pickletools.py revision 570283584af6a9aff47d2341d6154055572aaff5
1""""Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11"""
12
13# Other ideas:
14#
15# - A pickle verifier:  read a pickle and check it exhaustively for
16#   well-formedness.
17#
18# - A protocol identifier:  examine a pickle and return its protocol number
19#   (== the highest .proto attr value among all the opcodes in the pickle).
20#
21# - A pickle optimizer:  for example, tuple-building code is sometimes more
22#   elaborate than necessary, catering for the possibility that the tuple
23#   is recursive.  Or lots of times a PUT is generated that's never accessed
24#   by a later GET.
25
26
27"""
28"A pickle" is a program for a virtual pickle machine (PM, but more accurately
29called an unpickling machine).  It's a sequence of opcodes, interpreted by the
30PM, building an arbitrarily complex Python object.
31
32For the most part, the PM is very simple:  there are no looping, testing, or
33conditional instructions, no arithmetic and no function calls.  Opcodes are
34executed once each, from first to last, until a STOP opcode is reached.
35
36The PM has two data areas, "the stack" and "the memo".
37
38Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
39integer object on the stack, whose value is gotten from a decimal string
40literal immediately following the INT opcode in the pickle bytestream.  Other
41opcodes take Python objects off the stack.  The result of unpickling is
42whatever object is left on the stack when the final STOP opcode is executed.
43
44The memo is simply an array of objects, or it can be implemented as a dict
45mapping little integers to objects.  The memo serves as the PM's "long term
46memory", and the little integers indexing the memo are akin to variable
47names.  Some opcodes pop a stack object into the memo at a given index,
48and others push a memo object at a given index onto the stack again.
49
50At heart, that's all the PM has.  Subtleties arise for these reasons:
51
52+ Object identity.  Objects can be arbitrarily complex, and subobjects
53  may be shared (for example, the list [a, a] refers to the same object a
54  twice).  It can be vital that unpickling recreate an isomorphic object
55  graph, faithfully reproducing sharing.
56
57+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
58  list, and L[0] is the same list.  This is related to the object identity
59  point, and some sequences of pickle opcodes are subtle in order to
60  get the right result in all cases.
61
62+ Things pickle doesn't know everything about.  Examples of things pickle
63  does know everything about are Python's builtin scalar and container
64  types, like ints and tuples.  They generally have opcodes dedicated to
65  them.  For things like module references and instances of user-defined
66  classes, pickle's knowledge is limited.  Historically, many enhancements
67  have been made to the pickle protocol in order to do a better (faster,
68  and/or more compact) job on those.
69
70+ Backward compatibility and micro-optimization.  As explained below,
71  pickle opcodes never go away, not even when better ways to do a thing
72  get invented.  The repertoire of the PM just keeps growing over time.
73  For example, protocol 0 had two opcodes for building Python integers (INT
74  and LONG), protocol 1 added three more for more-efficient pickling of short
75  integers, and protocol 2 added two more for more-efficient pickling of
76  long integers (before protocol 2, the only ways to pickle a Python long
77  took time quadratic in the number of digits, for both pickling and
78  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
79  wearying complication.
80
81
82Pickle protocols:
83
84For compatibility, the meaning of a pickle opcode never changes.  Instead new
85pickle opcodes get added, and each version's unpickler can handle all the
86pickle opcodes in all protocol versions to date.  So old pickles continue to
87be readable forever.  The pickler can generally be told to restrict itself to
88the subset of opcodes available under previous protocol versions too, so that
89users can create pickles under the current version readable by older
90versions.  However, a pickle does not contain its version number embedded
91within it.  If an older unpickler tries to read a pickle using a later
92protocol, the result is most likely an exception due to seeing an unknown (in
93the older unpickler) opcode.
94
95The original pickle used what's now called "protocol 0", and what was called
96"text mode" before Python 2.3.  The entire pickle bytestream is made up of
97printable 7-bit ASCII characters, plus the newline character, in protocol 0.
98That's why it was called text mode.  Protocol 0 is small and elegant, but
99sometimes painfully inefficient.
100
101The second major set of additions is now called "protocol 1", and was called
102"binary mode" before Python 2.3.  This added many opcodes with arguments
103consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
104bytes.  Binary mode pickles can be substantially smaller than equivalent
105text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
106int as 4 bytes following the opcode, which is cheaper to unpickle than the
107(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
108a number of opcodes that operate on many stack elements at once (like APPENDS
109and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
110
111The third major set of additions came in Python 2.3, and is called "protocol
1122".  This added:
113
114- A better way to pickle instances of new-style classes (NEWOBJ).
115
116- A way for a pickle to identify its protocol (PROTO).
117
118- Time- and space- efficient pickling of long ints (LONG{1,4}).
119
120- Shortcuts for small tuples (TUPLE{1,2,3}}.
121
122- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
123
124- The "extension registry", a vector of popular objects that can be pushed
125  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
126  the registry contents are predefined (there's nothing akin to the memo's
127  PUT).
128"""
129
130# Meta-rule:  Descriptions are stored in instances of descriptor objects,
131# with plain constructors.  No meta-language is defined from which
132# descriptors could be constructed.  If you want, e.g., XML, write a little
133# program to generate XML from the objects.
134
135##############################################################################
136# Some pickle opcodes have an argument, following the opcode in the
137# bytestream.  An argument is of a specific type, described by an instance
138# of ArgumentDescriptor.  These are not to be confused with arguments taken
139# off the stack -- ArgumentDescriptor applies only to arguments embedded in
140# the opcode stream, immediately following an opcode.
141
142# Represents the number of bytes consumed by an argument delimited by the
143# next newline character.
144UP_TO_NEWLINE = -1
145
146# Represents the number of bytes consumed by a two-argument opcode where
147# the first argument gives the number of bytes in the second argument.
148TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
149TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
150
151class ArgumentDescriptor(object):
152    __slots__ = (
153        # name of descriptor record, also a module global name; a string
154        'name',
155
156        # length of argument, in bytes; an int; UP_TO_NEWLINE and
157        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
158        # cases
159        'n',
160
161        # a function taking a file-like object, reading this kind of argument
162        # from the object at the current position, advancing the current
163        # position by n bytes, and returning the value of the argument
164        'reader',
165
166        # human-readable docs for this arg descriptor; a string
167        'doc',
168    )
169
170    def __init__(self, name, n, reader, doc):
171        assert isinstance(name, str)
172        self.name = name
173
174        assert isinstance(n, int) and (n >= 0 or
175                                       n in (UP_TO_NEWLINE,
176                                             TAKEN_FROM_ARGUMENT1,
177                                             TAKEN_FROM_ARGUMENT4))
178        self.n = n
179
180        self.reader = reader
181
182        assert isinstance(doc, str)
183        self.doc = doc
184
185from struct import unpack as _unpack
186
187def read_uint1(f):
188    """
189    >>> import StringIO
190    >>> read_uint1(StringIO.StringIO('\\xff'))
191    255
192    """
193
194    data = f.read(1)
195    if data:
196        return ord(data)
197    raise ValueError("not enough data in stream to read uint1")
198
199uint1 = ArgumentDescriptor(
200            name='uint1',
201            n=1,
202            reader=read_uint1,
203            doc="One-byte unsigned integer.")
204
205
206def read_uint2(f):
207    """
208    >>> import StringIO
209    >>> read_uint2(StringIO.StringIO('\\xff\\x00'))
210    255
211    >>> read_uint2(StringIO.StringIO('\\xff\\xff'))
212    65535
213    """
214
215    data = f.read(2)
216    if len(data) == 2:
217        return _unpack("<H", data)[0]
218    raise ValueError("not enough data in stream to read uint2")
219
220uint2 = ArgumentDescriptor(
221            name='uint2',
222            n=2,
223            reader=read_uint2,
224            doc="Two-byte unsigned integer, little-endian.")
225
226
227def read_int4(f):
228    """
229    >>> import StringIO
230    >>> read_int4(StringIO.StringIO('\\xff\\x00\\x00\\x00'))
231    255
232    >>> read_int4(StringIO.StringIO('\\x00\\x00\\x00\\x80')) == -(2**31)
233    True
234    """
235
236    data = f.read(4)
237    if len(data) == 4:
238        return _unpack("<i", data)[0]
239    raise ValueError("not enough data in stream to read int4")
240
241int4 = ArgumentDescriptor(
242           name='int4',
243           n=4,
244           reader=read_int4,
245           doc="Four-byte signed integer, little-endian, 2's complement.")
