pickletools.py revision f7351b40b54b3354c4a8b01d9072b888256fca87
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13import codecs
14import pickle
15import re
16
17__all__ = ['dis', 'genops', 'optimize']
18
19bytes_types = pickle.bytes_types
20
21# Other ideas:
22#
23# - A pickle verifier:  read a pickle and check it exhaustively for
24#   well-formedness.  dis() does a lot of this already.
25#
26# - A protocol identifier:  examine a pickle and return its protocol number
27#   (== the highest .proto attr value among all the opcodes in the pickle).
28#   dis() already prints this info at the end.
29#
30# - A pickle optimizer:  for example, tuple-building code is sometimes more
31#   elaborate than necessary, catering for the possibility that the tuple
32#   is recursive.  Or lots of times a PUT is generated that's never accessed
33#   by a later GET.
34
35
36"""
37"A pickle" is a program for a virtual pickle machine (PM, but more accurately
38called an unpickling machine).  It's a sequence of opcodes, interpreted by the
39PM, building an arbitrarily complex Python object.
40
41For the most part, the PM is very simple:  there are no looping, testing, or
42conditional instructions, no arithmetic and no function calls.  Opcodes are
43executed once each, from first to last, until a STOP opcode is reached.
44
45The PM has two data areas, "the stack" and "the memo".
46
47Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
48integer object on the stack, whose value is gotten from a decimal string
49literal immediately following the INT opcode in the pickle bytestream.  Other
50opcodes take Python objects off the stack.  The result of unpickling is
51whatever object is left on the stack when the final STOP opcode is executed.
52
53The memo is simply an array of objects, or it can be implemented as a dict
54mapping little integers to objects.  The memo serves as the PM's "long term
55memory", and the little integers indexing the memo are akin to variable
56names.  Some opcodes pop a stack object into the memo at a given index,
57and others push a memo object at a given index onto the stack again.
58
59At heart, that's all the PM has.  Subtleties arise for these reasons:
60
61+ Object identity.  Objects can be arbitrarily complex, and subobjects
62  may be shared (for example, the list [a, a] refers to the same object a
63  twice).  It can be vital that unpickling recreate an isomorphic object
64  graph, faithfully reproducing sharing.
65
66+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
67  list, and L[0] is the same list.  This is related to the object identity
68  point, and some sequences of pickle opcodes are subtle in order to
69  get the right result in all cases.
70
71+ Things pickle doesn't know everything about.  Examples of things pickle
72  does know everything about are Python's builtin scalar and container
73  types, like ints and tuples.  They generally have opcodes dedicated to
74  them.  For things like module references and instances of user-defined
75  classes, pickle's knowledge is limited.  Historically, many enhancements
76  have been made to the pickle protocol in order to do a better (faster,
77  and/or more compact) job on those.
78
79+ Backward compatibility and micro-optimization.  As explained below,
80  pickle opcodes never go away, not even when better ways to do a thing
81  get invented.  The repertoire of the PM just keeps growing over time.
82  For example, protocol 0 had two opcodes for building Python integers (INT
83  and LONG), protocol 1 added three more for more-efficient pickling of short
84  integers, and protocol 2 added two more for more-efficient pickling of
85  long integers (before protocol 2, the only ways to pickle a Python long
86  took time quadratic in the number of digits, for both pickling and
87  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
88  wearying complication.
89
90
91Pickle protocols:
92
93For compatibility, the meaning of a pickle opcode never changes.  Instead new
94pickle opcodes get added, and each version's unpickler can handle all the
95pickle opcodes in all protocol versions to date.  So old pickles continue to
96be readable forever.  The pickler can generally be told to restrict itself to
97the subset of opcodes available under previous protocol versions too, so that
98users can create pickles under the current version readable by older
99versions.  However, a pickle does not contain its version number embedded
100within it.  If an older unpickler tries to read a pickle using a later
101protocol, the result is most likely an exception due to seeing an unknown (in
102the older unpickler) opcode.
103
104The original pickle used what's now called "protocol 0", and what was called
105"text mode" before Python 2.3.  The entire pickle bytestream is made up of
106printable 7-bit ASCII characters, plus the newline character, in protocol 0.
107That's why it was called text mode.  Protocol 0 is small and elegant, but
108sometimes painfully inefficient.
109
110The second major set of additions is now called "protocol 1", and was called
111"binary mode" before Python 2.3.  This added many opcodes with arguments
112consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
113bytes.  Binary mode pickles can be substantially smaller than equivalent
114text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
115int as 4 bytes following the opcode, which is cheaper to unpickle than the
116(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
117a number of opcodes that operate on many stack elements at once (like APPENDS
118and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
119
120The third major set of additions came in Python 2.3, and is called "protocol
1212".  This added:
122
123- A better way to pickle instances of new-style classes (NEWOBJ).
124
125- A way for a pickle to identify its protocol (PROTO).
126
127- Time- and space- efficient pickling of long ints (LONG{1,4}).
128
129- Shortcuts for small tuples (TUPLE{1,2,3}}.
130
131- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
132
133- The "extension registry", a vector of popular objects that can be pushed
134  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
135  the registry contents are predefined (there's nothing akin to the memo's
136  PUT).
137
138Another independent change with Python 2.3 is the abandonment of any
139pretense that it might be safe to load pickles received from untrusted
140parties -- no sufficient security analysis has been done to guarantee
141this and there isn't a use case that warrants the expense of such an
142analysis.
143
144To this end, all tests for __safe_for_unpickling__ or for
145copyreg.safe_constructors are removed from the unpickling code.
146References to these variables in the descriptions below are to be seen
147as describing unpickling in Python 2.2 and before.
148"""
149
150# Meta-rule:  Descriptions are stored in instances of descriptor objects,
151# with plain constructors.  No meta-language is defined from which
152# descriptors could be constructed.  If you want, e.g., XML, write a little
153# program to generate XML from the objects.
154
155##############################################################################
156# Some pickle opcodes have an argument, following the opcode in the
157# bytestream.  An argument is of a specific type, described by an instance
158# of ArgumentDescriptor.  These are not to be confused with arguments taken
159# off the stack -- ArgumentDescriptor applies only to arguments embedded in
160# the opcode stream, immediately following an opcode.
161
162# Represents the number of bytes consumed by an argument delimited by the
163# next newline character.
164UP_TO_NEWLINE = -1
165
166# Represents the number of bytes consumed by a two-argument opcode where
167# the first argument gives the number of bytes in the second argument.
168TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
169TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
170
171class ArgumentDescriptor(object):
172    __slots__ = (
173        # name of descriptor record, also a module global name; a string
174        'name',
175
176        # length of argument, in bytes; an int; UP_TO_NEWLINE and
177        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
178        # cases
179        'n',
180
181        # a function taking a file-like object, reading this kind of argument
182        # from the object at the current position, advancing the current
183        # position by n bytes, and returning the value of the argument
184        'reader',
185
186        # human-readable docs for this arg descriptor; a string
187        'doc',
188    )
189
190    def __init__(self, name, n, reader, doc):
191        assert isinstance(name, str)
192        self.name = name
193
194        assert isinstance(n, int) and (n >= 0 or
195                                       n in (UP_TO_NEWLINE,
196                                             TAKEN_FROM_ARGUMENT1,
197                                             TAKEN_FROM_ARGUMENT4))
198        self.n = n
199
200        self.reader = reader
201
202        assert isinstance(doc, str)
203        self.doc = doc
204
205from struct import unpack as _unpack
206
207def read_uint1(f):
208    r"""
209    >>> import io
210    >>> read_uint1(io.BytesIO(b'\xff'))
211    255
212    """
213
214    data = f.read(1)
215    if data:
216        return data[0]
217    raise ValueError("not enough data in stream to read uint1")
218
219uint1 = ArgumentDescriptor(
220            name='uint1',
221            n=1,
222            reader=read_uint1,
223            doc="One-byte unsigned integer.")
224
225
226def read_uint2(f):
227    r"""
228    >>> import io
229    >>> read_uint2(io.BytesIO(b'\xff\x00'))
230    255
231    >>> read_uint2(io.BytesIO(b'\xff\xff'))
232    65535
233    """
234
235    data = f.read(2)
236    if len(data) == 2:
237        return _unpack("<H", data)[0]
238    raise ValueError("not enough data in stream to read uint2")
239
240uint2 = ArgumentDescriptor(
241            name='uint2',
242            n=2,
243            reader=read_uint2,
244            doc="Two-byte unsigned integer, little-endian.")
245
246
247def read_int4(f):
248    r"""
249    >>> import io
250    >>> read_int4(io.BytesIO(b'\xff\x00\x00\x00'))
251    255
252    >>> read_int4(io.BytesIO(b'\x00\x00\x00\x80')) == -(2**31)
253    True
254    """
255
256    data = f.read(4)
257    if len(data) == 4:
258        return _unpack("<i", data)[0]
259    raise ValueError("not enough data in stream to read int4")
260
261int4 = ArgumentDescriptor(
262           name='int4',
263           n=4,
264           reader=read_int4,
265           doc="Four-byte signed integer, little-endian, 2's complement.")
266
267
268def read_stringnl(f, decode=True, stripquotes=True):
269    r"""
270    >>> import io
271    >>> read_stringnl(io.BytesIO(b"'abcd'\nefg\n"))
272    'abcd'
273
274    >>> read_stringnl(io.BytesIO(b"\n"))
275    Traceback (most recent call last):
276    ...
