pickletools.py revision 2bb96f593a067dafc7f02fef659ff22994b83399
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13import codecs
14import pickle
15import re
16
17__all__ = ['dis', 'genops', 'optimize']
18
19bytes_types = pickle.bytes_types
20
21# Other ideas:
22#
23# - A pickle verifier:  read a pickle and check it exhaustively for
24#   well-formedness.  dis() does a lot of this already.
25#
26# - A protocol identifier:  examine a pickle and return its protocol number
27#   (== the highest .proto attr value among all the opcodes in the pickle).
28#   dis() already prints this info at the end.
29#
30# - A pickle optimizer:  for example, tuple-building code is sometimes more
31#   elaborate than necessary, catering for the possibility that the tuple
32#   is recursive.  Or lots of times a PUT is generated that's never accessed
33#   by a later GET.
34
35
36"""
37"A pickle" is a program for a virtual pickle machine (PM, but more accurately
38called an unpickling machine).  It's a sequence of opcodes, interpreted by the
39PM, building an arbitrarily complex Python object.
40
41For the most part, the PM is very simple:  there are no looping, testing, or
42conditional instructions, no arithmetic and no function calls.  Opcodes are
43executed once each, from first to last, until a STOP opcode is reached.
44
45The PM has two data areas, "the stack" and "the memo".
46
47Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
48integer object on the stack, whose value is gotten from a decimal string
49literal immediately following the INT opcode in the pickle bytestream.  Other
50opcodes take Python objects off the stack.  The result of unpickling is
51whatever object is left on the stack when the final STOP opcode is executed.
52
53The memo is simply an array of objects, or it can be implemented as a dict
54mapping little integers to objects.  The memo serves as the PM's "long term
55memory", and the little integers indexing the memo are akin to variable
56names.  Some opcodes pop a stack object into the memo at a given index,
57and others push a memo object at a given index onto the stack again.
58
59At heart, that's all the PM has.  Subtleties arise for these reasons:
60
61+ Object identity.  Objects can be arbitrarily complex, and subobjects
62  may be shared (for example, the list [a, a] refers to the same object a
63  twice).  It can be vital that unpickling recreate an isomorphic object
64  graph, faithfully reproducing sharing.
65
66+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
67  list, and L[0] is the same list.  This is related to the object identity
68  point, and some sequences of pickle opcodes are subtle in order to
69  get the right result in all cases.
70
71+ Things pickle doesn't know everything about.  Examples of things pickle
72  does know everything about are Python's builtin scalar and container
73  types, like ints and tuples.  They generally have opcodes dedicated to
74  them.  For things like module references and instances of user-defined
75  classes, pickle's knowledge is limited.  Historically, many enhancements
76  have been made to the pickle protocol in order to do a better (faster,
77  and/or more compact) job on those.
78
79+ Backward compatibility and micro-optimization.  As explained below,
80  pickle opcodes never go away, not even when better ways to do a thing
81  get invented.  The repertoire of the PM just keeps growing over time.
82  For example, protocol 0 had two opcodes for building Python integers (INT
83  and LONG), protocol 1 added three more for more-efficient pickling of short
84  integers, and protocol 2 added two more for more-efficient pickling of
85  long integers (before protocol 2, the only ways to pickle a Python long
86  took time quadratic in the number of digits, for both pickling and
87  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
88  wearying complication.
89
90
91Pickle protocols:
92
93For compatibility, the meaning of a pickle opcode never changes.  Instead new
94pickle opcodes get added, and each version's unpickler can handle all the
95pickle opcodes in all protocol versions to date.  So old pickles continue to
96be readable forever.  The pickler can generally be told to restrict itself to
97the subset of opcodes available under previous protocol versions too, so that
98users can create pickles under the current version readable by older
99versions.  However, a pickle does not contain its version number embedded
100within it.  If an older unpickler tries to read a pickle using a later
101protocol, the result is most likely an exception due to seeing an unknown (in
102the older unpickler) opcode.
103
104The original pickle used what's now called "protocol 0", and what was called
105"text mode" before Python 2.3.  The entire pickle bytestream is made up of
106printable 7-bit ASCII characters, plus the newline character, in protocol 0.
107That's why it was called text mode.  Protocol 0 is small and elegant, but
108sometimes painfully inefficient.
109
110The second major set of additions is now called "protocol 1", and was called
111"binary mode" before Python 2.3.  This added many opcodes with arguments
112consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
113bytes.  Binary mode pickles can be substantially smaller than equivalent
114text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
115int as 4 bytes following the opcode, which is cheaper to unpickle than the
116(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
117a number of opcodes that operate on many stack elements at once (like APPENDS
118and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
119
120The third major set of additions came in Python 2.3, and is called "protocol
1212".  This added:
122
123- A better way to pickle instances of new-style classes (NEWOBJ).
124
125- A way for a pickle to identify its protocol (PROTO).
126
127- Time- and space- efficient pickling of long ints (LONG{1,4}).
128
129- Shortcuts for small tuples (TUPLE{1,2,3}}.
130
131- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
132
133- The "extension registry", a vector of popular objects that can be pushed
134  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
135  the registry contents are predefined (there's nothing akin to the memo's
136  PUT).
137
138Another independent change with Python 2.3 is the abandonment of any
139pretense that it might be safe to load pickles received from untrusted
140parties -- no sufficient security analysis has been done to guarantee
141this and there isn't a use case that warrants the expense of such an
142analysis.
143
144To this end, all tests for __safe_for_unpickling__ or for
145copyreg.safe_constructors are removed from the unpickling code.
146References to these variables in the descriptions below are to be seen
147as describing unpickling in Python 2.2 and before.
148"""
149
150# Meta-rule:  Descriptions are stored in instances of descriptor objects,
151# with plain constructors.  No meta-language is defined from which
152# descriptors could be constructed.  If you want, e.g., XML, write a little
153# program to generate XML from the objects.
154
155##############################################################################
156# Some pickle opcodes have an argument, following the opcode in the
157# bytestream.  An argument is of a specific type, described by an instance
158# of ArgumentDescriptor.  These are not to be confused with arguments taken
159# off the stack -- ArgumentDescriptor applies only to arguments embedded in
160# the opcode stream, immediately following an opcode.
161
162# Represents the number of bytes consumed by an argument delimited by the
163# next newline character.
164UP_TO_NEWLINE = -1
165
166# Represents the number of bytes consumed by a two-argument opcode where
167# the first argument gives the number of bytes in the second argument.
168TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
169TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
170
171class ArgumentDescriptor(object):
172    __slots__ = (
173        # name of descriptor record, also a module global name; a string
174        'name',
175
176        # length of argument, in bytes; an int; UP_TO_NEWLINE and
177        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
178        # cases
179        'n',
180
181        # a function taking a file-like object, reading this kind of argument
182        # from the object at the current position, advancing the current
183        # position by n bytes, and returning the value of the argument
184        'reader',
185
186        # human-readable docs for this arg descriptor; a string
187        'doc',
188    )
189
190    def __init__(self, name, n, reader, doc):
191        assert isinstance(name, str)
192        self.name = name
193
194        assert isinstance(n, int) and (n >= 0 or
195                                       n in (UP_TO_NEWLINE,
196                                             TAKEN_FROM_ARGUMENT1,
197                                             TAKEN_FROM_ARGUMENT4))
198        self.n = n
199
200        self.reader = reader
201
202        assert isinstance(doc, str)
203        self.doc = doc
204
205from struct import unpack as _unpack
206
207def read_uint1(f):
208    r"""
209    >>> import io
210    >>> read_uint1(io.BytesIO(b'\xff'))
211    255
212    """
213
214    data = f.read(1)
215    if data:
216        return data[0]
217    raise ValueError("not enough data in stream to read uint1")
218
219uint1 = ArgumentDescriptor(
220            name='uint1',
221            n=1,
222            reader=read_uint1,
223            doc="One-byte unsigned integer.")
224
225
226def read_uint2(f):
227    r"""
228    >>> import io
229    >>> read_uint2(io.BytesIO(b'\xff\x00'))
230    255
231    >>> read_uint2(io.BytesIO(b'\xff\xff'))
232    65535
233    """
234
235    data = f.read(2)
236    if len(data) == 2:
237        return _unpack("<H", data)[0]
238    raise ValueError("not enough data in stream to read uint2")
239
240uint2 = ArgumentDescriptor(
241            name='uint2',
242            n=2,
243            reader=read_uint2,
244            doc="Two-byte unsigned integer, little-endian.")
245
246
247def read_int4(f):
248    r"""
249    >>> import io
250    >>> read_int4(io.BytesIO(b'\xff\x00\x00\x00'))
251    255
252    >>> read_int4(io.BytesIO(b'\x00\x00\x00\x80')) == -(2**31)
253    True
254    """
255
256    data = f.read(4)
257    if len(data) == 4:
258        return _unpack("<i", data)[0]
259    raise ValueError("not enough data in stream to read int4")
260
261int4 = ArgumentDescriptor(
262           name='int4',
263           n=4,
264           reader=read_int4,
265           doc="Four-byte signed integer, little-endian, 2's complement.")
266
267
268def read_stringnl(f, decode=True, stripquotes=True):
269    r"""
270    >>> import io
271    >>> read_stringnl(io.BytesIO(b"'abcd'\nefg\n"))
272    'abcd'
273
274    >>> read_stringnl(io.BytesIO(b"\n"))
275    Traceback (most recent call last):
276    ...
277    ValueError: no string quotes around b''
278
279    >>> read_stringnl(io.BytesIO(b"\n"), stripquotes=False)
280    ''
281
282    >>> read_stringnl(io.BytesIO(b"''\n"))
283    ''
284
285    >>> read_stringnl(io.BytesIO(b'"abcd"'))
286    Traceback (most recent call last):
287    ...
