pickletools.py revision 90cf212cefd270615a6d7ffa043e1cf3bd9ec9f2
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13__all__ = ['dis',
14           'genops',
15          ]
16
17# Other ideas:
18#
19# - A pickle verifier:  read a pickle and check it exhaustively for
20#   well-formedness.  dis() does a lot of this already.
21#
22# - A protocol identifier:  examine a pickle and return its protocol number
23#   (== the highest .proto attr value among all the opcodes in the pickle).
24#   dis() already prints this info at the end.
25#
26# - A pickle optimizer:  for example, tuple-building code is sometimes more
27#   elaborate than necessary, catering for the possibility that the tuple
28#   is recursive.  Or lots of times a PUT is generated that's never accessed
29#   by a later GET.
30
31
32"""
33"A pickle" is a program for a virtual pickle machine (PM, but more accurately
34called an unpickling machine).  It's a sequence of opcodes, interpreted by the
35PM, building an arbitrarily complex Python object.
36
37For the most part, the PM is very simple:  there are no looping, testing, or
38conditional instructions, no arithmetic and no function calls.  Opcodes are
39executed once each, from first to last, until a STOP opcode is reached.
40
41The PM has two data areas, "the stack" and "the memo".
42
43Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
44integer object on the stack, whose value is gotten from a decimal string
45literal immediately following the INT opcode in the pickle bytestream.  Other
46opcodes take Python objects off the stack.  The result of unpickling is
47whatever object is left on the stack when the final STOP opcode is executed.
48
49The memo is simply an array of objects, or it can be implemented as a dict
50mapping little integers to objects.  The memo serves as the PM's "long term
51memory", and the little integers indexing the memo are akin to variable
52names.  Some opcodes pop a stack object into the memo at a given index,
53and others push a memo object at a given index onto the stack again.
54
55At heart, that's all the PM has.  Subtleties arise for these reasons:
56
57+ Object identity.  Objects can be arbitrarily complex, and subobjects
58  may be shared (for example, the list [a, a] refers to the same object a
59  twice).  It can be vital that unpickling recreate an isomorphic object
60  graph, faithfully reproducing sharing.
61
62+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
63  list, and L[0] is the same list.  This is related to the object identity
64  point, and some sequences of pickle opcodes are subtle in order to
65  get the right result in all cases.
66
67+ Things pickle doesn't know everything about.  Examples of things pickle
68  does know everything about are Python's builtin scalar and container
69  types, like ints and tuples.  They generally have opcodes dedicated to
70  them.  For things like module references and instances of user-defined
71  classes, pickle's knowledge is limited.  Historically, many enhancements
72  have been made to the pickle protocol in order to do a better (faster,
73  and/or more compact) job on those.
74
75+ Backward compatibility and micro-optimization.  As explained below,
76  pickle opcodes never go away, not even when better ways to do a thing
77  get invented.  The repertoire of the PM just keeps growing over time.
78  For example, protocol 0 had two opcodes for building Python integers (INT
79  and LONG), protocol 1 added three more for more-efficient pickling of short
80  integers, and protocol 2 added two more for more-efficient pickling of
81  long integers (before protocol 2, the only ways to pickle a Python long
82  took time quadratic in the number of digits, for both pickling and
83  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
84  wearying complication.
85
86
87Pickle protocols:
88
89For compatibility, the meaning of a pickle opcode never changes.  Instead new
90pickle opcodes get added, and each version's unpickler can handle all the
91pickle opcodes in all protocol versions to date.  So old pickles continue to
92be readable forever.  The pickler can generally be told to restrict itself to
93the subset of opcodes available under previous protocol versions too, so that
94users can create pickles under the current version readable by older
95versions.  However, a pickle does not contain its version number embedded
96within it.  If an older unpickler tries to read a pickle using a later
97protocol, the result is most likely an exception due to seeing an unknown (in
98the older unpickler) opcode.
99
100The original pickle used what's now called "protocol 0", and what was called
101"text mode" before Python 2.3.  The entire pickle bytestream is made up of
102printable 7-bit ASCII characters, plus the newline character, in protocol 0.
103That's why it was called text mode.  Protocol 0 is small and elegant, but
104sometimes painfully inefficient.
105
106The second major set of additions is now called "protocol 1", and was called
107"binary mode" before Python 2.3.  This added many opcodes with arguments
108consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
109bytes.  Binary mode pickles can be substantially smaller than equivalent
110text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
111int as 4 bytes following the opcode, which is cheaper to unpickle than the
112(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
113a number of opcodes that operate on many stack elements at once (like APPENDS
114and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
115
116The third major set of additions came in Python 2.3, and is called "protocol
1172".  This added:
118
119- A better way to pickle instances of new-style classes (NEWOBJ).
120
121- A way for a pickle to identify its protocol (PROTO).
122
123- Time- and space- efficient pickling of long ints (LONG{1,4}).
124
125- Shortcuts for small tuples (TUPLE{1,2,3}}.
126
127- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
128
129- The "extension registry", a vector of popular objects that can be pushed
130  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
131  the registry contents are predefined (there's nothing akin to the memo's
132  PUT).
133
134Another independent change with Python 2.3 is the abandonment of any
135pretense that it might be safe to load pickles received from untrusted
136parties -- no sufficient security analysis has been done to guarantee
137this and there isn't a use case that warrants the expense of such an
138analysis.
139
140To this end, all tests for __safe_for_unpickling__ or for
141copy_reg.safe_constructors are removed from the unpickling code.
142References to these variables in the descriptions below are to be seen
143as describing unpickling in Python 2.2 and before.
144"""
145
146# Meta-rule:  Descriptions are stored in instances of descriptor objects,
147# with plain constructors.  No meta-language is defined from which
148# descriptors could be constructed.  If you want, e.g., XML, write a little
149# program to generate XML from the objects.
150
151##############################################################################
152# Some pickle opcodes have an argument, following the opcode in the
153# bytestream.  An argument is of a specific type, described by an instance
154# of ArgumentDescriptor.  These are not to be confused with arguments taken
155# off the stack -- ArgumentDescriptor applies only to arguments embedded in
156# the opcode stream, immediately following an opcode.
157
158# Represents the number of bytes consumed by an argument delimited by the
159# next newline character.
160UP_TO_NEWLINE = -1
161
162# Represents the number of bytes consumed by a two-argument opcode where
163# the first argument gives the number of bytes in the second argument.
164TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
165TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
166
167class ArgumentDescriptor(object):
168    __slots__ = (
169        # name of descriptor record, also a module global name; a string
170        'name',
171
172        # length of argument, in bytes; an int; UP_TO_NEWLINE and
173        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
174        # cases
175        'n',
176
177        # a function taking a file-like object, reading this kind of argument
178        # from the object at the current position, advancing the current
179        # position by n bytes, and returning the value of the argument
180        'reader',
181
182        # human-readable docs for this arg descriptor; a string
183        'doc',
184    )
185
186    def __init__(self, name, n, reader, doc):
187        assert isinstance(name, str)
188        self.name = name
189
190        assert isinstance(n, int) and (n >= 0 or
191                                       n in (UP_TO_NEWLINE,
192                                             TAKEN_FROM_ARGUMENT1,
193                                             TAKEN_FROM_ARGUMENT4))
194        self.n = n
195
196        self.reader = reader
197
198        assert isinstance(doc, str)
199        self.doc = doc
200
201from struct import unpack as _unpack
202
203def read_uint1(f):
204    r"""
205    >>> import StringIO
206    >>> read_uint1(StringIO.StringIO('\xff'))
207    255
208    """
209
210    data = f.read(1)
211    if data:
212        return ord(data)
213    raise ValueError("not enough data in stream to read uint1")
214
215uint1 = ArgumentDescriptor(
216            name='uint1',
217            n=1,
218            reader=read_uint1,
219            doc="One-byte unsigned integer.")
220
221
222def read_uint2(f):
223    r"""
224    >>> import StringIO
225    >>> read_uint2(StringIO.StringIO('\xff\x00'))
226    255
227    >>> read_uint2(StringIO.StringIO('\xff\xff'))
228    65535
229    """
230
231    data = f.read(2)
232    if len(data) == 2:
233        return _unpack("<H", data)[0]
234    raise ValueError("not enough data in stream to read uint2")
235
236uint2 = ArgumentDescriptor(
237            name='uint2',
238            n=2,
239            reader=read_uint2,
240            doc="Two-byte unsigned integer, little-endian.")
241
242
243def read_int4(f):
244    r"""
245    >>> import StringIO
246    >>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
247    255
248    >>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
249    True
250    """
251
252    data = f.read(4)
253    if len(data) == 4:
254        return _unpack("<i", data)[0]
255    raise ValueError("not enough data in stream to read int4")
256
257int4 = ArgumentDescriptor(
258           name='int4',
259           n=4,
260           reader=read_int4,
261           doc="Four-byte signed integer, little-endian, 2's complement.")
