pickletools.py revision da614dcc4f56bfb136c53b04d60889870d969926
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13__all__ = ['dis', 'genops', 'optimize']
14
15# Other ideas:
16#
17# - A pickle verifier:  read a pickle and check it exhaustively for
18#   well-formedness.  dis() does a lot of this already.
19#
20# - A protocol identifier:  examine a pickle and return its protocol number
21#   (== the highest .proto attr value among all the opcodes in the pickle).
22#   dis() already prints this info at the end.
23#
24# - A pickle optimizer:  for example, tuple-building code is sometimes more
25#   elaborate than necessary, catering for the possibility that the tuple
26#   is recursive.  Or lots of times a PUT is generated that's never accessed
27#   by a later GET.
28
29
30"""
31"A pickle" is a program for a virtual pickle machine (PM, but more accurately
32called an unpickling machine).  It's a sequence of opcodes, interpreted by the
33PM, building an arbitrarily complex Python object.
34
35For the most part, the PM is very simple:  there are no looping, testing, or
36conditional instructions, no arithmetic and no function calls.  Opcodes are
37executed once each, from first to last, until a STOP opcode is reached.
38
39The PM has two data areas, "the stack" and "the memo".
40
41Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
42integer object on the stack, whose value is gotten from a decimal string
43literal immediately following the INT opcode in the pickle bytestream.  Other
44opcodes take Python objects off the stack.  The result of unpickling is
45whatever object is left on the stack when the final STOP opcode is executed.
46
47The memo is simply an array of objects, or it can be implemented as a dict
48mapping little integers to objects.  The memo serves as the PM's "long term
49memory", and the little integers indexing the memo are akin to variable
50names.  Some opcodes pop a stack object into the memo at a given index,
51and others push a memo object at a given index onto the stack again.
52
53At heart, that's all the PM has.  Subtleties arise for these reasons:
54
55+ Object identity.  Objects can be arbitrarily complex, and subobjects
56  may be shared (for example, the list [a, a] refers to the same object a
57  twice).  It can be vital that unpickling recreate an isomorphic object
58  graph, faithfully reproducing sharing.
59
60+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
61  list, and L[0] is the same list.  This is related to the object identity
62  point, and some sequences of pickle opcodes are subtle in order to
63  get the right result in all cases.
64
65+ Things pickle doesn't know everything about.  Examples of things pickle
66  does know everything about are Python's builtin scalar and container
67  types, like ints and tuples.  They generally have opcodes dedicated to
68  them.  For things like module references and instances of user-defined
69  classes, pickle's knowledge is limited.  Historically, many enhancements
70  have been made to the pickle protocol in order to do a better (faster,
71  and/or more compact) job on those.
72
73+ Backward compatibility and micro-optimization.  As explained below,
74  pickle opcodes never go away, not even when better ways to do a thing
75  get invented.  The repertoire of the PM just keeps growing over time.
76  For example, protocol 0 had two opcodes for building Python integers (INT
77  and LONG), protocol 1 added three more for more-efficient pickling of short
78  integers, and protocol 2 added two more for more-efficient pickling of
79  long integers (before protocol 2, the only ways to pickle a Python long
80  took time quadratic in the number of digits, for both pickling and
81  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
82  wearying complication.
83
84
85Pickle protocols:
86
87For compatibility, the meaning of a pickle opcode never changes.  Instead new
88pickle opcodes get added, and each version's unpickler can handle all the
89pickle opcodes in all protocol versions to date.  So old pickles continue to
90be readable forever.  The pickler can generally be told to restrict itself to
91the subset of opcodes available under previous protocol versions too, so that
92users can create pickles under the current version readable by older
93versions.  However, a pickle does not contain its version number embedded
94within it.  If an older unpickler tries to read a pickle using a later
95protocol, the result is most likely an exception due to seeing an unknown (in
96the older unpickler) opcode.
97
98The original pickle used what's now called "protocol 0", and what was called
99"text mode" before Python 2.3.  The entire pickle bytestream is made up of
100printable 7-bit ASCII characters, plus the newline character, in protocol 0.
101That's why it was called text mode.  Protocol 0 is small and elegant, but
102sometimes painfully inefficient.
103
104The second major set of additions is now called "protocol 1", and was called
105"binary mode" before Python 2.3.  This added many opcodes with arguments
106consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
107bytes.  Binary mode pickles can be substantially smaller than equivalent
108text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
109int as 4 bytes following the opcode, which is cheaper to unpickle than the
110(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
111a number of opcodes that operate on many stack elements at once (like APPENDS
112and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
113
114The third major set of additions came in Python 2.3, and is called "protocol
1152".  This added:
116
117- A better way to pickle instances of new-style classes (NEWOBJ).
118
119- A way for a pickle to identify its protocol (PROTO).
120
121- Time- and space- efficient pickling of long ints (LONG{1,4}).
122
123- Shortcuts for small tuples (TUPLE{1,2,3}}.
124
125- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
126
127- The "extension registry", a vector of popular objects that can be pushed
128  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
129  the registry contents are predefined (there's nothing akin to the memo's
130  PUT).
131
132Another independent change with Python 2.3 is the abandonment of any
133pretense that it might be safe to load pickles received from untrusted
134parties -- no sufficient security analysis has been done to guarantee
135this and there isn't a use case that warrants the expense of such an
136analysis.
137
138To this end, all tests for __safe_for_unpickling__ or for
139copy_reg.safe_constructors are removed from the unpickling code.
140References to these variables in the descriptions below are to be seen
141as describing unpickling in Python 2.2 and before.
142"""
143
144# Meta-rule:  Descriptions are stored in instances of descriptor objects,
145# with plain constructors.  No meta-language is defined from which
146# descriptors could be constructed.  If you want, e.g., XML, write a little
147# program to generate XML from the objects.
148
149##############################################################################
150# Some pickle opcodes have an argument, following the opcode in the
151# bytestream.  An argument is of a specific type, described by an instance
152# of ArgumentDescriptor.  These are not to be confused with arguments taken
153# off the stack -- ArgumentDescriptor applies only to arguments embedded in
154# the opcode stream, immediately following an opcode.
155
156# Represents the number of bytes consumed by an argument delimited by the
157# next newline character.
158UP_TO_NEWLINE = -1
159
160# Represents the number of bytes consumed by a two-argument opcode where
161# the first argument gives the number of bytes in the second argument.
162TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
163TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
164
165class ArgumentDescriptor(object):
166    __slots__ = (
167        # name of descriptor record, also a module global name; a string
168        'name',
169
170        # length of argument, in bytes; an int; UP_TO_NEWLINE and
171        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
172        # cases
173        'n',
174
175        # a function taking a file-like object, reading this kind of argument
176        # from the object at the current position, advancing the current
177        # position by n bytes, and returning the value of the argument
178        'reader',
179
180        # human-readable docs for this arg descriptor; a string
181        'doc',
182    )
183
184    def __init__(self, name, n, reader, doc):
185        assert isinstance(name, str)
186        self.name = name
187
188        assert isinstance(n, int) and (n >= 0 or
189                                       n in (UP_TO_NEWLINE,
190                                             TAKEN_FROM_ARGUMENT1,
191                                             TAKEN_FROM_ARGUMENT4))
192        self.n = n
193
194        self.reader = reader
195
196        assert isinstance(doc, str)
197        self.doc = doc
198
199from struct import unpack as _unpack
200
201def read_uint1(f):
202    r"""
203    >>> import StringIO
204    >>> read_uint1(StringIO.StringIO('\xff'))
205    255
206    """
207
208    data = f.read(1)
209    if data:
210        return ord(data)
211    raise ValueError("not enough data in stream to read uint1")
212
213uint1 = ArgumentDescriptor(
214            name='uint1',
215            n=1,
216            reader=read_uint1,
217            doc="One-byte unsigned integer.")
218
219
220def read_uint2(f):
221    r"""
222    >>> import StringIO
223    >>> read_uint2(StringIO.StringIO('\xff\x00'))
224    255
225    >>> read_uint2(StringIO.StringIO('\xff\xff'))
226    65535
227    """
228
229    data = f.read(2)
230    if len(data) == 2:
231        return _unpack("<H", data)[0]
232    raise ValueError("not enough data in stream to read uint2")
233
234uint2 = ArgumentDescriptor(
235            name='uint2',
236            n=2,
237            reader=read_uint2,
238            doc="Two-byte unsigned integer, little-endian.")
239
240
241def read_int4(f):
242    r"""
243    >>> import StringIO
244    >>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
245    255
246    >>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
247    True
248    """
249
250    data = f.read(4)
251    if len(data) == 4:
252        return _unpack("<i", data)[0]
253    raise ValueError("not enough data in stream to read int4")
254
255int4 = ArgumentDescriptor(
256           name='int4',
257           n=4,
258           reader=read_int4,
259           doc="Four-byte signed integer, little-endian, 2's complement.")
260
261
262def read_stringnl(f, decode=True, stripquotes=True):
263    r"""
264    >>> import StringIO
265    >>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
266    'abcd'
267
268    >>> read_stringnl(StringIO.StringIO("\n"))
269    Traceback (most recent call last):
270    ...
