frameobject.c revision a8add0ec5ef05c26e1641b8310b65ddd75c0fec3
1/* Frame object implementation */
2
3#include "Python.h"
4
5#include "code.h"
6#include "frameobject.h"
7#include "opcode.h"
8#include "structmember.h"
9
10#undef MIN
11#undef MAX
12#define MIN(a, b) ((a) < (b) ? (a) : (b))
13#define MAX(a, b) ((a) > (b) ? (a) : (b))
14
15#define OFF(x) offsetof(PyFrameObject, x)
16
17static PyMemberDef frame_memberlist[] = {
18	{"f_back",	T_OBJECT,	OFF(f_back),	RO},
19	{"f_code",	T_OBJECT,	OFF(f_code),	RO},
20	{"f_builtins",	T_OBJECT,	OFF(f_builtins),RO},
21	{"f_globals",	T_OBJECT,	OFF(f_globals),	RO},
22	{"f_lasti",	T_INT,		OFF(f_lasti),	RO},
23	{"f_exc_type",	T_OBJECT,	OFF(f_exc_type)},
24	{"f_exc_value",	T_OBJECT,	OFF(f_exc_value)},
25	{"f_exc_traceback", T_OBJECT,	OFF(f_exc_traceback)},
26	{NULL}	/* Sentinel */
27};
28
29static PyObject *
30frame_getlocals(PyFrameObject *f, void *closure)
31{
32	PyFrame_FastToLocals(f);
33	Py_INCREF(f->f_locals);
34	return f->f_locals;
35}
36
37static PyObject *
38frame_getlineno(PyFrameObject *f, void *closure)
39{
40	int lineno;
41
42	if (f->f_trace)
43		lineno = f->f_lineno;
44	else
45		lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
46
47	return PyInt_FromLong(lineno);
48}
49
50/* Setter for f_lineno - you can set f_lineno from within a trace function in
51 * order to jump to a given line of code, subject to some restrictions.	 Most
52 * lines are OK to jump to because they don't make any assumptions about the
53 * state of the stack (obvious because you could remove the line and the code
54 * would still work without any stack errors), but there are some constructs
55 * that limit jumping:
56 *
57 *  o Lines with an 'except' statement on them can't be jumped to, because
58 *    they expect an exception to be on the top of the stack.
59 *  o Lines that live in a 'finally' block can't be jumped from or to, since
60 *    the END_FINALLY expects to clean up the stack after the 'try' block.
61 *  o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
62 *    needs to be set up before their code runs, and for 'for' loops the
63 *    iterator needs to be on the stack.
64 */
65static int
66frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
67{
68	int new_lineno = 0;		/* The new value of f_lineno */
69	int new_lasti = 0;		/* The new value of f_lasti */
70	int new_iblock = 0;		/* The new value of f_iblock */
71	unsigned char *code = NULL;	/* The bytecode for the frame... */
72	Py_ssize_t code_len = 0;	/* ...and its length */
73	char *lnotab = NULL;		/* Iterating over co_lnotab */
74	Py_ssize_t lnotab_len = 0;	/* (ditto) */
75	int offset = 0;			/* (ditto) */
76	int line = 0;			/* (ditto) */
77	int addr = 0;			/* (ditto) */
78	int min_addr = 0;		/* Scanning the SETUPs and POPs */
79	int max_addr = 0;		/* (ditto) */
80	int delta_iblock = 0;		/* (ditto) */
81	int min_delta_iblock = 0;	/* (ditto) */
82	int min_iblock = 0;		/* (ditto) */
83	int f_lasti_setup_addr = 0;	/* Policing no-jump-into-finally */