288    ValueError: no newline found when trying to read stringnl
289
290    Embedded escapes are undone in the result.
291    >>> read_stringnl(io.BytesIO(br"'a\n\\b\x00c\td'" + b"\n'e'"))
292    'a\n\\b\x00c\td'
293    """
294
295    data = f.readline()
296    if not data.endswith(b'\n'):
297        raise ValueError("no newline found when trying to read stringnl")
298    data = data[:-1]    # lose the newline
299
300    if stripquotes:
301        for q in (b'"', b"'"):
302            if data.startswith(q):
303                if not data.endswith(q):
304                    raise ValueError("strinq quote %r not found at both "
305                                     "ends of %r" % (q, data))
306                data = data[1:-1]
307                break
308        else:
309            raise ValueError("no string quotes around %r" % data)
310
311    if decode:
312        data = codecs.escape_decode(data)[0].decode("ascii")
313    return data
314
315stringnl = ArgumentDescriptor(
316               name='stringnl',
317               n=UP_TO_NEWLINE,
318               reader=read_stringnl,
319               doc="""A newline-terminated string.
320
321                   This is a repr-style string, with embedded escapes, and
322                   bracketing quotes.
323                   """)
324
325def read_stringnl_noescape(f):
326    return read_stringnl(f, stripquotes=False)
327
328stringnl_noescape = ArgumentDescriptor(
329                        name='stringnl_noescape',
330                        n=UP_TO_NEWLINE,
331                        reader=read_stringnl_noescape,
332                        doc="""A newline-terminated string.
333
334                        This is a str-style string, without embedded escapes,
335                        or bracketing quotes.  It should consist solely of
336                        printable ASCII characters.
337                        """)
338
339def read_stringnl_noescape_pair(f):
340    r"""
341    >>> import io
342    >>> read_stringnl_noescape_pair(io.BytesIO(b"Queue\nEmpty\njunk"))
343    'Queue Empty'
344    """
345
346    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
347
348stringnl_noescape_pair = ArgumentDescriptor(
349                             name='stringnl_noescape_pair',
350                             n=UP_TO_NEWLINE,
351                             reader=read_stringnl_noescape_pair,
352                             doc="""A pair of newline-terminated strings.
353
354                             These are str-style strings, without embedded
355                             escapes, or bracketing quotes.  They should
356                             consist solely of printable ASCII characters.
357                             The pair is returned as a single string, with
358                             a single blank separating the two strings.
359                             """)
360
361def read_string4(f):
362    r"""
363    >>> import io
364    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x00abc"))
365    ''
366    >>> read_string4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
367    'abc'
368    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
369    Traceback (most recent call last):
370    ...
371    ValueError: expected 50331648 bytes in a string4, but only 6 remain
372    """
373
374    n = read_int4(f)
375    if n < 0:
376        raise ValueError("string4 byte count < 0: %d" % n)
377    data = f.read(n)
378    if len(data) == n:
379        return data.decode("latin-1")
380    raise ValueError("expected %d bytes in a string4, but only %d remain" %
381                     (n, len(data)))
382
383string4 = ArgumentDescriptor(
384              name="string4",
385              n=TAKEN_FROM_ARGUMENT4,
386              reader=read_string4,
387              doc="""A counted string.
388
389              The first argument is a 4-byte little-endian signed int giving
390              the number of bytes in the string, and the second argument is
391              that many bytes.
392              """)
393
394
395def read_string1(f):
396    r"""
397    >>> import io
398    >>> read_string1(io.BytesIO(b"\x00"))
399    ''
400    >>> read_string1(io.BytesIO(b"\x03abcdef"))
401    'abc'
402    """
403
404    n = read_uint1(f)
405    assert n >= 0
406    data = f.read(n)
407    if len(data) == n:
408        return data.decode("latin-1")
409    raise ValueError("expected %d bytes in a string1, but only %d remain" %
410                     (n, len(data)))
411
412string1 = ArgumentDescriptor(
413              name="string1",
414              n=TAKEN_FROM_ARGUMENT1,
415              reader=read_string1,
416              doc="""A counted string.
417
418              The first argument is a 1-byte unsigned int giving the number
419              of bytes in the string, and the second argument is that many
420              bytes.
421              """)
422
423
424def read_unicodestringnl(f):
425    r"""
426    >>> import io
427    >>> read_unicodestringnl(io.BytesIO(b"abc\\uabcd\njunk")) == 'abc\uabcd'
428    True
429    """
430
431    data = f.readline()
432    if not data.endswith(b'\n'):
433        raise ValueError("no newline found when trying to read "
434                         "unicodestringnl")
435    data = data[:-1]    # lose the newline
436    return str(data, 'raw-unicode-escape')
437
438unicodestringnl = ArgumentDescriptor(
439                      name='unicodestringnl',
440                      n=UP_TO_NEWLINE,
441                      reader=read_unicodestringnl,
442                      doc="""A newline-terminated Unicode string.
443
444                      This is raw-unicode-escape encoded, so consists of
445                      printable ASCII characters, and may contain embedded
446                      escape sequences.
447                      """)
448
449def read_unicodestring4(f):
450    r"""
451    >>> import io
452    >>> s = 'abcd\uabcd'
453    >>> enc = s.encode('utf-8')
454    >>> enc
455    b'abcd\xea\xaf\x8d'
456    >>> n = bytes([len(enc), 0, 0, 0])  # little-endian 4-byte length
457    >>> t = read_unicodestring4(io.BytesIO(n + enc + b'junk'))
458    >>> s == t
459    True
460
461    >>> read_unicodestring4(io.BytesIO(n + enc[:-1]))
462    Traceback (most recent call last):
463    ...
464    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
465    """
466
467    n = read_int4(f)
468    if n < 0:
469        raise ValueError("unicodestring4 byte count < 0: %d" % n)
470    data = f.read(n)
471    if len(data) == n:
472        return str(data, 'utf-8', 'surrogatepass')
473    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
474                     "remain" % (n, len(data)))
475
476unicodestring4 = ArgumentDescriptor(
477                    name="unicodestring4",
478                    n=TAKEN_FROM_ARGUMENT4,
479                    reader=read_unicodestring4,
480                    doc="""A counted Unicode string.
481
482                    The first argument is a 4-byte little-endian signed int
483                    giving the number of bytes in the string, and the second
484                    argument-- the UTF-8 encoding of the Unicode string --
485                    contains that many bytes.
486                    """)
487
488
489def read_decimalnl_short(f):
490    r"""
491    >>> import io
492    >>> read_decimalnl_short(io.BytesIO(b"1234\n56"))
493    1234
494
495    >>> read_decimalnl_short(io.BytesIO(b"1234L\n56"))
496    Traceback (most recent call last):
497    ...
498    ValueError: trailing 'L' not allowed in b'1234L'
499    """
500
501    s = read_stringnl(f, decode=False, stripquotes=False)
502    if s.endswith(b"L"):
503        raise ValueError("trailing 'L' not allowed in %r" % s)
504
505    # It's not necessarily true that the result fits in a Python short int:
506    # the pickle may have been written on a 64-bit box.  There's also a hack
507    # for True and False here.
508    if s == b"00":
509        return False
510    elif s == b"01":
511        return True
512
513    return int(s)
514
515def read_decimalnl_long(f):
516    r"""
517    >>> import io
518
519    >>> read_decimalnl_long(io.BytesIO(b"1234L\n56"))
520    1234
521
522    >>> read_decimalnl_long(io.BytesIO(b"123456789012345678901234L\n6"))
523    123456789012345678901234
524    """
525
526    s = read_stringnl(f, decode=False, stripquotes=False)
527    if s[-1:] == b'L':
528        s = s[:-1]
529    return int(s)
530
531
532decimalnl_short = ArgumentDescriptor(
533                      name='decimalnl_short',
534                      n=UP_TO_NEWLINE,
535                      reader=read_decimalnl_short,
536                      doc="""A newline-terminated decimal integer literal.
537
538                          This never has a trailing 'L', and the integer fit
539                          in a short Python int on the box where the pickle
540                          was written -- but there's no guarantee it will fit
541                          in a short Python int on the box where the pickle
542                          is read.
543                          """)
544
545decimalnl_long = ArgumentDescriptor(
546                     name='decimalnl_long',
547                     n=UP_TO_NEWLINE,
548                     reader=read_decimalnl_long,
549                     doc="""A newline-terminated decimal integer literal.
550
551                         This has a trailing 'L', and can represent integers
552                         of any size.
553                         """)
554
555
556def read_floatnl(f):
557    r"""
558    >>> import io
559    >>> read_floatnl(io.BytesIO(b"-1.25\n6"))
560    -1.25
561    """
562    s = read_stringnl(f, decode=False, stripquotes=False)
563    return float(s)
564
565floatnl = ArgumentDescriptor(
566              name='floatnl',
567              n=UP_TO_NEWLINE,
568              reader=read_floatnl,
569              doc="""A newline-terminated decimal floating literal.
570
571              In general this requires 17 significant digits for roundtrip
572              identity, and pickling then unpickling infinities, NaNs, and
573              minus zero doesn't work across boxes, or on some boxes even
574              on itself (e.g., Windows can't read the strings it produces
575              for infinities or NaNs).
576              """)
577
578def read_float8(f):
579    r"""
580    >>> import io, struct
581    >>> raw = struct.pack(">d", -1.25)
582    >>> raw
583    b'\xbf\xf4\x00\x00\x00\x00\x00\x00'
584    >>> read_float8(io.BytesIO(raw + b"\n"))
585    -1.25
586    """
587
588    data = f.read(8)
589    if len(data) == 8:
590        return _unpack(">d", data)[0]
591    raise ValueError("not enough data in stream to read float8")
592
593
594float8 = ArgumentDescriptor(
595             name='float8',
596             n=8,
597             reader=read_float8,
598             doc="""An 8-byte binary representation of a float, big-endian.
599
600             The format is unique to Python, and shared with the struct
601             module (format string '>d') "in theory" (the struct and pickle
602             implementations don't share the code -- they should).  It's
603             strongly related to the IEEE-754 double format, and, in normal
604             cases, is in fact identical to the big-endian 754 double format.