271    ValueError: no string quotes around ''
272
273    >>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
274    ''
275
276    >>> read_stringnl(StringIO.StringIO("''\n"))
277    ''
278
279    >>> read_stringnl(StringIO.StringIO('"abcd"'))
280    Traceback (most recent call last):
281    ...
282    ValueError: no newline found when trying to read stringnl
283
284    Embedded escapes are undone in the result.
285    >>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
286    'a\n\\b\x00c\td'
287    """
288
289    data = f.readline()
290    if not data.endswith('\n'):
291        raise ValueError("no newline found when trying to read stringnl")
292    data = data[:-1]    # lose the newline
293
294    if stripquotes:
295        for q in "'\"":
296            if data.startswith(q):
297                if not data.endswith(q):
298                    raise ValueError("strinq quote %r not found at both "
299                                     "ends of %r" % (q, data))
300                data = data[1:-1]
301                break
302        else:
303            raise ValueError("no string quotes around %r" % data)
304
305    # I'm not sure when 'string_escape' was added to the std codecs; it's
306    # crazy not to use it if it's there.
307    if decode:
308        data = data.decode('string_escape')
309    return data
310
311stringnl = ArgumentDescriptor(
312               name='stringnl',
313               n=UP_TO_NEWLINE,
314               reader=read_stringnl,
315               doc="""A newline-terminated string.
316
317                   This is a repr-style string, with embedded escapes, and
318                   bracketing quotes.
319                   """)
320
321def read_stringnl_noescape(f):
322    return read_stringnl(f, decode=False, stripquotes=False)
323
324stringnl_noescape = ArgumentDescriptor(
325                        name='stringnl_noescape',
326                        n=UP_TO_NEWLINE,
327                        reader=read_stringnl_noescape,
328                        doc="""A newline-terminated string.
329
330                        This is a str-style string, without embedded escapes,
331                        or bracketing quotes.  It should consist solely of
332                        printable ASCII characters.
333                        """)
334
335def read_stringnl_noescape_pair(f):
336    r"""
337    >>> import StringIO
338    >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
339    'Queue Empty'
340    """
341
342    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
343
344stringnl_noescape_pair = ArgumentDescriptor(
345                             name='stringnl_noescape_pair',
346                             n=UP_TO_NEWLINE,
347                             reader=read_stringnl_noescape_pair,
348                             doc="""A pair of newline-terminated strings.
349
350                             These are str-style strings, without embedded
351                             escapes, or bracketing quotes.  They should
352                             consist solely of printable ASCII characters.
353                             The pair is returned as a single string, with
354                             a single blank separating the two strings.
355                             """)
356
357def read_string4(f):
358    r"""
359    >>> import StringIO
360    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
361    ''
362    >>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
363    'abc'
364    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
365    Traceback (most recent call last):
366    ...
367    ValueError: expected 50331648 bytes in a string4, but only 6 remain
368    """
369
370    n = read_int4(f)
371    if n < 0:
372        raise ValueError("string4 byte count < 0: %d" % n)
373    data = f.read(n)
374    if len(data) == n:
375        return data
376    raise ValueError("expected %d bytes in a string4, but only %d remain" %
377                     (n, len(data)))
378
379string4 = ArgumentDescriptor(
380              name="string4",
381              n=TAKEN_FROM_ARGUMENT4,
382              reader=read_string4,
383              doc="""A counted string.
384
385              The first argument is a 4-byte little-endian signed int giving
386              the number of bytes in the string, and the second argument is
387              that many bytes.
388              """)
389
390
391def read_string1(f):
392    r"""
393    >>> import StringIO
394    >>> read_string1(StringIO.StringIO("\x00"))
395    ''
396    >>> read_string1(StringIO.StringIO("\x03abcdef"))
397    'abc'
398    """
399
400    n = read_uint1(f)
401    assert n >= 0
402    data = f.read(n)
403    if len(data) == n:
404        return data
405    raise ValueError("expected %d bytes in a string1, but only %d remain" %
406                     (n, len(data)))
407
408string1 = ArgumentDescriptor(
409              name="string1",
410              n=TAKEN_FROM_ARGUMENT1,
411              reader=read_string1,
412              doc="""A counted string.
413
414              The first argument is a 1-byte unsigned int giving the number
415              of bytes in the string, and the second argument is that many
416              bytes.
417              """)
418
419
420def read_unicodestringnl(f):
421    r"""
422    >>> import StringIO
423    >>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
424    u'abc\uabcd'
425    """
426
427    data = f.readline()
428    if not data.endswith('\n'):
429        raise ValueError("no newline found when trying to read "
430                         "unicodestringnl")
431    data = data[:-1]    # lose the newline
432    return unicode(data, 'raw-unicode-escape')
433
434unicodestringnl = ArgumentDescriptor(
435                      name='unicodestringnl',
436                      n=UP_TO_NEWLINE,
437                      reader=read_unicodestringnl,
438                      doc="""A newline-terminated Unicode string.
439
440                      This is raw-unicode-escape encoded, so consists of
441                      printable ASCII characters, and may contain embedded
442                      escape sequences.
443                      """)
444
445def read_unicodestring4(f):
446    r"""
447    >>> import StringIO
448    >>> s = u'abcd\uabcd'
449    >>> enc = s.encode('utf-8')
450    >>> enc
451    'abcd\xea\xaf\x8d'
452    >>> n = chr(len(enc)) + chr(0) * 3  # little-endian 4-byte length
453    >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
454    >>> s == t
455    True
456
457    >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
458    Traceback (most recent call last):
459    ...
460    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
461    """
462
463    n = read_int4(f)
464    if n < 0:
465        raise ValueError("unicodestring4 byte count < 0: %d" % n)
466    data = f.read(n)
467    if len(data) == n:
468        return unicode(data, 'utf-8')
469    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
470                     "remain" % (n, len(data)))
471
472unicodestring4 = ArgumentDescriptor(
473                    name="unicodestring4",
474                    n=TAKEN_FROM_ARGUMENT4,
475                    reader=read_unicodestring4,
476                    doc="""A counted Unicode string.
477
478                    The first argument is a 4-byte little-endian signed int
479                    giving the number of bytes in the string, and the second
480                    argument-- the UTF-8 encoding of the Unicode string --
481                    contains that many bytes.
482                    """)
483
484
485def read_decimalnl_short(f):
486    r"""
487    >>> import StringIO
488    >>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
489    1234
490
491    >>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
492    Traceback (most recent call last):
493    ...
494    ValueError: trailing 'L' not allowed in '1234L'
495    """
496
497    s = read_stringnl(f, decode=False, stripquotes=False)
498    if s.endswith("L"):
499        raise ValueError("trailing 'L' not allowed in %r" % s)
500
501    # It's not necessarily true that the result fits in a Python short int:
502    # the pickle may have been written on a 64-bit box.  There's also a hack
503    # for True and False here.
504    if s == "00":
505        return False
506    elif s == "01":
507        return True
508
509    try:
510        return int(s)
511    except OverflowError:
512        return long(s)
513
514def read_decimalnl_long(f):
515    r"""
516    >>> import StringIO
517
518    >>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
519    Traceback (most recent call last):
520    ...
521    ValueError: trailing 'L' required in '1234'
522
523    Someday the trailing 'L' will probably go away from this output.
524
525    >>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
526    1234L
527
528    >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
529    123456789012345678901234L
530    """
531
532    s = read_stringnl(f, decode=False, stripquotes=False)
533    if not s.endswith("L"):
534        raise ValueError("trailing 'L' required in %r" % s)
535    return long(s)
536
537
538decimalnl_short = ArgumentDescriptor(
539                      name='decimalnl_short',
540                      n=UP_TO_NEWLINE,
541                      reader=read_decimalnl_short,
542                      doc="""A newline-terminated decimal integer literal.
543
544                          This never has a trailing 'L', and the integer fit
545                          in a short Python int on the box where the pickle
546                          was written -- but there's no guarantee it will fit
547                          in a short Python int on the box where the pickle
548                          is read.
549                          """)
550
551decimalnl_long = ArgumentDescriptor(
552                     name='decimalnl_long',
553                     n=UP_TO_NEWLINE,
554                     reader=read_decimalnl_long,
555                     doc="""A newline-terminated decimal integer literal.
556
557                         This has a trailing 'L', and can represent integers
558                         of any size.
559                         """)
560
561
562def read_floatnl(f):
563    r"""
564    >>> import StringIO
565    >>> read_floatnl(StringIO.StringIO("-1.25\n6"))
566    -1.25
567    """
568    s = read_stringnl(f, decode=False, stripquotes=False)
569    return float(s)
570
571floatnl = ArgumentDescriptor(
572              name='floatnl',
573              n=UP_TO_NEWLINE,
574              reader=read_floatnl,
575              doc="""A newline-terminated decimal floating literal.
576
577              In general this requires 17 significant digits for roundtrip
578              identity, and pickling then unpickling infinities, NaNs, and
579              minus zero doesn't work across boxes, or on some boxes even
580              on itself (e.g., Windows can't read the strings it produces
581              for infinities or NaNs).