84	int new_lasti_setup_addr = 0;	/* (ditto) */
85	int blockstack[CO_MAXBLOCKS];	/* Walking the 'finally' blocks */
86	int in_finally[CO_MAXBLOCKS];	/* (ditto) */
87	int blockstack_top = 0;		/* (ditto) */
88	unsigned char setup_op = 0;	/* (ditto) */
89
90	/* f_lineno must be an integer. */
91	if (!PyInt_CheckExact(p_new_lineno)) {
92		PyErr_SetString(PyExc_ValueError,
93				"lineno must be an integer");
94		return -1;
95	}
96
97	/* You can only do this from within a trace function, not via
98	 * _getframe or similar hackery. */
99	if (!f->f_trace)
100	{
101		PyErr_Format(PyExc_ValueError,
102			     "f_lineno can only be set by a trace function");
103		return -1;
104	}
105
106	/* Fail if the line comes before the start of the code block. */
107	new_lineno = (int) PyInt_AsLong(p_new_lineno);
108	if (new_lineno < f->f_code->co_firstlineno) {
109		PyErr_Format(PyExc_ValueError,
110			     "line %d comes before the current code block",
111			     new_lineno);
112		return -1;
113	}
114
115	/* Find the bytecode offset for the start of the given line, or the
116	 * first code-owning line after it. */
117	PyString_AsStringAndSize(f->f_code->co_lnotab, &lnotab, &lnotab_len);
118	addr = 0;
119	line = f->f_code->co_firstlineno;
120	new_lasti = -1;
121	for (offset = 0; offset < lnotab_len; offset += 2) {
122		addr += lnotab[offset];
123		line += lnotab[offset+1];
124		if (line >= new_lineno) {
125			new_lasti = addr;
126			new_lineno = line;
127			break;
128		}
129	}
130
131	/* If we didn't reach the requested line, return an error. */
132	if (new_lasti == -1) {
133		PyErr_Format(PyExc_ValueError,
134			     "line %d comes after the current code block",
135			     new_lineno);
136		return -1;
137	}
138
139	/* We're now ready to look at the bytecode. */
140	PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
141	min_addr = MIN(new_lasti, f->f_lasti);
142	max_addr = MAX(new_lasti, f->f_lasti);
143
144	/* You can't jump onto a line with an 'except' statement on it -
145	 * they expect to have an exception on the top of the stack, which
146	 * won't be true if you jump to them.  They always start with code
147	 * that either pops the exception using POP_TOP (plain 'except:'
148	 * lines do this) or duplicates the exception on the stack using
149	 * DUP_TOP (if there's an exception type specified).  See compile.c,
150	 * 'com_try_except' for the full details.  There aren't any other
151	 * cases (AFAIK) where a line's code can start with DUP_TOP or
152	 * POP_TOP, but if any ever appear, they'll be subject to the same
153	 * restriction (but with a different error message). */
154	if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
155		PyErr_SetString(PyExc_ValueError,
156		    "can't jump to 'except' line as there's no exception");
157		return -1;
158	}
159
160	/* You can't jump into or out of a 'finally' block because the 'try'
161	 * block leaves something on the stack for the END_FINALLY to clean
162	 * up.	So we walk the bytecode, maintaining a simulated blockstack.