246
247
248def read_stringnl(f, decode=True, stripquotes=True):
249    """
250    >>> import StringIO
251    >>> read_stringnl(StringIO.StringIO("'abcd'\\nefg\\n"))
252    'abcd'
253
254    >>> read_stringnl(StringIO.StringIO("\\n"))
255    Traceback (most recent call last):
256    ...
257    ValueError: no string quotes around ''
258
259    >>> read_stringnl(StringIO.StringIO("\\n"), stripquotes=False)
260    ''
261
262    >>> read_stringnl(StringIO.StringIO("''\\n"))
263    ''
264
265    >>> read_stringnl(StringIO.StringIO('"abcd"'))
266    Traceback (most recent call last):
267    ...
268    ValueError: no newline found when trying to read stringnl
269
270    Embedded escapes are undone in the result.
271    >>> read_stringnl(StringIO.StringIO("'a\\\\nb\\x00c\\td'\\n'e'"))
272    'a\\nb\\x00c\\td'
273    """
274
275    data = f.readline()
276    if not data.endswith('\n'):
277        raise ValueError("no newline found when trying to read stringnl")
278    data = data[:-1]    # lose the newline
279
280    if stripquotes:
281        for q in "'\"":
282            if data.startswith(q):
283                if not data.endswith(q):
284                    raise ValueError("strinq quote %r not found at both "
285                                     "ends of %r" % (q, data))
286                data = data[1:-1]
287                break
288        else:
289            raise ValueError("no string quotes around %r" % data)
290
291    # I'm not sure when 'string_escape' was added to the std codecs; it's
292    # crazy not to use it if it's there.
293    if decode:
294        data = data.decode('string_escape')
295    return data
296
297stringnl = ArgumentDescriptor(
298               name='stringnl',
299               n=UP_TO_NEWLINE,
300               reader=read_stringnl,
301               doc="""A newline-terminated string.
302
303                   This is a repr-style string, with embedded escapes, and
304                   bracketing quotes.
305                   """)
306
307def read_stringnl_noescape(f):
308    return read_stringnl(f, decode=False, stripquotes=False)
309
310stringnl_noescape = ArgumentDescriptor(
311                        name='stringnl_noescape',
312                        n=UP_TO_NEWLINE,
313                        reader=read_stringnl_noescape,
314                        doc="""A newline-terminated string.
315
316                        This is a str-style string, without embedded escapes,
317                        or bracketing quotes.  It should consist solely of
318                        printable ASCII characters.
319                        """)
320
321def read_stringnl_noescape_pair(f):
322    """
323    >>> import StringIO
324    >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\\nEmpty\\njunk"))
325    'Queue Empty'
326    """
327
328    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
329
330stringnl_noescape_pair = ArgumentDescriptor(
331                             name='stringnl_noescape_pair',
332                             n=UP_TO_NEWLINE,
333                             reader=read_stringnl_noescape_pair,
334                             doc="""A pair of newline-terminated strings.
335
336                             These are str-style strings, without embedded
337                             escapes, or bracketing quotes.  They should
338                             consist solely of printable ASCII characters.
339                             The pair is returned as a single string, with
340                             a single blank separating the two strings.
341                             """)
342
343def read_string4(f):
344    """
345    >>> import StringIO
346    >>> read_string4(StringIO.StringIO("\\x00\\x00\\x00\\x00abc"))
347    ''
348    >>> read_string4(StringIO.StringIO("\\x03\\x00\\x00\\x00abcdef"))
349    'abc'
350    >>> read_string4(StringIO.StringIO("\\x00\\x00\\x00\\x03abcdef"))
351    Traceback (most recent call last):
352    ...
353    ValueError: expected 50331648 bytes in a string4, but only 6 remain
354    """
355
356    n = read_int4(f)
357    if n < 0:
358        raise ValueError("string4 byte count < 0: %d" % n)
359    data = f.read(n)
360    if len(data) == n:
361        return data
362    raise ValueError("expected %d bytes in a string4, but only %d remain" %
363                     (n, len(data)))
364
365string4 = ArgumentDescriptor(
366              name="string4",
367              n=TAKEN_FROM_ARGUMENT4,
368              reader=read_string4,
369              doc="""A counted string.
370
371              The first argument is a 4-byte little-endian signed int giving
372              the number of bytes in the string, and the second argument is
373              that many bytes.
374              """)
375
376
377def read_string1(f):
378    """
379    >>> import StringIO
380    >>> read_string1(StringIO.StringIO("\\x00"))
381    ''
382    >>> read_string1(StringIO.StringIO("\\x03abcdef"))
383    'abc'
384    """
385
386    n = read_uint1(f)
387    assert n >= 0
388    data = f.read(n)
389    if len(data) == n:
390        return data
391    raise ValueError("expected %d bytes in a string1, but only %d remain" %
392                     (n, len(data)))
393
394string1 = ArgumentDescriptor(
395              name="string1",
396              n=TAKEN_FROM_ARGUMENT1,
397              reader=read_string1,
398              doc="""A counted string.
399
400              The first argument is a 1-byte unsigned int giving the number
401              of bytes in the string, and the second argument is that many
402              bytes.
403              """)
404
405
406def read_unicodestringnl(f):
407    """
408    >>> import StringIO
409    >>> read_unicodestringnl(StringIO.StringIO("abc\\uabcd\\njunk"))
410    u'abc\\uabcd'
411    """
412
413    data = f.readline()
414    if not data.endswith('\n'):
415        raise ValueError("no newline found when trying to read "
416                         "unicodestringnl")
417    data = data[:-1]    # lose the newline
418    return unicode(data, 'raw-unicode-escape')
419
420unicodestringnl = ArgumentDescriptor(
421                      name='unicodestringnl',
422                      n=UP_TO_NEWLINE,
423                      reader=read_unicodestringnl,
424                      doc="""A newline-terminated Unicode string.
425
426                      This is raw-unicode-escape encoded, so consists of
427                      printable ASCII characters, and may contain embedded
428                      escape sequences.
429                      """)
430
431def read_unicodestring4(f):
432    """
433    >>> import StringIO
434    >>> s = u'abcd\\uabcd'
435    >>> enc = s.encode('utf-8')
436    >>> enc
437    'abcd\\xea\\xaf\\x8d'
438    >>> n = chr(len(enc)) + chr(0) * 3  # little-endian 4-byte length
439    >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
440    >>> s == t
441    True
442
443    >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
444    Traceback (most recent call last):
445    ...
446    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
447    """
448
449    n = read_int4(f)
450    if n < 0:
451        raise ValueError("unicodestring4 byte count < 0: %d" % n)
452    data = f.read(n)
453    if len(data) == n:
454        return unicode(data, 'utf-8')
455    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
456                     "remain" % (n, len(data)))
457
458unicodestring4 = ArgumentDescriptor(
459                    name="unicodestring4",
460                    n=TAKEN_FROM_ARGUMENT4,
461                    reader=read_unicodestring4,
462                    doc="""A counted Unicode string.
463
464                    The first argument is a 4-byte little-endian signed int
465                    giving the number of bytes in the string, and the second
466                    argument-- the UTF-8 encoding of the Unicode string --
467                    contains that many bytes.
468                    """)
469
470
471def read_decimalnl_short(f):
472    """
473    >>> import StringIO
474    >>> read_decimalnl_short(StringIO.StringIO("1234\\n56"))
475    1234
476
477    >>> read_decimalnl_short(StringIO.StringIO("1234L\\n56"))
478    Traceback (most recent call last):
479    ...
480    ValueError: trailing 'L' not allowed in '1234L'
481    """
482
483    s = read_stringnl(f, decode=False, stripquotes=False)
484    if s.endswith("L"):
485        raise ValueError("trailing 'L' not allowed in %r" % s)
486
487    # It's not necessarily true that the result fits in a Python short int:
488    # the pickle may have been written on a 64-bit box.  There's also a hack
489    # for True and False here.
490    if s == "00":
491        return False
492    elif s == "01":
493        return True
494
495    try:
496        return int(s)
497    except OverflowError:
498        return long(s)
499
500def read_decimalnl_long(f):
501    """
502    >>> import StringIO
503
504    >>> read_decimalnl_long(StringIO.StringIO("1234\\n56"))
505    Traceback (most recent call last):
506    ...
