards other,
3444        unless both have the same value.  If the two operands are
3445        numerically equal, then the result is a copy of self with the
3446        sign set to be the same as the sign of other.
3447        """
3448        other = _convert_other(other, raiseit=True)
3449
3450        if context is None:
3451            context = getcontext()
3452
3453        ans = self._check_nans(other, context)
3454        if ans:
3455            return ans
3456
3457        comparison = self._cmp(other)
3458        if comparison == 0:
3459            return self.copy_sign(other)
3460
3461        if comparison == -1:
3462            ans = self.next_plus(context)
3463        else: # comparison == 1
3464            ans = self.next_minus(context)
3465
3466        # decide which flags to raise using value of ans
3467        if ans._isinfinity():
3468            context._raise_error(Overflow,
3469                                 'Infinite result from next_toward',
3470                                 ans._sign)
3471            context._raise_error(Inexact)
3472            context._raise_error(Rounded)
3473        elif ans.adjusted() < context.Emin:
3474            context._raise_error(Underflow)
3475            context._raise_error(Subnormal)
3476            context._raise_error(Inexact)
3477            context._raise_error(Rounded)
3478            # if precision == 1 then we don't raise Clamped for a
3479            # result 0E-Etiny.
3480            if not ans:
3481                context._raise_error(Clamped)
3482
3483        return ans
3484
3485    def number_class(self, context=None):
3486        """Returns an indication of the class of self.
3487
3488        The class is one of the following strings:
3489          sNaN
3490          NaN
3491          -Infinity
3492          -Normal
3493          -Subnormal
3494          -Zero
3495          +Zero
3496          +Subnormal
3497          +Normal
3498          +Infinity
3499        """
3500        if self.is_snan():
3501            return "sNaN"
3502        if self.is_qnan():
3503            return "NaN"
3504        inf = self._isinfinity()
3505        if inf == 1:
3506            return "+Infinity"
3507        if inf == -1:
3508            return "-Infinity"
3509        if self.is_zero():
3510            if self._sign:
3511                return "-Zero"
3512            else:
3513                return "+Zero"
3514        if context is None:
3515            context = getcontext()
3516        if self.is_subnormal(context=context):
3517            if self._sign:
3518                return "-Subnormal"
3519            else:
3520                return "+Subnormal"
3521        # just a normal, regular, boring number, :)
3522        if self._sign:
3523            return "-Normal"
3524        else:
3525            return "+Normal"
3526
3527    def radix(self):
3528        """Just returns 10, as this is Decimal, :)"""
3529        return Decimal(10)
3530
3531    def rotate(self, other, context=None):
3532        """Returns a rotated copy of self, value-of-other times."""
3533        if context is None:
3534            context = getcontext()
3535
3536        other = _convert_other(other, raiseit=True)
3537
3538        ans = self._check_nans(other, context)
3539        if ans:
3540            return ans
3541
3542        if other._exp != 0:
3543            return context._raise_error(InvalidOperation)
3544        if not (-context.prec <= int(other) <= context.prec):
3545            return context._raise_error(InvalidOperation)
3546
3547        if self._isinfinity():
3548            return Decimal(self)
3549
3550        # get values, pad if necessary
3551        torot = int(other)
3552        rotdig = self._int
3553        topad = context.prec - len(rotdig)
3554        if topad > 0:
3555            rotdig = '0'*topad + rotdig
3556        elif topad < 0:
3557            rotdig = rotdig[-topad:]
3558
3559        # let's rotate!
3560        rotated = rotdig[torot:] + rotdig[:torot]
3561        return _dec_from_triple(self._sign,
3562                                rotated.lstrip('0') or '0', self._exp)
3563
3564    def scaleb(self, other, context=None):
3565        """Returns self operand after adding the second value to its exp."""
3566        if context is None:
3567            context = getcontext()
3568
3569        other = _convert_other(other, raiseit=True)
3570
3571        ans = self._check_nans(other, context)
3572        if ans:
3573            return ans
3574
3575        if other._exp != 0:
3576            return context._raise_error(InvalidOperation)
3577        liminf = -2 * (context.Emax + context.prec)
3578        limsup =  2 * (context.Emax + context.prec)
3579        if not (liminf <= int(other) <= limsup):
3580            return context._raise_error(InvalidOperation)
3581
3582        if self._isinfinity():
3583            return Decimal(self)
3584
3585        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3586        d = d._fix(context)
3587        return d
3588
3589    def shift(self, other, context=None):
3590        """Returns a shifted copy of self, value-of-other times."""
3591        if context is None:
3592            context = getcontext()
3593
3594        other = _convert_other(other, raiseit=True)
3595
3596        ans = self._check_nans(other, context)
3597        if ans:
3598            return ans
3599
3600        if other._exp != 0:
3601            return context._raise_error(InvalidOperation)
3602        if not (-context.prec <= int(other) <= context.prec):
3603            return context._raise_error(InvalidOperation)
3604
3605        if self._isinfinity():
3606            return Decimal(self)
3607
3608        # get values, pad if necessary
3609        torot = int(other)
3610        rotdig = self._int
3611        topad = context.prec - len(rotdig)
3612        if topad > 0:
3613            rotdig = '0'*topad + rotdig
3614        elif topad < 0:
3615            rotdig = rotdig[-topad:]
3616
3617        # let's shift!
3618        if torot < 0:
3619            shifted = rotdig[:torot]
3620        else:
3621            shifted = rotdig + '0'*torot
3622            shifted = shifted[-context.prec:]
3623
3624        return _dec_from_triple(self._sign,
3625                                    shifted.lstrip('0') or '0', self._exp)
3626
3627    # Support for pickling, copy, and deepcopy
3628    def __reduce__(self):
3629        return (self.__class__, (str(self),))
3630
3631    def __copy__(self):
3632        if type(self) is Decimal:
3633            return self     # I'm immutable; therefore I am my own clone
3634        return self.__class__(str(self))
3635
3636    def __deepcopy__(self, memo):
3637        if type(self) is Decimal:
3638            return self     # My components are also immutable
3639        return self.__class__(str(self))
3640
3641    # PEP 3101 support.  the _localeconv keyword argument should be
3642    # considered private: it's provided for ease of testing only.
3643    def __format__(self, specifier, context=None, _localeconv=None):
3644        """Format a Decimal instance according to the given specifier.
3645
3646        The specifier should be a standard format specifier, with the
3647        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3648        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
3649        type is omitted it defaults to 'g' or 'G', depending on the
3650        value of context.capitals.
3651        """
3652
3653        # Note: PEP 3101 says that if the type is not present then
3654        # there should be at least one digit after the decimal point.
3655        # We take the liberty of ignoring this requirement for
3656        # Decimal---it's presumably there to make sure that
3657        # format(float, '') behaves similarly to str(float).
3658        if context is None:
3659            context = getcontext()
3660
3661        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3662
3663        # special values don't care about the type or precision
3664        if self._is_special:
3665            sign = _format_sign(self._sign, spec)
3666            body = str(self.copy_abs())
3667            if spec['type'] == '%':
3668                body += '%'
3669            return _format_align(sign, body, spec)
3670
3671        # a type of None defaults to 'g' or 'G', depending on context
3672        if spec['type'] is None:
3673            spec['type'] = ['g', 'G'][context.capitals]
3674
3675        # if type is '%', adjust exponent of self accordingly
3676        if spec['type'] == '%':
3677            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3678
3679        # round if necessary, taking rounding mode from the context
3680        rounding = context.rounding
3681        precision = spec['precision']
3682        if precision is not None:
3683            if spec['type'] in 'eE':
3684                self = self._round(precision+1, rounding)
3685            elif spec['type'] in 'fF%':
3686                self = self._rescale(-precision, rounding)
3687            elif spec['type'] in 'gG' and len(self._int) > precision:
3688                self = self._round(precision, rounding)
3689        # special case: zeros with a positive exponent can't be
3690        # represented in fixed point; rescale them to 0e0.
3691        if not self and self._exp > 0 and spec['type'] in 'fF%':
3692            self = self._rescale(0, rounding)
3693
3694        # figure out placement of the decimal point
3695        leftdigits = self._exp + len(self._int)
3696        if spec['type'] in 'eE':
3697            if not self and precision is not None:
3698                dotplace = 1 - precision
3699            else:
3700                dotplace = 1
3701        elif spec['type'] in 'fF%':
3702            dotplace = leftdigits
3703        elif spec['type'] in 'gG':
3704            if self._exp <= 0 and leftdigits > -6:
3705                dotplace = leftdigits
3706            else:
3707                dotplace = 1
3708
3709        # find digits before and after decimal point, and get exponent
3710        if dotplace < 0:
3711            intpart = '0'
3712            fracpart = '0'*(-dotplace) + self._int
3713        elif dotplace > len(self._int):
3714            intpart = self._int + '0'*(dotplace-len(self._int))
3715            fracpart = ''
3716        else:
3717            intpart = self._int[:dotplace] or '0'
3718            fracpart = self._int[dotplace:]
3719        exp = leftdigits-dotplace
3720
3721        # done with the decimal-specific stuff;  hand over the rest
3722        # of the formatting to the _format_number function
3723        return _format_number(self._sign, intpart, fracpart, exp, spec)
3724
3725def _dec_from_triple(sign, coefficient, exponent, special=False):
3726    """Create a decimal instance directly, without any validation,
3727    normalization (e.g. removal of leading zeros) or argument
3728    conversion.
3729
3730    This function is for *internal use only*.
3731    """
3732
3733    self = object.__new__(Decimal)
3734    self._sign = sign
3735    self._int = coefficient
3736    self._exp = exponent
3737    self._is_special = special
3738
3739    return self
3740
3741# Register Decimal as a kind of Number (an abstract base class).
3742# However, do not register it as Real (because Decimals are not
3743# interoperable with floats).
3744_numbers.Number.register(Decimal)
3745
3746
3747##### Context class #######################################################
3748
3749class _ContextManager(object):
3750    """Context manager class to support localcontext().
3751
3752      Sets a copy of the supplied context in __enter__() and restores
3753      the previous decimal context in __exit__()
3754    """
3755    def __init__(self, new_context):
3756        self.new_context = new_context.copy()
3757    def __enter__(self):
3758        self.saved_context = getcontext()
3759        setcontext(self.new_context)
3760        return self.new_context
3761    def __exit__(self, t, v, tb):
3762        setcontext(self.saved_context)
3763
3764class Context(object):
3765    """Contains the context for a Decimal instance.
3766
3767    Contains:
3768    prec - precision (for use in rounding, division, square roots..)
3769    rounding - rounding type (how you round)
3770    traps - If traps[exception] = 1, then the exception is
3771                    raised when it is caused.  Otherwise, a value is
3772                    substituted in.
3773    flags  - When an exception is caused, flags[exception] is set.
3774             (Whether or not the trap_enabler is set)
3775             Should be reset by user of Decimal instance.
3776    Emin -   Minimum exponent
3777    Emax -   Maximum exponent
3778    capitals -      If 1, 1*10^1 is printed as 1E+1.
3779                    If 0, printed as 1e1
3780    _clamp - If 1, change exponents if too high (Default 0)
3781    """
3782
3783    def __init__(self, prec=None, rounding=None,
3784                 traps=None, flags=None,
3785                 Emin=None, Emax=None,
3786                 capitals=None, _clamp=0,
3787                 _ignored_flags=None):
3788        # Set defaults; for everything except flags and _ignored_flags,
3789        # inherit from DefaultContext.