582              """)
583
584def read_float8(f):
585    r"""
586    >>> import StringIO, struct
587    >>> raw = struct.pack(">d", -1.25)
588    >>> raw
589    '\xbf\xf4\x00\x00\x00\x00\x00\x00'
590    >>> read_float8(StringIO.StringIO(raw + "\n"))
591    -1.25
592    """
593
594    data = f.read(8)
595    if len(data) == 8:
596        return _unpack(">d", data)[0]
597    raise ValueError("not enough data in stream to read float8")
598
599
600float8 = ArgumentDescriptor(
601             name='float8',
602             n=8,
603             reader=read_float8,
604             doc="""An 8-byte binary representation of a float, big-endian.
605
606             The format is unique to Python, and shared with the struct
607             module (format string '>d') "in theory" (the struct and cPickle
608             implementations don't share the code -- they should).  It's
609             strongly related to the IEEE-754 double format, and, in normal
610             cases, is in fact identical to the big-endian 754 double format.
611             On other boxes the dynamic range is limited to that of a 754
612             double, and "add a half and chop" rounding is used to reduce
613             the precision to 53 bits.  However, even on a 754 box,
614             infinities, NaNs, and minus zero may not be handled correctly
615             (may not survive roundtrip pickling intact).
616             """)
617
618# Protocol 2 formats
619
620from pickle import decode_long
621
622def read_long1(f):
623    r"""
624    >>> import StringIO
625    >>> read_long1(StringIO.StringIO("\x00"))
626    0L
627    >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
628    255L
629    >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
630    32767L
631    >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
632    -256L
633    >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
634    -32768L
635    """
636
637    n = read_uint1(f)
638    data = f.read(n)
639    if len(data) != n:
640        raise ValueError("not enough data in stream to read long1")
641    return decode_long(data)
642
643long1 = ArgumentDescriptor(
644    name="long1",
645    n=TAKEN_FROM_ARGUMENT1,
646    reader=read_long1,
647    doc="""A binary long, little-endian, using 1-byte size.
648
649    This first reads one byte as an unsigned size, then reads that
650    many bytes and interprets them as a little-endian 2's-complement long.
651    If the size is 0, that's taken as a shortcut for the long 0L.
652    """)
653
654def read_long4(f):
655    r"""
656    >>> import StringIO
657    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
658    255L
659    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
660    32767L
661    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
662    -256L
663    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
664    -32768L
665    >>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
666    0L
667    """
668
669    n = read_int4(f)
670    if n < 0:
671        raise ValueError("long4 byte count < 0: %d" % n)
672    data = f.read(n)
673    if len(data) != n:
674        raise ValueError("not enough data in stream to read long4")
675    return decode_long(data)
676
677long4 = ArgumentDescriptor(
678    name="long4",
679    n=TAKEN_FROM_ARGUMENT4,
680    reader=read_long4,
681    doc="""A binary representation of a long, little-endian.
682
683    This first reads four bytes as a signed size (but requires the
684    size to be >= 0), then reads that many bytes and interprets them
685    as a little-endian 2's-complement long.  If the size is 0, that's taken
686    as a shortcut for the long 0L, although LONG1 should really be used
687    then instead (and in any case where # of bytes < 256).
688    """)
689
690
691##############################################################################
692# Object descriptors.  The stack used by the pickle machine holds objects,
693# and in the stack_before and stack_after attributes of OpcodeInfo
694# descriptors we need names to describe the various types of objects that can
695# appear on the stack.
696
697class StackObject(object):
698    __slots__ = (
699        # name of descriptor record, for info only
700        'name',
701
702        # type of object, or tuple of type objects (meaning the object can
703        # be of any type in the tuple)
704        'obtype',
705
706        # human-readable docs for this kind of stack object; a string
707        'doc',
708    )
709
710    def __init__(self, name, obtype, doc):
711        assert isinstance(name, str)
712        self.name = name
713
714        assert isinstance(obtype, type) or isinstance(obtype, tuple)
715        if isinstance(obtype, tuple):
716            for contained in obtype:
717                assert isinstance(contained, type)
718        self.obtype = obtype
719
720        assert isinstance(doc, str)
721        self.doc = doc
722
723    def __repr__(self):
724        return self.name
725
726
727pyint = StackObject(
728            name='int',
729            obtype=int,
730            doc="A short (as opposed to long) Python integer object.")
731
732pylong = StackObject(
733             name='long',
734             obtype=long,
735             doc="A long (as opposed to short) Python integer object.")
736
737pyinteger_or_bool = StackObject(
738                        name='int_or_bool',
739                        obtype=(int, long, bool),
740                        doc="A Python integer object (short or long), or "
741                            "a Python bool.")
742
743pybool = StackObject(
744             name='bool',
745             obtype=(bool,),
746             doc="A Python bool object.")
747
748pyfloat = StackObject(
749              name='float',
750              obtype=float,
751              doc="A Python float object.")
752
753pystring = StackObject(
754               name='str',
755               obtype=str,
756               doc="A Python string object.")
757
758pyunicode = StackObject(
759                name='unicode',
760                obtype=unicode,
761                doc="A Python Unicode string object.")
762
763pynone = StackObject(
764             name="None",
765             obtype=type(None),
766             doc="The Python None object.")
767
768pytuple = StackObject(
769              name="tuple",
770              obtype=tuple,
771              doc="A Python tuple object.")
772
773pylist = StackObject(
774             name="list",
775             obtype=list,
776             doc="A Python list object.")
777
778pydict = StackObject(
779             name="dict",
780             obtype=dict,
781             doc="A Python dict object.")
782
783anyobject = StackObject(
784                name='any',
785                obtype=object,
786                doc="Any kind of object whatsoever.")
787
788markobject = StackObject(
789                 name="mark",
790                 obtype=StackObject,
791                 doc="""'The mark' is a unique object.
792
793                 Opcodes that operate on a variable number of objects
794                 generally don't embed the count of objects in the opcode,
795                 or pull it off the stack.  Instead the MARK opcode is used
796                 to push a special marker object on the stack, and then
797                 some other opcodes grab all the objects from the top of
798                 the stack down to (but not including) the topmost marker
799                 object.
800                 """)
801
802stackslice = StackObject(
803                 name="stackslice",
804                 obtype=StackObject,
805                 doc="""An object representing a contiguous slice of the stack.
806
807                 This is used in conjuction with markobject, to represent all
808                 of the stack following the topmost markobject.  For example,
809                 the POP_MARK opcode changes the stack from
810
811                     [..., markobject, stackslice]
812                 to
813                     [...]
814
815                 No matter how many object are on the stack after the topmost
816                 markobject, POP_MARK gets rid of all of them (including the
817                 topmost markobject too).
818                 """)
819
820##############################################################################
821# Descriptors for pickle opcodes.
822
823class OpcodeInfo(object):
824
825    __slots__ = (
826        # symbolic name of opcode; a string
827        'name',
828
829        # the code used in a bytestream to represent the opcode; a
830        # one-character string
831        'code',
832
833        # If the opcode has an argument embedded in the byte string, an
834        # instance of ArgumentDescriptor specifying its type.  Note that
835        # arg.reader(s) can be used to read and decode the argument from
836        # the bytestream s, and arg.doc documents the format of the raw
837        # argument bytes.  If the opcode doesn't have an argument embedded
838        # in the bytestream, arg should be None.
839        'arg',
840
841        # what the stack looks like before this opcode runs; a list
842        'stack_before',
843
844        # what the stack looks like after this opcode runs; a list
845        'stack_after',
846
847        # the protocol number in which this opcode was introduced; an int
848        'proto',
849
850        # human-readable docs for this opcode; a string
851        'doc',
852    )
853
854    def __init__(self, name, code, arg,
855                 stack_before, stack_after, proto, doc):
856        assert isinstance(name, str)
857        self.name = name
858
859        assert isinstance(code, str)
860        assert len(code) == 1
861        self.code = code
862
863        assert arg is None or isinstance(arg, ArgumentDescriptor)
864        self.arg = arg
865
866        assert isinstance(stack_before, list)
867        for x in stack_before:
868            assert isinstance(x, StackObject)
869        self.stack_before = stack_before
870
871        assert isinstance(stack_after, list)
872        for x in stack_after:
873            assert isinstance(x, StackObject)
874        self.stack_after = stack_after
875
876        assert isinstance(proto, int) and 0 <= proto <= 2
877        self.proto = proto
878
879        assert isinstance(doc, str)
880        self.doc = doc
881
882I = OpcodeInfo
883opcodes = [
884
885    # Ways to spell integers.
886
887    I(name='INT',
888      code='I',
889      arg=decimalnl_short,
890      stack_before=[],
891      stack_after=[pyinteger_or_bool],
892      proto=0,
893      doc="""Push an integer or bool.
894
895      The argument is a newline-terminated decimal literal string.
896
897      The intent may have been that this always fit in a short Python int,
898      but INT can be generated in pickles written on a 64-bit box that
899      require a Python long on a 32-bit box.  The difference between this
900      and LONG then is that INT skips a trailing 'L', and produces a short
901      int whenever possible.