507    ValueError: trailing 'L' required in '1234'
508
509    Someday the trailing 'L' will probably go away from this output.
510
511    >>> read_decimalnl_long(StringIO.StringIO("1234L\\n56"))
512    1234L
513
514    >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\\n6"))
515    123456789012345678901234L
516    """
517
518    s = read_stringnl(f, decode=False, stripquotes=False)
519    if not s.endswith("L"):
520        raise ValueError("trailing 'L' required in %r" % s)
521    return long(s)
522
523
524decimalnl_short = ArgumentDescriptor(
525                      name='decimalnl_short',
526                      n=UP_TO_NEWLINE,
527                      reader=read_decimalnl_short,
528                      doc="""A newline-terminated decimal integer literal.
529
530                          This never has a trailing 'L', and the integer fit
531                          in a short Python int on the box where the pickle
532                          was written -- but there's no guarantee it will fit
533                          in a short Python int on the box where the pickle
534                          is read.
535                          """)
536
537decimalnl_long = ArgumentDescriptor(
538                     name='decimalnl_long',
539                     n=UP_TO_NEWLINE,
540                     reader=read_decimalnl_long,
541                     doc="""A newline-terminated decimal integer literal.
542
543                         This has a trailing 'L', and can represent integers
544                         of any size.
545                         """)
546
547
548def read_floatnl(f):
549    """
550    >>> import StringIO
551    >>> read_floatnl(StringIO.StringIO("-1.25\\n6"))
552    -1.25
553    """
554    s = read_stringnl(f, decode=False, stripquotes=False)
555    return float(s)
556
557floatnl = ArgumentDescriptor(
558              name='floatnl',
559              n=UP_TO_NEWLINE,
560              reader=read_floatnl,
561              doc="""A newline-terminated decimal floating literal.
562
563              In general this requires 17 significant digits for roundtrip
564              identity, and pickling then unpickling infinities, NaNs, and
565              minus zero doesn't work across boxes, or on some boxes even
566              on itself (e.g., Windows can't read the strings it produces
567              for infinities or NaNs).
568              """)
569
570def read_float8(f):
571    """
572    >>> import StringIO, struct
573    >>> raw = struct.pack(">d", -1.25)
574    >>> raw
575    '\\xbf\\xf4\\x00\\x00\\x00\\x00\\x00\\x00'
576    >>> read_float8(StringIO.StringIO(raw + "\\n"))
577    -1.25
578    """
579
580    data = f.read(8)
581    if len(data) == 8:
582        return _unpack(">d", data)[0]
583    raise ValueError("not enough data in stream to read float8")
584
585
586float8 = ArgumentDescriptor(
587             name='float8',
588             n=8,
589             reader=read_float8,
590             doc="""An 8-byte binary representation of a float, big-endian.
591
592             The format is unique to Python, and shared with the struct
593             module (format string '>d') "in theory" (the struct and cPickle
594             implementations don't share the code -- they should).  It's
595             strongly related to the IEEE-754 double format, and, in normal
596             cases, is in fact identical to the big-endian 754 double format.
597             On other boxes the dynamic range is limited to that of a 754
598             double, and "add a half and chop" rounding is used to reduce
599             the precision to 53 bits.  However, even on a 754 box,
600             infinities, NaNs, and minus zero may not be handled correctly
601             (may not survive roundtrip pickling intact).
602             """)
603
604# Protocol 2 formats
605
606def decode_long(data):
607    r"""Decode a long from a two's complement little-endian binary string.
608    >>> decode_long("\xff\x00")
609    255L
610    >>> decode_long("\xff\x7f")
611    32767L
612    >>> decode_long("\x00\xff")
613    -256L
614    >>> decode_long("\x00\x80")
615    -32768L
616    >>> decode_long("\x80")
617    -128L
618    >>> decode_long("\x7f")
619    127L
620    """
621    x = 0L
622    i = 0L
623    for c in data:
624        x |= long(ord(c)) << i
625        i += 8L
626    if data and ord(c) >= 0x80:
627        x -= 1L << i
628    return x
629
630def read_long1(f):
631    r"""
632    >>> import StringIO
633    >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
634    255L
635    >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
636    32767L
637    >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
638    -256L
639    >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
640    -32768L
641    >>>
642    """
643
644    n = read_uint1(f)
645    data = f.read(n)
646    if len(data) != n:
647        raise ValueError("not enough data in stream to read long1")
648    return decode_long(data)
649
650long1 = ArgumentDescriptor(
651    name="long1",
652    n=TAKEN_FROM_ARGUMENT1,
653    reader=read_long1,
654    doc="""A binary long, little-endian, using 1-byte size.
655
656    This first reads one byte as an unsigned size, then reads that
657    many bytes and interprets them as a little-endian 2's-complement long.
658    """)
659
660def read_long4(f):
661    r"""
662    >>> import StringIO
663    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
664    255L
665    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
666    32767L
667    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
668    -256L
669    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
670    -32768L
671    >>>
672    """
673
674    n = read_int4(f)
675    if n < 0:
676        raise ValueError("long4 byte count < 0: %d" % n)
677    data = f.read(n)
678    if len(data) != n:
679        raise ValueError("not enough data in stream to read long4")
680    return decode_long(data)
681
682long4 = ArgumentDescriptor(
683    name="long4",
684    n=TAKEN_FROM_ARGUMENT4,
685    reader=read_long4,
686    doc="""A binary representation of a long, little-endian.
687
688    This first reads four bytes as a signed size (but requires the
689    size to be >= 0), then reads that many bytes and interprets them
690    as a little-endian 2's-complement long.
691    """)
692
693
694##############################################################################
695# Object descriptors.  The stack used by the pickle machine holds objects,
696# and in the stack_before and stack_after attributes of OpcodeInfo
697# descriptors we need names to describe the various types of objects that can
698# appear on the stack.
699
700class StackObject(object):
701    __slots__ = (
702        # name of descriptor record, for info only
703        'name',
704
705        # type of object, or tuple of type objects (meaning the object can
706        # be of any type in the tuple)
707        'obtype',
708
709        # human-readable docs for this kind of stack object; a string
710        'doc',
711    )
712
713    def __init__(self, name, obtype, doc):
714        assert isinstance(name, str)
715        self.name = name
716
717        assert isinstance(obtype, type) or isinstance(obtype, tuple)
718        if isinstance(obtype, tuple):
719            for contained in obtype:
720                assert isinstance(contained, type)
721        self.obtype = obtype
722
723        assert isinstance(doc, str)
724        self.doc = doc
725
726
727pyint = StackObject(
728            name='int',
729            obtype=int,
730            doc="A short (as opposed to long) Python integer object.")
731
732pylong = StackObject(
733             name='long',
734             obtype=long,
735             doc="A long (as opposed to short) Python integer object.")
736
737pyinteger_or_bool = StackObject(
738                        name='int_or_bool',
739                        obtype=(int, long, bool),
740                        doc="A Python integer object (short or long), or "
741                            "a Python bool.")
742
743pybool = StackObject(
744             name='bool',
745             obtype=(bool,),
746             doc="A Python bool object.")
747
748pyfloat = StackObject(
749              name='float',
750              obtype=float,
751              doc="A Python float object.")
752
753pystring = StackObject(
754               name='str',
755               obtype=str,
756               doc="A Python string object.")
757
758pyunicode = StackObject(
759                name='unicode',
760                obtype=unicode,
761                doc="A Python Unicode string object.")
762
763pynone = StackObject(
764             name="None",
765             obtype=type(None),
766             doc="The Python None object.")
767
768pytuple = StackObject(
769              name="tuple",
770              obtype=tuple,
771              doc="A Python tuple object.")
772
773pylist = StackObject(
774             name="list",
775             obtype=list,
776             doc="A Python list object.")
777
778pydict = StackObject(
779             name="dict",
780             obtype=dict,
781             doc="A Python dict object.")
782
783anyobject = StackObject(
784                name='any',
785                obtype=object,
786                doc="Any kind of object whatsoever.")
787
788markobject = StackObject(
789                 name="mark",
790                 obtype=StackObject,
791                 doc="""'The mark' is a unique object.
792
793                 Opcodes that operate on a variable number of objects
794                 generally don't embed the count of objects in the opcode,
795                 or pull it off the stack.  Instead the MARK opcode is used
796                 to push a special marker object on the stack, and then
797                 some other opcodes grab all the objects from the top of
798                 the stack down to (but not including) the topmost marker
799                 object.
800                 """)
801
802stackslice = StackObject(
803                 name="stackslice",
804                 obtype=StackObject,
805                 doc="""An object representing a contiguous slice of the stack.