3790        try:
3791            dc = DefaultContext
3792        except NameError:
3793            pass
3794
3795        self.prec = prec if prec is not None else dc.prec
3796        self.rounding = rounding if rounding is not None else dc.rounding
3797        self.Emin = Emin if Emin is not None else dc.Emin
3798        self.Emax = Emax if Emax is not None else dc.Emax
3799        self.capitals = capitals if capitals is not None else dc.capitals
3800        self._clamp = _clamp if _clamp is not None else dc._clamp
3801
3802        if _ignored_flags is None:
3803            self._ignored_flags = []
3804        else:
3805            self._ignored_flags = _ignored_flags
3806
3807        if traps is None:
3808            self.traps = dc.traps.copy()
3809        elif not isinstance(traps, dict):
3810            self.traps = dict((s, int(s in traps)) for s in _signals)
3811        else:
3812            self.traps = traps
3813
3814        if flags is None:
3815            self.flags = dict.fromkeys(_signals, 0)
3816        elif not isinstance(flags, dict):
3817            self.flags = dict((s, int(s in flags)) for s in _signals)
3818        else:
3819            self.flags = flags
3820
3821    def __repr__(self):
3822        """Show the current context."""
3823        s = []
3824        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3825                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3826                 % vars(self))
3827        names = [f.__name__ for f, v in self.flags.items() if v]
3828        s.append('flags=[' + ', '.join(names) + ']')
3829        names = [t.__name__ for t, v in self.traps.items() if v]
3830        s.append('traps=[' + ', '.join(names) + ']')
3831        return ', '.join(s) + ')'
3832
3833    def clear_flags(self):
3834        """Reset all flags to zero"""
3835        for flag in self.flags:
3836            self.flags[flag] = 0
3837
3838    def _shallow_copy(self):
3839        """Returns a shallow copy from self."""
3840        nc = Context(self.prec, self.rounding, self.traps,
3841                     self.flags, self.Emin, self.Emax,
3842                     self.capitals, self._clamp, self._ignored_flags)
3843        return nc
3844
3845    def copy(self):
3846        """Returns a deep copy from self."""
3847        nc = Context(self.prec, self.rounding, self.traps.copy(),
3848                     self.flags.copy(), self.Emin, self.Emax,
3849                     self.capitals, self._clamp, self._ignored_flags)
3850        return nc
3851    __copy__ = copy
3852
3853    def _raise_error(self, condition, explanation = None, *args):
3854        """Handles an error
3855
3856        If the flag is in _ignored_flags, returns the default response.
3857        Otherwise, it sets the flag, then, if the corresponding
3858        trap_enabler is set, it reraises the exception.  Otherwise, it returns
3859        the default value after setting the flag.
3860        """
3861        error = _condition_map.get(condition, condition)
3862        if error in self._ignored_flags:
3863            # Don't touch the flag
3864            return error().handle(self, *args)
3865
3866        self.flags[error] = 1
3867        if not self.traps[error]:
3868            # The errors define how to handle themselves.
3869            return condition().handle(self, *args)
3870
3871        # Errors should only be risked on copies of the context
3872        # self._ignored_flags = []
3873        raise error(explanation)
3874
3875    def _ignore_all_flags(self):
3876        """Ignore all flags, if they are raised"""
3877        return self._ignore_flags(*_signals)
3878
3879    def _ignore_flags(self, *flags):
3880        """Ignore the flags, if they are raised"""
3881        # Do not mutate-- This way, copies of a context leave the original
3882        # alone.
3883        self._ignored_flags = (self._ignored_flags + list(flags))
3884        return list(flags)
3885
3886    def _regard_flags(self, *flags):
3887        """Stop ignoring the flags, if they are raised"""
3888        if flags and isinstance(flags[0], (tuple,list)):
3889            flags = flags[0]
3890        for flag in flags:
3891            self._ignored_flags.remove(flag)
3892
3893    # We inherit object.__hash__, so we must deny this explicitly
3894    __hash__ = None
3895
3896    def Etiny(self):
3897        """Returns Etiny (= Emin - prec + 1)"""
3898        return int(self.Emin - self.prec + 1)
3899
3900    def Etop(self):
3901        """Returns maximum exponent (= Emax - prec + 1)"""
3902        return int(self.Emax - self.prec + 1)
3903
3904    def _set_rounding(self, type):
3905        """Sets the rounding type.
3906
3907        Sets the rounding type, and returns the current (previous)
3908        rounding type.  Often used like:
3909
3910        context = context.copy()
3911        # so you don't change the calling context
3912        # if an error occurs in the middle.
3913        rounding = context._set_rounding(ROUND_UP)
3914        val = self.__sub__(other, context=context)
3915        context._set_rounding(rounding)
3916
3917        This will make it round up for that operation.
3918        """
3919        rounding = self.rounding
3920        self.rounding= type
3921        return rounding
3922
3923    def create_decimal(self, num='0'):
3924        """Creates a new Decimal instance but using self as context.
3925
3926        This method implements the to-number operation of the
3927        IBM Decimal specification."""
3928
3929        if isinstance(num, basestring) and num != num.strip():
3930            return self._raise_error(ConversionSyntax,
3931                                     "no trailing or leading whitespace is "
3932                                     "permitted.")
3933
3934        d = Decimal(num, context=self)
3935        if d._isnan() and len(d._int) > self.prec - self._clamp:
3936            return self._raise_error(ConversionSyntax,
3937                                     "diagnostic info too long in NaN")
3938        return d._fix(self)
3939
3940    def create_decimal_from_float(self, f):
3941        """Creates a new Decimal instance from a float but rounding using self
3942        as the context.
3943
3944        >>> context = Context(prec=5, rounding=ROUND_DOWN)
3945        >>> context.create_decimal_from_float(3.1415926535897932)
3946        Decimal('3.1415')
3947        >>> context = Context(prec=5, traps=[Inexact])
3948        >>> context.create_decimal_from_float(3.1415926535897932)
3949        Traceback (most recent call last):
3950            ...
3951        Inexact: None
3952
3953        """
3954        d = Decimal.from_float(f)       # An exact conversion
3955        return d._fix(self)             # Apply the context rounding
3956
3957    # Methods
3958    def abs(self, a):
3959        """Returns the absolute value of the operand.
3960
3961        If the operand is negative, the result is the same as using the minus
3962        operation on the operand.  Otherwise, the result is the same as using
3963        the plus operation on the operand.
3964
3965        >>> ExtendedContext.abs(Decimal('2.1'))
3966        Decimal('2.1')
3967        >>> ExtendedContext.abs(Decimal('-100'))
3968        Decimal('100')
3969        >>> ExtendedContext.abs(Decimal('101.5'))
3970        Decimal('101.5')
3971        >>> ExtendedContext.abs(Decimal('-101.5'))
3972        Decimal('101.5')
3973        >>> ExtendedContext.abs(-1)
3974        Decimal('1')
3975        """
3976        a = _convert_other(a, raiseit=True)
3977        return a.__abs__(context=self)
3978
3979    def add(self, a, b):
3980        """Return the sum of the two operands.
3981
3982        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3983        Decimal('19.00')
3984        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3985        Decimal('1.02E+4')
3986        >>> ExtendedContext.add(1, Decimal(2))
3987        Decimal('3')
3988        >>> ExtendedContext.add(Decimal(8), 5)
3989        Decimal('13')
3990        >>> ExtendedContext.add(5, 5)
3991        Decimal('10')
3992        """
3993        a = _convert_other(a, raiseit=True)
3994        r = a.__add__(b, context=self)
3995        if r is NotImplemented:
3996            raise TypeError("Unable to convert %s to Decimal" % b)
3997        else:
3998            return r
3999
4000    def _apply(self, a):
4001        return str(a._fix(self))
4002
4003    def canonical(self, a):
4004        """Returns the same Decimal object.
4005
4006        As we do not have different encodings for the same number, the
4007        received object already is in its canonical form.
4008
4009        >>> ExtendedContext.canonical(Decimal('2.50'))
4010        Decimal('2.50')
4011        """
4012        return a.canonical(context=self)
4013
4014    def compare(self, a, b):
4015        """Compares values numerically.
4016
4017        If the signs of the operands differ, a value representing each operand
4018        ('-1' if the operand is less than zero, '0' if the operand is zero or
4019        negative zero, or '1' if the operand is greater than zero) is used in
4020        place of that operand for the comparison instead of the actual
4021        operand.
4022
4023        The comparison is then effected by subtracting the second operand from
4024        the first and then returning a value according to the result of the
4025        subtraction: '-1' if the result is less than zero, '0' if the result is
4026        zero or negative zero, or '1' if the result is greater than zero.
4027
4028        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
4029        Decimal('-1')
4030        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
4031        Decimal('0')
4032        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
4033        Decimal('0')
4034        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
4035        Decimal('1')
4036        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
4037        Decimal('1')
4038        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
4039        Decimal('-1')
4040        >>> ExtendedContext.compare(1, 2)
4041        Decimal('-1')
4042        >>> ExtendedContext.compare(Decimal(1), 2)
4043        Decimal('-1')
4044        >>> ExtendedContext.compare(1, Decimal(2))
4045        Decimal('-1')
4046        """
4047        a = _convert_other(a, raiseit=True)
4048        return a.compare(b, context=self)
4049
4050    def compare_signal(self, a, b):
4051        """Compares the values of the two operands numerically.
4052
4053        It's pretty much like compare(), but all NaNs signal, with signaling
4054        NaNs taking precedence over quiet NaNs.
4055
4056        >>> c = ExtendedContext
4057        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
4058        Decimal('-1')
4059        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
4060        Decimal('0')
4061        >>> c.flags[InvalidOperation] = 0
4062        >>> print c.flags[InvalidOperation]
4063        0
4064        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
4065        Decimal('NaN')
4066        >>> print c.flags[InvalidOperation]
4067        1
4068        >>> c.flags[InvalidOperation] = 0
4069        >>> print c.flags[InvalidOperation]
4070        0
4071        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
4072        Decimal('NaN')
4073        >>> print c.flags[InvalidOperation]
4074        1
4075        >>> c.compare_signal(-1, 2)
4076        Decimal('-1')
4077        >>> c.compare_signal(Decimal(-1), 2)
4078        Decimal('-1')
4079        >>> c.compare_signal(-1, Decimal(2))
4080        Decimal('-1')
4081        """
4082        a = _convert_other(a, raiseit=True)
4083        return a.compare_signal(b, context=self)
4084
4085    def compare_total(self, a, b):
4086        """Compares two operands using their abstract representation.
4087
4088        This is not like the standard compare, which use their numerical
4089        value. Note that a total ordering is defined for all possible abstract
4090        representations.
4091
4092        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
4093        Decimal('-1')
4094        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
4095        Decimal('-1')
4096        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
4097        Decimal('-1')
4098        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
4099        Decimal('0')
4100        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
4101        Decimal('1')
4102        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
4103        Decimal('-1')
4104        >>> ExtendedContext.compare_total(1, 2)
4105        Decimal('-1')
4106        >>> ExtendedContext.compare_total(Decimal(1), 2)
4107        Decimal('-1')
4108        >>> ExtendedContext.compare_total(1, Decimal(2))
4109        Decimal('-1')
4110        """
4111        a = _convert_other(a, raiseit=True)
4112        return a.compare_total(b)
4113
4114    def compare_total_mag(self, a, b):
4115        """Compares two operands using their abstract representation ignoring sign.
4116
4117        Like compare_total, but with operand's sign ignored and assumed to be 0.
4118        """
4119        a = _convert_other(a, raiseit=True)
4120        return a.compare_total_mag(b)
4121
4122    def copy_abs(self, a):
4123        """Returns a copy of the operand with the sign set to 0.
4124
4125        >>> ExtendedContext.copy_abs(Decimal('2.1'))
4126        Decimal('2.1')
4127        >>> ExtendedContext.copy_abs(Decimal('-100'))
4128        Decimal('100')
4129        >>> ExtendedContext.copy_abs(-1)
4130        Decimal('1')
4131        """
4132        a = _convert_other(a, raiseit=True)
4133        return a.copy_abs()
4134
4135    def copy_decimal(self, a):
4136        """Returns a copy of the decimal object.
