pickletools.py revision 44c2ffd38fcb7215a4f24ac519575ca504453351
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13import codecs
14import pickle
15import re
16
17__all__ = ['dis', 'genops', 'optimize']
18
19bytes_types = pickle.bytes_types
20
21# Other ideas:
22#
23# - A pickle verifier:  read a pickle and check it exhaustively for
24#   well-formedness.  dis() does a lot of this already.
25#
26# - A protocol identifier:  examine a pickle and return its protocol number
27#   (== the highest .proto attr value among all the opcodes in the pickle).
28#   dis() already prints this info at the end.
29#
30# - A pickle optimizer:  for example, tuple-building code is sometimes more
31#   elaborate than necessary, catering for the possibility that the tuple
32#   is recursive.  Or lots of times a PUT is generated that's never accessed
33#   by a later GET.
34
35
36"""
37"A pickle" is a program for a virtual pickle machine (PM, but more accurately
38called an unpickling machine).  It's a sequence of opcodes, interpreted by the
39PM, building an arbitrarily complex Python object.
40
41For the most part, the PM is very simple:  there are no looping, testing, or
42conditional instructions, no arithmetic and no function calls.  Opcodes are
43executed once each, from first to last, until a STOP opcode is reached.
44
45The PM has two data areas, "the stack" and "the memo".
46
47Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
48integer object on the stack, whose value is gotten from a decimal string
49literal immediately following the INT opcode in the pickle bytestream.  Other
50opcodes take Python objects off the stack.  The result of unpickling is
51whatever object is left on the stack when the final STOP opcode is executed.
52
53The memo is simply an array of objects, or it can be implemented as a dict
54mapping little integers to objects.  The memo serves as the PM's "long term
55memory", and the little integers indexing the memo are akin to variable
56names.  Some opcodes pop a stack object into the memo at a given index,
57and others push a memo object at a given index onto the stack again.
58
59At heart, that's all the PM has.  Subtleties arise for these reasons:
60
61+ Object identity.  Objects can be arbitrarily complex, and subobjects
62  may be shared (for example, the list [a, a] refers to the same object a
63  twice).  It can be vital that unpickling recreate an isomorphic object
64  graph, faithfully reproducing sharing.
65
66+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
67  list, and L[0] is the same list.  This is related to the object identity
68  point, and some sequences of pickle opcodes are subtle in order to
69  get the right result in all cases.
70
71+ Things pickle doesn't know everything about.  Examples of things pickle
72  does know everything about are Python's builtin scalar and container
73  types, like ints and tuples.  They generally have opcodes dedicated to
74  them.  For things like module references and instances of user-defined
75  classes, pickle's knowledge is limited.  Historically, many enhancements
76  have been made to the pickle protocol in order to do a better (faster,
77  and/or more compact) job on those.
78
79+ Backward compatibility and micro-optimization.  As explained below,
80  pickle opcodes never go away, not even when better ways to do a thing
81  get invented.  The repertoire of the PM just keeps growing over time.
82  For example, protocol 0 had two opcodes for building Python integers (INT
83  and LONG), protocol 1 added three more for more-efficient pickling of short
84  integers, and protocol 2 added two more for more-efficient pickling of
85  long integers (before protocol 2, the only ways to pickle a Python long
86  took time quadratic in the number of digits, for both pickling and
87  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
88  wearying complication.
89
90
91Pickle protocols:
92
93For compatibility, the meaning of a pickle opcode never changes.  Instead new
94pickle opcodes get added, and each version's unpickler can handle all the
95pickle opcodes in all protocol versions to date.  So old pickles continue to
96be readable forever.  The pickler can generally be told to restrict itself to
97the subset of opcodes available under previous protocol versions too, so that
98users can create pickles under the current version readable by older
99versions.  However, a pickle does not contain its version number embedded
100within it.  If an older unpickler tries to read a pickle using a later
101protocol, the result is most likely an exception due to seeing an unknown (in
102the older unpickler) opcode.
103
104The original pickle used what's now called "protocol 0", and what was called
105"text mode" before Python 2.3.  The entire pickle bytestream is made up of
106printable 7-bit ASCII characters, plus the newline character, in protocol 0.
107That's why it was called text mode.  Protocol 0 is small and elegant, but
108sometimes painfully inefficient.
109
110The second major set of additions is now called "protocol 1", and was called
111"binary mode" before Python 2.3.  This added many opcodes with arguments
112consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
113bytes.  Binary mode pickles can be substantially smaller than equivalent
114text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
115int as 4 bytes following the opcode, which is cheaper to unpickle than the
116(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
117a number of opcodes that operate on many stack elements at once (like APPENDS
118and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
119
120The third major set of additions came in Python 2.3, and is called "protocol
1212".  This added:
122
123- A better way to pickle instances of new-style classes (NEWOBJ).
124
125- A way for a pickle to identify its protocol (PROTO).
126
127- Time- and space- efficient pickling of long ints (LONG{1,4}).
128
129- Shortcuts for small tuples (TUPLE{1,2,3}}.
130
131- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
132
133- The "extension registry", a vector of popular objects that can be pushed
134  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
135  the registry contents are predefined (there's nothing akin to the memo's
136  PUT).
137
138Another independent change with Python 2.3 is the abandonment of any
139pretense that it might be safe to load pickles received from untrusted
140parties -- no sufficient security analysis has been done to guarantee
141this and there isn't a use case that warrants the expense of such an
142analysis.
143
144To this end, all tests for __safe_for_unpickling__ or for
145copyreg.safe_constructors are removed from the unpickling code.
146References to these variables in the descriptions below are to be seen
147as describing unpickling in Python 2.2 and before.
148"""
149
150# Meta-rule:  Descriptions are stored in instances of descriptor objects,
151# with plain constructors.  No meta-language is defined from which
152# descriptors could be constructed.  If you want, e.g., XML, write a little
153# program to generate XML from the objects.
154
155##############################################################################
156# Some pickle opcodes have an argument, following the opcode in the
157# bytestream.  An argument is of a specific type, described by an instance
158# of ArgumentDescriptor.  These are not to be confused with arguments taken
159# off the stack -- ArgumentDescriptor applies only to arguments embedded in
160# the opcode stream, immediately following an opcode.
161
162# Represents the number of bytes consumed by an argument delimited by the
163# next newline character.
164UP_TO_NEWLINE = -1
165
166# Represents the number of bytes consumed by a two-argument opcode where
167# the first argument gives the number of bytes in the second argument.
168TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
169TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
170
171class ArgumentDescriptor(object):
172    __slots__ = (
173        # name of descriptor record, also a module global name; a string
174        'name',
175
176        # length of argument, in bytes; an int; UP_TO_NEWLINE and
177        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
178        # cases
179        'n',
180
181        # a function taking a file-like object, reading this kind of argument
182        # from the object at the current position, advancing the current
183        # position by n bytes, and returning the value of the argument
184        'reader',
185
186        # human-readable docs for this arg descriptor; a string
187        'doc',
188    )
189
190    def __init__(self, name, n, reader, doc):
191        assert isinstance(name, str)
192        self.name = name
193
194        assert isinstance(n, int) and (n >= 0 or
195                                       n in (UP_TO_NEWLINE,
196                                             TAKEN_FROM_ARGUMENT1,
197                                             TAKEN_FROM_ARGUMENT4))
198        self.n = n
199
200        self.reader = reader
201
202        assert isinstance(doc, str)
203        self.doc = doc
204
205from struct import unpack as _unpack
206
207def read_uint1(f):
208    r"""
209    >>> import io
210    >>> read_uint1(io.BytesIO(b'\xff'))
211    255
212    """
213
214    data = f.read(1)
215    if data:
216        return data[0]
217    raise ValueError("not enough data in stream to read uint1")
218
219uint1 = ArgumentDescriptor(
220            name='uint1',
221            n=1,
222            reader=read_uint1,
223            doc="One-byte unsigned integer.")
224
225
226def read_uint2(f):
227    r"""
228    >>> import io
229    >>> read_uint2(io.BytesIO(b'\xff\x00'))
230    255
231    >>> read_uint2(io.BytesIO(b'\xff\xff'))
232    65535
233    """
234
235    data = f.read(2)
236    if len(data) == 2:
237        return _unpack("<H", data)[0]
238    raise ValueError("not enough data in stream to read uint2")
239
240uint2 = ArgumentDescriptor(
241            name='uint2',
242            n=2,
243            reader=read_uint2,
244            doc="Two-byte unsigned integer, little-endian.")
245
246
247def read_int4(f):
248    r"""
249    >>> import io
250    >>> read_int4(io.BytesIO(b'\xff\x00\x00\x00'))
251    255
252    >>> read_int4(io.BytesIO(b'\x00\x00\x00\x80')) == -(2**31)
253    True
254    """
255
256    data = f.read(4)
257    if len(data) == 4:
258        return _unpack("<i", data)[0]
259    raise ValueError("not enough data in stream to read int4")
260
261int4 = ArgumentDescriptor(
262           name='int4',
263           n=4,
264           reader=read_int4,
265           doc="Four-byte signed integer, little-endian, 2's complement.")
266
267
268def read_stringnl(f, decode=True, stripquotes=True):
269    r"""
270    >>> import io
271    >>> read_stringnl(io.BytesIO(b"'abcd'\nefg\n"))
272    'abcd'
273
274    >>> read_stringnl(io.BytesIO(b"\n"))
275    Traceback (most recent call last):
276    ...
277    ValueError: no string quotes around b''
278
279    >>> read_stringnl(io.BytesIO(b"\n"), stripquotes=False)
280    ''
281
282    >>> read_stringnl(io.BytesIO(b"''\n"))
283    ''
284
285    >>> read_stringnl(io.BytesIO(b'"abcd"'))
286    Traceback (most recent call last):
287    ...