806
807                 This is used in conjuction with markobject, to represent all
808                 of the stack following the topmost markobject.  For example,
809                 the POP_MARK opcode changes the stack from
810
811                     [..., markobject, stackslice]
812                 to
813                     [...]
814
815                 No matter how many object are on the stack after the topmost
816                 markobject, POP_MARK gets rid of all of them (including the
817                 topmost markobject too).
818                 """)
819
820##############################################################################
821# Descriptors for pickle opcodes.
822
823class OpcodeInfo(object):
824
825    __slots__ = (
826        # symbolic name of opcode; a string
827        'name',
828
829        # the code used in a bytestream to represent the opcode; a
830        # one-character string
831        'code',
832
833        # If the opcode has an argument embedded in the byte string, an
834        # instance of ArgumentDescriptor specifying its type.  Note that
835        # arg.reader(s) can be used to read and decode the argument from
836        # the bytestream s, and arg.doc documents the format of the raw
837        # argument bytes.  If the opcode doesn't have an argument embedded
838        # in the bytestream, arg should be None.
839        'arg',
840
841        # what the stack looks like before this opcode runs; a list
842        'stack_before',
843
844        # what the stack looks like after this opcode runs; a list
845        'stack_after',
846
847        # the protocol number in which this opcode was introduced; an int
848        'proto',
849
850        # human-readable docs for this opcode; a string
851        'doc',
852    )
853
854    def __init__(self, name, code, arg,
855                 stack_before, stack_after, proto, doc):
856        assert isinstance(name, str)
857        self.name = name
858
859        assert isinstance(code, str)
860        assert len(code) == 1
861        self.code = code
862
863        assert arg is None or isinstance(arg, ArgumentDescriptor)
864        self.arg = arg
865
866        assert isinstance(stack_before, list)
867        for x in stack_before:
868            assert isinstance(x, StackObject)
869        self.stack_before = stack_before
870
871        assert isinstance(stack_after, list)
872        for x in stack_after:
873            assert isinstance(x, StackObject)
874        self.stack_after = stack_after
875
876        assert isinstance(proto, int) and 0 <= proto <= 2
877        self.proto = proto
878
879        assert isinstance(doc, str)
880        self.doc = doc
881
882I = OpcodeInfo
883opcodes = [
884
885    # Ways to spell integers.
886
887    I(name='INT',
888      code='I',
889      arg=decimalnl_short,
890      stack_before=[],
891      stack_after=[pyinteger_or_bool],
892      proto=0,
893      doc="""Push an integer or bool.
894
895      The argument is a newline-terminated decimal literal string.
896
897      The intent may have been that this always fit in a short Python int,
898      but INT can be generated in pickles written on a 64-bit box that
899      require a Python long on a 32-bit box.  The difference between this
900      and LONG then is that INT skips a trailing 'L', and produces a short
901      int whenever possible.
902
903      Another difference is due to that, when bool was introduced as a
904      distinct type in 2.3, builtin names True and False were also added to
905      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
906      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
907      Leading zeroes are never produced for a genuine integer.  The 2.3
908      (and later) unpicklers special-case these and return bool instead;
909      earlier unpicklers ignore the leading "0" and return the int.
910      """),
911
912    I(name='BININT',
913      code='J',
914      arg=int4,
915      stack_before=[],
916      stack_after=[pyint],
917      proto=1,
918      doc="""Push a four-byte signed integer.
919
920      This handles the full range of Python (short) integers on a 32-bit
921      box, directly as binary bytes (1 for the opcode and 4 for the integer).
922      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
923      BININT1 or BININT2 saves space.
924      """),
925
926    I(name='BININT1',
927      code='K',
928      arg=uint1,
929      stack_before=[],
930      stack_after=[pyint],
931      proto=1,
932      doc="""Push a one-byte unsigned integer.
933
934      This is a space optimization for pickling very small non-negative ints,
935      in range(256).
936      """),
937
938    I(name='BININT2',
939      code='M',
940      arg=uint2,
941      stack_before=[],
942      stack_after=[pyint],
943      proto=1,
944      doc="""Push a two-byte unsigned integer.
945
946      This is a space optimization for pickling small positive ints, in
947      range(256, 2**16).  Integers in range(256) can also be pickled via
948      BININT2, but BININT1 instead saves a byte.
949      """),
950
951    I(name='LONG',
952      code='L',
953      arg=decimalnl_long,
954      stack_before=[],
955      stack_after=[pylong],
956      proto=0,
957      doc="""Push a long integer.
958
959      The same as INT, except that the literal ends with 'L', and always
960      unpickles to a Python long.  There doesn't seem a real purpose to the
961      trailing 'L'.
962
963      Note that LONG takes time quadratic in the number of digits when
964      unpickling (this is simply due to the nature of decimal->binary
965      conversion).  Proto 2 added linear-time (in C; still quadratic-time
966      in Python) LONG1 and LONG4 opcodes.
967      """),
968
969    I(name="LONG1",
970      code='\x8a',
971      arg=long1,
972      stack_before=[],
973      stack_after=[pylong],
974      proto=2,
975      doc="""Long integer using one-byte length.
976
977      A more efficient encoding of a Python long; the long1 encoding
978      says it all."""),
979
980    I(name="LONG4",
981      code='\x8b',
982      arg=long4,
983      stack_before=[],
984      stack_after=[pylong],
985      proto=2,
986      doc="""Long integer using found-byte length.
987
988      A more efficient encoding of a Python long; the long4 encoding
989      says it all."""),
990
991    # Ways to spell strings (8-bit, not Unicode).
992
993    I(name='STRING',
994      code='S',
995      arg=stringnl,
996      stack_before=[],
997      stack_after=[pystring],
998      proto=0,
999      doc="""Push a Python string object.
1000
1001      The argument is a repr-style string, with bracketing quote characters,
1002      and perhaps embedded escapes.  The argument extends until the next
1003      newline character.
1004      """),
1005
1006    I(name='BINSTRING',
1007      code='T',
1008      arg=string4,
1009      stack_before=[],
1010      stack_after=[pystring],
1011      proto=1,
1012      doc="""Push a Python string object.
1013
1014      There are two arguments:  the first is a 4-byte little-endian signed int
1015      giving the number of bytes in the string, and the second is that many
1016      bytes, which are taken literally as the string content.
1017      """),
1018
1019    I(name='SHORT_BINSTRING',
1020      code='U',
1021      arg=string1,
1022      stack_before=[],
1023      stack_after=[pystring],
1024      proto=1,
1025      doc="""Push a Python string object.
1026
1027      There are two arguments:  the first is a 1-byte unsigned int giving
1028      the number of bytes in the string, and the second is that many bytes,
1029      which are taken literally as the string content.
1030      """),
1031
1032    # Ways to spell None.
1033
1034    I(name='NONE',
1035      code='N',
1036      arg=None,
1037      stack_before=[],
1038      stack_after=[pynone],
1039      proto=0,
1040      doc="Push None on the stack."),
1041
1042    # Ways to spell bools, starting with proto 2.  See INT for how this was
1043    # done before proto 2.
1044
1045    I(name='NEWTRUE',
1046      code='\x88',
1047      arg=None,
1048      stack_before=[],
1049      stack_after=[pybool],
1050      proto=2,
1051      doc="""True.
1052
1053      Push True onto the stack."""),
1054
1055    I(name='NEWFALSE',
1056      code='\x89',
1057      arg=None,
1058      stack_before=[],
1059      stack_after=[pybool],
1060      proto=2,
1061      doc="""True.
1062
1063      Push False onto the stack."""),
1064
1065    # Ways to spell Unicode strings.
1066
1067    I(name='UNICODE',
1068      code='V',
1069      arg=unicodestringnl,
1070      stack_before=[],
1071      stack_after=[pyunicode],
1072      proto=0,  # this may be pure-text, but it's a later addition
1073      doc="""Push a Python Unicode string object.
1074
1075      The argument is a raw-unicode-escape encoding of a Unicode string,
1076      and so may contain embedded escape sequences.  The argument extends
1077      until the next newline character.
1078      """),
1079
1080    I(name='BINUNICODE',
1081      code='X',
1082      arg=unicodestring4,
1083      stack_before=[],
1084      stack_after=[pyunicode],
1085      proto=1,
1086      doc="""Push a Python Unicode string object.
