pgen.c revision 8586991099e4ace18ee94163a96b8ea1bed77ebe
1
2/* Parser generator */
3/* XXX This file is not yet fully PROTOized */
4
5/* For a description, see the comments at end of this file */
6
7#include "pgenheaders.h"
8#include "assert.h"
9#include "token.h"
10#include "node.h"
11#include "grammar.h"
12#include "metagrammar.h"
13#include "pgen.h"
14
15extern int Py_DebugFlag;
16
17
18/* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
19
20typedef struct _nfaarc {
21	int	ar_label;
22	int	ar_arrow;
23} nfaarc;
24
25typedef struct _nfastate {
26	int	st_narcs;
27	nfaarc	*st_arc;
28} nfastate;
29
30typedef struct _nfa {
31	int		nf_type;
32	char		*nf_name;
33	int		nf_nstates;
34	nfastate	*nf_state;
35	int		nf_start, nf_finish;
36} nfa;
37
38/* Forward */
39static void compile_rhs(labellist *ll,
40			nfa *nf, node *n, int *pa, int *pb);
41static void compile_alt(labellist *ll,
42			nfa *nf, node *n, int *pa, int *pb);
43static void compile_item(labellist *ll,
44			 nfa *nf, node *n, int *pa, int *pb);
45static void compile_atom(labellist *ll,
46			 nfa *nf, node *n, int *pa, int *pb);
47
48static int
49addnfastate(nfa *nf)
50{
51	nfastate *st;
52
53	PyMem_RESIZE(nf->nf_state, nfastate, nf->nf_nstates + 1);
54	if (nf->nf_state == NULL)
55		Py_FatalError("out of mem");
56	st = &nf->nf_state[nf->nf_nstates++];
57	st->st_narcs = 0;
58	st->st_arc = NULL;
59	return st - nf->nf_state;
60}
61
62static void
63addnfaarc(nfa *nf, int from, int to, int lbl)
64{
65	nfastate *st;
66	nfaarc *ar;
67
68	st = &nf->nf_state[from];
69	PyMem_RESIZE(st->st_arc, nfaarc, st->st_narcs + 1);
70	if (st->st_arc == NULL)
71		Py_FatalError("out of mem");
72	ar = &st->st_arc[st->st_narcs++];
73	ar->ar_label = lbl;
74	ar->ar_arrow = to;
75}
76
77static nfa *
78newnfa(char *name)
79{
80	nfa *nf;
81	static int type = NT_OFFSET; /* All types will be disjunct */
82
83	nf = PyMem_NEW(nfa, 1);
84	if (nf == NULL)
85		Py_FatalError("no mem for new nfa");
86	nf->nf_type = type++;
87	nf->nf_name = name; /* XXX strdup(name) ??? */
88	nf->nf_nstates = 0;
89	nf->nf_state = NULL;
90	nf->nf_start = nf->nf_finish = -1;
91	return nf;
92}
93
94typedef struct _nfagrammar {
95	int		gr_nnfas;
96	nfa		**gr_nfa;
97	labellist	gr_ll;
98} nfagrammar;
99
100/* Forward */
101static void compile_rule(nfagrammar *gr, node *n);
102
103static nfagrammar *
104newnfagrammar(void)
105{
106	nfagrammar *gr;
107
108	gr = PyMem_NEW(nfagrammar, 1);
109	if (gr == NULL)
110		Py_FatalError("no mem for new nfa grammar");
111	gr->gr_nnfas = 0;
112	gr->gr_nfa = NULL;
113	gr->gr_ll.ll_nlabels = 0;
114	gr->gr_ll.ll_label = NULL;
115	addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
116	return gr;
117}
118
119static nfa *
120addnfa(nfagrammar *gr, char *name)
121{
122	nfa *nf;
123
124	nf = newnfa(name);
125	PyMem_RESIZE(gr->gr_nfa, nfa *, gr->gr_nnfas + 1);
126	if (gr->gr_nfa == NULL)
127		Py_FatalError("out of mem");
128	gr->gr_nfa[gr->gr_nnfas++] = nf;
129	addlabel(&gr->gr_ll, NAME, nf->nf_name);
130	return nf;
131}
132
133#ifdef Py_DEBUG
134
135static char REQNFMT[] = "metacompile: less than %d children\n";
136
137#define REQN(i, count) \