262
263
264def read_stringnl(f, decode=True, stripquotes=True):
265    r"""
266    >>> import StringIO
267    >>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
268    'abcd'
269
270    >>> read_stringnl(StringIO.StringIO("\n"))
271    Traceback (most recent call last):
272    ...
273    ValueError: no string quotes around ''
274
275    >>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
276    ''
277
278    >>> read_stringnl(StringIO.StringIO("''\n"))
279    ''
280
281    >>> read_stringnl(StringIO.StringIO('"abcd"'))
282    Traceback (most recent call last):
283    ...
284    ValueError: no newline found when trying to read stringnl
285
286    Embedded escapes are undone in the result.
287    >>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
288    'a\n\\b\x00c\td'
289    """
290
291    data = f.readline()
292    if not data.endswith('\n'):
293        raise ValueError("no newline found when trying to read stringnl")
294    data = data[:-1]    # lose the newline
295
296    if stripquotes:
297        for q in "'\"":
298            if data.startswith(q):
299                if not data.endswith(q):
300                    raise ValueError("strinq quote %r not found at both "
301                                     "ends of %r" % (q, data))
302                data = data[1:-1]
303                break
304        else:
305            raise ValueError("no string quotes around %r" % data)
306
307    # I'm not sure when 'string_escape' was added to the std codecs; it's
308    # crazy not to use it if it's there.
309    if decode:
310        data = data.decode('string_escape')
311    return data
312
313stringnl = ArgumentDescriptor(
314               name='stringnl',
315               n=UP_TO_NEWLINE,
316               reader=read_stringnl,
317               doc="""A newline-terminated string.
318
319                   This is a repr-style string, with embedded escapes, and
320                   bracketing quotes.
321                   """)
322
323def read_stringnl_noescape(f):
324    return read_stringnl(f, decode=False, stripquotes=False)
325
326stringnl_noescape = ArgumentDescriptor(
327                        name='stringnl_noescape',
328                        n=UP_TO_NEWLINE,
329                        reader=read_stringnl_noescape,
330                        doc="""A newline-terminated string.
331
332                        This is a str-style string, without embedded escapes,
333                        or bracketing quotes.  It should consist solely of
334                        printable ASCII characters.
335                        """)
336
337def read_stringnl_noescape_pair(f):
338    r"""
339    >>> import StringIO
340    >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
341    'Queue Empty'
342    """
343
344    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
345
346stringnl_noescape_pair = ArgumentDescriptor(
347                             name='stringnl_noescape_pair',
348                             n=UP_TO_NEWLINE,
349                             reader=read_stringnl_noescape_pair,
350                             doc="""A pair of newline-terminated strings.
351
352                             These are str-style strings, without embedded
353                             escapes, or bracketing quotes.  They should
354                             consist solely of printable ASCII characters.
355                             The pair is returned as a single string, with
356                             a single blank separating the two strings.
357                             """)
358
359def read_string4(f):
360    r"""
361    >>> import StringIO
362    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
363    ''
364    >>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
365    'abc'
366    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
367    Traceback (most recent call last):
368    ...
369    ValueError: expected 50331648 bytes in a string4, but only 6 remain
370    """
371
372    n = read_int4(f)
373    if n < 0:
374        raise ValueError("string4 byte count < 0: %d" % n)
375    data = f.read(n)
376    if len(data) == n:
377        return data
378    raise ValueError("expected %d bytes in a string4, but only %d remain" %
379                     (n, len(data)))
380
381string4 = ArgumentDescriptor(
382              name="string4",
383              n=TAKEN_FROM_ARGUMENT4,
384              reader=read_string4,
385              doc="""A counted string.
386
387              The first argument is a 4-byte little-endian signed int giving
388              the number of bytes in the string, and the second argument is
389              that many bytes.
390              """)
391
392
393def read_string1(f):
394    r"""
395    >>> import StringIO
396    >>> read_string1(StringIO.StringIO("\x00"))
397    ''
398    >>> read_string1(StringIO.StringIO("\x03abcdef"))
399    'abc'
400    """
401
402    n = read_uint1(f)
403    assert n >= 0
404    data = f.read(n)
405    if len(data) == n:
406        return data
407    raise ValueError("expected %d bytes in a string1, but only %d remain" %
408                     (n, len(data)))
409
410string1 = ArgumentDescriptor(
411              name="string1",
412              n=TAKEN_FROM_ARGUMENT1,
413              reader=read_string1,
414              doc="""A counted string.
415
416              The first argument is a 1-byte unsigned int giving the number
417              of bytes in the string, and the second argument is that many
418              bytes.
419              """)
420
421
422def read_unicodestringnl(f):
423    r"""
424    >>> import StringIO
425    >>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
426    u'abc\uabcd'
427    """
428
429    data = f.readline()
430    if not data.endswith('\n'):
431        raise ValueError("no newline found when trying to read "
432                         "unicodestringnl")
433    data = data[:-1]    # lose the newline
434    return unicode(data, 'raw-unicode-escape')
435
436unicodestringnl = ArgumentDescriptor(
437                      name='unicodestringnl',
438                      n=UP_TO_NEWLINE,
439                      reader=read_unicodestringnl,
440                      doc="""A newline-terminated Unicode string.
441
442                      This is raw-unicode-escape encoded, so consists of
443                      printable ASCII characters, and may contain embedded
444                      escape sequences.
445                      """)
446
447def read_unicodestring4(f):
448    r"""
449    >>> import StringIO
450    >>> s = u'abcd\uabcd'
451    >>> enc = s.encode('utf-8')
452    >>> enc
453    'abcd\xea\xaf\x8d'
454    >>> n = chr(len(enc)) + chr(0) * 3  # little-endian 4-byte length
455    >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
456    >>> s == t
457    True
458
459    >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
460    Traceback (most recent call last):
461    ...
462    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
463    """
464
465    n = read_int4(f)
466    if n < 0:
467        raise ValueError("unicodestring4 byte count < 0: %d" % n)
468    data = f.read(n)
469    if len(data) == n:
470        return unicode(data, 'utf-8')
471    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
472                     "remain" % (n, len(data)))
473
474unicodestring4 = ArgumentDescriptor(
475                    name="unicodestring4",
476                    n=TAKEN_FROM_ARGUMENT4,
477                    reader=read_unicodestring4,
478                    doc="""A counted Unicode string.
479
480                    The first argument is a 4-byte little-endian signed int
481                    giving the number of bytes in the string, and the second
482                    argument-- the UTF-8 encoding of the Unicode string --
483                    contains that many bytes.
484                    """)
485
486
487def read_decimalnl_short(f):
488    r"""
489    >>> import StringIO
490    >>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
491    1234
492
493    >>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
494    Traceback (most recent call last):
495    ...
496    ValueError: trailing 'L' not allowed in '1234L'
497    """
498
499    s = read_stringnl(f, decode=False, stripquotes=False)
500    if s.endswith("L"):
501        raise ValueError("trailing 'L' not allowed in %r" % s)
502
503    # It's not necessarily true that the result fits in a Python short int:
504    # the pickle may have been written on a 64-bit box.  There's also a hack
505    # for True and False here.
506    if s == "00":
507        return False
508    elif s == "01":
509        return True
510
511    try:
512        return int(s)
513    except OverflowError:
514        return long(s)
515
516def read_decimalnl_long(f):
517    r"""
518    >>> import StringIO
519
520    >>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
521    Traceback (most recent call last):
522    ...
523    ValueError: trailing 'L' required in '1234'
524
525    Someday the trailing 'L' will probably go away from this output.
526
527    >>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
528    1234L
529
530    >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
531    123456789012345678901234L
532    """
533
534    s = read_stringnl(f, decode=False, stripquotes=False)
535    if not s.endswith("L"):
536        raise ValueError("trailing 'L' required in %r" % s)
537    return long(s)
538
539
540decimalnl_short = ArgumentDescriptor(
541                      name='decimalnl_short',
542                      n=UP_TO_NEWLINE,
543                      reader=read_decimalnl_short,
544                      doc="""A newline-terminated decimal integer literal.
545
546                          This never has a trailing 'L', and the integer fit
547                          in a short Python int on the box where the pickle
548                          was written -- but there's no guarantee it will fit
549                          in a short Python int on the box where the pickle
550                          is read.
551                          """)
552
553decimalnl_long = ArgumentDescriptor(
554                     name='decimalnl_long',
555                     n=UP_TO_NEWLINE,
556                     reader=read_decimalnl_long,
557                     doc="""A newline-terminated decimal integer literal.
558
559                         This has a trailing 'L', and can represent integers
560                         of any size.
561                         """)
562
563
564def read_floatnl(f):
565    r"""
566    >>> import StringIO
567    >>> read_floatnl(StringIO.StringIO("-1.25\n6"))
568    -1.25
569    """
570    s = read_stringnl(f, decode=False, stripquotes=False)
571    return float(s)
572
573floatnl = ArgumentDescriptor(
574              name='floatnl',
575              n=UP_TO_NEWLINE,
576              reader=read_floatnl,
577              doc="""A newline-terminated decimal floating literal.