1087
1088      There are two arguments:  the first is a 4-byte little-endian signed int
1089      giving the number of bytes in the string.  The second is that many
1090      bytes, and is the UTF-8 encoding of the Unicode string.
1091      """),
1092
1093    # Ways to spell floats.
1094
1095    I(name='FLOAT',
1096      code='F',
1097      arg=floatnl,
1098      stack_before=[],
1099      stack_after=[pyfloat],
1100      proto=0,
1101      doc="""Newline-terminated decimal float literal.
1102
1103      The argument is repr(a_float), and in general requires 17 significant
1104      digits for roundtrip conversion to be an identity (this is so for
1105      IEEE-754 double precision values, which is what Python float maps to
1106      on most boxes).
1107
1108      In general, FLOAT cannot be used to transport infinities, NaNs, or
1109      minus zero across boxes (or even on a single box, if the platform C
1110      library can't read the strings it produces for such things -- Windows
1111      is like that), but may do less damage than BINFLOAT on boxes with
1112      greater precision or dynamic range than IEEE-754 double.
1113      """),
1114
1115    I(name='BINFLOAT',
1116      code='G',
1117      arg=float8,
1118      stack_before=[],
1119      stack_after=[pyfloat],
1120      proto=1,
1121      doc="""Float stored in binary form, with 8 bytes of data.
1122
1123      This generally requires less than half the space of FLOAT encoding.
1124      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1125      minus zero, raises an exception if the exponent exceeds the range of
1126      an IEEE-754 double, and retains no more than 53 bits of precision (if
1127      there are more than that, "add a half and chop" rounding is used to
1128      cut it back to 53 significant bits).
1129      """),
1130
1131    # Ways to build lists.
1132
1133    I(name='EMPTY_LIST',
1134      code=']',
1135      arg=None,
1136      stack_before=[],
1137      stack_after=[pylist],
1138      proto=1,
1139      doc="Push an empty list."),
1140
1141    I(name='APPEND',
1142      code='a',
1143      arg=None,
1144      stack_before=[pylist, anyobject],
1145      stack_after=[pylist],
1146      proto=0,
1147      doc="""Append an object to a list.
1148
1149      Stack before:  ... pylist anyobject
1150      Stack after:   ... pylist+[anyobject]
1151
1152      although pylist is really extended in-place.
1153      """),
1154
1155    I(name='APPENDS',
1156      code='e',
1157      arg=None,
1158      stack_before=[pylist, markobject, stackslice],
1159      stack_after=[pylist],
1160      proto=1,
1161      doc="""Extend a list by a slice of stack objects.
1162
1163      Stack before:  ... pylist markobject stackslice
1164      Stack after:   ... pylist+stackslice
1165
1166      although pylist is really extended in-place.
1167      """),
1168
1169    I(name='LIST',
1170      code='l',
1171      arg=None,
1172      stack_before=[markobject, stackslice],
1173      stack_after=[pylist],
1174      proto=0,
1175      doc="""Build a list out of the topmost stack slice, after markobject.
1176
1177      All the stack entries following the topmost markobject are placed into
1178      a single Python list, which single list object replaces all of the
1179      stack from the topmost markobject onward.  For example,
1180
1181      Stack before: ... markobject 1 2 3 'abc'
1182      Stack after:  ... [1, 2, 3, 'abc']
1183      """),
1184
1185    # Ways to build tuples.
1186
1187    I(name='EMPTY_TUPLE',
1188      code=')',
1189      arg=None,
1190      stack_before=[],
1191      stack_after=[pytuple],
1192      proto=1,
1193      doc="Push an empty tuple."),
1194
1195    I(name='TUPLE',
1196      code='t',
1197      arg=None,
1198      stack_before=[markobject, stackslice],
1199      stack_after=[pytuple],
1200      proto=0,
1201      doc="""Build a tuple out of the topmost stack slice, after markobject.
1202
1203      All the stack entries following the topmost markobject are placed into
1204      a single Python tuple, which single tuple object replaces all of the
1205      stack from the topmost markobject onward.  For example,
1206
1207      Stack before: ... markobject 1 2 3 'abc'
1208      Stack after:  ... (1, 2, 3, 'abc')
1209      """),
1210
1211    I(name='TUPLE1',
1212      code='\x85',
1213      arg=None,
1214      stack_before=[anyobject],
1215      stack_after=[pytuple],
1216      proto=2,
1217      doc="""One-tuple.
1218
1219      This code pops one value off the stack and pushes a tuple of
1220      length 1 whose one item is that value back onto it.  IOW:
1221
1222          stack[-1] = tuple(stack[-1:])
1223      """),
1224
1225    I(name='TUPLE2',
1226      code='\x86',
1227      arg=None,
1228      stack_before=[anyobject, anyobject],
1229      stack_after=[pytuple],
1230      proto=2,
1231      doc="""One-tuple.
1232
1233      This code pops two values off the stack and pushes a tuple
1234      of length 2 whose items are those values back onto it.  IOW:
1235
1236          stack[-2:] = [tuple(stack[-2:])]
1237      """),
1238
1239    I(name='TUPLE3',
1240      code='\x87',
1241      arg=None,
1242      stack_before=[anyobject, anyobject, anyobject],
1243      stack_after=[pytuple],
1244      proto=2,
1245      doc="""One-tuple.
1246
1247      This code pops three values off the stack and pushes a tuple
1248      of length 3 whose items are those values back onto it.  IOW:
1249
1250          stack[-3:] = [tuple(stack[-3:])]
1251      """),
1252
1253    # Ways to build dicts.
1254
1255    I(name='EMPTY_DICT',
1256      code='}',
1257      arg=None,
1258      stack_before=[],
1259      stack_after=[pydict],
1260      proto=1,
1261      doc="Push an empty dict."),
1262
1263    I(name='DICT',
1264      code='d',
1265      arg=None,
1266      stack_before=[markobject, stackslice],
1267      stack_after=[pydict],
1268      proto=0,
1269      doc="""Build a dict out of the topmost stack slice, after markobject.
1270
1271      All the stack entries following the topmost markobject are placed into
1272      a single Python dict, which single dict object replaces all of the
1273      stack from the topmost markobject onward.  The stack slice alternates
1274      key, value, key, value, ....  For example,
1275
1276      Stack before: ... markobject 1 2 3 'abc'
1277      Stack after:  ... {1: 2, 3: 'abc'}
1278      """),
1279
1280    I(name='SETITEM',
1281      code='s',
1282      arg=None,
1283      stack_before=[pydict, anyobject, anyobject],
1284      stack_after=[pydict],
1285      proto=0,
1286      doc="""Add a key+value pair to an existing dict.
1287
1288      Stack before:  ... pydict key value
1289      Stack after:   ... pydict
1290
1291      where pydict has been modified via pydict[key] = value.
1292      """),
1293
1294    I(name='SETITEMS',
1295      code='u',
1296      arg=None,
1297      stack_before=[pydict, markobject, stackslice],
1298      stack_after=[pydict],
1299      proto=1,
1300      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1301
1302      The slice of the stack following the topmost markobject is taken as
1303      an alternating sequence of keys and values, added to the dict
1304      immediately under the topmost markobject.  Everything at and after the
1305      topmost markobject is popped, leaving the mutated dict at the top
1306      of the stack.
1307
1308      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1309      Stack after:   ... pydict
1310
1311      where pydict has been modified via pydict[key_i] = value_i for i in
1312      1, 2, ..., n, and in that order.
1313      """),
1314
1315    # Stack manipulation.
1316
1317    I(name='POP',
1318      code='0',
1319      arg=None,
1320      stack_before=[anyobject],
1321      stack_after=[],
1322      proto=0,
1323      doc="Discard the top stack item, shrinking the stack by one item."),
1324
1325    I(name='DUP',
1326      code='2',
1327      arg=None,
1328      stack_before=[anyobject],
1329      stack_after=[anyobject, anyobject],
1330      proto=0,
1331      doc="Push the top stack item onto the stack again, duplicating it."),
1332
1333    I(name='MARK',
1334      code='(',
1335      arg=None,
1336      stack_before=[],
1337      stack_after=[markobject],
1338      proto=0,
1339      doc="""Push markobject onto the stack.
1340
1341      markobject is a unique object, used by other opcodes to identify a
1342      region of the stack containing a variable number of objects for them
1343      to work on.  See markobject.doc for more detail.