288    ValueError: no newline found when trying to read stringnl
289
290    Embedded escapes are undone in the result.
291    >>> read_stringnl(io.BytesIO(br"'a\n\\b\x00c\td'" + b"\n'e'"))
292    'a\n\\b\x00c\td'
293    """
294
295    data = f.readline()
296    if not data.endswith(b'\n'):
297        raise ValueError("no newline found when trying to read stringnl")
298    data = data[:-1]    # lose the newline
299
300    if stripquotes:
301        for q in (b'"', b"'"):
302            if data.startswith(q):
303                if not data.endswith(q):
304                    raise ValueError("strinq quote %r not found at both "
305                                     "ends of %r" % (q, data))
306                data = data[1:-1]
307                break
308        else:
309            raise ValueError("no string quotes around %r" % data)
310
311    if decode:
312        data = codecs.escape_decode(data)[0].decode("ascii")
313    return data
314
315stringnl = ArgumentDescriptor(
316               name='stringnl',
317               n=UP_TO_NEWLINE,
318               reader=read_stringnl,
319               doc="""A newline-terminated string.
320
321                   This is a repr-style string, with embedded escapes, and
322                   bracketing quotes.
323                   """)
324
325def read_stringnl_noescape(f):
326    return read_stringnl(f, stripquotes=False)
327
328stringnl_noescape = ArgumentDescriptor(
329                        name='stringnl_noescape',
330                        n=UP_TO_NEWLINE,
331                        reader=read_stringnl_noescape,
332                        doc="""A newline-terminated string.
333
334                        This is a str-style string, without embedded escapes,
335                        or bracketing quotes.  It should consist solely of
336                        printable ASCII characters.
337                        """)
338
339def read_stringnl_noescape_pair(f):
340    r"""
341    >>> import io
342    >>> read_stringnl_noescape_pair(io.BytesIO(b"Queue\nEmpty\njunk"))
343    'Queue Empty'
344    """
345
346    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
347
348stringnl_noescape_pair = ArgumentDescriptor(
349                             name='stringnl_noescape_pair',
350                             n=UP_TO_NEWLINE,
351                             reader=read_stringnl_noescape_pair,
352                             doc="""A pair of newline-terminated strings.
353
354                             These are str-style strings, without embedded
355                             escapes, or bracketing quotes.  They should
356                             consist solely of printable ASCII characters.
357                             The pair is returned as a single string, with
358                             a single blank separating the two strings.
359                             """)
360
361def read_string4(f):
362    r"""
363    >>> import io
364    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x00abc"))
365    ''
366    >>> read_string4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
367    'abc'
368    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
369    Traceback (most recent call last):
370    ...
371    ValueError: expected 50331648 bytes in a string4, but only 6 remain
372    """
373
374    n = read_int4(f)
375    if n < 0:
376        raise ValueError("string4 byte count < 0: %d" % n)
377    data = f.read(n)
378    if len(data) == n:
379        return data.decode("latin-1")
380    raise ValueError("expected %d bytes in a string4, but only %d remain" %
381                     (n, len(data)))
382
383string4 = ArgumentDescriptor(
384              name="string4",
385              n=TAKEN_FROM_ARGUMENT4,
386              reader=read_string4,
387              doc="""A counted string.
388
389              The first argument is a 4-byte little-endian signed int giving
390              the number of bytes in the string, and the second argument is
391              that many bytes.
392              """)
393
394
395def read_string1(f):
396    r"""
397    >>> import io
398    >>> read_string1(io.BytesIO(b"\x00"))
399    ''
400    >>> read_string1(io.BytesIO(b"\x03abcdef"))
401    'abc'
402    """
403
404    n = read_uint1(f)
405    assert n >= 0
406    data = f.read(n)
407    if len(data) == n:
408        return data.decode("latin-1")
409    raise ValueError("expected %d bytes in a string1, but only %d remain" %
410                     (n, len(data)))
411
412string1 = ArgumentDescriptor(
413              name="string1",
414              n=TAKEN_FROM_ARGUMENT1,
415              reader=read_string1,
416              doc="""A counted string.
417
418              The first argument is a 1-byte unsigned int giving the number
419              of bytes in the string, and the second argument is that many
420              bytes.
421              """)
422
423
424def read_unicodestringnl(f):
425    r"""
426    >>> import io
427    >>> read_unicodestringnl(io.BytesIO(b"abc\\uabcd\njunk")) == 'abc\uabcd'
428    True
429    """
430
431    data = f.readline()
432    if not data.endswith(b'\n'):
433        raise ValueError("no newline found when trying to read "
434                         "unicodestringnl")
435    data = data[:-1]    # lose the newline
436    return str(data, 'raw-unicode-escape')
437
438unicodestringnl = ArgumentDescriptor(
439                      name='unicodestringnl',
440                      n=UP_TO_NEWLINE,
441                      reader=read_unicodestringnl,
442                      doc="""A newline-terminated Unicode string.
443
444                      This is raw-unicode-escape encoded, so consists of
445                      printable ASCII characters, and may contain embedded
446                      escape sequences.
447                      """)
448
449def read_unicodestring4(f):
450    r"""
451    >>> import io
452    >>> s = 'abcd\uabcd'
453    >>> enc = s.encode('utf-8')
454    >>> enc
455    b'abcd\xea\xaf\x8d'
456    >>> n = bytes([len(enc), 0, 0, 0])  # little-endian 4-byte length
457    >>> t = read_unicodestring4(io.BytesIO(n + enc + b'junk'))
458    >>> s == t
459    True
460
461    >>> read_unicodestring4(io.BytesIO(n + enc[:-1]))
462    Traceback (most recent call last):
463    ...
464    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
465    """
466
467    n = read_int4(f)
468    if n < 0:
469        raise ValueError("unicodestring4 byte count < 0: %d" % n)
470    data = f.read(n)
471    if len(data) == n:
472        return str(data, 'utf-8', 'surrogatepass')
473    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
474                     "remain" % (n, len(data)))
475
476unicodestring4 = ArgumentDescriptor(
477                    name="unicodestring4",
478                    n=TAKEN_FROM_ARGUMENT4,
479                    reader=read_unicodestring4,
480                    doc="""A counted Unicode string.
481
482                    The first argument is a 4-byte little-endian signed int
483                    giving the number of bytes in the string, and the second
484                    argument-- the UTF-8 encoding of the Unicode string --
485                    contains that many bytes.
486                    """)
487
488
489def read_decimalnl_short(f):
490    r"""
491    >>> import io
492    >>> read_decimalnl_short(io.BytesIO(b"1234\n56"))
493    1234
494
495    >>> read_decimalnl_short(io.BytesIO(b"1234L\n56"))
496    Traceback (most recent call last):
497    ...
498    ValueError: trailing 'L' not allowed in b'1234L'
499    """
500
501    s = read_stringnl(f, decode=False, stripquotes=False)
502    if s.endswith(b"L"):
503        raise ValueError("trailing 'L' not allowed in %r" % s)
504
505    # It's not necessarily true that the result fits in a Python short int:
506    # the pickle may have been written on a 64-bit box.  There's also a hack
507    # for True and False here.
508    if s == b"00":
509        return False
510    elif s == b"01":
511        return True
512
513    try:
514        return int(s)
515    except OverflowError:
516        return int(s)
517
518def read_decimalnl_long(f):
519    r"""
520    >>> import io
521
522    >>> read_decimalnl_long(io.BytesIO(b"1234L\n56"))
523    1234
524
525    >>> read_decimalnl_long(io.BytesIO(b"123456789012345678901234L\n6"))
526    123456789012345678901234
527    """
528
529    s = read_stringnl(f, decode=False, stripquotes=False)
530    if s[-1:] == b'L':
531        s = s[:-1]
532    return int(s)
533
534
535decimalnl_short = ArgumentDescriptor(
536                      name='decimalnl_short',
537                      n=UP_TO_NEWLINE,
538                      reader=read_decimalnl_short,
539                      doc="""A newline-terminated decimal integer literal.
540
541                          This never has a trailing 'L', and the integer fit
542                          in a short Python int on the box where the pickle
543                          was written -- but there's no guarantee it will fit
544                          in a short Python int on the box where the pickle
545                          is read.
546                          """)
547
548decimalnl_long = ArgumentDescriptor(
549                     name='decimalnl_long',
550                     n=UP_TO_NEWLINE,
551                     reader=read_decimalnl_long,
552                     doc="""A newline-terminated decimal integer literal.
553
554                         This has a trailing 'L', and can represent integers
555                         of any size.
556                         """)
557
558
559def read_floatnl(f):
560    r"""
561    >>> import io
562    >>> read_floatnl(io.BytesIO(b"-1.25\n6"))
563    -1.25
564    """
565    s = read_stringnl(f, decode=False, stripquotes=False)
566    return float(s)
567
568floatnl = ArgumentDescriptor(
569              name='floatnl',
570              n=UP_TO_NEWLINE,
571              reader=read_floatnl,
572              doc="""A newline-terminated decimal floating literal.
573
574              In general this requires 17 significant digits for roundtrip
575              identity, and pickling then unpickling infinities, NaNs, and
576              minus zero doesn't work across boxes, or on some boxes even
577              on itself (e.g., Windows can't read the strings it produces
578              for infinities or NaNs).
579              """)
580
581def read_float8(f):
582    r"""
583    >>> import io, struct
584    >>> raw = struct.pack(">d", -1.25)
585    >>> raw
586    b'\xbf\xf4\x00\x00\x00\x00\x00\x00'
587    >>> read_float8(io.BytesIO(raw + b"\n"))
588    -1.25
589    """
590
591    data = f.read(8)
592    if len(data) == 8:
593        return _unpack(">d", data)[0]
594    raise ValueError("not enough data in stream to read float8")
595
596
597float8 = ArgumentDescriptor(
598             name='float8',
599             n=8,
600             reader=read_float8,
601             doc="""An 8-byte binary representation of a float, big-endian.