605             On other boxes the dynamic range is limited to that of a 754
606             double, and "add a half and chop" rounding is used to reduce
607             the precision to 53 bits.  However, even on a 754 box,
608             infinities, NaNs, and minus zero may not be handled correctly
609             (may not survive roundtrip pickling intact).
610             """)
611
612# Protocol 2 formats
613
614from pickle import decode_long
615
616def read_long1(f):
617    r"""
618    >>> import io
619    >>> read_long1(io.BytesIO(b"\x00"))
620    0
621    >>> read_long1(io.BytesIO(b"\x02\xff\x00"))
622    255
623    >>> read_long1(io.BytesIO(b"\x02\xff\x7f"))
624    32767
625    >>> read_long1(io.BytesIO(b"\x02\x00\xff"))
626    -256
627    >>> read_long1(io.BytesIO(b"\x02\x00\x80"))
628    -32768
629    """
630
631    n = read_uint1(f)
632    data = f.read(n)
633    if len(data) != n:
634        raise ValueError("not enough data in stream to read long1")
635    return decode_long(data)
636
637long1 = ArgumentDescriptor(
638    name="long1",
639    n=TAKEN_FROM_ARGUMENT1,
640    reader=read_long1,
641    doc="""A binary long, little-endian, using 1-byte size.
642
643    This first reads one byte as an unsigned size, then reads that
644    many bytes and interprets them as a little-endian 2's-complement long.
645    If the size is 0, that's taken as a shortcut for the long 0L.
646    """)
647
648def read_long4(f):
649    r"""
650    >>> import io
651    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x00"))
652    255
653    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x7f"))
654    32767
655    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\xff"))
656    -256
657    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\x80"))
658    -32768
659    >>> read_long1(io.BytesIO(b"\x00\x00\x00\x00"))
660    0
661    """
662
663    n = read_int4(f)
664    if n < 0:
665        raise ValueError("long4 byte count < 0: %d" % n)
666    data = f.read(n)
667    if len(data) != n:
668        raise ValueError("not enough data in stream to read long4")
669    return decode_long(data)
670
671long4 = ArgumentDescriptor(
672    name="long4",
673    n=TAKEN_FROM_ARGUMENT4,
674    reader=read_long4,
675    doc="""A binary representation of a long, little-endian.
676
677    This first reads four bytes as a signed size (but requires the
678    size to be >= 0), then reads that many bytes and interprets them
679    as a little-endian 2's-complement long.  If the size is 0, that's taken
680    as a shortcut for the int 0, although LONG1 should really be used
681    then instead (and in any case where # of bytes < 256).
682    """)
683
684
685##############################################################################
686# Object descriptors.  The stack used by the pickle machine holds objects,
687# and in the stack_before and stack_after attributes of OpcodeInfo
688# descriptors we need names to describe the various types of objects that can
689# appear on the stack.
690
691class StackObject(object):
692    __slots__ = (
693        # name of descriptor record, for info only
694        'name',
695
696        # type of object, or tuple of type objects (meaning the object can
697        # be of any type in the tuple)
698        'obtype',
699
700        # human-readable docs for this kind of stack object; a string
701        'doc',
702    )
703
704    def __init__(self, name, obtype, doc):
705        assert isinstance(name, str)
706        self.name = name
707
708        assert isinstance(obtype, type) or isinstance(obtype, tuple)
709        if isinstance(obtype, tuple):
710            for contained in obtype:
711                assert isinstance(contained, type)
712        self.obtype = obtype
713
714        assert isinstance(doc, str)
715        self.doc = doc
716
717    def __repr__(self):
718        return self.name
719
720
721pyint = StackObject(
722            name='int',
723            obtype=int,
724            doc="A short (as opposed to long) Python integer object.")
725
726pylong = StackObject(
727             name='long',
728             obtype=int,
729             doc="A long (as opposed to short) Python integer object.")
730
731pyinteger_or_bool = StackObject(
732                        name='int_or_bool',
733                        obtype=(int, bool),
734                        doc="A Python integer object (short or long), or "
735                            "a Python bool.")
736
737pybool = StackObject(
738             name='bool',
739             obtype=(bool,),
740             doc="A Python bool object.")
741
742pyfloat = StackObject(
743              name='float',
744              obtype=float,
745              doc="A Python float object.")
746
747pystring = StackObject(
748               name='string',
749               obtype=bytes,
750               doc="A Python (8-bit) string object.")
751
752pybytes = StackObject(
753               name='bytes',
754               obtype=bytes,
755               doc="A Python bytes object.")
756
757pyunicode = StackObject(
758                name='str',
759                obtype=str,
760                doc="A Python (Unicode) string object.")
761
762pynone = StackObject(
763             name="None",
764             obtype=type(None),
765             doc="The Python None object.")
766
767pytuple = StackObject(
768              name="tuple",
769              obtype=tuple,
770              doc="A Python tuple object.")
771
772pylist = StackObject(
773             name="list",
774             obtype=list,
775             doc="A Python list object.")
776
777pydict = StackObject(
778             name="dict",
779             obtype=dict,
780             doc="A Python dict object.")
781
782anyobject = StackObject(
783                name='any',
784                obtype=object,
785                doc="Any kind of object whatsoever.")
786
787markobject = StackObject(
788                 name="mark",
789                 obtype=StackObject,
790                 doc="""'The mark' is a unique object.
791
792                 Opcodes that operate on a variable number of objects
793                 generally don't embed the count of objects in the opcode,
794                 or pull it off the stack.  Instead the MARK opcode is used
795                 to push a special marker object on the stack, and then
796                 some other opcodes grab all the objects from the top of
797                 the stack down to (but not including) the topmost marker
798                 object.
799                 """)
800
801stackslice = StackObject(
802                 name="stackslice",
803                 obtype=StackObject,
804                 doc="""An object representing a contiguous slice of the stack.
805
806                 This is used in conjuction with markobject, to represent all
807                 of the stack following the topmost markobject.  For example,
808                 the POP_MARK opcode changes the stack from
809
810                     [..., markobject, stackslice]
811                 to
812                     [...]
813
814                 No matter how many object are on the stack after the topmost
815                 markobject, POP_MARK gets rid of all of them (including the
816                 topmost markobject too).
817                 """)
818
819##############################################################################
820# Descriptors for pickle opcodes.
821
822class OpcodeInfo(object):
823
824    __slots__ = (
825        # symbolic name of opcode; a string
826        'name',
827
828        # the code used in a bytestream to represent the opcode; a
829        # one-character string
830        'code',
831
832        # If the opcode has an argument embedded in the byte string, an
833        # instance of ArgumentDescriptor specifying its type.  Note that
834        # arg.reader(s) can be used to read and decode the argument from
835        # the bytestream s, and arg.doc documents the format of the raw
836        # argument bytes.  If the opcode doesn't have an argument embedded
837        # in the bytestream, arg should be None.
838        'arg',
839
840        # what the stack looks like before this opcode runs; a list
841        'stack_before',
842
843        # what the stack looks like after this opcode runs; a list
844        'stack_after',
845
846        # the protocol number in which this opcode was introduced; an int
847        'proto',
848
849        # human-readable docs for this opcode; a string
850        'doc',
851    )
852
853    def __init__(self, name, code, arg,
854                 stack_before, stack_after, proto, doc):
855        assert isinstance(name, str)
856        self.name = name
857
858        assert isinstance(code, str)
859        assert len(code) == 1
860        self.code = code
861
862        assert arg is None or isinstance(arg, ArgumentDescriptor)
863        self.arg = arg
864
865        assert isinstance(stack_before, list)
866        for x in stack_before:
867            assert isinstance(x, StackObject)
868        self.stack_before = stack_before
869
870        assert isinstance(stack_after, list)
871        for x in stack_after:
872            assert isinstance(x, StackObject)
873        self.stack_after = stack_after
874
875        assert isinstance(proto, int) and 0 <= proto <= 3
876        self.proto = proto
877
878        assert isinstance(doc, str)
879        self.doc = doc
880
881I = OpcodeInfo
882opcodes = [
883
884    # Ways to spell integers.
885
886    I(name='INT',
887      code='I',
888      arg=decimalnl_short,
889      stack_before=[],
890      stack_after=[pyinteger_or_bool],
891      proto=0,
892      doc="""Push an integer or bool.
893
894      The argument is a newline-terminated decimal literal string.
895
896      The intent may have been that this always fit in a short Python int,
897      but INT can be generated in pickles written on a 64-bit box that
898      require a Python long on a 32-bit box.  The difference between this
899      and LONG then is that INT skips a trailing 'L', and produces a short
900      int whenever possible.
901
902      Another difference is due to that, when bool was introduced as a
903      distinct type in 2.3, builtin names True and False were also added to
904      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
905      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
906      Leading zeroes are never produced for a genuine integer.  The 2.3
907      (and later) unpicklers special-case these and return bool instead;
908      earlier unpicklers ignore the leading "0" and return the int.
909      """),
910
911    I(name='BININT',
912      code='J',
913      arg=int4,
914      stack_before=[],
915      stack_after=[pyint],
916      proto=1,
917      doc="""Push a four-byte signed integer.
918
919      This handles the full range of Python (short) integers on a 32-bit
920      box, directly as binary bytes (1 for the opcode and 4 for the integer).
921      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
922      BININT1 or BININT2 saves space.
923      """),
924
925    I(name='BININT1',
926      code='K',
927      arg=uint1,
928      stack_before=[],
929      stack_after=[pyint],
930      proto=1,
931      doc="""Push a one-byte unsigned integer.
932
933      This is a space optimization for pickling very small non-negative ints,
934      in range(256).
935      """),
936
937    I(name='BININT2',
938      code='M',
939      arg=uint2,
940      stack_before=[],
941      stack_after=[pyint],
942      proto=1,
943      doc="""Push a two-byte unsigned integer.