1344      """),
1345
1346    I(name='POP_MARK',
1347      code='1',
1348      arg=None,
1349      stack_before=[markobject, stackslice],
1350      stack_after=[],
1351      proto=0,
1352      doc="""Pop all the stack objects at and above the topmost markobject.
1353
1354      When an opcode using a variable number of stack objects is done,
1355      POP_MARK is used to remove those objects, and to remove the markobject
1356      that delimited their starting position on the stack.
1357      """),
1358
1359    # Memo manipulation.  There are really only two operations (get and put),
1360    # each in all-text, "short binary", and "long binary" flavors.
1361
1362    I(name='GET',
1363      code='g',
1364      arg=decimalnl_short,
1365      stack_before=[],
1366      stack_after=[anyobject],
1367      proto=0,
1368      doc="""Read an object from the memo and push it on the stack.
1369
1370      The index of the memo object to push is given by the newline-teriminated
1371      decimal string following.  BINGET and LONG_BINGET are space-optimized
1372      versions.
1373      """),
1374
1375    I(name='BINGET',
1376      code='h',
1377      arg=uint1,
1378      stack_before=[],
1379      stack_after=[anyobject],
1380      proto=1,
1381      doc="""Read an object from the memo and push it on the stack.
1382
1383      The index of the memo object to push is given by the 1-byte unsigned
1384      integer following.
1385      """),
1386
1387    I(name='LONG_BINGET',
1388      code='j',
1389      arg=int4,
1390      stack_before=[],
1391      stack_after=[anyobject],
1392      proto=1,
1393      doc="""Read an object from the memo and push it on the stack.
1394
1395      The index of the memo object to push is given by the 4-byte signed
1396      little-endian integer following.
1397      """),
1398
1399    I(name='PUT',
1400      code='p',
1401      arg=decimalnl_short,
1402      stack_before=[],
1403      stack_after=[],
1404      proto=0,
1405      doc="""Store the stack top into the memo.  The stack is not popped.
1406
1407      The index of the memo location to write into is given by the newline-
1408      terminated decimal string following.  BINPUT and LONG_BINPUT are
1409      space-optimized versions.
1410      """),
1411
1412    I(name='BINPUT',
1413      code='q',
1414      arg=uint1,
1415      stack_before=[],
1416      stack_after=[],
1417      proto=1,
1418      doc="""Store the stack top into the memo.  The stack is not popped.
1419
1420      The index of the memo location to write into is given by the 1-byte
1421      unsigned integer following.
1422      """),
1423
1424    I(name='LONG_BINPUT',
1425      code='r',
1426      arg=int4,
1427      stack_before=[],
1428      stack_after=[],
1429      proto=1,
1430      doc="""Store the stack top into the memo.  The stack is not popped.
1431
1432      The index of the memo location to write into is given by the 4-byte
1433      signed little-endian integer following.
1434      """),
1435
1436    # Access the extension registry (predefined objects).  Akin to the GET
1437    # family.
1438
1439    I(name='EXT1',
1440      code='\x82',
1441      arg=uint1,
1442      stack_before=[],
1443      stack_after=[anyobject],
1444      proto=2,
1445      doc="""Extension code.
1446
1447      This code and the similar EXT2 and EXT4 allow using a registry
1448      of popular objects that are pickled by name, typically classes.
1449      It is envisioned that through a global negotiation and
1450      registration process, third parties can set up a mapping between
1451      ints and object names.
1452
1453      In order to guarantee pickle interchangeability, the extension
1454      code registry ought to be global, although a range of codes may
1455      be reserved for private use.
1456
1457      EXT1 has a 1-byte integer argument.  This is used to index into the
1458      extension registry, and the object at that index is pushed on the stack.
1459      """),
1460
1461    I(name='EXT2',
1462      code='\x83',
1463      arg=uint2,
1464      stack_before=[],
1465      stack_after=[anyobject],
1466      proto=2,
1467      doc="""Extension code.
1468
1469      See EXT1.  EXT2 has a two-byte integer argument.
1470      """),
1471
1472    I(name='EXT4',
1473      code='\x84',
1474      arg=int4,
1475      stack_before=[],
1476      stack_after=[anyobject],
1477      proto=2,
1478      doc="""Extension code.
1479
1480      See EXT1.  EXT4 has a four-byte integer argument.
1481      """),
1482
1483    # Push a class object, or module function, on the stack, via its module
1484    # and name.
1485
1486    I(name='GLOBAL',
1487      code='c',
1488      arg=stringnl_noescape_pair,
1489      stack_before=[],
1490      stack_after=[anyobject],
1491      proto=0,
1492      doc="""Push a global object (module.attr) on the stack.
1493
1494      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1495      taken as a module name, and the second as a class name.  The class
1496      object module.class is pushed on the stack.  More accurately, the
1497      object returned by self.find_class(module, class) is pushed on the
1498      stack, so unpickling subclasses can override this form of lookup.
1499      """),
1500
1501    # Ways to build objects of classes pickle doesn't know about directly
1502    # (user-defined classes).  I despair of documenting this accurately
1503    # and comprehensibly -- you really have to read the pickle code to
1504    # find all the special cases.
1505
1506    I(name='REDUCE',
1507      code='R',
1508      arg=None,
1509      stack_before=[anyobject, anyobject],
1510      stack_after=[anyobject],
1511      proto=0,
1512      doc="""Push an object built from a callable and an argument tuple.
1513
1514      The opcode is named to remind of the __reduce__() method.
1515
1516      Stack before: ... callable pytuple
1517      Stack after:  ... callable(*pytuple)
1518
1519      The callable and the argument tuple are the first two items returned
1520      by a __reduce__ method.  Applying the callable to the argtuple is
1521      supposed to reproduce the original object, or at least get it started.
1522      If the __reduce__ method returns a 3-tuple, the last component is an
1523      argument to be passed to the object's __setstate__, and then the REDUCE
1524      opcode is followed by code to create setstate's argument, and then a
1525      BUILD opcode to apply  __setstate__ to that argument.
1526
1527      There are lots of special cases here.  The argtuple can be None, in
1528      which case callable.__basicnew__() is called instead to produce the
1529      object to be pushed on the stack.  This appears to be a trick unique
1530      to ExtensionClasses, and is deprecated regardless.
1531
1532      If type(callable) is not ClassType, REDUCE complains unless the
1533      callable has been registered with the copy_reg module's
1534      safe_constructors dict, or the callable has a magic
1535      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1536      why it does this, but I've sure seen this complaint often enough when
1537      I didn't want to <wink>.
1538      """),
1539
1540    I(name='BUILD',
1541      code='b',
1542      arg=None,
1543      stack_before=[anyobject, anyobject],
1544      stack_after=[anyobject],
1545      proto=0,
1546      doc="""Finish building an object, via __setstate__ or dict update.
1547
1548      Stack before: ... anyobject argument
1549      Stack after:  ... anyobject
1550
1551      where anyobject may have been mutated, as follows:
1552
1553      If the object has a __setstate__ method,
1554
1555          anyobject.__setstate__(argument)
1556
1557      is called.
1558
1559      Else the argument must be a dict, the object must have a __dict__, and
1560      the object is updated via
1561
1562          anyobject.__dict__.update(argument)
1563
1564      This may raise RuntimeError in restricted execution mode (which
1565      disallows access to __dict__ directly); in that case, the object
1566      is updated instead via
1567
1568          for k, v in argument.items():
1569              anyobject[k] = v
1570      """),
1571
1572    I(name='INST',
1573      code='i',
1574      arg=stringnl_noescape_pair,
1575      stack_before=[markobject, stackslice],
1576      stack_after=[anyobject],
1577      proto=0,
1578      doc="""Build a class instance.
1579
1580      This is the protocol 0 version of protocol 1's OBJ opcode.
1581      INST is followed by two newline-terminated strings, giving a
1582      module and class name, just as for the GLOBAL opcode (and see
1583      GLOBAL for more details about that).  self.find_class(module, name)
1584      is used to get a class object.
1585
1586      In addition, all the objects on the stack following the topmost
1587      markobject are gathered into a tuple and popped (along with the
1588      topmost markobject), just as for the TUPLE opcode.
1589
1590      Now it gets complicated.  If all of these are true:
1591
1592        + The argtuple is empty (markobject was at the top of the stack
1593          at the start).
1594
1595        + It's an old-style class object (the type of the class object is
1596          ClassType).
1597
1598        + The class object does not have a __getinitargs__ attribute.