578
579              In general this requires 17 significant digits for roundtrip
580              identity, and pickling then unpickling infinities, NaNs, and
581              minus zero doesn't work across boxes, or on some boxes even
582              on itself (e.g., Windows can't read the strings it produces
583              for infinities or NaNs).
584              """)
585
586def read_float8(f):
587    r"""
588    >>> import StringIO, struct
589    >>> raw = struct.pack(">d", -1.25)
590    >>> raw
591    '\xbf\xf4\x00\x00\x00\x00\x00\x00'
592    >>> read_float8(StringIO.StringIO(raw + "\n"))
593    -1.25
594    """
595
596    data = f.read(8)
597    if len(data) == 8:
598        return _unpack(">d", data)[0]
599    raise ValueError("not enough data in stream to read float8")
600
601
602float8 = ArgumentDescriptor(
603             name='float8',
604             n=8,
605             reader=read_float8,
606             doc="""An 8-byte binary representation of a float, big-endian.
607
608             The format is unique to Python, and shared with the struct
609             module (format string '>d') "in theory" (the struct and cPickle
610             implementations don't share the code -- they should).  It's
611             strongly related to the IEEE-754 double format, and, in normal
612             cases, is in fact identical to the big-endian 754 double format.
613             On other boxes the dynamic range is limited to that of a 754
614             double, and "add a half and chop" rounding is used to reduce
615             the precision to 53 bits.  However, even on a 754 box,
616             infinities, NaNs, and minus zero may not be handled correctly
617             (may not survive roundtrip pickling intact).
618             """)
619
620# Protocol 2 formats
621
622from pickle import decode_long
623
624def read_long1(f):
625    r"""
626    >>> import StringIO
627    >>> read_long1(StringIO.StringIO("\x00"))
628    0L
629    >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
630    255L
631    >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
632    32767L
633    >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
634    -256L
635    >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
636    -32768L
637    """
638
639    n = read_uint1(f)
640    data = f.read(n)
641    if len(data) != n:
642        raise ValueError("not enough data in stream to read long1")
643    return decode_long(data)
644
645long1 = ArgumentDescriptor(
646    name="long1",
647    n=TAKEN_FROM_ARGUMENT1,
648    reader=read_long1,
649    doc="""A binary long, little-endian, using 1-byte size.
650
651    This first reads one byte as an unsigned size, then reads that
652    many bytes and interprets them as a little-endian 2's-complement long.
653    If the size is 0, that's taken as a shortcut for the long 0L.
654    """)
655
656def read_long4(f):
657    r"""
658    >>> import StringIO
659    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
660    255L
661    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
662    32767L
663    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
664    -256L
665    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
666    -32768L
667    >>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
668    0L
669    """
670
671    n = read_int4(f)
672    if n < 0:
673        raise ValueError("long4 byte count < 0: %d" % n)
674    data = f.read(n)
675    if len(data) != n:
676        raise ValueError("not enough data in stream to read long4")
677    return decode_long(data)
678
679long4 = ArgumentDescriptor(
680    name="long4",
681    n=TAKEN_FROM_ARGUMENT4,
682    reader=read_long4,
683    doc="""A binary representation of a long, little-endian.
684
685    This first reads four bytes as a signed size (but requires the
686    size to be >= 0), then reads that many bytes and interprets them
687    as a little-endian 2's-complement long.  If the size is 0, that's taken
688    as a shortcut for the long 0L, although LONG1 should really be used
689    then instead (and in any case where # of bytes < 256).
690    """)
691
692
693##############################################################################
694# Object descriptors.  The stack used by the pickle machine holds objects,
695# and in the stack_before and stack_after attributes of OpcodeInfo
696# descriptors we need names to describe the various types of objects that can
697# appear on the stack.
698
699class StackObject(object):
700    __slots__ = (
701        # name of descriptor record, for info only
702        'name',
703
704        # type of object, or tuple of type objects (meaning the object can
705        # be of any type in the tuple)
706        'obtype',
707
708        # human-readable docs for this kind of stack object; a string
709        'doc',
710    )
711
712    def __init__(self, name, obtype, doc):
713        assert isinstance(name, str)
714        self.name = name
715
716        assert isinstance(obtype, type) or isinstance(obtype, tuple)
717        if isinstance(obtype, tuple):
718            for contained in obtype:
719                assert isinstance(contained, type)
720        self.obtype = obtype
721
722        assert isinstance(doc, str)
723        self.doc = doc
724
725    def __repr__(self):
726        return self.name
727
728
729pyint = StackObject(
730            name='int',
731            obtype=int,
732            doc="A short (as opposed to long) Python integer object.")
733
734pylong = StackObject(
735             name='long',
736             obtype=long,
737             doc="A long (as opposed to short) Python integer object.")
738
739pyinteger_or_bool = StackObject(
740                        name='int_or_bool',
741                        obtype=(int, long, bool),
742                        doc="A Python integer object (short or long), or "
743                            "a Python bool.")
744
745pybool = StackObject(
746             name='bool',
747             obtype=(bool,),
748             doc="A Python bool object.")
749
750pyfloat = StackObject(
751              name='float',
752              obtype=float,
753              doc="A Python float object.")
754
755pystring = StackObject(
756               name='str',
757               obtype=str,
758               doc="A Python string object.")
759
760pyunicode = StackObject(
761                name='unicode',
762                obtype=unicode,
763                doc="A Python Unicode string object.")
764
765pynone = StackObject(
766             name="None",
767             obtype=type(None),
768             doc="The Python None object.")
769
770pytuple = StackObject(
771              name="tuple",
772              obtype=tuple,
773              doc="A Python tuple object.")
774
775pylist = StackObject(
776             name="list",
777             obtype=list,
778             doc="A Python list object.")
779
780pydict = StackObject(
781             name="dict",
782             obtype=dict,
783             doc="A Python dict object.")
784
785anyobject = StackObject(
786                name='any',
787                obtype=object,
788                doc="Any kind of object whatsoever.")
789
790markobject = StackObject(
791                 name="mark",
792                 obtype=StackObject,
793                 doc="""'The mark' is a unique object.
794
795                 Opcodes that operate on a variable number of objects
796                 generally don't embed the count of objects in the opcode,
797                 or pull it off the stack.  Instead the MARK opcode is used
798                 to push a special marker object on the stack, and then
799                 some other opcodes grab all the objects from the top of
800                 the stack down to (but not including) the topmost marker
801                 object.
802                 """)
803
804stackslice = StackObject(
805                 name="stackslice",
806                 obtype=StackObject,
807                 doc="""An object representing a contiguous slice of the stack.
808
809                 This is used in conjuction with markobject, to represent all
810                 of the stack following the topmost markobject.  For example,
811                 the POP_MARK opcode changes the stack from
812
813                     [..., markobject, stackslice]
814                 to
815                     [...]
816
817                 No matter how many object are on the stack after the topmost
818                 markobject, POP_MARK gets rid of all of them (including the
819                 topmost markobject too).
820                 """)
821
822##############################################################################
823# Descriptors for pickle opcodes.
824
825class OpcodeInfo(object):
826
827    __slots__ = (
828        # symbolic name of opcode; a string
829        'name',
830
831        # the code used in a bytestream to represent the opcode; a
832        # one-character string
833        'code',
834
835        # If the opcode has an argument embedded in the byte string, an
836        # instance of ArgumentDescriptor specifying its type.  Note that
837        # arg.reader(s) can be used to read and decode the argument from
838        # the bytestream s, and arg.doc documents the format of the raw
839        # argument bytes.  If the opcode doesn't have an argument embedded
840        # in the bytestream, arg should be None.
841        'arg',
842
843        # what the stack looks like before this opcode runs; a list
844        'stack_before',
845
846        # what the stack looks like after this opcode runs; a list
847        'stack_after',
848
849        # the protocol number in which this opcode was introduced; an int
850        'proto',
851
852        # human-readable docs for this opcode; a string
853        'doc',
854    )
855
856    def __init__(self, name, code, arg,
857                 stack_before, stack_after, proto, doc):
858        assert isinstance(name, str)
859        self.name = name
860
861        assert isinstance(code, str)
862        assert len(code) == 1
863        self.code = code
864
865        assert arg is None or isinstance(arg, ArgumentDescriptor)
866        self.arg = arg
867
868        assert isinstance(stack_before, list)
869        for x in stack_before:
870            assert isinstance(x, StackObject)
871        self.stack_before = stack_before
872
873        assert isinstance(stack_after, list)
874        for x in stack_after:
875            assert isinstance(x, StackObject)
876        self.stack_after = stack_after
877
878        assert isinstance(proto, int) and 0 <= proto <= 2
879        self.proto = proto
880
881        assert isinstance(doc, str)
882        self.doc = doc
883
884I = OpcodeInfo
885opcodes = [
886
887    # Ways to spell integers.
888
889    I(name='INT',
890      code='I',
891      arg=decimalnl_short,
892      stack_before=[],
893      stack_after=[pyinteger_or_bool],
894      proto=0,
895      doc="""Push an integer or bool.