138 	if (i < count) { \
139		fprintf(stderr, REQNFMT, count); \
140		Py_FatalError("REQN"); \
141	} else
142
143#else
144#define REQN(i, count)	/* empty */
145#endif
146
147static nfagrammar *
148metacompile(node *n)
149{
150	nfagrammar *gr;
151	int i;
152
153	printf("Compiling (meta-) parse tree into NFA grammar\n");
154	gr = newnfagrammar();
155	REQ(n, MSTART);
156	i = n->n_nchildren - 1; /* Last child is ENDMARKER */
157	n = n->n_child;
158	for (; --i >= 0; n++) {
159		if (n->n_type != NEWLINE)
160			compile_rule(gr, n);
161	}
162	return gr;
163}
164
165static void
166compile_rule(nfagrammar *gr, node *n)
167{
168	nfa *nf;
169
170	REQ(n, RULE);
171	REQN(n->n_nchildren, 4);
172	n = n->n_child;
173	REQ(n, NAME);
174	nf = addnfa(gr, n->n_str);
175	n++;
176	REQ(n, COLON);
177	n++;
178	REQ(n, RHS);
179	compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
180	n++;
181	REQ(n, NEWLINE);
182}
183
184static void
185compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
186{
187	int i;
188	int a, b;
189
190	REQ(n, RHS);
191	i = n->n_nchildren;
192	REQN(i, 1);
193	n = n->n_child;
194	REQ(n, ALT);
195	compile_alt(ll, nf, n, pa, pb);
196	if (--i <= 0)
197		return;
198	n++;
199	a = *pa;
200	b = *pb;
201	*pa = addnfastate(nf);
202	*pb = addnfastate(nf);
203	addnfaarc(nf, *pa, a, EMPTY);
204	addnfaarc(nf, b, *pb, EMPTY);
205	for (; --i >= 0; n++) {
206		REQ(n, VBAR);
207		REQN(i, 1);
208		--i;
209		n++;
210		REQ(n, ALT);
211		compile_alt(ll, nf, n, &a, &b);
212		addnfaarc(nf, *pa, a, EMPTY);
213		addnfaarc(nf, b, *pb, EMPTY);
214	}
215}
216
217static void
218compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
219{
220	int i;
221	int a, b;
222
223	REQ(n, ALT);
224	i = n->n_nchildren;
225	REQN(i, 1);
226	n = n->n_child;
227	REQ(n, ITEM);
228	compile_item(ll, nf, n, pa, pb);
229	--i;
230	n++;
231	for (; --i >= 0; n++) {
232		if (n->n_type == COMMA) { /* XXX Temporary */
233			REQN(i, 1);
234			--i;
235			n++;
236		}
237		REQ(n, ITEM);
238		compile_item(ll, nf, n, &a, &b);
239		addnfaarc(nf, *pb, a, EMPTY);
240		*pb = b;
241	}
242}
243
244static void
245compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
246{
247	int i;
248	int a, b;
249
250	REQ(n, ITEM);
251	i = n->n_nchildren;
252	REQN(i, 1);
253	n = n->n_child;
254	if (n->n_type == LSQB) {
255		REQN(i, 3);
256		n++;
257		REQ(n, RHS);
258		*pa = addnfastate(nf);
259		*pb = addnfastate(nf);
260		addnfaarc(nf, *pa, *pb, EMPTY);
261		compile_rhs(ll, nf, n, &a, &b);
262		addnfaarc(nf, *pa, a, EMPTY);
263		addnfaarc(nf, b, *pb, EMPTY);
264		REQN(i, 1);
265		n++;
266		REQ(n, RSQB);
267	}
268	else {
269		compile_atom(ll, nf, n, pa, pb);
270		if (--i <= 0)
271			return;
272		n++;
273		addnfaarc(nf, *pb, *pa, EMPTY);
274		if (n->n_type == STAR)
275			*pb = *pa;
276		else
277			REQ(n, PLUS);
278	}
279}
280
281static void
282compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
283{
284	int i;
285
286	REQ(n, ATOM);
287	i = n->n_nchildren;
288	REQN(i, 1);
289	n = n->n_child;
290	if (n->n_type == LPAR) {
291		REQN(i, 3);
292		n++;
293		REQ(n, RHS);
294		compile_rhs(ll, nf, n, pa, pb);
295		n++;
296		REQ(n, RPAR);
297	}