602
603             The format is unique to Python, and shared with the struct
604             module (format string '>d') "in theory" (the struct and pickle
605             implementations don't share the code -- they should).  It's
606             strongly related to the IEEE-754 double format, and, in normal
607             cases, is in fact identical to the big-endian 754 double format.
608             On other boxes the dynamic range is limited to that of a 754
609             double, and "add a half and chop" rounding is used to reduce
610             the precision to 53 bits.  However, even on a 754 box,
611             infinities, NaNs, and minus zero may not be handled correctly
612             (may not survive roundtrip pickling intact).
613             """)
614
615# Protocol 2 formats
616
617from pickle import decode_long
618
619def read_long1(f):
620    r"""
621    >>> import io
622    >>> read_long1(io.BytesIO(b"\x00"))
623    0
624    >>> read_long1(io.BytesIO(b"\x02\xff\x00"))
625    255
626    >>> read_long1(io.BytesIO(b"\x02\xff\x7f"))
627    32767
628    >>> read_long1(io.BytesIO(b"\x02\x00\xff"))
629    -256
630    >>> read_long1(io.BytesIO(b"\x02\x00\x80"))
631    -32768
632    """
633
634    n = read_uint1(f)
635    data = f.read(n)
636    if len(data) != n:
637        raise ValueError("not enough data in stream to read long1")
638    return decode_long(data)
639
640long1 = ArgumentDescriptor(
641    name="long1",
642    n=TAKEN_FROM_ARGUMENT1,
643    reader=read_long1,
644    doc="""A binary long, little-endian, using 1-byte size.
645
646    This first reads one byte as an unsigned size, then reads that
647    many bytes and interprets them as a little-endian 2's-complement long.
648    If the size is 0, that's taken as a shortcut for the long 0L.
649    """)
650
651def read_long4(f):
652    r"""
653    >>> import io
654    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x00"))
655    255
656    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x7f"))
657    32767
658    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\xff"))
659    -256
660    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\x80"))
661    -32768
662    >>> read_long1(io.BytesIO(b"\x00\x00\x00\x00"))
663    0
664    """
665
666    n = read_int4(f)
667    if n < 0:
668        raise ValueError("long4 byte count < 0: %d" % n)
669    data = f.read(n)
670    if len(data) != n:
671        raise ValueError("not enough data in stream to read long4")
672    return decode_long(data)
673
674long4 = ArgumentDescriptor(
675    name="long4",
676    n=TAKEN_FROM_ARGUMENT4,
677    reader=read_long4,
678    doc="""A binary representation of a long, little-endian.
679
680    This first reads four bytes as a signed size (but requires the
681    size to be >= 0), then reads that many bytes and interprets them
682    as a little-endian 2's-complement long.  If the size is 0, that's taken
683    as a shortcut for the int 0, although LONG1 should really be used
684    then instead (and in any case where # of bytes < 256).
685    """)
686
687
688##############################################################################
689# Object descriptors.  The stack used by the pickle machine holds objects,
690# and in the stack_before and stack_after attributes of OpcodeInfo
691# descriptors we need names to describe the various types of objects that can
692# appear on the stack.
693
694class StackObject(object):
695    __slots__ = (
696        # name of descriptor record, for info only
697        'name',
698
699        # type of object, or tuple of type objects (meaning the object can
700        # be of any type in the tuple)
701        'obtype',
702
703        # human-readable docs for this kind of stack object; a string
704        'doc',
705    )
706
707    def __init__(self, name, obtype, doc):
708        assert isinstance(name, str)
709        self.name = name
710
711        assert isinstance(obtype, type) or isinstance(obtype, tuple)
712        if isinstance(obtype, tuple):
713            for contained in obtype:
714                assert isinstance(contained, type)
715        self.obtype = obtype
716
717        assert isinstance(doc, str)
718        self.doc = doc
719
720    def __repr__(self):
721        return self.name
722
723
724pyint = StackObject(
725            name='int',
726            obtype=int,
727            doc="A short (as opposed to long) Python integer object.")
728
729pylong = StackObject(
730             name='long',
731             obtype=int,
732             doc="A long (as opposed to short) Python integer object.")
733
734pyinteger_or_bool = StackObject(
735                        name='int_or_bool',
736                        obtype=(int, int, bool),
737                        doc="A Python integer object (short or long), or "
738                            "a Python bool.")
739
740pybool = StackObject(
741             name='bool',
742             obtype=(bool,),
743             doc="A Python bool object.")
744
745pyfloat = StackObject(
746              name='float',
747              obtype=float,
748              doc="A Python float object.")
749
750pystring = StackObject(
751               name='string',
752               obtype=bytes,
753               doc="A Python (8-bit) string object.")
754
755pybytes = StackObject(
756               name='bytes',
757               obtype=bytes,
758               doc="A Python bytes object.")
759
760pyunicode = StackObject(
761                name='str',
762                obtype=str,
763                doc="A Python (Unicode) string object.")
764
765pynone = StackObject(
766             name="None",
767             obtype=type(None),
768             doc="The Python None object.")
769
770pytuple = StackObject(
771              name="tuple",
772              obtype=tuple,
773              doc="A Python tuple object.")
774
775pylist = StackObject(
776             name="list",
777             obtype=list,
778             doc="A Python list object.")
779
780pydict = StackObject(
781             name="dict",
782             obtype=dict,
783             doc="A Python dict object.")
784
785anyobject = StackObject(
786                name='any',
787                obtype=object,
788                doc="Any kind of object whatsoever.")
789
790markobject = StackObject(
791                 name="mark",
792                 obtype=StackObject,
793                 doc="""'The mark' is a unique object.
794
795                 Opcodes that operate on a variable number of objects
796                 generally don't embed the count of objects in the opcode,
797                 or pull it off the stack.  Instead the MARK opcode is used
798                 to push a special marker object on the stack, and then
799                 some other opcodes grab all the objects from the top of
800                 the stack down to (but not including) the topmost marker
801                 object.
802                 """)
803
804stackslice = StackObject(
805                 name="stackslice",
806                 obtype=StackObject,
807                 doc="""An object representing a contiguous slice of the stack.
808
809                 This is used in conjuction with markobject, to represent all
810                 of the stack following the topmost markobject.  For example,
811                 the POP_MARK opcode changes the stack from
812
813                     [..., markobject, stackslice]
814                 to
815                     [...]
816
817                 No matter how many object are on the stack after the topmost
818                 markobject, POP_MARK gets rid of all of them (including the
819                 topmost markobject too).
820                 """)
821
822##############################################################################
823# Descriptors for pickle opcodes.
824
825class OpcodeInfo(object):
826
827    __slots__ = (
828        # symbolic name of opcode; a string
829        'name',
830
831        # the code used in a bytestream to represent the opcode; a
832        # one-character string
833        'code',
834
835        # If the opcode has an argument embedded in the byte string, an
836        # instance of ArgumentDescriptor specifying its type.  Note that
837        # arg.reader(s) can be used to read and decode the argument from
838        # the bytestream s, and arg.doc documents the format of the raw
839        # argument bytes.  If the opcode doesn't have an argument embedded
840        # in the bytestream, arg should be None.
841        'arg',
842
843        # what the stack looks like before this opcode runs; a list
844        'stack_before',
845
846        # what the stack looks like after this opcode runs; a list
847        'stack_after',
848
849        # the protocol number in which this opcode was introduced; an int
850        'proto',
851
852        # human-readable docs for this opcode; a string
853        'doc',
854    )
855
856    def __init__(self, name, code, arg,
857                 stack_before, stack_after, proto, doc):
858        assert isinstance(name, str)
859        self.name = name
860
861        assert isinstance(code, str)
862        assert len(code) == 1
863        self.code = code
864
865        assert arg is None or isinstance(arg, ArgumentDescriptor)
866        self.arg = arg
867
868        assert isinstance(stack_before, list)
869        for x in stack_before:
870            assert isinstance(x, StackObject)
871        self.stack_before = stack_before
872
873        assert isinstance(stack_after, list)
874        for x in stack_after:
875            assert isinstance(x, StackObject)
876        self.stack_after = stack_after
877
878        assert isinstance(proto, int) and 0 <= proto <= 3
879        self.proto = proto
880
881        assert isinstance(doc, str)
882        self.doc = doc
883
884I = OpcodeInfo
885opcodes = [
886
887    # Ways to spell integers.
888
889    I(name='INT',
890      code='I',
891      arg=decimalnl_short,
892      stack_before=[],
893      stack_after=[pyinteger_or_bool],
894      proto=0,
895      doc="""Push an integer or bool.
896
897      The argument is a newline-terminated decimal literal string.
898
899      The intent may have been that this always fit in a short Python int,
900      but INT can be generated in pickles written on a 64-bit box that
901      require a Python long on a 32-bit box.  The difference between this
902      and LONG then is that INT skips a trailing 'L', and produces a short
903      int whenever possible.
904
905      Another difference is due to that, when bool was introduced as a
906      distinct type in 2.3, builtin names True and False were also added to
907      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
908      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
909      Leading zeroes are never produced for a genuine integer.  The 2.3
910      (and later) unpicklers special-case these and return bool instead;
911      earlier unpicklers ignore the leading "0" and return the int.
912      """),
913
914    I(name='BININT',
915      code='J',
916      arg=int4,
917      stack_before=[],
918      stack_after=[pyint],
919      proto=1,
920      doc="""Push a four-byte signed integer.
921
922      This handles the full range of Python (short) integers on a 32-bit
923      box, directly as binary bytes (1 for the opcode and 4 for the integer).