163	 * When we reach the old or new address and it's in a 'finally' block
164	 * we note the address of the corresponding SETUP_FINALLY.  The jump
165	 * is only legal if neither address is in a 'finally' block or
166	 * they're both in the same one.  'blockstack' is a stack of the
167	 * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
168	 * whether we're in a 'finally' block at each blockstack level. */
169	f_lasti_setup_addr = -1;
170	new_lasti_setup_addr = -1;
171	memset(blockstack, '\0', sizeof(blockstack));
172	memset(in_finally, '\0', sizeof(in_finally));
173	blockstack_top = 0;
174	for (addr = 0; addr < code_len; addr++) {
175		unsigned char op = code[addr];
176		switch (op) {
177		case SETUP_LOOP:
178		case SETUP_EXCEPT:
179		case SETUP_FINALLY:
180			blockstack[blockstack_top++] = addr;
181			in_finally[blockstack_top-1] = 0;
182			break;
183
184		case POP_BLOCK:
185			assert(blockstack_top > 0);
186			setup_op = code[blockstack[blockstack_top-1]];
187			if (setup_op == SETUP_FINALLY) {
188				in_finally[blockstack_top-1] = 1;
189			}
190			else {
191				blockstack_top--;
192			}
193			break;
194
195		case END_FINALLY:
196			/* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
197			 * in the bytecode but don't correspond to an actual
198			 * 'finally' block.  (If blockstack_top is 0, we must
199			 * be seeing such an END_FINALLY.) */
200			if (blockstack_top > 0) {
201				setup_op = code[blockstack[blockstack_top-1]];
202				if (setup_op == SETUP_FINALLY) {
203					blockstack_top--;
204				}
205			}
206			break;
207		}
208
209		/* For the addresses we're interested in, see whether they're
210		 * within a 'finally' block and if so, remember the address
211		 * of the SETUP_FINALLY. */
212		if (addr == new_lasti || addr == f->f_lasti) {
213			int i = 0;
214			int setup_addr = -1;
215			for (i = blockstack_top-1; i >= 0; i--) {
216				if (in_finally[i]) {
217					setup_addr = blockstack[i];
218					break;
219				}
220			}
221
222			if (setup_addr != -1) {
223				if (addr == new_lasti) {
224					new_lasti_setup_addr = setup_addr;
225				}
226
227				if (addr == f->f_lasti) {
228					f_lasti_setup_addr = setup_addr;
229				}
230			}
231		}
232
233		if (op >= HAVE_ARGUMENT) {
234			addr += 2;
235		}
236	}
237
238	/* Verify that the blockstack tracking code didn't get lost. */
239	assert(blockstack_top == 0);
240
241	/* After all that, are we jumping into / out of a 'finally' block? */
242	if (new_lasti_setup_addr != f_lasti_setup_addr) {
243		PyErr_SetString(PyExc_ValueError,
244			    "can't jump into or out of a 'finally' block");
245		return -1;
246	}
247
248
249	/* Police block-jumping (you can't jump into the middle of a block)
250	 * and ensure that the blockstack finishes up in a sensible state (by
251	 * popping any blocks we're jumping out of).  We look at all the
252	 * blockstack operations between the current position and the new
253	 * one, and keep track of how many blocks we drop out of on the way.
254	 * By also keeping track of the lowest blockstack position we see, we
255	 * can tell whether the jump goes into any blocks without coming out
256	 * again - in that case we raise an exception below. */
257	delta_iblock = 0;
258	for (addr = min_addr; addr < max_addr; addr++) {
259		unsigned char op = code[addr];
260		switch (op) {
261		case SETUP_LOOP:
262		case SETUP_EXCEPT:
263		case SETUP_FINALLY:
264			delta_iblock++;
265			break;
266
267		case POP_BLOCK:
268			delta_iblock--;
269			break;
270		}
271
272		min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
273
274		if (op >= HAVE_ARGUMENT) {
275			addr += 2;
276		}
277	}
278
279	/* Derive the absolute iblock values from the deltas. */
280	min_iblock = f->f_iblock + min_delta_iblock;
281	if (new_lasti > f->f_lasti) {
282		/* Forwards jump. */
283		new_iblock = f->f_iblock + delta_iblock;
284	}
285	else {
286		/* Backwards jump. */
287		new_iblock = f->f_iblock - delta_iblock;
288	}
289
290	/* Are we jumping into a block? */
291	if (new_iblock > min_iblock) {
292		PyErr_SetString(PyExc_ValueError,
293				"can't jump into the middle of a block");
294		return -1;
295	}
296
297	/* Pop any blocks that we're jumping out of. */
298	while (f->f_iblock > new_iblock) {
299		PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
300		while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
301			PyObject *v = (*--f->f_stacktop);
302			Py_DECREF(v);
303		}
304	}
305
306	/* Finally set the new f_lineno and f_lasti and return OK. */
307	f->f_lineno = new_lineno;
308	f->f_lasti = new_lasti;
309	return 0;
310}
311
312static PyObject *
313frame_gettrace(PyFrameObject *f, void *closure)
314{
315	PyObject* trace = f->f_trace;
316
317	if (trace == NULL)
318		trace = Py_None;
319
320	Py_INCREF(trace);
321
322	return trace;
323}
324
325static int
326frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
327{
328	/* We rely on f_lineno being accurate when f_trace is set. */
329
330	PyObject* old_value = f->f_trace;
331
332	Py_XINCREF(v);
333	f->f_trace = v;
334
335	if (v != NULL)
336		f->f_lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
337
338	Py_XDECREF(old_value);
339
340	return 0;
341}
342
343
344static PyGetSetDef frame_getsetlist[] = {
345	{"f_locals",	(getter)frame_getlocals, NULL, NULL},
346	{"f_lineno",	(getter)frame_getlineno,
347			(setter)frame_setlineno, NULL},
348	{"f_trace",	(getter)frame_gettrace, (setter)frame_settrace, NULL},
349	{0}
350};
351
352/* Stack frames are allocated and deallocated at a considerable rate.