4137
4138        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
4139        Decimal('2.1')
4140        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
4141        Decimal('-1.00')
4142        >>> ExtendedContext.copy_decimal(1)
4143        Decimal('1')
4144        """
4145        a = _convert_other(a, raiseit=True)
4146        return Decimal(a)
4147
4148    def copy_negate(self, a):
4149        """Returns a copy of the operand with the sign inverted.
4150
4151        >>> ExtendedContext.copy_negate(Decimal('101.5'))
4152        Decimal('-101.5')
4153        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
4154        Decimal('101.5')
4155        >>> ExtendedContext.copy_negate(1)
4156        Decimal('-1')
4157        """
4158        a = _convert_other(a, raiseit=True)
4159        return a.copy_negate()
4160
4161    def copy_sign(self, a, b):
4162        """Copies the second operand's sign to the first one.
4163
4164        In detail, it returns a copy of the first operand with the sign
4165        equal to the sign of the second operand.
4166
4167        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
4168        Decimal('1.50')
4169        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
4170        Decimal('1.50')
4171        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
4172        Decimal('-1.50')
4173        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
4174        Decimal('-1.50')
4175        >>> ExtendedContext.copy_sign(1, -2)
4176        Decimal('-1')
4177        >>> ExtendedContext.copy_sign(Decimal(1), -2)
4178        Decimal('-1')
4179        >>> ExtendedContext.copy_sign(1, Decimal(-2))
4180        Decimal('-1')
4181        """
4182        a = _convert_other(a, raiseit=True)
4183        return a.copy_sign(b)
4184
4185    def divide(self, a, b):
4186        """Decimal division in a specified context.
4187
4188        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4189        Decimal('0.333333333')
4190        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4191        Decimal('0.666666667')
4192        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4193        Decimal('2.5')
4194        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4195        Decimal('0.1')
4196        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4197        Decimal('1')
4198        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4199        Decimal('4.00')
4200        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4201        Decimal('1.20')
4202        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4203        Decimal('10')
4204        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4205        Decimal('1000')
4206        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4207        Decimal('1.20E+6')
4208        >>> ExtendedContext.divide(5, 5)
4209        Decimal('1')
4210        >>> ExtendedContext.divide(Decimal(5), 5)
4211        Decimal('1')
4212        >>> ExtendedContext.divide(5, Decimal(5))
4213        Decimal('1')
4214        """
4215        a = _convert_other(a, raiseit=True)
4216        r = a.__div__(b, context=self)
4217        if r is NotImplemented:
4218            raise TypeError("Unable to convert %s to Decimal" % b)
4219        else:
4220            return r
4221
4222    def divide_int(self, a, b):
4223        """Divides two numbers and returns the integer part of the result.
4224
4225        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4226        Decimal('0')
4227        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4228        Decimal('3')
4229        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4230        Decimal('3')
4231        >>> ExtendedContext.divide_int(10, 3)
4232        Decimal('3')
4233        >>> ExtendedContext.divide_int(Decimal(10), 3)
4234        Decimal('3')
4235        >>> ExtendedContext.divide_int(10, Decimal(3))
4236        Decimal('3')
4237        """
4238        a = _convert_other(a, raiseit=True)
4239        r = a.__floordiv__(b, context=self)
4240        if r is NotImplemented:
4241            raise TypeError("Unable to convert %s to Decimal" % b)
4242        else:
4243            return r
4244
4245    def divmod(self, a, b):
4246        """Return (a // b, a % b).
4247
4248        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4249        (Decimal('2'), Decimal('2'))
4250        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4251        (Decimal('2'), Decimal('0'))
4252        >>> ExtendedContext.divmod(8, 4)
4253        (Decimal('2'), Decimal('0'))
4254        >>> ExtendedContext.divmod(Decimal(8), 4)
4255        (Decimal('2'), Decimal('0'))
4256        >>> ExtendedContext.divmod(8, Decimal(4))
4257        (Decimal('2'), Decimal('0'))
4258        """
4259        a = _convert_other(a, raiseit=True)
4260        r = a.__divmod__(b, context=self)
4261        if r is NotImplemented:
4262            raise TypeError("Unable to convert %s to Decimal" % b)
4263        else:
4264            return r
4265
4266    def exp(self, a):
4267        """Returns e ** a.
4268
4269        >>> c = ExtendedContext.copy()
4270        >>> c.Emin = -999
4271        >>> c.Emax = 999
4272        >>> c.exp(Decimal('-Infinity'))
4273        Decimal('0')
4274        >>> c.exp(Decimal('-1'))
4275        Decimal('0.367879441')
4276        >>> c.exp(Decimal('0'))
4277        Decimal('1')
4278        >>> c.exp(Decimal('1'))
4279        Decimal('2.71828183')
4280        >>> c.exp(Decimal('0.693147181'))
4281        Decimal('2.00000000')
4282        >>> c.exp(Decimal('+Infinity'))
4283        Decimal('Infinity')
4284        >>> c.exp(10)
4285        Decimal('22026.4658')
4286        """
4287        a =_convert_other(a, raiseit=True)
4288        return a.exp(context=self)
4289
4290    def fma(self, a, b, c):
4291        """Returns a multiplied by b, plus c.
4292
4293        The first two operands are multiplied together, using multiply,
4294        the third operand is then added to the result of that
4295        multiplication, using add, all with only one final rounding.
4296
4297        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4298        Decimal('22')
4299        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4300        Decimal('-8')
4301        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4302        Decimal('1.38435736E+12')
4303        >>> ExtendedContext.fma(1, 3, 4)
4304        Decimal('7')
4305        >>> ExtendedContext.fma(1, Decimal(3), 4)
4306        Decimal('7')
4307        >>> ExtendedContext.fma(1, 3, Decimal(4))
4308        Decimal('7')
4309        """
4310        a = _convert_other(a, raiseit=True)
4311        return a.fma(b, c, context=self)
4312
4313    def is_canonical(self, a):
4314        """Return True if the operand is canonical; otherwise return False.
4315
4316        Currently, the encoding of a Decimal instance is always
4317        canonical, so this method returns True for any Decimal.
4318
4319        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4320        True
4321        """
4322        return a.is_canonical()
4323
4324    def is_finite(self, a):
4325        """Return True if the operand is finite; otherwise return False.
4326
4327        A Decimal instance is considered finite if it is neither
4328        infinite nor a NaN.
4329
4330        >>> ExtendedContext.is_finite(Decimal('2.50'))
4331        True
4332        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4333        True
4334        >>> ExtendedContext.is_finite(Decimal('0'))
4335        True
4336        >>> ExtendedContext.is_finite(Decimal('Inf'))
4337        False
4338        >>> ExtendedContext.is_finite(Decimal('NaN'))
4339        False
4340        >>> ExtendedContext.is_finite(1)
4341        True
4342        """
4343        a = _convert_other(a, raiseit=True)
4344        return a.is_finite()
4345
4346    def is_infinite(self, a):
4347        """Return True if the operand is infinite; otherwise return False.
4348
4349        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4350        False
4351        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4352        True
4353        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4354        False
4355        >>> ExtendedContext.is_infinite(1)
4356        False
4357        """
4358        a = _convert_other(a, raiseit=True)
4359        return a.is_infinite()
4360
4361    def is_nan(self, a):
4362        """Return True if the operand is a qNaN or sNaN;
4363        otherwise return False.
4364
4365        >>> ExtendedContext.is_nan(Decimal('2.50'))
4366        False
4367        >>> ExtendedContext.is_nan(Decimal('NaN'))
4368        True
4369        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4370        True
4371        >>> ExtendedContext.is_nan(1)
4372        False
4373        """
4374        a = _convert_other(a, raiseit=True)
4375        return a.is_nan()
4376
4377    def is_normal(self, a):
4378        """Return True if the operand is a normal number;
4379        otherwise return False.
4380
4381        >>> c = ExtendedContext.copy()
4382        >>> c.Emin = -999
4383        >>> c.Emax = 999
4384        >>> c.is_normal(Decimal('2.50'))
4385        True
4386        >>> c.is_normal(Decimal('0.1E-999'))
4387        False
4388        >>> c.is_normal(Decimal('0.00'))
4389        False
4390        >>> c.is_normal(Decimal('-Inf'))
4391        False
4392        >>> c.is_normal(Decimal('NaN'))
4393        False
4394        >>> c.is_normal(1)
4395        True
4396        """
4397        a = _convert_other(a, raiseit=True)
4398        return a.is_normal(context=self)
4399
4400    def is_qnan(self, a):
4401        """Return True if the operand is a quiet NaN; otherwise return False.
4402
4403        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4404        False
4405        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4406        True
4407        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4408        False
4409        >>> ExtendedContext.is_qnan(1)
4410        False
4411        """
4412        a = _convert_other(a, raiseit=True)
4413        return a.is_qnan()
4414
4415    def is_signed(self, a):
4416        """Return True if the operand is negative; otherwise return False.
4417
4418        >>> ExtendedContext.is_signed(Decimal('2.50'))
4419        False
4420        >>> ExtendedContext.is_signed(Decimal('-12'))
4421        True
4422        >>> ExtendedContext.is_signed(Decimal('-0'))
4423        True
4424        >>> ExtendedContext.is_signed(8)
4425        False
4426        >>> ExtendedContext.is_signed(-8)
4427        True
4428        """
4429        a = _convert_other(a, raiseit=True)
4430        return a.is_signed()
4431
4432    def is_snan(self, a):
4433        """Return True if the operand is a signaling NaN;
4434        otherwise return False.
4435
4436        >>> ExtendedContext.is_snan(Decimal('2.50'))
4437        False
4438        >>> ExtendedContext.is_snan(Decimal('NaN'))
4439        False
4440        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4441        True
4442        >>> ExtendedContext.is_snan(1)
4443        False
4444        """
4445        a = _convert_other(a, raiseit=True)
4446        return a.is_snan()
4447
4448    def is_subnormal(self, a):
4449        """Return True if the operand is subnormal; otherwise return False.
4450
4451        >>> c = ExtendedContext.copy()
4452        >>> c.Emin = -999
4453        >>> c.Emax = 999
4454        >>> c.is_subnormal(Decimal('2.50'))
4455        False
4456        >>> c.is_subnormal(Decimal('0.1E-999'))
4457        True
4458        >>> c.is_subnormal(Decimal('0.00'))
4459        False
4460        >>> c.is_subnormal(Decimal('-Inf'))
4461        False
4462        >>> c.is_subnormal(Decimal('NaN'))
4463        False
4464        >>> c.is_subnormal(1)
4465        False
4466        """
4467        a = _convert_other(a, raiseit=True)
4468        return a.is_subnormal(context=self)
4469
4470    def is_zero(self, a):
4471        """Return True if the operand is a zero; otherwise return False.
4472
4473        >>> ExtendedContext.is_zero(Decimal('0'))
4474        True
4475        >>> ExtendedContext.is_zero(Decimal('2.50'))
4476        False
4477        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4478        True
4479        >>> ExtendedContext.is_zero(1)
4480        False
4481        >>> ExtendedContext.is_zero(0)
4482        True
4483        """
4484        a = _convert_other(a, raiseit=True)
4485        return a.is_zero()
4486
4487    def ln(self, a):
4488        """Returns the natural (base e) logarithm of the operand.