944
945      This is a space optimization for pickling small positive ints, in
946      range(256, 2**16).  Integers in range(256) can also be pickled via
947      BININT2, but BININT1 instead saves a byte.
948      """),
949
950    I(name='LONG',
951      code='L',
952      arg=decimalnl_long,
953      stack_before=[],
954      stack_after=[pylong],
955      proto=0,
956      doc="""Push a long integer.
957
958      The same as INT, except that the literal ends with 'L', and always
959      unpickles to a Python long.  There doesn't seem a real purpose to the
960      trailing 'L'.
961
962      Note that LONG takes time quadratic in the number of digits when
963      unpickling (this is simply due to the nature of decimal->binary
964      conversion).  Proto 2 added linear-time (in C; still quadratic-time
965      in Python) LONG1 and LONG4 opcodes.
966      """),
967
968    I(name="LONG1",
969      code='\x8a',
970      arg=long1,
971      stack_before=[],
972      stack_after=[pylong],
973      proto=2,
974      doc="""Long integer using one-byte length.
975
976      A more efficient encoding of a Python long; the long1 encoding
977      says it all."""),
978
979    I(name="LONG4",
980      code='\x8b',
981      arg=long4,
982      stack_before=[],
983      stack_after=[pylong],
984      proto=2,
985      doc="""Long integer using found-byte length.
986
987      A more efficient encoding of a Python long; the long4 encoding
988      says it all."""),
989
990    # Ways to spell strings (8-bit, not Unicode).
991
992    I(name='STRING',
993      code='S',
994      arg=stringnl,
995      stack_before=[],
996      stack_after=[pystring],
997      proto=0,
998      doc="""Push a Python string object.
999
1000      The argument is a repr-style string, with bracketing quote characters,
1001      and perhaps embedded escapes.  The argument extends until the next
1002      newline character.  (Actually, they are decoded into a str instance
1003      using the encoding given to the Unpickler constructor. or the default,
1004      'ASCII'.)
1005      """),
1006
1007    I(name='BINSTRING',
1008      code='T',
1009      arg=string4,
1010      stack_before=[],
1011      stack_after=[pystring],
1012      proto=1,
1013      doc="""Push a Python string object.
1014
1015      There are two arguments:  the first is a 4-byte little-endian signed int
1016      giving the number of bytes in the string, and the second is that many
1017      bytes, which are taken literally as the string content.  (Actually,
1018      they are decoded into a str instance using the encoding given to the
1019      Unpickler constructor. or the default, 'ASCII'.)
1020      """),
1021
1022    I(name='SHORT_BINSTRING',
1023      code='U',
1024      arg=string1,
1025      stack_before=[],
1026      stack_after=[pystring],
1027      proto=1,
1028      doc="""Push a Python string object.
1029
1030      There are two arguments:  the first is a 1-byte unsigned int giving
1031      the number of bytes in the string, and the second is that many bytes,
1032      which are taken literally as the string content.  (Actually, they
1033      are decoded into a str instance using the encoding given to the
1034      Unpickler constructor. or the default, 'ASCII'.)
1035      """),
1036
1037    # Bytes (protocol 3 only; older protocols don't support bytes at all)
1038
1039    I(name='BINBYTES',
1040      code='B',
1041      arg=string4,
1042      stack_before=[],
1043      stack_after=[pybytes],
1044      proto=3,
1045      doc="""Push a Python bytes object.
1046
1047      There are two arguments:  the first is a 4-byte little-endian signed int
1048      giving the number of bytes in the string, and the second is that many
1049      bytes, which are taken literally as the bytes content.
1050      """),
1051
1052    I(name='SHORT_BINBYTES',
1053      code='C',
1054      arg=string1,
1055      stack_before=[],
1056      stack_after=[pybytes],
1057      proto=3,
1058      doc="""Push a Python string object.
1059
1060      There are two arguments:  the first is a 1-byte unsigned int giving
1061      the number of bytes in the string, and the second is that many bytes,
1062      which are taken literally as the string content.
1063      """),
1064
1065    # Ways to spell None.
1066
1067    I(name='NONE',
1068      code='N',
1069      arg=None,
1070      stack_before=[],
1071      stack_after=[pynone],
1072      proto=0,
1073      doc="Push None on the stack."),
1074
1075    # Ways to spell bools, starting with proto 2.  See INT for how this was
1076    # done before proto 2.
1077
1078    I(name='NEWTRUE',
1079      code='\x88',
1080      arg=None,
1081      stack_before=[],
1082      stack_after=[pybool],
1083      proto=2,
1084      doc="""True.
1085
1086      Push True onto the stack."""),
1087
1088    I(name='NEWFALSE',
1089      code='\x89',
1090      arg=None,
1091      stack_before=[],
1092      stack_after=[pybool],
1093      proto=2,
1094      doc="""True.
1095
1096      Push False onto the stack."""),
1097
1098    # Ways to spell Unicode strings.
1099
1100    I(name='UNICODE',
1101      code='V',
1102      arg=unicodestringnl,
1103      stack_before=[],
1104      stack_after=[pyunicode],
1105      proto=0,  # this may be pure-text, but it's a later addition
1106      doc="""Push a Python Unicode string object.
1107
1108      The argument is a raw-unicode-escape encoding of a Unicode string,
1109      and so may contain embedded escape sequences.  The argument extends
1110      until the next newline character.
1111      """),
1112
1113    I(name='BINUNICODE',
1114      code='X',
1115      arg=unicodestring4,
1116      stack_before=[],
1117      stack_after=[pyunicode],
1118      proto=1,
1119      doc="""Push a Python Unicode string object.
1120
1121      There are two arguments:  the first is a 4-byte little-endian signed int
1122      giving the number of bytes in the string.  The second is that many
1123      bytes, and is the UTF-8 encoding of the Unicode string.
1124      """),
1125
1126    # Ways to spell floats.
1127
1128    I(name='FLOAT',
1129      code='F',
1130      arg=floatnl,
1131      stack_before=[],
1132      stack_after=[pyfloat],
1133      proto=0,
1134      doc="""Newline-terminated decimal float literal.
1135
1136      The argument is repr(a_float), and in general requires 17 significant
1137      digits for roundtrip conversion to be an identity (this is so for
1138      IEEE-754 double precision values, which is what Python float maps to
1139      on most boxes).
1140
1141      In general, FLOAT cannot be used to transport infinities, NaNs, or
1142      minus zero across boxes (or even on a single box, if the platform C
1143      library can't read the strings it produces for such things -- Windows
1144      is like that), but may do less damage than BINFLOAT on boxes with
1145      greater precision or dynamic range than IEEE-754 double.
1146      """),
1147
1148    I(name='BINFLOAT',
1149      code='G',
1150      arg=float8,
1151      stack_before=[],
1152      stack_after=[pyfloat],
1153      proto=1,
1154      doc="""Float stored in binary form, with 8 bytes of data.
1155
1156      This generally requires less than half the space of FLOAT encoding.
1157      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1158      minus zero, raises an exception if the exponent exceeds the range of
1159      an IEEE-754 double, and retains no more than 53 bits of precision (if
1160      there are more than that, "add a half and chop" rounding is used to
1161      cut it back to 53 significant bits).
1162      """),
1163
1164    # Ways to build lists.
1165
1166    I(name='EMPTY_LIST',
1167      code=']',
1168      arg=None,
1169      stack_before=[],
1170      stack_after=[pylist],
1171      proto=1,
1172      doc="Push an empty list."),
1173
1174    I(name='APPEND',
1175      code='a',
1176      arg=None,
1177      stack_before=[pylist, anyobject],
1178      stack_after=[pylist],
1179      proto=0,
1180      doc="""Append an object to a list.
1181
1182      Stack before:  ... pylist anyobject
1183      Stack after:   ... pylist+[anyobject]
1184
1185      although pylist is really extended in-place.
1186      """),
1187
1188    I(name='APPENDS',
1189      code='e',
1190      arg=None,
1191      stack_before=[pylist, markobject, stackslice],
1192      stack_after=[pylist],
1193      proto=1,
1194      doc="""Extend a list by a slice of stack objects.
1195
1196      Stack before:  ... pylist markobject stackslice
1197      Stack after:   ... pylist+stackslice
1198
1199      although pylist is really extended in-place.
1200      """),
1201
1202    I(name='LIST',
1203      code='l',
1204      arg=None,
1205      stack_before=[markobject, stackslice],
1206      stack_after=[pylist],
1207      proto=0,
1208      doc="""Build a list out of the topmost stack slice, after markobject.
1209
1210      All the stack entries following the topmost markobject are placed into
1211      a single Python list, which single list object replaces all of the
1212      stack from the topmost markobject onward.  For example,
1213
1214      Stack before: ... markobject 1 2 3 'abc'
1215      Stack after:  ... [1, 2, 3, 'abc']
1216      """),
1217
1218    # Ways to build tuples.
1219
1220    I(name='EMPTY_TUPLE',
1221      code=')',
1222      arg=None,
1223      stack_before=[],
1224      stack_after=[pytuple],
1225      proto=1,
1226      doc="Push an empty tuple."),
1227
1228    I(name='TUPLE',
1229      code='t',
1230      arg=None,
1231      stack_before=[markobject, stackslice],
1232      stack_after=[pytuple],
1233      proto=0,
1234      doc="""Build a tuple out of the topmost stack slice, after markobject.
1235
1236      All the stack entries following the topmost markobject are placed into
1237      a single Python tuple, which single tuple object replaces all of the
1238      stack from the topmost markobject onward.  For example,
1239
1240      Stack before: ... markobject 1 2 3 'abc'
1241      Stack after:  ... (1, 2, 3, 'abc')
1242      """),
1243
1244    I(name='TUPLE1',
1245      code='\x85',
1246      arg=None,
1247      stack_before=[anyobject],
1248      stack_after=[pytuple],
1249      proto=2,
1250      doc="""Build a one-tuple out of the topmost item on the stack.