902
903      Another difference is due to that, when bool was introduced as a
904      distinct type in 2.3, builtin names True and False were also added to
905      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
906      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
907      Leading zeroes are never produced for a genuine integer.  The 2.3
908      (and later) unpicklers special-case these and return bool instead;
909      earlier unpicklers ignore the leading "0" and return the int.
910      """),
911
912    I(name='BININT',
913      code='J',
914      arg=int4,
915      stack_before=[],
916      stack_after=[pyint],
917      proto=1,
918      doc="""Push a four-byte signed integer.
919
920      This handles the full range of Python (short) integers on a 32-bit
921      box, directly as binary bytes (1 for the opcode and 4 for the integer).
922      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
923      BININT1 or BININT2 saves space.
924      """),
925
926    I(name='BININT1',
927      code='K',
928      arg=uint1,
929      stack_before=[],
930      stack_after=[pyint],
931      proto=1,
932      doc="""Push a one-byte unsigned integer.
933
934      This is a space optimization for pickling very small non-negative ints,
935      in range(256).
936      """),
937
938    I(name='BININT2',
939      code='M',
940      arg=uint2,
941      stack_before=[],
942      stack_after=[pyint],
943      proto=1,
944      doc="""Push a two-byte unsigned integer.
945
946      This is a space optimization for pickling small positive ints, in
947      range(256, 2**16).  Integers in range(256) can also be pickled via
948      BININT2, but BININT1 instead saves a byte.
949      """),
950
951    I(name='LONG',
952      code='L',
953      arg=decimalnl_long,
954      stack_before=[],
955      stack_after=[pylong],
956      proto=0,
957      doc="""Push a long integer.
958
959      The same as INT, except that the literal ends with 'L', and always
960      unpickles to a Python long.  There doesn't seem a real purpose to the
961      trailing 'L'.
962
963      Note that LONG takes time quadratic in the number of digits when
964      unpickling (this is simply due to the nature of decimal->binary
965      conversion).  Proto 2 added linear-time (in C; still quadratic-time
966      in Python) LONG1 and LONG4 opcodes.
967      """),
968
969    I(name="LONG1",
970      code='\x8a',
971      arg=long1,
972      stack_before=[],
973      stack_after=[pylong],
974      proto=2,
975      doc="""Long integer using one-byte length.
976
977      A more efficient encoding of a Python long; the long1 encoding
978      says it all."""),
979
980    I(name="LONG4",
981      code='\x8b',
982      arg=long4,
983      stack_before=[],
984      stack_after=[pylong],
985      proto=2,
986      doc="""Long integer using found-byte length.
987
988      A more efficient encoding of a Python long; the long4 encoding
989      says it all."""),
990
991    # Ways to spell strings (8-bit, not Unicode).
992
993    I(name='STRING',
994      code='S',
995      arg=stringnl,
996      stack_before=[],
997      stack_after=[pystring],
998      proto=0,
999      doc="""Push a Python string object.
1000
1001      The argument is a repr-style string, with bracketing quote characters,
1002      and perhaps embedded escapes.  The argument extends until the next
1003      newline character.
1004      """),
1005
1006    I(name='BINSTRING',
1007      code='T',
1008      arg=string4,
1009      stack_before=[],
1010      stack_after=[pystring],
1011      proto=1,
1012      doc="""Push a Python string object.
1013
1014      There are two arguments:  the first is a 4-byte little-endian signed int
1015      giving the number of bytes in the string, and the second is that many
1016      bytes, which are taken literally as the string content.
1017      """),
1018
1019    I(name='SHORT_BINSTRING',
1020      code='U',
1021      arg=string1,
1022      stack_before=[],
1023      stack_after=[pystring],
1024      proto=1,
1025      doc="""Push a Python string object.
1026
1027      There are two arguments:  the first is a 1-byte unsigned int giving
1028      the number of bytes in the string, and the second is that many bytes,
1029      which are taken literally as the string content.
1030      """),
1031
1032    # Ways to spell None.
1033
1034    I(name='NONE',
1035      code='N',
1036      arg=None,
1037      stack_before=[],
1038      stack_after=[pynone],
1039      proto=0,
1040      doc="Push None on the stack."),
1041
1042    # Ways to spell bools, starting with proto 2.  See INT for how this was
1043    # done before proto 2.
1044
1045    I(name='NEWTRUE',
1046      code='\x88',
1047      arg=None,
1048      stack_before=[],
1049      stack_after=[pybool],
1050      proto=2,
1051      doc="""True.
1052
1053      Push True onto the stack."""),
1054
1055    I(name='NEWFALSE',
1056      code='\x89',
1057      arg=None,
1058      stack_before=[],
1059      stack_after=[pybool],
1060      proto=2,
1061      doc="""True.
1062
1063      Push False onto the stack."""),
1064
1065    # Ways to spell Unicode strings.
1066
1067    I(name='UNICODE',
1068      code='V',
1069      arg=unicodestringnl,
1070      stack_before=[],
1071      stack_after=[pyunicode],
1072      proto=0,  # this may be pure-text, but it's a later addition
1073      doc="""Push a Python Unicode string object.
1074
1075      The argument is a raw-unicode-escape encoding of a Unicode string,
1076      and so may contain embedded escape sequences.  The argument extends
1077      until the next newline character.
1078      """),
1079
1080    I(name='BINUNICODE',
1081      code='X',
1082      arg=unicodestring4,
1083      stack_before=[],
1084      stack_after=[pyunicode],
1085      proto=1,
1086      doc="""Push a Python Unicode string object.
1087
1088      There are two arguments:  the first is a 4-byte little-endian signed int
1089      giving the number of bytes in the string.  The second is that many
1090      bytes, and is the UTF-8 encoding of the Unicode string.
1091      """),
1092
1093    # Ways to spell floats.
1094
1095    I(name='FLOAT',
1096      code='F',
1097      arg=floatnl,
1098      stack_before=[],
1099      stack_after=[pyfloat],
1100      proto=0,
1101      doc="""Newline-terminated decimal float literal.
1102
1103      The argument is repr(a_float), and in general requires 17 significant
1104      digits for roundtrip conversion to be an identity (this is so for
1105      IEEE-754 double precision values, which is what Python float maps to
1106      on most boxes).
1107
1108      In general, FLOAT cannot be used to transport infinities, NaNs, or
1109      minus zero across boxes (or even on a single box, if the platform C
1110      library can't read the strings it produces for such things -- Windows
1111      is like that), but may do less damage than BINFLOAT on boxes with
1112      greater precision or dynamic range than IEEE-754 double.
1113      """),
1114
1115    I(name='BINFLOAT',
1116      code='G',
1117      arg=float8,
1118      stack_before=[],
1119      stack_after=[pyfloat],
1120      proto=1,
1121      doc="""Float stored in binary form, with 8 bytes of data.
1122
1123      This generally requires less than half the space of FLOAT encoding.
1124      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1125      minus zero, raises an exception if the exponent exceeds the range of
1126      an IEEE-754 double, and retains no more than 53 bits of precision (if
1127      there are more than that, "add a half and chop" rounding is used to
1128      cut it back to 53 significant bits).
1129      """),
1130
1131    # Ways to build lists.
1132
1133    I(name='EMPTY_LIST',
1134      code=']',
1135      arg=None,
1136      stack_before=[],
1137      stack_after=[pylist],
1138      proto=1,
1139      doc="Push an empty list."),
1140
1141    I(name='APPEND',
1142      code='a',
1143      arg=None,
1144      stack_before=[pylist, anyobject],
1145      stack_after=[pylist],
1146      proto=0,
1147      doc="""Append an object to a list.
1148
1149      Stack before:  ... pylist anyobject
1150      Stack after:   ... pylist+[anyobject]
1151
1152      although pylist is really extended in-place.
1153      """),
1154
1155    I(name='APPENDS',
1156      code='e',
1157      arg=None,
1158      stack_before=[pylist, markobject, stackslice],
1159      stack_after=[pylist],
1160      proto=1,
1161      doc="""Extend a list by a slice of stack objects.
1162
1163      Stack before:  ... pylist markobject stackslice
1164      Stack after:   ... pylist+stackslice
1165
1166      although pylist is really extended in-place.
1167      """),
1168
1169    I(name='LIST',
1170      code='l',
1171      arg=None,
1172      stack_before=[markobject, stackslice],
1173      stack_after=[pylist],
1174      proto=0,
1175      doc="""Build a list out of the topmost stack slice, after markobject.
1176
1177      All the stack entries following the topmost markobject are placed into
1178      a single Python list, which single list object replaces all of the
1179      stack from the topmost markobject onward.  For example,
1180
1181      Stack before: ... markobject 1 2 3 'abc'
1182      Stack after:  ... [1, 2, 3, 'abc']
1183      """),
1184
1185    # Ways to build tuples.
1186
1187    I(name='EMPTY_TUPLE',
1188      code=')',
1189      arg=None,
1190      stack_before=[],
1191      stack_after=[pytuple],
1192      proto=1,
1193      doc="Push an empty tuple."),
1194
1195    I(name='TUPLE',
1196      code='t',
1197      arg=None,
1198      stack_before=[markobject, stackslice],
1199      stack_after=[pytuple],
1200      proto=0,
1201      doc="""Build a tuple out of the topmost stack slice, after markobject.