4489
4490        >>> c = ExtendedContext.copy()
4491        >>> c.Emin = -999
4492        >>> c.Emax = 999
4493        >>> c.ln(Decimal('0'))
4494        Decimal('-Infinity')
4495        >>> c.ln(Decimal('1.000'))
4496        Decimal('0')
4497        >>> c.ln(Decimal('2.71828183'))
4498        Decimal('1.00000000')
4499        >>> c.ln(Decimal('10'))
4500        Decimal('2.30258509')
4501        >>> c.ln(Decimal('+Infinity'))
4502        Decimal('Infinity')
4503        >>> c.ln(1)
4504        Decimal('0')
4505        """
4506        a = _convert_other(a, raiseit=True)
4507        return a.ln(context=self)
4508
4509    def log10(self, a):
4510        """Returns the base 10 logarithm of the operand.
4511
4512        >>> c = ExtendedContext.copy()
4513        >>> c.Emin = -999
4514        >>> c.Emax = 999
4515        >>> c.log10(Decimal('0'))
4516        Decimal('-Infinity')
4517        >>> c.log10(Decimal('0.001'))
4518        Decimal('-3')
4519        >>> c.log10(Decimal('1.000'))
4520        Decimal('0')
4521        >>> c.log10(Decimal('2'))
4522        Decimal('0.301029996')
4523        >>> c.log10(Decimal('10'))
4524        Decimal('1')
4525        >>> c.log10(Decimal('70'))
4526        Decimal('1.84509804')
4527        >>> c.log10(Decimal('+Infinity'))
4528        Decimal('Infinity')
4529        >>> c.log10(0)
4530        Decimal('-Infinity')
4531        >>> c.log10(1)
4532        Decimal('0')
4533        """
4534        a = _convert_other(a, raiseit=True)
4535        return a.log10(context=self)
4536
4537    def logb(self, a):
4538        """ Returns the exponent of the magnitude of the operand's MSD.
4539
4540        The result is the integer which is the exponent of the magnitude
4541        of the most significant digit of the operand (as though the
4542        operand were truncated to a single digit while maintaining the
4543        value of that digit and without limiting the resulting exponent).
4544
4545        >>> ExtendedContext.logb(Decimal('250'))
4546        Decimal('2')
4547        >>> ExtendedContext.logb(Decimal('2.50'))
4548        Decimal('0')
4549        >>> ExtendedContext.logb(Decimal('0.03'))
4550        Decimal('-2')
4551        >>> ExtendedContext.logb(Decimal('0'))
4552        Decimal('-Infinity')
4553        >>> ExtendedContext.logb(1)
4554        Decimal('0')
4555        >>> ExtendedContext.logb(10)
4556        Decimal('1')
4557        >>> ExtendedContext.logb(100)
4558        Decimal('2')
4559        """
4560        a = _convert_other(a, raiseit=True)
4561        return a.logb(context=self)
4562
4563    def logical_and(self, a, b):
4564        """Applies the logical operation 'and' between each operand's digits.
4565
4566        The operands must be both logical numbers.
4567
4568        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4569        Decimal('0')
4570        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4571        Decimal('0')
4572        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4573        Decimal('0')
4574        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4575        Decimal('1')
4576        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4577        Decimal('1000')
4578        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4579        Decimal('10')
4580        >>> ExtendedContext.logical_and(110, 1101)
4581        Decimal('100')
4582        >>> ExtendedContext.logical_and(Decimal(110), 1101)
4583        Decimal('100')
4584        >>> ExtendedContext.logical_and(110, Decimal(1101))
4585        Decimal('100')
4586        """
4587        a = _convert_other(a, raiseit=True)
4588        return a.logical_and(b, context=self)
4589
4590    def logical_invert(self, a):
4591        """Invert all the digits in the operand.
4592
4593        The operand must be a logical number.
4594
4595        >>> ExtendedContext.logical_invert(Decimal('0'))
4596        Decimal('111111111')
4597        >>> ExtendedContext.logical_invert(Decimal('1'))
4598        Decimal('111111110')
4599        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4600        Decimal('0')
4601        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4602        Decimal('10101010')
4603        >>> ExtendedContext.logical_invert(1101)
4604        Decimal('111110010')
4605        """
4606        a = _convert_other(a, raiseit=True)
4607        return a.logical_invert(context=self)
4608
4609    def logical_or(self, a, b):
4610        """Applies the logical operation 'or' between each operand's digits.
4611
4612        The operands must be both logical numbers.
4613
4614        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4615        Decimal('0')
4616        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4617        Decimal('1')
4618        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4619        Decimal('1')
4620        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4621        Decimal('1')
4622        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4623        Decimal('1110')
4624        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4625        Decimal('1110')
4626        >>> ExtendedContext.logical_or(110, 1101)
4627        Decimal('1111')
4628        >>> ExtendedContext.logical_or(Decimal(110), 1101)
4629        Decimal('1111')
4630        >>> ExtendedContext.logical_or(110, Decimal(1101))
4631        Decimal('1111')
4632        """
4633        a = _convert_other(a, raiseit=True)
4634        return a.logical_or(b, context=self)
4635
4636    def logical_xor(self, a, b):
4637        """Applies the logical operation 'xor' between each operand's digits.
4638
4639        The operands must be both logical numbers.
4640
4641        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4642        Decimal('0')
4643        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4644        Decimal('1')
4645        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4646        Decimal('1')
4647        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4648        Decimal('0')
4649        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4650        Decimal('110')
4651        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4652        Decimal('1101')
4653        >>> ExtendedContext.logical_xor(110, 1101)
4654        Decimal('1011')
4655        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
4656        Decimal('1011')
4657        >>> ExtendedContext.logical_xor(110, Decimal(1101))
4658        Decimal('1011')
4659        """
4660        a = _convert_other(a, raiseit=True)
4661        return a.logical_xor(b, context=self)
4662
4663    def max(self, a, b):
4664        """max compares two values numerically and returns the maximum.
4665
4666        If either operand is a NaN then the general rules apply.
4667        Otherwise, the operands are compared as though by the compare
4668        operation.  If they are numerically equal then the left-hand operand
4669        is chosen as the result.  Otherwise the maximum (closer to positive
4670        infinity) of the two operands is chosen as the result.
4671
4672        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4673        Decimal('3')
4674        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4675        Decimal('3')
4676        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4677        Decimal('1')
4678        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4679        Decimal('7')
4680        >>> ExtendedContext.max(1, 2)
4681        Decimal('2')
4682        >>> ExtendedContext.max(Decimal(1), 2)
4683        Decimal('2')
4684        >>> ExtendedContext.max(1, Decimal(2))
4685        Decimal('2')
4686        """
4687        a = _convert_other(a, raiseit=True)
4688        return a.max(b, context=self)
4689
4690    def max_mag(self, a, b):
4691        """Compares the values numerically with their sign ignored.
4692
4693        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
4694        Decimal('7')
4695        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
4696        Decimal('-10')
4697        >>> ExtendedContext.max_mag(1, -2)
4698        Decimal('-2')
4699        >>> ExtendedContext.max_mag(Decimal(1), -2)
4700        Decimal('-2')
4701        >>> ExtendedContext.max_mag(1, Decimal(-2))
4702        Decimal('-2')
4703        """
4704        a = _convert_other(a, raiseit=True)
4705        return a.max_mag(b, context=self)
4706
4707    def min(self, a, b):
4708        """min compares two values numerically and returns the minimum.
4709
4710        If either operand is a NaN then the general rules apply.
4711        Otherwise, the operands are compared as though by the compare
4712        operation.  If they are numerically equal then the left-hand operand
4713        is chosen as the result.  Otherwise the minimum (closer to negative
4714        infinity) of the two operands is chosen as the result.
4715
4716        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4717        Decimal('2')
4718        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4719        Decimal('-10')
4720        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4721        Decimal('1.0')
4722        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4723        Decimal('7')
4724        >>> ExtendedContext.min(1, 2)
4725        Decimal('1')
4726        >>> ExtendedContext.min(Decimal(1), 2)
4727        Decimal('1')
4728        >>> ExtendedContext.min(1, Decimal(29))
4729        Decimal('1')
4730        """
4731        a = _convert_other(a, raiseit=True)
4732        return a.min(b, context=self)
4733
4734    def min_mag(self, a, b):
4735        """Compares the values numerically with their sign ignored.
4736
4737        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
4738        Decimal('-2')
4739        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
4740        Decimal('-3')
4741        >>> ExtendedContext.min_mag(1, -2)
4742        Decimal('1')
4743        >>> ExtendedContext.min_mag(Decimal(1), -2)
4744        Decimal('1')
4745        >>> ExtendedContext.min_mag(1, Decimal(-2))
4746        Decimal('1')
4747        """
4748        a = _convert_other(a, raiseit=True)
4749        return a.min_mag(b, context=self)
4750
4751    def minus(self, a):
4752        """Minus corresponds to unary prefix minus in Python.
4753
4754        The operation is evaluated using the same rules as subtract; the
4755        operation minus(a) is calculated as subtract('0', a) where the '0'
4756        has the same exponent as the operand.
4757
4758        >>> ExtendedContext.minus(Decimal('1.3'))
4759        Decimal('-1.3')
4760        >>> ExtendedContext.minus(Decimal('-1.3'))
4761        Decimal('1.3')
4762        >>> ExtendedContext.minus(1)
4763        Decimal('-1')
4764        """
4765        a = _convert_other(a, raiseit=True)
4766        return a.__neg__(context=self)
4767
4768    def multiply(self, a, b):
4769        """multiply multiplies two operands.
4770
4771        If either operand is a special value then the general rules apply.
4772        Otherwise, the operands are multiplied together
4773        ('long multiplication'), resulting in a number which may be as long as
4774        the sum of the lengths of the two operands.
4775
4776        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4777        Decimal('3.60')
4778        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4779        Decimal('21')
4780        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4781        Decimal('0.72')
4782        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4783        Decimal('-0.0')
4784        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4785        Decimal('4.28135971E+11')
4786        >>> ExtendedContext.multiply(7, 7)
4787        Decimal('49')
4788        >>> ExtendedContext.multiply(Decimal(7), 7)
4789        Decimal('49')
4790        >>> ExtendedContext.multiply(7, Decimal(7))
4791        Decimal('49')
4792        """
4793        a = _convert_other(a, raiseit=True)
4794        r = a.__mul__(b, context=self)
4795        if r is NotImplemented:
4796            raise TypeError("Unable to convert %s to Decimal" % b)
4797        else:
4798            return r
4799
4800    def next_minus(self, a):
4801        """Returns the largest representable number smaller than a.
4802
4803        >>> c = ExtendedContext.copy()
4804        >>> c.Emin = -999
4805        >>> c.Emax = 999
4806        >>> ExtendedContext.next_minus(Decimal('1'))
4807        Decimal('0.999999999')
4808        >>> c.next_minus(Decimal('1E-1007'))
4809        Decimal('0E-1007')
4810        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4811        Decimal('-1.00000004')
4812        >>> c.next_minus(Decimal('Infinity'))
4813        Decimal('9.99999999E+999')
4814        >>> c.next_minus(1)
4815        Decimal('0.999999999')
4816        """
4817        a = _convert_other(a, raiseit=True)
4818        return a.next_minus(context=self)
4819
4820    def next_plus(self, a):
4821        """Returns the smallest representable number larger than a.
4822
4823        >>> c = ExtendedContext.copy()
4824        >>> c.Emin = -999
4825        >>> c.Emax = 999
4826        >>> ExtendedContext.next_plus(Decimal('1'))
4827        Decimal('1.00000001')
4828        >>> c.next_plus(Decimal('-1E-1007'))
4829        Decimal('-0E-1007')
4830        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4831        Decimal('-1.00000002')
4832        >>> c.next_plus(Decimal('-Infinity'))
4833        Decimal('-9.99999999E+999')
4834        >>> c.next_plus(1)
4835        Decimal('1.00000001')
4836        """
4837        a = _convert_other(a, raiseit=True)
4838        return a.next_plus(context=self)
4839
4840    def next_toward(self, a, b):
4841        """Returns the number closest to a, in direction towards b.