298	else if (n->n_type == NAME || n->n_type == STRING) {
299		*pa = addnfastate(nf);
300		*pb = addnfastate(nf);
301		addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
302	}
303	else
304		REQ(n, NAME);
305}
306
307static void
308dumpstate(labellist *ll, nfa *nf, int istate)
309{
310	nfastate *st;
311	int i;
312	nfaarc *ar;
313
314	printf("%c%2d%c",
315		istate == nf->nf_start ? '*' : ' ',
316		istate,
317		istate == nf->nf_finish ? '.' : ' ');
318	st = &nf->nf_state[istate];
319	ar = st->st_arc;
320	for (i = 0; i < st->st_narcs; i++) {
321		if (i > 0)
322			printf("\n    ");
323		printf("-> %2d  %s", ar->ar_arrow,
324			PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
325		ar++;
326	}
327	printf("\n");
328}
329
330static void
331dumpnfa(labellist *ll, nfa *nf)
332{
333	int i;
334
335	printf("NFA '%s' has %d states; start %d, finish %d\n",
336		nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
337	for (i = 0; i < nf->nf_nstates; i++)
338		dumpstate(ll, nf, i);
339}
340
341
342/* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
343
344static void
345addclosure(bitset ss, nfa *nf, int istate)
346{
347	if (addbit(ss, istate)) {
348		nfastate *st = &nf->nf_state[istate];
349		nfaarc *ar = st->st_arc;
350		int i;
351
352		for (i = st->st_narcs; --i >= 0; ) {
353			if (ar->ar_label == EMPTY)
354				addclosure(ss, nf, ar->ar_arrow);
355			ar++;
356		}
357	}
358}
359
360typedef struct _ss_arc {
361	bitset	sa_bitset;
362	int	sa_arrow;
363	int	sa_label;
364} ss_arc;
365
366typedef struct _ss_state {
367	bitset	ss_ss;
368	int	ss_narcs;
369	ss_arc	*ss_arc;
370	int	ss_deleted;
371	int	ss_finish;
372	int	ss_rename;
373} ss_state;
374
375typedef struct _ss_dfa {
376	int	sd_nstates;
377	ss_state *sd_state;
378} ss_dfa;
379
380/* Forward */
381static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
382		       labellist *ll, char *msg);
383static void simplify(int xx_nstates, ss_state *xx_state);
384static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
385
386static void
387makedfa(nfagrammar *gr, nfa *nf, dfa *d)
388{
389	int nbits = nf->nf_nstates;
390	bitset ss;
391	int xx_nstates;
392	ss_state *xx_state, *yy;
393	ss_arc *zz;
394	int istate, jstate, iarc, jarc, ibit;
395	nfastate *st;
396	nfaarc *ar;
397
398	ss = newbitset(nbits);
399	addclosure(ss, nf, nf->nf_start);
400	xx_state = PyMem_NEW(ss_state, 1);
401	if (xx_state == NULL)
402		Py_FatalError("no mem for xx_state in makedfa");
403	xx_nstates = 1;
404	yy = &xx_state[0];
405	yy->ss_ss = ss;
406	yy->ss_narcs = 0;
407	yy->ss_arc = NULL;
408	yy->ss_deleted = 0;
409	yy->ss_finish = testbit(ss, nf->nf_finish);
410	if (yy->ss_finish)
411		printf("Error: nonterminal '%s' may produce empty.\n",
412			nf->nf_name);
413
414	/* This algorithm is from a book written before
415	   the invention of structured programming... */
416
417	/* For each unmarked state... */
418	for (istate = 0; istate < xx_nstates; ++istate) {
419		yy = &xx_state[istate];
420		ss = yy->ss_ss;
421		/* For all its states... */
422		for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
423			if (!testbit(ss, ibit))
424				continue;