1599
1600      then we want to create an old-style class instance without invoking
1601      its __init__() method (pickle has waffled on this over the years; not
1602      calling __init__() is current wisdom).  In this case, an instance of
1603      an old-style dummy class is created, and then we try to rebind its
1604      __class__ attribute to the desired class object.  If this succeeds,
1605      the new instance object is pushed on the stack, and we're done.  In
1606      restricted execution mode it can fail (assignment to __class__ is
1607      disallowed), and I'm not really sure what happens then -- it looks
1608      like the code ends up calling the class object's __init__ anyway,
1609      via falling into the next case.
1610
1611      Else (the argtuple is not empty, it's not an old-style class object,
1612      or the class object does have a __getinitargs__ attribute), the code
1613      first insists that the class object have a __safe_for_unpickling__
1614      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1615      it doesn't matter whether this attribute has a true or false value, it
1616      only matters whether it exists (XXX this smells like a bug).  If
1617      __safe_for_unpickling__ dosn't exist, UnpicklingError is raised.
1618
1619      Else (the class object does have a __safe_for_unpickling__ attr),
1620      the class object obtained from INST's arguments is applied to the
1621      argtuple obtained from the stack, and the resulting instance object
1622      is pushed on the stack.
1623      """),
1624
1625    I(name='OBJ',
1626      code='o',
1627      arg=None,
1628      stack_before=[markobject, anyobject, stackslice],
1629      stack_after=[anyobject],
1630      proto=1,
1631      doc="""Build a class instance.
1632
1633      This is the protocol 1 version of protocol 0's INST opcode, and is
1634      very much like it.  The major difference is that the class object
1635      is taken off the stack, allowing it to be retrieved from the memo
1636      repeatedly if several instances of the same class are created.  This
1637      can be much more efficient (in both time and space) than repeatedly
1638      embedding the module and class names in INST opcodes.
1639
1640      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1641      the class object is taken off the stack, immediately above the
1642      topmost markobject:
1643
1644      Stack before: ... markobject classobject stackslice
1645      Stack after:  ... new_instance_object
1646
1647      As for INST, the remainder of the stack above the markobject is
1648      gathered into an argument tuple, and then the logic seems identical,
1649      except that no __safe_for_unpickling__ check is done (XXX this smells
1650      like a bug).  See INST for the gory details.
1651      """),
1652
1653    I(name='NEWOBJ',
1654      code='\x81',
1655      arg=None,
1656      stack_before=[anyobject, anyobject],
1657      stack_after=[anyobject],
1658      proto=2,
1659      doc="""Build an object instance.
1660
1661      The stack before should be thought of as containing a class
1662      object followed by an argument tuple (the tuple being the stack
1663      top).  Call these cls and args.  They are popped off the stack,
1664      and the value returned by cls.__new__(cls, *args) is pushed back
1665      onto the stack.
1666      """),
1667
1668    # Machine control.
1669
1670    I(name='PROTO',
1671      code='\x80',
1672      arg=uint1,
1673      stack_before=[],
1674      stack_after=[],
1675      proto=2,
1676      doc="""Protocol version indicator.
1677
1678      For protocol 2 and above, a pickle must start with this opcode.
1679      The argument is the protocol version, an int in range(2, 256).
1680      """),
1681
1682    I(name='STOP',
1683      code='.',
1684      arg=None,
1685      stack_before=[anyobject],
1686      stack_after=[],
1687      proto=0,
1688      doc="""Stop the unpickling machine.
1689
1690      Every pickle ends with this opcode.  The object at the top of the stack
1691      is popped, and that's the result of unpickling.  The stack should be
1692      empty then.
1693      """),
1694
1695    # Ways to deal with persistent IDs.
1696
1697    I(name='PERSID',
1698      code='P',
1699      arg=stringnl_noescape,
1700      stack_before=[],
1701      stack_after=[anyobject],
1702      proto=0,
1703      doc="""Push an object identified by a persistent ID.
1704
1705      The pickle module doesn't define what a persistent ID means.  PERSID's
1706      argument is a newline-terminated str-style (no embedded escapes, no
1707      bracketing quote characters) string, which *is* "the persistent ID".
1708      The unpickler passes this string to self.persistent_load().  Whatever
1709      object that returns is pushed on the stack.  There is no implementation
1710      of persistent_load() in Python's unpickler:  it must be supplied by an
1711      unpickler subclass.
1712      """),
1713
1714    I(name='BINPERSID',
1715      code='Q',
1716      arg=None,
1717      stack_before=[anyobject],
1718      stack_after=[anyobject],
1719      proto=1,
1720      doc="""Push an object identified by a persistent ID.
1721
1722      Like PERSID, except the persistent ID is popped off the stack (instead
1723      of being a string embedded in the opcode bytestream).  The persistent
1724      ID is passed to self.persistent_load(), and whatever object that
1725      returns is pushed on the stack.  See PERSID for more detail.
1726      """),
1727]
1728del I
1729
1730# Verify uniqueness of .name and .code members.
1731name2i = {}
1732code2i = {}
1733
1734for i, d in enumerate(opcodes):
1735    if d.name in name2i:
1736        raise ValueError("repeated name %r at indices %d and %d" %
1737                         (d.name, name2i[d.name], i))
1738    if d.code in code2i:
1739        raise ValueError("repeated code %r at indices %d and %d" %
1740                         (d.code, code2i[d.code], i))
1741
1742    name2i[d.name] = i
1743    code2i[d.code] = i
1744
1745del name2i, code2i, i, d
1746
1747##############################################################################
1748# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1749# Also ensure we've got the same stuff as pickle.py, although the
1750# introspection here is dicey.
1751
1752code2op = {}
1753for d in opcodes:
1754    code2op[d.code] = d
1755del d
1756
1757def assure_pickle_consistency(verbose=False):
1758    import pickle, re
1759
1760    copy = code2op.copy()
1761    for name in pickle.__all__:
1762        if not re.match("[A-Z][A-Z0-9_]+$", name):
1763            if verbose:
1764                print "skipping %r: it doesn't look like an opcode name" % name
1765            continue
1766        picklecode = getattr(pickle, name)
1767        if not isinstance(picklecode, str) or len(picklecode) != 1:
1768            if verbose:
1769                print ("skipping %r: value %r doesn't look like a pickle "
1770                       "code" % (name, picklecode))
1771            continue
1772        if picklecode in copy:
1773            if verbose:
1774                print "checking name %r w/ code %r for consistency" % (
1775                      name, picklecode)
1776            d = copy[picklecode]
1777            if d.name != name:
1778                raise ValueError("for pickle code %r, pickle.py uses name %r "
1779                                 "but we're using name %r" % (picklecode,
1780                                                              name,
1781                                                              d.name))
1782            # Forget this one.  Any left over in copy at the end are a problem
1783            # of a different kind.
1784            del copy[picklecode]
1785        else:
1786            raise ValueError("pickle.py appears to have a pickle opcode with "
1787                             "name %r and code %r, but we don't" %
1788                             (name, picklecode))
1789    if copy:
1790        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1791        for code, d in copy.items():
1792            msg.append("    name %r with code %r" % (d.name, code))
1793        raise ValueError("\n".join(msg))
1794
1795assure_pickle_consistency()
1796
1797##############################################################################
1798# A pickle opcode generator.
1799
1800def genops(pickle):
1801    """Generate all the opcodes in a pickle.
1802
1803    'pickle' is a file-like object, or string, containing the pickle.
1804
1805    Each opcode in the pickle is generated, from the current pickle position,
1806    stopping after a STOP opcode is delivered.  A triple is generated for
1807    each opcode:
1808
1809        opcode, arg, pos
1810
1811    opcode is an OpcodeInfo record, describing the current opcode.
1812
1813    If the opcode has an argument embedded in the pickle, arg is its decoded
1814    value, as a Python object.  If the opcode doesn't have an argument, arg
1815    is None.
1816
1817    If the pickle has a tell() method, pos was the value of pickle.tell()
1818    before reading the current opcode.  If the pickle is a string object,
1819    it's wrapped in a StringIO object, and the latter's tell() result is
1820    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1821    to query its current position) pos is None.