924      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
925      BININT1 or BININT2 saves space.
926      """),
927
928    I(name='BININT1',
929      code='K',
930      arg=uint1,
931      stack_before=[],
932      stack_after=[pyint],
933      proto=1,
934      doc="""Push a one-byte unsigned integer.
935
936      This is a space optimization for pickling very small non-negative ints,
937      in range(256).
938      """),
939
940    I(name='BININT2',
941      code='M',
942      arg=uint2,
943      stack_before=[],
944      stack_after=[pyint],
945      proto=1,
946      doc="""Push a two-byte unsigned integer.
947
948      This is a space optimization for pickling small positive ints, in
949      range(256, 2**16).  Integers in range(256) can also be pickled via
950      BININT2, but BININT1 instead saves a byte.
951      """),
952
953    I(name='LONG',
954      code='L',
955      arg=decimalnl_long,
956      stack_before=[],
957      stack_after=[pylong],
958      proto=0,
959      doc="""Push a long integer.
960
961      The same as INT, except that the literal ends with 'L', and always
962      unpickles to a Python long.  There doesn't seem a real purpose to the
963      trailing 'L'.
964
965      Note that LONG takes time quadratic in the number of digits when
966      unpickling (this is simply due to the nature of decimal->binary
967      conversion).  Proto 2 added linear-time (in C; still quadratic-time
968      in Python) LONG1 and LONG4 opcodes.
969      """),
970
971    I(name="LONG1",
972      code='\x8a',
973      arg=long1,
974      stack_before=[],
975      stack_after=[pylong],
976      proto=2,
977      doc="""Long integer using one-byte length.
978
979      A more efficient encoding of a Python long; the long1 encoding
980      says it all."""),
981
982    I(name="LONG4",
983      code='\x8b',
984      arg=long4,
985      stack_before=[],
986      stack_after=[pylong],
987      proto=2,
988      doc="""Long integer using found-byte length.
989
990      A more efficient encoding of a Python long; the long4 encoding
991      says it all."""),
992
993    # Ways to spell strings (8-bit, not Unicode).
994
995    I(name='STRING',
996      code='S',
997      arg=stringnl,
998      stack_before=[],
999      stack_after=[pystring],
1000      proto=0,
1001      doc="""Push a Python string object.
1002
1003      The argument is a repr-style string, with bracketing quote characters,
1004      and perhaps embedded escapes.  The argument extends until the next
1005      newline character.  (Actually, they are decoded into a str instance
1006      using the encoding given to the Unpickler constructor. or the default,
1007      'ASCII'.)
1008      """),
1009
1010    I(name='BINSTRING',
1011      code='T',
1012      arg=string4,
1013      stack_before=[],
1014      stack_after=[pystring],
1015      proto=1,
1016      doc="""Push a Python string object.
1017
1018      There are two arguments:  the first is a 4-byte little-endian signed int
1019      giving the number of bytes in the string, and the second is that many
1020      bytes, which are taken literally as the string content.  (Actually,
1021      they are decoded into a str instance using the encoding given to the
1022      Unpickler constructor. or the default, 'ASCII'.)
1023      """),
1024
1025    I(name='SHORT_BINSTRING',
1026      code='U',
1027      arg=string1,
1028      stack_before=[],
1029      stack_after=[pystring],
1030      proto=1,
1031      doc="""Push a Python string object.
1032
1033      There are two arguments:  the first is a 1-byte unsigned int giving
1034      the number of bytes in the string, and the second is that many bytes,
1035      which are taken literally as the string content.  (Actually, they
1036      are decoded into a str instance using the encoding given to the
1037      Unpickler constructor. or the default, 'ASCII'.)
1038      """),
1039
1040    # Bytes (protocol 3 only; older protocols don't support bytes at all)
1041
1042    I(name='BINBYTES',
1043      code='B',
1044      arg=string4,
1045      stack_before=[],
1046      stack_after=[pybytes],
1047      proto=3,
1048      doc="""Push a Python bytes object.
1049
1050      There are two arguments:  the first is a 4-byte little-endian signed int
1051      giving the number of bytes in the string, and the second is that many
1052      bytes, which are taken literally as the bytes content.
1053      """),
1054
1055    I(name='SHORT_BINBYTES',
1056      code='C',
1057      arg=string1,
1058      stack_before=[],
1059      stack_after=[pybytes],
1060      proto=3,
1061      doc="""Push a Python string object.
1062
1063      There are two arguments:  the first is a 1-byte unsigned int giving
1064      the number of bytes in the string, and the second is that many bytes,
1065      which are taken literally as the string content.
1066      """),
1067
1068    # Ways to spell None.
1069
1070    I(name='NONE',
1071      code='N',
1072      arg=None,
1073      stack_before=[],
1074      stack_after=[pynone],
1075      proto=0,
1076      doc="Push None on the stack."),
1077
1078    # Ways to spell bools, starting with proto 2.  See INT for how this was
1079    # done before proto 2.
1080
1081    I(name='NEWTRUE',
1082      code='\x88',
1083      arg=None,
1084      stack_before=[],
1085      stack_after=[pybool],
1086      proto=2,
1087      doc="""True.
1088
1089      Push True onto the stack."""),
1090
1091    I(name='NEWFALSE',
1092      code='\x89',
1093      arg=None,
1094      stack_before=[],
1095      stack_after=[pybool],
1096      proto=2,
1097      doc="""True.
1098
1099      Push False onto the stack."""),
1100
1101    # Ways to spell Unicode strings.
1102
1103    I(name='UNICODE',
1104      code='V',
1105      arg=unicodestringnl,
1106      stack_before=[],
1107      stack_after=[pyunicode],
1108      proto=0,  # this may be pure-text, but it's a later addition
1109      doc="""Push a Python Unicode string object.
1110
1111      The argument is a raw-unicode-escape encoding of a Unicode string,
1112      and so may contain embedded escape sequences.  The argument extends
1113      until the next newline character.
1114      """),
1115
1116    I(name='BINUNICODE',
1117      code='X',
1118      arg=unicodestring4,
1119      stack_before=[],
1120      stack_after=[pyunicode],
1121      proto=1,
1122      doc="""Push a Python Unicode string object.
1123
1124      There are two arguments:  the first is a 4-byte little-endian signed int
1125      giving the number of bytes in the string.  The second is that many
1126      bytes, and is the UTF-8 encoding of the Unicode string.
1127      """),
1128
1129    # Ways to spell floats.
1130
1131    I(name='FLOAT',
1132      code='F',
1133      arg=floatnl,
1134      stack_before=[],
1135      stack_after=[pyfloat],
1136      proto=0,
1137      doc="""Newline-terminated decimal float literal.
1138
1139      The argument is repr(a_float), and in general requires 17 significant
1140      digits for roundtrip conversion to be an identity (this is so for
1141      IEEE-754 double precision values, which is what Python float maps to
1142      on most boxes).
1143
1144      In general, FLOAT cannot be used to transport infinities, NaNs, or
1145      minus zero across boxes (or even on a single box, if the platform C
1146      library can't read the strings it produces for such things -- Windows
1147      is like that), but may do less damage than BINFLOAT on boxes with
1148      greater precision or dynamic range than IEEE-754 double.
1149      """),
1150
1151    I(name='BINFLOAT',
1152      code='G',
1153      arg=float8,
1154      stack_before=[],
1155      stack_after=[pyfloat],
1156      proto=1,
1157      doc="""Float stored in binary form, with 8 bytes of data.
1158
1159      This generally requires less than half the space of FLOAT encoding.
1160      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1161      minus zero, raises an exception if the exponent exceeds the range of
1162      an IEEE-754 double, and retains no more than 53 bits of precision (if
1163      there are more than that, "add a half and chop" rounding is used to
1164      cut it back to 53 significant bits).
1165      """),
1166
1167    # Ways to build lists.
1168
1169    I(name='EMPTY_LIST',
1170      code=']',
1171      arg=None,
1172      stack_before=[],
1173      stack_after=[pylist],
1174      proto=1,
1175      doc="Push an empty list."),
1176
1177    I(name='APPEND',
1178      code='a',
1179      arg=None,
1180      stack_before=[pylist, anyobject],
1181      stack_after=[pylist],
1182      proto=0,
1183      doc="""Append an object to a list.
1184
1185      Stack before:  ... pylist anyobject
1186      Stack after:   ... pylist+[anyobject]
1187
1188      although pylist is really extended in-place.
1189      """),
1190
1191    I(name='APPENDS',
1192      code='e',
1193      arg=None,
1194      stack_before=[pylist, markobject, stackslice],
1195      stack_after=[pylist],
1196      proto=1,
1197      doc="""Extend a list by a slice of stack objects.
1198
1199      Stack before:  ... pylist markobject stackslice
1200      Stack after:   ... pylist+stackslice
1201
1202      although pylist is really extended in-place.
1203      """),
1204
1205    I(name='LIST',
1206      code='l',
1207      arg=None,
1208      stack_before=[markobject, stackslice],
1209      stack_after=[pylist],
1210      proto=0,
1211      doc="""Build a list out of the topmost stack slice, after markobject.
1212
1213      All the stack entries following the topmost markobject are placed into
1214      a single Python list, which single list object replaces all of the
1215      stack from the topmost markobject onward.  For example,
1216
1217      Stack before: ... markobject 1 2 3 'abc'
1218      Stack after:  ... [1, 2, 3, 'abc']
1219      """),
1220
1221    # Ways to build tuples.
1222
1223    I(name='EMPTY_TUPLE',
1224      code=')',
1225      arg=None,
1226      stack_before=[],
1227      stack_after=[pytuple],
1228      proto=1,
1229      doc="Push an empty tuple."),
1230
1231    I(name='TUPLE',
1232      code='t',
1233      arg=None,
1234      stack_before=[markobject, stackslice],
1235      stack_after=[pytuple],
1236      proto=0,
1237      doc="""Build a tuple out of the topmost stack slice, after markobject.