277    ValueError: no string quotes around b''
278
279    >>> read_stringnl(io.BytesIO(b"\n"), stripquotes=False)
280    ''
281
282    >>> read_stringnl(io.BytesIO(b"''\n"))
283    ''
284
285    >>> read_stringnl(io.BytesIO(b'"abcd"'))
286    Traceback (most recent call last):
287    ...
288    ValueError: no newline found when trying to read stringnl
289
290    Embedded escapes are undone in the result.
291    >>> read_stringnl(io.BytesIO(br"'a\n\\b\x00c\td'" + b"\n'e'"))
292    'a\n\\b\x00c\td'
293    """
294
295    data = f.readline()
296    if not data.endswith(b'\n'):
297        raise ValueError("no newline found when trying to read stringnl")
298    data = data[:-1]    # lose the newline
299
300    if stripquotes:
301        for q in (b'"', b"'"):
302            if data.startswith(q):
303                if not data.endswith(q):
304                    raise ValueError("strinq quote %r not found at both "
305                                     "ends of %r" % (q, data))
306                data = data[1:-1]
307                break
308        else:
309            raise ValueError("no string quotes around %r" % data)
310
311    if decode:
312        data = codecs.escape_decode(data)[0].decode("ascii")
313    return data
314
315stringnl = ArgumentDescriptor(
316               name='stringnl',
317               n=UP_TO_NEWLINE,
318               reader=read_stringnl,
319               doc="""A newline-terminated string.
320
321                   This is a repr-style string, with embedded escapes, and
322                   bracketing quotes.
323                   """)
324
325def read_stringnl_noescape(f):
326    return read_stringnl(f, stripquotes=False)
327
328stringnl_noescape = ArgumentDescriptor(
329                        name='stringnl_noescape',
330                        n=UP_TO_NEWLINE,
331                        reader=read_stringnl_noescape,
332                        doc="""A newline-terminated string.
333
334                        This is a str-style string, without embedded escapes,
335                        or bracketing quotes.  It should consist solely of
336                        printable ASCII characters.
337                        """)
338
339def read_stringnl_noescape_pair(f):
340    r"""
341    >>> import io
342    >>> read_stringnl_noescape_pair(io.BytesIO(b"Queue\nEmpty\njunk"))
343    'Queue Empty'
344    """
345
346    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
347
348stringnl_noescape_pair = ArgumentDescriptor(
349                             name='stringnl_noescape_pair',
350                             n=UP_TO_NEWLINE,
351                             reader=read_stringnl_noescape_pair,
352                             doc="""A pair of newline-terminated strings.
353
354                             These are str-style strings, without embedded
355                             escapes, or bracketing quotes.  They should
356                             consist solely of printable ASCII characters.
357                             The pair is returned as a single string, with
358                             a single blank separating the two strings.
359                             """)
360
361def read_string4(f):
362    r"""
363    >>> import io
364    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x00abc"))
365    ''
366    >>> read_string4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
367    'abc'
368    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
369    Traceback (most recent call last):
370    ...
371    ValueError: expected 50331648 bytes in a string4, but only 6 remain
372    """
373
374    n = read_int4(f)
375    if n < 0:
376        raise ValueError("string4 byte count < 0: %d" % n)
377    data = f.read(n)
378    if len(data) == n:
379        return data.decode("latin-1")
380    raise ValueError("expected %d bytes in a string4, but only %d remain" %
381                     (n, len(data)))
382
383string4 = ArgumentDescriptor(
384              name="string4",
385              n=TAKEN_FROM_ARGUMENT4,
386              reader=read_string4,
387              doc="""A counted string.
388
389              The first argument is a 4-byte little-endian signed int giving
390              the number of bytes in the string, and the second argument is
391              that many bytes.
392              """)
393
394
395def read_string1(f):
396    r"""
397    >>> import io
398    >>> read_string1(io.BytesIO(b"\x00"))
399    ''
400    >>> read_string1(io.BytesIO(b"\x03abcdef"))
401    'abc'
402    """
403
404    n = read_uint1(f)
405    assert n >= 0
406    data = f.read(n)
407    if len(data) == n:
408        return data.decode("latin-1")
409    raise ValueError("expected %d bytes in a string1, but only %d remain" %
410                     (n, len(data)))
411
412string1 = ArgumentDescriptor(
413              name="string1",
414              n=TAKEN_FROM_ARGUMENT1,
415              reader=read_string1,
416              doc="""A counted string.
417
418              The first argument is a 1-byte unsigned int giving the number
419              of bytes in the string, and the second argument is that many
420              bytes.
421              """)
422
423
424def read_unicodestringnl(f):
425    r"""
426    >>> import io
427    >>> read_unicodestringnl(io.BytesIO(b"abc\\uabcd\njunk")) == 'abc\uabcd'
428    True
429    """
430
431    data = f.readline()
432    if not data.endswith(b'\n'):
433        raise ValueError("no newline found when trying to read "
434                         "unicodestringnl")
435    data = data[:-1]    # lose the newline
436    return str(data, 'raw-unicode-escape')
437
438unicodestringnl = ArgumentDescriptor(
439                      name='unicodestringnl',
440                      n=UP_TO_NEWLINE,
441                      reader=read_unicodestringnl,
442                      doc="""A newline-terminated Unicode string.
443
444                      This is raw-unicode-escape encoded, so consists of
445                      printable ASCII characters, and may contain embedded
446                      escape sequences.
447                      """)
448
449def read_unicodestring4(f):
450    r"""
451    >>> import io
452    >>> s = 'abcd\uabcd'
453    >>> enc = s.encode('utf-8')
454    >>> enc
455    b'abcd\xea\xaf\x8d'
456    >>> n = bytes([len(enc), 0, 0, 0])  # little-endian 4-byte length
457    >>> t = read_unicodestring4(io.BytesIO(n + enc + b'junk'))
458    >>> s == t
459    True
460
461    >>> read_unicodestring4(io.BytesIO(n + enc[:-1]))
462    Traceback (most recent call last):
463    ...
464    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
465    """
466
467    n = read_int4(f)
468    if n < 0:
469        raise ValueError("unicodestring4 byte count < 0: %d" % n)
470    data = f.read(n)
471    if len(data) == n:
472        return str(data, 'utf-8', 'surrogatepass')
473    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
474                     "remain" % (n, len(data)))
475
476unicodestring4 = ArgumentDescriptor(
477                    name="unicodestring4",
478                    n=TAKEN_FROM_ARGUMENT4,
479                    reader=read_unicodestring4,
480                    doc="""A counted Unicode string.
481
482                    The first argument is a 4-byte little-endian signed int
483                    giving the number of bytes in the string, and the second
484                    argument-- the UTF-8 encoding of the Unicode string --
485                    contains that many bytes.
486                    """)
487
488
489def read_decimalnl_short(f):
490    r"""
491    >>> import io
492    >>> read_decimalnl_short(io.BytesIO(b"1234\n56"))
493    1234
494
495    >>> read_decimalnl_short(io.BytesIO(b"1234L\n56"))
496    Traceback (most recent call last):
497    ...
498    ValueError: trailing 'L' not allowed in b'1234L'
499    """
500
501    s = read_stringnl(f, decode=False, stripquotes=False)
502    if s.endswith(b"L"):
503        raise ValueError("trailing 'L' not allowed in %r" % s)
504
505    # It's not necessarily true that the result fits in a Python short int:
506    # the pickle may have been written on a 64-bit box.  There's also a hack
507    # for True and False here.
508    if s == b"00":
509        return False
510    elif s == b"01":
511        return True
512
513    try:
514        return int(s)
515    except OverflowError:
516        return int(s)
517
518def read_decimalnl_long(f):
519    r"""
520    >>> import io
521
522    >>> read_decimalnl_long(io.BytesIO(b"1234L\n56"))
523    1234
524
525    >>> read_decimalnl_long(io.BytesIO(b"123456789012345678901234L\n6"))
526    123456789012345678901234
527    """
528
529    s = read_stringnl(f, decode=False, stripquotes=False)
530    if s[-1:] == b'L':
531        s = s[:-1]
532    return int(s)
533
534
535decimalnl_short = ArgumentDescriptor(
536                      name='decimalnl_short',
537                      n=UP_TO_NEWLINE,
538                      reader=read_decimalnl_short,
539                      doc="""A newline-terminated decimal integer literal.
540
541                          This never has a trailing 'L', and the integer fit
542                          in a short Python int on the box where the pickle
543                          was written -- but there's no guarantee it will fit
544                          in a short Python int on the box where the pickle
545                          is read.
546                          """)
547
548decimalnl_long = ArgumentDescriptor(
549                     name='decimalnl_long',
550                     n=UP_TO_NEWLINE,
551                     reader=read_decimalnl_long,
552                     doc="""A newline-terminated decimal integer literal.
553
554                         This has a trailing 'L', and can represent integers
555                         of any size.
556                         """)
557
558
559def read_floatnl(f):
560    r"""
561    >>> import io
562    >>> read_floatnl(io.BytesIO(b"-1.25\n6"))
563    -1.25
564    """
565    s = read_stringnl(f, decode=False, stripquotes=False)
566    return float(s)
567
568floatnl = ArgumentDescriptor(
569              name='floatnl',
570              n=UP_TO_NEWLINE,
571              reader=read_floatnl,
572              doc="""A newline-terminated decimal floating literal.
573
574              In general this requires 17 significant digits for roundtrip
575              identity, and pickling then unpickling infinities, NaNs, and
576              minus zero doesn't work across boxes, or on some boxes even
577              on itself (e.g., Windows can't read the strings it produces
578              for infinities or NaNs).