1202
1203      All the stack entries following the topmost markobject are placed into
1204      a single Python tuple, which single tuple object replaces all of the
1205      stack from the topmost markobject onward.  For example,
1206
1207      Stack before: ... markobject 1 2 3 'abc'
1208      Stack after:  ... (1, 2, 3, 'abc')
1209      """),
1210
1211    I(name='TUPLE1',
1212      code='\x85',
1213      arg=None,
1214      stack_before=[anyobject],
1215      stack_after=[pytuple],
1216      proto=2,
1217      doc="""One-tuple.
1218
1219      This code pops one value off the stack and pushes a tuple of
1220      length 1 whose one item is that value back onto it.  IOW:
1221
1222          stack[-1] = tuple(stack[-1:])
1223      """),
1224
1225    I(name='TUPLE2',
1226      code='\x86',
1227      arg=None,
1228      stack_before=[anyobject, anyobject],
1229      stack_after=[pytuple],
1230      proto=2,
1231      doc="""One-tuple.
1232
1233      This code pops two values off the stack and pushes a tuple
1234      of length 2 whose items are those values back onto it.  IOW:
1235
1236          stack[-2:] = [tuple(stack[-2:])]
1237      """),
1238
1239    I(name='TUPLE3',
1240      code='\x87',
1241      arg=None,
1242      stack_before=[anyobject, anyobject, anyobject],
1243      stack_after=[pytuple],
1244      proto=2,
1245      doc="""One-tuple.
1246
1247      This code pops three values off the stack and pushes a tuple
1248      of length 3 whose items are those values back onto it.  IOW:
1249
1250          stack[-3:] = [tuple(stack[-3:])]
1251      """),
1252
1253    # Ways to build dicts.
1254
1255    I(name='EMPTY_DICT',
1256      code='}',
1257      arg=None,
1258      stack_before=[],
1259      stack_after=[pydict],
1260      proto=1,
1261      doc="Push an empty dict."),
1262
1263    I(name='DICT',
1264      code='d',
1265      arg=None,
1266      stack_before=[markobject, stackslice],
1267      stack_after=[pydict],
1268      proto=0,
1269      doc="""Build a dict out of the topmost stack slice, after markobject.
1270
1271      All the stack entries following the topmost markobject are placed into
1272      a single Python dict, which single dict object replaces all of the
1273      stack from the topmost markobject onward.  The stack slice alternates
1274      key, value, key, value, ....  For example,
1275
1276      Stack before: ... markobject 1 2 3 'abc'
1277      Stack after:  ... {1: 2, 3: 'abc'}
1278      """),
1279
1280    I(name='SETITEM',
1281      code='s',
1282      arg=None,
1283      stack_before=[pydict, anyobject, anyobject],
1284      stack_after=[pydict],
1285      proto=0,
1286      doc="""Add a key+value pair to an existing dict.
1287
1288      Stack before:  ... pydict key value
1289      Stack after:   ... pydict
1290
1291      where pydict has been modified via pydict[key] = value.
1292      """),
1293
1294    I(name='SETITEMS',
1295      code='u',
1296      arg=None,
1297      stack_before=[pydict, markobject, stackslice],
1298      stack_after=[pydict],
1299      proto=1,
1300      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1301
1302      The slice of the stack following the topmost markobject is taken as
1303      an alternating sequence of keys and values, added to the dict
1304      immediately under the topmost markobject.  Everything at and after the
1305      topmost markobject is popped, leaving the mutated dict at the top
1306      of the stack.
1307
1308      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1309      Stack after:   ... pydict
1310
1311      where pydict has been modified via pydict[key_i] = value_i for i in
1312      1, 2, ..., n, and in that order.
1313      """),
1314
1315    # Stack manipulation.
1316
1317    I(name='POP',
1318      code='0',
1319      arg=None,
1320      stack_before=[anyobject],
1321      stack_after=[],
1322      proto=0,
1323      doc="Discard the top stack item, shrinking the stack by one item."),
1324
1325    I(name='DUP',
1326      code='2',
1327      arg=None,
1328      stack_before=[anyobject],
1329      stack_after=[anyobject, anyobject],
1330      proto=0,
1331      doc="Push the top stack item onto the stack again, duplicating it."),
1332
1333    I(name='MARK',
1334      code='(',
1335      arg=None,
1336      stack_before=[],
1337      stack_after=[markobject],
1338      proto=0,
1339      doc="""Push markobject onto the stack.
1340
1341      markobject is a unique object, used by other opcodes to identify a
1342      region of the stack containing a variable number of objects for them
1343      to work on.  See markobject.doc for more detail.
1344      """),
1345
1346    I(name='POP_MARK',
1347      code='1',
1348      arg=None,
1349      stack_before=[markobject, stackslice],
1350      stack_after=[],
1351      proto=0,
1352      doc="""Pop all the stack objects at and above the topmost markobject.
1353
1354      When an opcode using a variable number of stack objects is done,
1355      POP_MARK is used to remove those objects, and to remove the markobject
1356      that delimited their starting position on the stack.
1357      """),
1358
1359    # Memo manipulation.  There are really only two operations (get and put),
1360    # each in all-text, "short binary", and "long binary" flavors.
1361
1362    I(name='GET',
1363      code='g',
1364      arg=decimalnl_short,
1365      stack_before=[],
1366      stack_after=[anyobject],
1367      proto=0,
1368      doc="""Read an object from the memo and push it on the stack.
1369
1370      The index of the memo object to push is given by the newline-teriminated
1371      decimal string following.  BINGET and LONG_BINGET are space-optimized
1372      versions.
1373      """),
1374
1375    I(name='BINGET',
1376      code='h',
1377      arg=uint1,
1378      stack_before=[],
1379      stack_after=[anyobject],
1380      proto=1,
1381      doc="""Read an object from the memo and push it on the stack.
1382
1383      The index of the memo object to push is given by the 1-byte unsigned
1384      integer following.
1385      """),
1386
1387    I(name='LONG_BINGET',
1388      code='j',
1389      arg=int4,
1390      stack_before=[],
1391      stack_after=[anyobject],
1392      proto=1,
1393      doc="""Read an object from the memo and push it on the stack.
1394
1395      The index of the memo object to push is given by the 4-byte signed
1396      little-endian integer following.
1397      """),
1398
1399    I(name='PUT',
1400      code='p',
1401      arg=decimalnl_short,
1402      stack_before=[],
1403      stack_after=[],
1404      proto=0,
1405      doc="""Store the stack top into the memo.  The stack is not popped.
1406
1407      The index of the memo location to write into is given by the newline-
1408      terminated decimal string following.  BINPUT and LONG_BINPUT are
1409      space-optimized versions.
1410      """),
1411
1412    I(name='BINPUT',
1413      code='q',
1414      arg=uint1,
1415      stack_before=[],
1416      stack_after=[],
1417      proto=1,
1418      doc="""Store the stack top into the memo.  The stack is not popped.
1419
1420      The index of the memo location to write into is given by the 1-byte
1421      unsigned integer following.
1422      """),
1423
1424    I(name='LONG_BINPUT',
1425      code='r',
1426      arg=int4,
1427      stack_before=[],
1428      stack_after=[],
1429      proto=1,
1430      doc="""Store the stack top into the memo.  The stack is not popped.
1431
1432      The index of the memo location to write into is given by the 4-byte
1433      signed little-endian integer following.
1434      """),
1435
1436    # Access the extension registry (predefined objects).  Akin to the GET
1437    # family.
1438
1439    I(name='EXT1',
1440      code='\x82',
1441      arg=uint1,
1442      stack_before=[],
1443      stack_after=[anyobject],
1444      proto=2,
1445      doc="""Extension code.
1446
1447      This code and the similar EXT2 and EXT4 allow using a registry
1448      of popular objects that are pickled by name, typically classes.
1449      It is envisioned that through a global negotiation and
1450      registration process, third parties can set up a mapping between
1451      ints and object names.
1452
1453      In order to guarantee pickle interchangeability, the extension
1454      code registry ought to be global, although a range of codes may
1455      be reserved for private use.
1456
1457      EXT1 has a 1-byte integer argument.  This is used to index into the
1458      extension registry, and the object at that index is pushed on the stack.
1459      """),
1460
1461    I(name='EXT2',
1462      code='\x83',
1463      arg=uint2,
1464      stack_before=[],
1465      stack_after=[anyobject],
1466      proto=2,
1467      doc="""Extension code.
1468
1469      See EXT1.  EXT2 has a two-byte integer argument.
1470      """),
1471
1472    I(name='EXT4',
1473      code='\x84',
1474      arg=int4,
1475      stack_before=[],
1476      stack_after=[anyobject],
1477      proto=2,
1478      doc="""Extension code.
1479
1480      See EXT1.  EXT4 has a four-byte integer argument.
1481      """),
1482
1483    # Push a class object, or module function, on the stack, via its module
1484    # and name.