1238
1239      All the stack entries following the topmost markobject are placed into
1240      a single Python tuple, which single tuple object replaces all of the
1241      stack from the topmost markobject onward.  For example,
1242
1243      Stack before: ... markobject 1 2 3 'abc'
1244      Stack after:  ... (1, 2, 3, 'abc')
1245      """),
1246
1247    I(name='TUPLE1',
1248      code='\x85',
1249      arg=None,
1250      stack_before=[anyobject],
1251      stack_after=[pytuple],
1252      proto=2,
1253      doc="""Build a one-tuple out of the topmost item on the stack.
1254
1255      This code pops one value off the stack and pushes a tuple of
1256      length 1 whose one item is that value back onto it.  In other
1257      words:
1258
1259          stack[-1] = tuple(stack[-1:])
1260      """),
1261
1262    I(name='TUPLE2',
1263      code='\x86',
1264      arg=None,
1265      stack_before=[anyobject, anyobject],
1266      stack_after=[pytuple],
1267      proto=2,
1268      doc="""Build a two-tuple out of the top two items on the stack.
1269
1270      This code pops two values off the stack and pushes a tuple of
1271      length 2 whose items are those values back onto it.  In other
1272      words:
1273
1274          stack[-2:] = [tuple(stack[-2:])]
1275      """),
1276
1277    I(name='TUPLE3',
1278      code='\x87',
1279      arg=None,
1280      stack_before=[anyobject, anyobject, anyobject],
1281      stack_after=[pytuple],
1282      proto=2,
1283      doc="""Build a three-tuple out of the top three items on the stack.
1284
1285      This code pops three values off the stack and pushes a tuple of
1286      length 3 whose items are those values back onto it.  In other
1287      words:
1288
1289          stack[-3:] = [tuple(stack[-3:])]
1290      """),
1291
1292    # Ways to build dicts.
1293
1294    I(name='EMPTY_DICT',
1295      code='}',
1296      arg=None,
1297      stack_before=[],
1298      stack_after=[pydict],
1299      proto=1,
1300      doc="Push an empty dict."),
1301
1302    I(name='DICT',
1303      code='d',
1304      arg=None,
1305      stack_before=[markobject, stackslice],
1306      stack_after=[pydict],
1307      proto=0,
1308      doc="""Build a dict out of the topmost stack slice, after markobject.
1309
1310      All the stack entries following the topmost markobject are placed into
1311      a single Python dict, which single dict object replaces all of the
1312      stack from the topmost markobject onward.  The stack slice alternates
1313      key, value, key, value, ....  For example,
1314
1315      Stack before: ... markobject 1 2 3 'abc'
1316      Stack after:  ... {1: 2, 3: 'abc'}
1317      """),
1318
1319    I(name='SETITEM',
1320      code='s',
1321      arg=None,
1322      stack_before=[pydict, anyobject, anyobject],
1323      stack_after=[pydict],
1324      proto=0,
1325      doc="""Add a key+value pair to an existing dict.
1326
1327      Stack before:  ... pydict key value
1328      Stack after:   ... pydict
1329
1330      where pydict has been modified via pydict[key] = value.
1331      """),
1332
1333    I(name='SETITEMS',
1334      code='u',
1335      arg=None,
1336      stack_before=[pydict, markobject, stackslice],
1337      stack_after=[pydict],
1338      proto=1,
1339      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1340
1341      The slice of the stack following the topmost markobject is taken as
1342      an alternating sequence of keys and values, added to the dict
1343      immediately under the topmost markobject.  Everything at and after the
1344      topmost markobject is popped, leaving the mutated dict at the top
1345      of the stack.
1346
1347      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1348      Stack after:   ... pydict
1349
1350      where pydict has been modified via pydict[key_i] = value_i for i in
1351      1, 2, ..., n, and in that order.
1352      """),
1353
1354    # Stack manipulation.
1355
1356    I(name='POP',
1357      code='0',
1358      arg=None,
1359      stack_before=[anyobject],
1360      stack_after=[],
1361      proto=0,
1362      doc="Discard the top stack item, shrinking the stack by one item."),
1363
1364    I(name='DUP',
1365      code='2',
1366      arg=None,
1367      stack_before=[anyobject],
1368      stack_after=[anyobject, anyobject],
1369      proto=0,
1370      doc="Push the top stack item onto the stack again, duplicating it."),
1371
1372    I(name='MARK',
1373      code='(',
1374      arg=None,
1375      stack_before=[],
1376      stack_after=[markobject],
1377      proto=0,
1378      doc="""Push markobject onto the stack.
1379
1380      markobject is a unique object, used by other opcodes to identify a
1381      region of the stack containing a variable number of objects for them
1382      to work on.  See markobject.doc for more detail.
1383      """),
1384
1385    I(name='POP_MARK',
1386      code='1',
1387      arg=None,
1388      stack_before=[markobject, stackslice],
1389      stack_after=[],
1390      proto=1,
1391      doc="""Pop all the stack objects at and above the topmost markobject.
1392
1393      When an opcode using a variable number of stack objects is done,
1394      POP_MARK is used to remove those objects, and to remove the markobject
1395      that delimited their starting position on the stack.
1396      """),
1397
1398    # Memo manipulation.  There are really only two operations (get and put),
1399    # each in all-text, "short binary", and "long binary" flavors.
1400
1401    I(name='GET',
1402      code='g',
1403      arg=decimalnl_short,
1404      stack_before=[],
1405      stack_after=[anyobject],
1406      proto=0,
1407      doc="""Read an object from the memo and push it on the stack.
1408
1409      The index of the memo object to push is given by the newline-teriminated
1410      decimal string following.  BINGET and LONG_BINGET are space-optimized
1411      versions.
1412      """),
1413
1414    I(name='BINGET',
1415      code='h',
1416      arg=uint1,
1417      stack_before=[],
1418      stack_after=[anyobject],
1419      proto=1,
1420      doc="""Read an object from the memo and push it on the stack.
1421
1422      The index of the memo object to push is given by the 1-byte unsigned
1423      integer following.
1424      """),
1425
1426    I(name='LONG_BINGET',
1427      code='j',
1428      arg=int4,
1429      stack_before=[],
1430      stack_after=[anyobject],
1431      proto=1,
1432      doc="""Read an object from the memo and push it on the stack.
1433
1434      The index of the memo object to push is given by the 4-byte signed
1435      little-endian integer following.
1436      """),
1437
1438    I(name='PUT',
1439      code='p',
1440      arg=decimalnl_short,
1441      stack_before=[],
1442      stack_after=[],
1443      proto=0,
1444      doc="""Store the stack top into the memo.  The stack is not popped.
1445
1446      The index of the memo location to write into is given by the newline-
1447      terminated decimal string following.  BINPUT and LONG_BINPUT are
1448      space-optimized versions.
1449      """),
1450
1451    I(name='BINPUT',
1452      code='q',
1453      arg=uint1,
1454      stack_before=[],
1455      stack_after=[],
1456      proto=1,
1457      doc="""Store the stack top into the memo.  The stack is not popped.
1458
1459      The index of the memo location to write into is given by the 1-byte
1460      unsigned integer following.
1461      """),
1462
1463    I(name='LONG_BINPUT',
1464      code='r',
1465      arg=int4,
1466      stack_before=[],
1467      stack_after=[],
1468      proto=1,
1469      doc="""Store the stack top into the memo.  The stack is not popped.
1470
1471      The index of the memo location to write into is given by the 4-byte
1472      signed little-endian integer following.
1473      """),
1474
1475    # Access the extension registry (predefined objects).  Akin to the GET
1476    # family.
1477
1478    I(name='EXT1',
1479      code='\x82',
1480      arg=uint1,
1481      stack_before=[],
1482      stack_after=[anyobject],
1483      proto=2,
1484      doc="""Extension code.
1485
1486      This code and the similar EXT2 and EXT4 allow using a registry
1487      of popular objects that are pickled by name, typically classes.
1488      It is envisioned that through a global negotiation and
1489      registration process, third parties can set up a mapping between
1490      ints and object names.
1491
1492      In order to guarantee pickle interchangeability, the extension
1493      code registry ought to be global, although a range of codes may
1494      be reserved for private use.
1495
1496      EXT1 has a 1-byte integer argument.  This is used to index into the
1497      extension registry, and the object at that index is pushed on the stack.
1498      """),
1499
1500    I(name='EXT2',
1501      code='\x83',
1502      arg=uint2,
1503      stack_before=[],
1504      stack_after=[anyobject],
1505      proto=2,
1506      doc="""Extension code.
1507
1508      See EXT1.  EXT2 has a two-byte integer argument.
1509      """),
1510
1511    I(name='EXT4',
1512      code='\x84',
1513      arg=int4,
1514      stack_before=[],
1515      stack_after=[anyobject],
1516      proto=2,
1517      doc="""Extension code.
1518
1519      See EXT1.  EXT4 has a four-byte integer argument.
1520      """),
1521
1522    # Push a class object, or module function, on the stack, via its module
1523    # and name.
1524
1525    I(name='GLOBAL',
1526      code='c',
1527      arg=stringnl_noescape_pair,
1528      stack_before=[],
1529      stack_after=[anyobject],
1530      proto=0,
1531      doc="""Push a global object (module.attr) on the stack.
1532
1533      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1534      taken as a module name, and the second as a class name.  The class
1535      object module.class is pushed on the stack.  More accurately, the
1536      object returned by self.find_class(module, class) is pushed on the
1537      stack, so unpickling subclasses can override this form of lookup.
1538      """),
1539
1540    # Ways to build objects of classes pickle doesn't know about directly
1541    # (user-defined classes).  I despair of documenting this accurately
1542    # and comprehensibly -- you really have to read the pickle code to
1543    # find all the special cases.