579              """)
580
581def read_float8(f):
582    r"""
583    >>> import io, struct
584    >>> raw = struct.pack(">d", -1.25)
585    >>> raw
586    b'\xbf\xf4\x00\x00\x00\x00\x00\x00'
587    >>> read_float8(io.BytesIO(raw + b"\n"))
588    -1.25
589    """
590
591    data = f.read(8)
592    if len(data) == 8:
593        return _unpack(">d", data)[0]
594    raise ValueError("not enough data in stream to read float8")
595
596
597float8 = ArgumentDescriptor(
598             name='float8',
599             n=8,
600             reader=read_float8,
601             doc="""An 8-byte binary representation of a float, big-endian.
602
603             The format is unique to Python, and shared with the struct
604             module (format string '>d') "in theory" (the struct and pickle
605             implementations don't share the code -- they should).  It's
606             strongly related to the IEEE-754 double format, and, in normal
607             cases, is in fact identical to the big-endian 754 double format.
608             On other boxes the dynamic range is limited to that of a 754
609             double, and "add a half and chop" rounding is used to reduce
610             the precision to 53 bits.  However, even on a 754 box,
611             infinities, NaNs, and minus zero may not be handled correctly
612             (may not survive roundtrip pickling intact).
613             """)
614
615# Protocol 2 formats
616
617from pickle import decode_long
618
619def read_long1(f):
620    r"""
621    >>> import io
622    >>> read_long1(io.BytesIO(b"\x00"))
623    0
624    >>> read_long1(io.BytesIO(b"\x02\xff\x00"))
625    255
626    >>> read_long1(io.BytesIO(b"\x02\xff\x7f"))
627    32767
628    >>> read_long1(io.BytesIO(b"\x02\x00\xff"))
629    -256
630    >>> read_long1(io.BytesIO(b"\x02\x00\x80"))
631    -32768
632    """
633
634    n = read_uint1(f)
635    data = f.read(n)
636    if len(data) != n:
637        raise ValueError("not enough data in stream to read long1")
638    return decode_long(data)
639
640long1 = ArgumentDescriptor(
641    name="long1",
642    n=TAKEN_FROM_ARGUMENT1,
643    reader=read_long1,
644    doc="""A binary long, little-endian, using 1-byte size.
645
646    This first reads one byte as an unsigned size, then reads that
647    many bytes and interprets them as a little-endian 2's-complement long.
648    If the size is 0, that's taken as a shortcut for the long 0L.
649    """)
650
651def read_long4(f):
652    r"""
653    >>> import io
654    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x00"))
655    255
656    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x7f"))
657    32767
658    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\xff"))
659    -256
660    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\x80"))
661    -32768
662    >>> read_long1(io.BytesIO(b"\x00\x00\x00\x00"))
663    0
664    """
665
666    n = read_int4(f)
667    if n < 0:
668        raise ValueError("long4 byte count < 0: %d" % n)
669    data = f.read(n)
670    if len(data) != n:
671        raise ValueError("not enough data in stream to read long4")
672    return decode_long(data)
673
674long4 = ArgumentDescriptor(
675    name="long4",
676    n=TAKEN_FROM_ARGUMENT4,
677    reader=read_long4,
678    doc="""A binary representation of a long, little-endian.
679
680    This first reads four bytes as a signed size (but requires the
681    size to be >= 0), then reads that many bytes and interprets them
682    as a little-endian 2's-complement long.  If the size is 0, that's taken
683    as a shortcut for the int 0, although LONG1 should really be used
684    then instead (and in any case where # of bytes < 256).
685    """)
686
687
688##############################################################################
689# Object descriptors.  The stack used by the pickle machine holds objects,
690# and in the stack_before and stack_after attributes of OpcodeInfo
691# descriptors we need names to describe the various types of objects that can
692# appear on the stack.
693
694class StackObject(object):
695    __slots__ = (
696        # name of descriptor record, for info only
697        'name',
698
699        # type of object, or tuple of type objects (meaning the object can
700        # be of any type in the tuple)
701        'obtype',
702
703        # human-readable docs for this kind of stack object; a string
704        'doc',
705    )
706
707    def __init__(self, name, obtype, doc):
708        assert isinstance(name, str)
709        self.name = name
710
711        assert isinstance(obtype, type) or isinstance(obtype, tuple)
712        if isinstance(obtype, tuple):
713            for contained in obtype:
714                assert isinstance(contained, type)
715        self.obtype = obtype
716
717        assert isinstance(doc, str)
718        self.doc = doc
719
720    def __repr__(self):
721        return self.name
722
723
724pyint = StackObject(
725            name='int',
726            obtype=int,
727            doc="A short (as opposed to long) Python integer object.")
728
729pylong = StackObject(
730             name='long',
731             obtype=int,
732             doc="A long (as opposed to short) Python integer object.")
733
734pyinteger_or_bool = StackObject(
735                        name='int_or_bool',
736                        obtype=(int, int, bool),
737                        doc="A Python integer object (short or long), or "
738                            "a Python bool.")
739
740pybool = StackObject(
741             name='bool',
742             obtype=(bool,),
743             doc="A Python bool object.")
744
745pyfloat = StackObject(
746              name='float',
747              obtype=float,
748              doc="A Python float object.")
749
750pystring = StackObject(
751               name='string',
752               obtype=bytes,
753               doc="A Python (8-bit) string object.")
754
755pybytes = StackObject(
756               name='bytes',
757               obtype=bytes,
758               doc="A Python bytes object.")
759
760pyunicode = StackObject(
761                name='str',
762                obtype=str,
763                doc="A Python (Unicode) string object.")
764
765pynone = StackObject(
766             name="None",
767             obtype=type(None),
768             doc="The Python None object.")
769
770pytuple = StackObject(
771              name="tuple",
772              obtype=tuple,
773              doc="A Python tuple object.")
774
775pylist = StackObject(
776             name="list",
777             obtype=list,
778             doc="A Python list object.")
779
780pydict = StackObject(
781             name="dict",
782             obtype=dict,
783             doc="A Python dict object.")
784
785anyobject = StackObject(
786                name='any',
787                obtype=object,
788                doc="Any kind of object whatsoever.")
789
790markobject = StackObject(
791                 name="mark",
792                 obtype=StackObject,
793                 doc="""'The mark' is a unique object.
794
795                 Opcodes that operate on a variable number of objects
796                 generally don't embed the count of objects in the opcode,
797                 or pull it off the stack.  Instead the MARK opcode is used
798                 to push a special marker object on the stack, and then
799                 some other opcodes grab all the objects from the top of
800                 the stack down to (but not including) the topmost marker
801                 object.
802                 """)
803
804stackslice = StackObject(
805                 name="stackslice",
806                 obtype=StackObject,
807                 doc="""An object representing a contiguous slice of the stack.
808
809                 This is used in conjuction with markobject, to represent all
810                 of the stack following the topmost markobject.  For example,
811                 the POP_MARK opcode changes the stack from
812
813                     [..., markobject, stackslice]
814                 to
815                     [...]
816
817                 No matter how many object are on the stack after the topmost
818                 markobject, POP_MARK gets rid of all of them (including the
819                 topmost markobject too).
820                 """)
821
822##############################################################################
823# Descriptors for pickle opcodes.
824
825class OpcodeInfo(object):
826
827    __slots__ = (
828        # symbolic name of opcode; a string
829        'name',
830
831        # the code used in a bytestream to represent the opcode; a
832        # one-character string
833        'code',
834
835        # If the opcode has an argument embedded in the byte string, an
836        # instance of ArgumentDescriptor specifying its type.  Note that
837        # arg.reader(s) can be used to read and decode the argument from
838        # the bytestream s, and arg.doc documents the format of the raw
839        # argument bytes.  If the opcode doesn't have an argument embedded
840        # in the bytestream, arg should be None.
841        'arg',
842
843        # what the stack looks like before this opcode runs; a list
844        'stack_before',
845
846        # what the stack looks like after this opcode runs; a list
847        'stack_after',
848
849        # the protocol number in which this opcode was introduced; an int
850        'proto',
851
852        # human-readable docs for this opcode; a string
853        'doc',
854    )
855
856    def __init__(self, name, code, arg,
857                 stack_before, stack_after, proto, doc):
858        assert isinstance(name, str)
859        self.name = name
860
861        assert isinstance(code, str)
862        assert len(code) == 1
863        self.code = code
864
865        assert arg is None or isinstance(arg, ArgumentDescriptor)
866        self.arg = arg
867
868        assert isinstance(stack_before, list)
869        for x in stack_before:
870            assert isinstance(x, StackObject)
871        self.stack_before = stack_before
872
873        assert isinstance(stack_after, list)
874        for x in stack_after:
875            assert isinstance(x, StackObject)
876        self.stack_after = stack_after
877
878        assert isinstance(proto, int) and 0 <= proto <= 3
879        self.proto = proto
880
881        assert isinstance(doc, str)
882        self.doc = doc
883
884I = OpcodeInfo
885opcodes = [
886
887    # Ways to spell integers.
888
889    I(name='INT',
890      code='I',
891      arg=decimalnl_short,
892      stack_before=[],
893      stack_after=[pyinteger_or_bool],
894      proto=0,
895      doc="""Push an integer or bool.
896
897      The argument is a newline-terminated decimal literal string.
898
899      The intent may have been that this always fit in a short Python int,
900      but INT can be generated in pickles written on a 64-bit box that
901      require a Python long on a 32-bit box.  The difference between this
902      and LONG then is that INT skips a trailing 'L', and produces a short
903      int whenever possible.