1822    """
1823
1824    import cStringIO as StringIO
1825
1826    if isinstance(pickle, str):
1827        pickle = StringIO.StringIO(pickle)
1828
1829    if hasattr(pickle, "tell"):
1830        getpos = pickle.tell
1831    else:
1832        getpos = lambda: None
1833
1834    while True:
1835        pos = getpos()
1836        code = pickle.read(1)
1837        opcode = code2op.get(code)
1838        if opcode is None:
1839            if code == "":
1840                raise ValueError("pickle exhausted before seeing STOP")
1841            else:
1842                raise ValueError("at position %s, opcode %r unknown" % (
1843                                 pos is None and "<unknown>" or pos,
1844                                 code))
1845        if opcode.arg is None:
1846            arg = None
1847        else:
1848            arg = opcode.arg.reader(pickle)
1849        yield opcode, arg, pos
1850        if code == '.':
1851            assert opcode.name == 'STOP'
1852            break
1853
1854##############################################################################
1855# A symbolic pickle disassembler.
1856
1857def dis(pickle, out=None, indentlevel=4):
1858    """Produce a symbolic disassembly of a pickle.
1859
1860    'pickle' is a file-like object, or string, containing a (at least one)
1861    pickle.  The pickle is disassembled from the current position, through
1862    the first STOP opcode encountered.
1863
1864    Optional arg 'out' is a file-like object to which the disassembly is
1865    printed.  It defaults to sys.stdout.
1866
1867    Optional arg indentlevel is the number of blanks by which to indent
1868    a new MARK level.  It defaults to 4.
1869    """
1870
1871    markstack = []
1872    indentchunk = ' ' * indentlevel
1873    for opcode, arg, pos in genops(pickle):
1874        if pos is not None:
1875            print >> out, "%5d:" % pos,
1876
1877        line = "%s %s%s" % (opcode.code,
1878                            indentchunk * len(markstack),
1879                            opcode.name)
1880
1881        markmsg = None
1882        if markstack and markobject in opcode.stack_before:
1883                assert markobject not in opcode.stack_after
1884                markpos = markstack.pop()
1885                if markpos is not None:
1886                    markmsg = "(MARK at %d)" % markpos
1887
1888        if arg is not None or markmsg:
1889            # make a mild effort to align arguments
1890            line += ' ' * (10 - len(opcode.name))
1891            if arg is not None:
1892                line += ' ' + repr(arg)
1893            if markmsg:
1894                line += ' ' + markmsg
1895        print >> out, line
1896
1897        if markobject in opcode.stack_after:
1898            assert markobject not in opcode.stack_before
1899            markstack.append(pos)
1900
1901
1902_dis_test = """
1903>>> import pickle
1904>>> x = [1, 2, (3, 4), {'abc': u"def"}]
1905>>> pkl = pickle.dumps(x, 0)
1906>>> dis(pkl)
1907    0: ( MARK
1908    1: l     LIST       (MARK at 0)
1909    2: p PUT        0
1910    5: I INT        1
1911    8: a APPEND
1912    9: I INT        2
1913   12: a APPEND
1914   13: ( MARK
1915   14: I     INT        3
1916   17: I     INT        4
1917   20: t     TUPLE      (MARK at 13)
1918   21: p PUT        1
1919   24: a APPEND
1920   25: ( MARK
1921   26: d     DICT       (MARK at 25)
1922   27: p PUT        2
1923   30: S STRING     'abc'
1924   37: p PUT        3
1925   40: V UNICODE    u'def'
1926   45: p PUT        4
1927   48: s SETITEM
1928   49: a APPEND
1929   50: . STOP
1930
1931Try again with a "binary" pickle.
1932
1933>>> pkl = pickle.dumps(x, 1)
1934>>> dis(pkl)
1935    0: ] EMPTY_LIST
1936    1: q BINPUT     0
1937    3: ( MARK
1938    4: K     BININT1    1
1939    6: K     BININT1    2
1940    8: (     MARK
1941    9: K         BININT1    3
1942   11: K         BININT1    4
1943   13: t         TUPLE      (MARK at 8)
1944   14: q     BINPUT     1
1945   16: }     EMPTY_DICT
1946   17: q     BINPUT     2
1947   19: U     SHORT_BINSTRING 'abc'
1948   24: q     BINPUT     3
1949   26: X     BINUNICODE u'def'
1950   34: q     BINPUT     4
1951   36: s     SETITEM
1952   37: e     APPENDS    (MARK at 3)
1953   38: . STOP
1954
1955Exercise the INST/OBJ/BUILD family.
1956
1957>>> import random
1958>>> dis(pickle.dumps(random.random, 0))
1959    0: c GLOBAL     'random random'
1960   15: p PUT        0
1961   18: . STOP
1962
1963>>> x = [pickle.PicklingError()] * 2
1964>>> dis(pickle.dumps(x, 0))
1965    0: ( MARK
1966    1: l     LIST       (MARK at 0)
1967    2: p PUT        0
1968    5: ( MARK
1969    6: i     INST       'pickle PicklingError' (MARK at 5)
1970   28: p PUT        1
1971   31: ( MARK
1972   32: d     DICT       (MARK at 31)
1973   33: p PUT        2
1974   36: S STRING     'args'
1975   44: p PUT        3
1976   47: ( MARK
1977   48: t     TUPLE      (MARK at 47)
1978   49: s SETITEM
1979   50: b BUILD
1980   51: a APPEND
1981   52: g GET        1
1982   55: a APPEND
1983   56: . STOP
1984
1985>>> dis(pickle.dumps(x, 1))
1986    0: ] EMPTY_LIST
1987    1: q BINPUT     0
1988    3: ( MARK
1989    4: (     MARK
1990    5: c         GLOBAL     'pickle PicklingError'
1991   27: q         BINPUT     1
1992   29: o         OBJ        (MARK at 4)
1993   30: q     BINPUT     2
1994   32: }     EMPTY_DICT
1995   33: q     BINPUT     3
1996   35: U     SHORT_BINSTRING 'args'
1997   41: q     BINPUT     4
1998   43: )     EMPTY_TUPLE
1999   44: s     SETITEM
2000   45: b     BUILD
2001   46: h     BINGET     2
2002   48: e     APPENDS    (MARK at 3)
2003   49: . STOP
2004
2005Try "the canonical" recursive-object test.
2006
2007>>> L = []
2008>>> T = L,
2009>>> L.append(T)
2010>>> L[0] is T
2011True
2012>>> T[0] is L
2013True
2014>>> L[0][0] is L
2015True
2016>>> T[0][0] is T
2017True
2018>>> dis(pickle.dumps(L, 0))
2019    0: ( MARK
2020    1: l     LIST       (MARK at 0)
2021    2: p PUT        0
2022    5: ( MARK
2023    6: g     GET        0
2024    9: t     TUPLE      (MARK at 5)
2025   10: p PUT        1
2026   13: a APPEND
2027   14: . STOP
2028>>> dis(pickle.dumps(L, 1))
2029    0: ] EMPTY_LIST
2030    1: q BINPUT     0
2031    3: ( MARK
2032    4: h     BINGET     0
2033    6: t     TUPLE      (MARK at 3)
2034    7: q BINPUT     1
2035    9: a APPEND
2036   10: . STOP
2037
2038The protocol 0 pickle of the tuple causes the disassembly to get confused,
2039as it doesn't realize that the POP opcode at 16 gets rid of the MARK at 0
2040(so the output remains indented until the end).  The protocol 1 pickle
2041doesn't trigger this glitch, because the disassembler realizes that
2042POP_MARK gets rid of the MARK.  Doing a better job on the protocol 0
2043pickle would require the disassembler to emulate the stack.
2044
2045>>> dis(pickle.dumps(T, 0))
2046    0: ( MARK
2047    1: (     MARK
2048    2: l         LIST       (MARK at 1)
2049    3: p     PUT        0
2050    6: (     MARK
2051    7: g         GET        0
2052   10: t         TUPLE      (MARK at 6)
2053   11: p     PUT        1
2054   14: a     APPEND
2055   15: 0     POP
2056   16: 0     POP
2057   17: g     GET        1
2058   20: .     STOP
2059>>> dis(pickle.dumps(T, 1))
2060    0: ( MARK
2061    1: ]     EMPTY_LIST
2062    2: q     BINPUT     0
2063    4: (     MARK
2064    5: h         BINGET     0
2065    7: t         TUPLE      (MARK at 4)
2066    8: q     BINPUT     1
2067   10: a     APPEND
2068   11: 1     POP_MARK   (MARK at 0)
2069   12: h BINGET     1
2070   14: . STOP
2071"""
2072
2073__test__ = {'disassembler_test': _dis_test,
2074           }
2075
2076def _test():
2077    import doctest
2078    return doctest.testmod()
2079
2080if __name__ == "__main__":
2081    _test()
2082