1544
1545    I(name='REDUCE',
1546      code='R',
1547      arg=None,
1548      stack_before=[anyobject, anyobject],
1549      stack_after=[anyobject],
1550      proto=0,
1551      doc="""Push an object built from a callable and an argument tuple.
1552
1553      The opcode is named to remind of the __reduce__() method.
1554
1555      Stack before: ... callable pytuple
1556      Stack after:  ... callable(*pytuple)
1557
1558      The callable and the argument tuple are the first two items returned
1559      by a __reduce__ method.  Applying the callable to the argtuple is
1560      supposed to reproduce the original object, or at least get it started.
1561      If the __reduce__ method returns a 3-tuple, the last component is an
1562      argument to be passed to the object's __setstate__, and then the REDUCE
1563      opcode is followed by code to create setstate's argument, and then a
1564      BUILD opcode to apply  __setstate__ to that argument.
1565
1566      If not isinstance(callable, type), REDUCE complains unless the
1567      callable has been registered with the copyreg module's
1568      safe_constructors dict, or the callable has a magic
1569      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1570      why it does this, but I've sure seen this complaint often enough when
1571      I didn't want to <wink>.
1572      """),
1573
1574    I(name='BUILD',
1575      code='b',
1576      arg=None,
1577      stack_before=[anyobject, anyobject],
1578      stack_after=[anyobject],
1579      proto=0,
1580      doc="""Finish building an object, via __setstate__ or dict update.
1581
1582      Stack before: ... anyobject argument
1583      Stack after:  ... anyobject
1584
1585      where anyobject may have been mutated, as follows:
1586
1587      If the object has a __setstate__ method,
1588
1589          anyobject.__setstate__(argument)
1590
1591      is called.
1592
1593      Else the argument must be a dict, the object must have a __dict__, and
1594      the object is updated via
1595
1596          anyobject.__dict__.update(argument)
1597      """),
1598
1599    I(name='INST',
1600      code='i',
1601      arg=stringnl_noescape_pair,
1602      stack_before=[markobject, stackslice],
1603      stack_after=[anyobject],
1604      proto=0,
1605      doc="""Build a class instance.
1606
1607      This is the protocol 0 version of protocol 1's OBJ opcode.
1608      INST is followed by two newline-terminated strings, giving a
1609      module and class name, just as for the GLOBAL opcode (and see
1610      GLOBAL for more details about that).  self.find_class(module, name)
1611      is used to get a class object.
1612
1613      In addition, all the objects on the stack following the topmost
1614      markobject are gathered into a tuple and popped (along with the
1615      topmost markobject), just as for the TUPLE opcode.
1616
1617      Now it gets complicated.  If all of these are true:
1618
1619        + The argtuple is empty (markobject was at the top of the stack
1620          at the start).
1621
1622        + The class object does not have a __getinitargs__ attribute.
1623
1624      then we want to create an old-style class instance without invoking
1625      its __init__() method (pickle has waffled on this over the years; not
1626      calling __init__() is current wisdom).  In this case, an instance of
1627      an old-style dummy class is created, and then we try to rebind its
1628      __class__ attribute to the desired class object.  If this succeeds,
1629      the new instance object is pushed on the stack, and we're done.
1630
1631      Else (the argtuple is not empty, it's not an old-style class object,
1632      or the class object does have a __getinitargs__ attribute), the code
1633      first insists that the class object have a __safe_for_unpickling__
1634      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1635      it doesn't matter whether this attribute has a true or false value, it
1636      only matters whether it exists (XXX this is a bug).  If
1637      __safe_for_unpickling__ doesn't exist, UnpicklingError is raised.
1638
1639      Else (the class object does have a __safe_for_unpickling__ attr),
1640      the class object obtained from INST's arguments is applied to the
1641      argtuple obtained from the stack, and the resulting instance object
1642      is pushed on the stack.
1643
1644      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1645      """),
1646
1647    I(name='OBJ',
1648      code='o',
1649      arg=None,
1650      stack_before=[markobject, anyobject, stackslice],
1651      stack_after=[anyobject],
1652      proto=1,
1653      doc="""Build a class instance.
1654
1655      This is the protocol 1 version of protocol 0's INST opcode, and is
1656      very much like it.  The major difference is that the class object
1657      is taken off the stack, allowing it to be retrieved from the memo
1658      repeatedly if several instances of the same class are created.  This
1659      can be much more efficient (in both time and space) than repeatedly
1660      embedding the module and class names in INST opcodes.
1661
1662      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1663      the class object is taken off the stack, immediately above the
1664      topmost markobject:
1665
1666      Stack before: ... markobject classobject stackslice
1667      Stack after:  ... new_instance_object
1668
1669      As for INST, the remainder of the stack above the markobject is
1670      gathered into an argument tuple, and then the logic seems identical,
1671      except that no __safe_for_unpickling__ check is done (XXX this is
1672      a bug).  See INST for the gory details.
1673
1674      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1675      get the class object.  That was always the intent; the implementations
1676      had diverged for accidental reasons.
1677      """),
1678
1679    I(name='NEWOBJ',
1680      code='\x81',
1681      arg=None,
1682      stack_before=[anyobject, anyobject],
1683      stack_after=[anyobject],
1684      proto=2,
1685      doc="""Build an object instance.
1686
1687      The stack before should be thought of as containing a class
1688      object followed by an argument tuple (the tuple being the stack
1689      top).  Call these cls and args.  They are popped off the stack,
1690      and the value returned by cls.__new__(cls, *args) is pushed back
1691      onto the stack.
1692      """),
1693
1694    # Machine control.
1695
1696    I(name='PROTO',
1697      code='\x80',
1698      arg=uint1,
1699      stack_before=[],
1700      stack_after=[],
1701      proto=2,
1702      doc="""Protocol version indicator.
1703
1704      For protocol 2 and above, a pickle must start with this opcode.
1705      The argument is the protocol version, an int in range(2, 256).
1706      """),
1707
1708    I(name='STOP',
1709      code='.',
1710      arg=None,
1711      stack_before=[anyobject],
1712      stack_after=[],
1713      proto=0,
1714      doc="""Stop the unpickling machine.
1715
1716      Every pickle ends with this opcode.  The object at the top of the stack
1717      is popped, and that's the result of unpickling.  The stack should be
1718      empty then.
1719      """),
1720
1721    # Ways to deal with persistent IDs.
1722
1723    I(name='PERSID',
1724      code='P',
1725      arg=stringnl_noescape,
1726      stack_before=[],
1727      stack_after=[anyobject],
1728      proto=0,
1729      doc="""Push an object identified by a persistent ID.
1730
1731      The pickle module doesn't define what a persistent ID means.  PERSID's
1732      argument is a newline-terminated str-style (no embedded escapes, no
1733      bracketing quote characters) string, which *is* "the persistent ID".
1734      The unpickler passes this string to self.persistent_load().  Whatever
1735      object that returns is pushed on the stack.  There is no implementation
1736      of persistent_load() in Python's unpickler:  it must be supplied by an
1737      unpickler subclass.
1738      """),
1739
1740    I(name='BINPERSID',
1741      code='Q',
1742      arg=None,
1743      stack_before=[anyobject],
1744      stack_after=[anyobject],
1745      proto=1,
1746      doc="""Push an object identified by a persistent ID.
1747
1748      Like PERSID, except the persistent ID is popped off the stack (instead
1749      of being a string embedded in the opcode bytestream).  The persistent
1750      ID is passed to self.persistent_load(), and whatever object that
1751      returns is pushed on the stack.  See PERSID for more detail.
1752      """),
1753]
1754del I
1755
1756# Verify uniqueness of .name and .code members.
1757name2i = {}
1758code2i = {}
1759
1760for i, d in enumerate(opcodes):
1761    if d.name in name2i:
1762        raise ValueError("repeated name %r at indices %d and %d" %
1763                         (d.name, name2i[d.name], i))
1764    if d.code in code2i:
1765        raise ValueError("repeated code %r at indices %d and %d" %
1766                         (d.code, code2i[d.code], i))
1767
1768    name2i[d.name] = i
1769    code2i[d.code] = i
1770
1771del name2i, code2i, i, d
1772
1773##############################################################################
1774# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1775# Also ensure we've got the same stuff as pickle.py, although the
1776# introspection here is dicey.
1777
1778code2op = {}
1779for d in opcodes:
1780    code2op[d.code] = d
1781del d
1782
1783def assure_pickle_consistency(verbose=False):
1784
1785    copy = code2op.copy()
1786    for name in pickle.__all__:
1787        if not re.match("[A-Z][A-Z0-9_]+$", name):
1788            if verbose:
1789                print("skipping %r: it doesn't look like an opcode name" % name)
1790            continue
1791        picklecode = getattr(pickle, name)
1792        if not isinstance(picklecode, bytes) or len(picklecode) != 1:
1793            if verbose:
1794                print(("skipping %r: value %r doesn't look like a pickle "
1795                       "code" % (name, picklecode)))
1796            continue
1797        picklecode = picklecode.decode("latin-1")
1798        if picklecode in copy:
1799            if verbose:
1800                print("checking name %r w/ code %r for consistency" % (
1801                      name, picklecode))
1802            d = copy[picklecode]
1803            if d.name != name:
1804                raise ValueError("for pickle code %r, pickle.py uses name %r "
1805                                 "but we're using name %r" % (picklecode,
1806                                                              name,
1807                                                              d.name))
1808            # Forget this one.  Any left over in copy at the end are a problem
1809            # of a different kind.