353   In an attempt to improve the speed of function calls, we:
354
355   1. Hold a single "zombie" frame on each code object. This retains
356   the allocated and initialised frame object from an invocation of
357   the code object. The zombie is reanimated the next time we need a
358   frame object for that code object. Doing this saves the malloc/
359   realloc required when using a free_list frame that isn't the
360   correct size. It also saves some field initialisation.
361
362   In zombie mode, no field of PyFrameObject holds a reference, but
363   the following fields are still valid:
364
365     * ob_type, ob_size, f_code, f_valuestack;
366
367     * f_locals, f_trace,
368       f_exc_type, f_exc_value, f_exc_traceback are NULL;
369
370     * f_localsplus does not require re-allocation and
371       the local variables in f_localsplus are NULL.
372
373   2. We also maintain a separate free list of stack frames (just like
374   integers are allocated in a special way -- see intobject.c).  When
375   a stack frame is on the free list, only the following members have
376   a meaning:
377	ob_type		== &Frametype
378	f_back		next item on free list, or NULL
379	f_stacksize	size of value stack
380	ob_size		size of localsplus
381   Note that the value and block stacks are preserved -- this can save
382   another malloc() call or two (and two free() calls as well!).
383   Also note that, unlike for integers, each frame object is a
384   malloc'ed object in its own right -- it is only the actual calls to
385   malloc() that we are trying to save here, not the administration.
386   After all, while a typical program may make millions of calls, a
387   call depth of more than 20 or 30 is probably already exceptional
388   unless the program contains run-away recursion.  I hope.
389
390   Later, MAXFREELIST was added to bound the # of frames saved on
391   free_list.  Else programs creating lots of cyclic trash involving
392   frames could provoke free_list into growing without bound.