904
905      Another difference is due to that, when bool was introduced as a
906      distinct type in 2.3, builtin names True and False were also added to
907      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
908      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
909      Leading zeroes are never produced for a genuine integer.  The 2.3
910      (and later) unpicklers special-case these and return bool instead;
911      earlier unpicklers ignore the leading "0" and return the int.
912      """),
913
914    I(name='BININT',
915      code='J',
916      arg=int4,
917      stack_before=[],
918      stack_after=[pyint],
919      proto=1,
920      doc="""Push a four-byte signed integer.
921
922      This handles the full range of Python (short) integers on a 32-bit
923      box, directly as binary bytes (1 for the opcode and 4 for the integer).
924      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
925      BININT1 or BININT2 saves space.
926      """),
927
928    I(name='BININT1',
929      code='K',
930      arg=uint1,
931      stack_before=[],
932      stack_after=[pyint],
933      proto=1,
934      doc="""Push a one-byte unsigned integer.
935
936      This is a space optimization for pickling very small non-negative ints,
937      in range(256).
938      """),
939
940    I(name='BININT2',
941      code='M',
942      arg=uint2,
943      stack_before=[],
944      stack_after=[pyint],
945      proto=1,
946      doc="""Push a two-byte unsigned integer.
947
948      This is a space optimization for pickling small positive ints, in
949      range(256, 2**16).  Integers in range(256) can also be pickled via
950      BININT2, but BININT1 instead saves a byte.
951      """),
952
953    I(name='LONG',
954      code='L',
955      arg=decimalnl_long,
956      stack_before=[],
957      stack_after=[pylong],
958      proto=0,
959      doc="""Push a long integer.
960
961      The same as INT, except that the literal ends with 'L', and always
962      unpickles to a Python long.  There doesn't seem a real purpose to the
963      trailing 'L'.
964
965      Note that LONG takes time quadratic in the number of digits when
966      unpickling (this is simply due to the nature of decimal->binary
967      conversion).  Proto 2 added linear-time (in C; still quadratic-time
968      in Python) LONG1 and LONG4 opcodes.
969      """),
970
971    I(name="LONG1",
972      code='\x8a',
973      arg=long1,
974      stack_before=[],
975      stack_after=[pylong],
976      proto=2,
977      doc="""Long integer using one-byte length.
978
979      A more efficient encoding of a Python long; the long1 encoding
980      says it all."""),
981
982    I(name="LONG4",
983      code='\x8b',
984      arg=long4,
985      stack_before=[],
986      stack_after=[pylong],
987      proto=2,
988      doc="""Long integer using found-byte length.
989
990      A more efficient encoding of a Python long; the long4 encoding
991      says it all."""),
992
993    # Ways to spell strings (8-bit, not Unicode).
994
995    I(name='STRING',
996      code='S',
997      arg=stringnl,
998      stack_before=[],
999      stack_after=[pystring],
1000      proto=0,
1001      doc="""Push a Python string object.
1002
1003      The argument is a repr-style string, with bracketing quote characters,
1004      and perhaps embedded escapes.  The argument extends until the next
1005      newline character.  (Actually, they are decoded into a str instance
1006      using the encoding given to the Unpickler constructor. or the default,
1007      'ASCII'.)
1008      """),
1009
1010    I(name='BINSTRING',
1011      code='T',
1012      arg=string4,
1013      stack_before=[],
1014      stack_after=[pystring],
1015      proto=1,
1016      doc="""Push a Python string object.
1017
1018      There are two arguments:  the first is a 4-byte little-endian signed int
1019      giving the number of bytes in the string, and the second is that many
1020      bytes, which are taken literally as the string content.  (Actually,
1021      they are decoded into a str instance using the encoding given to the
1022      Unpickler constructor. or the default, 'ASCII'.)
1023      """),
1024
1025    I(name='SHORT_BINSTRING',
1026      code='U',
1027      arg=string1,
1028      stack_before=[],
1029      stack_after=[pystring],
1030      proto=1,
1031      doc="""Push a Python string object.
1032
1033      There are two arguments:  the first is a 1-byte unsigned int giving
1034      the number of bytes in the string, and the second is that many bytes,
1035      which are taken literally as the string content.  (Actually, they
1036      are decoded into a str instance using the encoding given to the
1037      Unpickler constructor. or the default, 'ASCII'.)
1038      """),
1039
1040    # Bytes (protocol 3 only; older protocols don't support bytes at all)
1041
1042    I(name='BINBYTES',
1043      code='B',
1044      arg=string4,
1045      stack_before=[],
1046      stack_after=[pybytes],
1047      proto=3,
1048      doc="""Push a Python bytes object.
1049
1050      There are two arguments:  the first is a 4-byte little-endian signed int
1051      giving the number of bytes in the string, and the second is that many
1052      bytes, which are taken literally as the bytes content.
1053      """),
1054
1055    I(name='SHORT_BINBYTES',
1056      code='C',
1057      arg=string1,
1058      stack_before=[],
1059      stack_after=[pybytes],
1060      proto=3,
1061      doc="""Push a Python string object.
1062
1063      There are two arguments:  the first is a 1-byte unsigned int giving
1064      the number of bytes in the string, and the second is that many bytes,
1065      which are taken literally as the string content.
1066      """),
1067
1068    # Ways to spell None.
1069
1070    I(name='NONE',
1071      code='N',
1072      arg=None,
1073      stack_before=[],
1074      stack_after=[pynone],
1075      proto=0,
1076      doc="Push None on the stack."),
1077
1078    # Ways to spell bools, starting with proto 2.  See INT for how this was
1079    # done before proto 2.
1080
1081    I(name='NEWTRUE',
1082      code='\x88',
1083      arg=None,
1084      stack_before=[],
1085      stack_after=[pybool],
1086      proto=2,
1087      doc="""True.
1088
1089      Push True onto the stack."""),
1090
1091    I(name='NEWFALSE',
1092      code='\x89',
1093      arg=None,
1094      stack_before=[],
1095      stack_after=[pybool],
1096      proto=2,
1097      doc="""True.
1098
1099      Push False onto the stack."""),
1100
1101    # Ways to spell Unicode strings.
1102
1103    I(name='UNICODE',
1104      code='V',
1105      arg=unicodestringnl,
1106      stack_before=[],
1107      stack_after=[pyunicode],
1108      proto=0,  # this may be pure-text, but it's a later addition
1109      doc="""Push a Python Unicode string object.
1110
1111      The argument is a raw-unicode-escape encoding of a Unicode string,
1112      and so may contain embedded escape sequences.  The argument extends
1113      until the next newline character.
1114      """),
1115
1116    I(name='BINUNICODE',
1117      code='X',
1118      arg=unicodestring4,
1119      stack_before=[],
1120      stack_after=[pyunicode],
1121      proto=1,
1122      doc="""Push a Python Unicode string object.
1123
1124      There are two arguments:  the first is a 4-byte little-endian signed int
1125      giving the number of bytes in the string.  The second is that many
1126      bytes, and is the UTF-8 encoding of the Unicode string.
1127      """),
1128
1129    # Ways to spell floats.
1130
1131    I(name='FLOAT',
1132      code='F',
1133      arg=floatnl,
1134      stack_before=[],
1135      stack_after=[pyfloat],
1136      proto=0,
1137      doc="""Newline-terminated decimal float literal.
1138
1139      The argument is repr(a_float), and in general requires 17 significant
1140      digits for roundtrip conversion to be an identity (this is so for
1141      IEEE-754 double precision values, which is what Python float maps to
1142      on most boxes).
1143
1144      In general, FLOAT cannot be used to transport infinities, NaNs, or
1145      minus zero across boxes (or even on a single box, if the platform C
1146      library can't read the strings it produces for such things -- Windows
1147      is like that), but may do less damage than BINFLOAT on boxes with
1148      greater precision or dynamic range than IEEE-754 double.
1149      """),
1150
1151    I(name='BINFLOAT',
1152      code='G',
1153      arg=float8,
1154      stack_before=[],
1155      stack_after=[pyfloat],
1156      proto=1,
1157      doc="""Float stored in binary form, with 8 bytes of data.
1158
1159      This generally requires less than half the space of FLOAT encoding.
1160      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1161      minus zero, raises an exception if the exponent exceeds the range of
1162      an IEEE-754 double, and retains no more than 53 bits of precision (if
1163      there are more than that, "add a half and chop" rounding is used to
1164      cut it back to 53 significant bits).
1165      """),
1166
1167    # Ways to build lists.
1168
1169    I(name='EMPTY_LIST',
1170      code=']',
1171      arg=None,
1172      stack_before=[],
1173      stack_after=[pylist],
1174      proto=1,
1175      doc="Push an empty list."),
1176
1177    I(name='APPEND',
1178      code='a',
1179      arg=None,
1180      stack_before=[pylist, anyobject],
1181      stack_after=[pylist],
1182      proto=0,
1183      doc="""Append an object to a list.
1184
1185      Stack before:  ... pylist anyobject
1186      Stack after:   ... pylist+[anyobject]
1187
1188      although pylist is really extended in-place.
1189      """),
1190
1191    I(name='APPENDS',
1192      code='e',
1193      arg=None,
1194      stack_before=[pylist, markobject, stackslice],
1195      stack_after=[pylist],
1196      proto=1,
1197      doc="""Extend a list by a slice of stack objects.
1198
1199      Stack before:  ... pylist markobject stackslice
1200      Stack after:   ... pylist+stackslice
1201
1202      although pylist is really extended in-place.
1203      """),
1204
1205    I(name='LIST',
1206      code='l',
1207      arg=None,
1208      stack_before=[markobject, stackslice],
1209      stack_after=[pylist],
1210      proto=0,
1211      doc="""Build a list out of the topmost stack slice, after markobject.