425			st = &nf->nf_state[ibit];
426			/* For all non-empty arcs from this state... */
427			for (iarc = 0; iarc < st->st_narcs; iarc++) {
428				ar = &st->st_arc[iarc];
429				if (ar->ar_label == EMPTY)
430					continue;
431				/* Look up in list of arcs from this state */
432				for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
433					zz = &yy->ss_arc[jarc];
434					if (ar->ar_label == zz->sa_label)
435						goto found;
436				}
437				/* Add new arc for this state */
438				PyMem_RESIZE(yy->ss_arc, ss_arc,
439					     yy->ss_narcs + 1);
440				if (yy->ss_arc == NULL)
441					Py_FatalError("out of mem");
442				zz = &yy->ss_arc[yy->ss_narcs++];
443				zz->sa_label = ar->ar_label;
444				zz->sa_bitset = newbitset(nbits);
445				zz->sa_arrow = -1;
446			 found:	;
447				/* Add destination */
448				addclosure(zz->sa_bitset, nf, ar->ar_arrow);
449			}
450		}
451		/* Now look up all the arrow states */
452		for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
453			zz = &xx_state[istate].ss_arc[jarc];
454			for (jstate = 0; jstate < xx_nstates; jstate++) {
455				if (samebitset(zz->sa_bitset,
456					xx_state[jstate].ss_ss, nbits)) {
457					zz->sa_arrow = jstate;
458					goto done;
459				}
460			}
461			PyMem_RESIZE(xx_state, ss_state, xx_nstates + 1);
462			if (xx_state == NULL)
463				Py_FatalError("out of mem");
464			zz->sa_arrow = xx_nstates;
465			yy = &xx_state[xx_nstates++];
466			yy->ss_ss = zz->sa_bitset;
467			yy->ss_narcs = 0;
468			yy->ss_arc = NULL;
469			yy->ss_deleted = 0;
470			yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
471		 done:	;
472		}
473	}
474
475	if (Py_DebugFlag)
476		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
477						"before minimizing");
478
479	simplify(xx_nstates, xx_state);
480
481	if (Py_DebugFlag)
482		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
483						"after minimizing");
484
485	convert(d, xx_nstates, xx_state);
486
487	/* XXX cleanup */
488}
489
490static void
491printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
492	   labellist *ll, char *msg)
493{
494	int i, ibit, iarc;
495	ss_state *yy;
496	ss_arc *zz;
497
498	printf("Subset DFA %s\n", msg);
499	for (i = 0; i < xx_nstates; i++) {
500		yy = &xx_state[i];
501		if (yy->ss_deleted)
502			continue;
503		printf(" Subset %d", i);
504		if (yy->ss_finish)
505			printf(" (finish)");
506		printf(" { ");
507		for (ibit = 0; ibit < nbits; ibit++) {
508			if (testbit(yy->ss_ss, ibit))
509				printf("%d ", ibit);
510		}
511		printf("}\n");
512		for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
513			zz = &yy->ss_arc[iarc];
514			printf("  Arc to state %d, label %s\n",
515				zz->sa_arrow,
516				PyGrammar_LabelRepr(
517					&ll->ll_label[zz->sa_label]));
518		}
519	}
520}
521
522
523/* PART THREE -- SIMPLIFY DFA */
524
525/* Simplify the DFA by repeatedly eliminating states that are
526   equivalent to another oner.  This is NOT Algorithm 3.3 from
527   [Aho&Ullman 77].  It does not always finds the minimal DFA,
528   but it does usually make a much smaller one...  (For an example
529   of sub-optimal behavior, try S: x a b+ | y a b+.)