393*/
394
395static PyFrameObject *free_list = NULL;
396static int numfree = 0;		/* number of frames currently in free_list */
397#define MAXFREELIST 200		/* max value for numfree */
398
399static void
400frame_dealloc(PyFrameObject *f)
401{
402	PyObject **p, **valuestack;
403	PyCodeObject *co;
404
405	PyObject_GC_UnTrack(f);
406	Py_TRASHCAN_SAFE_BEGIN(f)
407	/* Kill all local variables */
408	valuestack = f->f_valuestack;
409	for (p = f->f_localsplus; p < valuestack; p++)
410		Py_CLEAR(*p);
411
412	/* Free stack */
413	if (f->f_stacktop != NULL) {
414		for (p = valuestack; p < f->f_stacktop; p++)
415			Py_XDECREF(*p);
416	}
417
418	Py_XDECREF(f->f_back);
419	Py_DECREF(f->f_builtins);
420	Py_DECREF(f->f_globals);
421	Py_CLEAR(f->f_locals);
422	Py_CLEAR(f->f_trace);
423	Py_CLEAR(f->f_exc_type);
424	Py_CLEAR(f->f_exc_value);
425	Py_CLEAR(f->f_exc_traceback);
426
427	co = f->f_code;
428	if (co->co_zombieframe == NULL)
429		co->co_zombieframe = f;
430	else if (numfree < MAXFREELIST) {
431		++numfree;
432		f->f_back = free_list;
433		free_list = f;
434	}
435	else
436		PyObject_GC_Del(f);
437
438	Py_DECREF(co);
439	Py_TRASHCAN_SAFE_END(f)
440}
441
442static int
443frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
444{
445	PyObject **fastlocals, **p;
446	int i, slots;
447
448	Py_VISIT(f->f_back);
449	Py_VISIT(f->f_code);
450	Py_VISIT(f->f_builtins);
451	Py_VISIT(f->f_globals);
452	Py_VISIT(f->f_locals);
453	Py_VISIT(f->f_trace);
454	Py_VISIT(f->f_exc_type);
455	Py_VISIT(f->f_exc_value);
456	Py_VISIT(f->f_exc_traceback);
457
458	/* locals */
459	slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
460	fastlocals = f->f_localsplus;
461	for (i = slots; --i >= 0; ++fastlocals)
462		Py_VISIT(*fastlocals);
463
464	/* stack */
465	if (f->f_stacktop != NULL) {
466		for (p = f->f_valuestack; p < f->f_stacktop; p++)
467			Py_VISIT(*p);
468	}
469	return 0;
470}
471
472static void
473frame_clear(PyFrameObject *f)
474{
475	PyObject **fastlocals, **p, **oldtop;
476	int i, slots;
477
478	/* Before anything else, make sure that this frame is clearly marked
479	 * as being defunct!  Else, e.g., a generator reachable from this
480	 * frame may also point to this frame, believe itself to still be
481	 * active, and try cleaning up this frame again.
482	 */
483	oldtop = f->f_stacktop;
484	f->f_stacktop = NULL;
485
486	Py_CLEAR(f->f_exc_type);
487	Py_CLEAR(f->f_exc_value);
488	Py_CLEAR(f->f_exc_traceback);
489	Py_CLEAR(f->f_trace);
490
491	/* locals */
492	slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
493	fastlocals = f->f_localsplus;
494	for (i = slots; --i >= 0; ++fastlocals)
495		Py_CLEAR(*fastlocals);
496
497	/* stack */
498	if (oldtop != NULL) {
499		for (p = f->f_valuestack; p < oldtop; p++)
500			Py_CLEAR(*p);
501	}
502}
503
504
505PyTypeObject PyFrame_Type = {
506	PyObject_HEAD_INIT(&PyType_Type)
507	0,
508	"frame",
509	sizeof(PyFrameObject),
510	sizeof(PyObject *),
511	(destructor)frame_dealloc,		/* tp_dealloc */
512	0,					/* tp_print */
513	0,					/* tp_getattr */
514	0,					/* tp_setattr */
515	0,					/* tp_compare */
516	0,					/* tp_repr */
517	0,					/* tp_as_number */
518	0,					/* tp_as_sequence */
519	0,					/* tp_as_mapping */
520	0,					/* tp_hash */
521	0,					/* tp_call */
522	0,					/* tp_str */
523	PyObject_GenericGetAttr,		/* tp_getattro */
524	PyObject_GenericSetAttr,		/* tp_setattro */
525	0,					/* tp_as_buffer */
526	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
527	0,					/* tp_doc */
528	(traverseproc)frame_traverse,		/* tp_traverse */
529	(inquiry)frame_clear,			/* tp_clear */
530	0,					/* tp_richcompare */
531	0,					/* tp_weaklistoffset */
532	0,					/* tp_iter */
533	0,					/* tp_iternext */
534	0,					/* tp_methods */
535	frame_memberlist,			/* tp_members */
536	frame_getsetlist,			/* tp_getset */
537	0,					/* tp_base */
538	0,					/* tp_dict */
539};
540
541static PyObject *builtin_object;
542
543int _PyFrame_Init()
544{
545	builtin_object = PyString_InternFromString("__builtins__");
546	return (builtin_object != NULL);
547}
548
549PyFrameObject *
550PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals,
551	    PyObject *locals)
552{
553	PyFrameObject *back = tstate->frame;
554	PyFrameObject *f;
555	PyObject *builtins;
556	Py_ssize_t i;
557
558#ifdef Py_DEBUG
559	if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
560	    (locals != NULL && !PyMapping_Check(locals))) {
561		PyErr_BadInternalCall();
562		return NULL;
563	}
564#endif
565	if (back == NULL || back->f_globals != globals) {
566		builtins = PyDict_GetItem(globals, builtin_object);
567		if (builtins) {
568			if (PyModule_Check(builtins)) {
569				builtins = PyModule_GetDict(builtins);
570				assert(!builtins || PyDict_Check(builtins));
571			}
572			else if (!PyDict_Check(builtins))
573				builtins = NULL;
574		}
575		if (builtins == NULL) {
576			/* No builtins!	 Make up a minimal one
577			   Give them 'None', at least. */
578			builtins = PyDict_New();
579			if (builtins == NULL ||
580			    PyDict_SetItemString(
581				    builtins, "None", Py_None) < 0)
582				return NULL;
583		}
584		else
585			Py_INCREF(builtins);
586
587	}
588	else {
589		/* If we share the globals, we share the builtins.
590		   Save a lookup and a call. */
591		builtins = back->f_builtins;
592		assert(builtins != NULL && PyDict_Check(builtins));
593		Py_INCREF(builtins);
594	}
595	if (code->co_zombieframe != NULL) {
596		f = code->co_zombieframe;
597		code->co_zombieframe = NULL;
598		_Py_NewReference((PyObject *)f);
599		assert(f->f_code == code);
600	}
601	else {
602		Py_ssize_t extras, ncells, nfrees;
603		ncells = PyTuple_GET_SIZE(code->co_cellvars);
604		nfrees = PyTuple_GET_SIZE(code->co_freevars);
605		extras = code->co_stacksize + code->co_nlocals + ncells +
606		    nfrees;
607		if (free_list == NULL) {
608		    f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
609			extras);
610		    if (f == NULL) {
611			    Py_DECREF(builtins);
612			    return NULL;
613		    }
614		}
615		else {
616		    assert(numfree > 0);
617		    --numfree;
618		    f = free_list;
619		    free_list = free_list->f_back;
620		    if (f->ob_size < extras) {
621			    f = PyObject_GC_Resize(PyFrameObject, f, extras);
622			    if (f == NULL) {
623				    Py_DECREF(builtins);
624				    return NULL;
625			    }
626		    }
627		    _Py_NewReference((PyObject *)f);
628		}
629
630		f->f_code = code;
631		extras = code->co_nlocals + ncells + nfrees;
632		f->f_valuestack = f->f_localsplus + extras;
633		for (i=0; i<extras; i++)
634			f->f_localsplus[i] = NULL;
635		f->f_locals = NULL;
636		f->f_trace = NULL;
637		f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
638	}
639	f->f_stacktop = f->f_valuestack;
640	f->f_builtins = builtins;
641	Py_XINCREF(back);
642	f->f_back = back;
643	Py_INCREF(code);
644	Py_INCREF(globals);
645	f->f_globals = globals;
646	/* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
647	if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
648		(CO_NEWLOCALS | CO_OPTIMIZED))
649		; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
650	else if (code->co_flags & CO_NEWLOCALS) {
651		locals = PyDict_New();
652		if (locals == NULL) {
653			Py_DECREF(f);
654			return NULL;
655		}
656		f->f_locals = locals;
657	}
658	else {
659		if (locals == NULL)
660			locals = globals;
661		Py_INCREF(locals);
662		f->f_locals = locals;
663	}
664	f->f_tstate = tstate;
665
666	f->f_lasti = -1;
667	f->f_lineno = code->co_firstlineno;
668	f->f_iblock = 0;
669
670	_PyObject_GC_TRACK(f);
671	return f;
672}
673
674/* Block management */
675
676void
677PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
678{
679	PyTryBlock *b;
680	if (f->f_iblock >= CO_MAXBLOCKS)
681		Py_FatalError("XXX block stack overflow");
682	b = &f->f_blockstack[f->f_iblock++];
683	b->b_type = type;
684	b->b_level = level;
685	b->b_handler = handler;
686}
687
688PyTryBlock *
689PyFrame_BlockPop(PyFrameObject *f)
690{
691	PyTryBlock *b;
692	if (f->f_iblock <= 0)
693		Py_FatalError("XXX block stack underflow");
694	b = &f->f_blockstack[--f->f_iblock];
695	return b;
696}
697
698/* Convert between "fast" version of locals and dictionary version.