1212
1213      All the stack entries following the topmost markobject are placed into
1214      a single Python list, which single list object replaces all of the
1215      stack from the topmost markobject onward.  For example,
1216
1217      Stack before: ... markobject 1 2 3 'abc'
1218      Stack after:  ... [1, 2, 3, 'abc']
1219      """),
1220
1221    # Ways to build tuples.
1222
1223    I(name='EMPTY_TUPLE',
1224      code=')',
1225      arg=None,
1226      stack_before=[],
1227      stack_after=[pytuple],
1228      proto=1,
1229      doc="Push an empty tuple."),
1230
1231    I(name='TUPLE',
1232      code='t',
1233      arg=None,
1234      stack_before=[markobject, stackslice],
1235      stack_after=[pytuple],
1236      proto=0,
1237      doc="""Build a tuple out of the topmost stack slice, after markobject.
1238
1239      All the stack entries following the topmost markobject are placed into
1240      a single Python tuple, which single tuple object replaces all of the
1241      stack from the topmost markobject onward.  For example,
1242
1243      Stack before: ... markobject 1 2 3 'abc'
1244      Stack after:  ... (1, 2, 3, 'abc')
1245      """),
1246
1247    I(name='TUPLE1',
1248      code='\x85',
1249      arg=None,
1250      stack_before=[anyobject],
1251      stack_after=[pytuple],
1252      proto=2,
1253      doc="""One-tuple.
1254
1255      This code pops one value off the stack and pushes a tuple of
1256      length 1 whose one item is that value back onto it.  IOW:
1257
1258          stack[-1] = tuple(stack[-1:])
1259      """),
1260
1261    I(name='TUPLE2',
1262      code='\x86',
1263      arg=None,
1264      stack_before=[anyobject, anyobject],
1265      stack_after=[pytuple],
1266      proto=2,
1267      doc="""One-tuple.
1268
1269      This code pops two values off the stack and pushes a tuple
1270      of length 2 whose items are those values back onto it.  IOW:
1271
1272          stack[-2:] = [tuple(stack[-2:])]
1273      """),
1274
1275    I(name='TUPLE3',
1276      code='\x87',
1277      arg=None,
1278      stack_before=[anyobject, anyobject, anyobject],
1279      stack_after=[pytuple],
1280      proto=2,
1281      doc="""One-tuple.
1282
1283      This code pops three values off the stack and pushes a tuple
1284      of length 3 whose items are those values back onto it.  IOW:
1285
1286          stack[-3:] = [tuple(stack[-3:])]
1287      """),
1288
1289    # Ways to build dicts.
1290
1291    I(name='EMPTY_DICT',
1292      code='}',
1293      arg=None,
1294      stack_before=[],
1295      stack_after=[pydict],
1296      proto=1,
1297      doc="Push an empty dict."),
1298
1299    I(name='DICT',
1300      code='d',
1301      arg=None,
1302      stack_before=[markobject, stackslice],
1303      stack_after=[pydict],
1304      proto=0,
1305      doc="""Build a dict out of the topmost stack slice, after markobject.
1306
1307      All the stack entries following the topmost markobject are placed into
1308      a single Python dict, which single dict object replaces all of the
1309      stack from the topmost markobject onward.  The stack slice alternates
1310      key, value, key, value, ....  For example,
1311
1312      Stack before: ... markobject 1 2 3 'abc'
1313      Stack after:  ... {1: 2, 3: 'abc'}
1314      """),
1315
1316    I(name='SETITEM',
1317      code='s',
1318      arg=None,
1319      stack_before=[pydict, anyobject, anyobject],
1320      stack_after=[pydict],
1321      proto=0,
1322      doc="""Add a key+value pair to an existing dict.
1323
1324      Stack before:  ... pydict key value
1325      Stack after:   ... pydict
1326
1327      where pydict has been modified via pydict[key] = value.
1328      """),
1329
1330    I(name='SETITEMS',
1331      code='u',
1332      arg=None,
1333      stack_before=[pydict, markobject, stackslice],
1334      stack_after=[pydict],
1335      proto=1,
1336      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1337
1338      The slice of the stack following the topmost markobject is taken as
1339      an alternating sequence of keys and values, added to the dict
1340      immediately under the topmost markobject.  Everything at and after the
1341      topmost markobject is popped, leaving the mutated dict at the top
1342      of the stack.
1343
1344      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1345      Stack after:   ... pydict
1346
1347      where pydict has been modified via pydict[key_i] = value_i for i in
1348      1, 2, ..., n, and in that order.
1349      """),
1350
1351    # Stack manipulation.
1352
1353    I(name='POP',
1354      code='0',
1355      arg=None,
1356      stack_before=[anyobject],
1357      stack_after=[],
1358      proto=0,
1359      doc="Discard the top stack item, shrinking the stack by one item."),
1360
1361    I(name='DUP',
1362      code='2',
1363      arg=None,
1364      stack_before=[anyobject],
1365      stack_after=[anyobject, anyobject],
1366      proto=0,
1367      doc="Push the top stack item onto the stack again, duplicating it."),
1368
1369    I(name='MARK',
1370      code='(',
1371      arg=None,
1372      stack_before=[],
1373      stack_after=[markobject],
1374      proto=0,
1375      doc="""Push markobject onto the stack.
1376
1377      markobject is a unique object, used by other opcodes to identify a
1378      region of the stack containing a variable number of objects for them
1379      to work on.  See markobject.doc for more detail.
1380      """),
1381
1382    I(name='POP_MARK',
1383      code='1',
1384      arg=None,
1385      stack_before=[markobject, stackslice],
1386      stack_after=[],
1387      proto=1,
1388      doc="""Pop all the stack objects at and above the topmost markobject.
1389
1390      When an opcode using a variable number of stack objects is done,
1391      POP_MARK is used to remove those objects, and to remove the markobject
1392      that delimited their starting position on the stack.
1393      """),
1394
1395    # Memo manipulation.  There are really only two operations (get and put),
1396    # each in all-text, "short binary", and "long binary" flavors.
1397
1398    I(name='GET',
1399      code='g',
1400      arg=decimalnl_short,
1401      stack_before=[],
1402      stack_after=[anyobject],
1403      proto=0,
1404      doc="""Read an object from the memo and push it on the stack.
1405
1406      The index of the memo object to push is given by the newline-teriminated
1407      decimal string following.  BINGET and LONG_BINGET are space-optimized
1408      versions.
1409      """),
1410
1411    I(name='BINGET',
1412      code='h',
1413      arg=uint1,
1414      stack_before=[],
1415      stack_after=[anyobject],
1416      proto=1,
1417      doc="""Read an object from the memo and push it on the stack.
1418
1419      The index of the memo object to push is given by the 1-byte unsigned
1420      integer following.
1421      """),
1422
1423    I(name='LONG_BINGET',
1424      code='j',
1425      arg=int4,
1426      stack_before=[],
1427      stack_after=[anyobject],
1428      proto=1,
1429      doc="""Read an object from the memo and push it on the stack.
1430
1431      The index of the memo object to push is given by the 4-byte signed
1432      little-endian integer following.
1433      """),
1434
1435    I(name='PUT',
1436      code='p',
1437      arg=decimalnl_short,
1438      stack_before=[],
1439      stack_after=[],
1440      proto=0,
1441      doc="""Store the stack top into the memo.  The stack is not popped.
1442
1443      The index of the memo location to write into is given by the newline-
1444      terminated decimal string following.  BINPUT and LONG_BINPUT are
1445      space-optimized versions.
1446      """),
1447
1448    I(name='BINPUT',
1449      code='q',
1450      arg=uint1,
1451      stack_before=[],
1452      stack_after=[],
1453      proto=1,
1454      doc="""Store the stack top into the memo.  The stack is not popped.
1455
1456      The index of the memo location to write into is given by the 1-byte
1457      unsigned integer following.
1458      """),
1459
1460    I(name='LONG_BINPUT',
1461      code='r',
1462      arg=int4,
1463      stack_before=[],
1464      stack_after=[],
1465      proto=1,
1466      doc="""Store the stack top into the memo.  The stack is not popped.
1467
1468      The index of the memo location to write into is given by the 4-byte
1469      signed little-endian integer following.
1470      """),
1471
1472    # Access the extension registry (predefined objects).  Akin to the GET
1473    # family.
1474
1475    I(name='EXT1',
1476      code='\x82',
1477      arg=uint1,
1478      stack_before=[],
1479      stack_after=[anyobject],
1480      proto=2,
1481      doc="""Extension code.
1482
1483      This code and the similar EXT2 and EXT4 allow using a registry
1484      of popular objects that are pickled by name, typically classes.
1485      It is envisioned that through a global negotiation and
1486      registration process, third parties can set up a mapping between
1487      ints and object names.
1488
1489      In order to guarantee pickle interchangeability, the extension
1490      code registry ought to be global, although a range of codes may
1491      be reserved for private use.
1492
1493      EXT1 has a 1-byte integer argument.  This is used to index into the
1494      extension registry, and the object at that index is pushed on the stack.
1495      """),
1496
1497    I(name='EXT2',
1498      code='\x83',
1499      arg=uint2,
1500      stack_before=[],
1501      stack_after=[anyobject],
1502      proto=2,
1503      doc="""Extension code.
1504
1505      See EXT1.  EXT2 has a two-byte integer argument.
1506      """),
1507
1508    I(name='EXT4',
1509      code='\x84',
1510      arg=int4,
1511      stack_before=[],
1512      stack_after=[anyobject],
1513      proto=2,
1514      doc="""Extension code.