1485
1486    I(name='GLOBAL',
1487      code='c',
1488      arg=stringnl_noescape_pair,
1489      stack_before=[],
1490      stack_after=[anyobject],
1491      proto=0,
1492      doc="""Push a global object (module.attr) on the stack.
1493
1494      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1495      taken as a module name, and the second as a class name.  The class
1496      object module.class is pushed on the stack.  More accurately, the
1497      object returned by self.find_class(module, class) is pushed on the
1498      stack, so unpickling subclasses can override this form of lookup.
1499      """),
1500
1501    # Ways to build objects of classes pickle doesn't know about directly
1502    # (user-defined classes).  I despair of documenting this accurately
1503    # and comprehensibly -- you really have to read the pickle code to
1504    # find all the special cases.
1505
1506    I(name='REDUCE',
1507      code='R',
1508      arg=None,
1509      stack_before=[anyobject, anyobject],
1510      stack_after=[anyobject],
1511      proto=0,
1512      doc="""Push an object built from a callable and an argument tuple.
1513
1514      The opcode is named to remind of the __reduce__() method.
1515
1516      Stack before: ... callable pytuple
1517      Stack after:  ... callable(*pytuple)
1518
1519      The callable and the argument tuple are the first two items returned
1520      by a __reduce__ method.  Applying the callable to the argtuple is
1521      supposed to reproduce the original object, or at least get it started.
1522      If the __reduce__ method returns a 3-tuple, the last component is an
1523      argument to be passed to the object's __setstate__, and then the REDUCE
1524      opcode is followed by code to create setstate's argument, and then a
1525      BUILD opcode to apply  __setstate__ to that argument.
1526
1527      If type(callable) is not ClassType, REDUCE complains unless the
1528      callable has been registered with the copy_reg module's
1529      safe_constructors dict, or the callable has a magic
1530      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1531      why it does this, but I've sure seen this complaint often enough when
1532      I didn't want to <wink>.
1533      """),
1534
1535    I(name='BUILD',
1536      code='b',
1537      arg=None,
1538      stack_before=[anyobject, anyobject],
1539      stack_after=[anyobject],
1540      proto=0,
1541      doc="""Finish building an object, via __setstate__ or dict update.
1542
1543      Stack before: ... anyobject argument
1544      Stack after:  ... anyobject
1545
1546      where anyobject may have been mutated, as follows:
1547
1548      If the object has a __setstate__ method,
1549
1550          anyobject.__setstate__(argument)
1551
1552      is called.
1553
1554      Else the argument must be a dict, the object must have a __dict__, and
1555      the object is updated via
1556
1557          anyobject.__dict__.update(argument)
1558
1559      This may raise RuntimeError in restricted execution mode (which
1560      disallows access to __dict__ directly); in that case, the object
1561      is updated instead via
1562
1563          for k, v in argument.items():
1564              anyobject[k] = v
1565      """),
1566
1567    I(name='INST',
1568      code='i',
1569      arg=stringnl_noescape_pair,
1570      stack_before=[markobject, stackslice],
1571      stack_after=[anyobject],
1572      proto=0,
1573      doc="""Build a class instance.
1574
1575      This is the protocol 0 version of protocol 1's OBJ opcode.
1576      INST is followed by two newline-terminated strings, giving a
1577      module and class name, just as for the GLOBAL opcode (and see
1578      GLOBAL for more details about that).  self.find_class(module, name)
1579      is used to get a class object.
1580
1581      In addition, all the objects on the stack following the topmost
1582      markobject are gathered into a tuple and popped (along with the
1583      topmost markobject), just as for the TUPLE opcode.
1584
1585      Now it gets complicated.  If all of these are true:
1586
1587        + The argtuple is empty (markobject was at the top of the stack
1588          at the start).
1589
1590        + It's an old-style class object (the type of the class object is
1591          ClassType).
1592
1593        + The class object does not have a __getinitargs__ attribute.
1594
1595      then we want to create an old-style class instance without invoking
1596      its __init__() method (pickle has waffled on this over the years; not
1597      calling __init__() is current wisdom).  In this case, an instance of
1598      an old-style dummy class is created, and then we try to rebind its
1599      __class__ attribute to the desired class object.  If this succeeds,
1600      the new instance object is pushed on the stack, and we're done.  In
1601      restricted execution mode it can fail (assignment to __class__ is
1602      disallowed), and I'm not really sure what happens then -- it looks
1603      like the code ends up calling the class object's __init__ anyway,
1604      via falling into the next case.
1605
1606      Else (the argtuple is not empty, it's not an old-style class object,
1607      or the class object does have a __getinitargs__ attribute), the code
1608      first insists that the class object have a __safe_for_unpickling__
1609      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1610      it doesn't matter whether this attribute has a true or false value, it
1611      only matters whether it exists (XXX this is a bug; cPickle
1612      requires the attribute to be true).  If __safe_for_unpickling__
1613      doesn't exist, UnpicklingError is raised.
1614
1615      Else (the class object does have a __safe_for_unpickling__ attr),
1616      the class object obtained from INST's arguments is applied to the
1617      argtuple obtained from the stack, and the resulting instance object
1618      is pushed on the stack.
1619
1620      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1621      """),
1622
1623    I(name='OBJ',
1624      code='o',
1625      arg=None,
1626      stack_before=[markobject, anyobject, stackslice],
1627      stack_after=[anyobject],
1628      proto=1,
1629      doc="""Build a class instance.
1630
1631      This is the protocol 1 version of protocol 0's INST opcode, and is
1632      very much like it.  The major difference is that the class object
1633      is taken off the stack, allowing it to be retrieved from the memo
1634      repeatedly if several instances of the same class are created.  This
1635      can be much more efficient (in both time and space) than repeatedly
1636      embedding the module and class names in INST opcodes.
1637
1638      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1639      the class object is taken off the stack, immediately above the
1640      topmost markobject:
1641
1642      Stack before: ... markobject classobject stackslice
1643      Stack after:  ... new_instance_object
1644
1645      As for INST, the remainder of the stack above the markobject is
1646      gathered into an argument tuple, and then the logic seems identical,
1647      except that no __safe_for_unpickling__ check is done (XXX this is
1648      a bug; cPickle does test __safe_for_unpickling__).  See INST for
1649      the gory details.
1650
1651      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1652      get the class object.  That was always the intent; the implementations
1653      had diverged for accidental reasons.
1654      """),
1655
1656    I(name='NEWOBJ',
1657      code='\x81',
1658      arg=None,
1659      stack_before=[anyobject, anyobject],
1660      stack_after=[anyobject],
1661      proto=2,
1662      doc="""Build an object instance.
1663
1664      The stack before should be thought of as containing a class
1665      object followed by an argument tuple (the tuple being the stack
1666      top).  Call these cls and args.  They are popped off the stack,
1667      and the value returned by cls.__new__(cls, *args) is pushed back
1668      onto the stack.
1669      """),
1670
1671    # Machine control.
1672
1673    I(name='PROTO',
1674      code='\x80',
1675      arg=uint1,
1676      stack_before=[],
1677      stack_after=[],
1678      proto=2,
1679      doc="""Protocol version indicator.
1680
1681      For protocol 2 and above, a pickle must start with this opcode.
1682      The argument is the protocol version, an int in range(2, 256).
1683      """),
1684
1685    I(name='STOP',
1686      code='.',
1687      arg=None,
1688      stack_before=[anyobject],
1689      stack_after=[],
1690      proto=0,
1691      doc="""Stop the unpickling machine.
1692
1693      Every pickle ends with this opcode.  The object at the top of the stack
1694      is popped, and that's the result of unpickling.  The stack should be
1695      empty then.
1696      """),
1697
1698    # Ways to deal with persistent IDs.
1699
1700    I(name='PERSID',
1701      code='P',
1702      arg=stringnl_noescape,
1703      stack_before=[],
1704      stack_after=[anyobject],
1705      proto=0,
1706      doc="""Push an object identified by a persistent ID.
1707
1708      The pickle module doesn't define what a persistent ID means.  PERSID's
1709      argument is a newline-terminated str-style (no embedded escapes, no
1710      bracketing quote characters) string, which *is* "the persistent ID".
1711      The unpickler passes this string to self.persistent_load().  Whatever
1712      object that returns is pushed on the stack.  There is no implementation
1713      of persistent_load() in Python's unpickler:  it must be supplied by an
1714      unpickler subclass.
1715      """),
1716
1717    I(name='BINPERSID',
1718      code='Q',
1719      arg=None,
1720      stack_before=[anyobject],
1721      stack_after=[anyobject],
1722      proto=1,
1723      doc="""Push an object identified by a persistent ID.
1724
1725      Like PERSID, except the persistent ID is popped off the stack (instead
1726      of being a string embedded in the opcode bytestream).  The persistent
1727      ID is passed to self.persistent_load(), and whatever object that
1728      returns is pushed on the stack.  See PERSID for more detail.
1729      """),
1730]
1731del I
1732
1733# Verify uniqueness of .name and .code members.