699
700   map and values are input arguments.	map is a tuple of strings.
701   values is an array of PyObject*.  At index i, map[i] is the name of
702   the variable with value values[i].  The function copies the first
703   nmap variable from map/values into dict.  If values[i] is NULL,
704   the variable is deleted from dict.
705
706   If deref is true, then the values being copied are cell variables
707   and the value is extracted from the cell variable before being put
708   in dict.
709
710   Exceptions raised while modifying the dict are silently ignored,
711   because there is no good way to report them.
712 */
713
714static void
715map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
716	    int deref)
717{
718	Py_ssize_t j;
719	assert(PyTuple_Check(map));
720	assert(PyDict_Check(dict));
721	assert(PyTuple_Size(map) >= nmap);
722	for (j = nmap; --j >= 0; ) {
723		PyObject *key = PyTuple_GET_ITEM(map, j);
724		PyObject *value = values[j];
725		assert(PyString_Check(key));
726		if (deref) {
727			assert(PyCell_Check(value));
728			value = PyCell_GET(value);
729		}
730		if (value == NULL) {
731			if (PyObject_DelItem(dict, key) != 0)
732				PyErr_Clear();
733		}
734		else {
735			if (PyObject_SetItem(dict, key, value) != 0)
736				PyErr_Clear();
737		}
738	}
739}
740
741/* Copy values from the "locals" dict into the fast locals.
742
743   dict is an input argument containing string keys representing
744   variables names and arbitrary PyObject* as values.
745
746   map and values are input arguments.	map is a tuple of strings.
747   values is an array of PyObject*.  At index i, map[i] is the name of
748   the variable with value values[i].  The function copies the first
749   nmap variable from map/values into dict.  If values[i] is NULL,
750   the variable is deleted from dict.
751
752   If deref is true, then the values being copied are cell variables
753   and the value is extracted from the cell variable before being put
754   in dict.  If clear is true, then variables in map but not in dict
755   are set to NULL in map; if clear is false, variables missing in
756   dict are ignored.
757
758   Exceptions raised while modifying the dict are silently ignored,
759   because there is no good way to report them.