1251
1252      This code pops one value off the stack and pushes a tuple of
1253      length 1 whose one item is that value back onto it.  In other
1254      words:
1255
1256          stack[-1] = tuple(stack[-1:])
1257      """),
1258
1259    I(name='TUPLE2',
1260      code='\x86',
1261      arg=None,
1262      stack_before=[anyobject, anyobject],
1263      stack_after=[pytuple],
1264      proto=2,
1265      doc="""Build a two-tuple out of the top two items on the stack.
1266
1267      This code pops two values off the stack and pushes a tuple of
1268      length 2 whose items are those values back onto it.  In other
1269      words:
1270
1271          stack[-2:] = [tuple(stack[-2:])]
1272      """),
1273
1274    I(name='TUPLE3',
1275      code='\x87',
1276      arg=None,
1277      stack_before=[anyobject, anyobject, anyobject],
1278      stack_after=[pytuple],
1279      proto=2,
1280      doc="""Build a three-tuple out of the top three items on the stack.
1281
1282      This code pops three values off the stack and pushes a tuple of
1283      length 3 whose items are those values back onto it.  In other
1284      words:
1285
1286          stack[-3:] = [tuple(stack[-3:])]
1287      """),
1288
1289    # Ways to build dicts.
1290
1291    I(name='EMPTY_DICT',
1292      code='}',
1293      arg=None,
1294      stack_before=[],
1295      stack_after=[pydict],
1296      proto=1,
1297      doc="Push an empty dict."),
1298
1299    I(name='DICT',
1300      code='d',
1301      arg=None,
1302      stack_before=[markobject, stackslice],
1303      stack_after=[pydict],
1304      proto=0,
1305      doc="""Build a dict out of the topmost stack slice, after markobject.
1306
1307      All the stack entries following the topmost markobject are placed into
1308      a single Python dict, which single dict object replaces all of the
1309      stack from the topmost markobject onward.  The stack slice alternates
1310      key, value, key, value, ....  For example,
1311
1312      Stack before: ... markobject 1 2 3 'abc'
1313      Stack after:  ... {1: 2, 3: 'abc'}
1314      """),
1315
1316    I(name='SETITEM',
1317      code='s',
1318      arg=None,
1319      stack_before=[pydict, anyobject, anyobject],
1320      stack_after=[pydict],
1321      proto=0,
1322      doc="""Add a key+value pair to an existing dict.
1323
1324      Stack before:  ... pydict key value
1325      Stack after:   ... pydict
1326
1327      where pydict has been modified via pydict[key] = value.
1328      """),
1329
1330    I(name='SETITEMS',
1331      code='u',
1332      arg=None,
1333      stack_before=[pydict, markobject, stackslice],
1334      stack_after=[pydict],
1335      proto=1,
1336      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1337
1338      The slice of the stack following the topmost markobject is taken as
1339      an alternating sequence of keys and values, added to the dict
1340      immediately under the topmost markobject.  Everything at and after the
1341      topmost markobject is popped, leaving the mutated dict at the top
1342      of the stack.
1343
1344      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1345      Stack after:   ... pydict
1346
1347      where pydict has been modified via pydict[key_i] = value_i for i in
1348      1, 2, ..., n, and in that order.
1349      """),
1350
1351    # Stack manipulation.
1352
1353    I(name='POP',
1354      code='0',
1355      arg=None,
1356      stack_before=[anyobject],
1357      stack_after=[],
1358      proto=0,
1359      doc="Discard the top stack item, shrinking the stack by one item."),
1360
1361    I(name='DUP',
1362      code='2',
1363      arg=None,
1364      stack_before=[anyobject],
1365      stack_after=[anyobject, anyobject],
1366      proto=0,
1367      doc="Push the top stack item onto the stack again, duplicating it."),
1368
1369    I(name='MARK',
1370      code='(',
1371      arg=None,
1372      stack_before=[],
1373      stack_after=[markobject],
1374      proto=0,
1375      doc="""Push markobject onto the stack.
1376
1377      markobject is a unique object, used by other opcodes to identify a
1378      region of the stack containing a variable number of objects for them
1379      to work on.  See markobject.doc for more detail.
1380      """),
1381
1382    I(name='POP_MARK',
1383      code='1',
1384      arg=None,
1385      stack_before=[markobject, stackslice],
1386      stack_after=[],
1387      proto=1,
1388      doc="""Pop all the stack objects at and above the topmost markobject.
1389
1390      When an opcode using a variable number of stack objects is done,
1391      POP_MARK is used to remove those objects, and to remove the markobject
1392      that delimited their starting position on the stack.
1393      """),
1394
1395    # Memo manipulation.  There are really only two operations (get and put),
1396    # each in all-text, "short binary", and "long binary" flavors.
1397
1398    I(name='GET',
1399      code='g',
1400      arg=decimalnl_short,
1401      stack_before=[],
1402      stack_after=[anyobject],
1403      proto=0,
1404      doc="""Read an object from the memo and push it on the stack.
1405
1406      The index of the memo object to push is given by the newline-terminated
1407      decimal string following.  BINGET and LONG_BINGET are space-optimized
1408      versions.
1409      """),
1410
1411    I(name='BINGET',
1412      code='h',
1413      arg=uint1,
1414      stack_before=[],
1415      stack_after=[anyobject],
1416      proto=1,
1417      doc="""Read an object from the memo and push it on the stack.
1418
1419      The index of the memo object to push is given by the 1-byte unsigned
1420      integer following.
1421      """),
1422
1423    I(name='LONG_BINGET',
1424      code='j',
1425      arg=int4,
1426      stack_before=[],
1427      stack_after=[anyobject],
1428      proto=1,
1429      doc="""Read an object from the memo and push it on the stack.
1430
1431      The index of the memo object to push is given by the 4-byte signed
1432      little-endian integer following.
1433      """),
1434
1435    I(name='PUT',
1436      code='p',
1437      arg=decimalnl_short,
1438      stack_before=[],
1439      stack_after=[],
1440      proto=0,
1441      doc="""Store the stack top into the memo.  The stack is not popped.
1442
1443      The index of the memo location to write into is given by the newline-
1444      terminated decimal string following.  BINPUT and LONG_BINPUT are
1445      space-optimized versions.
1446      """),
1447
1448    I(name='BINPUT',
1449      code='q',
1450      arg=uint1,
1451      stack_before=[],
1452      stack_after=[],
1453      proto=1,
1454      doc="""Store the stack top into the memo.  The stack is not popped.
1455
1456      The index of the memo location to write into is given by the 1-byte
1457      unsigned integer following.
1458      """),
1459
1460    I(name='LONG_BINPUT',
1461      code='r',
1462      arg=int4,
1463      stack_before=[],
1464      stack_after=[],
1465      proto=1,
1466      doc="""Store the stack top into the memo.  The stack is not popped.
1467
1468      The index of the memo location to write into is given by the 4-byte
1469      signed little-endian integer following.
1470      """),
1471
1472    # Access the extension registry (predefined objects).  Akin to the GET
1473    # family.
1474
1475    I(name='EXT1',
1476      code='\x82',
1477      arg=uint1,
1478      stack_before=[],
1479      stack_after=[anyobject],
1480      proto=2,
1481      doc="""Extension code.
1482
1483      This code and the similar EXT2 and EXT4 allow using a registry
1484      of popular objects that are pickled by name, typically classes.
1485      It is envisioned that through a global negotiation and
1486      registration process, third parties can set up a mapping between
1487      ints and object names.
1488
1489      In order to guarantee pickle interchangeability, the extension
1490      code registry ought to be global, although a range of codes may
1491      be reserved for private use.
1492
1493      EXT1 has a 1-byte integer argument.  This is used to index into the
1494      extension registry, and the object at that index is pushed on the stack.
1495      """),
1496
1497    I(name='EXT2',
1498      code='\x83',
1499      arg=uint2,
1500      stack_before=[],
1501      stack_after=[anyobject],
1502      proto=2,
1503      doc="""Extension code.
1504
1505      See EXT1.  EXT2 has a two-byte integer argument.
1506      """),
1507
1508    I(name='EXT4',
1509      code='\x84',
1510      arg=int4,
1511      stack_before=[],
1512      stack_after=[anyobject],
1513      proto=2,
1514      doc="""Extension code.
1515
1516      See EXT1.  EXT4 has a four-byte integer argument.
1517      """),
1518
1519    # Push a class object, or module function, on the stack, via its module
1520    # and name.
1521
1522    I(name='GLOBAL',
1523      code='c',
1524      arg=stringnl_noescape_pair,
1525      stack_before=[],
1526      stack_after=[anyobject],
1527      proto=0,
1528      doc="""Push a global object (module.attr) on the stack.
1529
1530      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1531      taken as a module name, and the second as a class name.  The class
1532      object module.class is pushed on the stack.  More accurately, the
1533      object returned by self.find_class(module, class) is pushed on the
1534      stack, so unpickling subclasses can override this form of lookup.
1535      """),
1536
1537    # Ways to build objects of classes pickle doesn't know about directly
1538    # (user-defined classes).  I despair of documenting this accurately
1539    # and comprehensibly -- you really have to read the pickle code to
1540    # find all the special cases.
1541
1542    I(name='REDUCE',
1543      code='R',
1544      arg=None,
1545      stack_before=[anyobject, anyobject],
1546      stack_after=[anyobject],
1547      proto=0,
1548      doc="""Push an object built from a callable and an argument tuple.
1549
1550      The opcode is named to remind of the __reduce__() method.
1551
1552      Stack before: ... callable pytuple
1553      Stack after:  ... callable(*pytuple)
1554
1555      The callable and the argument tuple are the first two items returned
1556      by a __reduce__ method.  Applying the callable to the argtuple is
1557      supposed to reproduce the original object, or at least get it started.
1558      If the __reduce__ method returns a 3-tuple, the last component is an
1559      argument to be passed to the object's __setstate__, and then the REDUCE
1560      opcode is followed by code to create setstate's argument, and then a
1561      BUILD opcode to apply  __setstate__ to that argument.
1562
1563      If not isinstance(callable, type), REDUCE complains unless the
1564      callable has been registered with the copyreg module's
1565      safe_constructors dict, or the callable has a magic
1566      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1567      why it does this, but I've sure seen this complaint often enough when
1568      I didn't want to <wink>.
1569      """),
1570
1571    I(name='BUILD',
1572      code='b',
1573      arg=None,
1574      stack_before=[anyobject, anyobject],
1575      stack_after=[anyobject],
1576      proto=0,
1577      doc="""Finish building an object, via __setstate__ or dict update.