1515
1516      See EXT1.  EXT4 has a four-byte integer argument.
1517      """),
1518
1519    # Push a class object, or module function, on the stack, via its module
1520    # and name.
1521
1522    I(name='GLOBAL',
1523      code='c',
1524      arg=stringnl_noescape_pair,
1525      stack_before=[],
1526      stack_after=[anyobject],
1527      proto=0,
1528      doc="""Push a global object (module.attr) on the stack.
1529
1530      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1531      taken as a module name, and the second as a class name.  The class
1532      object module.class is pushed on the stack.  More accurately, the
1533      object returned by self.find_class(module, class) is pushed on the
1534      stack, so unpickling subclasses can override this form of lookup.
1535      """),
1536
1537    # Ways to build objects of classes pickle doesn't know about directly
1538    # (user-defined classes).  I despair of documenting this accurately
1539    # and comprehensibly -- you really have to read the pickle code to
1540    # find all the special cases.
1541
1542    I(name='REDUCE',
1543      code='R',
1544      arg=None,
1545      stack_before=[anyobject, anyobject],
1546      stack_after=[anyobject],
1547      proto=0,
1548      doc="""Push an object built from a callable and an argument tuple.
1549
1550      The opcode is named to remind of the __reduce__() method.
1551
1552      Stack before: ... callable pytuple
1553      Stack after:  ... callable(*pytuple)
1554
1555      The callable and the argument tuple are the first two items returned
1556      by a __reduce__ method.  Applying the callable to the argtuple is
1557      supposed to reproduce the original object, or at least get it started.
1558      If the __reduce__ method returns a 3-tuple, the last component is an
1559      argument to be passed to the object's __setstate__, and then the REDUCE
1560      opcode is followed by code to create setstate's argument, and then a
1561      BUILD opcode to apply  __setstate__ to that argument.
1562
1563      If not isinstance(callable, type), REDUCE complains unless the
1564      callable has been registered with the copyreg module's
1565      safe_constructors dict, or the callable has a magic
1566      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1567      why it does this, but I've sure seen this complaint often enough when
1568      I didn't want to <wink>.
1569      """),
1570
1571    I(name='BUILD',
1572      code='b',
1573      arg=None,
1574      stack_before=[anyobject, anyobject],
1575      stack_after=[anyobject],
1576      proto=0,
1577      doc="""Finish building an object, via __setstate__ or dict update.
1578
1579      Stack before: ... anyobject argument
1580      Stack after:  ... anyobject
1581
1582      where anyobject may have been mutated, as follows:
1583
1584      If the object has a __setstate__ method,
1585
1586          anyobject.__setstate__(argument)
1587
1588      is called.
1589
1590      Else the argument must be a dict, the object must have a __dict__, and
1591      the object is updated via
1592
1593          anyobject.__dict__.update(argument)
1594      """),
1595
1596    I(name='INST',
1597      code='i',
1598      arg=stringnl_noescape_pair,
1599      stack_before=[markobject, stackslice],
1600      stack_after=[anyobject],
1601      proto=0,
1602      doc="""Build a class instance.
1603
1604      This is the protocol 0 version of protocol 1's OBJ opcode.
1605      INST is followed by two newline-terminated strings, giving a
1606      module and class name, just as for the GLOBAL opcode (and see
1607      GLOBAL for more details about that).  self.find_class(module, name)
1608      is used to get a class object.
1609
1610      In addition, all the objects on the stack following the topmost
1611      markobject are gathered into a tuple and popped (along with the
1612      topmost markobject), just as for the TUPLE opcode.
1613
1614      Now it gets complicated.  If all of these are true:
1615
1616        + The argtuple is empty (markobject was at the top of the stack
1617          at the start).
1618
1619        + The class object does not have a __getinitargs__ attribute.
1620
1621      then we want to create an old-style class instance without invoking
1622      its __init__() method (pickle has waffled on this over the years; not
1623      calling __init__() is current wisdom).  In this case, an instance of
1624      an old-style dummy class is created, and then we try to rebind its
1625      __class__ attribute to the desired class object.  If this succeeds,
1626      the new instance object is pushed on the stack, and we're done.
1627
1628      Else (the argtuple is not empty, it's not an old-style class object,
1629      or the class object does have a __getinitargs__ attribute), the code
1630      first insists that the class object have a __safe_for_unpickling__
1631      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1632      it doesn't matter whether this attribute has a true or false value, it
1633      only matters whether it exists (XXX this is a bug).  If
1634      __safe_for_unpickling__ doesn't exist, UnpicklingError is raised.
1635
1636      Else (the class object does have a __safe_for_unpickling__ attr),
1637      the class object obtained from INST's arguments is applied to the
1638      argtuple obtained from the stack, and the resulting instance object
1639      is pushed on the stack.
1640
1641      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1642      """),
1643
1644    I(name='OBJ',
1645      code='o',
1646      arg=None,
1647      stack_before=[markobject, anyobject, stackslice],
1648      stack_after=[anyobject],
1649      proto=1,
1650      doc="""Build a class instance.
1651
1652      This is the protocol 1 version of protocol 0's INST opcode, and is
1653      very much like it.  The major difference is that the class object
1654      is taken off the stack, allowing it to be retrieved from the memo
1655      repeatedly if several instances of the same class are created.  This
1656      can be much more efficient (in both time and space) than repeatedly
1657      embedding the module and class names in INST opcodes.
1658
1659      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1660      the class object is taken off the stack, immediately above the
1661      topmost markobject:
1662
1663      Stack before: ... markobject classobject stackslice
1664      Stack after:  ... new_instance_object
1665
1666      As for INST, the remainder of the stack above the markobject is
1667      gathered into an argument tuple, and then the logic seems identical,
1668      except that no __safe_for_unpickling__ check is done (XXX this is
1669      a bug).  See INST for the gory details.
1670
1671      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1672      get the class object.  That was always the intent; the implementations
1673      had diverged for accidental reasons.
1674      """),
1675
1676    I(name='NEWOBJ',
1677      code='\x81',
1678      arg=None,
1679      stack_before=[anyobject, anyobject],
1680      stack_after=[anyobject],
1681      proto=2,
1682      doc="""Build an object instance.
1683
1684      The stack before should be thought of as containing a class
1685      object followed by an argument tuple (the tuple being the stack
1686      top).  Call these cls and args.  They are popped off the stack,
1687      and the value returned by cls.__new__(cls, *args) is pushed back
1688      onto the stack.
1689      """),
1690
1691    # Machine control.
1692
1693    I(name='PROTO',
1694      code='\x80',
1695      arg=uint1,
1696      stack_before=[],
1697      stack_after=[],
1698      proto=2,
1699      doc="""Protocol version indicator.
1700
1701      For protocol 2 and above, a pickle must start with this opcode.
1702      The argument is the protocol version, an int in range(2, 256).
1703      """),
1704
1705    I(name='STOP',
1706      code='.',
1707      arg=None,
1708      stack_before=[anyobject],
1709      stack_after=[],
1710      proto=0,
1711      doc="""Stop the unpickling machine.
1712
1713      Every pickle ends with this opcode.  The object at the top of the stack
1714      is popped, and that's the result of unpickling.  The stack should be
1715      empty then.
1716      """),
1717
1718    # Ways to deal with persistent IDs.
1719
1720    I(name='PERSID',
1721      code='P',
1722      arg=stringnl_noescape,
1723      stack_before=[],
1724      stack_after=[anyobject],
1725      proto=0,
1726      doc="""Push an object identified by a persistent ID.
1727
1728      The pickle module doesn't define what a persistent ID means.  PERSID's
1729      argument is a newline-terminated str-style (no embedded escapes, no
1730      bracketing quote characters) string, which *is* "the persistent ID".
1731      The unpickler passes this string to self.persistent_load().  Whatever
1732      object that returns is pushed on the stack.  There is no implementation
1733      of persistent_load() in Python's unpickler:  it must be supplied by an
1734      unpickler subclass.
1735      """),
1736
1737    I(name='BINPERSID',
1738      code='Q',
1739      arg=None,
1740      stack_before=[anyobject],
1741      stack_after=[anyobject],
1742      proto=1,
1743      doc="""Push an object identified by a persistent ID.
1744
1745      Like PERSID, except the persistent ID is popped off the stack (instead
1746      of being a string embedded in the opcode bytestream).  The persistent
1747      ID is passed to self.persistent_load(), and whatever object that
1748      returns is pushed on the stack.  See PERSID for more detail.
1749      """),
1750]
1751del I
1752
1753# Verify uniqueness of .name and .code members.
1754name2i = {}
1755code2i = {}
1756
1757for i, d in enumerate(opcodes):
1758    if d.name in name2i:
1759        raise ValueError("repeated name %r at indices %d and %d" %
1760                         (d.name, name2i[d.name], i))
1761    if d.code in code2i:
1762        raise ValueError("repeated code %r at indices %d and %d" %
1763                         (d.code, code2i[d.code], i))
1764
1765    name2i[d.name] = i
1766    code2i[d.code] = i
1767
1768del name2i, code2i, i, d
1769
1770##############################################################################
1771# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1772# Also ensure we've got the same stuff as pickle.py, although the
1773# introspection here is dicey.