4842
4843        The result is the closest representable number from the first
4844        operand (but not the first operand) that is in the direction
4845        towards the second operand, unless the operands have the same
4846        value.
4847
4848        >>> c = ExtendedContext.copy()
4849        >>> c.Emin = -999
4850        >>> c.Emax = 999
4851        >>> c.next_toward(Decimal('1'), Decimal('2'))
4852        Decimal('1.00000001')
4853        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4854        Decimal('-0E-1007')
4855        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4856        Decimal('-1.00000002')
4857        >>> c.next_toward(Decimal('1'), Decimal('0'))
4858        Decimal('0.999999999')
4859        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4860        Decimal('0E-1007')
4861        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4862        Decimal('-1.00000004')
4863        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4864        Decimal('-0.00')
4865        >>> c.next_toward(0, 1)
4866        Decimal('1E-1007')
4867        >>> c.next_toward(Decimal(0), 1)
4868        Decimal('1E-1007')
4869        >>> c.next_toward(0, Decimal(1))
4870        Decimal('1E-1007')
4871        """
4872        a = _convert_other(a, raiseit=True)
4873        return a.next_toward(b, context=self)
4874
4875    def normalize(self, a):
4876        """normalize reduces an operand to its simplest form.
4877
4878        Essentially a plus operation with all trailing zeros removed from the
4879        result.
4880
4881        >>> ExtendedContext.normalize(Decimal('2.1'))
4882        Decimal('2.1')
4883        >>> ExtendedContext.normalize(Decimal('-2.0'))
4884        Decimal('-2')
4885        >>> ExtendedContext.normalize(Decimal('1.200'))
4886        Decimal('1.2')
4887        >>> ExtendedContext.normalize(Decimal('-120'))
4888        Decimal('-1.2E+2')
4889        >>> ExtendedContext.normalize(Decimal('120.00'))
4890        Decimal('1.2E+2')
4891        >>> ExtendedContext.normalize(Decimal('0.00'))
4892        Decimal('0')
4893        >>> ExtendedContext.normalize(6)
4894        Decimal('6')
4895        """
4896        a = _convert_other(a, raiseit=True)
4897        return a.normalize(context=self)
4898
4899    def number_class(self, a):
4900        """Returns an indication of the class of the operand.
4901
4902        The class is one of the following strings:
4903          -sNaN
4904          -NaN
4905          -Infinity
4906          -Normal
4907          -Subnormal
4908          -Zero
4909          +Zero
4910          +Subnormal
4911          +Normal
4912          +Infinity
4913
4914        >>> c = Context(ExtendedContext)
4915        >>> c.Emin = -999
4916        >>> c.Emax = 999
4917        >>> c.number_class(Decimal('Infinity'))
4918        '+Infinity'
4919        >>> c.number_class(Decimal('1E-10'))
4920        '+Normal'
4921        >>> c.number_class(Decimal('2.50'))
4922        '+Normal'
4923        >>> c.number_class(Decimal('0.1E-999'))
4924        '+Subnormal'
4925        >>> c.number_class(Decimal('0'))
4926        '+Zero'
4927        >>> c.number_class(Decimal('-0'))
4928        '-Zero'
4929        >>> c.number_class(Decimal('-0.1E-999'))
4930        '-Subnormal'
4931        >>> c.number_class(Decimal('-1E-10'))
4932        '-Normal'
4933        >>> c.number_class(Decimal('-2.50'))
4934        '-Normal'
4935        >>> c.number_class(Decimal('-Infinity'))
4936        '-Infinity'
4937        >>> c.number_class(Decimal('NaN'))
4938        'NaN'
4939        >>> c.number_class(Decimal('-NaN'))
4940        'NaN'
4941        >>> c.number_class(Decimal('sNaN'))
4942        'sNaN'
4943        >>> c.number_class(123)
4944        '+Normal'
4945        """
4946        a = _convert_other(a, raiseit=True)
4947        return a.number_class(context=self)
4948
4949    def plus(self, a):
4950        """Plus corresponds to unary prefix plus in Python.
4951
4952        The operation is evaluated using the same rules as add; the
4953        operation plus(a) is calculated as add('0', a) where the '0'
4954        has the same exponent as the operand.
4955
4956        >>> ExtendedContext.plus(Decimal('1.3'))
4957        Decimal('1.3')
4958        >>> ExtendedContext.plus(Decimal('-1.3'))
4959        Decimal('-1.3')
4960        >>> ExtendedContext.plus(-1)
4961        Decimal('-1')
4962        """
4963        a = _convert_other(a, raiseit=True)
4964        return a.__pos__(context=self)
4965
4966    def power(self, a, b, modulo=None):
4967        """Raises a to the power of b, to modulo if given.
4968
4969        With two arguments, compute a**b.  If a is negative then b
4970        must be integral.  The result will be inexact unless b is
4971        integral and the result is finite and can be expressed exactly
4972        in 'precision' digits.
4973
4974        With three arguments, compute (a**b) % modulo.  For the
4975        three argument form, the following restrictions on the
4976        arguments hold:
4977
4978         - all three arguments must be integral
4979         - b must be nonnegative
4980         - at least one of a or b must be nonzero
4981         - modulo must be nonzero and have at most 'precision' digits
4982
4983        The result of pow(a, b, modulo) is identical to the result
4984        that would be obtained by computing (a**b) % modulo with
4985        unbounded precision, but is computed more efficiently.  It is
4986        always exact.
4987
4988        >>> c = ExtendedContext.copy()
4989        >>> c.Emin = -999
4990        >>> c.Emax = 999
4991        >>> c.power(Decimal('2'), Decimal('3'))
4992        Decimal('8')
4993        >>> c.power(Decimal('-2'), Decimal('3'))
4994        Decimal('-8')
4995        >>> c.power(Decimal('2'), Decimal('-3'))
4996        Decimal('0.125')
4997        >>> c.power(Decimal('1.7'), Decimal('8'))
4998        Decimal('69.7575744')
4999        >>> c.power(Decimal('10'), Decimal('0.301029996'))
5000        Decimal('2.00000000')
5001        >>> c.power(Decimal('Infinity'), Decimal('-1'))
5002        Decimal('0')
5003        >>> c.power(Decimal('Infinity'), Decimal('0'))
5004        Decimal('1')
5005        >>> c.power(Decimal('Infinity'), Decimal('1'))
5006        Decimal('Infinity')
5007        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
5008        Decimal('-0')
5009        >>> c.power(Decimal('-Infinity'), Decimal('0'))
5010        Decimal('1')
5011        >>> c.power(Decimal('-Infinity'), Decimal('1'))
5012        Decimal('-Infinity')
5013        >>> c.power(Decimal('-Infinity'), Decimal('2'))
5014        Decimal('Infinity')
5015        >>> c.power(Decimal('0'), Decimal('0'))
5016        Decimal('NaN')
5017
5018        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
5019        Decimal('11')
5020        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
5021        Decimal('-11')
5022        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
5023        Decimal('1')
5024        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
5025        Decimal('11')
5026        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
5027        Decimal('11729830')
5028        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
5029        Decimal('-0')
5030        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
5031        Decimal('1')
5032        >>> ExtendedContext.power(7, 7)
5033        Decimal('823543')
5034        >>> ExtendedContext.power(Decimal(7), 7)
5035        Decimal('823543')
5036        >>> ExtendedContext.power(7, Decimal(7), 2)
5037        Decimal('1')
5038        """
5039        a = _convert_other(a, raiseit=True)
5040        r = a.__pow__(b, modulo, context=self)
5041        if r is NotImplemented:
5042            raise TypeError("Unable to convert %s to Decimal" % b)
5043        else:
5044            return r
5045
5046    def quantize(self, a, b):
5047        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
5048
5049        The coefficient of the result is derived from that of the left-hand
5050        operand.  It may be rounded using the current rounding setting (if the
5051        exponent is being increased), multiplied by a positive power of ten (if
5052        the exponent is being decreased), or is unchanged (if the exponent is
5053        already equal to that of the right-hand operand).
5054
5055        Unlike other operations, if the length of the coefficient after the
5056        quantize operation would be greater than precision then an Invalid
5057        operation condition is raised.  This guarantees that, unless there is
5058        an error condition, the exponent of the result of a quantize is always
5059        equal to that of the right-hand operand.
5060
5061        Also unlike other operations, quantize will never raise Underflow, even
5062        if the result is subnormal and inexact.
5063
5064        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
5065        Decimal('2.170')
5066        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
5067        Decimal('2.17')
5068        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
5069        Decimal('2.2')
5070        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
5071        Decimal('2')
5072        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
5073        Decimal('0E+1')
5074        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
5075        Decimal('-Infinity')
5076        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
5077        Decimal('NaN')
5078        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
5079        Decimal('-0')
5080        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
5081        Decimal('-0E+5')
5082        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
5083        Decimal('NaN')
5084        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
5085        Decimal('NaN')
5086        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
5087        Decimal('217.0')
5088        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
5089        Decimal('217')
5090        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
5091        Decimal('2.2E+2')
5092        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
5093        Decimal('2E+2')
5094        >>> ExtendedContext.quantize(1, 2)
5095        Decimal('1')
5096        >>> ExtendedContext.quantize(Decimal(1), 2)
5097        Decimal('1')
5098        >>> ExtendedContext.quantize(1, Decimal(2))
5099        Decimal('1')
5100        """
5101        a = _convert_other(a, raiseit=True)
5102        return a.quantize(b, context=self)
5103
5104    def radix(self):
5105        """Just returns 10, as this is Decimal, :)
5106
5107        >>> ExtendedContext.radix()
5108        Decimal('10')
5109        """
5110        return Decimal(10)
5111
5112    def remainder(self, a, b):
5113        """Returns the remainder from integer division.
5114
5115        The result is the residue of the dividend after the operation of
5116        calculating integer division as described for divide-integer, rounded
5117        to precision digits if necessary.  The sign of the result, if
5118        non-zero, is the same as that of the original dividend.
5119
5120        This operation will fail under the same conditions as integer division
5121        (that is, if integer division on the same two operands would fail, the
5122        remainder cannot be calculated).
5123
5124        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
5125        Decimal('2.1')
5126        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
5127        Decimal('1')
5128        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
5129        Decimal('-1')
5130        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
5131        Decimal('0.2')
5132        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
5133        Decimal('0.1')
5134        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
5135        Decimal('1.0')
5136        >>> ExtendedContext.remainder(22, 6)
5137        Decimal('4')
5138        >>> ExtendedContext.remainder(Decimal(22), 6)
5139        Decimal('4')
5140        >>> ExtendedContext.remainder(22, Decimal(6))
5141        Decimal('4')
5142        """
5143        a = _convert_other(a, raiseit=True)
5144        r = a.__mod__(b, context=self)
5145        if r is NotImplemented:
5146            raise TypeError("Unable to convert %s to Decimal" % b)
5147        else:
5148            return r
5149
5150    def remainder_near(self, a, b):
5151        """Returns to be "a - b * n", where n is the integer nearest the exact
5152        value of "x / b" (if two integers are equally near then the even one
5153        is chosen).  If the result is equal to 0 then its sign will be the
5154        sign of a.
5155
5156        This operation will fail under the same conditions as integer division
5157        (that is, if integer division on the same two operands would fail, the
5158        remainder cannot be calculated).