1578
1579      Stack before: ... anyobject argument
1580      Stack after:  ... anyobject
1581
1582      where anyobject may have been mutated, as follows:
1583
1584      If the object has a __setstate__ method,
1585
1586          anyobject.__setstate__(argument)
1587
1588      is called.
1589
1590      Else the argument must be a dict, the object must have a __dict__, and
1591      the object is updated via
1592
1593          anyobject.__dict__.update(argument)
1594      """),
1595
1596    I(name='INST',
1597      code='i',
1598      arg=stringnl_noescape_pair,
1599      stack_before=[markobject, stackslice],
1600      stack_after=[anyobject],
1601      proto=0,
1602      doc="""Build a class instance.
1603
1604      This is the protocol 0 version of protocol 1's OBJ opcode.
1605      INST is followed by two newline-terminated strings, giving a
1606      module and class name, just as for the GLOBAL opcode (and see
1607      GLOBAL for more details about that).  self.find_class(module, name)
1608      is used to get a class object.
1609
1610      In addition, all the objects on the stack following the topmost
1611      markobject are gathered into a tuple and popped (along with the
1612      topmost markobject), just as for the TUPLE opcode.
1613
1614      Now it gets complicated.  If all of these are true:
1615
1616        + The argtuple is empty (markobject was at the top of the stack
1617          at the start).
1618
1619        + The class object does not have a __getinitargs__ attribute.
1620
1621      then we want to create an old-style class instance without invoking
1622      its __init__() method (pickle has waffled on this over the years; not
1623      calling __init__() is current wisdom).  In this case, an instance of
1624      an old-style dummy class is created, and then we try to rebind its
1625      __class__ attribute to the desired class object.  If this succeeds,
1626      the new instance object is pushed on the stack, and we're done.
1627
1628      Else (the argtuple is not empty, it's not an old-style class object,
1629      or the class object does have a __getinitargs__ attribute), the code
1630      first insists that the class object have a __safe_for_unpickling__
1631      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1632      it doesn't matter whether this attribute has a true or false value, it
1633      only matters whether it exists (XXX this is a bug).  If
1634      __safe_for_unpickling__ doesn't exist, UnpicklingError is raised.
1635
1636      Else (the class object does have a __safe_for_unpickling__ attr),
1637      the class object obtained from INST's arguments is applied to the
1638      argtuple obtained from the stack, and the resulting instance object
1639      is pushed on the stack.
1640
1641      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1642      """),
1643
1644    I(name='OBJ',
1645      code='o',
1646      arg=None,
1647      stack_before=[markobject, anyobject, stackslice],
1648      stack_after=[anyobject],
1649      proto=1,
1650      doc="""Build a class instance.
1651
1652      This is the protocol 1 version of protocol 0's INST opcode, and is
1653      very much like it.  The major difference is that the class object
1654      is taken off the stack, allowing it to be retrieved from the memo
1655      repeatedly if several instances of the same class are created.  This
1656      can be much more efficient (in both time and space) than repeatedly
1657      embedding the module and class names in INST opcodes.
1658
1659      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1660      the class object is taken off the stack, immediately above the
1661      topmost markobject:
1662
1663      Stack before: ... markobject classobject stackslice
1664      Stack after:  ... new_instance_object
1665
1666      As for INST, the remainder of the stack above the markobject is
1667      gathered into an argument tuple, and then the logic seems identical,
1668      except that no __safe_for_unpickling__ check is done (XXX this is
1669      a bug).  See INST for the gory details.
1670
1671      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1672      get the class object.  That was always the intent; the implementations
1673      had diverged for accidental reasons.
1674      """),
1675
1676    I(name='NEWOBJ',
1677      code='\x81',
1678      arg=None,
1679      stack_before=[anyobject, anyobject],
1680      stack_after=[anyobject],
1681      proto=2,
1682      doc="""Build an object instance.
1683
1684      The stack before should be thought of as containing a class
1685      object followed by an argument tuple (the tuple being the stack
1686      top).  Call these cls and args.  They are popped off the stack,
1687      and the value returned by cls.__new__(cls, *args) is pushed back
1688      onto the stack.
1689      """),
1690
1691    # Machine control.
1692
1693    I(name='PROTO',
1694      code='\x80',
1695      arg=uint1,
1696      stack_before=[],
1697      stack_after=[],
1698      proto=2,
1699      doc="""Protocol version indicator.
1700
1701      For protocol 2 and above, a pickle must start with this opcode.
1702      The argument is the protocol version, an int in range(2, 256).
1703      """),
1704
1705    I(name='STOP',
1706      code='.',
1707      arg=None,
1708      stack_before=[anyobject],
1709      stack_after=[],
1710      proto=0,
1711      doc="""Stop the unpickling machine.
1712
1713      Every pickle ends with this opcode.  The object at the top of the stack
1714      is popped, and that's the result of unpickling.  The stack should be
1715      empty then.
1716      """),
1717
1718    # Ways to deal with persistent IDs.
1719
1720    I(name='PERSID',
1721      code='P',
1722      arg=stringnl_noescape,
1723      stack_before=[],
1724      stack_after=[anyobject],
1725      proto=0,
1726      doc="""Push an object identified by a persistent ID.
1727
1728      The pickle module doesn't define what a persistent ID means.  PERSID's
1729      argument is a newline-terminated str-style (no embedded escapes, no
1730      bracketing quote characters) string, which *is* "the persistent ID".
1731      The unpickler passes this string to self.persistent_load().  Whatever
1732      object that returns is pushed on the stack.  There is no implementation
1733      of persistent_load() in Python's unpickler:  it must be supplied by an
1734      unpickler subclass.
1735      """),
1736
1737    I(name='BINPERSID',
1738      code='Q',
1739      arg=None,
1740      stack_before=[anyobject],
1741      stack_after=[anyobject],
1742      proto=1,
1743      doc="""Push an object identified by a persistent ID.
1744
1745      Like PERSID, except the persistent ID is popped off the stack (instead
1746      of being a string embedded in the opcode bytestream).  The persistent
1747      ID is passed to self.persistent_load(), and whatever object that
1748      returns is pushed on the stack.  See PERSID for more detail.
1749      """),
1750]
1751del I
1752
1753# Verify uniqueness of .name and .code members.
1754name2i = {}
1755code2i = {}
1756
1757for i, d in enumerate(opcodes):
1758    if d.name in name2i:
1759        raise ValueError("repeated name %r at indices %d and %d" %
1760                         (d.name, name2i[d.name], i))
1761    if d.code in code2i:
1762        raise ValueError("repeated code %r at indices %d and %d" %
1763                         (d.code, code2i[d.code], i))
1764
1765    name2i[d.name] = i
1766    code2i[d.code] = i
1767
1768del name2i, code2i, i, d
1769
1770##############################################################################
1771# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1772# Also ensure we've got the same stuff as pickle.py, although the
1773# introspection here is dicey.
1774
1775code2op = {}
1776for d in opcodes:
1777    code2op[d.code] = d
1778del d
1779
1780def assure_pickle_consistency(verbose=False):
1781
1782    copy = code2op.copy()
1783    for name in pickle.__all__:
1784        if not re.match("[A-Z][A-Z0-9_]+$", name):
1785            if verbose:
1786                print("skipping %r: it doesn't look like an opcode name" % name)
1787            continue
1788        picklecode = getattr(pickle, name)
1789        if not isinstance(picklecode, bytes) or len(picklecode) != 1:
1790            if verbose:
1791                print(("skipping %r: value %r doesn't look like a pickle "
1792                       "code" % (name, picklecode)))
1793            continue
1794        picklecode = picklecode.decode("latin-1")
1795        if picklecode in copy:
1796            if verbose:
1797                print("checking name %r w/ code %r for consistency" % (
1798                      name, picklecode))
1799            d = copy[picklecode]
1800            if d.name != name:
1801                raise ValueError("for pickle code %r, pickle.py uses name %r "
1802                                 "but we're using name %r" % (picklecode,
1803                                                              name,
1804                                                              d.name))
1805            # Forget this one.  Any left over in copy at the end are a problem
1806            # of a different kind.
1807            del copy[picklecode]
1808        else:
1809            raise ValueError("pickle.py appears to have a pickle opcode with "
1810                             "name %r and code %r, but we don't" %
1811                             (name, picklecode))
1812    if copy:
1813        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1814        for code, d in copy.items():
1815            msg.append("    name %r with code %r" % (d.name, code))
1816        raise ValueError("\n".join(msg))
1817
1818assure_pickle_consistency()
1819del assure_pickle_consistency
1820
1821##############################################################################
1822# A pickle opcode generator.
1823
1824def genops(pickle):
1825    """Generate all the opcodes in a pickle.
1826
1827    'pickle' is a file-like object, or string, containing the pickle.
1828
1829    Each opcode in the pickle is generated, from the current pickle position,
1830    stopping after a STOP opcode is delivered.  A triple is generated for
1831    each opcode:
1832
1833        opcode, arg, pos
1834
1835    opcode is an OpcodeInfo record, describing the current opcode.
1836
1837    If the opcode has an argument embedded in the pickle, arg is its decoded
1838    value, as a Python object.  If the opcode doesn't have an argument, arg
1839    is None.
1840
1841    If the pickle has a tell() method, pos was the value of pickle.tell()
1842    before reading the current opcode.  If the pickle is a bytes object,
1843    it's wrapped in a BytesIO object, and the latter's tell() result is
1844    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1845    to query its current position) pos is None.