896
897      The argument is a newline-terminated decimal literal string.
898
899      The intent may have been that this always fit in a short Python int,
900      but INT can be generated in pickles written on a 64-bit box that
901      require a Python long on a 32-bit box.  The difference between this
902      and LONG then is that INT skips a trailing 'L', and produces a short
903      int whenever possible.
904
905      Another difference is due to that, when bool was introduced as a
906      distinct type in 2.3, builtin names True and False were also added to
907      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
908      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
909      Leading zeroes are never produced for a genuine integer.  The 2.3
910      (and later) unpicklers special-case these and return bool instead;
911      earlier unpicklers ignore the leading "0" and return the int.
912      """),
913
914    I(name='BININT',
915      code='J',
916      arg=int4,
917      stack_before=[],
918      stack_after=[pyint],
919      proto=1,
920      doc="""Push a four-byte signed integer.
921
922      This handles the full range of Python (short) integers on a 32-bit
923      box, directly as binary bytes (1 for the opcode and 4 for the integer).
924      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
925      BININT1 or BININT2 saves space.
926      """),
927
928    I(name='BININT1',
929      code='K',
930      arg=uint1,
931      stack_before=[],
932      stack_after=[pyint],
933      proto=1,
934      doc="""Push a one-byte unsigned integer.
935
936      This is a space optimization for pickling very small non-negative ints,
937      in range(256).
938      """),
939
940    I(name='BININT2',
941      code='M',
942      arg=uint2,
943      stack_before=[],
944      stack_after=[pyint],
945      proto=1,
946      doc="""Push a two-byte unsigned integer.
947
948      This is a space optimization for pickling small positive ints, in
949      range(256, 2**16).  Integers in range(256) can also be pickled via
950      BININT2, but BININT1 instead saves a byte.
951      """),
952
953    I(name='LONG',
954      code='L',
955      arg=decimalnl_long,
956      stack_before=[],
957      stack_after=[pylong],
958      proto=0,
959      doc="""Push a long integer.
960
961      The same as INT, except that the literal ends with 'L', and always
962      unpickles to a Python long.  There doesn't seem a real purpose to the
963      trailing 'L'.
964
965      Note that LONG takes time quadratic in the number of digits when
966      unpickling (this is simply due to the nature of decimal->binary
967      conversion).  Proto 2 added linear-time (in C; still quadratic-time
968      in Python) LONG1 and LONG4 opcodes.
969      """),
970
971    I(name="LONG1",
972      code='\x8a',
973      arg=long1,
974      stack_before=[],
975      stack_after=[pylong],
976      proto=2,
977      doc="""Long integer using one-byte length.
978
979      A more efficient encoding of a Python long; the long1 encoding
980      says it all."""),
981
982    I(name="LONG4",
983      code='\x8b',
984      arg=long4,
985      stack_before=[],
986      stack_after=[pylong],
987      proto=2,
988      doc="""Long integer using found-byte length.
989
990      A more efficient encoding of a Python long; the long4 encoding
991      says it all."""),
992
993    # Ways to spell strings (8-bit, not Unicode).
994
995    I(name='STRING',
996      code='S',
997      arg=stringnl,
998      stack_before=[],
999      stack_after=[pystring],
1000      proto=0,
1001      doc="""Push a Python string object.
1002
1003      The argument is a repr-style string, with bracketing quote characters,
1004      and perhaps embedded escapes.  The argument extends until the next
1005      newline character.
1006      """),
1007
1008    I(name='BINSTRING',
1009      code='T',
1010      arg=string4,
1011      stack_before=[],
1012      stack_after=[pystring],
1013      proto=1,
1014      doc="""Push a Python string object.
1015
1016      There are two arguments:  the first is a 4-byte little-endian signed int
1017      giving the number of bytes in the string, and the second is that many
1018      bytes, which are taken literally as the string content.
1019      """),
1020
1021    I(name='SHORT_BINSTRING',
1022      code='U',
1023      arg=string1,
1024      stack_before=[],
1025      stack_after=[pystring],
1026      proto=1,
1027      doc="""Push a Python string object.
1028
1029      There are two arguments:  the first is a 1-byte unsigned int giving
1030      the number of bytes in the string, and the second is that many bytes,
1031      which are taken literally as the string content.
1032      """),
1033
1034    # Ways to spell None.
1035
1036    I(name='NONE',
1037      code='N',
1038      arg=None,
1039      stack_before=[],
1040      stack_after=[pynone],
1041      proto=0,
1042      doc="Push None on the stack."),
1043
1044    # Ways to spell bools, starting with proto 2.  See INT for how this was
1045    # done before proto 2.
1046
1047    I(name='NEWTRUE',
1048      code='\x88',
1049      arg=None,
1050      stack_before=[],
1051      stack_after=[pybool],
1052      proto=2,
1053      doc="""True.
1054
1055      Push True onto the stack."""),
1056
1057    I(name='NEWFALSE',
1058      code='\x89',
1059      arg=None,
1060      stack_before=[],
1061      stack_after=[pybool],
1062      proto=2,
1063      doc="""True.
1064
1065      Push False onto the stack."""),
1066
1067    # Ways to spell Unicode strings.
1068
1069    I(name='UNICODE',
1070      code='V',
1071      arg=unicodestringnl,
1072      stack_before=[],
1073      stack_after=[pyunicode],
1074      proto=0,  # this may be pure-text, but it's a later addition
1075      doc="""Push a Python Unicode string object.
1076
1077      The argument is a raw-unicode-escape encoding of a Unicode string,
1078      and so may contain embedded escape sequences.  The argument extends
1079      until the next newline character.
1080      """),
1081
1082    I(name='BINUNICODE',
1083      code='X',
1084      arg=unicodestring4,
1085      stack_before=[],
1086      stack_after=[pyunicode],
1087      proto=1,
1088      doc="""Push a Python Unicode string object.
1089
1090      There are two arguments:  the first is a 4-byte little-endian signed int
1091      giving the number of bytes in the string.  The second is that many
1092      bytes, and is the UTF-8 encoding of the Unicode string.
1093      """),
1094
1095    # Ways to spell floats.
1096
1097    I(name='FLOAT',
1098      code='F',
1099      arg=floatnl,
1100      stack_before=[],
1101      stack_after=[pyfloat],
1102      proto=0,
1103      doc="""Newline-terminated decimal float literal.
1104
1105      The argument is repr(a_float), and in general requires 17 significant
1106      digits for roundtrip conversion to be an identity (this is so for
1107      IEEE-754 double precision values, which is what Python float maps to
1108      on most boxes).
1109
1110      In general, FLOAT cannot be used to transport infinities, NaNs, or
1111      minus zero across boxes (or even on a single box, if the platform C
1112      library can't read the strings it produces for such things -- Windows
1113      is like that), but may do less damage than BINFLOAT on boxes with
1114      greater precision or dynamic range than IEEE-754 double.
1115      """),
1116
1117    I(name='BINFLOAT',
1118      code='G',
1119      arg=float8,
1120      stack_before=[],
1121      stack_after=[pyfloat],
1122      proto=1,
1123      doc="""Float stored in binary form, with 8 bytes of data.
1124
1125      This generally requires less than half the space of FLOAT encoding.
1126      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1127      minus zero, raises an exception if the exponent exceeds the range of
1128      an IEEE-754 double, and retains no more than 53 bits of precision (if
1129      there are more than that, "add a half and chop" rounding is used to
1130      cut it back to 53 significant bits).
1131      """),
1132
1133    # Ways to build lists.
1134
1135    I(name='EMPTY_LIST',
1136      code=']',
1137      arg=None,
1138      stack_before=[],
1139      stack_after=[pylist],
1140      proto=1,
1141      doc="Push an empty list."),
1142
1143    I(name='APPEND',
1144      code='a',
1145      arg=None,
1146      stack_before=[pylist, anyobject],
1147      stack_after=[pylist],
1148      proto=0,
1149      doc="""Append an object to a list.
1150
1151      Stack before:  ... pylist anyobject
1152      Stack after:   ... pylist+[anyobject]
1153
1154      although pylist is really extended in-place.
1155      """),
1156
1157    I(name='APPENDS',
1158      code='e',
1159      arg=None,
1160      stack_before=[pylist, markobject, stackslice],
1161      stack_after=[pylist],
1162      proto=1,
1163      doc="""Extend a list by a slice of stack objects.
1164
1165      Stack before:  ... pylist markobject stackslice
1166      Stack after:   ... pylist+stackslice
1167
1168      although pylist is really extended in-place.
1169      """),
1170
1171    I(name='LIST',
1172      code='l',
1173      arg=None,
1174      stack_before=[markobject, stackslice],
1175      stack_after=[pylist],
1176      proto=0,
1177      doc="""Build a list out of the topmost stack slice, after markobject.
1178
1179      All the stack entries following the topmost markobject are placed into
1180      a single Python list, which single list object replaces all of the
1181      stack from the topmost markobject onward.  For example,
1182
1183      Stack before: ... markobject 1 2 3 'abc'
1184      Stack after:  ... [1, 2, 3, 'abc']
1185      """),
1186
1187    # Ways to build tuples.