5159
5160        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
5161        Decimal('-0.9')
5162        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
5163        Decimal('-2')
5164        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
5165        Decimal('1')
5166        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
5167        Decimal('-1')
5168        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
5169        Decimal('0.2')
5170        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
5171        Decimal('0.1')
5172        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
5173        Decimal('-0.3')
5174        >>> ExtendedContext.remainder_near(3, 11)
5175        Decimal('3')
5176        >>> ExtendedContext.remainder_near(Decimal(3), 11)
5177        Decimal('3')
5178        >>> ExtendedContext.remainder_near(3, Decimal(11))
5179        Decimal('3')
5180        """
5181        a = _convert_other(a, raiseit=True)
5182        return a.remainder_near(b, context=self)
5183
5184    def rotate(self, a, b):
5185        """Returns a rotated copy of a, b times.
5186
5187        The coefficient of the result is a rotated copy of the digits in
5188        the coefficient of the first operand.  The number of places of
5189        rotation is taken from the absolute value of the second operand,
5190        with the rotation being to the left if the second operand is
5191        positive or to the right otherwise.
5192
5193        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
5194        Decimal('400000003')
5195        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
5196        Decimal('12')
5197        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
5198        Decimal('891234567')
5199        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
5200        Decimal('123456789')
5201        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
5202        Decimal('345678912')
5203        >>> ExtendedContext.rotate(1333333, 1)
5204        Decimal('13333330')
5205        >>> ExtendedContext.rotate(Decimal(1333333), 1)
5206        Decimal('13333330')
5207        >>> ExtendedContext.rotate(1333333, Decimal(1))
5208        Decimal('13333330')
5209        """
5210        a = _convert_other(a, raiseit=True)
5211        return a.rotate(b, context=self)
5212
5213    def same_quantum(self, a, b):
5214        """Returns True if the two operands have the same exponent.
5215
5216        The result is never affected by either the sign or the coefficient of
5217        either operand.
5218
5219        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
5220        False
5221        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
5222        True
5223        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
5224        False
5225        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
5226        True
5227        >>> ExtendedContext.same_quantum(10000, -1)
5228        True
5229        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
5230        True
5231        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
5232        True
5233        """
5234        a = _convert_other(a, raiseit=True)
5235        return a.same_quantum(b)
5236
5237    def scaleb (self, a, b):
5238        """Returns the first operand after adding the second value its exp.
5239
5240        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
5241        Decimal('0.0750')
5242        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
5243        Decimal('7.50')
5244        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
5245        Decimal('7.50E+3')
5246        >>> ExtendedContext.scaleb(1, 4)
5247        Decimal('1E+4')
5248        >>> ExtendedContext.scaleb(Decimal(1), 4)
5249        Decimal('1E+4')
5250        >>> ExtendedContext.scaleb(1, Decimal(4))
5251        Decimal('1E+4')
5252        """
5253        a = _convert_other(a, raiseit=True)
5254        return a.scaleb(b, context=self)
5255
5256    def shift(self, a, b):
5257        """Returns a shifted copy of a, b times.
5258
5259        The coefficient of the result is a shifted copy of the digits
5260        in the coefficient of the first operand.  The number of places
5261        to shift is taken from the absolute value of the second operand,
5262        with the shift being to the left if the second operand is
5263        positive or to the right otherwise.  Digits shifted into the
5264        coefficient are zeros.
5265
5266        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
5267        Decimal('400000000')
5268        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
5269        Decimal('0')
5270        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
5271        Decimal('1234567')
5272        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
5273        Decimal('123456789')
5274        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
5275        Decimal('345678900')
5276        >>> ExtendedContext.shift(88888888, 2)
5277        Decimal('888888800')
5278        >>> ExtendedContext.shift(Decimal(88888888), 2)
5279        Decimal('888888800')
5280        >>> ExtendedContext.shift(88888888, Decimal(2))
5281        Decimal('888888800')
5282        """
5283        a = _convert_other(a, raiseit=True)
5284        return a.shift(b, context=self)
5285
5286    def sqrt(self, a):
5287        """Square root of a non-negative number to context precision.
5288
5289        If the result must be inexact, it is rounded using the round-half-even
5290        algorithm.
5291
5292        >>> ExtendedContext.sqrt(Decimal('0'))
5293        Decimal('0')
5294        >>> ExtendedContext.sqrt(Decimal('-0'))
5295        Decimal('-0')
5296        >>> ExtendedContext.sqrt(Decimal('0.39'))
5297        Decimal('0.624499800')
5298        >>> ExtendedContext.sqrt(Decimal('100'))
5299        Decimal('10')
5300        >>> ExtendedContext.sqrt(Decimal('1'))
5301        Decimal('1')
5302        >>> ExtendedContext.sqrt(Decimal('1.0'))
5303        Decimal('1.0')
5304        >>> ExtendedContext.sqrt(Decimal('1.00'))
5305        Decimal('1.0')
5306        >>> ExtendedContext.sqrt(Decimal('7'))
5307        Decimal('2.64575131')
5308        >>> ExtendedContext.sqrt(Decimal('10'))
5309        Decimal('3.16227766')
5310        >>> ExtendedContext.sqrt(2)
5311        Decimal('1.41421356')
5312        >>> ExtendedContext.prec
5313        9
5314        """
5315        a = _convert_other(a, raiseit=True)
5316        return a.sqrt(context=self)
5317
5318    def subtract(self, a, b):
5319        """Return the difference between the two operands.
5320
5321        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
5322        Decimal('0.23')
5323        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
5324        Decimal('0.00')
5325        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
5326        Decimal('-0.77')
5327        >>> ExtendedContext.subtract(8, 5)
5328        Decimal('3')
5329        >>> ExtendedContext.subtract(Decimal(8), 5)
5330        Decimal('3')
5331        >>> ExtendedContext.subtract(8, Decimal(5))
5332        Decimal('3')
5333        """
5334        a = _convert_other(a, raiseit=True)
5335        r = a.__sub__(b, context=self)
5336        if r is NotImplemented:
5337            raise TypeError("Unable to convert %s to Decimal" % b)
5338        else:
5339            return r
5340
5341    def to_eng_string(self, a):
5342        """Converts a number to a string, using scientific notation.
5343
5344        The operation is not affected by the context.
5345        """
5346        a = _convert_other(a, raiseit=True)
5347        return a.to_eng_string(context=self)
5348
5349    def to_sci_string(self, a):
5350        """Converts a number to a string, using scientific notation.
5351
5352        The operation is not affected by the context.
5353        """
5354        a = _convert_other(a, raiseit=True)
5355        return a.__str__(context=self)
5356
5357    def to_integral_exact(self, a):
5358        """Rounds to an integer.
5359
5360        When the operand has a negative exponent, the result is the same
5361        as using the quantize() operation using the given operand as the
5362        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5363        of the operand as the precision setting; Inexact and Rounded flags
5364        are allowed in this operation.  The rounding mode is taken from the
5365        context.
5366
5367        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
5368        Decimal('2')
5369        >>> ExtendedContext.to_integral_exact(Decimal('100'))
5370        Decimal('100')
5371        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
5372        Decimal('100')
5373        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
5374        Decimal('102')
5375        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
5376        Decimal('-102')
5377        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
5378        Decimal('1.0E+6')
5379        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
5380        Decimal('7.89E+77')
5381        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
5382        Decimal('-Infinity')
5383        """
5384        a = _convert_other(a, raiseit=True)
5385        return a.to_integral_exact(context=self)
5386
5387    def to_integral_value(self, a):
5388        """Rounds to an integer.
5389
5390        When the operand has a negative exponent, the result is the same
5391        as using the quantize() operation using the given operand as the
5392        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5393        of the operand as the precision setting, except that no flags will
5394        be set.  The rounding mode is taken from the context.
5395
5396        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
5397        Decimal('2')
5398        >>> ExtendedContext.to_integral_value(Decimal('100'))
5399        Decimal('100')
5400        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
5401        Decimal('100')
5402        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
5403        Decimal('102')
5404        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
5405        Decimal('-102')
5406        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
5407        Decimal('1.0E+6')
5408        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
5409        Decimal('7.89E+77')
5410        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
5411        Decimal('-Infinity')
5412        """
5413        a = _convert_other(a, raiseit=True)
5414        return a.to_integral_value(context=self)
5415
5416    # the method name changed, but we provide also the old one, for compatibility
5417    to_integral = to_integral_value
5418
5419class _WorkRep(object):
5420    __slots__ = ('sign','int','exp')
5421    # sign: 0 or 1
5422    # int:  int or long
5423    # exp:  None, int, or string
5424
5425    def __init__(self, value=None):
5426        if value is None:
5427            self.sign = None
5428            self.int = 0
5429            self.exp = None
5430        elif isinstance(value, Decimal):
5431            self.sign = value._sign
5432            self.int = int(value._int)
5433            self.exp = value._exp
5434        else:
5435            # assert isinstance(value, tuple)
5436            self.sign = value[0]
5437            self.int = value[1]
5438            self.exp = value[2]
5439
5440    def __repr__(self):
5441        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
5442
5443    __str__ = __repr__
5444
5445
5446
5447def _normalize(op1, op2, prec = 0):
5448    """Normalizes op1, op2 to have the same exp and length of coefficient.
5449
5450    Done during addition.
5451    """
5452    if op1.exp < op2.exp:
5453        tmp = op2
5454        other = op1
5455    else:
5456        tmp = op1
5457        other = op2
5458
5459    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
5460    # Then adding 10**exp to tmp has the same effect (after rounding)
5461    # as adding any positive quantity smaller than 10**exp; similarly
5462    # for subtraction.  So if other is smaller than 10**exp we replace
5463    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
5464    tmp_len = len(str(tmp.int))
5465    other_len = len(str(other.int))
5466    exp = tmp.exp + min(-1, tmp_len - prec - 2)
5467    if other_len + other.exp - 1 < exp:
5468        other.int = 1
5469        other.exp = exp
5470
5471    tmp.int *= 10 ** (tmp.exp - other.exp)
5472    tmp.exp = other.exp
5473    return op1, op2
5474
5475##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5476
5477# This function from Tim Peters was taken from here:
5478# http://mail.python.org/pipermail/python-list/1999-July/007758.html
5479# The correction being in the function definition is for speed, and
5480# the whole function is not resolved with math.log because of avoiding
5481# the use of floats.
5482def _nbits(n, correction = {
5483        '0': 4, '1': 3, '2': 2, '3': 2,
5484        '4': 1, '5': 1, '6': 1, '7': 1,
5485        '8': 0, '9': 0, 'a': 0, 'b': 0,
5486        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5487    """Number of bits in binary representation of the positive integer n,
5488    or 0 if n == 0.
5489    """
5490    if n < 0:
5491        raise ValueError("The argument to _nbits should be nonnegative.")
5492    hex_n = "%x" % n
5493    return 4*len(hex_n) - correction[hex_n[0]]
5494
5495def _decimal_lshift_exact(n, e):
5496    """ Given integers n and e, return n * 10**e if it's an integer, else None.
5497
5498    The computation is designed to avoid computing large powers of 10
5499    unnecessarily.
5500
5501    >>> _decimal_lshift_exact(3, 4)
5502    30000
5503    >>> _decimal_lshift_exact(300, -999999999)  # returns None
5504
5505    """
5506    if n == 0:
5507        return 0
5508    elif e >= 0:
5509        return n * 10**e
5510    else:
5511        # val_n = largest power of 10 dividing n.
5512        str_n = str(abs(n))
5513        val_n = len(str_n) - len(str_n.rstrip('0'))
5514        return None if val_n < -e else n // 10**-e
5515
5516def _sqrt_nearest(n, a):
5517    """Closest integer to the square root of the positive integer n.  a is
5518    an initial approximation to the square root.  Any positive integer
5519    will do for a, but the closer a is to the square root of n the
5520    faster convergence will be.
5521
5522    """
5523    if n <= 0 or a <= 0:
5524        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5525
5526    b=0
5527    while a != b:
5528        b, a = a, a--n//a>>1
5529    return a
5530
5531def _rshift_nearest(x, shift):
5532    """Given an integer x and a nonnegative integer shift, return closest
5533    integer to x / 2**shift; use round-to-even in case of a tie.