1846    """
1847
1848    if isinstance(pickle, bytes_types):
1849        import io
1850        pickle = io.BytesIO(pickle)
1851
1852    if hasattr(pickle, "tell"):
1853        getpos = pickle.tell
1854    else:
1855        getpos = lambda: None
1856
1857    while True:
1858        pos = getpos()
1859        code = pickle.read(1)
1860        opcode = code2op.get(code.decode("latin-1"))
1861        if opcode is None:
1862            if code == b"":
1863                raise ValueError("pickle exhausted before seeing STOP")
1864            else:
1865                raise ValueError("at position %s, opcode %r unknown" % (
1866                                 pos is None and "<unknown>" or pos,
1867                                 code))
1868        if opcode.arg is None:
1869            arg = None
1870        else:
1871            arg = opcode.arg.reader(pickle)
1872        yield opcode, arg, pos
1873        if code == b'.':
1874            assert opcode.name == 'STOP'
1875            break
1876
1877##############################################################################
1878# A pickle optimizer.
1879
1880def optimize(p):
1881    'Optimize a pickle string by removing unused PUT opcodes'
1882    gets = set()            # set of args used by a GET opcode
1883    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
1884    prevpos = None          # set to pos if previous opcode was a PUT
1885    for opcode, arg, pos in genops(p):
1886        if prevpos is not None:
1887            puts.append((prevarg, prevpos, pos))
1888            prevpos = None
1889        if 'PUT' in opcode.name:
1890            prevarg, prevpos = arg, pos
1891        elif 'GET' in opcode.name:
1892            gets.add(arg)
1893
1894    # Copy the pickle string except for PUTS without a corresponding GET
1895    s = []
1896    i = 0
1897    for arg, start, stop in puts:
1898        j = stop if (arg in gets) else start
1899        s.append(p[i:j])
1900        i = stop
1901    s.append(p[i:])
1902    return b''.join(s)
1903
1904##############################################################################
1905# A symbolic pickle disassembler.
1906
1907def dis(pickle, out=None, memo=None, indentlevel=4, annotate=0):
1908    """Produce a symbolic disassembly of a pickle.
1909
1910    'pickle' is a file-like object, or string, containing a (at least one)
1911    pickle.  The pickle is disassembled from the current position, through
1912    the first STOP opcode encountered.
1913
1914    Optional arg 'out' is a file-like object to which the disassembly is
1915    printed.  It defaults to sys.stdout.
1916
1917    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1918    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1919    Passing the same memo object to another dis() call then allows disassembly
1920    to proceed across multiple pickles that were all created by the same
1921    pickler with the same memo.  Ordinarily you don't need to worry about this.
1922
1923    Optional arg 'indentlevel' is the number of blanks by which to indent
1924    a new MARK level.  It defaults to 4.
1925
1926    Optional arg 'annotate' if nonzero instructs dis() to add short
1927    description of the opcode on each line of disassembled output.
1928    The value given to 'annotate' must be an integer and is used as a
1929    hint for the column where annotation should start.  The default
1930    value is 0, meaning no annotations.
1931
1932    In addition to printing the disassembly, some sanity checks are made:
1933
1934    + All embedded opcode arguments "make sense".
1935
1936    + Explicit and implicit pop operations have enough items on the stack.
1937
1938    + When an opcode implicitly refers to a markobject, a markobject is
1939      actually on the stack.
1940
1941    + A memo entry isn't referenced before it's defined.
1942
1943    + The markobject isn't stored in the memo.
1944
1945    + A memo entry isn't redefined.
1946    """
1947
1948    # Most of the hair here is for sanity checks, but most of it is needed
1949    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1950    # (which in turn is needed to indent MARK blocks correctly).
1951
1952    stack = []          # crude emulation of unpickler stack
1953    if memo is None:
1954        memo = {}       # crude emulation of unpicker memo
1955    maxproto = -1       # max protocol number seen
1956    markstack = []      # bytecode positions of MARK opcodes
1957    indentchunk = ' ' * indentlevel
1958    errormsg = None
1959    annocol = annotate  # columnt hint for annotations
1960    for opcode, arg, pos in genops(pickle):
1961        if pos is not None:
1962            print("%5d:" % pos, end=' ', file=out)
1963
1964        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1965                              indentchunk * len(markstack),
1966                              opcode.name)
1967
1968        maxproto = max(maxproto, opcode.proto)
1969        before = opcode.stack_before    # don't mutate
1970        after = opcode.stack_after      # don't mutate
1971        numtopop = len(before)
1972
1973        # See whether a MARK should be popped.
1974        markmsg = None
1975        if markobject in before or (opcode.name == "POP" and
1976                                    stack and
1977                                    stack[-1] is markobject):
1978            assert markobject not in after
1979            if __debug__:
1980                if markobject in before:
1981                    assert before[-1] is stackslice
1982            if markstack:
1983                markpos = markstack.pop()
1984                if markpos is None:
1985                    markmsg = "(MARK at unknown opcode offset)"
1986                else:
1987                    markmsg = "(MARK at %d)" % markpos
1988                # Pop everything at and after the topmost markobject.
1989                while stack[-1] is not markobject:
1990                    stack.pop()
1991                stack.pop()
1992                # Stop later code from popping too much.
1993                try:
1994                    numtopop = before.index(markobject)
1995                except ValueError:
1996                    assert opcode.name == "POP"
1997                    numtopop = 0
1998            else:
1999                errormsg = markmsg = "no MARK exists on stack"
2000
2001        # Check for correct memo usage.
2002        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
2003            assert arg is not None
2004            if arg in memo:
2005                errormsg = "memo key %r already defined" % arg
2006            elif not stack:
2007                errormsg = "stack is empty -- can't store into memo"
2008            elif stack[-1] is markobject:
2009                errormsg = "can't store markobject in the memo"
2010            else:
2011                memo[arg] = stack[-1]
2012
2013        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
2014            if arg in memo:
2015                assert len(after) == 1
2016                after = [memo[arg]]     # for better stack emulation
2017            else:
2018                errormsg = "memo key %r has never been stored into" % arg
2019
2020        if arg is not None or markmsg:
2021            # make a mild effort to align arguments
2022            line += ' ' * (10 - len(opcode.name))
2023            if arg is not None:
2024                line += ' ' + repr(arg)
2025            if markmsg:
2026                line += ' ' + markmsg
2027        if annotate:
2028            line += ' ' * (annocol - len(line))
2029            # make a mild effort to align annotations
2030            annocol = len(line)
2031            if annocol > 50:
2032                annocol = annotate
2033            line += ' ' + opcode.doc.split('\n', 1)[0]
2034        print(line, file=out)
2035
2036        if errormsg:
2037            # Note that we delayed complaining until the offending opcode
2038            # was printed.
2039            raise ValueError(errormsg)
2040
2041        # Emulate the stack effects.
2042        if len(stack) < numtopop:
2043            raise ValueError("tries to pop %d items from stack with "
2044                             "only %d items" % (numtopop, len(stack)))
2045        if numtopop:
2046            del stack[-numtopop:]
2047        if markobject in after:
2048            assert markobject not in before
2049            markstack.append(pos)
2050
2051        stack.extend(after)
2052
2053    print("highest protocol among opcodes =", maxproto, file=out)
2054    if stack:
2055        raise ValueError("stack not empty after STOP: %r" % stack)
2056
2057# For use in the doctest, simply as an example of a class to pickle.
2058class _Example:
2059    def __init__(self, value):
2060        self.value = value
2061
2062_dis_test = r"""
2063>>> import pickle
2064>>> x = [1, 2, (3, 4), {b'abc': "def"}]
2065>>> pkl0 = pickle.dumps(x, 0)
2066>>> dis(pkl0)
2067    0: (    MARK
2068    1: l        LIST       (MARK at 0)
2069    2: p    PUT        0
2070    5: L    LONG       1
2071    9: a    APPEND
2072   10: L    LONG       2
2073   14: a    APPEND
2074   15: (    MARK
2075   16: L        LONG       3
2076   20: L        LONG       4
2077   24: t        TUPLE      (MARK at 15)
2078   25: p    PUT        1
2079   28: a    APPEND
2080   29: (    MARK
2081   30: d        DICT       (MARK at 29)
2082   31: p    PUT        2
2083   34: c    GLOBAL     '__builtin__ bytes'
2084   53: p    PUT        3
2085   56: (    MARK
2086   57: (        MARK
2087   58: l            LIST       (MARK at 57)
2088   59: p        PUT        4
2089   62: L        LONG       97
2090   67: a        APPEND
2091   68: L        LONG       98
2092   73: a        APPEND
2093   74: L        LONG       99
2094   79: a        APPEND
2095   80: t        TUPLE      (MARK at 56)
2096   81: p    PUT        5
2097   84: R    REDUCE
2098   85: p    PUT        6
2099   88: V    UNICODE    'def'
2100   93: p    PUT        7
2101   96: s    SETITEM
2102   97: a    APPEND
2103   98: .    STOP
2104highest protocol among opcodes = 0
2105
2106Try again with a "binary" pickle.
2107
2108>>> pkl1 = pickle.dumps(x, 1)
2109>>> dis(pkl1)
2110    0: ]    EMPTY_LIST
2111    1: q    BINPUT     0
2112    3: (    MARK
2113    4: K        BININT1    1
2114    6: K        BININT1    2
2115    8: (        MARK
2116    9: K            BININT1    3
2117   11: K            BININT1    4
2118   13: t            TUPLE      (MARK at 8)
2119   14: q        BINPUT     1
2120   16: }        EMPTY_DICT
2121   17: q        BINPUT     2
2122   19: c        GLOBAL     '__builtin__ bytes'
2123   38: q        BINPUT     3
2124   40: (        MARK
2125   41: ]            EMPTY_LIST
2126   42: q            BINPUT     4
2127   44: (            MARK
2128   45: K                BININT1    97
2129   47: K                BININT1    98
2130   49: K                BININT1    99
2131   51: e                APPENDS    (MARK at 44)
2132   52: t            TUPLE      (MARK at 40)
2133   53: q        BINPUT     5
2134   55: R        REDUCE
2135   56: q        BINPUT     6
2136   58: X        BINUNICODE 'def'
2137   66: q        BINPUT     7
2138   68: s        SETITEM
2139   69: e        APPENDS    (MARK at 3)
2140   70: .    STOP
2141highest protocol among opcodes = 1
2142
2143Exercise the INST/OBJ/BUILD family.