1188
1189    I(name='EMPTY_TUPLE',
1190      code=')',
1191      arg=None,
1192      stack_before=[],
1193      stack_after=[pytuple],
1194      proto=1,
1195      doc="Push an empty tuple."),
1196
1197    I(name='TUPLE',
1198      code='t',
1199      arg=None,
1200      stack_before=[markobject, stackslice],
1201      stack_after=[pytuple],
1202      proto=0,
1203      doc="""Build a tuple out of the topmost stack slice, after markobject.
1204
1205      All the stack entries following the topmost markobject are placed into
1206      a single Python tuple, which single tuple object replaces all of the
1207      stack from the topmost markobject onward.  For example,
1208
1209      Stack before: ... markobject 1 2 3 'abc'
1210      Stack after:  ... (1, 2, 3, 'abc')
1211      """),
1212
1213    I(name='TUPLE1',
1214      code='\x85',
1215      arg=None,
1216      stack_before=[anyobject],
1217      stack_after=[pytuple],
1218      proto=2,
1219      doc="""One-tuple.
1220
1221      This code pops one value off the stack and pushes a tuple of
1222      length 1 whose one item is that value back onto it.  IOW:
1223
1224          stack[-1] = tuple(stack[-1:])
1225      """),
1226
1227    I(name='TUPLE2',
1228      code='\x86',
1229      arg=None,
1230      stack_before=[anyobject, anyobject],
1231      stack_after=[pytuple],
1232      proto=2,
1233      doc="""One-tuple.
1234
1235      This code pops two values off the stack and pushes a tuple
1236      of length 2 whose items are those values back onto it.  IOW:
1237
1238          stack[-2:] = [tuple(stack[-2:])]
1239      """),
1240
1241    I(name='TUPLE3',
1242      code='\x87',
1243      arg=None,
1244      stack_before=[anyobject, anyobject, anyobject],
1245      stack_after=[pytuple],
1246      proto=2,
1247      doc="""One-tuple.
1248
1249      This code pops three values off the stack and pushes a tuple
1250      of length 3 whose items are those values back onto it.  IOW:
1251
1252          stack[-3:] = [tuple(stack[-3:])]
1253      """),
1254
1255    # Ways to build dicts.
1256
1257    I(name='EMPTY_DICT',
1258      code='}',
1259      arg=None,
1260      stack_before=[],
1261      stack_after=[pydict],
1262      proto=1,
1263      doc="Push an empty dict."),
1264
1265    I(name='DICT',
1266      code='d',
1267      arg=None,
1268      stack_before=[markobject, stackslice],
1269      stack_after=[pydict],
1270      proto=0,
1271      doc="""Build a dict out of the topmost stack slice, after markobject.
1272
1273      All the stack entries following the topmost markobject are placed into
1274      a single Python dict, which single dict object replaces all of the
1275      stack from the topmost markobject onward.  The stack slice alternates
1276      key, value, key, value, ....  For example,
1277
1278      Stack before: ... markobject 1 2 3 'abc'
1279      Stack after:  ... {1: 2, 3: 'abc'}
1280      """),
1281
1282    I(name='SETITEM',
1283      code='s',
1284      arg=None,
1285      stack_before=[pydict, anyobject, anyobject],
1286      stack_after=[pydict],
1287      proto=0,
1288      doc="""Add a key+value pair to an existing dict.
1289
1290      Stack before:  ... pydict key value
1291      Stack after:   ... pydict
1292
1293      where pydict has been modified via pydict[key] = value.
1294      """),
1295
1296    I(name='SETITEMS',
1297      code='u',
1298      arg=None,
1299      stack_before=[pydict, markobject, stackslice],
1300      stack_after=[pydict],
1301      proto=1,
1302      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1303
1304      The slice of the stack following the topmost markobject is taken as
1305      an alternating sequence of keys and values, added to the dict
1306      immediately under the topmost markobject.  Everything at and after the
1307      topmost markobject is popped, leaving the mutated dict at the top
1308      of the stack.
1309
1310      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1311      Stack after:   ... pydict
1312
1313      where pydict has been modified via pydict[key_i] = value_i for i in
1314      1, 2, ..., n, and in that order.
1315      """),
1316
1317    # Stack manipulation.
1318
1319    I(name='POP',
1320      code='0',
1321      arg=None,
1322      stack_before=[anyobject],
1323      stack_after=[],
1324      proto=0,
1325      doc="Discard the top stack item, shrinking the stack by one item."),
1326
1327    I(name='DUP',
1328      code='2',
1329      arg=None,
1330      stack_before=[anyobject],
1331      stack_after=[anyobject, anyobject],
1332      proto=0,
1333      doc="Push the top stack item onto the stack again, duplicating it."),
1334
1335    I(name='MARK',
1336      code='(',
1337      arg=None,
1338      stack_before=[],
1339      stack_after=[markobject],
1340      proto=0,
1341      doc="""Push markobject onto the stack.
1342
1343      markobject is a unique object, used by other opcodes to identify a
1344      region of the stack containing a variable number of objects for them
1345      to work on.  See markobject.doc for more detail.
1346      """),
1347
1348    I(name='POP_MARK',
1349      code='1',
1350      arg=None,
1351      stack_before=[markobject, stackslice],
1352      stack_after=[],
1353      proto=0,
1354      doc="""Pop all the stack objects at and above the topmost markobject.
1355
1356      When an opcode using a variable number of stack objects is done,
1357      POP_MARK is used to remove those objects, and to remove the markobject
1358      that delimited their starting position on the stack.
1359      """),
1360
1361    # Memo manipulation.  There are really only two operations (get and put),
1362    # each in all-text, "short binary", and "long binary" flavors.
1363
1364    I(name='GET',
1365      code='g',
1366      arg=decimalnl_short,
1367      stack_before=[],
1368      stack_after=[anyobject],
1369      proto=0,
1370      doc="""Read an object from the memo and push it on the stack.
1371
1372      The index of the memo object to push is given by the newline-teriminated
1373      decimal string following.  BINGET and LONG_BINGET are space-optimized
1374      versions.
1375      """),
1376
1377    I(name='BINGET',
1378      code='h',
1379      arg=uint1,
1380      stack_before=[],
1381      stack_after=[anyobject],
1382      proto=1,
1383      doc="""Read an object from the memo and push it on the stack.
1384
1385      The index of the memo object to push is given by the 1-byte unsigned
1386      integer following.
1387      """),
1388
1389    I(name='LONG_BINGET',
1390      code='j',
1391      arg=int4,
1392      stack_before=[],
1393      stack_after=[anyobject],
1394      proto=1,
1395      doc="""Read an object from the memo and push it on the stack.
1396
1397      The index of the memo object to push is given by the 4-byte signed
1398      little-endian integer following.
1399      """),
1400
1401    I(name='PUT',
1402      code='p',
1403      arg=decimalnl_short,
1404      stack_before=[],
1405      stack_after=[],
1406      proto=0,
1407      doc="""Store the stack top into the memo.  The stack is not popped.
1408
1409      The index of the memo location to write into is given by the newline-
1410      terminated decimal string following.  BINPUT and LONG_BINPUT are
1411      space-optimized versions.
1412      """),
1413
1414    I(name='BINPUT',
1415      code='q',
1416      arg=uint1,
1417      stack_before=[],
1418      stack_after=[],
1419      proto=1,
1420      doc="""Store the stack top into the memo.  The stack is not popped.
1421
1422      The index of the memo location to write into is given by the 1-byte
1423      unsigned integer following.
1424      """),
1425
1426    I(name='LONG_BINPUT',
1427      code='r',
1428      arg=int4,
1429      stack_before=[],
1430      stack_after=[],
1431      proto=1,
1432      doc="""Store the stack top into the memo.  The stack is not popped.
1433
1434      The index of the memo location to write into is given by the 4-byte
1435      signed little-endian integer following.
1436      """),
1437
1438    # Access the extension registry (predefined objects).  Akin to the GET
1439    # family.
1440
1441    I(name='EXT1',
1442      code='\x82',
1443      arg=uint1,
1444      stack_before=[],
1445      stack_after=[anyobject],
1446      proto=2,
1447      doc="""Extension code.
1448
1449      This code and the similar EXT2 and EXT4 allow using a registry
1450      of popular objects that are pickled by name, typically classes.
1451      It is envisioned that through a global negotiation and
1452      registration process, third parties can set up a mapping between
1453      ints and object names.
1454
1455      In order to guarantee pickle interchangeability, the extension
1456      code registry ought to be global, although a range of codes may
1457      be reserved for private use.
1458
1459      EXT1 has a 1-byte integer argument.  This is used to index into the
1460      extension registry, and the object at that index is pushed on the stack.
1461      """),
1462
1463    I(name='EXT2',
1464      code='\x83',
1465      arg=uint2,
1466      stack_before=[],
1467      stack_after=[anyobject],
1468      proto=2,
1469      doc="""Extension code.