530*/
531
532static int
533samestate(ss_state *s1, ss_state *s2)
534{
535	int i;
536
537	if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
538		return 0;
539	for (i = 0; i < s1->ss_narcs; i++) {
540		if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
541			s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
542			return 0;
543	}
544	return 1;
545}
546
547static void
548renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
549{
550	int i, j;
551
552	if (Py_DebugFlag)
553		printf("Rename state %d to %d.\n", from, to);
554	for (i = 0; i < xx_nstates; i++) {
555		if (xx_state[i].ss_deleted)
556			continue;
557		for (j = 0; j < xx_state[i].ss_narcs; j++) {
558			if (xx_state[i].ss_arc[j].sa_arrow == from)
559				xx_state[i].ss_arc[j].sa_arrow = to;
560		}
561	}
562}
563
564static void
565simplify(int xx_nstates, ss_state *xx_state)
566{
567	int changes;
568	int i, j;
569
570	do {
571		changes = 0;
572		for (i = 1; i < xx_nstates; i++) {
573			if (xx_state[i].ss_deleted)
574				continue;
575			for (j = 0; j < i; j++) {
576				if (xx_state[j].ss_deleted)
577					continue;
578				if (samestate(&xx_state[i], &xx_state[j])) {
579					xx_state[i].ss_deleted++;
580					renamestates(xx_nstates, xx_state,
581						     i, j);
582					changes++;
583					break;
584				}
585			}
586		}
587	} while (changes);
588}
589
590
591/* PART FOUR -- GENERATE PARSING TABLES */
592
593/* Convert the DFA into a grammar that can be used by our parser */
594
595static void
596convert(dfa *d, int xx_nstates, ss_state *xx_state)
597{
598	int i, j;
599	ss_state *yy;
600	ss_arc *zz;
601
602	for (i = 0; i < xx_nstates; i++) {
603		yy = &xx_state[i];
604		if (yy->ss_deleted)
605			continue;
606		yy->ss_rename = addstate(d);
607	}
608
609	for (i = 0; i < xx_nstates; i++) {
610		yy = &xx_state[i];
611		if (yy->ss_deleted)
612			continue;
613		for (j = 0; j < yy->ss_narcs; j++) {
614			zz = &yy->ss_arc[j];
615			addarc(d, yy->ss_rename,
616				xx_state[zz->sa_arrow].ss_rename,
617				zz->sa_label);
618		}
619		if (yy->ss_finish)
620			addarc(d, yy->ss_rename, yy->ss_rename, 0);
621	}
622
623	d->d_initial = 0;
624}
625
626
627/* PART FIVE -- GLUE IT ALL TOGETHER */
628
629static grammar *
630maketables(nfagrammar *gr)
631{
632	int i;
633	nfa *nf;
634	dfa *d;
635	grammar *g;
636
637	if (gr->gr_nnfas == 0)
638		return NULL;
639	g = newgrammar(gr->gr_nfa[0]->nf_type);
640			/* XXX first rule must be start rule */
641	g->g_ll = gr->gr_ll;
642
643	for (i = 0; i < gr->gr_nnfas; i++) {
644		nf = gr->gr_nfa[i];
645		if (Py_DebugFlag) {
646			printf("Dump of NFA for '%s' ...\n", nf->nf_name);
647			dumpnfa(&gr->gr_ll, nf);
648		}
649		printf("Making DFA for '%s' ...\n", nf->nf_name);
650		d = adddfa(g, nf->nf_type, nf->nf_name);
651		makedfa(gr, gr->gr_nfa[i], d);
652	}
653
654	return g;
655}
656
657grammar *
658pgen(node *n)
659{
660	nfagrammar *gr;
661	grammar *g;
662
663	gr = metacompile(n);
664	g = maketables(gr);
665	translatelabels(g);
666	addfirstsets(g);
667	return g;
668}
669
670
671/*
672
673Description
674-----------
675
676Input is a grammar in extended BNF (using * for repetition, + for
677at-least-once repetition, [] for optional parts, | for alternatives and
678() for grouping).  This has already been parsed and turned into a parse
679tree.
680
681Each rule is considered as a regular expression in its own right.
682It is turned into a Non-deterministic Finite Automaton (NFA), which
683is then turned into a Deterministic Finite Automaton (DFA), which is then
684optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
685or similar compiler books (this technique is more often used for lexical
686analyzers).
687
688The DFA's are used by the parser as parsing tables in a special way
689that's probably unique.  Before they are usable, the FIRST sets of all
690non-terminals are computed.
691
692Reference
693---------
694
695[Aho&Ullman 77]
696	Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
697	(first edition)
698
699*/
700