1734name2i = {}
1735code2i = {}
1736
1737for i, d in enumerate(opcodes):
1738    if d.name in name2i:
1739        raise ValueError("repeated name %r at indices %d and %d" %
1740                         (d.name, name2i[d.name], i))
1741    if d.code in code2i:
1742        raise ValueError("repeated code %r at indices %d and %d" %
1743                         (d.code, code2i[d.code], i))
1744
1745    name2i[d.name] = i
1746    code2i[d.code] = i
1747
1748del name2i, code2i, i, d
1749
1750##############################################################################
1751# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1752# Also ensure we've got the same stuff as pickle.py, although the
1753# introspection here is dicey.
1754
1755code2op = {}
1756for d in opcodes:
1757    code2op[d.code] = d
1758del d
1759
1760def assure_pickle_consistency(verbose=False):
1761    import pickle, re
1762
1763    copy = code2op.copy()
1764    for name in pickle.__all__:
1765        if not re.match("[A-Z][A-Z0-9_]+$", name):
1766            if verbose:
1767                print "skipping %r: it doesn't look like an opcode name" % name
1768            continue
1769        picklecode = getattr(pickle, name)
1770        if not isinstance(picklecode, str) or len(picklecode) != 1:
1771            if verbose:
1772                print ("skipping %r: value %r doesn't look like a pickle "
1773                       "code" % (name, picklecode))
1774            continue
1775        if picklecode in copy:
1776            if verbose:
1777                print "checking name %r w/ code %r for consistency" % (
1778                      name, picklecode)
1779            d = copy[picklecode]
1780            if d.name != name:
1781                raise ValueError("for pickle code %r, pickle.py uses name %r "
1782                                 "but we're using name %r" % (picklecode,
1783                                                              name,
1784                                                              d.name))
1785            # Forget this one.  Any left over in copy at the end are a problem
1786            # of a different kind.
1787            del copy[picklecode]
1788        else:
1789            raise ValueError("pickle.py appears to have a pickle opcode with "
1790                             "name %r and code %r, but we don't" %
1791                             (name, picklecode))
1792    if copy:
1793        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1794        for code, d in copy.items():
1795            msg.append("    name %r with code %r" % (d.name, code))
1796        raise ValueError("\n".join(msg))
1797
1798assure_pickle_consistency()
1799del assure_pickle_consistency
1800
1801##############################################################################
1802# A pickle opcode generator.
1803
1804def genops(pickle):
1805    """Generate all the opcodes in a pickle.
1806
1807    'pickle' is a file-like object, or string, containing the pickle.
1808
1809    Each opcode in the pickle is generated, from the current pickle position,
1810    stopping after a STOP opcode is delivered.  A triple is generated for
1811    each opcode:
1812
1813        opcode, arg, pos
1814
1815    opcode is an OpcodeInfo record, describing the current opcode.
1816
1817    If the opcode has an argument embedded in the pickle, arg is its decoded
1818    value, as a Python object.  If the opcode doesn't have an argument, arg
1819    is None.
1820
1821    If the pickle has a tell() method, pos was the value of pickle.tell()
1822    before reading the current opcode.  If the pickle is a string object,
1823    it's wrapped in a StringIO object, and the latter's tell() result is
1824    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1825    to query its current position) pos is None.
1826    """
1827
1828    import cStringIO as StringIO
1829
1830    if isinstance(pickle, str):
1831        pickle = StringIO.StringIO(pickle)
1832
1833    if hasattr(pickle, "tell"):
1834        getpos = pickle.tell
1835    else:
1836        getpos = lambda: None
1837
1838    while True:
1839        pos = getpos()
1840        code = pickle.read(1)
1841        opcode = code2op.get(code)
1842        if opcode is None:
1843            if code == "":
1844                raise ValueError("pickle exhausted before seeing STOP")
1845            else:
1846                raise ValueError("at position %s, opcode %r unknown" % (
1847                                 pos is None and "<unknown>" or pos,
1848                                 code))
1849        if opcode.arg is None:
1850            arg = None
1851        else:
1852            arg = opcode.arg.reader(pickle)
1853        yield opcode, arg, pos
1854        if code == '.':
1855            assert opcode.name == 'STOP'
1856            break
1857
1858##############################################################################
1859# A pickle optimizer.
1860
1861def optimize(p):
1862    'Optimize a pickle string by removing unused PUT opcodes'
1863    gets = set()            # set of args used by a GET opcode
1864    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
1865    prevpos = None          # set to pos if previous opcode was a PUT
1866    for opcode, arg, pos in genops(p):
1867        if prevpos is not None:
1868            puts.append((prevarg, prevpos, pos))
1869            prevpos = None
1870        if 'PUT' in opcode.name:
1871            prevarg, prevpos = arg, pos
1872        elif 'GET' in opcode.name:
1873            gets.add(arg)
1874
1875    # Copy the pickle string except for PUTS without a corresponding GET
1876    s = []
1877    i = 0
1878    for arg, start, stop in puts:
1879        j = stop if (arg in gets) else start
1880        s.append(p[i:j])
1881        i = stop
1882    s.append(p[i:])
1883    return ''.join(s)
1884
1885##############################################################################
1886# A symbolic pickle disassembler.
1887
1888def dis(pickle, out=None, memo=None, indentlevel=4):
1889    """Produce a symbolic disassembly of a pickle.
1890
1891    'pickle' is a file-like object, or string, containing a (at least one)
1892    pickle.  The pickle is disassembled from the current position, through
1893    the first STOP opcode encountered.
1894
1895    Optional arg 'out' is a file-like object to which the disassembly is
1896    printed.  It defaults to sys.stdout.
1897
1898    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1899    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1900    Passing the same memo object to another dis() call then allows disassembly
1901    to proceed across multiple pickles that were all created by the same
1902    pickler with the same memo.  Ordinarily you don't need to worry about this.
1903
1904    Optional arg indentlevel is the number of blanks by which to indent
1905    a new MARK level.  It defaults to 4.
1906
1907    In addition to printing the disassembly, some sanity checks are made:
1908
1909    + All embedded opcode arguments "make sense".
1910
1911    + Explicit and implicit pop operations have enough items on the stack.
1912
1913    + When an opcode implicitly refers to a markobject, a markobject is
1914      actually on the stack.
1915
1916    + A memo entry isn't referenced before it's defined.
1917
1918    + The markobject isn't stored in the memo.
1919
1920    + A memo entry isn't redefined.
1921    """
1922
1923    # Most of the hair here is for sanity checks, but most of it is needed
1924    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1925    # (which in turn is needed to indent MARK blocks correctly).
1926
1927    stack = []          # crude emulation of unpickler stack
1928    if memo is None:
1929        memo = {}       # crude emulation of unpicker memo
1930    maxproto = -1       # max protocol number seen
1931    markstack = []      # bytecode positions of MARK opcodes
1932    indentchunk = ' ' * indentlevel
1933    errormsg = None
1934    for opcode, arg, pos in genops(pickle):
1935        if pos is not None:
1936            print >> out, "%5d:" % pos,
1937
1938        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1939                              indentchunk * len(markstack),
1940                              opcode.name)
1941
1942        maxproto = max(maxproto, opcode.proto)
1943        before = opcode.stack_before    # don't mutate
1944        after = opcode.stack_after      # don't mutate
1945        numtopop = len(before)
1946
1947        # See whether a MARK should be popped.
1948        markmsg = None
1949        if markobject in before or (opcode.name == "POP" and
1950                                    stack and
1951                                    stack[-1] is markobject):
1952            assert markobject not in after
1953            if __debug__:
1954                if markobject in before:
1955                    assert before[-1] is stackslice
1956            if markstack:
1957                markpos = markstack.pop()
1958                if markpos is None:
1959                    markmsg = "(MARK at unknown opcode offset)"
1960                else:
1961                    markmsg = "(MARK at %d)" % markpos
1962                # Pop everything at and after the topmost markobject.
1963                while stack[-1] is not markobject:
1964                    stack.pop()
1965                stack.pop()
1966                # Stop later code from popping too much.
1967                try:
1968                    numtopop = before.index(markobject)
1969                except ValueError:
1970                    assert opcode.name == "POP"
1971                    numtopop = 0
1972            else:
1973                errormsg = markmsg = "no MARK exists on stack"
1974
1975        # Check for correct memo usage.
1976        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1977            assert arg is not None
1978            if arg in memo:
1979                errormsg = "memo key %r already defined" % arg
1980            elif not stack:
1981                errormsg = "stack is empty -- can't store into memo"
1982            elif stack[-1] is markobject:
1983                errormsg = "can't store markobject in the memo"
1984            else:
1985                memo[arg] = stack[-1]
1986
1987        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
1988            if arg in memo:
1989                assert len(after) == 1
1990                after = [memo[arg]]     # for better stack emulation
1991            else:
1992                errormsg = "memo key %r has never been stored into" % arg
1993
1994        if arg is not None or markmsg:
1995            # make a mild effort to align arguments
1996            line += ' ' * (10 - len(opcode.name))
1997            if arg is not None:
1998                line += ' ' + repr(arg)
1999            if markmsg:
2000                line += ' ' + markmsg
2001        print >> out, line
2002
2003        if errormsg:
2004            # Note that we delayed complaining until the offending opcode
2005            # was printed.