1470
1471      See EXT1.  EXT2 has a two-byte integer argument.
1472      """),
1473
1474    I(name='EXT4',
1475      code='\x84',
1476      arg=int4,
1477      stack_before=[],
1478      stack_after=[anyobject],
1479      proto=2,
1480      doc="""Extension code.
1481
1482      See EXT1.  EXT4 has a four-byte integer argument.
1483      """),
1484
1485    # Push a class object, or module function, on the stack, via its module
1486    # and name.
1487
1488    I(name='GLOBAL',
1489      code='c',
1490      arg=stringnl_noescape_pair,
1491      stack_before=[],
1492      stack_after=[anyobject],
1493      proto=0,
1494      doc="""Push a global object (module.attr) on the stack.
1495
1496      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1497      taken as a module name, and the second as a class name.  The class
1498      object module.class is pushed on the stack.  More accurately, the
1499      object returned by self.find_class(module, class) is pushed on the
1500      stack, so unpickling subclasses can override this form of lookup.
1501      """),
1502
1503    # Ways to build objects of classes pickle doesn't know about directly
1504    # (user-defined classes).  I despair of documenting this accurately
1505    # and comprehensibly -- you really have to read the pickle code to
1506    # find all the special cases.
1507
1508    I(name='REDUCE',
1509      code='R',
1510      arg=None,
1511      stack_before=[anyobject, anyobject],
1512      stack_after=[anyobject],
1513      proto=0,
1514      doc="""Push an object built from a callable and an argument tuple.
1515
1516      The opcode is named to remind of the __reduce__() method.
1517
1518      Stack before: ... callable pytuple
1519      Stack after:  ... callable(*pytuple)
1520
1521      The callable and the argument tuple are the first two items returned
1522      by a __reduce__ method.  Applying the callable to the argtuple is
1523      supposed to reproduce the original object, or at least get it started.
1524      If the __reduce__ method returns a 3-tuple, the last component is an
1525      argument to be passed to the object's __setstate__, and then the REDUCE
1526      opcode is followed by code to create setstate's argument, and then a
1527      BUILD opcode to apply  __setstate__ to that argument.
1528
1529      There are lots of special cases here.  The argtuple can be None, in
1530      which case callable.__basicnew__() is called instead to produce the
1531      object to be pushed on the stack.  This appears to be a trick unique
1532      to ExtensionClasses, and is deprecated regardless.
1533
1534      If type(callable) is not ClassType, REDUCE complains unless the
1535      callable has been registered with the copy_reg module's
1536      safe_constructors dict, or the callable has a magic
1537      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1538      why it does this, but I've sure seen this complaint often enough when
1539      I didn't want to <wink>.
1540      """),
1541
1542    I(name='BUILD',
1543      code='b',
1544      arg=None,
1545      stack_before=[anyobject, anyobject],
1546      stack_after=[anyobject],
1547      proto=0,
1548      doc="""Finish building an object, via __setstate__ or dict update.
1549
1550      Stack before: ... anyobject argument
1551      Stack after:  ... anyobject
1552
1553      where anyobject may have been mutated, as follows:
1554
1555      If the object has a __setstate__ method,
1556
1557          anyobject.__setstate__(argument)
1558
1559      is called.
1560
1561      Else the argument must be a dict, the object must have a __dict__, and
1562      the object is updated via
1563
1564          anyobject.__dict__.update(argument)
1565
1566      This may raise RuntimeError in restricted execution mode (which
1567      disallows access to __dict__ directly); in that case, the object
1568      is updated instead via
1569
1570          for k, v in argument.items():
1571              anyobject[k] = v
1572      """),
1573
1574    I(name='INST',
1575      code='i',
1576      arg=stringnl_noescape_pair,
1577      stack_before=[markobject, stackslice],
1578      stack_after=[anyobject],
1579      proto=0,
1580      doc="""Build a class instance.
1581
1582      This is the protocol 0 version of protocol 1's OBJ opcode.
1583      INST is followed by two newline-terminated strings, giving a
1584      module and class name, just as for the GLOBAL opcode (and see
1585      GLOBAL for more details about that).  self.find_class(module, name)
1586      is used to get a class object.
1587
1588      In addition, all the objects on the stack following the topmost
1589      markobject are gathered into a tuple and popped (along with the
1590      topmost markobject), just as for the TUPLE opcode.
1591
1592      Now it gets complicated.  If all of these are true:
1593
1594        + The argtuple is empty (markobject was at the top of the stack
1595          at the start).
1596
1597        + It's an old-style class object (the type of the class object is
1598          ClassType).
1599
1600        + The class object does not have a __getinitargs__ attribute.
1601
1602      then we want to create an old-style class instance without invoking
1603      its __init__() method (pickle has waffled on this over the years; not
1604      calling __init__() is current wisdom).  In this case, an instance of
1605      an old-style dummy class is created, and then we try to rebind its
1606      __class__ attribute to the desired class object.  If this succeeds,
1607      the new instance object is pushed on the stack, and we're done.  In
1608      restricted execution mode it can fail (assignment to __class__ is
1609      disallowed), and I'm not really sure what happens then -- it looks
1610      like the code ends up calling the class object's __init__ anyway,
1611      via falling into the next case.
1612
1613      Else (the argtuple is not empty, it's not an old-style class object,
1614      or the class object does have a __getinitargs__ attribute), the code
1615      first insists that the class object have a __safe_for_unpickling__
1616      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1617      it doesn't matter whether this attribute has a true or false value, it
1618      only matters whether it exists (XXX this is a bug; cPickle
1619      requires the attribute to be true).  If __safe_for_unpickling__
1620      doesn't exist, UnpicklingError is raised.
1621
1622      Else (the class object does have a __safe_for_unpickling__ attr),
1623      the class object obtained from INST's arguments is applied to the
1624      argtuple obtained from the stack, and the resulting instance object
1625      is pushed on the stack.
1626
1627      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1628      """),
1629
1630    I(name='OBJ',
1631      code='o',
1632      arg=None,
1633      stack_before=[markobject, anyobject, stackslice],
1634      stack_after=[anyobject],
1635      proto=1,
1636      doc="""Build a class instance.
1637
1638      This is the protocol 1 version of protocol 0's INST opcode, and is
1639      very much like it.  The major difference is that the class object
1640      is taken off the stack, allowing it to be retrieved from the memo
1641      repeatedly if several instances of the same class are created.  This
1642      can be much more efficient (in both time and space) than repeatedly
1643      embedding the module and class names in INST opcodes.
1644
1645      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1646      the class object is taken off the stack, immediately above the
1647      topmost markobject:
1648
1649      Stack before: ... markobject classobject stackslice
1650      Stack after:  ... new_instance_object
1651
1652      As for INST, the remainder of the stack above the markobject is
1653      gathered into an argument tuple, and then the logic seems identical,
1654      except that no __safe_for_unpickling__ check is done (XXX this is
1655      a bug; cPickle does test __safe_for_unpickling__).  See INST for
1656      the gory details.
1657
1658      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1659      get the class object.  That was always the intent; the implementations
1660      had diverged for accidental reasons.
1661      """),
1662
1663    I(name='NEWOBJ',
1664      code='\x81',
1665      arg=None,
1666      stack_before=[anyobject, anyobject],
1667      stack_after=[anyobject],
1668      proto=2,
1669      doc="""Build an object instance.
1670
1671      The stack before should be thought of as containing a class
1672      object followed by an argument tuple (the tuple being the stack
1673      top).  Call these cls and args.  They are popped off the stack,
1674      and the value returned by cls.__new__(cls, *args) is pushed back
1675      onto the stack.
1676      """),
1677
1678    # Machine control.
1679
1680    I(name='PROTO',
1681      code='\x80',
1682      arg=uint1,
1683      stack_before=[],
1684      stack_after=[],
1685      proto=2,
1686      doc="""Protocol version indicator.
1687
1688      For protocol 2 and above, a pickle must start with this opcode.
1689      The argument is the protocol version, an int in range(2, 256).
1690      """),
1691
1692    I(name='STOP',
1693      code='.',
1694      arg=None,
1695      stack_before=[anyobject],
1696      stack_after=[],
1697      proto=0,
1698      doc="""Stop the unpickling machine.
1699
1700      Every pickle ends with this opcode.  The object at the top of the stack
1701      is popped, and that's the result of unpickling.  The stack should be
1702      empty then.
1703      """),
1704
1705    # Ways to deal with persistent IDs.
1706
1707    I(name='PERSID',
1708      code='P',
1709      arg=stringnl_noescape,
1710      stack_before=[],
1711      stack_after=[anyobject],
1712      proto=0,
1713      doc="""Push an object identified by a persistent ID.
1714
1715      The pickle module doesn't define what a persistent ID means.  PERSID's
1716      argument is a newline-terminated str-style (no embedded escapes, no
1717      bracketing quote characters) string, which *is* "the persistent ID".
1718      The unpickler passes this string to self.persistent_load().  Whatever
1719      object that returns is pushed on the stack.  There is no implementation
1720      of persistent_load() in Python's unpickler:  it must be supplied by an
1721      unpickler subclass.