1774
1775code2op = {}
1776for d in opcodes:
1777    code2op[d.code] = d
1778del d
1779
1780def assure_pickle_consistency(verbose=False):
1781
1782    copy = code2op.copy()
1783    for name in pickle.__all__:
1784        if not re.match("[A-Z][A-Z0-9_]+$", name):
1785            if verbose:
1786                print("skipping %r: it doesn't look like an opcode name" % name)
1787            continue
1788        picklecode = getattr(pickle, name)
1789        if not isinstance(picklecode, bytes) or len(picklecode) != 1:
1790            if verbose:
1791                print(("skipping %r: value %r doesn't look like a pickle "
1792                       "code" % (name, picklecode)))
1793            continue
1794        picklecode = picklecode.decode("latin-1")
1795        if picklecode in copy:
1796            if verbose:
1797                print("checking name %r w/ code %r for consistency" % (
1798                      name, picklecode))
1799            d = copy[picklecode]
1800            if d.name != name:
1801                raise ValueError("for pickle code %r, pickle.py uses name %r "
1802                                 "but we're using name %r" % (picklecode,
1803                                                              name,
1804                                                              d.name))
1805            # Forget this one.  Any left over in copy at the end are a problem
1806            # of a different kind.
1807            del copy[picklecode]
1808        else:
1809            raise ValueError("pickle.py appears to have a pickle opcode with "
1810                             "name %r and code %r, but we don't" %
1811                             (name, picklecode))
1812    if copy:
1813        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1814        for code, d in copy.items():
1815            msg.append("    name %r with code %r" % (d.name, code))
1816        raise ValueError("\n".join(msg))
1817
1818assure_pickle_consistency()
1819del assure_pickle_consistency
1820
1821##############################################################################
1822# A pickle opcode generator.
1823
1824def genops(pickle):
1825    """Generate all the opcodes in a pickle.
1826
1827    'pickle' is a file-like object, or string, containing the pickle.
1828
1829    Each opcode in the pickle is generated, from the current pickle position,
1830    stopping after a STOP opcode is delivered.  A triple is generated for
1831    each opcode:
1832
1833        opcode, arg, pos
1834
1835    opcode is an OpcodeInfo record, describing the current opcode.
1836
1837    If the opcode has an argument embedded in the pickle, arg is its decoded
1838    value, as a Python object.  If the opcode doesn't have an argument, arg
1839    is None.
1840
1841    If the pickle has a tell() method, pos was the value of pickle.tell()
1842    before reading the current opcode.  If the pickle is a bytes object,
1843    it's wrapped in a BytesIO object, and the latter's tell() result is
1844    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1845    to query its current position) pos is None.
1846    """
1847
1848    if isinstance(pickle, bytes_types):
1849        import io
1850        pickle = io.BytesIO(pickle)
1851
1852    if hasattr(pickle, "tell"):
1853        getpos = pickle.tell
1854    else:
1855        getpos = lambda: None
1856
1857    while True:
1858        pos = getpos()
1859        code = pickle.read(1)
1860        opcode = code2op.get(code.decode("latin-1"))
1861        if opcode is None:
1862            if code == b"":
1863                raise ValueError("pickle exhausted before seeing STOP")
1864            else:
1865                raise ValueError("at position %s, opcode %r unknown" % (
1866                                 pos is None and "<unknown>" or pos,
1867                                 code))
1868        if opcode.arg is None:
1869            arg = None
1870        else:
1871            arg = opcode.arg.reader(pickle)
1872        yield opcode, arg, pos
1873        if code == b'.':
1874            assert opcode.name == 'STOP'
1875            break
1876
1877##############################################################################
1878# A pickle optimizer.
1879
1880def optimize(p):
1881    'Optimize a pickle string by removing unused PUT opcodes'
1882    gets = set()            # set of args used by a GET opcode
1883    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
1884    prevpos = None          # set to pos if previous opcode was a PUT
1885    for opcode, arg, pos in genops(p):
1886        if prevpos is not None:
1887            puts.append((prevarg, prevpos, pos))
1888            prevpos = None
1889        if 'PUT' in opcode.name:
1890            prevarg, prevpos = arg, pos
1891        elif 'GET' in opcode.name:
1892            gets.add(arg)
1893
1894    # Copy the pickle string except for PUTS without a corresponding GET
1895    s = []
1896    i = 0
1897    for arg, start, stop in puts:
1898        j = stop if (arg in gets) else start
1899        s.append(p[i:j])
1900        i = stop
1901    s.append(p[i:])
1902    return b''.join(s)
1903
1904##############################################################################
1905# A symbolic pickle disassembler.
1906
1907def dis(pickle, out=None, memo=None, indentlevel=4):
1908    """Produce a symbolic disassembly of a pickle.
1909
1910    'pickle' is a file-like object, or string, containing a (at least one)
1911    pickle.  The pickle is disassembled from the current position, through
1912    the first STOP opcode encountered.
1913
1914    Optional arg 'out' is a file-like object to which the disassembly is
1915    printed.  It defaults to sys.stdout.
1916
1917    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1918    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1919    Passing the same memo object to another dis() call then allows disassembly
1920    to proceed across multiple pickles that were all created by the same
1921    pickler with the same memo.  Ordinarily you don't need to worry about this.
1922
1923    Optional arg indentlevel is the number of blanks by which to indent
1924    a new MARK level.  It defaults to 4.
1925
1926    In addition to printing the disassembly, some sanity checks are made:
1927
1928    + All embedded opcode arguments "make sense".
1929
1930    + Explicit and implicit pop operations have enough items on the stack.
1931
1932    + When an opcode implicitly refers to a markobject, a markobject is
1933      actually on the stack.
1934
1935    + A memo entry isn't referenced before it's defined.
1936
1937    + The markobject isn't stored in the memo.
1938
1939    + A memo entry isn't redefined.
1940    """
1941
1942    # Most of the hair here is for sanity checks, but most of it is needed
1943    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1944    # (which in turn is needed to indent MARK blocks correctly).
1945
1946    stack = []          # crude emulation of unpickler stack
1947    if memo is None:
1948        memo = {}       # crude emulation of unpicker memo
1949    maxproto = -1       # max protocol number seen
1950    markstack = []      # bytecode positions of MARK opcodes
1951    indentchunk = ' ' * indentlevel
1952    errormsg = None
1953    for opcode, arg, pos in genops(pickle):
1954        if pos is not None:
1955            print("%5d:" % pos, end=' ', file=out)
1956
1957        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1958                              indentchunk * len(markstack),
1959                              opcode.name)
1960
1961        maxproto = max(maxproto, opcode.proto)
1962        before = opcode.stack_before    # don't mutate
1963        after = opcode.stack_after      # don't mutate
1964        numtopop = len(before)
1965
1966        # See whether a MARK should be popped.
1967        markmsg = None
1968        if markobject in before or (opcode.name == "POP" and
1969                                    stack and
1970                                    stack[-1] is markobject):
1971            assert markobject not in after
1972            if __debug__:
1973                if markobject in before:
1974                    assert before[-1] is stackslice
1975            if markstack:
1976                markpos = markstack.pop()
1977                if markpos is None:
1978                    markmsg = "(MARK at unknown opcode offset)"
1979                else:
1980                    markmsg = "(MARK at %d)" % markpos
1981                # Pop everything at and after the topmost markobject.
1982                while stack[-1] is not markobject:
1983                    stack.pop()
1984                stack.pop()
1985                # Stop later code from popping too much.
1986                try:
1987                    numtopop = before.index(markobject)
1988                except ValueError:
1989                    assert opcode.name == "POP"
1990                    numtopop = 0
1991            else:
1992                errormsg = markmsg = "no MARK exists on stack"
1993
1994        # Check for correct memo usage.
1995        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1996            assert arg is not None
1997            if arg in memo:
1998                errormsg = "memo key %r already defined" % arg
1999            elif not stack:
2000                errormsg = "stack is empty -- can't store into memo"
2001            elif stack[-1] is markobject:
2002                errormsg = "can't store markobject in the memo"
2003            else:
2004                memo[arg] = stack[-1]
2005
2006        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
2007            if arg in memo:
2008                assert len(after) == 1
2009                after = [memo[arg]]     # for better stack emulation
2010            else:
2011                errormsg = "memo key %r has never been stored into" % arg
2012
2013        if arg is not None or markmsg:
2014            # make a mild effort to align arguments
2015            line += ' ' * (10 - len(opcode.name))
2016            if arg is not None:
2017                line += ' ' + repr(arg)
2018            if markmsg:
2019                line += ' ' + markmsg
2020        print(line, file=out)
2021
2022        if errormsg:
2023            # Note that we delayed complaining until the offending opcode
2024            # was printed.
2025            raise ValueError(errormsg)
2026
2027        # Emulate the stack effects.
2028        if len(stack) < numtopop:
2029            raise ValueError("tries to pop %d items from stack with "
2030                             "only %d items" % (numtopop, len(stack)))
2031        if numtopop:
2032            del stack[-numtopop:]
2033        if markobject in after:
2034            assert markobject not in before
2035            markstack.append(pos)
2036
2037        stack.extend(after)
2038
2039    print("highest protocol among opcodes =", maxproto, file=out)
2040    if stack:
2041        raise ValueError("stack not empty after STOP: %r" % stack)
2042
2043# For use in the doctest, simply as an example of a class to pickle.