5534
5535    """
5536    b, q = 1L << shift, x >> shift
5537    return q + (2*(x & (b-1)) + (q&1) > b)
5538
5539def _div_nearest(a, b):
5540    """Closest integer to a/b, a and b positive integers; rounds to even
5541    in the case of a tie.
5542
5543    """
5544    q, r = divmod(a, b)
5545    return q + (2*r + (q&1) > b)
5546
5547def _ilog(x, M, L = 8):
5548    """Integer approximation to M*log(x/M), with absolute error boundable
5549    in terms only of x/M.
5550
5551    Given positive integers x and M, return an integer approximation to
5552    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
5553    between the approximation and the exact result is at most 22.  For
5554    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
5555    both cases these are upper bounds on the error; it will usually be
5556    much smaller."""
5557
5558    # The basic algorithm is the following: let log1p be the function
5559    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
5560    # the reduction
5561    #
5562    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5563    #
5564    # repeatedly until the argument to log1p is small (< 2**-L in
5565    # absolute value).  For small y we can use the Taylor series
5566    # expansion
5567    #
5568    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5569    #
5570    # truncating at T such that y**T is small enough.  The whole
5571    # computation is carried out in a form of fixed-point arithmetic,
5572    # with a real number z being represented by an integer
5573    # approximation to z*M.  To avoid loss of precision, the y below
5574    # is actually an integer approximation to 2**R*y*M, where R is the
5575    # number of reductions performed so far.
5576
5577    y = x-M
5578    # argument reduction; R = number of reductions performed
5579    R = 0
5580    while (R <= L and long(abs(y)) << L-R >= M or
5581           R > L and abs(y) >> R-L >= M):
5582        y = _div_nearest(long(M*y) << 1,
5583                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5584        R += 1
5585
5586    # Taylor series with T terms
5587    T = -int(-10*len(str(M))//(3*L))
5588    yshift = _rshift_nearest(y, R)
5589    w = _div_nearest(M, T)
5590    for k in xrange(T-1, 0, -1):
5591        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5592
5593    return _div_nearest(w*y, M)
5594
5595def _dlog10(c, e, p):
5596    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5597    approximation to 10**p * log10(c*10**e), with an absolute error of
5598    at most 1.  Assumes that c*10**e is not exactly 1."""
5599
5600    # increase precision by 2; compensate for this by dividing
5601    # final result by 100
5602    p += 2
5603
5604    # write c*10**e as d*10**f with either:
5605    #   f >= 0 and 1 <= d <= 10, or
5606    #   f <= 0 and 0.1 <= d <= 1.
5607    # Thus for c*10**e close to 1, f = 0
5608    l = len(str(c))
5609    f = e+l - (e+l >= 1)
5610
5611    if p > 0:
5612        M = 10**p
5613        k = e+p-f
5614        if k >= 0:
5615            c *= 10**k
5616        else:
5617            c = _div_nearest(c, 10**-k)
5618
5619        log_d = _ilog(c, M) # error < 5 + 22 = 27
5620        log_10 = _log10_digits(p) # error < 1
5621        log_d = _div_nearest(log_d*M, log_10)
5622        log_tenpower = f*M # exact
5623    else:
5624        log_d = 0  # error < 2.31
5625        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5626
5627    return _div_nearest(log_tenpower+log_d, 100)
5628
5629def _dlog(c, e, p):
5630    """Given integers c, e and p with c > 0, compute an integer
5631    approximation to 10**p * log(c*10**e), with an absolute error of
5632    at most 1.  Assumes that c*10**e is not exactly 1."""
5633
5634    # Increase precision by 2. The precision increase is compensated
5635    # for at the end with a division by 100.
5636    p += 2
5637
5638    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5639    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5640    # as 10**p * log(d) + 10**p*f * log(10).
5641    l = len(str(c))
5642    f = e+l - (e+l >= 1)
5643
5644    # compute approximation to 10**p*log(d), with error < 27
5645    if p > 0:
5646        k = e+p-f
5647        if k >= 0:
5648            c *= 10**k
5649        else:
5650            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5651
5652        # _ilog magnifies existing error in c by a factor of at most 10
5653        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5654    else:
5655        # p <= 0: just approximate the whole thing by 0; error < 2.31
5656        log_d = 0
5657
5658    # compute approximation to f*10**p*log(10), with error < 11.
5659    if f:
5660        extra = len(str(abs(f)))-1
5661        if p + extra >= 0:
5662            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5663            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5664            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5665        else:
5666            f_log_ten = 0
5667    else:
5668        f_log_ten = 0
5669
5670    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5671    return _div_nearest(f_log_ten + log_d, 100)
5672
5673class _Log10Memoize(object):
5674    """Class to compute, store, and allow retrieval of, digits of the
5675    constant log(10) = 2.302585....  This constant is needed by
5676    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5677    def __init__(self):
5678        self.digits = "23025850929940456840179914546843642076011014886"
5679
5680    def getdigits(self, p):
5681        """Given an integer p >= 0, return floor(10**p)*log(10).
5682
5683        For example, self.getdigits(3) returns 2302.
5684        """
5685        # digits are stored as a string, for quick conversion to
5686        # integer in the case that we've already computed enough
5687        # digits; the stored digits should always be correct
5688        # (truncated, not rounded to nearest).
5689        if p < 0:
5690            raise ValueError("p should be nonnegative")
5691
5692        if p >= len(self.digits):
5693            # compute p+3, p+6, p+9, ... digits; continue until at
5694            # least one of the extra digits is nonzero
5695            extra = 3
5696            while True:
5697                # compute p+extra digits, correct to within 1ulp
5698                M = 10**(p+extra+2)
5699                digits = str(_div_nearest(_ilog(10*M, M), 100))
5700                if digits[-extra:] != '0'*extra:
5701                    break
5702                extra += 3
5703            # keep all reliable digits so far; remove trailing zeros
5704            # and next nonzero digit
5705            self.digits = digits.rstrip('0')[:-1]
5706        return int(self.digits[:p+1])
5707
5708_log10_digits = _Log10Memoize().getdigits
5709
5710def _iexp(x, M, L=8):
5711    """Given integers x and M, M > 0, such that x/M is small in absolute
5712    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5713    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5714    is usually much smaller)."""
5715
5716    # Algorithm: to compute exp(z) for a real number z, first divide z
5717    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5718    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5719    # series
5720    #
5721    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5722    #
5723    # Now use the identity
5724    #
5725    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5726    #
5727    # R times to compute the sequence expm1(z/2**R),
5728    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5729
5730    # Find R such that x/2**R/M <= 2**-L
5731    R = _nbits((long(x)<<L)//M)
5732
5733    # Taylor series.  (2**L)**T > M
5734    T = -int(-10*len(str(M))//(3*L))
5735    y = _div_nearest(x, T)
5736    Mshift = long(M)<<R
5737    for i in xrange(T-1, 0, -1):
5738        y = _div_nearest(x*(Mshift + y), Mshift * i)
5739
5740    # Expansion
5741    for k in xrange(R-1, -1, -1):
5742        Mshift = long(M)<<(k+2)
5743        y = _div_nearest(y*(y+Mshift), Mshift)
5744
5745    return M+y
5746
5747def _dexp(c, e, p):
5748    """Compute an approximation to exp(c*10**e), with p decimal places of
5749    precision.
5750
5751    Returns integers d, f such that:
5752
5753      10**(p-1) <= d <= 10**p, and
5754      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5755
5756    In other words, d*10**f is an approximation to exp(c*10**e) with p
5757    digits of precision, and with an error in d of at most 1.  This is
5758    almost, but not quite, the same as the error being < 1ulp: when d
5759    = 10**(p-1) the error could be up to 10 ulp."""
5760
5761    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5762    p += 2
5763
5764    # compute log(10) with extra precision = adjusted exponent of c*10**e
5765    extra = max(0, e + len(str(c)) - 1)
5766    q = p + extra
5767
5768    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5769    # rounding down
5770    shift = e+q
5771    if shift >= 0:
5772        cshift = c*10**shift
5773    else:
5774        cshift = c//10**-shift
5775    quot, rem = divmod(cshift, _log10_digits(q))
5776
5777    # reduce remainder back to original precision
5778    rem = _div_nearest(rem, 10**extra)
5779
5780    # error in result of _iexp < 120;  error after division < 0.62
5781    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5782
5783def _dpower(xc, xe, yc, ye, p):
5784    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5785    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5786
5787      10**(p-1) <= c <= 10**p, and
5788      (c-1)*10**e < x**y < (c+1)*10**e
5789
5790    in other words, c*10**e is an approximation to x**y with p digits
5791    of precision, and with an error in c of at most 1.  (This is
5792    almost, but not quite, the same as the error being < 1ulp: when c
5793    == 10**(p-1) we can only guarantee error < 10ulp.)
5794
5795    We assume that: x is positive and not equal to 1, and y is nonzero.
5796    """
5797
5798    # Find b such that 10**(b-1) <= |y| <= 10**b
5799    b = len(str(abs(yc))) + ye
5800
5801    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5802    lxc = _dlog(xc, xe, p+b+1)
5803
5804    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5805    shift = ye-b
5806    if shift >= 0:
5807        pc = lxc*yc*10**shift
5808    else:
5809        pc = _div_nearest(lxc*yc, 10**-shift)
5810
5811    if pc == 0:
5812        # we prefer a result that isn't exactly 1; this makes it
5813        # easier to compute a correctly rounded result in __pow__
5814        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5815            coeff, exp = 10**(p-1)+1, 1-p
5816        else:
5817            coeff, exp = 10**p-1, -p
5818    else:
5819        coeff, exp = _dexp(pc, -(p+1), p+1)
5820        coeff = _div_nearest(coeff, 10)
5821        exp += 1
5822
5823    return coeff, exp
5824
5825def _log10_lb(c, correction = {
5826        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5827        '6': 23, '7': 16, '8': 10, '9': 5}):
5828    """Compute a lower bound for 100*log10(c) for a positive integer c."""
5829    if c <= 0:
5830        raise ValueError("The argument to _log10_lb should be nonnegative.")
5831    str_c = str(c)
5832    return 100*len(str_c) - correction[str_c[0]]
5833
5834##### Helper Functions ####################################################
5835
5836def _convert_other(other, raiseit=False, allow_float=False):
5837    """Convert other to Decimal.
5838
5839    Verifies that it's ok to use in an implicit construction.
5840    If allow_float is true, allow conversion from float;  this
5841    is used in the comparison methods (__eq__ and friends).
5842
5843    """
5844    if isinstance(other, Decimal):
5845        return other
5846    if isinstance(other, (int, long)):
5847        return Decimal(other)
5848    if allow_float and isinstance(other, float):
5849        return Decimal.from_float(other)
5850
5851    if raiseit:
5852        raise TypeError("Unable to convert %s to Decimal" % other)
5853    return NotImplemented
5854
5855##### Setup Specific Contexts ############################################
5856
5857# The default context prototype used by Context()
5858# Is mutable, so that new contexts can have different default values
5859
5860DefaultContext = Context(
5861        prec=28, rounding=ROUND_HALF_EVEN,
5862        traps=[DivisionByZero, Overflow, InvalidOperation],
5863        flags=[],
5864        Emax=999999999,
5865        Emin=-999999999,
5866        capitals=1
5867)
5868
5869# Pre-made alternate contexts offered by the specification
5870# Don't change these; the user should be able to select these
5871# contexts and be able to reproduce results from other implementations
5872# of the spec.