1810            del copy[picklecode]
1811        else:
1812            raise ValueError("pickle.py appears to have a pickle opcode with "
1813                             "name %r and code %r, but we don't" %
1814                             (name, picklecode))
1815    if copy:
1816        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1817        for code, d in copy.items():
1818            msg.append("    name %r with code %r" % (d.name, code))
1819        raise ValueError("\n".join(msg))
1820
1821assure_pickle_consistency()
1822del assure_pickle_consistency
1823
1824##############################################################################
1825# A pickle opcode generator.
1826
1827def genops(pickle):
1828    """Generate all the opcodes in a pickle.
1829
1830    'pickle' is a file-like object, or string, containing the pickle.
1831
1832    Each opcode in the pickle is generated, from the current pickle position,
1833    stopping after a STOP opcode is delivered.  A triple is generated for
1834    each opcode:
1835
1836        opcode, arg, pos
1837
1838    opcode is an OpcodeInfo record, describing the current opcode.
1839
1840    If the opcode has an argument embedded in the pickle, arg is its decoded
1841    value, as a Python object.  If the opcode doesn't have an argument, arg
1842    is None.
1843
1844    If the pickle has a tell() method, pos was the value of pickle.tell()
1845    before reading the current opcode.  If the pickle is a bytes object,
1846    it's wrapped in a BytesIO object, and the latter's tell() result is
1847    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1848    to query its current position) pos is None.
1849    """
1850
1851    if isinstance(pickle, bytes_types):
1852        import io
1853        pickle = io.BytesIO(pickle)
1854
1855    if hasattr(pickle, "tell"):
1856        getpos = pickle.tell
1857    else:
1858        getpos = lambda: None
1859
1860    while True:
1861        pos = getpos()
1862        code = pickle.read(1)
1863        opcode = code2op.get(code.decode("latin-1"))
1864        if opcode is None:
1865            if code == b"":
1866                raise ValueError("pickle exhausted before seeing STOP")
1867            else:
1868                raise ValueError("at position %s, opcode %r unknown" % (
1869                                 pos is None and "<unknown>" or pos,
1870                                 code))
1871        if opcode.arg is None:
1872            arg = None
1873        else:
1874            arg = opcode.arg.reader(pickle)
1875        yield opcode, arg, pos
1876        if code == b'.':
1877            assert opcode.name == 'STOP'
1878            break
1879
1880##############################################################################
1881# A pickle optimizer.
1882
1883def optimize(p):
1884    'Optimize a pickle string by removing unused PUT opcodes'
1885    gets = set()            # set of args used by a GET opcode
1886    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
1887    prevpos = None          # set to pos if previous opcode was a PUT
1888    for opcode, arg, pos in genops(p):
1889        if prevpos is not None:
1890            puts.append((prevarg, prevpos, pos))
1891            prevpos = None
1892        if 'PUT' in opcode.name:
1893            prevarg, prevpos = arg, pos
1894        elif 'GET' in opcode.name:
1895            gets.add(arg)
1896
1897    # Copy the pickle string except for PUTS without a corresponding GET
1898    s = []
1899    i = 0
1900    for arg, start, stop in puts:
1901        j = stop if (arg in gets) else start
1902        s.append(p[i:j])
1903        i = stop
1904    s.append(p[i:])
1905    return b''.join(s)
1906
1907##############################################################################
1908# A symbolic pickle disassembler.
1909
1910def dis(pickle, out=None, memo=None, indentlevel=4):
1911    """Produce a symbolic disassembly of a pickle.
1912
1913    'pickle' is a file-like object, or string, containing a (at least one)
1914    pickle.  The pickle is disassembled from the current position, through
1915    the first STOP opcode encountered.
1916
1917    Optional arg 'out' is a file-like object to which the disassembly is
1918    printed.  It defaults to sys.stdout.
1919
1920    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1921    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1922    Passing the same memo object to another dis() call then allows disassembly
1923    to proceed across multiple pickles that were all created by the same
1924    pickler with the same memo.  Ordinarily you don't need to worry about this.
1925
1926    Optional arg indentlevel is the number of blanks by which to indent
1927    a new MARK level.  It defaults to 4.
1928
1929    In addition to printing the disassembly, some sanity checks are made:
1930
1931    + All embedded opcode arguments "make sense".
1932
1933    + Explicit and implicit pop operations have enough items on the stack.
1934
1935    + When an opcode implicitly refers to a markobject, a markobject is
1936      actually on the stack.
1937
1938    + A memo entry isn't referenced before it's defined.
1939
1940    + The markobject isn't stored in the memo.
1941
1942    + A memo entry isn't redefined.
1943    """
1944
1945    # Most of the hair here is for sanity checks, but most of it is needed
1946    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1947    # (which in turn is needed to indent MARK blocks correctly).
1948
1949    stack = []          # crude emulation of unpickler stack
1950    if memo is None:
1951        memo = {}       # crude emulation of unpicker memo
1952    maxproto = -1       # max protocol number seen
1953    markstack = []      # bytecode positions of MARK opcodes
1954    indentchunk = ' ' * indentlevel
1955    errormsg = None
1956    for opcode, arg, pos in genops(pickle):
1957        if pos is not None:
1958            print("%5d:" % pos, end=' ', file=out)
1959
1960        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1961                              indentchunk * len(markstack),
1962                              opcode.name)
1963
1964        maxproto = max(maxproto, opcode.proto)
1965        before = opcode.stack_before    # don't mutate
1966        after = opcode.stack_after      # don't mutate
1967        numtopop = len(before)
1968
1969        # See whether a MARK should be popped.
1970        markmsg = None
1971        if markobject in before or (opcode.name == "POP" and
1972                                    stack and
1973                                    stack[-1] is markobject):
1974            assert markobject not in after
1975            if __debug__:
1976                if markobject in before:
1977                    assert before[-1] is stackslice
1978            if markstack:
1979                markpos = markstack.pop()
1980                if markpos is None:
1981                    markmsg = "(MARK at unknown opcode offset)"
1982                else:
1983                    markmsg = "(MARK at %d)" % markpos
1984                # Pop everything at and after the topmost markobject.
1985                while stack[-1] is not markobject:
1986                    stack.pop()
1987                stack.pop()
1988                # Stop later code from popping too much.
1989                try:
1990                    numtopop = before.index(markobject)
1991                except ValueError:
1992                    assert opcode.name == "POP"
1993                    numtopop = 0
1994            else:
1995                errormsg = markmsg = "no MARK exists on stack"
1996
1997        # Check for correct memo usage.
1998        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1999            assert arg is not None
2000            if arg in memo:
2001                errormsg = "memo key %r already defined" % arg
2002            elif not stack:
2003                errormsg = "stack is empty -- can't store into memo"
2004            elif stack[-1] is markobject:
2005                errormsg = "can't store markobject in the memo"
2006            else:
2007                memo[arg] = stack[-1]
2008
2009        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
2010            if arg in memo:
2011                assert len(after) == 1
2012                after = [memo[arg]]     # for better stack emulation
2013            else:
2014                errormsg = "memo key %r has never been stored into" % arg
2015
2016        if arg is not None or markmsg:
2017            # make a mild effort to align arguments
2018            line += ' ' * (10 - len(opcode.name))
2019            if arg is not None:
2020                line += ' ' + repr(arg)
2021            if markmsg:
2022                line += ' ' + markmsg
2023        print(line, file=out)
2024
2025        if errormsg:
2026            # Note that we delayed complaining until the offending opcode
2027            # was printed.
2028            raise ValueError(errormsg)
2029
2030        # Emulate the stack effects.
2031        if len(stack) < numtopop:
2032            raise ValueError("tries to pop %d items from stack with "
2033                             "only %d items" % (numtopop, len(stack)))
2034        if numtopop:
2035            del stack[-numtopop:]
2036        if markobject in after:
2037            assert markobject not in before
2038            markstack.append(pos)
2039
2040        stack.extend(after)
2041
2042    print("highest protocol among opcodes =", maxproto, file=out)
2043    if stack:
2044        raise ValueError("stack not empty after STOP: %r" % stack)
2045
2046# For use in the doctest, simply as an example of a class to pickle.
2047class _Example:
2048    def __init__(self, value):
2049        self.value = value
2050
2051_dis_test = r"""
2052>>> import pickle
2053>>> x = [1, 2, (3, 4), {b'abc': "def"}]
2054>>> pkl0 = pickle.dumps(x, 0)
2055>>> dis(pkl0)
2056    0: (    MARK
2057    1: l        LIST       (MARK at 0)
2058    2: p    PUT        0
2059    5: L    LONG       1
2060    9: a    APPEND
2061   10: L    LONG       2
2062   14: a    APPEND
2063   15: (    MARK
2064   16: L        LONG       3
2065   20: L        LONG       4
2066   24: t        TUPLE      (MARK at 15)
2067   25: p    PUT        1
2068   28: a    APPEND
2069   29: (    MARK
2070   30: d        DICT       (MARK at 29)
2071   31: p    PUT        2
2072   34: c    GLOBAL     '__builtin__ bytes'
2073   53: p    PUT        3
2074   56: (    MARK
2075   57: (        MARK
2076   58: l            LIST       (MARK at 57)
2077   59: p        PUT        4
2078   62: L        LONG       97
2079   67: a        APPEND
2080   68: L        LONG       98
2081   73: a        APPEND
2082   74: L        LONG       99
2083   79: a        APPEND
2084   80: t        TUPLE      (MARK at 56)
2085   81: p    PUT        5
2086   84: R    REDUCE
2087   85: p    PUT        6
2088   88: V    UNICODE    'def'
2089   93: p    PUT        7
2090   96: s    SETITEM
2091   97: a    APPEND
2092   98: .    STOP
2093highest protocol among opcodes = 0
2094
2095Try again with a "binary" pickle.