2044class _Example:
2045    def __init__(self, value):
2046        self.value = value
2047
2048_dis_test = r"""
2049>>> import pickle
2050>>> x = [1, 2, (3, 4), {b'abc': "def"}]
2051>>> pkl0 = pickle.dumps(x, 0)
2052>>> dis(pkl0)
2053    0: (    MARK
2054    1: l        LIST       (MARK at 0)
2055    2: p    PUT        0
2056    5: L    LONG       1
2057    9: a    APPEND
2058   10: L    LONG       2
2059   14: a    APPEND
2060   15: (    MARK
2061   16: L        LONG       3
2062   20: L        LONG       4
2063   24: t        TUPLE      (MARK at 15)
2064   25: p    PUT        1
2065   28: a    APPEND
2066   29: (    MARK
2067   30: d        DICT       (MARK at 29)
2068   31: p    PUT        2
2069   34: c    GLOBAL     '__builtin__ bytes'
2070   53: p    PUT        3
2071   56: (    MARK
2072   57: (        MARK
2073   58: l            LIST       (MARK at 57)
2074   59: p        PUT        4
2075   62: L        LONG       97
2076   67: a        APPEND
2077   68: L        LONG       98
2078   73: a        APPEND
2079   74: L        LONG       99
2080   79: a        APPEND
2081   80: t        TUPLE      (MARK at 56)
2082   81: p    PUT        5
2083   84: R    REDUCE
2084   85: p    PUT        6
2085   88: V    UNICODE    'def'
2086   93: p    PUT        7
2087   96: s    SETITEM
2088   97: a    APPEND
2089   98: .    STOP
2090highest protocol among opcodes = 0
2091
2092Try again with a "binary" pickle.
2093
2094>>> pkl1 = pickle.dumps(x, 1)
2095>>> dis(pkl1)
2096    0: ]    EMPTY_LIST
2097    1: q    BINPUT     0
2098    3: (    MARK
2099    4: K        BININT1    1
2100    6: K        BININT1    2
2101    8: (        MARK
2102    9: K            BININT1    3
2103   11: K            BININT1    4
2104   13: t            TUPLE      (MARK at 8)
2105   14: q        BINPUT     1
2106   16: }        EMPTY_DICT
2107   17: q        BINPUT     2
2108   19: c        GLOBAL     '__builtin__ bytes'
2109   38: q        BINPUT     3
2110   40: (        MARK
2111   41: ]            EMPTY_LIST
2112   42: q            BINPUT     4
2113   44: (            MARK
2114   45: K                BININT1    97
2115   47: K                BININT1    98
2116   49: K                BININT1    99
2117   51: e                APPENDS    (MARK at 44)
2118   52: t            TUPLE      (MARK at 40)
2119   53: q        BINPUT     5
2120   55: R        REDUCE
2121   56: q        BINPUT     6
2122   58: X        BINUNICODE 'def'
2123   66: q        BINPUT     7
2124   68: s        SETITEM
2125   69: e        APPENDS    (MARK at 3)
2126   70: .    STOP
2127highest protocol among opcodes = 1
2128
2129Exercise the INST/OBJ/BUILD family.
2130
2131>>> import pickletools
2132>>> dis(pickle.dumps(pickletools.dis, 0))
2133    0: c    GLOBAL     'pickletools dis'
2134   17: p    PUT        0
2135   20: .    STOP
2136highest protocol among opcodes = 0
2137
2138>>> from pickletools import _Example
2139>>> x = [_Example(42)] * 2
2140>>> dis(pickle.dumps(x, 0))
2141    0: (    MARK
2142    1: l        LIST       (MARK at 0)
2143    2: p    PUT        0
2144    5: c    GLOBAL     'copy_reg _reconstructor'
2145   30: p    PUT        1
2146   33: (    MARK
2147   34: c        GLOBAL     'pickletools _Example'
2148   56: p        PUT        2
2149   59: c        GLOBAL     '__builtin__ object'
2150   79: p        PUT        3
2151   82: N        NONE
2152   83: t        TUPLE      (MARK at 33)
2153   84: p    PUT        4
2154   87: R    REDUCE
2155   88: p    PUT        5
2156   91: (    MARK
2157   92: d        DICT       (MARK at 91)
2158   93: p    PUT        6
2159   96: V    UNICODE    'value'
2160  103: p    PUT        7
2161  106: L    LONG       42
2162  111: s    SETITEM
2163  112: b    BUILD
2164  113: a    APPEND
2165  114: g    GET        5
2166  117: a    APPEND
2167  118: .    STOP
2168highest protocol among opcodes = 0
2169
2170>>> dis(pickle.dumps(x, 1))
2171    0: ]    EMPTY_LIST
2172    1: q    BINPUT     0
2173    3: (    MARK
2174    4: c        GLOBAL     'copy_reg _reconstructor'
2175   29: q        BINPUT     1
2176   31: (        MARK
2177   32: c            GLOBAL     'pickletools _Example'
2178   54: q            BINPUT     2
2179   56: c            GLOBAL     '__builtin__ object'
2180   76: q            BINPUT     3
2181   78: N            NONE
2182   79: t            TUPLE      (MARK at 31)
2183   80: q        BINPUT     4
2184   82: R        REDUCE
2185   83: q        BINPUT     5
2186   85: }        EMPTY_DICT
2187   86: q        BINPUT     6
2188   88: X        BINUNICODE 'value'
2189   98: q        BINPUT     7
2190  100: K        BININT1    42
2191  102: s        SETITEM
2192  103: b        BUILD
2193  104: h        BINGET     5
2194  106: e        APPENDS    (MARK at 3)
2195  107: .    STOP
2196highest protocol among opcodes = 1
2197
2198Try "the canonical" recursive-object test.
2199
2200>>> L = []
2201>>> T = L,
2202>>> L.append(T)
2203>>> L[0] is T
2204True
2205>>> T[0] is L
2206True
2207>>> L[0][0] is L
2208True
2209>>> T[0][0] is T
2210True
2211>>> dis(pickle.dumps(L, 0))
2212    0: (    MARK
2213    1: l        LIST       (MARK at 0)
2214    2: p    PUT        0
2215    5: (    MARK
2216    6: g        GET        0
2217    9: t        TUPLE      (MARK at 5)
2218   10: p    PUT        1
2219   13: a    APPEND
2220   14: .    STOP
2221highest protocol among opcodes = 0
2222
2223>>> dis(pickle.dumps(L, 1))
2224    0: ]    EMPTY_LIST
2225    1: q    BINPUT     0
2226    3: (    MARK
2227    4: h        BINGET     0
2228    6: t        TUPLE      (MARK at 3)
2229    7: q    BINPUT     1
2230    9: a    APPEND
2231   10: .    STOP
2232highest protocol among opcodes = 1
2233
2234Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2235has to emulate the stack in order to realize that the POP opcode at 16 gets
2236rid of the MARK at 0.
2237
2238>>> dis(pickle.dumps(T, 0))
2239    0: (    MARK
2240    1: (        MARK
2241    2: l            LIST       (MARK at 1)
2242    3: p        PUT        0
2243    6: (        MARK
2244    7: g            GET        0
2245   10: t            TUPLE      (MARK at 6)
2246   11: p        PUT        1
2247   14: a        APPEND
2248   15: 0        POP
2249   16: 0        POP        (MARK at 0)
2250   17: g    GET        1
2251   20: .    STOP
2252highest protocol among opcodes = 0
2253
2254>>> dis(pickle.dumps(T, 1))
2255    0: (    MARK
2256    1: ]        EMPTY_LIST
2257    2: q        BINPUT     0
2258    4: (        MARK
2259    5: h            BINGET     0
2260    7: t            TUPLE      (MARK at 4)
2261    8: q        BINPUT     1
2262   10: a        APPEND
2263   11: 1        POP_MARK   (MARK at 0)
2264   12: h    BINGET     1
2265   14: .    STOP
2266highest protocol among opcodes = 1
2267
2268Try protocol 2.
2269
2270>>> dis(pickle.dumps(L, 2))
2271    0: \x80 PROTO      2
2272    2: ]    EMPTY_LIST
2273    3: q    BINPUT     0
2274    5: h    BINGET     0
2275    7: \x85 TUPLE1
2276    8: q    BINPUT     1
2277   10: a    APPEND
2278   11: .    STOP
2279highest protocol among opcodes = 2
2280
2281>>> dis(pickle.dumps(T, 2))
2282    0: \x80 PROTO      2
2283    2: ]    EMPTY_LIST
2284    3: q    BINPUT     0
2285    5: h    BINGET     0
2286    7: \x85 TUPLE1
2287    8: q    BINPUT     1
2288   10: a    APPEND
2289   11: 0    POP
2290   12: h    BINGET     1
2291   14: .    STOP
2292highest protocol among opcodes = 2
2293"""
2294
2295_memo_test = r"""
2296>>> import pickle
2297>>> import io
2298>>> f = io.BytesIO()
2299>>> p = pickle.Pickler(f, 2)
2300>>> x = [1, 2, 3]
2301>>> p.dump(x)
2302>>> p.dump(x)
2303>>> f.seek(0)
23040
2305>>> memo = {}
2306>>> dis(f, memo=memo)
2307    0: \x80 PROTO      2
2308    2: ]    EMPTY_LIST
2309    3: q    BINPUT     0
2310    5: (    MARK
2311    6: K        BININT1    1
2312    8: K        BININT1    2
2313   10: K        BININT1    3
2314   12: e        APPENDS    (MARK at 5)
2315   13: .    STOP
2316highest protocol among opcodes = 2
2317>>> dis(f, memo=memo)
2318   14: \x80 PROTO      2
2319   16: h    BINGET     0
2320   18: .    STOP
2321highest protocol among opcodes = 2
2322"""
2323
2324__test__ = {'disassembler_test': _dis_test,
2325            'disassembler_memo_test': _memo_test,
2326           }
2327
2328def _test():
2329    import doctest
2330    return doctest.testmod()
2331
2332if __name__ == "__main__":
2333    _test()
2334