2006            raise ValueError(errormsg)
2007
2008        # Emulate the stack effects.
2009        if len(stack) < numtopop:
2010            raise ValueError("tries to pop %d items from stack with "
2011                             "only %d items" % (numtopop, len(stack)))
2012        if numtopop:
2013            del stack[-numtopop:]
2014        if markobject in after:
2015            assert markobject not in before
2016            markstack.append(pos)
2017
2018        stack.extend(after)
2019
2020    print >> out, "highest protocol among opcodes =", maxproto
2021    if stack:
2022        raise ValueError("stack not empty after STOP: %r" % stack)
2023
2024# For use in the doctest, simply as an example of a class to pickle.
2025class _Example:
2026    def __init__(self, value):
2027        self.value = value
2028
2029_dis_test = r"""
2030>>> import pickle
2031>>> x = [1, 2, (3, 4), {'abc': u"def"}]
2032>>> pkl = pickle.dumps(x, 0)
2033>>> dis(pkl)
2034    0: (    MARK
2035    1: l        LIST       (MARK at 0)
2036    2: p    PUT        0
2037    5: I    INT        1
2038    8: a    APPEND
2039    9: I    INT        2
2040   12: a    APPEND
2041   13: (    MARK
2042   14: I        INT        3
2043   17: I        INT        4
2044   20: t        TUPLE      (MARK at 13)
2045   21: p    PUT        1
2046   24: a    APPEND
2047   25: (    MARK
2048   26: d        DICT       (MARK at 25)
2049   27: p    PUT        2
2050   30: S    STRING     'abc'
2051   37: p    PUT        3
2052   40: V    UNICODE    u'def'
2053   45: p    PUT        4
2054   48: s    SETITEM
2055   49: a    APPEND
2056   50: .    STOP
2057highest protocol among opcodes = 0
2058
2059Try again with a "binary" pickle.
2060
2061>>> pkl = pickle.dumps(x, 1)
2062>>> dis(pkl)
2063    0: ]    EMPTY_LIST
2064    1: q    BINPUT     0
2065    3: (    MARK
2066    4: K        BININT1    1
2067    6: K        BININT1    2
2068    8: (        MARK
2069    9: K            BININT1    3
2070   11: K            BININT1    4
2071   13: t            TUPLE      (MARK at 8)
2072   14: q        BINPUT     1
2073   16: }        EMPTY_DICT
2074   17: q        BINPUT     2
2075   19: U        SHORT_BINSTRING 'abc'
2076   24: q        BINPUT     3
2077   26: X        BINUNICODE u'def'
2078   34: q        BINPUT     4
2079   36: s        SETITEM
2080   37: e        APPENDS    (MARK at 3)
2081   38: .    STOP
2082highest protocol among opcodes = 1
2083
2084Exercise the INST/OBJ/BUILD family.
2085
2086>>> import random
2087>>> dis(pickle.dumps(random.random, 0))
2088    0: c    GLOBAL     'random random'
2089   15: p    PUT        0
2090   18: .    STOP
2091highest protocol among opcodes = 0
2092
2093>>> from pickletools import _Example
2094>>> x = [_Example(42)] * 2
2095>>> dis(pickle.dumps(x, 0))
2096    0: (    MARK
2097    1: l        LIST       (MARK at 0)
2098    2: p    PUT        0
2099    5: (    MARK
2100    6: i        INST       'pickletools _Example' (MARK at 5)
2101   28: p    PUT        1
2102   31: (    MARK
2103   32: d        DICT       (MARK at 31)
2104   33: p    PUT        2
2105   36: S    STRING     'value'
2106   45: p    PUT        3
2107   48: I    INT        42
2108   52: s    SETITEM
2109   53: b    BUILD
2110   54: a    APPEND
2111   55: g    GET        1
2112   58: a    APPEND
2113   59: .    STOP
2114highest protocol among opcodes = 0
2115
2116>>> dis(pickle.dumps(x, 1))
2117    0: ]    EMPTY_LIST
2118    1: q    BINPUT     0
2119    3: (    MARK
2120    4: (        MARK
2121    5: c            GLOBAL     'pickletools _Example'
2122   27: q            BINPUT     1
2123   29: o            OBJ        (MARK at 4)
2124   30: q        BINPUT     2
2125   32: }        EMPTY_DICT
2126   33: q        BINPUT     3
2127   35: U        SHORT_BINSTRING 'value'
2128   42: q        BINPUT     4
2129   44: K        BININT1    42
2130   46: s        SETITEM
2131   47: b        BUILD
2132   48: h        BINGET     2
2133   50: e        APPENDS    (MARK at 3)
2134   51: .    STOP
2135highest protocol among opcodes = 1
2136
2137Try "the canonical" recursive-object test.
2138
2139>>> L = []
2140>>> T = L,
2141>>> L.append(T)
2142>>> L[0] is T
2143True
2144>>> T[0] is L
2145True
2146>>> L[0][0] is L
2147True
2148>>> T[0][0] is T
2149True
2150>>> dis(pickle.dumps(L, 0))
2151    0: (    MARK
2152    1: l        LIST       (MARK at 0)
2153    2: p    PUT        0
2154    5: (    MARK
2155    6: g        GET        0
2156    9: t        TUPLE      (MARK at 5)
2157   10: p    PUT        1
2158   13: a    APPEND
2159   14: .    STOP
2160highest protocol among opcodes = 0
2161
2162>>> dis(pickle.dumps(L, 1))
2163    0: ]    EMPTY_LIST
2164    1: q    BINPUT     0
2165    3: (    MARK
2166    4: h        BINGET     0
2167    6: t        TUPLE      (MARK at 3)
2168    7: q    BINPUT     1
2169    9: a    APPEND
2170   10: .    STOP
2171highest protocol among opcodes = 1
2172
2173Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2174has to emulate the stack in order to realize that the POP opcode at 16 gets
2175rid of the MARK at 0.
2176
2177>>> dis(pickle.dumps(T, 0))
2178    0: (    MARK
2179    1: (        MARK
2180    2: l            LIST       (MARK at 1)
2181    3: p        PUT        0
2182    6: (        MARK
2183    7: g            GET        0
2184   10: t            TUPLE      (MARK at 6)
2185   11: p        PUT        1
2186   14: a        APPEND
2187   15: 0        POP
2188   16: 0        POP        (MARK at 0)
2189   17: g    GET        1
2190   20: .    STOP
2191highest protocol among opcodes = 0
2192
2193>>> dis(pickle.dumps(T, 1))
2194    0: (    MARK
2195    1: ]        EMPTY_LIST
2196    2: q        BINPUT     0
2197    4: (        MARK
2198    5: h            BINGET     0
2199    7: t            TUPLE      (MARK at 4)
2200    8: q        BINPUT     1
2201   10: a        APPEND
2202   11: 1        POP_MARK   (MARK at 0)
2203   12: h    BINGET     1
2204   14: .    STOP
2205highest protocol among opcodes = 1
2206
2207Try protocol 2.
2208
2209>>> dis(pickle.dumps(L, 2))
2210    0: \x80 PROTO      2
2211    2: ]    EMPTY_LIST
2212    3: q    BINPUT     0
2213    5: h    BINGET     0
2214    7: \x85 TUPLE1
2215    8: q    BINPUT     1
2216   10: a    APPEND
2217   11: .    STOP
2218highest protocol among opcodes = 2
2219
2220>>> dis(pickle.dumps(T, 2))
2221    0: \x80 PROTO      2
2222    2: ]    EMPTY_LIST
2223    3: q    BINPUT     0
2224    5: h    BINGET     0
2225    7: \x85 TUPLE1
2226    8: q    BINPUT     1
2227   10: a    APPEND
2228   11: 0    POP
2229   12: h    BINGET     1
2230   14: .    STOP
2231highest protocol among opcodes = 2
2232"""
2233
2234_memo_test = r"""
2235>>> import pickle
2236>>> from StringIO import StringIO
2237>>> f = StringIO()
2238>>> p = pickle.Pickler(f, 2)
2239>>> x = [1, 2, 3]
2240>>> p.dump(x)
2241>>> p.dump(x)
2242>>> f.seek(0)
2243>>> memo = {}
2244>>> dis(f, memo=memo)
2245    0: \x80 PROTO      2
2246    2: ]    EMPTY_LIST
2247    3: q    BINPUT     0
2248    5: (    MARK
2249    6: K        BININT1    1
2250    8: K        BININT1    2
2251   10: K        BININT1    3
2252   12: e        APPENDS    (MARK at 5)
2253   13: .    STOP
2254highest protocol among opcodes = 2
2255>>> dis(f, memo=memo)
2256   14: \x80 PROTO      2
2257   16: h    BINGET     0
2258   18: .    STOP
2259highest protocol among opcodes = 2
2260"""
2261
2262__test__ = {'disassembler_test': _dis_test,
2263            'disassembler_memo_test': _memo_test,
2264           }
2265
2266def _test():
2267    import doctest
2268    return doctest.testmod()
2269
2270if __name__ == "__main__":
2271    _test()
2272