1722      """),
1723
1724    I(name='BINPERSID',
1725      code='Q',
1726      arg=None,
1727      stack_before=[anyobject],
1728      stack_after=[anyobject],
1729      proto=1,
1730      doc="""Push an object identified by a persistent ID.
1731
1732      Like PERSID, except the persistent ID is popped off the stack (instead
1733      of being a string embedded in the opcode bytestream).  The persistent
1734      ID is passed to self.persistent_load(), and whatever object that
1735      returns is pushed on the stack.  See PERSID for more detail.
1736      """),
1737]
1738del I
1739
1740# Verify uniqueness of .name and .code members.
1741name2i = {}
1742code2i = {}
1743
1744for i, d in enumerate(opcodes):
1745    if d.name in name2i:
1746        raise ValueError("repeated name %r at indices %d and %d" %
1747                         (d.name, name2i[d.name], i))
1748    if d.code in code2i:
1749        raise ValueError("repeated code %r at indices %d and %d" %
1750                         (d.code, code2i[d.code], i))
1751
1752    name2i[d.name] = i
1753    code2i[d.code] = i
1754
1755del name2i, code2i, i, d
1756
1757##############################################################################
1758# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1759# Also ensure we've got the same stuff as pickle.py, although the
1760# introspection here is dicey.
1761
1762code2op = {}
1763for d in opcodes:
1764    code2op[d.code] = d
1765del d
1766
1767def assure_pickle_consistency(verbose=False):
1768    import pickle, re
1769
1770    copy = code2op.copy()
1771    for name in pickle.__all__:
1772        if not re.match("[A-Z][A-Z0-9_]+$", name):
1773            if verbose:
1774                print "skipping %r: it doesn't look like an opcode name" % name
1775            continue
1776        picklecode = getattr(pickle, name)
1777        if not isinstance(picklecode, str) or len(picklecode) != 1:
1778            if verbose:
1779                print ("skipping %r: value %r doesn't look like a pickle "
1780                       "code" % (name, picklecode))
1781            continue
1782        if picklecode in copy:
1783            if verbose:
1784                print "checking name %r w/ code %r for consistency" % (
1785                      name, picklecode)
1786            d = copy[picklecode]
1787            if d.name != name:
1788                raise ValueError("for pickle code %r, pickle.py uses name %r "
1789                                 "but we're using name %r" % (picklecode,
1790                                                              name,
1791                                                              d.name))
1792            # Forget this one.  Any left over in copy at the end are a problem
1793            # of a different kind.
1794            del copy[picklecode]
1795        else:
1796            raise ValueError("pickle.py appears to have a pickle opcode with "
1797                             "name %r and code %r, but we don't" %
1798                             (name, picklecode))
1799    if copy:
1800        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1801        for code, d in copy.items():
1802            msg.append("    name %r with code %r" % (d.name, code))
1803        raise ValueError("\n".join(msg))
1804
1805assure_pickle_consistency()
1806del assure_pickle_consistency
1807
1808##############################################################################
1809# A pickle opcode generator.
1810
1811def genops(pickle):
1812    """Generate all the opcodes in a pickle.
1813
1814    'pickle' is a file-like object, or string, containing the pickle.
1815
1816    Each opcode in the pickle is generated, from the current pickle position,
1817    stopping after a STOP opcode is delivered.  A triple is generated for
1818    each opcode:
1819
1820        opcode, arg, pos
1821
1822    opcode is an OpcodeInfo record, describing the current opcode.
1823
1824    If the opcode has an argument embedded in the pickle, arg is its decoded
1825    value, as a Python object.  If the opcode doesn't have an argument, arg
1826    is None.
1827
1828    If the pickle has a tell() method, pos was the value of pickle.tell()
1829    before reading the current opcode.  If the pickle is a string object,
1830    it's wrapped in a StringIO object, and the latter's tell() result is
1831    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1832    to query its current position) pos is None.
1833    """
1834
1835    import cStringIO as StringIO
1836
1837    if isinstance(pickle, str):
1838        pickle = StringIO.StringIO(pickle)
1839
1840    if hasattr(pickle, "tell"):
1841        getpos = pickle.tell
1842    else:
1843        getpos = lambda: None
1844
1845    while True:
1846        pos = getpos()
1847        code = pickle.read(1)
1848        opcode = code2op.get(code)
1849        if opcode is None:
1850            if code == "":
1851                raise ValueError("pickle exhausted before seeing STOP")
1852            else:
1853                raise ValueError("at position %s, opcode %r unknown" % (
1854                                 pos is None and "<unknown>" or pos,
1855                                 code))
1856        if opcode.arg is None:
1857            arg = None
1858        else:
1859            arg = opcode.arg.reader(pickle)
1860        yield opcode, arg, pos
1861        if code == '.':
1862            assert opcode.name == 'STOP'
1863            break
1864
1865##############################################################################
1866# A symbolic pickle disassembler.
1867
1868def dis(pickle, out=None, memo=None, indentlevel=4):
1869    """Produce a symbolic disassembly of a pickle.
1870
1871    'pickle' is a file-like object, or string, containing a (at least one)
1872    pickle.  The pickle is disassembled from the current position, through
1873    the first STOP opcode encountered.
1874
1875    Optional arg 'out' is a file-like object to which the disassembly is
1876    printed.  It defaults to sys.stdout.
1877
1878    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1879    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1880    Passing the same memo object to another dis() call then allows disassembly
1881    to proceed across multiple pickles that were all created by the same
1882    pickler with the same memo.  Ordinarily you don't need to worry about this.
1883
1884    Optional arg indentlevel is the number of blanks by which to indent
1885    a new MARK level.  It defaults to 4.
1886
1887    In addition to printing the disassembly, some sanity checks are made:
1888
1889    + All embedded opcode arguments "make sense".
1890
1891    + Explicit and implicit pop operations have enough items on the stack.
1892
1893    + When an opcode implicitly refers to a markobject, a markobject is
1894      actually on the stack.
1895
1896    + A memo entry isn't referenced before it's defined.
1897
1898    + The markobject isn't stored in the memo.
1899
1900    + A memo entry isn't redefined.
1901    """
1902
1903    # Most of the hair here is for sanity checks, but most of it is needed
1904    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1905    # (which in turn is needed to indent MARK blocks correctly).
1906
1907    stack = []          # crude emulation of unpickler stack
1908    if memo is None:
1909        memo = {}       # crude emulation of unpicker memo
1910    maxproto = -1       # max protocol number seen
1911    markstack = []      # bytecode positions of MARK opcodes
1912    indentchunk = ' ' * indentlevel
1913    errormsg = None
1914    for opcode, arg, pos in genops(pickle):
1915        if pos is not None:
1916            print >> out, "%5d:" % pos,
1917
1918        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1919                              indentchunk * len(markstack),
1920                              opcode.name)
1921
1922        maxproto = max(maxproto, opcode.proto)
1923        before = opcode.stack_before    # don't mutate
1924        after = opcode.stack_after      # don't mutate
1925        numtopop = len(before)
1926
1927        # See whether a MARK should be popped.
1928        markmsg = None
1929        if markobject in before or (opcode.name == "POP" and
1930                                    stack and
1931                                    stack[-1] is markobject):
1932            assert markobject not in after
1933            if __debug__:
1934                if markobject in before:
1935                    assert before[-1] is stackslice
1936            if markstack:
1937                markpos = markstack.pop()
1938                if markpos is None:
1939                    markmsg = "(MARK at unknown opcode offset)"
1940                else:
1941                    markmsg = "(MARK at %d)" % markpos
1942                # Pop everything at and after the topmost markobject.
1943                while stack[-1] is not markobject:
1944                    stack.pop()
1945                stack.pop()
1946                # Stop later code from popping too much.
1947                try:
1948                    numtopop = before.index(markobject)
1949                except ValueError:
1950                    assert opcode.name == "POP"
1951                    numtopop = 0
1952            else:
1953                errormsg = markmsg = "no MARK exists on stack"
1954
1955        # Check for correct memo usage.
1956        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1957            assert arg is not None
1958            if arg in memo:
1959                errormsg = "memo key %r already defined" % arg
1960            elif not stack:
1961                errormsg = "stack is empty -- can't store into memo"
1962            elif stack[-1] is markobject:
1963                errormsg = "can't store markobject in the memo"
1964            else:
1965                memo[arg] = stack[-1]
1966
1967        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
1968            if arg in memo:
1969                assert len(after) == 1
1970                after = [memo[arg]]     # for better stack emulation
1971            else:
1972                errormsg = "memo key %r has never been stored into" % arg
1973
1974        if arg is not None or markmsg:
1975            # make a mild effort to align arguments
1976            line += ' ' * (10 - len(opcode.name))
1977            if arg is not None:
1978                line += ' ' + repr(arg)
1979            if markmsg:
1980                line += ' ' + markmsg
1981        print >> out, line
1982
1983        if errormsg:
1984            # Note that we delayed complaining until the offending opcode
1985            # was printed.