2096
2097>>> pkl1 = pickle.dumps(x, 1)
2098>>> dis(pkl1)
2099    0: ]    EMPTY_LIST
2100    1: q    BINPUT     0
2101    3: (    MARK
2102    4: K        BININT1    1
2103    6: K        BININT1    2
2104    8: (        MARK
2105    9: K            BININT1    3
2106   11: K            BININT1    4
2107   13: t            TUPLE      (MARK at 8)
2108   14: q        BINPUT     1
2109   16: }        EMPTY_DICT
2110   17: q        BINPUT     2
2111   19: c        GLOBAL     '__builtin__ bytes'
2112   38: q        BINPUT     3
2113   40: (        MARK
2114   41: ]            EMPTY_LIST
2115   42: q            BINPUT     4
2116   44: (            MARK
2117   45: K                BININT1    97
2118   47: K                BININT1    98
2119   49: K                BININT1    99
2120   51: e                APPENDS    (MARK at 44)
2121   52: t            TUPLE      (MARK at 40)
2122   53: q        BINPUT     5
2123   55: R        REDUCE
2124   56: q        BINPUT     6
2125   58: X        BINUNICODE 'def'
2126   66: q        BINPUT     7
2127   68: s        SETITEM
2128   69: e        APPENDS    (MARK at 3)
2129   70: .    STOP
2130highest protocol among opcodes = 1
2131
2132Exercise the INST/OBJ/BUILD family.
2133
2134>>> import pickletools
2135>>> dis(pickle.dumps(pickletools.dis, 0))
2136    0: c    GLOBAL     'pickletools dis'
2137   17: p    PUT        0
2138   20: .    STOP
2139highest protocol among opcodes = 0
2140
2141>>> from pickletools import _Example
2142>>> x = [_Example(42)] * 2
2143>>> dis(pickle.dumps(x, 0))
2144    0: (    MARK
2145    1: l        LIST       (MARK at 0)
2146    2: p    PUT        0
2147    5: c    GLOBAL     'copy_reg _reconstructor'
2148   30: p    PUT        1
2149   33: (    MARK
2150   34: c        GLOBAL     'pickletools _Example'
2151   56: p        PUT        2
2152   59: c        GLOBAL     '__builtin__ object'
2153   79: p        PUT        3
2154   82: N        NONE
2155   83: t        TUPLE      (MARK at 33)
2156   84: p    PUT        4
2157   87: R    REDUCE
2158   88: p    PUT        5
2159   91: (    MARK
2160   92: d        DICT       (MARK at 91)
2161   93: p    PUT        6
2162   96: V    UNICODE    'value'
2163  103: p    PUT        7
2164  106: L    LONG       42
2165  111: s    SETITEM
2166  112: b    BUILD
2167  113: a    APPEND
2168  114: g    GET        5
2169  117: a    APPEND
2170  118: .    STOP
2171highest protocol among opcodes = 0
2172
2173>>> dis(pickle.dumps(x, 1))
2174    0: ]    EMPTY_LIST
2175    1: q    BINPUT     0
2176    3: (    MARK
2177    4: c        GLOBAL     'copy_reg _reconstructor'
2178   29: q        BINPUT     1
2179   31: (        MARK
2180   32: c            GLOBAL     'pickletools _Example'
2181   54: q            BINPUT     2
2182   56: c            GLOBAL     '__builtin__ object'
2183   76: q            BINPUT     3
2184   78: N            NONE
2185   79: t            TUPLE      (MARK at 31)
2186   80: q        BINPUT     4
2187   82: R        REDUCE
2188   83: q        BINPUT     5
2189   85: }        EMPTY_DICT
2190   86: q        BINPUT     6
2191   88: X        BINUNICODE 'value'
2192   98: q        BINPUT     7
2193  100: K        BININT1    42
2194  102: s        SETITEM
2195  103: b        BUILD
2196  104: h        BINGET     5
2197  106: e        APPENDS    (MARK at 3)
2198  107: .    STOP
2199highest protocol among opcodes = 1
2200
2201Try "the canonical" recursive-object test.
2202
2203>>> L = []
2204>>> T = L,
2205>>> L.append(T)
2206>>> L[0] is T
2207True
2208>>> T[0] is L
2209True
2210>>> L[0][0] is L
2211True
2212>>> T[0][0] is T
2213True
2214>>> dis(pickle.dumps(L, 0))
2215    0: (    MARK
2216    1: l        LIST       (MARK at 0)
2217    2: p    PUT        0
2218    5: (    MARK
2219    6: g        GET        0
2220    9: t        TUPLE      (MARK at 5)
2221   10: p    PUT        1
2222   13: a    APPEND
2223   14: .    STOP
2224highest protocol among opcodes = 0
2225
2226>>> dis(pickle.dumps(L, 1))
2227    0: ]    EMPTY_LIST
2228    1: q    BINPUT     0
2229    3: (    MARK
2230    4: h        BINGET     0
2231    6: t        TUPLE      (MARK at 3)
2232    7: q    BINPUT     1
2233    9: a    APPEND
2234   10: .    STOP
2235highest protocol among opcodes = 1
2236
2237Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2238has to emulate the stack in order to realize that the POP opcode at 16 gets
2239rid of the MARK at 0.
2240
2241>>> dis(pickle.dumps(T, 0))
2242    0: (    MARK
2243    1: (        MARK
2244    2: l            LIST       (MARK at 1)
2245    3: p        PUT        0
2246    6: (        MARK
2247    7: g            GET        0
2248   10: t            TUPLE      (MARK at 6)
2249   11: p        PUT        1
2250   14: a        APPEND
2251   15: 0        POP
2252   16: 0        POP        (MARK at 0)
2253   17: g    GET        1
2254   20: .    STOP
2255highest protocol among opcodes = 0
2256
2257>>> dis(pickle.dumps(T, 1))
2258    0: (    MARK
2259    1: ]        EMPTY_LIST
2260    2: q        BINPUT     0
2261    4: (        MARK
2262    5: h            BINGET     0
2263    7: t            TUPLE      (MARK at 4)
2264    8: q        BINPUT     1
2265   10: a        APPEND
2266   11: 1        POP_MARK   (MARK at 0)
2267   12: h    BINGET     1
2268   14: .    STOP
2269highest protocol among opcodes = 1
2270
2271Try protocol 2.
2272
2273>>> dis(pickle.dumps(L, 2))
2274    0: \x80 PROTO      2
2275    2: ]    EMPTY_LIST
2276    3: q    BINPUT     0
2277    5: h    BINGET     0
2278    7: \x85 TUPLE1
2279    8: q    BINPUT     1
2280   10: a    APPEND
2281   11: .    STOP
2282highest protocol among opcodes = 2
2283
2284>>> dis(pickle.dumps(T, 2))
2285    0: \x80 PROTO      2
2286    2: ]    EMPTY_LIST
2287    3: q    BINPUT     0
2288    5: h    BINGET     0
2289    7: \x85 TUPLE1
2290    8: q    BINPUT     1
2291   10: a    APPEND
2292   11: 0    POP
2293   12: h    BINGET     1
2294   14: .    STOP
2295highest protocol among opcodes = 2
2296"""
2297
2298_memo_test = r"""
2299>>> import pickle
2300>>> import io
2301>>> f = io.BytesIO()
2302>>> p = pickle.Pickler(f, 2)
2303>>> x = [1, 2, 3]
2304>>> p.dump(x)
2305>>> p.dump(x)
2306>>> f.seek(0)
23070
2308>>> memo = {}
2309>>> dis(f, memo=memo)
2310    0: \x80 PROTO      2
2311    2: ]    EMPTY_LIST
2312    3: q    BINPUT     0
2313    5: (    MARK
2314    6: K        BININT1    1
2315    8: K        BININT1    2
2316   10: K        BININT1    3
2317   12: e        APPENDS    (MARK at 5)
2318   13: .    STOP
2319highest protocol among opcodes = 2
2320>>> dis(f, memo=memo)
2321   14: \x80 PROTO      2
2322   16: h    BINGET     0
2323   18: .    STOP
2324highest protocol among opcodes = 2
2325"""
2326
2327__test__ = {'disassembler_test': _dis_test,
2328            'disassembler_memo_test': _memo_test,
2329           }
2330
2331def _test():
2332    import doctest
2333    return doctest.testmod()
2334
2335if __name__ == "__main__":
2336    import sys, argparse
2337    parser = argparse.ArgumentParser(
2338        description='disassemble one or more pickle files')
2339    parser.add_argument(
2340        'pickle_file', type=argparse.FileType('br'),
2341        nargs='*', help='the pickle file')
2342    parser.add_argument(
2343        '-o', '--output', default=sys.stdout, type=argparse.FileType('w'),
2344        help='the file where the output should be written')
2345    parser.add_argument(
2346        '-m', '--memo', action='store_true',
2347        help='preserve memo between disassemblies')
2348    parser.add_argument(
2349        '-l', '--indentlevel', default=4, type=int,
2350        help='the number of blanks by which to indent a new MARK level')
2351    parser.add_argument(
2352        '-p', '--preamble', default="==> {name} <==",
2353        help='if more than one pickle file is specified, print this before'
2354        ' each disassembly')
2355    parser.add_argument(
2356        '-t', '--test', action='store_true',
2357        help='run self-test suite')
2358    parser.add_argument(
2359        '-v', action='store_true',
2360        help='run verbosely; only affects self-test run')
2361    args = parser.parse_args()
2362    if args.test:
2363        _test()
2364    else:
2365        if not args.pickle_file:
2366            parser.print_help()
2367        elif len(args.pickle_file) == 1:
2368            dis(args.pickle_file[0], args.output,
2369                indentlevel=args.indentlevel)
2370        else:
2371            memo = {} if args.memo else None
2372            for f in args.pickle_file:
2373                preamble = args.preamble.format(name=f.name)
2374                args.output.write(preamble + '\n')
2375                dis(f, args.output, memo, args.indentlevel)
2376