760*/
761
762static void
763dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
764	    int deref, int clear)
765{
766	Py_ssize_t j;
767	assert(PyTuple_Check(map));
768	assert(PyDict_Check(dict));
769	assert(PyTuple_Size(map) >= nmap);
770	for (j = nmap; --j >= 0; ) {
771		PyObject *key = PyTuple_GET_ITEM(map, j);
772		PyObject *value = PyObject_GetItem(dict, key);
773		assert(PyString_Check(key));
774		/* We only care about NULLs if clear is true. */
775		if (value == NULL) {
776			PyErr_Clear();
777			if (!clear)
778				continue;
779		}
780		if (deref) {
781			assert(PyCell_Check(values[j]));
782			if (PyCell_GET(values[j]) != value) {
783				if (PyCell_Set(values[j], value) < 0)
784					PyErr_Clear();
785			}
786		} else if (values[j] != value) {
787			Py_XINCREF(value);
788			Py_XDECREF(values[j]);
789			values[j] = value;
790		}
791		Py_XDECREF(value);
792	}
793}
794
795void
796PyFrame_FastToLocals(PyFrameObject *f)
797{
798	/* Merge fast locals into f->f_locals */
799	PyObject *locals, *map;
800	PyObject **fast;
801	PyObject *error_type, *error_value, *error_traceback;
802	PyCodeObject *co;
803	Py_ssize_t j;
804	int ncells, nfreevars;
805	if (f == NULL)
806		return;
807	locals = f->f_locals;
808	if (locals == NULL) {
809		locals = f->f_locals = PyDict_New();
810		if (locals == NULL) {
811			PyErr_Clear(); /* Can't report it :-( */
812			return;
813		}
814	}
815	co = f->f_code;
816	map = co->co_varnames;
817	if (!PyTuple_Check(map))
818		return;
819	PyErr_Fetch(&error_type, &error_value, &error_traceback);
820	fast = f->f_localsplus;
821	j = PyTuple_GET_SIZE(map);
822	if (j > co->co_nlocals)
823		j = co->co_nlocals;
824	if (co->co_nlocals)
825		map_to_dict(map, j, locals, fast, 0);
826	ncells = PyTuple_GET_SIZE(co->co_cellvars);
827	nfreevars = PyTuple_GET_SIZE(co->co_freevars);
828	if (ncells || nfreevars) {
829		map_to_dict(co->co_cellvars, ncells,
830			    locals, fast + co->co_nlocals, 1);
831		/* If the namespace is unoptimized, then one of the
832		   following cases applies:
833		   1. It does not contain free variables, because it
834		      uses import * or is a top-level namespace.
835		   2. It is a class namespace.
836		   We don't want to accidentally copy free variables
837		   into the locals dict used by the class.
838		*/
839		if (co->co_flags & CO_OPTIMIZED) {
840			map_to_dict(co->co_freevars, nfreevars,
841				    locals, fast + co->co_nlocals + ncells, 1);
842		}
843	}
844	PyErr_Restore(error_type, error_value, error_traceback);
845}
846
847void
848PyFrame_LocalsToFast(PyFrameObject *f, int clear)
849{
850	/* Merge f->f_locals into fast locals */
851	PyObject *locals, *map;
852	PyObject **fast;
853	PyObject *error_type, *error_value, *error_traceback;
854	PyCodeObject *co;
855	Py_ssize_t j;
856	int ncells, nfreevars;
857	if (f == NULL)
858		return;
859	locals = f->f_locals;
860	co = f->f_code;
861	map = co->co_varnames;
862	if (locals == NULL)
863		return;
864	if (!PyTuple_Check(map))
865		return;
866	PyErr_Fetch(&error_type, &error_value, &error_traceback);
867	fast = f->f_localsplus;
868	j = PyTuple_GET_SIZE(map);
869	if (j > co->co_nlocals)
870		j = co->co_nlocals;
871	if (co->co_nlocals)
872	    dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
873	ncells = PyTuple_GET_SIZE(co->co_cellvars);
874	nfreevars = PyTuple_GET_SIZE(co->co_freevars);
875	if (ncells || nfreevars) {
876		dict_to_map(co->co_cellvars, ncells,
877			    locals, fast + co->co_nlocals, 1, clear);
878		dict_to_map(co->co_freevars, nfreevars,
879			    locals, fast + co->co_nlocals + ncells, 1,
880			    clear);
881	}
882	PyErr_Restore(error_type, error_value, error_traceback);
883}
884
885/* Clear out the free list */
886
887void
888PyFrame_Fini(void)
889{
890	while (free_list != NULL) {
891		PyFrameObject *f = free_list;
892		free_list = free_list->f_back;
893		PyObject_GC_Del(f);
894		--numfree;
895	}
896	assert(numfree == 0);
897	Py_XDECREF(builtin_object);
898	builtin_object = NULL;
899}
900