1986            raise ValueError(errormsg)
1987
1988        # Emulate the stack effects.
1989        if len(stack) < numtopop:
1990            raise ValueError("tries to pop %d items from stack with "
1991                             "only %d items" % (numtopop, len(stack)))
1992        if numtopop:
1993            del stack[-numtopop:]
1994        if markobject in after:
1995            assert markobject not in before
1996            markstack.append(pos)
1997
1998        stack.extend(after)
1999
2000    print >> out, "highest protocol among opcodes =", maxproto
2001    if stack:
2002        raise ValueError("stack not empty after STOP: %r" % stack)
2003
2004_dis_test = r"""
2005>>> import pickle
2006>>> x = [1, 2, (3, 4), {'abc': u"def"}]
2007>>> pkl = pickle.dumps(x, 0)
2008>>> dis(pkl)
2009    0: (    MARK
2010    1: l        LIST       (MARK at 0)
2011    2: p    PUT        0
2012    5: I    INT        1
2013    8: a    APPEND
2014    9: I    INT        2
2015   12: a    APPEND
2016   13: (    MARK
2017   14: I        INT        3
2018   17: I        INT        4
2019   20: t        TUPLE      (MARK at 13)
2020   21: p    PUT        1
2021   24: a    APPEND
2022   25: (    MARK
2023   26: d        DICT       (MARK at 25)
2024   27: p    PUT        2
2025   30: S    STRING     'abc'
2026   37: p    PUT        3
2027   40: V    UNICODE    u'def'
2028   45: p    PUT        4
2029   48: s    SETITEM
2030   49: a    APPEND
2031   50: .    STOP
2032highest protocol among opcodes = 0
2033
2034Try again with a "binary" pickle.
2035
2036>>> pkl = pickle.dumps(x, 1)
2037>>> dis(pkl)
2038    0: ]    EMPTY_LIST
2039    1: q    BINPUT     0
2040    3: (    MARK
2041    4: K        BININT1    1
2042    6: K        BININT1    2
2043    8: (        MARK
2044    9: K            BININT1    3
2045   11: K            BININT1    4
2046   13: t            TUPLE      (MARK at 8)
2047   14: q        BINPUT     1
2048   16: }        EMPTY_DICT
2049   17: q        BINPUT     2
2050   19: U        SHORT_BINSTRING 'abc'
2051   24: q        BINPUT     3
2052   26: X        BINUNICODE u'def'
2053   34: q        BINPUT     4
2054   36: s        SETITEM
2055   37: e        APPENDS    (MARK at 3)
2056   38: .    STOP
2057highest protocol among opcodes = 1
2058
2059Exercise the INST/OBJ/BUILD family.
2060
2061>>> import random
2062>>> dis(pickle.dumps(random.random, 0))
2063    0: c    GLOBAL     'random random'
2064   15: p    PUT        0
2065   18: .    STOP
2066highest protocol among opcodes = 0
2067
2068>>> x = [pickle.PicklingError()] * 2
2069>>> dis(pickle.dumps(x, 0))
2070    0: (    MARK
2071    1: l        LIST       (MARK at 0)
2072    2: p    PUT        0
2073    5: (    MARK
2074    6: i        INST       'pickle PicklingError' (MARK at 5)
2075   28: p    PUT        1
2076   31: (    MARK
2077   32: d        DICT       (MARK at 31)
2078   33: p    PUT        2
2079   36: S    STRING     'args'
2080   44: p    PUT        3
2081   47: (    MARK
2082   48: t        TUPLE      (MARK at 47)
2083   49: s    SETITEM
2084   50: b    BUILD
2085   51: a    APPEND
2086   52: g    GET        1
2087   55: a    APPEND
2088   56: .    STOP
2089highest protocol among opcodes = 0
2090
2091>>> dis(pickle.dumps(x, 1))
2092    0: ]    EMPTY_LIST
2093    1: q    BINPUT     0
2094    3: (    MARK
2095    4: (        MARK
2096    5: c            GLOBAL     'pickle PicklingError'
2097   27: q            BINPUT     1
2098   29: o            OBJ        (MARK at 4)
2099   30: q        BINPUT     2
2100   32: }        EMPTY_DICT
2101   33: q        BINPUT     3
2102   35: U        SHORT_BINSTRING 'args'
2103   41: q        BINPUT     4
2104   43: )        EMPTY_TUPLE
2105   44: s        SETITEM
2106   45: b        BUILD
2107   46: h        BINGET     2
2108   48: e        APPENDS    (MARK at 3)
2109   49: .    STOP
2110highest protocol among opcodes = 1
2111
2112Try "the canonical" recursive-object test.
2113
2114>>> L = []
2115>>> T = L,
2116>>> L.append(T)
2117>>> L[0] is T
2118True
2119>>> T[0] is L
2120True
2121>>> L[0][0] is L
2122True
2123>>> T[0][0] is T
2124True
2125>>> dis(pickle.dumps(L, 0))
2126    0: (    MARK
2127    1: l        LIST       (MARK at 0)
2128    2: p    PUT        0
2129    5: (    MARK
2130    6: g        GET        0
2131    9: t        TUPLE      (MARK at 5)
2132   10: p    PUT        1
2133   13: a    APPEND
2134   14: .    STOP
2135highest protocol among opcodes = 0
2136
2137>>> dis(pickle.dumps(L, 1))
2138    0: ]    EMPTY_LIST
2139    1: q    BINPUT     0
2140    3: (    MARK
2141    4: h        BINGET     0
2142    6: t        TUPLE      (MARK at 3)
2143    7: q    BINPUT     1
2144    9: a    APPEND
2145   10: .    STOP
2146highest protocol among opcodes = 1
2147
2148Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2149has to emulate the stack in order to realize that the POP opcode at 16 gets
2150rid of the MARK at 0.
2151
2152>>> dis(pickle.dumps(T, 0))
2153    0: (    MARK
2154    1: (        MARK
2155    2: l            LIST       (MARK at 1)
2156    3: p        PUT        0
2157    6: (        MARK
2158    7: g            GET        0
2159   10: t            TUPLE      (MARK at 6)
2160   11: p        PUT        1
2161   14: a        APPEND
2162   15: 0        POP
2163   16: 0        POP        (MARK at 0)
2164   17: g    GET        1
2165   20: .    STOP
2166highest protocol among opcodes = 0
2167
2168>>> dis(pickle.dumps(T, 1))
2169    0: (    MARK
2170    1: ]        EMPTY_LIST
2171    2: q        BINPUT     0
2172    4: (        MARK
2173    5: h            BINGET     0
2174    7: t            TUPLE      (MARK at 4)
2175    8: q        BINPUT     1
2176   10: a        APPEND
2177   11: 1        POP_MARK   (MARK at 0)
2178   12: h    BINGET     1
2179   14: .    STOP
2180highest protocol among opcodes = 1
2181
2182Try protocol 2.
2183
2184>>> dis(pickle.dumps(L, 2))
2185    0: \x80 PROTO      2
2186    2: ]    EMPTY_LIST
2187    3: q    BINPUT     0
2188    5: h    BINGET     0
2189    7: \x85 TUPLE1
2190    8: q    BINPUT     1
2191   10: a    APPEND
2192   11: .    STOP
2193highest protocol among opcodes = 2
2194
2195>>> dis(pickle.dumps(T, 2))
2196    0: \x80 PROTO      2
2197    2: ]    EMPTY_LIST
2198    3: q    BINPUT     0
2199    5: h    BINGET     0
2200    7: \x85 TUPLE1
2201    8: q    BINPUT     1
2202   10: a    APPEND
2203   11: 0    POP
2204   12: h    BINGET     1
2205   14: .    STOP
2206highest protocol among opcodes = 2
2207"""
2208
2209_memo_test = r"""
2210>>> import pickle
2211>>> from StringIO import StringIO
2212>>> f = StringIO()
2213>>> p = pickle.Pickler(f, 2)
2214>>> x = [1, 2, 3]
2215>>> p.dump(x)
2216>>> p.dump(x)
2217>>> f.seek(0)
2218>>> memo = {}
2219>>> dis(f, memo=memo)
2220    0: \x80 PROTO      2
2221    2: ]    EMPTY_LIST
2222    3: q    BINPUT     0
2223    5: (    MARK
2224    6: K        BININT1    1
2225    8: K        BININT1    2
2226   10: K        BININT1    3
2227   12: e        APPENDS    (MARK at 5)
2228   13: .    STOP
2229highest protocol among opcodes = 2
2230>>> dis(f, memo=memo)
2231   14: \x80 PROTO      2
2232   16: h    BINGET     0
2233   18: .    STOP
2234highest protocol among opcodes = 2
2235"""
2236
2237__test__ = {'disassembler_test': _dis_test,
2238            'disassembler_memo_test': _memo_test,
2239           }
2240
2241def _test():
2242    import doctest
2243    return doctest.testmod()
2244
2245if __name__ == "__main__":
2246    _test()
2247