2144
2145>>> import pickletools
2146>>> dis(pickle.dumps(pickletools.dis, 0))
2147    0: c    GLOBAL     'pickletools dis'
2148   17: p    PUT        0
2149   20: .    STOP
2150highest protocol among opcodes = 0
2151
2152>>> from pickletools import _Example
2153>>> x = [_Example(42)] * 2
2154>>> dis(pickle.dumps(x, 0))
2155    0: (    MARK
2156    1: l        LIST       (MARK at 0)
2157    2: p    PUT        0
2158    5: c    GLOBAL     'copy_reg _reconstructor'
2159   30: p    PUT        1
2160   33: (    MARK
2161   34: c        GLOBAL     'pickletools _Example'
2162   56: p        PUT        2
2163   59: c        GLOBAL     '__builtin__ object'
2164   79: p        PUT        3
2165   82: N        NONE
2166   83: t        TUPLE      (MARK at 33)
2167   84: p    PUT        4
2168   87: R    REDUCE
2169   88: p    PUT        5
2170   91: (    MARK
2171   92: d        DICT       (MARK at 91)
2172   93: p    PUT        6
2173   96: V    UNICODE    'value'
2174  103: p    PUT        7
2175  106: L    LONG       42
2176  111: s    SETITEM
2177  112: b    BUILD
2178  113: a    APPEND
2179  114: g    GET        5
2180  117: a    APPEND
2181  118: .    STOP
2182highest protocol among opcodes = 0
2183
2184>>> dis(pickle.dumps(x, 1))
2185    0: ]    EMPTY_LIST
2186    1: q    BINPUT     0
2187    3: (    MARK
2188    4: c        GLOBAL     'copy_reg _reconstructor'
2189   29: q        BINPUT     1
2190   31: (        MARK
2191   32: c            GLOBAL     'pickletools _Example'
2192   54: q            BINPUT     2
2193   56: c            GLOBAL     '__builtin__ object'
2194   76: q            BINPUT     3
2195   78: N            NONE
2196   79: t            TUPLE      (MARK at 31)
2197   80: q        BINPUT     4
2198   82: R        REDUCE
2199   83: q        BINPUT     5
2200   85: }        EMPTY_DICT
2201   86: q        BINPUT     6
2202   88: X        BINUNICODE 'value'
2203   98: q        BINPUT     7
2204  100: K        BININT1    42
2205  102: s        SETITEM
2206  103: b        BUILD
2207  104: h        BINGET     5
2208  106: e        APPENDS    (MARK at 3)
2209  107: .    STOP
2210highest protocol among opcodes = 1
2211
2212Try "the canonical" recursive-object test.
2213
2214>>> L = []
2215>>> T = L,
2216>>> L.append(T)
2217>>> L[0] is T
2218True
2219>>> T[0] is L
2220True
2221>>> L[0][0] is L
2222True
2223>>> T[0][0] is T
2224True
2225>>> dis(pickle.dumps(L, 0))
2226    0: (    MARK
2227    1: l        LIST       (MARK at 0)
2228    2: p    PUT        0
2229    5: (    MARK
2230    6: g        GET        0
2231    9: t        TUPLE      (MARK at 5)
2232   10: p    PUT        1
2233   13: a    APPEND
2234   14: .    STOP
2235highest protocol among opcodes = 0
2236
2237>>> dis(pickle.dumps(L, 1))
2238    0: ]    EMPTY_LIST
2239    1: q    BINPUT     0
2240    3: (    MARK
2241    4: h        BINGET     0
2242    6: t        TUPLE      (MARK at 3)
2243    7: q    BINPUT     1
2244    9: a    APPEND
2245   10: .    STOP
2246highest protocol among opcodes = 1
2247
2248Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2249has to emulate the stack in order to realize that the POP opcode at 16 gets
2250rid of the MARK at 0.
2251
2252>>> dis(pickle.dumps(T, 0))
2253    0: (    MARK
2254    1: (        MARK
2255    2: l            LIST       (MARK at 1)
2256    3: p        PUT        0
2257    6: (        MARK
2258    7: g            GET        0
2259   10: t            TUPLE      (MARK at 6)
2260   11: p        PUT        1
2261   14: a        APPEND
2262   15: 0        POP
2263   16: 0        POP        (MARK at 0)
2264   17: g    GET        1
2265   20: .    STOP
2266highest protocol among opcodes = 0
2267
2268>>> dis(pickle.dumps(T, 1))
2269    0: (    MARK
2270    1: ]        EMPTY_LIST
2271    2: q        BINPUT     0
2272    4: (        MARK
2273    5: h            BINGET     0
2274    7: t            TUPLE      (MARK at 4)
2275    8: q        BINPUT     1
2276   10: a        APPEND
2277   11: 1        POP_MARK   (MARK at 0)
2278   12: h    BINGET     1
2279   14: .    STOP
2280highest protocol among opcodes = 1
2281
2282Try protocol 2.
2283
2284>>> dis(pickle.dumps(L, 2))
2285    0: \x80 PROTO      2
2286    2: ]    EMPTY_LIST
2287    3: q    BINPUT     0
2288    5: h    BINGET     0
2289    7: \x85 TUPLE1
2290    8: q    BINPUT     1
2291   10: a    APPEND
2292   11: .    STOP
2293highest protocol among opcodes = 2
2294
2295>>> dis(pickle.dumps(T, 2))
2296    0: \x80 PROTO      2
2297    2: ]    EMPTY_LIST
2298    3: q    BINPUT     0
2299    5: h    BINGET     0
2300    7: \x85 TUPLE1
2301    8: q    BINPUT     1
2302   10: a    APPEND
2303   11: 0    POP
2304   12: h    BINGET     1
2305   14: .    STOP
2306highest protocol among opcodes = 2
2307
2308Try protocol 3 with annotations:
2309
2310>>> dis(pickle.dumps(T, 3), annotate=1)
2311    0: \x80 PROTO      3 Protocol version indicator.
2312    2: ]    EMPTY_LIST   Push an empty list.
2313    3: q    BINPUT     0 Store the stack top into the memo.  The stack is not popped.
2314    5: h    BINGET     0 Read an object from the memo and push it on the stack.
2315    7: \x85 TUPLE1       Build a one-tuple out of the topmost item on the stack.
2316    8: q    BINPUT     1 Store the stack top into the memo.  The stack is not popped.
2317   10: a    APPEND       Append an object to a list.
2318   11: 0    POP          Discard the top stack item, shrinking the stack by one item.
2319   12: h    BINGET     1 Read an object from the memo and push it on the stack.
2320   14: .    STOP         Stop the unpickling machine.
2321highest protocol among opcodes = 2
2322
2323"""
2324
2325_memo_test = r"""
2326>>> import pickle
2327>>> import io
2328>>> f = io.BytesIO()
2329>>> p = pickle.Pickler(f, 2)
2330>>> x = [1, 2, 3]
2331>>> p.dump(x)
2332>>> p.dump(x)
2333>>> f.seek(0)
23340
2335>>> memo = {}
2336>>> dis(f, memo=memo)
2337    0: \x80 PROTO      2
2338    2: ]    EMPTY_LIST
2339    3: q    BINPUT     0
2340    5: (    MARK
2341    6: K        BININT1    1
2342    8: K        BININT1    2
2343   10: K        BININT1    3
2344   12: e        APPENDS    (MARK at 5)
2345   13: .    STOP
2346highest protocol among opcodes = 2
2347>>> dis(f, memo=memo)
2348   14: \x80 PROTO      2
2349   16: h    BINGET     0
2350   18: .    STOP
2351highest protocol among opcodes = 2
2352"""
2353
2354__test__ = {'disassembler_test': _dis_test,
2355            'disassembler_memo_test': _memo_test,
2356           }
2357
2358def _test():
2359    import doctest
2360    return doctest.testmod()
2361
2362if __name__ == "__main__":
2363    import sys, argparse
2364    parser = argparse.ArgumentParser(
2365        description='disassemble one or more pickle files')
2366    parser.add_argument(
2367        'pickle_file', type=argparse.FileType('br'),
2368        nargs='*', help='the pickle file')
2369    parser.add_argument(
2370        '-o', '--output', default=sys.stdout, type=argparse.FileType('w'),
2371        help='the file where the output should be written')
2372    parser.add_argument(
2373        '-m', '--memo', action='store_true',
2374        help='preserve memo between disassemblies')
2375    parser.add_argument(
2376        '-l', '--indentlevel', default=4, type=int,
2377        help='the number of blanks by which to indent a new MARK level')
2378    parser.add_argument(
2379        '-a', '--annotate',  action='store_true',
2380        help='annotate each line with a short opcode description')
2381    parser.add_argument(
2382        '-p', '--preamble', default="==> {name} <==",
2383        help='if more than one pickle file is specified, print this before'
2384        ' each disassembly')
2385    parser.add_argument(
2386        '-t', '--test', action='store_true',
2387        help='run self-test suite')
2388    parser.add_argument(
2389        '-v', action='store_true',
2390        help='run verbosely; only affects self-test run')
2391    args = parser.parse_args()
2392    if args.test:
2393        _test()
2394    else:
2395        annotate = 30 if args.annotate else 0
2396        if not args.pickle_file:
2397            parser.print_help()
2398        elif len(args.pickle_file) == 1:
2399            dis(args.pickle_file[0], args.output, None,
2400                args.indentlevel, annotate)
2401        else:
2402            memo = {} if args.memo else None
2403            for f in args.pickle_file:
2404                preamble = args.preamble.format(name=f.name)
2405                args.output.write(preamble + '\n')
2406                dis(f, args.output, memo, args.indentlevel, annotate)
2407