5873
5874BasicContext = Context(
5875        prec=9, rounding=ROUND_HALF_UP,
5876        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5877        flags=[],
5878)
5879
5880ExtendedContext = Context(
5881        prec=9, rounding=ROUND_HALF_EVEN,
5882        traps=[],
5883        flags=[],
5884)
5885
5886
5887##### crud for parsing strings #############################################
5888#
5889# Regular expression used for parsing numeric strings.  Additional
5890# comments:
5891#
5892# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5893# whitespace.  But note that the specification disallows whitespace in
5894# a numeric string.
5895#
5896# 2. For finite numbers (not infinities and NaNs) the body of the
5897# number between the optional sign and the optional exponent must have
5898# at least one decimal digit, possibly after the decimal point.  The
5899# lookahead expression '(?=\d|\.\d)' checks this.
5900
5901import re
5902_parser = re.compile(r"""        # A numeric string consists of:
5903#    \s*
5904    (?P<sign>[-+])?              # an optional sign, followed by either...
5905    (
5906        (?=\d|\.\d)              # ...a number (with at least one digit)
5907        (?P<int>\d*)             # having a (possibly empty) integer part
5908        (\.(?P<frac>\d*))?       # followed by an optional fractional part
5909        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
5910    |
5911        Inf(inity)?              # ...an infinity, or...
5912    |
5913        (?P<signal>s)?           # ...an (optionally signaling)
5914        NaN                      # NaN
5915        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
5916    )
5917#    \s*
5918    \Z
5919""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5920
5921_all_zeros = re.compile('0*$').match
5922_exact_half = re.compile('50*$').match
5923
5924##### PEP3101 support functions ##############################################
5925# The functions in this section have little to do with the Decimal
5926# class, and could potentially be reused or adapted for other pure
5927# Python numeric classes that want to implement __format__
5928#
5929# A format specifier for Decimal looks like:
5930#
5931#   [[fill]align][sign][0][minimumwidth][,][.precision][type]
5932
5933_parse_format_specifier_regex = re.compile(r"""\A
5934(?:
5935   (?P<fill>.)?
5936   (?P<align>[<>=^])
5937)?
5938(?P<sign>[-+ ])?
5939(?P<zeropad>0)?
5940(?P<minimumwidth>(?!0)\d+)?
5941(?P<thousands_sep>,)?
5942(?:\.(?P<precision>0|(?!0)\d+))?
5943(?P<type>[eEfFgGn%])?
5944\Z
5945""", re.VERBOSE)
5946
5947del re
5948
5949# The locale module is only needed for the 'n' format specifier.  The
5950# rest of the PEP 3101 code functions quite happily without it, so we
5951# don't care too much if locale isn't present.
5952try:
5953    import locale as _locale
5954except ImportError:
5955    pass
5956
5957def _parse_format_specifier(format_spec, _localeconv=None):
5958    """Parse and validate a format specifier.
5959
5960    Turns a standard numeric format specifier into a dict, with the
5961    following entries:
5962
5963      fill: fill character to pad field to minimum width
5964      align: alignment type, either '<', '>', '=' or '^'
5965      sign: either '+', '-' or ' '
5966      minimumwidth: nonnegative integer giving minimum width
5967      zeropad: boolean, indicating whether to pad with zeros
5968      thousands_sep: string to use as thousands separator, or ''
5969      grouping: grouping for thousands separators, in format
5970        used by localeconv
5971      decimal_point: string to use for decimal point
5972      precision: nonnegative integer giving precision, or None
5973      type: one of the characters 'eEfFgG%', or None
5974      unicode: boolean (always True for Python 3.x)
5975
5976    """
5977    m = _parse_format_specifier_regex.match(format_spec)
5978    if m is None:
5979        raise ValueError("Invalid format specifier: " + format_spec)
5980
5981    # get the dictionary
5982    format_dict = m.groupdict()
5983
5984    # zeropad; defaults for fill and alignment.  If zero padding
5985    # is requested, the fill and align fields should be absent.
5986    fill = format_dict['fill']
5987    align = format_dict['align']
5988    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5989    if format_dict['zeropad']:
5990        if fill is not None:
5991            raise ValueError("Fill character conflicts with '0'"
5992                             " in format specifier: " + format_spec)
5993        if align is not None:
5994            raise ValueError("Alignment conflicts with '0' in "
5995                             "format specifier: " + format_spec)
5996    format_dict['fill'] = fill or ' '
5997    # PEP 3101 originally specified that the default alignment should
5998    # be left;  it was later agreed that right-aligned makes more sense
5999    # for numeric types.  See http://bugs.python.org/issue6857.
6000    format_dict['align'] = align or '>'
6001
6002    # default sign handling: '-' for negative, '' for positive
6003    if format_dict['sign'] is None:
6004        format_dict['sign'] = '-'
6005
6006    # minimumwidth defaults to 0; precision remains None if not given
6007    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
6008    if format_dict['precision'] is not None:
6009        format_dict['precision'] = int(format_dict['precision'])
6010
6011    # if format type is 'g' or 'G' then a precision of 0 makes little
6012    # sense; convert it to 1.  Same if format type is unspecified.
6013    if format_dict['precision'] == 0:
6014        if format_dict['type'] is None or format_dict['type'] in 'gG':
6015            format_dict['precision'] = 1
6016
6017    # determine thousands separator, grouping, and decimal separator, and
6018    # add appropriate entries to format_dict
6019    if format_dict['type'] == 'n':
6020        # apart from separators, 'n' behaves just like 'g'
6021        format_dict['type'] = 'g'
6022        if _localeconv is None:
6023            _localeconv = _locale.localeconv()
6024        if format_dict['thousands_sep'] is not None:
6025            raise ValueError("Explicit thousands separator conflicts with "
6026                             "'n' type in format specifier: " + format_spec)
6027        format_dict['thousands_sep'] = _localeconv['thousands_sep']
6028        format_dict['grouping'] = _localeconv['grouping']
6029        format_dict['decimal_point'] = _localeconv['decimal_point']
6030    else:
6031        if format_dict['thousands_sep'] is None:
6032            format_dict['thousands_sep'] = ''
6033        format_dict['grouping'] = [3, 0]
6034        format_dict['decimal_point'] = '.'
6035
6036    # record whether return type should be str or unicode
6037    try:
6038        format_dict['unicode'] = isinstance(format_spec, unicode)
6039    except NameError:
6040        format_dict['unicode'] = False
6041
6042    return format_dict
6043
6044def _format_align(sign, body, spec):
6045    """Given an unpadded, non-aligned numeric string 'body' and sign
6046    string 'sign', add padding and alignment conforming to the given
6047    format specifier dictionary 'spec' (as produced by
6048    parse_format_specifier).
6049
6050    Also converts result to unicode if necessary.
6051
6052    """
6053    # how much extra space do we have to play with?
6054    minimumwidth = spec['minimumwidth']
6055    fill = spec['fill']
6056    padding = fill*(minimumwidth - len(sign) - len(body))
6057
6058    align = spec['align']
6059    if align == '<':
6060        result = sign + body + padding
6061    elif align == '>':
6062        result = padding + sign + body
6063    elif align == '=':
6064        result = sign + padding + body
6065    elif align == '^':
6066        half = len(padding)//2
6067        result = padding[:half] + sign + body + padding[half:]
6068    else:
6069        raise ValueError('Unrecognised alignment field')
6070
6071    # make sure that result is unicode if necessary
6072    if spec['unicode']:
6073        result = unicode(result)
6074
6075    return result
6076
6077def _group_lengths(grouping):
6078    """Convert a localeconv-style grouping into a (possibly infinite)
6079    iterable of integers representing group lengths.
6080
6081    """
6082    # The result from localeconv()['grouping'], and the input to this
6083    # function, should be a list of integers in one of the
6084    # following three forms:
6085    #
6086    #   (1) an empty list, or
6087    #   (2) nonempty list of positive integers + [0]
6088    #   (3) list of positive integers + [locale.CHAR_MAX], or
6089
6090    from itertools import chain, repeat
6091    if not grouping:
6092        return []
6093    elif grouping[-1] == 0 and len(grouping) >= 2:
6094        return chain(grouping[:-1], repeat(grouping[-2]))
6095    elif grouping[-1] == _locale.CHAR_MAX:
6096        return grouping[:-1]
6097    else:
6098        raise ValueError('unrecognised format for grouping')
6099
6100def _insert_thousands_sep(digits, spec, min_width=1):
6101    """Insert thousands separators into a digit string.
6102
6103    spec is a dictionary whose keys should include 'thousands_sep' and
6104    'grouping'; typically it's the result of parsing the format
6105    specifier using _parse_format_specifier.
6106
6107    The min_width keyword argument gives the minimum length of the
6108    result, which will be padded on the left with zeros if necessary.
6109
6110    If necessary, the zero padding adds an extra '0' on the left to
6111    avoid a leading thousands separator.  For example, inserting
6112    commas every three digits in '123456', with min_width=8, gives
6113    '0,123,456', even though that has length 9.
6114
6115    """
6116
6117    sep = spec['thousands_sep']
6118    grouping = spec['grouping']
6119
6120    groups = []
6121    for l in _group_lengths(grouping):
6122        if l <= 0:
6123            raise ValueError("group length should be positive")
6124        # max(..., 1) forces at least 1 digit to the left of a separator
6125        l = min(max(len(digits), min_width, 1), l)
6126        groups.append('0'*(l - len(digits)) + digits[-l:])
6127        digits = digits[:-l]
6128        min_width -= l
6129        if not digits and min_width <= 0:
6130            break
6131        min_width -= len(sep)
6132    else:
6133        l = max(len(digits), min_width, 1)
6134        groups.append('0'*(l - len(digits)) + digits[-l:])
6135    return sep.join(reversed(groups))
6136
6137def _format_sign(is_negative, spec):
6138    """Determine sign character."""
6139
6140    if is_negative:
6141        return '-'
6142    elif spec['sign'] in ' +':
6143        return spec['sign']
6144    else:
6145        return ''
6146
6147def _format_number(is_negative, intpart, fracpart, exp, spec):
6148    """Format a number, given the following data:
6149
6150    is_negative: true if the number is negative, else false
6151    intpart: string of digits that must appear before the decimal point
6152    fracpart: string of digits that must come after the point
6153    exp: exponent, as an integer
6154    spec: dictionary resulting from parsing the format specifier
6155
6156    This function uses the information in spec to:
6157      insert separators (decimal separator and thousands separators)
6158      format the sign
6159      format the exponent
6160      add trailing '%' for the '%' type
6161      zero-pad if necessary
6162      fill and align if necessary
6163    """
6164
6165    sign = _format_sign(is_negative, spec)
6166
6167    if fracpart:
6168        fracpart = spec['decimal_point'] + fracpart
6169
6170    if exp != 0 or spec['type'] in 'eE':
6171        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
6172        fracpart += "{0}{1:+}".format(echar, exp)
6173    if spec['type'] == '%':
6174        fracpart += '%'
6175
6176    if spec['zeropad']:
6177        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
6178    else:
6179        min_width = 0
6180    intpart = _insert_thousands_sep(intpart, spec, min_width)
6181
6182    return _format_align(sign, intpart+fracpart, spec)
6183
6184
6185##### Useful Constants (internal use only) ################################
6186
6187# Reusable defaults
6188_Infinity = Decimal('Inf')
6189_NegativeInfinity = Decimal('-Inf')
6190_NaN = Decimal('NaN')
6191_Zero = Decimal(0)
6192_One = Decimal(1)
6193_NegativeOne = Decimal(-1)
6194
6195# _SignedInfinity[sign] is infinity w/ that sign
6196_SignedInfinity = (_Infinity, _NegativeInfinity)
6197
6198
6199
6200if __name__ == '__main__':
6201    import doctest, sys
6202    doctest.testmod(sys.modules[__name__])
6203